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Abstract

This work is devoted to the problem of liquidity that draws a lot of attention

after the global financial crisis. We consider an optimization problem for a port-

folio with an illiquid, a risky and a riskless liquid assets. We work in Merton’s

optimal consumption framework with continuous time. The liquid part of the

investment is described by a standard Black-Scholes market. The illiquid asset is

sold at an exogenous random moment with prescribed distribution and generates

additional liquid wealth dependent on its paper value. We show that one can

consider a problem with infinite time horizon and special weight function that is

characterized by the probability distribution of the liquidation time instead of a

problem with an exogenous random liquidation time. Using the viscosity solution

techniques, developed for the problem of optimization in presence of a random

income, we prove the existence and uniqueness of the solution for the considered

problem with logarithmic utility and modest restrictions on the liquidation time

distribution. We find asymptotic bounds for the value function when liquidation

time has exponential or Weibull distribution. We find optimal policies in a feed-

back form and illustrate how they differ from classical Merton’s policies. Through

a Lie group analysis we find the admitted Lie algebra for a problem with gen-

eral liquidation time distribution in cases of HARA and log utility functions and

formulate corresponding theorems for all these cases. Using these Lie algebras

we obtain reduced equations of the lower dimension for the studied three dimen-

sional partial differential equations. Several of similar substitutions were used

in other works before, whereas others are new to our knowledge. The applied

method of Lie group analysis gives us the possibility to provide a complete set of

non-equivalent substitutions and reduced equations that was not provided for the

problem of such type so far. Further research of these equations with numerical

and quantitative methods is expected to benefit from such analysis.
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Zusammenfassung

Diese Arbeit ist dem in der globalem Finanzkrise hochaktuellem Problem der Liq-

uidität gewidmet. Wir betrachten ein Optimierungsproblem für ein Portfolio mit einer

illiquiden, und einer liquiden risikoreichen und risikolosen Position.

Wir arbeiten im Rahmen des Mertonschen optimalen Verbrauchsproblems mit steti-

ger Zeit. Der liquide Anteil der Investitionen wird mit dem klassischen Black-Scholes

Marktmodell beschrieben. Die illiquide Position wird an einem exogenen zufäligen

Zeitpunkt mit einer vorgeschriebenen Verteilung verkauft und erzeugt ein zusätzliches

liquides Vermögen welches von seinem Bilanzierungswert abhängig ist.

Wir zeigen, dass man ein Problem mit einem unendlichen Zeithorizont und einer

speziellen Gewichtsfunktion, die durch die Wahrscheinlichkeitsverteilung der Liquida-

tionszeit T bestimmt wird, anstelle des Problems mit einer exogenen zufäligen Liqui-

dationszeit betrachten kann. Unter Ausnutzung der Methode der viskosen Lösungen,

die für Optimierungsprobleme in Anwesenheit von zufälligen Einkünften entwickelt

wurde, beweisen wir die Existenz und Eindeutigkeit der Lösung für das betrachtete

Problem mit der logarithmischen Nutzenfunktion und einer Wahrscheinlichkeitsver-

teilung der Liquidationszeit unter minimalen Beschränkungen. Wir finden asympto-

tische Schranken für die Wertfunktion wenn die Liquidationszeit eine exponentielle

oder eine Weibull - Verteilung hat. Wir finden optimale Strategien in der Feedback-

form und zeigen wie sich diese von klassischen Mertonschen Strategien unterscheiden.

Mit Hilfe von Lie Gruppenanalyse finden wir alle Lie Algebren für ein Problem mit

einer allgemeinen Liquidationszeitverteilung in Fällen von HARA und logarithmischen

Nutzenfunktionen und formulieren entsprechende Theoreme für alle diese Fälle.

Wir benutzen diese Lie Algebren um die untersuchten dreidimensionalen partiellen

Differentialgleichungen auf Gleichungen niedrigerer Dimensionen zu reduzieren. Mehrere

ähnliche Substitutionen wurden bereits früher in anderen Arbeiten benutzt, andere sind

unserem Wissen nach neu. Der benutzte Methode der Lie Gruppenanalyse gibt uns

die Möglichkeit, einen kompletten Satz von nicht äquivalenten Substitutionen und die

entsprechenden reduzierten Gleichungen zu finden was für Probleme von diesem Typ

bisher nicht möglich war. Es ist zu erwarten, dass weitere Untersuchungen dieser Glei-

chungen mit numerischen und qualitativen Methoden davon profitieren können.
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1

Introduction

The global financial crisis of 2008-2009 revealed the significance of several prob-

lems that were well know on the global markets before but seemed unimportant

and were regarded as the aspects that could have only a weak, if even noticeable,

impact on the general situation. In particular, the financial crisis helped practi-

tioners to understand the difficulties connected with a management of portfolios

with illiquid assets and showed a significant need for solid mathematical mod-

els addressing this problem. Though financial institutes deal with illiquid assets

on a regular basis there is no generally accepted framework for such portfolios

especially if they provide stochastic income or down payments.

The most challenging task one faces defining such framework is to incorporate

the illiquidity in a mathematically tractable way. Intuitively it is clear which of

the assets we would call liquid, yet there is still no widely accepted way of defining

illiquidity of an asset as a measurable parameter. In our previous work [48] we

have tried to come up with a tractable empiric definition of illiquidity, but it is

out of the scope of this work, since a mathematically correct definition, being a

problem itself, is not the biggest challenge in this area. The exact formulation

of the goals of the portfolio optimization is even more tedious, since illiquidity is

usually connected with different sale mechanisms and with an essential liquida-

tion time-lag. The stochastic processes that describe such effects are not studied

profoundly in financial mathematics. Another important aspect is an overwhelm-

ing amount of empiric studies, that are constantly appearing, since data-sets, that

describe illiquid assets, become as affordable as the computation power needed

1



1. INTRODUCTION

to work with them. One can find more and more works about certain type of

illiquid assets and ad-hoc descriptions of their behavior, see, for example, [20] or

[53]. Yet we see a lack of an integrated approach to the problems of that kind.

This thesis is devoted to one of the approaches to the problem of financial

illiquidity, namely, an optimization of a portfolio with an illiquid asset sold in an

exogenous random moment of time. We believe that the portfolio optimization

framework could be a good unified method to work with the problems of illiquid

assets. In this work we demonstrate how it can be advanced in an industrially

applicable way.

The model that we formulate in this work draws attention to an interesting

class of optimization problems that go in line with the so-called adapted resource

allocation problem developed by Pickenhain et al. in [41]. The idea to regard

an infinite horizon problem with certain weight function, see [51] and [52] for

the details, seems very promising and fruitful. The problem of a portfolio opti-

mization with an asset that has an exogenous random liquidation time that we

regard in this work, could also be regarded as an infinite horizon problem with a

special weight-function. This is a class of optimization problems that have direct

connection with industrial needs and seems mathematically interesting in itself.

This work consists of eight chapters, including this, first one. In the second

chapter we talk about the definition of illiquidity and make an overview of the

existing approaches to the problem, discuss their advantages and disadvantages

and give a deeper motivation for the necessity of a more mathematically precise

and universal approach. In the third chapter we formulate the problem in the

framework of portfolio optimization with an exogenous random liquidation time

and regard the Hamilton-Jacobi-Bellmann equation that corresponds to our eco-

nomic setting. We study the equation on the corresponding value function, prove

the existence and uniqueness of the solution in a sense of viscosity functions for

a broad class of liquidation time distributions of an illiquid asset. In the fourth

chapter we discuss the difference of the optimal policies in the cases of different

liquidation time distribution, namely, an exponential and Weibull distributed liq-

uidation times in presence of a logarithmic utility function. In the fifth chapter

we carry out the Lie group analysis of the HJB equations that arise in cases of

different utility functions and different liquidation time distributions. We show

that exponentially distributed liquidation time is a special case for the problems

2



of this type, since it is the only liquidation time distribution for which a Lie alge-

bra admitted by HJB equation is four dimensional. In Chapter 6 and Chapter 7

we list all possible reductions for the problem with HARA and logarithmic util-

ity correspondingly and show that, indeed, for an exponential liquidation time

the problem in both cases of HARA and logarithmic utility functions could be

reduced to an ODE through a transformation of the admitted Lie group. In the

last Chapter, Conclusion, we summarize all obtained results.
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Models of illiquidity

’Time – is money.’

Proverb

In this Chapter we make a brief overview of the approaches to the phenomenon

of illiquidity. It is very important to note that there is an overwhelming amount

of statistical analysis of the problem but the number of mathematical models

that can aptly describe this issue is rather limited. Before we can talk about

the models that could describe the phenomenon, we should try to define the

phenomenon itself, since there is no academic definition that is considered as a

standard one for financial mathematics let us briefly discuss the most popular

ways to define and model illiquidity.

2.1 Ways to define liquidity

The understanding of the liquidity or, correspondingly, the illiquidity of a given

asset is still a matter of a debate among practitioner as well as among academics.

The intuitive idea that is standing behind is quite clear but the definition that

could be not only mathematically correct and correspond to a given model but

also could make sense from a practical point of view is a matter of a discussion.

Modern markets are constantly facing the problem of an optimal allocation

(also sometimes referred as investment-consumption or allocation-consumption

problem) for a portfolio that includes an illiquid asset, however, as far as we are

5



2. MODELS OF ILLIQUIDITY

concerned, there was no solid analytical solution for the problem of such type

until 2006, when Tebaldi and Schwartz in [55] obtained such analytical solution

using the framework of optimal portfolio allocation in presence of random income.

The authors set up a finite investment horizon, denoted as T , and by design make

an assumption that the investor sells the illiquid asset exactly in the end of this

investment horizon T , moreover, the investor can not sell this asset in any moment

of time, t, that precedes T . This models, being very interesting and novel, is

unfortunately not that relevant for practical needs, since it is clearly applicable

only in some exceptional cases (i.e. when the investor regards his human capital

as an illiquid asset and knows exactly the day of his retirement) but generally we

can not pre-determine the time when the opportunity to trade the illiquid asset

occurs. This factor significantly reduces the industrial value of the mentioned

research.

In order to form a better understanding of the problem of illiquidity for the

reader, let us now retrospectively go through the history of this issue an list

some of the most important and notable approaches that are popular among the

practitioners and researchers in the field of finance.

The first definition of illiquidity, as far as we know, was given by Keynes, [36]

as early as 1930: an asset is more liquid if it is ’more certainly realizable at short

notice without loss’. For the next 50 years this compact definition was more or

less the only one that was used in the scientific literature. This is only to be

expected since is was widely assumed among the researchers that the problem

was too complex on one hand and not that important industrially on the other.

In the meantime the practitioners on the market were basically trusting their

’guts’ and didn’t go any deeper than an intuitive understanding of the issue.

Indeed, if we look, for example, into the ’Wall Street Words: An A to Z

Guide to Investment Terms for Today’s Investor’ by Scott [56] we can find a

representation of this practitioner’s definition: Illiquid asset is an asset that is

difficult to buy or sell in a short period of time without its price being affected.

This definition is even shorter than the one proposed by Keynes, yet it is way

more versatile. Though it gives us some practical understanding of the issue it

can hardly be used in the mathematical applications because of its’ qualitative

character that definitely prevails over any quantitive approach here. Neverthe-

less, this definition points out several important aspects of the phenomenon that

6



2.1 Ways to define liquidity

deserve our particular attention. First of all, it is the time aspect of the phe-

nomenon: difficult to buy or sell in a short period of time. Since the definition

does not qualitatively describe which period of time should be considered as a

short one and which should be regarded as long, this aspect is defined through

the design of the model that we to come up with. For example, as authors in [55]

we could choose some constant time interval for which any time period smaller

than this fixed predetermined constant could be a ”short” one by definition. This

approach is tempting since it is straight forward and rather easy to work with,

however, it doesn’t seem to be very fruitful since it does not capture a crucial

aspect of the phenomenon: the buyer arrives stochastically for almost any asset

that an individual wants to sell. The waiting time of a single deal can vary con-

siderably under conditions that are very similar. The second important aspect

of illiquidity is the actual price of an asset. It is clear that the buyer and the

seller can have different estimation of the market conjuncture and therefore can

have different opinions on a price that they would consider as a fair one for the

same asset. This ”misunderstanding” can result in the situation when the seller

is ready to wait a bit more for a better price, which, in return increases the time

horizon.

Time and price are two factors that play crucial roles when we talk about

illiquidity, but there is a fundamental difference between the two. The time

factor is defined by a general framework of the market model that we are using

while the price depends, among others, on the investors’ utility function.

In 1998 Froot and Stein [26] in a model that is considered classical for risk

management practitioners up to now provide the following definition of the illiq-

uid asset: illiquid financial asset is an asset which, because of its information-

intensive nature, cannot be frictionlessly traded in the capital markets. Though

this work was actively criticized in particular for its’ ”strictness”, that could lead

to some unexpected conclusions in certain circumstances (see, for example, [30]),

it is frequently referred to in financial research that addresses illiquidity. For in-

stance, in 2007 Cao and Tëıletche, [15] were using this definition for the problem

of the alternative assets (i.e. the assets that are different from core assets such

as money market, bonds and equities, say, factories, immobilities, etc.). Between

2000 and 2005, the amount of such alternative assets under the management of

hedge funds industry doubled and reached the $ 1,000 billions threshold. Natu-

7



2. MODELS OF ILLIQUIDITY

rally, alternative investments tend to be less liquid than the standard ones. The

paper proposes insightful the idea of a management strategy for the portfolio

that is comprised of these illiquid assets; however, the results are qualitative and

the authors neither provides a full mathematical model nor give us an analytical

solution of the problem.

The first attempt to describe the problem of illiquidity in a mathematically

correct way and to provide a definition that would be in correspondence with

the ”empirical” understanding of this property was made in 1986 by Lippman

and McCall, [40]. They defined the environment characterized by four differ-

ent objects: ci, Ti, Xi and β. All of them were described in the discrete time

framework.

ci is a cost of owning or operating the asset during the period number i. It can

also be considered as the cost of the attempt to sell the asset. The offers come at

every moment that is in the set {Si : i = 1, 2, . . . } of arrival times. These random

variables Si satisfy

Si = Σi
j=1Tj,

where the integer valued random variables Ti > 0 neither need to be independent

nor identically distributed.

Xi are positive independent identically distributed random variables that cor-

respond to the price offered in the i-th moment. All the expenditures are dis-

counted at the rate β so that a present value of a dollar received in period i is βi.

The discounted net receipts R(τ) associated with a stopping time τ is given by

R(τ) = βτYN(τ) − Στ
j=1β

ici, (2.1)

Yi =

Xi, if recall is not allowed,

max(X1, . . . , Xi), if recall is allowed,

where N(τ) = max{n : Sn 6 τ} is the random number of offers that the seller

observes when employing the decision rule τ and the random variable YN(τ) is the

size of the accepted offer. Consequently, the seller chooses a stopping rule τ ∗ in

the set Ti of all stopping rules such that

E[R(τ ∗)] = max{E[R(τ)] : τ ∈ Ti}.

Obviously, the time it takes to estimate the asset’s value and to convert the

asset into cash is defined by the random variable τ ∗. Lippman and McCall, [40]

8



2.1 Ways to define liquidity

proposed to regard the expectation of this variable, E[τ ∗] as the measure of an

assets’ illiquidity. According to this definition as E[τ ∗] increases (i.e. one need

to wait longer until the asset is sold) a liquidity of a corresponding asset is to

decrease.

This model was actually a milestone in this field and a number of the papers

that try to describe illiquidity either use this approach directly or try to improve

and broaden it. The serious disadvantage of this approach is that it does not take

into consideration the other aspect of illiquidity that we have discussed above,

that is this model hardly addresses the aspect of price and inevitable loss that is

normally associated with the immediate need to sell an illiquid asset.

This aspect was mathematically described in 1994 by Hooker and Kohn, [31].

The authors decided to focus on the money aspect and to use the same framework

(known as a search problem) but to make emphasis on the fact that an intention

of a seller to sell an asset actually affects the price. The authors introduce an

index of liquidity, so-called λ(It), as

λ(It) =
V (It)− L(It)

V (It)
,

where V (It) is the value of the asset under optimal sale, as a function of the

information set It and L(It) is a loss from immediate sale of the asset. Since λ

depends on the information set It they call this index the conditional liquidity of

the asset. The authors also introduce the expected liquidity of an asset, Λ, which,

naturally, is

Λ = E[λ(It)].

In their work Hooker and Kohn, [31] showed how their approach could be imple-

mented on the capital market. They also gave an interesting intuitive example

that could advocate their approach and show that it has more economic sense

then the time-approach used before. Let us briefly tell about this reasoning since

it gives a good understanding of the phenomenon.

Example 1. Suppose the current price of an asset is $ 100, and the value of

optimal sale is $ 100.01. The expected time to sale when following the optimal-

sale policy is 100 years, so according to Lippman and McCall’s definition the asset

like that is highly illiquid. According to Hooker and Kohn it is almost perfectly

liquid.

9
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In [48] we came up with another example for which Lippman and McCall’s

approach would give a better description of the real situation on the market. Let

us provide it here as well.

Example 2. You have a factory which you want to sell. You have estimated the

price of it and wait for a reasonable offer. Buyers when knowing that you want to

have a deal get interested but do their own estimation. The offers they give come

with a big time lag but could be really close to your estimated ”optimal” price,

therefore, according to Hooker and Kohn the asset could look rather liquid while

our common sense tells us that it is not.

This two simple examples let us grasp the biggest issue that concerns the

problem of illiquidity. It seems that the offered price of the deal and the time

lag between the start of the sale and the arrival of the offer should be both

incorporated within a model. Moreover, in order to make this model applicable

to the real problems neither the price not the time of the liquidation could be

deterministic. That is why in this work we address an optimization problem for

a portfolio that incorporates an illiquid asset that on one hand has a paper value,

determined by a geometric Brownian motion, and on the other has an exogenous

random liquidation time.

We have already mentioned above that there are a lot of other approaches to

the illiquidity that are either based on the common sense or on the empirical facts

and estimations or the combinations of the two. A majority of these approaches

do a lot in common either with one or with the other definition provided above.

For example, since the beginning of 2000s the idea to estimate the liquidity of

the assets through the bid-ask spread became rather popular, see Bangia et al.

(1999), [5] or Coppejans et al. (2000), [18]. In fact this approach could be directly

connected with the one proposed by Hooker and Kohn, [31]. Indeed, bid and

ask are nothing more than the prices of the buyer and the seller correspondingly

which means that their spread could be described via a ratio between the price

by which we can sell the asset immediately and the price by which we desire to

sell it.

The last research that is worth mentioning here is the paper of E. Acar, R.

Adams and R. Williams, [2]. The authors propose to measure the illiquidity as

”the ratio between volume and the distance moved by the market”. They derive

10
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this concept from two basic ideas:

• The perfect liquidity indicator would assess the probable cost of the execu-

tion in the market.

• The perfect liquidity indicator would assess whether the markets were liable

to anomalous moves.

They measure volume and price movement as evolving time series and then

with a help of the empirical data they verify their approach. One disadvantage

of this work is that the authors do not quantitatively describe any direct implica-

tions of such indicator on the investors’ strategy. Another is the fact that many

alternative assets are traded on the markets with little amount of market-data

available, which makes a detection of certain ’anomalous’ behavior a tedious task

in itself.

Out of all the approaches described above there is one that deserves our special

attention. It is a portfolio optimization problem for a portfolio with an illiquid

asset on which we want to focus from now on.

2.2 State-of-the-art

In 1974 Miller in [43] formulated a problem of optimal consumption with a

stochastic income stream. It was show that an upper bound on consumption

is lower than the value of optimal consumption in the case where the random la-

bor income is replaced by its mean. This was a first work to our knowledge that

formulated the framework of a portfolio optimization in presence of a stochastic

income.

In 1987 Grossman and Baroque in [28] analyzed a model of optimal con-

sumption and portfolio selection in which consumption services are generated by

holding a durable good. The durable good was considered illiquid in a sense

that a transaction cost had to be paid when the good was sold. It was shown

that it was optimal for the consumer to wait until a large change in wealth oc-

curs before adjusting his consumption. As a consequence, the consumption based

capital asset pricing model does not hold. At the same time it was demonstrated

that the standard, one factor, market portfolio based capital asset pricing model

11
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does hold in this environment. This problem was very close to the problem of a

stochastic income that we discuss later in detail, but this particular model was

rather straight forward since it did not take into consideration any random effects

associated with illiquidity such as stochastic liquidation time or price discount.

Two years later Zeldes provided the first numerical solution for the problem of

optimal consumption with stochastic income and constant relative risk aversion

in [61]. Among other results two quite important aspects were demonstrated.

Consumption seemed to be highly sensitive to the transitory income and tended

to grow in the case of a low risk-free interest.

Finally, in 1993 Duffie and Zariphopoulou in [21] develop the framework of

the optimal consumption with undiversifiable income risk (also called a stochas-

tic income model) as an extension for the continuous time model, proposed by

Merton, [42]. They considered an infinite time horizon and proved the existence

and uniqueness of the viscosity solution of the associated HJB equation for the

class of concave utility functions U(c) satisfying the following conditions: U in c

is strictly concave; C2(0,+∞), U(c) ≤ M(1 + c)γ, with 0 < γ < 1,M > 0;

U(0) ≥ 0, lim
c→0

U ′(c) = +∞, lim
c→∞

U ′(c) = 0.

Later, in 1997, in [22] an extended problem of hedging in incomplete markets

with hyperbolic absolute risk aversion (so called HARA) utility function was

studied. Here the stochastic income cannot be replicated by trading available

securities. An investor receives stochastic income in moment t at a rate Yt, where

dYt = µYtdt+ ηYtdW
1
t , t ≥ 0, Y0 = y, y ≥ 0

and µ, η > 0− const here W 1 is a standard Brownian motion. The riskless bank

account has a constant continuously compound interest rate r. A traded security

has a price S given by

dSt = αStdt+ σSt(ρdW
1
t +

√
1− ρ2dW 2

t ),

α, σ > 0 − const and W 2 is an independent standard Brownian motion, ρ ∈
(−1, 1) is a correlation between price processes St and Yt. The investor utility

function for consumption process ct is given by

U(c(t)) = E

[∫ ∞
0

e−κtU(c(t))dt

]
, U(c(t)) = c(t)γ,

where γ ∈ (0, 1) and κ is a discount factor κ > r.

12



2.2 State-of-the-art

Remark 1. The notation of the strategy (π, c) is standard for the problems of

such kind. Throughout this work we will denote the amount of the investment

in a liquid risky asset as π and investor’s consumption as c. Both controls do

depend on time, so to emphasize it to the reader we might also use (π(t), c(t)) or

even (πt, ct) from time to time.

The investors wealth process L evolves

dLt = [rLt+(α+δ−r)πt−ct+Yt]dt+σπt(ρdW
1
t +
√

1− ρ2 dW 2
t ), t ≥ 0, L0 = l,

where δ could be regarded as the dividends payed constantly from an illiquid asset

or as the possession costs, l is an initial wealth endowment and πt represents

an investment in the risky asset S, with the remaining wealth held in riskless

borrowing or lending. The goal is to characterize an investor value function

V (l, y) = sup
(π,c)∈A(l,y)

U(c). The set A(l, y) is a set of admissible controls (π, c) such

that Lt ≥ 0.

The authors in [22] proved the smoothness of the viscosity solution of the

associated Hamilton-Jacobi-Bellman (HJB) equation in the case of the HARA

utility function and the infinite time horizon. This proof heavily relies on a

reduction of the initial HJB equation to an ODE. After this reduction the main

result follows from the uniform convergence of the classical solution of a uniformly

elliptic equation to the viscosity solution, which is unique.

It is important to mention that the authors use the discount factor e−κt in

[22] as a technical factor which is not related to stochastic income. The eco-

nomical setting does not imply any liquidation of an illiquid asset which provides

stochastic income Yt.

In 2007 Schwarz and Tebaldi in [55] broadened a model of random income

proposed before and connected it to the problems of illiquidity. They assumed

that the non-traded illiquid asset generates a flow of random income in the form

of dividends, until it is sold at a fixed moment of time. This idea allowed to

build models for a portfolios with illiquid assets, using the results obtained for

the problems with random income. One of a huge challenges connected with

optimizations problems in presence of illiquidity is the question of pricing of

illiquid assets that is a serious mathematical problem in itself. Assuming that

the asset generates a certain dividends, connected with its fair price authors

13
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could elegantly incorporate illiquid asset in the model. Further, the authors

define illiquid asset as an asset that can not be sold neither piece by piece nor at

once before the investment’s horizon, denoted as T , which is a fixed deterministic

value at which the asset generates a random cash-flow equal to its’ paper-value at

this moment T (the cash-flow is denoted as HT ). With this economical reasoning

behind it this model of illiquidity looks rather promising yet needs a more exact

qualitative and quantitive description. In [48] we have broadened this framework

for the case of logarithmic utility and finite deterministic liquidation time. In

this particular work we talk about a further improvement of this framework,

especially, weakening the trading conditions for an illiquid asset that can move a

model closer to the practical needs.

Later in 2008 Schwarz et al. in [16] applied the approach very close to the

one formulated in [55] to the problem of housing choice for a household. The

constrained of a deterministic time was abandoned as the idea of the model was

to compare two ’realities’: one, where housing was purely illiquid and another

’thought-experiment’ reality, where the household could sell the real-estate par-

tially. It was demonstrated that optimal strategies for two models differ signifi-

cantly.

One of the possible extensions of this problem was done by Ang, Papanikolaou

and Westerfeld in [4]. They considered exactly the same model as in [55]. How-

ever, they assumed that an illiquid asset can be traded but only at infrequent,

stochastic moments of time and thus the whole three-asset portfolio could be re-

balanced. With a series of numerical calculations they provide an intuition of the

influence of illiquidity on the marginal utility of the investor. The authors numer-

ically study the cases when amount of the illiquid wealth is significantly bigger

than the amount of the liquid capital and comparing it with the opposite case

(insignificantly small amount of illiquid wealth) they show that the effects of the

asset being illiquid may cause unbounded deviations from the Merton solution.

In 2008 He [29] proposed a model with the same set-up but different con-

straints on illiquid asset. While the investor can instantaneously transfer funds

from the liquid to the illiquid asset, the vice versa transaction is allowed only

in exponentially distributed moments of time. The author finds an approximate

numerical solution of the problem for the constant risk-aversion (CARA) utility

function.
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Industry is highly interested in feasible illiquidity models. The practitioners

constantly state that portfolios that include illiquid assets have a heavily time-

dependent behavior (see, for example, [15]). There were several attempts made in

this direction. In [34], for example, the authors use endogenous random time hori-

zon and demonstrate that a standard optimization problem with an endogenous

stopping time differs from classical Metron case.

In this work we focus on the time-horizon is an exogenous random variable.

We would like to note that the set-up with exogenous time is actually economically

motivated. For example, standard inheritance procedures in several EU countries

assume that the illiquid assets are sold and the cash is then divided between the

heirs. Naturally the sale occurs in a random moment of time and the inheritance

manager splits the cash between the heirs immediately after the sale. Another

example of an exogenous liquidation time that justifies our model are shares-for-

the-loan auctions. This phenomenon is typical for the the emerging markets where

governmentally owned businesses are at some point privatized fully or partially.

For example, it was very typical for a post-soviet markets in their transition

period and is still relevant for a number of states in the Eastern Europe, [58].
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3

Portfolio optimization in the case

of an illiquid asset with a given

liquidation time distribution.

General case.

3.1 Economical setting

We assume that the investor’s portfolio includes a riskless bond, a risky asset and

a non-traded asset that generates stochastic income, i.e. dividends. However,

in contrast with the previous works we replace the liquidation time that was

deterministic before with a stochastically distributed time T . A risk-free bank

account Bt with the interest rate r and a stock price St describe classical Black-

Scholes market [8]

dBt = rBtdt, dSt = St(αdt+ σdW 1
t ), t ≤ T (3.1)

where the interest rate r, the continuously compounded rate of return α > r

and the standard deviation σ are assumed to be constant; r, α, σ − const. An

illiquid asset Ht that can not be traded up to the time T and which paper value

is correlated with the stock price and follows

dHt

Ht

= (µ− δ)dt+ η(ρdW 1 +
√

1− ρ2dW 2), t ≤ T. (3.2)
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ASSET WITH A GIVEN LIQUIDATION TIME DISTRIBUTION.
GENERAL CASE.

where µ is the expected rate of return of the risky illiquid asset, (W 1,W 2) are

two independent standard Brownian motions, δ is the rate of dividend paid by

the illiquid asset, η is the continuous standard deviation of the rate of return,

and ρ ∈ (−1; 1) is the correlation coefficient between the stock index and the

illiquid risky asset. The parameters µ, δ, η, ρ are all assumed to be constant.

The liquidation time T is an exogenous random-distributed continuous variable

which does not depend on the Brownian motions (W 1,W 2). The probability

density function of liquidation time distribution T is denoted by φ(t) whereas

Φ(t) denotes the cumulative distribution function, and Φ(t) the survival function

also known as a reliability function Φ(t) = 1 − Φ(t). We omit here the explicit

notion of the possible parameters of distribution in order to make the formulae

shorter.

Given the filtration {Ft} generated by the Brownian motion W = (W 1,W 2)

we assume that the consumption process is an element of the space L+ of non-

negative {Ft}-progressively measurable processes ct such that

E

(∫ s

0

c(t)dt

)
<∞, s ∈ [0, T ], (3.3)

where E denotes a mathematical expectation with respect to filtration {Ft}.
The investor wants to maximize the average utility consumed up to the time of

liquidation, given by

U(c) := E

[∫ T

0

U(c(t))dt

]
. (3.4)

Here we used E to indicate that we are averaging over all random variables in-

cluding T . The wealth process Lt is the sum of cash holdings in bonds, stocks

and random dividends from the non-traded asset minus the consumption stream.

Thus, we can write

dLt = (rLt + δHt + πt(α− r)− ct)dt+ πtσdW
1
t . (3.5)

The set of admissible policies is standard and consists of investment strategies

(πt, ct) such that

1. ct belongs to L+,

2. πt is {Ft}-progressively measurable and
∫ s
t

(πτ )
2dτ < ∞ a.s. for any t ≤

τ ≤ T ,

18



3.1 Economical setting

3. Lt, defined by the stochastic differential equation (3.5) and initial conditions

Lt = l > 0, Ht = h > 0 a.e. (t ≤ T ).

We claim that one can explicitly average (3.4) over T and with the certain con-

ditions posed on Φ and U(c) the problem (3.4) is equivalent to the maximization

of

U(c) := E

[∫ ∞
0

Φ(t)U(c(t))dt

]
, (3.6)

where E is an expectation over space coordinates excluding T .

Remark 2. It is important to note, that if T is exponentially distributed we

get precisely the problem of optimal consumption with random income that was

studied in [22] and already discussed in the introduction.

Remark 3. The idea to work with a non-exponential discounting is not new,

for example Ivar Ekeland in [23], [24] has shown the possibility to work with dif-

ferent discounting factors. Skiba and Tobacman also mention a non-exponential

discounting in [57] in the loan context, yet the authors do not provide any math-

ematically strict way to model these effects. To our knowledge the idea of a

discounting different from an exponential one in a framework of illiquidity was

never proposed before.

We demonstrate here a formal derivation of the equivalence between two op-

timal problems briefly mentioned by Merton in [42].

Proposition 1. The problems (3.4) and (3.6) are equivalent provided

lim
t→∞

Φ(t)E [U(c(t)] = 0. (3.7)

Proof. We have

E

[∫ T

0

U(c(t))dt

]
=

∫ ∞
0

φ(T )E

[∫ T

0

U(c(t))dt

]
dT

=

∫ ∞
0

∫ T

0

φ(T )g(t)dTdt, (3.8)

where g(t) = E[U(c(t)]. Because of the absolute convergence E
[∫ T

0
U(c(t))dt

]
=
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∫ T
0
g(t)dt and integrating (3.8) by parts we get∫ ∞

0

∫ T

0

φ(T )g(t)dTdt = Φ(T )

∫ T

0

g(t)dt
∣∣∞
0

+

∫ ∞
0

Φ(t)g(t)dt

= E

[∫ ∞
0

Φ(t)U(c(t))dt

]
, (3.9)

where we used the condition (3.7) to eliminate the first term, and the absolute

convergence of the integral to move the expectation out. •

Remark 4. In the majority of the models consumption c(t) is bounded as time

goes to infinity. For all these models condition (3.7) is satisfied automatically.

Yet if one regards absolute values of consumption and it grows as time goes to

infinity this constraint is needed.

From now on in this work we will regard the problem (3.4) with random liqui-

dation time T that has a distribution satisfying the condition (3.7) in Proposition

1 and, therefore, corresponds to the value function V (t, l, h) which is defined as

V (t, l, h) = max
(π,c)

E

[∫ ∞
t

Φ(τ)U(c(τ))dτ |L(t) = l, H(t) = h

]
. (3.10)

For the value function we can derive a HJB equation on which we focus in this

work

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + h)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

+ max
π

G[π] + max
c≥0

H[c] = 0, (3.11)

G[π] =
1

2
Vll(t, l, h)π2σ2 + Vlh(t, l, h)ηρπσh

+ π(α− r)Vl(t, l, h), (3.12)

H[c] = −cVl(t, l, h) + Φ(t)U(c), (3.13)

with the boundary condition

V (t, l, h)→ 0, as t→∞.

The fact that the value function for a problem of such kind can be regarded as

a viscosity solution is well known (see e.g. [19]). Before we move further we

need to introduce some basic ideas and principles concerning viscosity solutions.
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We address an interested reader to the book of Fleming and Soner [25] for the

detailed and fundamental coverage of this topic. For the ones interested in the

connection between viscosity solutions and optimization problems we also can

recommend [6]. In this work we will use the notations form [19]

3.2 Introduction to viscosity solutions

Generally speaking, viscosity solution techniques can be applied to PDEs having

the form F (x, u,Du,D2u) = 0 where F : RN × R × RN × S(N) → R and S(N)

is the set of symmetric matrices N × N . This approach has several crucial

advantages

• continuous functions can be solutions of fully nonlinear equations of second

order,

• very general existence and uniqueness theorems can be formulated and have

relatively simple proofs,

• general boundary conditions can be obtained.

What is especially important is that this approach has a great flexibility in pass-

ing to limits in various settings. In F (x, u,Du,D2u) function u is a real-valued

function defined on some subset O of RN , generally, Du corresponds to the gra-

dient of u and D2u corresponds to the matrix of second derivatives of u, but Du

and D2u do not have to have classical meanings.

In order to apply the theory to a given equation F = 0, one should require that

F satisfies a fundamental monotonicity condition formulated in [19] as follows

F (x, r, p,X) ≤ F (x, s, p, Y ), whenever r ≤ s and Y ≤ X; (3.14)

where r, s ∈ R, x, p ∈ RN , X, Y ∈ S(N) and S(N) is equipped with its usual

order.

Splitting condition (3.14) in two we obtain

F (x, r, p,X) ≤ F (x, s, p,X) when r ≤ s, (3.15)

F (x, r, p,X) ≤ F (x, r, p, Y ) when Y ≤ X. (3.16)
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Condition (3.16) is usually called degenerate ellipticity. The function F is called

degenerate elliptic if (3.16) holds. If both conditions (3.15) and (3.16) hold F is

called proper.

In order to apply viscosity solution approach one needs to assume that F is

proper, i.e. satisfies (3.14) and continuous, if it is not stated otherwise. In order

to show a motivation that stands behind these notions let us, for a start, assume

that u is C2 (i.e., twice continuously differentiable) on RN and

F (x, u(x), Du(x), D2u(x)) ≤ 0

holds for any x. This means that u is a subsolution of F = 0 in a classical sense

or, equivalently, a classical solution of F ≤ 0 in RN . Let us also assume that

ζ is C2 and there is a local maximum of u − ζ that is reached in x̂. We can

immediately see that Du(x̂) = Dζ(x̂) and D2u(x̂) ≤ D2ζ(x̂) and using (3.16) we

obtain

F (x, u(x̂), Dζ(x̂), D2ζ(x̂)) ≤ F (x, u(x̂), Du(x̂), D2u(x̂)) ≤ 0. (3.17)

Let us note that extremes of this inequality do not depend on the derivatives of

u. This allows us to define an arbitrary function u to be a generalized subsolution

of F = 0 in certain sense if

F (x, u(x̂), Dζ(x̂), D2ζ(x̂)) ≤ 0, (3.18)

keeping in mind that ζ is C2 and x̂ is a local maximum of u− ζ.

Before moving on to a formal definition, let us point out that x is near x̂ and

ζ is C2 we see that u(x) ≤ u(x̂) − ζ(x̂) + ζ(x). Using Taylor approximation we

obtain

u(x) ≤ u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂ (3.19)

where p = Dζ(x̂) and X = D2ζ(x̂) and 〈·, ·〉 denotes scalar product. If (3.18)

holds for some (p,X) ∈ RN × S(N) and u is C2 at x̂, then p = Du(x̂) and

D2u(x̂) ≤ X. This basically means that u is a solution of F ≤ 0 in a classical

sense, then F (x̂, u(x̂), p,X) ≤ 0 holds wherever (3.18) is satisfied. A definition

for non-differentiable solutions of inequality F ≤ 0 could be based on this fact.

Technically, working with (3.18) would lead us to notions obtained in a context
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of function ζ instead of notions for the non-differentiable function u, whereas

working with (3.19) could give us a clue on how could we define ’Du,D2u’ in the

case of non-differentiable u. So, let us focus on (3.19) and develop the reasoning

in the following way.

Let us introduce a set O ⊂ RN on which F ≤ 0 and we can regard inequalities

like (3.19) on this O. For a start this set O can be arbitrary but further we require

it to be locally compact. Now if u : O → R, x̂ ∈ O and (3.19) is satisfied as

O 3 x → x̂ we say (p,X) ∈ J2,+
O u(x̂) (i.e. the second-order ’superjet’ of u at x̂).

This way we define a mapping J2,+
O u from O to the subsets of RN × S(N).

Let us here give an example of such J2,+
O u provided in [19] verbatim.

Example 3. [19] If u is defined on R by

u(x) =

0, for x ≤ 0,

ax+ b
2
x2 for x > 0,

then J2,+
[−1,0]u(0) = ((−∞, 0)× R) ∪ ({0} × [0,∞)), while

J2,+
R u(0) =


∅, if a > 0,

{0} × [max{0, b},∞) if a = 0,

((a, 0)× R) ∪ ({0} × [0,∞)) ∪ ({a} × [b,∞)) if a < 0,

This example illustrates that J2,+
O u(x) does indeed depend on O but is, in fact,

the same for all sets O for which x is an interior point. Let us denote this common

value as J2,+u(x). Now we can repeat the same reasoning but for another sign of

inequality (3.19), i.e.

u(x) > u(x̂) + 〈p, x− x̂〉+
1

2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂, (3.20)

and in the same manner define the second-order ’subjets’ J2,−
O u and, correspond-

ingly J2,−u. Let us note that J2,−
O u(x) = −J2,−

O (−u)(x).

It is also important to introduce the notations from [19]

USC(O) = {upper semicontinuous functions u : O→ R },
LSC(O) = {lower semicontinuous functions u : O→ R }.
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Now, when we covered these general principles and notions, we can introduce

the concepts of viscosity subsolutions, supersolutions, and solutions as they are

defined in [19].

Definition 1. Let F satisfy (3.14) and O ⊂ RN . A viscosity subsolution of F = 0

or, equivalently, a viscosity solution of F ≤ 0 on O is a function u ∈ USC(O)

such that

F (x, u(x), p,X) ≤ 0

for all x ∈ O and (p,X) ∈ J2,+
O u(x).

Similarly, a viscosity supersolution of F = 0 on O is a function u ∈ LSC(O)

such that

F (x, u(x), p,X) > 0

for all x ∈ O and (p,X) ∈ J2,−
O u(x).

Finally, u is a viscosity solution of F = 0 in O if it is both a viscosity subso-

lution and a viscosity supersolution of F = 0 in O.

3.3 Viscosity solution of the optimization prob-

lem for a portfolio with illiquid asset. Com-

parison Principle

Generally, the value function for a problem of such kind as (3.11) is a viscosity

solution if the control and state variables are uniformly bounded. However, this is

not the case for the optimal consumption problem and thus a more sophisticated

proof is needed. This problem was previously studied in [21], [22] and [60]. The

main difficulties in our case come from the non-exponential time discounting we

are using in the utility functional (3.10). As we mentioned before, this leads to

the HJB equation (3.11) being three dimensional. This demands additional work.

We will concentrate on the new results and will omit the details of the arguments

that work in our problem and could be found in [21].

Theorem 1. There exists a unique viscosity solution of the corresponding HJB

equation (3.10) if

1. U(c) is strictly increasing, concave and twice differentiable in c,
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3.3 Viscosity solution of the optimization problem for a portfolio with
illiquid asset. Comparison Principle

2. limt→∞Φ(t)E[U(c(t))] = 0, Φ(t) ∼ e−κt or faster as t→∞,

3. U(c) ≤M(1 + c)γ with 0 < γ < 1 and M > 0,

4. limc→0 U
′(c) = +∞, limc→+∞U

′(c) = 0.

The proof of this statement is to be done in three steps. At first we need to

establish certain properties of the value function V (t, l, h) that corresponds to our

problem. These properties are formulated and proved in Lemma 1 that follows.

Then we show that the value function with such properties is a viscosity solution

of the problem, this is done in Lemma 2. The uniqueness of this solution follows

from the comparison principle that is actually a very useful tool by itself and is

formulated and proved in Theorem 2.

Lemma 1. Under the conditions (1) − (4) from Theorem 1 the value function

V (t, l, h) (3.10) has the following properties:

1. V (t, l, h) is concave and non-decreasing in l and in h,

2. V (t, l, h) is strictly increasing in l,

3. V (t, l, h) is strictly decreasing in t starting from some point,

4. 0 ≤ V (t, l, h) ≤ O(|l|γ + |h|γ) uniformly in t.

1. Proof. Let us look on the points (l1, h1) and (l2, h2) with corresponding

(πε1, c
ε
1) and (πε2, c

ε
2) which are ε-optimal controls in each of this points re-

spectively or in another words:

V (t, l, h) ≤ E

[∫ +∞

t

Φ(τ)U(cε)dτ

]
+ ε,

where l = l1, l2, h = h1, h2 and c = c1, c2 correspondingly. We choose

the point (αcε1 + (1 − α)cε2), where α ∈ R and 0 < α < 1. The policy

(αl1 + (1− α)l2, αh1 + (1− α)h2) is admissible for this point

V (t, αl1 + (1− α)l2, αh1 + (1− α)h2)

> E

[∫ +∞

t

Φ(τ)U(αcε1 + (1− α)cε2)dτ

]
. (3.21)
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The utility function is concave (see condition 1. from Theorem 1), so we

can write

E

[∫ +∞

t

Φ(τ)U(αcε1 + (1− α)cε2)dτ

]
> αE

[∫ +∞

t

Φ(τ)U(cε1)dτ

]
+ (1− α)E

[∫ +∞

t

Φ(τ)U(cε2)dτ

]
> αV (t, l1, h1) + (1− α)V (t, l2, h2) + 2ε.

Now that we have proved the concavity of V (t, l, h) in l and h. We can show

that it is not decreasing. Without any loss of generality we can assume

that l1 6 l2 and h1 6 h2. Note that if (πε1, c
ε
1) is ε-optimal for (l1, h1) it is

admissible for (l2, h2) which means that

V (t, l1, h1) 6 V (t, l2, h2) + ε,

setting ε→ 0 we get that V (t, l, h) is non-decreasing in first two variables.

•

2. Proof. To show that V (t, l, h) is strictly increasing in l we can assume the

contrary. Let us look at l1 < l2 such that V (t, l1, h) = V (t, l2, h). Since

we already know that V (t, l, h) is non-decreasing in l the function V should

be constant on the interval [l1, l2], moreover, since V is concave in l this

interval has to be infinite. This means that there is such l0 that V (t, l, h) =

V (t, l0, h) for any l > l0. Let (πε, cε) be ε-optimal for (t, l0, h)

V (t, l0, h) ≤ E

[∫ +∞

t

Φ(τ)U(cε)dτ

]
+ ε. (3.22)

We denote
∫ +∞
t

Φ(τ)dτ as K(t) and look on the inequality

l1 > max

l0, U−1

E
[∫ +∞

t
Φ(τ)U(cε)dτ

]
+ ε

K(t)

 /r

 ,

where U−1 denotes an inverse utility function. The strategy π = 0 and

c = rl1 does not depend on time but is admissible for (t, l1, h). Indeed, due

to the fact that the strategy (0, rl1) does not depend on time one can write

K(t)U(rl1) = E

[∫ +∞

t

Φ(τ)U(rl1)dτ

]
6 V (t, l1, h).
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But if we look at K(t)U(rl1) and use the formula for l1 given above we get

K(t)U(rl1) > E

[∫ +∞

t

Φ(τ)U(cε)dτ

]
+ ε,

which is greater or equal to V (t, l0, h) according to the Equation (3.22).

That gives us V (t, l0, h) < V (t, l1, h) which is a contradiction keeping in

mind that l1 > l0. So, V is strictly increasing in l. •

3. Proof. According to condition 2 from Theorem 1 the product of Φ(t) and

U(c(t)) as well as Φ(t) itself should be both decreasing for t > τ starting

from a large enough τ . So we choose two moments of time t1 and t2 such

that τ < t1 < t2, ∆t = t2 − t1 and look at V (t2, l, h) then

V (t2, l, h) =

∫ ∞
t2

Φ(t)U(ct)dt
τ=t−∆t

=

∫ ∞
t1

Φ(τ + ∆t)U(cτ+∆t)dτ,

since Φ(t) is decreasing for every t > t1 and the process cτ+∆t for τ ≥ t1

with L(t2) = l, H(t2) = h has exactly the same realizations as cτ for τ ≥ t1

with L(t1) = l, H(t1) = h one can write∫ ∞
t1

Φ(τ + ∆t)U(cτ+∆t)dτ <

∫ ∞
t1

Φ(τ)U(cτ+∆t)dτ 6 V (t1, l, h).

So for any t1 and t2 such that τ < t1 < t2 we get V (t1, l, h) > V (t2, l, h).

•

4. Proof. Instead of the original problem with the non-traded income gen-

erated by Ht, H0 = h one can consider a fiction consumption-investment

problem with a special asset on the market, such that has a sufficient ini-

tial endowment (meaning that one can generate exactly the same income

flow as Ht would by investing in the market). Suppose the synthetic asset

follows geometrical Brownian motion

dS ′t = α′S ′t + σ′S ′tdWt, t ≥ 0 S ′0 = s′, s′ > 0, (3.23)

with constants α′ and σ′ to be defined later. Next, the initial wealth equiv-

alent of the stochastic income is defined by

f(h) = δEh

[∫ ∞
0

e−κtξtHtdt

]
,

ξt = exp

(
−1

2
(θ2

1 + θ2
2) + θ1W

1
t + θ2W

2
t

)
,
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3. PORTFOLIO OPTIMIZATION IN THE CASE OF AN ILLIQUID
ASSET WITH A GIVEN LIQUIDATION TIME DISTRIBUTION.
GENERAL CASE.

where θ1 = (α− r)/σ and θ2 = (α′ − r)/σ′.

It turns out that with the properly chosen α′ and σ′ we achieve that f(h) <

C1h. Moreover, the stochastic income rate Ht can be replicated by a self-

financing strategy on the complete market (Bt, St, S
′
t) with the additional

initial endowment f(h). This fact is well known from the martingale-based

studies of the consumption-investment problem, primarily carried out in

[32] and [35].

To finish the proof, we notice that since the stochastic income can be repli-

cated, any admissible strategy for the original problem with initial condi-

tions (l, h) is dominated by a strategy on the synthetic market with initial

endowment l+f(h) < l+C1h. On the other hand, we have the growth con-

ditions for Φ(t) and U(c). So, the maximal utility is bounded from above

by the solution of the classic investment-consumption problem with initial

wealth l+C1h, HARA utility and exponential discounting. Due to Merton

we have a closed form solution for this case. Putting everything together,

we obtain the desired bound (all the further details can be found in [32]

and [21]). •

Now we can prove the existence of the viscosity solution of the problem (3.11).

Lemma 2. Under the conditions of Lemma 1 the function V (t, l, h) is a viscosity

solution of (3.11) on the domain D = (0,∞)× (0,∞)× (0,∞).

Proof. We again use the reasoning from the proof of Theorem 4.1 in [21] but

modify it for our case. To show that V is a viscosity solution one need to show

that it is a viscosity supersolution and a viscosity subsolution of the problem.

Let us show at first that V (t, l, h) is a viscosity supersolution for (3.11). Let us

look at φ ∈ C2(D) and assume that (t0, l0, h0) ∈ D is a point where a minimum

of V − φ is achieved. We can assume that V (t0, l0, h0) = φ(t0, l0, h0) and V > φ

in D without any loss of generality. To show that V is a supersolution we need

to check that J[φ](t0, l0, h0, π, c) ≤ 0, where

J[φ](t0, l0, h0, π, c) = φt(t0, l0, h0) +
1

2
η2h2

0φhh(t0, l0, h0) + (rl0 + δh0)φl(t0, l0, h0)

+(µ− δ)h0φh(t0, l0, h0) + max
π

G[t0, l0, h0, π] + max
c
H[t0, l0, h0, c],

with G[π] and H[c] defined in (3.11).
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We consider a locally constant strategy (π0, c0) for the period of time θ tending

to zero. One can take θ = min{1/n, τ} where τ = inf{t ≥ t0 : Wt = 0} to ensure

feasibility of this strategy. Since this strategy is suboptimal we can write (using

the dynamic programming principle, [25])

V (t0, l0, h0) ≥ E

[∫ t0+θ

t0

Φ(t)U(c0)dt+ V (Lθ, Hθ, θ)

]
≥ E

[∫ t0+θ

t0

Φ(t)U(c0)dt+ φ(Lθ, Hθ, θ)

]
. (3.24)

On the other hand, applying Itô calculus to the smooth function φ we can

expand

E[φ(θ, Lθ, Hθ)] = φ(t0, l0, h0) + E

[∫ t0+θ

t0

Dφ(s, Ls, Hs)ds

]
.

Substituting into (3.24) and using standard estimates to approximate the terms

with φ(s, ls, hs), φl(s, ls, hs), φh(s, ls, hs), etc. via φ(t0, l0, h0)+O(s), φl(t0, l0, h0)+

O(s), φh(t0, l0, h0) +O(s) respectively, we obtain the bound

E

[∫ t0+θ

t0

J[φ](t0, l0, h0, c0, π0)

]
+ E

[∫ t0+θ

t0

h(s)ds

]
≤ 0,

with h(s) = O(s). Dividing by E[t0 + θ] and taking the limit n → ∞ (so θ → 0

and E
[∫ t0+θ

t0
h(s)ds

]
→ 0) we get (3.24) as (π0, c0) can be arbitrary admissible

pair.

The second part of the proof is to show that V (t, l, h) is a subsolution as

well. However, the proof of the second part of Theorem 4.1 in [21] can be applied

verbatim here so we omit further details. •

The third result that is needed to finalize the proof of Theorem 1 is a compari-

son principle formulated below as Theorem 2. Results of this type are well-known

in general for bounded controls, but due to the unboundned controls, classical

proofs require adaptations for our case.

Theorem 2. (Comparison Principle) Let u(t, l, h) be an upper-semicontinuous

concave viscosity subsolution of (3.11) on D and V (t, l, h) is a supersolution of
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(3.11) on D which is bounded from below, uniformly continuous on D, and lo-

cally Lipschitz in D, such that u(t, l, h) → 0, V (t, l, h) → 0 as t → ∞ and

|u(t, l, h)|+ |V (t, l, h)| ≤ O(|l|γ + |h|γ) for large l, h, where 0 < γ < 1, uniformly

in t. Then u ≤ v on D.

Proof. Let us introduce x := (l, h), x ∈ R+ × R+ to make formulae shorter.

Assume for contradiction that sup(t,x)∈D[u(t, x)− v(t, x)] > 0. Let Tn →∞ be an

increasing sequence of time moments, m > 0 be a parameter and

Ψm,n(t, x) = u(t, x)− v(t, x)−m(Tn − t).

Since u, v → 0 as t → ∞, for sufficiently large n and sufficiently small m the

maximum of Ψm,n must occur in an internal point of D. So let us assume that

m̄ > 0 and Tn are such that sup(x,t)∈D Ψm̄,n(x, t) occurs in some point (t0, x0)

with t0 < Tn. Let us define two functions ũ and φ

ũ(t, x) = u(t, x)− m̄(Tn − t),

φ(t, x, y) =

∣∣∣∣y − xξ − 4$

∣∣∣∣4 + θ(lx + hx)
λ + m̄(Tn − t),

where x = (lx, hx), y = (ly, hy) and λ ∈ (γ, 1), θ, ξ > 0, $ ∈ R2
+ being parameters

to be varied later. Finally, we look at the point (x̄, ȳ, t̄) where the following

function achieves a maximum

ψ(t, x, y) = ũ(t, x)− v(t, y)− φ(t, x, y).

Since t̄ is an interior point we can write

2m̄ = ut(t̄, x̄)− vt(t̄, ȳ). (3.25)

On the other hand, one can bound ut(t̄, x̄, t̄)−vt(ȳ) merely by φ and its deriva-

tives which can be written down explicitly. It appears then, that as θ, ξ, ‖$‖ → 0

the distance ‖x̄− ȳ‖ tends to zero and both (t̄, x̄), (t̄, ȳ) are close to (t0, x0), so in

the limit in terms of ‖x̄−ȳ‖ → 0 (3.25) leads to m̄ ≤ 0 and we get a contradiction.

•
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3.4 Homothetic reduction for logarithmic util-

ity function

Though the HJB equation (3.11) generally fails to have a reduction with respect

to the time variable, it is possible to reduce its dimension if the utility function is

of the HARA type. In this chapter we work just with the logarithmic utility func-

tion. First of all, the logarithmic case allows one to consider time distributions

with subexponential tails, while enjoying the homothetic reduction available for

utility functions of the general HARA type. Secondly, the logarithmic case could

in some sense be regarded as a limiting of the HARA case with γ tending to

zero. This allows to translate all the obtained results to the general power case

of HARA utility with only straightforward modifications. This correspondence

is briefly mentioned in the literature, see [13] or [14], in [54] this correspondence

is demonstrated but is used in a different framework. Further in this work we

show that the logarithmic utility could not be only regarded as a formal limit of

HARA utility, written in a special form, but also that this correspondence goes

way deeper and that corresponding HJB equations are also connected under the

same limit procedure as well as the algebraic structures that are admitted by

these equations. This fact is new to our knowledge.

We study all possible symmetry reductions for optimization problem with

HARA and logarithmic utility later in Chapter 5, Chapter 6 and Chapter 7.

We also show there the connection between HARA and logarithmic utilities and

corresponding optimization problems. In [9] such analysis was carried out for a

model of illiquidity with frictions. The complete analysis for the current model

with logarithmic and general HARA-type utility is done in this work later.

Rewriting the HJB equation (3.11) for the logarithmic utility function U(c(t)) =

log c(t) we get

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

+ max
π

G[π] + max
c≥0

H[c] = 0 (3.26)

G[π] =
1

2
Vll(t, l, h)π2σ2 + Vlh(t, l, h)ηρπσh

+ π(α− r)Vl(t, l, h), (3.27)

H[c] = −cVl(t, l, h) + Φ(t) log(c). (3.28)
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Using the homothetic properties the logarithm and homogeneity of the differen-

tial operator applied to the value function in (3.26) we rewrite V (t, l, h) in the

following way

V (t, l, h) = W (t, z)−Ψ1(t) log h+ Ψ2(t), (3.29)

having z = l/h and Ψ1(t) =
∫∞
t

Φ(s)ds and Ψ2(t) to be chosen later.

The Hamiltonian terms maxπ G[π] and maxcH[c] in (3.26) now become

max
π

G[π] = max
π′=π/h

[
1

2
Wzzσ

2π′2 + π′ (−ηρσ(Wz + zWzz) + (α− r)Wz)

]
,

max
c
H[c] = max

c′=c/h
[−c′Wz + Φ(t) log(c′)] + Φ(t) log(h), (3.30)

and the candidates optimal policies after formal maximization are

π?(l, h) = hσ−2

(
ηρσz − ((α− r)− ηρσ)

Wz

Wzz

)
,

c?(l, h) = h
Φ(t)

Wz

. (3.31)

We rewrite (3.26) using formulae (3.30)

Wt + Ψ′2(t) +

(
−η

2

2
+ (µ− δ)

)
Ψ1(t) +

η2

2
z2Wzz

+ (η2 + r − (µ− δ))zWz + δWz

+ max
π′

[
1

2
Wzzσ

2π′2 + π′ (−ηρσ(Wz + zWzz) + (α− r)Wz)

]
+ max

c′≥0

[
−c′Wz + Φ(t) log(c′)

]
= 0.

We provide the formal maximization of H[π] and G[c] and obtain

max
π

H[π] = −1

2
((ηρ− (α− r)/σ)2 W

2
z

Wzz

+ 2ηρ(ηρ− (α− r)/σ)zWz + ηρ2z2Wzz)

max
c
G[c] = Φ(t)

(
log Φ(t)− 1

)
− Φ(t) logWz.

so (3.26) becomes

Wt + Ψ′2(t) +

(
−η

2

2
+ (µ− δ)

)
Ψ1(t) + Φ(t)(log Φ(t)− 1) + d2z

2Wzz

− d2
1

2

(Wz)
2

Wzz

+ d3zWz + δWz − Φ(t) logWz = 0, (3.32)
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where

d1 =
α− r − ηρσ

σ2
, d2 =

1

2
η2(1− ρ2),

d3 = 2d2 +
ρη

σ
(α− r) + r − (µ− δ). (3.33)

Now by choosing Ψ2(t) as a solution of the equation

Ψ′2(t) +

(
−η

2

2
+ (µ− δ)

)
Ψ1(t) + Φ(t)(log Φ(t)− 1) = 0, Ψ2(t)→ 0, t→∞,

we can cancel out the terms dependent only on t in the equation (3.32). We arrive

at

Wt −
d2

1

2

(Wz)
2

Wzz

+ d2z
2Wzz + d3zWz + δWz − Φ(t) logWz = 0. (3.34)

The two dimensional PDE (3.34) can be obtained in few steps using the symmetry

properties of (3.26) - (3.28).

3.5 Bounds for the value function

The main tool we are going to use to obtain the bounds is the comparison principle

given by Theorem 2. Since (3.34) is a two-dimensional PDE and by itself is not a

HJB equation, we argue as follows. Any formal sub- or super- solution of (3.34)

can be transformed to a sub- or super- solution of (3.26) with a substitution

described by (3.29). On the other hand, for the HJB equation (3.26) Theorem

1 and Theorem 2 hold and we can obtain a lower and upper bound. In order to

comply with the Definition 1 we have to take the equation (3.34) with the minus

sign.

Determining an upper bound demands specific information on the cumulative

distribution function Φ(t) of the liquidation time. In the next Section this issue

is addressed specifically for two practically applicable cases of exponentially and

Weibull distributed liquidation time T .

Remark 5. We choose Weibull distribution as an illustration for a non-exponential

case, since it is good in descriptions of survival data as it is explained in [44] and

[17], and has a local maximum that can be easily interpreted from the financial

point of view. For a number of financial assets one can estimate a standard
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time-lag between the placement of an offer and a moment of actual sale (see, of

instance, [7]). This lag plays a very important role in empirical studies such as

[12] and can, for example, be attributed to the local maximum of liquidation time

distribution.

A lower bound, however, could be found without any specific information on

Φ(t). Let us look on an optimal consumption problem without random income.

This is a classical two dimensional Merton’s problem for which we can write the

HJB equation on the value function u(t, z). This problem corresponds to (3.26)

but without any terms, containing the derivatives with respect to h and with a

notation V → u, l→ z

ut + rluz + max
π

G[π] + max
c≥0

H[c] = 0, (3.35)

G[π] =
1

2
uzz(t, z)π

2σ2 + π(α− r)uz(t, z),

H[c] = −cuz(t, z) + Φ(t) log(c). (3.36)

After the formal maximization, one gets

ut + rluz −
1

2

(
α− r
σ

)2
u2
z

uzz
+ Φ(t)

(
log Φ(t)− Φ(t)

)
− Φ(t) log uz = 0.

We look for a solution in the form u(t, z) = Ψ1(t) log z + Θ1(t), where again

Ψ1(t) =
∫∞
t

Φ(s)ds and Θ1(t) is a solution of

Θ′1 + Ψ1

(
r +

1

2

(α− r)2

σ2

)
− Φ(Φ− log Φ + log Ψ1) = 0. (3.37)

One can easily check that such u tends to zero uniformly as t → ∞ and

since the solution of (3.35) is a lower bound for our three-dimensional problem

we obtain the following inequality for the lower bound

Ψ1(t) log z + Θ1(t) ≤ W (z, t) = V (t, l, h)−Ψ1 log h+ Ψ2(t),

or

Ψ1(t) log l + Θ1(t)−Ψ2(t) ≤ V (t, l, h).
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3.6 Results of the chapter and outlook

In this Chapter we have formulated the optimization problem for a portfolio that

consists of a riskless liquid, risky liquid and risky illiquid assets with an exogenous

random liquidation time. We have shown that one can regard a problem with

infinite time horizon and special weight function that is characterized by the

probability distribution of the liquidation time T instead of a problem with an

exogenous random liquidation time. With a help of viscosity solution technique

that was also introduced in this chapter we proved the existence and uniqueness

of the solution for such infinite time horizon problem with special weight function

that depends on distribution of T . For any probability distribution for which a

unique solution exists a lower bound for the value function was found.

In the next Chapter we consider specific liquidation time distributions. First

we take the most simple one - an exponential distribution. Later, in Chapter 5,

we prove that the case of exponential distribution is the only exceptional case,

where the admitted Lie group is richer. We get asymptotically tight bounds

for the value function and derivatives, which lead to asymptotic formulae for

the optimal policies. Not surprisingly, in the limit case when the random income

vanishes the value function and optimal policies coincide with the classical Merton

solution for the logarithmic case. Another somewhat more complicated case is

the Weibull distribution is regarded in Chapter 4 as well. In this case the bounds

have no elementary representation, but their asymptotic can be derived using

incomplete gamma functions.
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4

Portfolio optimization in the case

of an illiquid asset with an

exponential or Weibull

liquidation time distribution

In this chapter we develop the results obtained in the previous Chapter and com-

pare two different liquidation time distributions. The crucial difference between

the exponentially distributed and Weibull distributed liquidation time is that a

the latter can have a local maximum that could be associated with an average

time-lag between the offer and the sale.

4.1 The case of exponential distributed liquida-

tion time and logarithmic utility function

Now we examine the optimal consumption problem introduced before in Chapter

3 in the case of the logarithmic utility. In Chapter 3 we have established that the

optimal strategy does exist and the value function is the viscosity solution of the

HJB equation, now it is desirable to have the optimal policy in the feedback form

(3.31). In a general situation the feedback optimal policy is hard to establish

since the value function is not a priori smooth. On the other hand, smoothness

of the value function simplifies the problem so it becomes amenable to standard
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verification theorems of optimization theory, see e.g. [25]. Here we prove that

in the case at hand the value function is twice differentiable. As far as we know

this fact was not explicitly addressed before, though the structure of our proof

is similar to the paper [22] where the smoothness was proved for the HARA

utility case. Since the case without stochastic income is known to have a closed

form solution and was derived by Merton [42], it is plausible to consider it as a

zero-term approximation. Keeping that in mind, we will rigorously prove that

value function tends to the Merton closed form solution in the limit of vanishing

random income. Recall the definition of the value function

V (t, l, h) = max
(π,c)

E

[∫ ∞
t

e−κt log(c)dt|L(t) = l, H(t) = h

]
, κ > 0. (4.1)

At first let us note that in the exponential liquidation time distribution case the

problem is homogenous in time. We introduce Ṽ (l, h)

Ṽ (l, h) = max
(π,c)

E

[∫ ∞
t

e−κ(s−t) log(c)ds

]
= max

(π,c)
E

[∫ ∞
0

e−κv log(c)dv

]
,

which is independent on time. Substituting

V (t, l, h) = e−κtṼ (l, h)

into the HJB equation (3.11) we arrive at a time-independent PDE on Ṽ (l, h).

With a slight abuse of notation, hereafter we will use the same letter V for Ṽ .

The reduced equation takes the form

1

2
η2h2Vhh(l, h) + (rl + δh)Vl(l, h) + (µ− δ)hVh(l, h) + max

π
G[π] + max

c≥0
H[c]

= κV (l, h),

G[π] =
1

2
Vll(l, h)π2σ2 + Vlh(l, h)ηρπσh+ π(α− r)Vl(l, h), (4.2)

H[c] = −cVl(l, h) + log(c). (4.3)

Now using substitution (3.29) with Ψ1 = 1
κ

and Ψ2 = 1
κ2

(µ− δ− η2

2
) we can argue

exactly as in the general case and represent V (l, h) in the form

V (l, h) = v(z) +
log h

κ
+

1

κ2

(
µ− δ − η2

2

)
, z = l/h, (4.4)
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so v(z) satisfies the ordinary differential equation of second order

η2

2
z2v′′ + max

π

[
1

2
π2σ2v′ − π ((v′ + zv′′)ηρσ + (α− r)v′)

]
+ max

c≥−δ
[−cvz + log(c+ δ)] = κv, (4.5)

where v′ = vz and the dimension of the problem is reduced to one. It is impor-

tant to note that such reduction was possible due to the exponential decay, the

homothetic proprety of the logarithmic function and the linearity of the control

equations, which make the reduction (4.4) sound.

Assuming that v is smooth and strictly concave, we perform a formal maxi-

mization of the quadratic part (4.2) which leads to

κvv′′ = −d
2
1

2
(v′)2 + d2z

2(v′′)2 + d3zv
′v′′ − v′′ [1 + log(v′)] , (4.6)

where again d1, d2 and d3 are defined in (3.33).

Coming back to the original variables we obtain the optimal policies in the

form

c?(l, h) =
h

v′(l/h)
, π?(l, h) = −ηρ

σ
l − hd1

σ

v′(l/h)

v′′(l/h)
. (4.7)

Summing up, we announce the main result of this Chapter.

Theorem 3. Suppose r − (µ− δ) > 0 and d1 = α−r−ηρσ
σ2 6= 0.

• There is the unique C2(0,+∞) solution v(z) of (4.6) in a class of concave

functions.

• For l, h > 0 the value function is given by (4.4). For h = 0, l > 0 the value

function V (l, 0) coincides with the classical Merton solution

V (l, 0) =
1

κ2

[
r +

1

2

(α− r)2

σ2
− κ
]

+
log(κl)

κ
= M +

log(κl)

κ
. (4.8)

• If the ratio between the stochastic income and the total wealth tends to zero,

the policies (π?, c?) given by (4.7) tend to the classical Merton’s policies

c?(l, 0) ∼ κl, π?(l, 0) ∼ −(α− r)l
σ2

V 2
l

Vll
. (4.9)

• Policies (4.7) are optimal.

We have shown that the solution exists and tends to Merton case when h = 0.

In the next step we will show the smoothness of the solution.
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4.1.1 The dual optimization problem and smoothness of

the viscosity solution

In this Section we introduce the dual optimization problem with a synthetic asset

such that the optimization equation formally coincides with (4.6). The regularity

of the dual problem proves the regularity of the original one due to the uniqueness

of the viscosity solution.

Consider the investment-consumption problem with the wealth process Zt

defined by

Zt = (d3Zt + d1σπt − ct)dt+ σπtdW
1
t + ηZt

√
1− ρ2dW 2

t ,

Z0 = z ≥ 0, (4.10)

where d1 and d3 are defined in (3.33). We define the set of admissible controls

Â(z) as the set of pairs (π, c) such that there exists an a.s. positive solution Zt

of the stochastic differential equation (4.10), ct ≥ −δ and c and π satisfy the

integrability conditions (3.3).

The investor wants to maximize the average utility given by

Û(c) = E

[∫ ∞
0

e−κτ log(δ + c(τ))dτ

]
and the value function w is defined as w(z) = sup(π,c)∈Â(z) Û(c).

The associated HJB equation is reduced to the ODE

κw = d2z
2w′′ + max

π

[
1

2
σ2π2w′′ + d1σπw

′
]

+ d3zw
′

+ max
c≥−δ

[−cw′ + log(c+ δ)] , (4.11)

Next, keeping in mind w′ > 0, w′′ < 0, we can rewrite (4.11) as

− d2
1

2

(w′)2

w′′
+ d2z

2w′′ + d3zw
′ + δw′ − 1− logw′ − κw = 0. (4.12)

Now, it is easy to see that (4.11) reduces to (4.6) assuming that w is smooth.

Thus, if we prove that w is smooth and concave, we will get the desired result

for v in (4.5) as well. The possibility to switch back and forth from V in (4.3)

to v in (4.5) and w in (4.11) is guaranteed by the existence and uniqueness of

the viscosity solutions given by Theorem 1. On the other hand, if a function
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is the value function for the corresponding optimization problem, and the HJB

equations formally coincide, the value functions must coincide as well due to

uniqueness. Therefore, it is sufficient to prove that w is smooth.

From the previous Chapter we already know that if D = (0,∞) the following

theorem holds.

Theorem 4. The function w is the unique viscosity solution of (4.11) in D. And

the value function V (l, h) is the unique viscosity solution of (4.4) in D ×D.

Let us now prove the smoothness of the solution and of its’ first derivative.

Theorem 5. The function w in (4.12) is the unique concave C2(D) solution of

(4.11).

To start with the proof of the theorem we need some explicit bounds for w.

Lemma 3. The following bounds hold for w(z)

C1 log(z + C2) < w(z) < (z + C3)γ, z ∈ Ω (4.13)

for some constants C1, C2, C3 > 0 and 0 < γ < 1.

Proof. The function

W−(z) = C1 log(z + C2), z ∈ Ω

is a subsolution for (4.12) as the coefficient of the leading logarithmic term is

negative provided C1, C2 > 0 are appropriately chosen. On the other hand, the

function

W+(z) = (z + C3)γ, z ∈ Ω

is a supersolution provided 0 < γ < 1 is sufficiently close to 1. Indeed, the

leading term is zγ with the coefficient −(d2
1(w′)2)/(2w′′), which in turn grows as

−γ/(γ − 1) and becomes arbitrarily large as γ tends to 1.

Thus, the desired bound (4.13) is a consequence of the comparison principle

formulated in Theorem 2. •

Now we can prove Theorem 5.
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Proof. It is known that uniformly elliptic equations enjoy regularity, but as before

the main obstacle is the lack of uniform bounds. The main idea of the proof is

to approximate the original problem with a convergent family of optimization

problems such that the approximating equations is uniformly elliptic and thus

smooth. Then the smoothness follows from the stability of viscosity solutions

and uniqueness.

Step 1. Consider the value function wL(z) = sup(π,c)∈Â(z) Û(c) for the problem

with the additional strategy constraint −L ≤ πt ≤ L for almost every t. Arguing

as in Section 3.1 we conclude that that wL is an increasing continuous function,

which is the unique viscosity solution to

κwL = d2z
2w′′L + max

−L≤π≤L

[
1

2
σ2π2w′′L + d1πw

′
L

]
+ d3zw

′
L

+ max
c≥−δ

[−cw′L + log(c+ δ)] . (4.14)

Moreover, the bounds of Lemma 3 hold so C1 log(z + C2) < wL(z) < (z + C3)γ.

Thus, there exists a concave function ŵ such that wL → ŵ, L → ∞ locally

uniformly. Then due to the stability property and uniqueness of the viscosity

solution the function ŵ is a viscosity solution of (4.11) and thus coincides with

w. Therefore wL → w,L→∞ locally uniformly.

Step 2. We claim that wL is a smooth function on an arbitrary interval [z1, z2]

such that z1 > 0. Due to concavity we may assume that derivatives w′L(z1), w′L(z2)

exist. On the one hand the function wL is the unique solution of the boundary

problem

κu = d2z
2u′′ + max

−L≤π≤L

[
1

2
σ2π2u′′ + d1σπu

′
]

+ d3zu
′

+ max
c≥−δ

[−cu′ + log(c+ δ)] , (4.15)

u(z1) = wL(z1), u(z2) = wL(z2), z ∈ [z1, z2].

On the other hand, according to the general theory of fully nonlinear elliptic

equations of second order of Bellman type in a compact region, (see Krylov [37]),

(4.14) has a unique C2 solution in [z1, z2] that coincides with wL and wL is smooth

on [z1, z2].

Step 3. We show that the constraint −L ≤ πt ≤ L is superfluous for suffi-

ciently large L and can be eliminated. First it is clear that due to concavity and
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monotonicity of wL, the condition −L ≤ πt ≤ L in (4.14) can be substituted with

πt ≤ L. Now we prove that

sup
z∈(z1,z2)

[
−d

2
1(w′L)2

2w′′L

]
< L

for sufficiently large L. Assume the contrary for contradiction. Then there is a

sequence zn ∈ (z1, z2), Ln →∞ such that

− d2
1(w′L(zn))2

2w′′L(zn)
> Ln, (4.16)

κwL ≥ d2z
2w′′L − Ln + d3zw

′
L + [δw′L − 1− logw′L] .

Since wL → w and both function are monotone and concave there exist con-

stants C1, C2 such that C1 < w′L(z) < C2, z ∈ [z1, z2] for all sufficiently large

L, and also w′′L → 0 as n→∞. But this contradicts (4.16) as zn takes values in

a bounded interval so wL(zn) is bounded as well.

Step 4. We are going to show that there is a constant K < 0 which does not

depend on L such that w′′L(z) < K, z ∈ [z1, z2]. Arguing again by contradiction

suppose there is a sequence zn ∈ [z1, z2] such that w′′L(zn)→∞. Then analogously

to Step 3, the right hand side of (4.15) grows to infinity since w′L(z) on the interval

that is bounded. At the same time the left hand side stays bounded as a value

of a continuous function on a bounded interval.

Step 5. Putting it all together, we have the following chain of implications.

The functions wL are unique smooth solutions in the class of concave functions

to the boundary problem (4.15) for some sufficiently large L > 0. Since wL → w,

it follows that w is the unique viscosity solution of (4.15) in the class of concave

functions. On the other hand, the equation (4.15) possesses the unique smooth

solution, see [37], which must coincide with the viscosity solution. Thus w is

a C2-smooth function on [z1, z2] and the claim of the theorem follows since the

interval is arbitrary. •

4.1.2 Asymptotic behavior of the value function

In this Section we examine the asymptotic behavior of the value function V (t, l, h)

in (4.3) and show that as l/h→∞ it becomes the classical Merton solution.
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Theorem 6. There is a positive constant C1 such that

M +
log(κl)

κ
≤ V (l, h) ≤M +

log(κ(l + C1δh))

κ
,

M =
1

κ2

[
r +

1

2

(α− r)2

σ2
− κ
]

where M is a constant from the Merton’s formula (4.8).

Proof. The proof is based on the idea mentioned in Lemma 1, but in the specific

exponentially distributed liquidation time case the bounds could be found explic-

itly. The left-hand inequality is obvious since any strategy (π, c) for the classical

problem with L0 = l, H0 = 0 is admissible for the problem with any non-zero

initial endowment as well. For the right-hand side, let us consider a fictitious

investment-consumption problem without any stochastic income but with an ad-

ditional synthetic asset with the price process S ′: dS ′t = α′S ′t + σ′1S
′
tdWt, t ≥ 0,

S ′0 = s′, s′ > 0 with appropriate constants α′ and σ′. Next, we define the initial

wealth equivalent of the stochastic income defined by

Vδ(l, h) = δEh

[∫ ∞
0

e−rtξtHtdt

]
,

ξt = exp

(
−1

2
(θ2

1 + θ2
2) + θ1W

(1)
t + θ2Wt

)
,

where θ1 = (α− r)/σ1 and θ2 = (α′ − r)/σ′1.

As we mention in the proof of Lemma 1, by a careful choice of the constants

α′, σ′ the stochastic income rate Ht can be replicated by a self-financing strategy

on the complete market (Bt, St, S
′
t) with the additional initial endowment f(h) <

C1δh, for similar reasoning see [35], [32] and [21]. Thus, any average utility

generated by the strategy (π, c) ∈ A(l, h) can be attained in the settings of a

classical Merton’s problem with the initial wealth l + f(h) < l + C1δh. This

actually gives the right-hand bound in Theorem 1. •

From this theorem we immediately get that V (l, h) behaves as the classical

Merton solution (4.8) as δ → 0 or l/h→∞.

Corollary 1. Vδ(l, h) converges locally uniformly to M+log(κl)/κ as δ → 0.

Corollary 2. V (l, h) = M + log(κl)/κ + O(1/z) as z = l/h → ∞. Also for the

function w(z) we obtain w(z) = (M −K) + log(κz)
κ

+O(1/z).
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Proof. Indeed,∣∣∣∣V (l, h)−M − log(κl)

κ

∣∣∣∣ < ∣∣∣∣1κ (log(κ(l + δC1h))− log(κl))

∣∣∣∣ = O

(
1

z

)
. (4.17)

The formula immediately follows from the form of V (l, h).•

Finally, we verify that the optimal policies given by (4.7) asymptotically give

the Merton strategy (4.9).

Lemma 4. For the value function w(z) holds

w′(z) =
1

κz
+ o

(
1

z

)
, z →∞. (4.18)

Proof. Consider the function wλ defined as

wλ(z) = w(λz)− log(λ)

κ
,

so that wλ solves (4.11) but with the term

F (wz) = max
c≥−δ

[−cwz + log(c+ δ)]

replaced by

Fλ(wz) = max
c≥−δ/λ

[
−cwz + log(c+

δ

λ
)

]
.

Then, by Corollary 1 wλ converges locally uniformly to the Merton’s value func-

tion

v(z) = (M −K) +
log(κz)

κ
.

We note that v solves (4.11) with δ = 0 that is delivered by F∞(·) = limλ→∞ Fλ(·).
Thus, since wλ is concave, the uniform convergence of wλ to v implies the con-

vergence of derivatives, so limλ→∞w
′
λ(z) = v′(z) = 1

κz
. Hence,

lim
λ→∞

w′λ(1) = lim
λ→∞

λv′(λ) =
1

κ
,

which proves the lemma. •

Theorem 7. The following asymptotic formulae hold for the optimal policies

(4.7) as z = l/h→∞.
c?

l
∼ 1

κ
,
π?

l
∼ α− r

σ2
. (4.19)
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Proof. The formula for c? in (4.19) immediately follows from Lemma 4. For the

second part, we rewrite (4.7) in a form

π?

l
=
ηρ

σ
− k1

σ2

zv′(z)

z2v′′(z)
.

To calculate the limit value of z2v′′(z) we rewrite (4.6) as a quadratic equation

with respect to vzz. Since vzz < 0 we choose the negative root and obtain

vzz(z) =
−B −

√
B2 − 4AC

2A
,

where

A =
1

2
η2(1− ρ)2z2,

B = k(zvz)− 1− (M − C)κ+ o(1),

C = − k2
1

2σ2
(vz)

2.

Expanding all constants and using zwz = 1/κ+ o(1) we finally get

z2vzz(z) =
(α− r)l
σ2

+ o(1).•

The facts that the solution exists, is unique and smooth give an opportunity for

numerical calculations. For example, basing on a script, developed by Andersson,

Svensson, Karlsson and Elias, see [3], with some modifications and corrections of

minor mistakes we can obtain the solution for the exponential case and compare

it with a two-dimensional Merton solution as shown on the Figure 4.1.

4.2 The case of a Weibull distributed liquida-

tion time and a logarithmic utility function

One of the most natural ways to extend the framework of a randomly distributed

liquidation time described in Section 3.1 is to introduce a distribution with a

probability density function that has a local maximum unlike exponential distri-

bution. It is very natural to expect that the assets of a certain type might have
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a time-lag between the moment when the sell offer is opened and a time when

someone reacts on it. From the practitioner’s point of view an empirical estima-

tion of such time-lag is a natural measure of illiquidity that can give an insight

into the strategy of a portfolio management. In this Section we look closely on a

Weibull distribution that has a local maximum. The Weibull distribution is com-

monly used in survival analysis, in reliability engineering and failure analysis, and

in industrial engineering to describe manufacturing and delivery times. It seems

to be quite adequate for the studied case. We demonstrate that the proposed

framework is applicable for this case, show the existence and uniqueness of the

solution and using a numerical algorithm generate an insight into how this case

differs from the exponential illiquid and Merton’s absolutely liquid cases.

In this Section we will discuss the case when the liquidation time T is a random

Weibull-distributed variable independent of the Brownian motions (W 1,W 2).

The probability density function of the Weibull distribution is defined as follows

φ(x, λ, k) =

 k
λ

(
t
λ

)k−1
e−(t/λ)k , if t ≥ 0,

0, if t < 0,

where λ > 0 and k, λ− const.

Let us also introduce as before the cumulative distribution function

Φ(x, λ, k) =

1− e−(t/λ)k , if t ≥ 0,

0, if t < 0,

and a survival function Φ(t) = 1−Φ(t). We will often omit the constant param-

eters λ and k in notations for shortness.

It is important to notice that when k = 1 the Weibull-distribution turns

into exponential one, that we have already discussed before and for k > 1 its

probability density has a local maximum. This situation corresponds to our

economical motivation.

The equation (3.11) is the same as before but the term that corresponds to Φ is
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naturally replaced by Weibull survival function

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + h)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

+ max
π

G[π] + max
c≥0

H[c] = 0, (4.20)

G[π] =
1

2
Vll(t, l, h)π2σ2 + Vlh(t, l, h)ηρπσh

+ π(α− r)Vl(t, l, h), (4.21)

H[c] = −cVl(t, l, h) + e−(t/λ)kU(c), (4.22)

Proposition 2. All the conditions of the Theorem 1 hold for the case of the

Weibull distribution with k > 1 and, therefore, there exists a unique solution for

the problem (4.20).

Indeed the conditions 1., 3. and 4. are not altered since we work with the same

logarithmic utility and one can easily see that the Weibull cumulative function

satisfies the condition 2. for the case k > 1.

Analogously to the equation (3.34) one can obtain a two dimensional equation

using a known reduction z = l/h. We study all the symmetry reductions of this

model for the exponential and general case in the next chapters (see also [11]). Yet

here let us just list a two dimensional equation that corresponds to the Weibull

case

Wt −
d2

1

2

(Wz)
2

Wzz

+ d2z
2Wzz + d3zWz + δWz − e−(t/λ)k logWz = 0, (4.23)

where d1, d2 and d3 correspond to the constants for the general case (3.33).

The function Ψ1(t) =
∫∞
t

Φ(s)ds can be defined explicitly as

Ψ1(t) =
λ

k
Γ

(
1

k
,

(
t

λ

)k)
,

where Γ(α, x) is an incomplete gamma function, see [1] for details. For this func-

tion we can use the series representation by Laguerre polynomials and asymptotic

representation [1], [38].

The lower bound for W (z, t) can be found exactly as in Section 3.5

W (z, t) = V (t, l, h)−Ψ1 log h−Ψ2(t) ≥ Ψ1(t) log z + (Θ(t)−Ψ2(t)),
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where the behavior of the functions Ψ1,Ψ2 and Θ for t → ∞ can be now well

defined.

The equation (3.34) for the auxiliary function Ψ′2(t) takes the form

Ψ′2(t) +

(
−η

2

2
+ (µ− δ)

)
λ

k
Γ

(
1

k
,

(
t

λ

)k)
− e−(t/λ)k((t/λ)k + 1) = 0,

Ψ2(t)→ 0, t→∞. (4.24)

The solution for this equation can be found explicitly

Ψ2(t) = −
(
−η

2

2
+ (µ− δ)

)
λ

k
Γ

(
1

k
,

(
t

λ

)k)
+ e−( tλ)

k

((
t

λ

)k
+ 1

)
. (4.25)

Equation (3.37) for Θ is now

Θ′ +

(
r +

1

2

(α− r)2

σ2

)
λ

k
Γ

(
1

k
,

(
t

λ

)k)
− e−(t/λ)k

[
e−(t/λ)k + (t/λ)k

+ log λ− log k log Γ

(
1

k
,

(
t

λ

)k)]
= 0. (4.26)

One can find an explicit solution for it as well

Θ(t) = −
(
r +

(α− r)2

2σ2

)
λ

k
Γ

(
1

k
,

(
t

λ

)k)

+ e−( tλ)
k

(
e−( tλ)

k

+

(
t

k

)k
+ ln

[
λ

k
Γ

(
1

k
,

(
t

λ

)k)])
.

Since 1
k
> 0 we can show that asymptotically as t→∞

Ψ1(t) → λk

k
(t)1−ke−(t/λ)k

(
1 +O

(
t−k
))
,

Ψ2(t) → −1

k
te−(t/λ)k

(
1 +O

(
t−k
))
, k > 1,

Θ(t) → λ− k
λk

te−(t/λ)k
(

1 +
(k − 1)kλ

λ− k
t−k ln t+O

(
t−k
))

.

It follows from the asymptotic behavior that the value function in (4.20) tends to

zero faster than e−κt and consequently Theorem 1 is applicable for the Weibull-

distributed liquidation time.

49



4. PORTFOLIO OPTIMIZATION IN THE CASE OF AN ILLIQUID
ASSET WITH AN EXPONENTIAL OR WEIBULL LIQUIDATION
TIME DISTRIBUTION

On the Figure 4.1 one can see the results of the numerical simulation for con-

sumption and investment strategies that we run for a Weibull and exponential

case. As the parameter k that is responsible for the form of Weibull distribution

increases the optimal policies differ significantly from the exponential liquidation

time case. As z increases, i.e. the illiquid part of the portfolio becomes insuf-

ficiently small, we can see that all the policies tend to one solution which is, in

fact, a Merton solution for a two-asset problem derived in [42].

It is interesting to note here, that as z becomes smaller (i.e. the illiquid part

of the wealth becomes comparable with the liquid part) optimal policy tends to

reduce the amount of liquid wealth invested in risky assets. This result goes in

line with empirical results on house ownership, analyzed in [59].

It is especially important to note that the optimal policies significantly differ

from Merton solution when illiquidity becomes higher. Already when an amount

of illiquid asset is more than 5% of the portfolio value the percentage of capital

that is not invested in a risky stock is higher than in Merton model.

4.3 Results of the Chapter

Applying Theorem 1 obtained in Chapter 3 to two different liquidation time

distributions in the case of logarithmic utility function (i.e., exponential and

Weibull distribution) we proved the smoothness of the solution and found a lower

and upper bounds for the value function of a problem with an exponentially

distributed random liquidation time. For the Weibull distributed liquidation

time with parameter k > 1 we have demonstrated the applicability of a general

Theorem 1 that proves the existence and uniqueness of a viscosity solution and

also found a lower and upper bound for it. We have also demonstrated numerically

that the resulting strategies for such portfolio differ from the Merton case yet tend

to it when illiquidity becomes infinitely small.

Weibull distribution is regarded as a practically relevant an example of a

non-exponential distribution that can be used in the proposed framework. This

example shows how the developed approach to the illiquidity opens up a class

of optimization problems that could be treated in a similar way. In the next

chapter we carry out Lie group analysis of the obtained equations and show how

algebraic structures standing behind them actually make exponential distribution
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4.3 Results of the Chapter

Figure 4.1: Consumption stream c and the share of liquid capital π stored in a

risky asset depending on the ratio between the liquid and illiquid asset. As illiquid

asset value becomes infinitely small the policies tend to Merton policies for a two-

asset problem. We used the following parameters for assets r = 0.01, σ = 0.5, δ =

0.02, ρ = 0.4, µ = 0.05, η = 0.3 and λ = 2.

Der Verbrauchsanteil c und der Investitionsanteil π einer risikoreichen liquiden

Position des liquiden Kapitals als Funktionen von dem Verhältniss zwischen den

liquiden und illiquiden Posititionen. Wenn der Wert der illiquiden Position in-

finitesimal klein wird streben diese Strategien gegen Mertonsche Strategien für das

Zwei-Position-Problem. Wir haben folgende Parameter bei der Positionen benutz

r = 0.01, σ = 0.5, δ = 0.02, ρ = 0.4, µ = 0.05, η = 0.3 und λ = 2.

a distinguished case.
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4. PORTFOLIO OPTIMIZATION IN THE CASE OF AN ILLIQUID
ASSET WITH AN EXPONENTIAL OR WEIBULL LIQUIDATION
TIME DISTRIBUTION
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5

Lie group analysis of the problem

Study of optimization problems with an illiquid asset leads to three dimensional

nonlinear Hamilton-Jacobi-Bellman (HJB) equations. Such equations are not

only tedious for analytical methods but are also quite challenging form a numeric

point of view. One of the standard techniques is to find an inner symmetry of the

equation and reduce the number of variables at least to two or if possible to one.

The problems of lower dimensions are usually better studied and are, therefore,

easier to handle.

All papers known to us devoted to three dimensional HJB equations provide

variable substitutions without any remark on how to get similar substitution in

other cases or why they use this or that substitution. Yet since the famous work

of S. Lie [39] it is well known that smooth point transformations with continuous

parameter admitted by linear or nonlinear partial differential equations (PDEs)

can be found algorithmically using Lie group analysis. The procedure that helps

to find a symmetry group admitted by a PDE is well described in many text-

books, for example, we can recommend [46], [33] or [10] to the interested reader.

Yet practical application of these procedures is connected with tedious and volu-

minous calculations which can be only slightly facilitated with the help of modern

computer packages. For example, preparing this work we used the program In-

troToSymmetry to obtain the determining system of equations. Solving these

determining systems of partial differential equations is usually rather hard and

can rarely be done by an algorithm, but the possibility to find the system of

determining equations facilitates the work of a researcher since the systems are
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5. LIE GROUP ANALYSIS OF THE PROBLEM

quite voluminous. For example, in the studied cases the systems had more then

a hundred equations.

Once the Lie algebra admitted by the studied PDE is found one can find

all non equivalent variable substitutions which reduce the dimension of the given

PDE, if there are any. The found Lie algebra admitted by the PDE also generates

the corresponding symmetry group of this equation. Using the corresponding

exponential map of the adjoint representation of the considered Lie algebra we can

find the symmetry group or corresponding subgroups of the equation as well. We

do not have to look for an explicit form of the symmetry group to find reductions

of the studied PDEs and invariant solutions of the equations. It is enough to

know and to use the properties of the symmetry algebra which corresponds to

the admitted symmetry group. The optimal system of subalgebras of this algebra

gives rise to a complete set of non equivalent substitutions and as a result a set

of different reductions of the studied PDE.

The solutions of reduced PDEs are called invariant solutions because they are

invariant under the action of a given subgroup. One of the goals of this work is to

find the admitted Lie algebras for PDEs describing value function and investment

and consumption strategies for a portfolio with an illiquid asset that is sold in

a random moment of time with a prescribed liquidation time distribution. We

find the admitted Lie algebras for a general liquidation time distribution in cases

of HARA and log utility functions and formulate corresponding theorems. We

provide here the optimal system of subalgebras for a general case of a liquidation

time distribution in both cases of HARA and logarithmic utility functions. We

separately regard a case of an exponential distribution of a liquidation time where

the corresponding PDE admits an extended Lie algebra. It leads to certain dis-

tinguishing properties that give rise to non trivial reductions of three dimensional

PDEs to two dimensional equations and even to ordinary differential equations in

some cases. We describe all non equivalent substitutions, provide the reductions

and the corresponding lower dimensional equations as well as the corresponding

allocation-consumption strategies.These lower dimensional equations can be used

for further studies of portfolio optimization problems in similar way as one has

done it before for the known substitutions in other cases.

Let us here briefly describe the method of Lie group analysis of PDEs. In the

next Section we briefly introduce the ideas and notations needed for Lie group
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5.1 Lie group analysis of PDEs. Notations and terminology

analysis of PDEs. The details can be found in many textbooks we prefer the

notation used in [10].

5.1 Lie group analysis of PDEs. Notations and

terminology

For this section we introduce some notation just to illustrate how Lie group anal-

ysis is applied to the PDEs. This is just a short overview and the interested

reader can find a number of examples and a detailed theoretical background in

several classical books, i.e. [27], [33], [46] and [39]. Let us note here that there

are just a few types of PDEs that are frequently used in financial mathematics.

The most typical equations for this area are second order parabolic PDEs. Here

we cover an absolute minimum of the ideas and methods, that can facilitate our

future research. Since we do not regard the problems that have more than three

dimensions we recommend to keep it in mind as we formulate the definitions and

the theorems for multi-dimensional cases, yet we try to cover the most general

formulations anyway. Some definitions and statements that we find too volumi-

nous we try to restrict to the simplified cases that are satisfy the purposes of this

particular work. Later in this and other forthcoming chapters we apply intro-

duced methods to the Equation (3.11) in cases of logarithmic and HARA utility

and carry out complete Lie analysis of the problem.

Since this section is mostly informative and we talk here about the classical

results, obtained without any connection with the problem of illiquidity a notation

within this section is independent from the notation that we have used before or

use after it. Let us talk about it in detail now.

We restrict ourself to the ideas that are needed to work with a single PDE but

an interested reader can find in [46] that, in fact, the methods that we describe

further can be applied to the systems of PDEs just with some little alterations,

mostly a more sophisticated notation is needed.

Let us denote the independent variables as (x1, . . . , xp) ∈ X ∼= Rp and the

dependent variable as u ∈ V ∼= R. The space M = X × V (or an open subset

M ⊂ X × V ) would be called a base space. A notation of different partial

derivatives is usually facilitated with the help of a so-called multi-index that can
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5. LIE GROUP ANALYSIS OF THE PROBLEM

be defined as follows. Later we use the notations, definitions and Theorems’

formulations from [10].

Definition 2. (Order of a multi-index, [10]) Let J = (j1, . . . , jk) be an unordered

k-tuple of integers with entries jk, 1 ≤ jk ≤ p. The order of such a multi-index,

which we denote as #J = |J | = k, is defined as

#J = #j1 + #j2 + . . .+ #jk. (5.1)

Let us also denote

J̃ = (j̃1, . . . , j̃p), (5.2)

where j̃i = #ji. Then we can introduce J̃ ! = j̃1! · . . . · j̃p!.

Let us now consider the space that we denote as V1 of all first derivatives of

the variable u(x) ∈ V with respect all dependent variables, V1 ⊆ Rp,(
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xp

)
∈ V1

∼= Rp.

Analogously we can describe the space V2 that would consist of all second order

derivatives of the variable u(x), more specifically(
∂2u

∂x1∂x1

,
∂2u

∂x1∂x2

, . . . ,
∂2u

∂xp∂xp

)
∈ V2

∼= RN2 , N2 =

(
p+ 2− 1

2

)
.

We can act analogously up to the space Vk, that would be correspondingly a space

of all k-th order derivatives of the variable u(x), i.e.(
∂ku

∂x1
k
, . . . ,

∂ku

∂xpk

)
∈ Vk ∼= RNk , Nk =

(
p+ k − 1

k

)
. (5.3)

The space V (n) can be defined as follows

V (n) = V × V1 × . . .× Vn, dimV (n) =

(
p+ n

n

)
= N (n) (5.4)

V (n) is the Cartesian product space. The coordinates in V (n) represent all the

elements u(n), n = 0, 1, .... The space V (n) is such that every element of it

has N (n) = (1 + N1 + N2 + . . . + Nn) components uJ . We use the multi-index

J = (j1, . . . , jk) with 1 ≤ jk ≤ p, #J = k and 0 ≤ k ≤ n to denote the type of

the corresponding partial derivative. For example, when k = 0, the value uJ=0(x)

coincides with the function u(x) itself, i.e. uJ=0(x) = u(x).
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5.1 Lie group analysis of PDEs. Notations and terminology

Definition 3. (Jet bundle, [10]) The total space X×V (n), denoted by M(n), where

coordinates represent the independent variables, the dependent variables and the

derivatives of the dependent variables up to order n is called the n-th order jet

bundle j(n) of the base space M

M(n) = M× V1 × . . .× Vn, (5.5)

or the n-th prolongation of M.

For a smooth, real-valued function f(x) = f(x1, x2, . . . , xp) we denote a partial

derivative of the order k as

∂Jf(x) =
∂kf(x)

∂xj1∂xj2 . . . ∂xjk
, J = (j1, j2, . . . , jk), #J = k, (5.6)

where 1 ≤ ji ≤ p, i = 1, 2, . . . , p.

Definition 4. (n-th prolongation of f , [10]) Given a smooth function u = f(x),

with x ∈ X and u ∈ V , so f : X → V . There exists an induced function

u(n) = pr(n)f(x)

called the n-th prolongation of f(x), x ∈ X ⊂ Rp with values in V (n). Here we

define the components u(n) by

uJ = ∂Jf(x), (5.7)

i.e. pr(n)f is a map from X to the space V (n).

To work with the PDEs of the n-th order we need to introduce some more

theoretical concepts, for instance, a solution subvariety or a natural projection

in n-order jet bundle. These definitions can also be found in the books such as

[46] or [47], but here we cover them briefly, just in order to communicate general

ideas needed for our further research. In a form that corresponds to our purposes

these definitions were provided in [10], so we use these definitions here verbatim.

Definition 5. (Partial differential equation of the n-th order, [10]) We denote

the n-th order PDE on dependent variable u(x) and p independent variables as

∆(x, u(n)) = 0, (5.8)
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5. LIE GROUP ANALYSIS OF THE PROBLEM

involving x = (x1, . . . , xp), u(x) and derivatives of u(x) with respect to xi, i =

1, 2, . . . , p up to the order n. We consider ∆ as a smooth map from the jet bundle

M(n) = X × V (n) to some Euclidean space

∆ : M(n) = X × V (n) → R.

The equality ∆ = 0 determines a subvariety

S∆ = {(x, u(n)) : ∆(x, u(n)) = 0} ⊂M(n) = X × V (n)

of the total jet bundle. The differential Equation (5.8) is identified with its subva-

riety S∆. The subvariety is called the solution subvariety of the given differential

equation.

Definition 6. (Solution, [10]) A smooth solution of the given PDE is a smooth

function u = f(x), such that

∆(x, pr(n)f(x)) = 0, (5.9)

whenever x lies in the domain of f(x).

Let us note here that a solution is to be a smooth function u = f(x) in order

to satisfy the condition on the graph of the n-th prolongation of f that should

lie in the subvariety S∆. If u = f(x) is actually a smooth function defined at the

point x0 ∈M then it has a graph defined in M(n) as

u(n)(x0) = pr(n)f(x0),

with the components that are correspondingly determined as uJ(x0) = ∂Jf(x)|x=x0 ,

#J = k, 1 ≤ k ≤ n. Around the point x0 ∈ X we can look at the n-th order

Taylor polynomial that looks as

f(x) =
∑
J

1

J̃ !
uJ(x0) · (x− x0)J , #J = k, 1 ≤ k ≤ n,

where the notation goes as follows (x− x0)J = (xj1 − x0,j1)(xj2 − x0,j2) · · · (xjk −
x0,jk) with J = (j1, j2, . . . , jk) and x0 = (x0,1, x0,2, . . . , x0,p).

Let g be an element of a transformation group g ∈ G. Assuming that the

group transformation g ◦ f is well-defined in the neighborhood of x0 we obtain

the following

(x̃0, ũ0) = g ◦ (x0, u0), u0 = f(x0).
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5.1 Lie group analysis of PDEs. Notations and terminology

The action of the prolonged group transformation could be defined as pr(n)g at

the point (x0, u0
(n)). After the evaluation of the derivatives of the transformed

function g ◦ f in x̃0 we obtain

pr(n)g ◦ (x0, u0
(n)) = (x̃0, ũ

(n)
0 ),

where ũ
(n)

0 = (pr(n)g ◦ f)(x̃0).

Definition 7. (Natural projection, [46]) We call the map

Πn
k : M(n) →M(k) (5.10)

with

Πn
k(x, u(n)) = (x, u(k)), (5.11)

where u(k) only consists of the components uα,J , #J ≤ k, k < n, of u(n) itself, a

natural projection.

Remark 6. A prolongation of the 0-order is by definition pr(0)G = G. If we

look in the derivatives up to order k ≤ n only, i.e. (x, u(k)), the action of pr(k)

coincides with the prolongation pr(k)G that was described above and we get the

following relation

Πn
k ◦ pr(n)g = pr(k)g, ∀g ∈ G.

Theorem 8. (Invariance of differential equations, [46])

Let M be an open subset of X × V and suppose ∆(x, u(n)) = 0 is an n-th order

PDE defined over M with corresponding subvariety S∆ ⊂ M(n). Suppose G is a

local continuous group of point transformations acting on M, which prolongation

leaves S∆ invariant, which means that whenever (x, u(n)) ∈ S∆, we have pr(n)g ◦
(x, u(n)) ∈ S∆ for all g ∈ G, such that this expression is defined.

Then G is a symmetry group of the given PDE.

Proof: Suppose u = f(x) is a local solution to ∆(x, u(n)) = 0. Then the graph

of this function which is denoted as Γ
(n)
f = {x, pr(n)f(x)} lies entirely within S∆.

If g ∈ G and g ◦ f is well-defined, then Γ
(n)
g◦f = pr(n)g(Γ

(n)
f ). Because S∆ is

invariant under pr(n)g, we have again that pr(n)(g ◦ f) lies entirely in S∆ and is a

solution to the system ∆(x, u(n)) = 0 as well.
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5. LIE GROUP ANALYSIS OF THE PROBLEM

Definition 8. (Prolongation of vector fields, [10]) Let M ⊂ X×V be an open sub-

space and suppose U is a vector field (an infinitesimal generator of a transforma-

tion group) on M with a corresponding (local) one-parameter group G = exp(εU).

The n-th prolongation of U, denoted by pr(n)U or U(n), will be a vector field on

the jet bundle M(n), and it is defined to be the infinitesimal generator of the

corresponding prolonged group pr(n)G = G(n) = pr(n) (exp(εU))

pr(n)U
∣∣
(x,u(n))

=
d

dε

(
pr(n) exp(εU)(x, u(n))

)∣∣∣∣
ε=0

(5.12)

for any (x, u(n)) ∈M(n).

Remark 7. An infinitesimal generator also known as a prolonged vector field has

the following structure

U(n) = pr(n)U =

p∑
i=1

ξi
∂

∂xi
+

∑
J

0≤#J≤n

ΦJ ∂

∂uJ
, (5.13)

where x = (x1, . . . , xp) are independent variables and u = u(x) is the dependent

one. The coefficients ξi, i = 1, 2, . . . , p depend on variables xi, i = 1, 2, . . . , p and

u, the function ΦJ depends on variables xi, i = 1, 2, . . . , p and derivatives of u up

to the order #J .

Technically, the components ξi, ΦJ could depend on all variables of this jet

bundle, if we work with an arbitrary linear differential operator (vector field).

However, if V is a n-th order prolongation of U, i.e. V = pr(n)U, all coefficients

of this vector field are actually determined by the coefficients of the original vector

field U, that is defined on the base space M. Since M(0) = M and pr(0)U = U

we get

ξi = ξi(x1, . . . , xp, u), Φ0 = Φ(x1, . . . , xp, u).

Taking into consideration

Πn
k ◦ pr(n)g = pr(k)g, ∀g ∈ G,

each coefficient of the vector field pr(k)U can depend on k-th derivatives of u

or other derivatives of a lower order. For instance, if #J = k we have ΦJ =

ΦJ(x, u(k)).
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5.1 Lie group analysis of PDEs. Notations and terminology

Theorem 9. (Determining equations, [10])

Suppose ∆(x, u(n)) = 0, is a PDE defined on M ⊂ X × V . If G is a local

continuous group of point transformations acting on M generated by Lie algebra

L and

pr(n)U
(
∆(x, u(n))

)
= 0, ∀U ∈ L,

whenever ∆(x, u(n)) = 0, then G is a symmetry group of the system.

Definition 9. (Total differentiation, [10]) Let us introduce a total differentiation

given by the following formal infinite sums

Di =
∂

∂xi
+
∑
J

ui,J
∂

∂uJ

=
∂

∂xi
+ ui

∂

∂u
+

p∑
i1=1

uii1
∂

∂ui1
+ . . .

+

p∑
i1=1

p∑
i2=1

. . .

p∑
ir=1

uii1i2...ir
∂

∂ui1i2...ir
· · · , i = 1, . . . , p, 0 ≤ #J ≤ ∞.

The variables xi are called independent variables and u(x) = u(x1, x2, . . . , xp) is

a dependent variable with derivatives denoted as ui,J .

The rules of general differentiation are also applicable to total derivatives. Let

us list the most important of them here according to [10].

Theorem 10. (Faá di Bruno’s formula, chain rule for a composite function,

[10])

Let p = 1. If u = f(y) and y = ϕ(x), the k-th order derivative of the function

f(y) is given, in terms of y′, . . . , y(k) and f ′ = df
dy
, . . . , f (k) = dkf

dyk
, by the formula

Dk
x(f) =

∑
l1,...,lk≥0

l1+2l2+...+klk=k
p=l1+...+lk≥0

k!

l1! . . . lk!
f (p)

(
y′

1!

)l1 (y′′
2!

)l2
. . .

(
y(k)

k!

)lk
.

Definition 10. (Total derivative, [46]) Let Φ(x, u(n)) (dimX = p, dimV = 1) be

a smooth function of x ∈ X, u ∈ V and derivatives of u up to the order n, defined

on an open subset M(n) = X × V (n). The total derivative of Φ with respect to

xi is a unique smooth function DiΦ(x, u(n+1)), defined on M(n+1), depending on

61



5. LIE GROUP ANALYSIS OF THE PROBLEM

derivatives of u up to the order (n + 1). It has the property that, if u = f(x) is

an arbitrary smooth function

DiΦ(x, pr(n+1)f(x)) =
∂

∂xi

(
Φ(x, pr(n)f(x)

)
, (5.14)

where DiΦ is obtained by differentiating Φ with respect to xi while treating u(x)

and its derivatives as functions of x,

DiΦ =
∂Φ

∂xi
+

∑
J

0≤#J≤n

ui,J
∂Φ

∂uJ
, (5.15)

for J = (j1, . . . , jk), ui,J = ∂uJ
∂xi

= ∂k+1u
∂xi∂xj1∂x

jk
.

Theorem 11. [10] Let

V =

p∑
i=1

ξi(x, u)
∂

∂xi
+ Φ(x, u)

∂

∂u

be a vector field (an infinitesimal generator), defined on an open subset M ⊂
X × V . The n-th prolongation of V is the vector field

pr(n)V = V +
∑
J

0≤#J≤n
1≤jk≤p

ΦJ(x, u(n))
∂

∂uJ
, (5.16)

defined on the jet bundle M(n) ⊂ X×V (n). The coefficient functions ΦJ of pr(n)V

are given by

ΦJ(x, u(n)) = DJ

(
Φ−

p∑
i=1

ξiui

)
+

p∑
i=1

ξiui,J , (5.17)

where ui = ∂u
∂xi

, ui,J = ∂uJ
∂xi

.

These main techniques and definitions we apply to the HJB equations that

correspond to the optimization problems with different utility functions and dif-

ferent liquidation time distributions. In the next Section we come back to the

standard notation that is used throughout this work and use the ideas introduced

here later.

62



5.2 Lie group analyses of the problem with a general liquidation time
distribution and different utility functions

5.2 Lie group analyses of the problem with a

general liquidation time distribution and dif-

ferent utility functions

After a formal maximization of (3.12) and (3.13) for the chosen utility function

the equation (3.11) becomes a three dimensional non-linear PDE. As we have

already said in this particular work we regard two different utility functions and

now we look at the cases of HARA utility and log utility separately.

5.2.1 The case of HARA utility function

It is well known that a utility function U(c) where the risk tolerance R(c) is

defined as R(c) = − U ′(c)
U ′′(c)

and is a linear function of c, is called a HARA (hyper-

bolic absolute risk aversion) utility function. In this work we use two types of

utility functions: a HARA utility function UHARA(c) and the log-utility function

ULOG(c) = log(c). Let us note here that the log-utility function is sometimes

described as a limit case of HARA utility function, see, for instance, [13] or [49].

One can indeed choose HARA utility in such a way that allows a formal transition

from HARA utility to log-utility as parameter γ of HARA utility goes to zero,

but in general this transition does not hold for any form of HARA utility. We

will demonstrate this transition on different levels and because of that further we

work with HARA utility in the form

UHARA(c) =
1− γ
γ

((
c

1− γ

)γ
− 1

)
, (5.18)

with the risk tolerance R(c) = c
1−γ , 0 < γ < 1. One can easily see that as γ → 0

HARA-utility function written as (5.18) tends the to log-utility

UHARA −→
γ→0

ULOG. (5.19)
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The HJB equation (3.11) where we insert the HARA utility in the form (5.18)

after formal maximization procedure looks as follows

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

+
(1− γ)2

γ
Φ(t)

1
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
Φ(t) = 0, V −→

t→∞
0. (5.20)

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in terms

of the value function V

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (5.21)

c(t, l, h) = (1− γ)Vl(t, l, h)−
1

1−γ Φ(t)
1

1−γ . (5.22)

Equation (5.20) is a nonlinear three dimensional PDE with three independent

variables t, l, h. To reduce the dimension of the equation (5.20) we use Lie group

analysis, that allows us to find the generators of the corresponding symmetry

algebra admitted by this equation. We have already described the methods that

we use here in Section 5.1. If the reader is interested in a more detailed description

or in some practical examples we address him to PDEs in [10]. Here we formulate

the main theorem of Lie group analysis for the optimization problem with HARA

type utility function.

Theorem 12. The equation (5.20) admits the three dimensional Lie algebra

LHARA3 spanned by generators LHARA3 =< U1,U2,U3 >, where

U1 =
∂

∂V
, U2 = ert

∂

∂l
,

U3 = l
∂

∂l
+ h

∂

∂h
+

(
γV − (1− γ)

∫
Φ(t)dt

)
∂

∂V
, (5.23)

for any liquidation time distribution. Moreover, if and only if the liquidation

time distribution has the exponential form, i.e. Φ(t) = de−κt, where d, κ are

constants the studied equation admits a four dimensional Lie algebra LHARA4 with

an additional generator

U4 =
∂

∂t
− κV ∂

∂V
, (5.24)
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i.e. LHARA4 =< U1,U2,U3,U4 >.

Except finite dimensional Lie algebras (5.23) and (5.24) correspondingly equation

(5.20) admits also an infinite dimensional algebra L∞ =< ψ(h, t) ∂
∂V

> where the

function ψ(h, t) is any solution of the linear PDE

ψt(h, t) +
1

2
η2h2ψhh(h, t) + (µ− δ)hψh(h, t) = 0. (5.25)

The Lie algebra LHARA3 has the following non-zero commutator relations

[U1,U3] = γU1, [U2,U3] = U2 (5.26)

The Lie algebra LHARA4 has the following non-zero commutator relations

[U1,U3] = γU1, [U1,U4] = −κU1, [U2,U3] = U2, [U2,U4] = −rU2 (5.27)

Remark 8. The found Lie algebra describes the symmetry property of the equa-

tion (5.20) for any function Φ(t). In Chapter 3 and Chapter 4 we have proved

the theorem for existence and uniqueness of the solution of HJB equation for a

liquidation time distribution which Φ(t) ∼ e−κt or faster as t→∞, therefore we

will regard this type of the distribution studying the analytical properties of the

equation further on.

Proof 1. Using Definition 3 in the previous Section we introduce the second order

jet bundle j(2) and present the equation (5.20) in the form

∆(l, h, t, V, Vl, Vh, Vt, Vll, Vll, Vlh, Vhh) = 0

as a function of these variables in the jet bundle j(2). We look for generators of

the admitted Lie algebra in the form

U = ξ1(l, h, t, V )
∂

∂l
+ ξ2(l, h, t, V )

∂

∂h
+ ξ3(l, h, t, V )

∂

∂t
+ η1(l, h, t, V )

∂

∂V
, (5.28)

where the functions ξ1, ξ2, ξ3, η1 can be found using the over determined system of

determining equations

U(2)∆(l, h, t, V, Vl, Vh, Vt, Vll, Vll, Vlh, Vhh)|∆=0 = 0, (5.29)

where U(2) is the second prolongation of U in j(2). We look at the action of

U(2) on ∆(l, h, t, V, Vl, Vh, Vt, Vll, Vll, Vlh, Vhh) on its solution subvariety ∆ = 0
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and obtain an overdetermined system of PDEs on the functions ξ1, ξ2, ξ3 and η1

from (5.28). This system has 137 PDEs on the functions ξ1, ξ2, ξ3, η1. The most

of them are trivial and lead to following conditions on the functions

(ξ1)l = a1(t), (ξ1)h = 0, (ξ1)V = 0,

(ξ2)l = 0, (ξ2)V = 0,

(ξ3)l = 0, (ξ3)h = 0, (ξ3)V = 0,

(η1)l = 0, (η1)V = d1(h, t).

This basically means that the unknown functions have the following structure

ξ1(l, h, t, V ) = a1(t)l + a2(t), ξ2(l, h, t, V ) = ξ2(h, t), ξ3(l, h, t, V ) = ξ3(t),

η1(l, h, t, V ) = d1(h, t)V + d2(h, t). (5.30)

Here a1(t) and d1(h, t) are some functions which will be defined later. To find the

unknown functions a1(t), a2(t), ξ2(h, t), d1(h, t), d2(h, t) we should have a closer

look on the non-trivial equations of the obtained system, that are left. After all

simplifications we get the system of seven PDEs

2(ξ2 − hξ2h) + hξ3t = 0, (5.31)

(1− γ)Φ

(
η1V − ξ3 − ξ3t

Φt

Φ

)
+ γL(η1) = 0, (5.32)

η1V − γξ1l −
Φt

Φ
ξ3 − (1− γ)ξ3t = 0, (5.33)

(α− r)ξ3t + 2ηρhη1hV = 0,

(α− r)(ξ2 − hξ2h + hξ3t) + ηρσ2h2η1hV = 0,

rξ1 − ξ1t − ξ1l(δh+ rl) + δξ2 + (δh+ rl)ξ3t = 0,

(µ− δ)(ξ2 − hξ2h + hξ3t)− ξ2t −
1

2
η2h2η1hh = 0,

where L = ∂
∂t

+ 1
2
η2h2 ∂2

∂h2
− (δ−µ)h ∂

∂h
and ξ1, ξ2, ξ3 = const and η1 satisfy (5.30).

Using (5.30) we obtain a simplified system.

Solving the system for an arbitrary function Φ(t) we obtain

ξ1 = b1l + a2e
rt, (5.34)

ξ2 = b1h,

ξ3 = 0,

η1 = b1γV + d2 − b1(1− γ)

∫
Φ(t)dt+ d1(h, t).
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The equations (5.34) contain three arbitrary constants a2, b1, d2 and a function

d1(h, t) which is an arbitrary solution of Ld1(h, t) = 0. Formulas (5.34) define

three generators of finite dimensional Lie algebra LHARA3 (5.23) and an infinitely

dimensional algebra L∞ as it was described in Theorem 12.

If we assume that in the equations (5.32) and (5.33) the expression Φt
Φ

= const,

i.e. the liquidation time is exponentially distributed we additionally obtain the

fourth symmetry (5.24). It is a unique case when Lie algebra LHARA3 has any

extensions. •

5.2.2 The case of the log-utility function

A logarithmic utility function could be regarded as a limit case of HARA-utility

(5.19). Yet certain properties of the logarithm make this particular case rather

popular therefore we analyze it separately.

The whole approach is very similar to the method described in Section 5.2.1

therefore we omit some details here. In the case of the log-utility function the

HJB equation after the formal maximization procedure will take the following

form

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

− Φ(t)
(
log Vl − log Φ(t) + 1

)
= 0, V −→

t→∞
0. (5.35)

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in terms

of the value function V

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (5.36)

c(t, l, h) =
Φ(t)

Vl(t, l, h)
. (5.37)

Remark 9. We choose the form of HARA-utility in such a way that (5.19) holds.

Now we see that the maximization procedure that transforms HJB equation to

PDE preserves this property as well. If we formally take a limit of (5.20) as

γ → 0 we obtain (5.35).
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As it turns out analogously to the previous chapter one can formulate the

main theorem of Lie group analysis for this PDE.

Theorem 13. The equation (5.35) admits the three dimensional Lie algebra LLOG3

spanned by generators LLOG3 =< U1,U2,U3 >, where

U1 =
∂

∂V
, U2 = ert

∂

∂l
,

U3 = l
∂

∂l
+ h

∂

∂h
−
∫

Φ(t)dt
∂

∂V
, (5.38)

for any liquidation time distribution. Moreover, if and only if the liquidation

time distribution has the exponential form, i.e. Φ(t) = de−κt, where d, κ are

constants, the studied equation admits a four dimensional Lie algebra LLOG4 with

an additional generator

U4 =
∂

∂t
− κV ∂

∂V
, (5.39)

i.e. LLOG4 =< U1,U2,U3,U4 >.

Except finite dimensional Lie algebras LLOG3 and LLOG4 correspondingly the equa-

tion (5.35) admits also an infinite dimensional algebra L∞ =< ψ(h, t) ∂
∂V

> where

the function ψ(h, t) is any solution of the linear PDE

ψt(h, t) +
1

2
η2h2ψhh(h, t) + (µ− δ)hψh(h, t) = 0. (5.40)

The Lie algebra LLOG3 has one non-zero commutator relation [U2,U3] = U2.

The Lie algebra LLOG4 has the following non-zero commutator relations

[U1,U4] = −κU1, [U2,U3] = U2, [U2,U4] = −rU2.

Remark 10. If we compare the form of Lie algebras generators in the cases of

HARA and log utilities, i.e. formulas (5.23) and (5.38) as well as (5.24) and

(5.39), we can see that the formal limit procedure holds for them as well and the

generators for HARA-utility transfer to generators for log-utility under a formal

limit γ → 0.

Proof 2. Acting analogously to the proof of the Theorem 13 we look for the gener-

ators of the admitted Lie algebra in the form (5.28). A corresponding determining

system obtained analogously to (5.29) has 130 equations on the functions ξ1, ξ2, ξ3
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and η1. The most of these equation are trivial and we can easily solve them. This

way we obtain

(ξ1)l = b1, (ξ1)h = 0, (ξ1)V = 0, (5.41)

(ξ2)l = 0, (ξ2)V = 0,

(ξ3)l = 0, (ξ3)h = 0, (ξ3)V = 0,

(η1)l = 0, (η1)V = d1(h, t),

where b1 is a constant and d1(h, t) is a function to be determined. The remaining

equations can be rewritten as

rξ1 − (rl + δh)ξ1h − ξ1t + δξ2 + (rl + δh)ξ3t = 0, (5.42)

(µ− δ)(ξ2 − hξ2h + hξ3t)− ξ2t −
1

2
η2h2ξ2hh + η2h2η1hV = 0,

ξ2 − hξ2h +
1

2
hξ3t = 0,

ξ3t +
Φt

Φ
ξ3 − η1V = 0,

Φξ1lΦt log Φ + Φ(log Φ− 1)ξ3t − Φ log Φη1V + L(η1) = 0,

(α− r)ξ3t + 2ηρhη1hV = 0,

(α− r)(ξ2 − hξ2h + hξ3t) + ηρσ2h2η1hV = 0,

where L = ∂
∂t

+ 1
2
η2h2 ∂2

∂h2
− (δ − µ)h ∂

∂h
and ξ1 = ξ1(l, t), ξ2 = ξ2(h, t), ξ3 = ξ3(t)

and η1 = η1(h, t, V ) are described in (5.41). Inserting these functions ξ1, ξ2, ξ3

and η1 into (5.42) we obtain a simplified system of determining equations.

Solving the system for an arbitrary Φ(t) we obtain the following solution

ξ1 = b1l + a2e
rt, (5.43)

ξ2 = b1h,

ξ3 = 0,

η1 = −b1

∫
Φ(t)dt+ d2 + d1(h, t),

where d1(h, t) is an arbitrary solution of Ld1(h, t) = 0 and a2, b1 and d2 are

arbitrary constants. This solution defines three different operators, that are listed

in (5.38).
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If and only if the expression Φ
′
(t)

Φ(t)
is a constant further denoted as κ the solution

of the overdetermined system (5.42) is as follows

ξ1 = b1l + a2e
rt, (5.44)

ξ2 = b1h,

ξ3 = c1,

η1 = −b1

∫
Φ(t)dt+ d2 + d1(h, t)− c1κV,

It means that just for the special exponential form of Φ(t) we obtain an extension

of the Lie algebra LLOG3 to LLOG4 with an additional generator U4 (5.39). In this

way we proved the Theorem 13 and found the generators of LLOG3 and LLOG4 as

given in (5.38) and, correspondingly in (5.39). •

5.3 Correspondence between models with HARA

and logarithmic utility functions

The fact that logarithmic utility function can be regarded as a limit case of

HARA utility is mentioned in several publications, for example, [54] or [49]. We

have studied the issue in detail, yet we feel that it didn’t get sufficient attention

before, so in this section we briefly discuss the connection between HARA and

logarithmic utilities in the context of portfolio optimization for a portfolio with

an illiquid asset.

We have already written that if HARA utility has the form (5.18), it is clear

that if γ → 0 then indeed UHARA −→
γ→0

ULOG. This correspondence follows directly

from the chosen form of HARA utility

UHARA(c) =
1− γ
γ

((
c

1− γ

)γ
− 1

)
(5.45)

This also means that before a formal maximization the problem for HARA utility

written in the form (3.11) tends formally to the problem formulated with loga-

rithmic utility as γ → 0. However, the fact that this correspondence is preserved

after a procedure of formal maximization is not so obvious.
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As we have written before the HJB equation (3.11) where we insert the HARA

utility in the form (5.18) after a formal maximization procedure will take the form

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

+
(1− γ)2

γ
Φ(t)

1
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
Φ(t) = 0, V −→

t→∞
0, (5.46)

whereas the HJB equation (3.11) with logarithmic utility would be

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

− Φ(t)
(
log Vl − log Φ(t) + 1

)
= 0, V −→

t→∞
0. (5.47)

Let us check if the term

(1− γ)2

γ
Φ(t)

1
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
Φ(t)

formally tends to −Φ(t)
(
log Vl − log Φ(t) + 1

)
as γ → 0.

Indeed

lim
γ→0

(1− γ)2

γ
Φ(t)

1
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
Φ(t)

= −Φ(t) lim
γ→0

(1− γ)

−(1− γ)
(

Φ(t)
Vl(t,l,h)

) γ
1−γ

+ 1

γ

 ,

and applying l’Hopital rule to the term in the brackets we obtain

−Φ(t) lim
γ→0

(1− γ)

((
Φ(t)

Vl(t, l, h)

) γ
1−γ

− (1− γ)

(
Φ(t)

Vl(t, l, h)

) γ
1−γ

log
Φ(t)

Vl(t, l, h)

)
= −Φ(t)

(
log Vl − log Φ(t) + 1

)
.

This means that the correspondence between HARA utility and logarithmic util-

ity function is preserved even after a procedure of formal maximization. We can
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show this correspondence even further and see it on the level of algebras admitted

by the equations (5.46) and (5.47).

Let us briefly remind the reader that LHARA3 (5.23) is spanned by the following

operators

U1 =
∂

∂V
, U2 = ert

∂

∂l
,

U3 = l
∂

∂l
+ h

∂

∂h
+

(
γV − (1− γ)

∫
Φ(t)dt

)
∂

∂V
,

whereas LLOG3 (5.38) is spanned by

U1 =
∂

∂V
, U2 = ert

∂

∂l
,

U3 = l
∂

∂l
+ h

∂

∂h
−
∫

Φ(t)dt
∂

∂V
.

Indeed, as γ → 0 we can see that UHARA
3 −→

γ→0
ULOG

3 and all other generators

are the same in both cases (as well as UHARA
4 −→

γ→0
ULOG

4 in the case of four

dimensional algebras).

This means that for HARA utility defined as (5.18) when γ → 0 there is a

formal limit and this formal procedure does not only connect HARA and logarith-

mic utility functions but also HJB equations that correspond to these functions

and Lie algebras admitted by these equations.

Before we go further let us make one more remark. In the next chapters we

look for reductions of (5.20) and (5.35) using the admitted Lie algebras. Standard

methods that are used to obtain corresponding invariants give us results in such a

form that the correspondence between the problem with HARA and logarithmic

utility, that we discussed above, may be destroyed after using certain reductions.

Technically, it might be possible to choose invariants in such a form that this

relation could be preserved even after a reduction, but we do.

Let us give here a brief example (we explain how the reductions are obtained

in Chapter 6 and Chapter 7 correspondingly), here we just need the form of the

reduced equations and the form of invariants, used for substitution.

Let us look on subalgebra hHARA3 of Lie algebra LHARA3 listed in Table 6.1 and

defined as follows

hHARA3 =< e3 >=

〈
l
∂

∂l
+ h

∂

∂h
+

(
γV − (1− γ)

∫
Φ(t)dt

)
∂

∂V

〉
.
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If γ → 0 this subalgebra transforms into hLOG1 listed in Table 7.1 with parameter

β = 0. This subalgebra of Lie algebra LLOG3 is defined as

hLOG1 = < e1 cos β + e3 sin β >

=

〈
cos βl

∂

∂l
+ cos βh

∂

∂h
+

(
sin β − cos β

∫
Φ(t)dt

)
∂

∂V

〉
.

Indeed, if β = 0 then

hHARA3 −→
γ→0

〈
l
∂

∂l
+ h

∂

∂h
−
∫

Φ(t)dt
∂

∂V

〉
= hLOG1 |β=0

The standard invariants that we later use to obtain the reduction are defined

as (6.5) and (6.6) for the case of HARA utility. Let us list them here for the

convenience of the reader

invHARA1 = t, invHARA2 = z =
l

h
,

invHARA3 = WHARA(z, t) = h−γV HARA(l, h, t)− 1− γ
γ

h−γ
∫

Φ(t)dt.

The standard invariants for the case with logarithmic utility are defined in (7.6)

and (7.7) and look as follows

invLOG1 = t, invLOG2 = z =
l

h

invLOG3 = WLOG(z, t) = V LOG + log h

(
tan β +

∫
Φ(t)dt

)
.

The reader can see that the correspondence between the case of HARA utility and

the case of logarithmic one is not satisfied anymore. Due to the certain freedom

that we have in the choice of invariants we can chose the invariants of hHARA3 in

a different way. Indeed, if instead of WHARA(z, t) we choose W̃HARA(z, t) defined

as

W̃HARA(z, t) = WHARA(z, t)(1− γ)γ +
1− γ
γ

∫
Φ(t)dt,

and use invHARA1 and invHARA2 as new independent variables t and z, whereas

W̃HARA(z, t) as a new dependent variable then substituting these new variables
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into equation (5.20) instead of equation (6.7) we would obtain

W̃t(z, t) +
1

2
η2
(

2z(1− γ)W̃z(z, t) + z2W̃zz(z, t)
)

+ (rz + δ)W̃z(z, t)− (µ− δ)zW̃z(z, t)

− (α− r)2W̃ 2
z (t, z)− 2(α− r)ηρW̃z(t, z)((1− γ)W̃z(t, z) + zW̃zz(t, z))

2σ2W̃zz(t, z)

− η2ρ2σ2((1− γ)W̃z(t, z) + zW̃zz(t, z))
2

2σ2W̃zz(t, z)

− γ

(
1

2
η2(1− γ)− µ+ δ

)
W̃ (z, t) (5.48)

− (1− γ)

(
1

2
η2(1− γ)− µ+ δ

)∫
Φ(t)dt

− 1− γ
γ

Φ(t) +
(1− γ)2

γ
Φ(t)

1
1−γ W̃

− γ
1−γ

z (t, z) = 0.

If we use invariants invLOG1 and invLOG2 (7.6) as new independent variables t and

z and invariant WLOG(z, t) (7.7) as a new dependent variable and substite them

into (5.35) we obtain

Wt(z, t) +
1

2
η2
(
2zWz(z, t) + z2Wzz(z, t)

)
+ (rz + δ)Wz(z, t)− (µ− δ)zWz(z, t)

− (α− r)2W 2
z (z, t)− 2(α− r)ηρWz(z, t)(Wz(z, t) + zWzz(z, t))

2σ2Wzz(z, t)

− η2ρ2σ2(Wz(z, t) + zWzz(z, t))
2

2σ2Wzz(z, t)

−
(

1

2
η2 − µ+ δ

)∫
Φ(t)dt− Φ(t)(logWz(z, t)− log Φ(t) + 1) = 0.

This equation corresponds to equation (7.8) with β = 0 and the reader can see

that this equation is a formal limit of (5.48) as γ → 0, indeed. However, equation

(5.48) is even more voluminous than equation (6.7) that is obtained through stan-

dard invariants, therefore further we use a standard reduction procedure in order

to get a convenient form of equations in both cases with HARA and logarithmic

utility and do not pay particular attention to the correspondence between the

two. It is possible to obtain invariants that would preserve that relation even for

the equations of lesser dimensions but we decided to provide the study of both
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5.4 Results of the chapter

cases in their own right to get the most convenient form of reduced equations

that could be used for further solutions.

5.4 Results of the chapter

In this chapter we have introduced the notations needed for Lie group analysis

and carried out a complete Lie group analysis for the optimization problem with

two different utility functions, i.e. for two different three dimensional PDEs (5.20)

and (5.35) which contain an arbitrary function Φ(t). In both cases we are able

to solve these rather voluminous problems and find the admitted Lie algebras

LHARA3 and LLOG3 . The study of the three dimensional problems is connected

with a lot of tedious calculations, even the first step on which one needs to find

the determining system is, in fact, non-trivial. These difficulties become even

more evident if we have an arbitrary function in the studied equation. The prob-

lem becomes slightly more tractable if one applies package IntroToSymmetry,

but the majority of the calculations still are to be done manually. In this way we

get the system of partial differential equations containing 137 and 130 different

equations correspondingly. These equations define the generators of the corre-

sponding algebras. Computer systems that we know of, unfortunately, can not

solve the obtained system of differential equations. This has to be a step-by-step

handmade procedure. To our knowledge, this is a first application of Lie group

analysis to such problems for a general liquidation time distribution. If we look

on the amount of calculations it is also understandable why just few cases of three

dimensional PDEs are profoundly studied in the literature.

We also show that if and only if the liquidation time defined by a survival

function Φ(t) is distributed exponentially, then for both types of the utility func-

tions we get an additional symmetry. We prove that both Lie algebras admit this

extension, i.e. we obtain the four dimensional LHARA4 and LLOG4 correspondingly

for the case of exponentially distributed liquidation time. Indeed, the case of ex-

ponentially distributed liquidation time is actually similar to the infinite-horizon

random income problem and several other models studied in the literature (see,

for instance, [22]), yet our work is the first to our knowledge that explicitly shows

which properties make an exponentially distributed liquidation time a distin-

guished case, that allows a reduction of an original three dimensional PDEs to
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5. LIE GROUP ANALYSIS OF THE PROBLEM

ODEs. This is a very important result, since a lot of the works in the field use

similar reductions and do not mention that there is actually no other distribu-

tion that allows a Lie type reduction of a PDE to an ODE. With a help of Lie

group analysis we explain what makes exponential liquidation time distribution a

distinguished case, the only situation when one can reduce the three dimensional

HJBs to ODEs.

We have also shown a connection between HARA and logarithmic utility

problems that hold on the level of HJB equations and on the level of algebraic

structures standing behind the equations.

In the next chapters we provide reductions of (5.20) and (5.35) using the

admitted Lie algebras.
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6

Reductions of PDEs with HARA

utility

In this chapter we discuss the reductions of the equations with HARA utility

function that follow from the results of Lie group analysis of the problem that

was carried out in the previous chapter. Let us discuss the complete set of possible

reductions of three dimensional PDEs (5.20) arising in the case of HARA-utility

function. In the previous chapter we have seen that some of the generators of

the admitted Lie algebras LHARA3 and LHARA4 (LHARA3,4 ) described in Theorem 12

and LLOG3 and LLOG4 (LLOG3,4 ) as presented in Theorem 13 coincide in all studied

cases. Let us now briefly discuss the mathematical and economic meaning of

these generators.

The first generator U1 = ∂
∂V

means that the original value function V (t, l, h),

solution of (5.20) for HARA utility or (5.35) for log utility correspondingly, can

be shifted on any constant and still be a solution of the main equation. Neither

allocation π (5.21) or consumption function c (5.22) will change their values,

because they depend only on the derivatives of the value functions. In some sense

it is a trivial symmetry, since the equation (5.20) contains just the derivatives of

V (l, h, t) we certainly can add a constant to this function and it still will be a

solution of the equation. This symmetry does not give a rise to any reductions

of the studied three dimensional PDEs.

The second generator U2 = ert ∂
∂l

means that the value of the independent

variable l can be shifted on the arbitrary value aert, i.e. the shift l → l + aert,
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6. REDUCTIONS OF PDES WITH HARA UTILITY

a− const. leaves the solution unaltered. From economical point of view it means

that we can arbitrary shift the initial liquidity on a bank account a, a > 0 or credit

a, a < 0. The value function V (l, h, t) and the allocation-consumption strategy

(π, c) will be unaltered, see (5.20) or (5.35). This symmetry is also trivial since

it does not give any reductions of the original three dimensional PDEs.

Furthermore we also get an infinitely-dimensional algebra L∞ =< ψ(h, t) ∂
∂V

>

where the function ψ(h, t) is any solution of the linear PDE

ψt(h, t) +
1

2
η2h2ψhh(h, t) + (µ− δ)hψh(h, t) = 0, (6.1)

and has a very interesting meaning. We can add any solution ψ(h, t) of this

equation to the value function V (l, h, t) without any changes of the allocation-

consumption strategy (π, c). In economical sense it means that the additional use

of some financial instrument which is the solution of ψt(h, t) + 1
2
η2h2ψhh(h, t) +

(µ − δ)hψh(h, t) = 0, i.e. a financial instrument which value is defined just by

the paper value of the illiquid asset and time in accordance with (6.1), can not

change the allocation-consumption strategy (π, c).

Now we are going to discuss the possible reductions of the three dimensional PDE

(5.20) arising in the case of the HARA utility in detail.

6.1 Reductions in the case of general liquidation

time distribution and HARA utility

In order to describe all non-equivalent invariant solutions to (5.20) we need to find

an optimal system of subalgebras for the admitted Lie algebra (5.23) described by

Theorem 12. Let us at first remind you how does our problem look in a general

case

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

+
(1− γ)2

γ
Φ(t)

1
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
Φ(t) = 0, V −→

t→∞
0. (6.2)

Here the investment π(t, l, h) and consumption c(t, l, h) look as in (5.21) and

(5.22). The Lie algebra admitted by this PDE is described in Theorem 12 and
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and HARA utility

is three or four dimensional depending on the properties of the function Φ(t).

The classification of all real three and four dimensional solvable Lie algebras

is given in [50]. The authors provide optimal systems of subalgebras for every

real solvable three and four dimensional Lie algebra. In this Section we study

a three dimensional case. In order to have a consistency with this classification

we change a basis of the corresponding algebra to a suitable one for every Lie

algebras described above. One can also use the software package SymboLie

[45] (a supplement package for Mathematica) to find an optimal system of

subalgebras for a given Lie algebra directly, but we prefer to use the classification

and notation provided in [50] for the sake of consistency.

The reductions can be obtained if we replace original variables with new inde-

pendent and dependent variables which are invariant under the action of the Lie

group or subgroup of this Lie group admitted by the equation. In this section we

will list all non-equivalent reductions and provide all possible reduced equations.

As we mentioned before we use just the admitted Lie algebras to get the

invariants of the corresponding groups. We do not need to provide the explicit

form if the groups and subgroups.

First of all we should introduce the notations that we use further.

We denote by hi the subalgebras of the Lie algebra LHARA3 (5.23) (or LHARA4

correspondingly) and Hi for the subgroups of the group GHARA
3 (or GHARA

4 ) which

are generated with the help of the exponential map by hi.

6.1.1 System of optimal subalgebras of LHARA3

At first let us reassign the basis of LHARA3 to adopt the real three dimensional

Lie algebra LHARA3 to the classification obtained in [50] in the following way

U1 = e2,U2 = e1,U3 = e3. The basis is now defined as

e1 = ert
∂

∂l
, e2 =

∂

∂V
, e3 = l

∂

∂l
+ h

∂

∂h
+

(
γV − (1− γ)

∫
Φ(t)dt

)
∂

∂V
. (6.3)

In this basis algebra LHARA3 has two non zero commutation relations which

are given now in the following form

[e1, e3] = e1, [e2, e3] = γe2. (6.4)
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6. REDUCTIONS OF PDES WITH HARA UTILITY

Now we can see that LHARA3 = 〈e1, e2, e3〉 corresponds to Aγ3,5, where 0 < γ <

1, in the classification of [50]. The system of optimal subalgebras for this algebra

is listed in Table 6.1.

Dimension of System of optimal subalgebras of the Lie algebra LHARA3 (5.23)

the subalgebra

1 h1 = 〈e1〉 , h2 = 〈e2〉 , h3 = 〈e3〉 , h4 = 〈 e1 ± e2〉
2 h5 = 〈e1, e2〉 , h6 = 〈e3, e1〉 , h7 = 〈e3, e2〉

Table 6.1: [50] The optimal system of one and two dimensional subalgebras of

LHARA3 (5.23).

The optimal system of one- and two- parameter subalgebras give rise to the

system of one or two dimensional symmetry subgroups Hi of the studied PDE.

Our goal now is to find all possible corresponding reductions and to describe the

solutions which are invariant under the action of the groups Hi.

6.1.2 One-dimensional subalgebras of LHARA3 and corre-

sponding reductions

Let us look closer at all one dimensional subalgebras listed in the first row of Table

6.1. If we try to reduce the tree dimensional PDE to a two dimensional one, then

such reduction can be provided by one of the corresponding one dimensional

subgroups if at all.

LHARA3 has four one-dimensional subalgebras hi which give rise to four one

parameter subgroups Hi. Our goal is to study the corresponding invariant so-

lutions. Not every subgroup out of all listed in Table 6.1 provides a nontrivial

reduction of the original PDE, but if a non-trivial reduction of Lie type exists,

then it can be found out through a suitable subalgebra listed in Table 6.1. We

have already discussed the meaning of h1 and h2 above in Section 6.1. These two

cases do not give us any reductions, as we have already discussed these two cases

in the beginning go this section. Let us start with the next case.

Case H3(h3). Under h3 in Table 6.1 we denote the subalgebra that is defined
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and HARA utility

as

h3 =< e3 >=

〈
l
∂

∂l
+ h

∂

∂h
+

(
γV − (1− γ)

∫
Φ(t)dt

)
∂

∂V

〉
.

H3 denotes a corresponding subgroup. To find the invariants of H3 we solve a

characteristic system of the equations

dt

0
=
dl

l
=
dh

h
=

dV(
γV − (1− γ)

∫
Φ(t)dt

) ,
where the first equation of the system is a formal notation that shows that in-

dependent variable t is actually an invariant of the equation under the action of

H3. We can obtain two other independent invariants solving the system above

inv1 = t, inv2 = z =
l

h
, (6.5)

inv3 = W (z, t) = h−γV (l, h, t)− 1− γ
γ

h−γ
∫

Φ(t)dt. (6.6)

These invariants (6.5) can be used as new independent variables t, z and the

invariant (6.6) as the new dependent variable W (t, z) to reduce the three dimen-

sional PDE (6.2) to a two dimensional one

Wt(t, z) +
1

2
η2
(
γ(γ − 1)W (t, z)− 2(γ − 1)zWz(t, z) + z2Wzz(t, z)

)
+ (rz + δ)Wz(t, z) + (µ− δ)(γW (t, z)− zWz(t, z))

− (α− r)2W 2
z (t, z)− 2(α− r)ηρWz(t, z)((1− γ)Wz(t, z) + zWzz(t, z))

2σ2Wzz(t, z)

− η2ρ2σ2((1− γ)Wz(t, z) + zWzz(t, z))
2

2σ2Wzz(t, z)

+
(1− γ)2

γ
Φ(t)

1
1−γW

− γ
1−γ

z (t, z) = 0, W −→
t→∞

0. (6.7)

After this reduction the allocation π(t, z, h) and consumption c(t, z, h) strategies

(5.21) and (5.22) look as follows

π(t, z, h) = h

(
ηρ

σ
z +

ηρσ(1− γ)− α + r

σ2

Wz(t, z)

Wzz(t, z)

)
, (6.8)

c(t, z, h) = h(1− γ)W
− 1

1−γ
z (t, z)Φ(t)

1
1−γ . (6.9)

Case H4(h4). This subalgebra h4 is spanned by the generator ert ∂
∂l
± ∂

∂V
. We

can write a characteristic system for this case

dl

ert
=
dh

0
=
dt

0
=
dV

∓1
. (6.10)
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6. REDUCTIONS OF PDES WITH HARA UTILITY

We can see from this system that two independent variables t and h are invariants.

The third invariant is W (t, h) = V (l, h, t) ∓ e−rtl. This means that in this case

the value function has the form V = W (t, h)± e−rtl. This essentially means that

V in this case is a linear function of l. From Chapter 3 we already know that

the value function described by (3.10) should be concave in l, so this case is not

interesting for our problem from the economical point of view. Since though H4

gives us a reduction of the equation (5.20) the corresponding value function does

not satisfy the conditions sufficient for a solution of (3.10) in the class of l-concave

functions.

The two-dimensional subalgebras of LHARA3 do not give us any meaningful

substitutions, what would be able to reduce the problem to an ODE. This means

that if we deal with a HARA utility function and a general form of the liquidation

time distribution we have just one possibility to reduce the three dimensional

PDE (6.2) to a two dimensional one (6.7) using the substitution (6.5)-(6.6) or

equivalent. Any further reductions in the framework of Lie group analysis are

not possible. It does not mean that any other simplifications of the PDE are not

possible, but we do not have an algorithmic way to obtain them. At the same

time it is important to note that if we study problem (5.20) we can for sure apply

numeric or quantitate methods to study the equation (6.7), which is simpler than

the original one.

6.2 A special case of an exponential liquidation

time distribution with HARA utility func-

tion

The exponential liquidation time distribution with the survival function Φ(t) =

e−κt is a special case of the problem that deserves our separate attention. We

have proven in Theorem 12 that in this case and just in this case we obtain an

extended four dimensional Lie algebra and can hope to obtain deeper reductions

than in the general case. Inserting this special form of Φ(t) into (5.20) we obtain
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HARA utility function

the following equation

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

+
(1− γ)2

γ
e−

κt
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
e−κt = 0, V −→

t→∞
0. (6.11)

This equation admits Lie algebra LHARA4 spanned by the generators (5.23) and

(5.24) as we have demonstrated in Theorem 12.

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in

terms of the value function V

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (6.12)

c(t, l, h) = (1− γ)Vl(t, l, h)−
1

1−γ e
−κt
1−γ . (6.13)

Since the non-zero commutators of LHARA4 depend on the parameters κ, r and

γ the inner structure of the Lie algebra LHARA4 is different for different values

of these parameters. If we further use the classification of all solvable real three

and four dimensional Lie algebras proposed in [50], we can see that depending

on the relations between the parameters of the equation we obtain two different

algebraic structures. Using the notation of [50] we see that when κ 6= rγ then

LHARA4 corresponds to 2A2, whereas when κ = rγ then LHARA4 corresponds to

Aγ3,5
⊕

A1 (see [50]). We now look at each of these cases separately.

6.2.1 System of optimal subalgebras of LHARA4 for the case

κ 6= rγ

Let us at first regard a situation, when κ 6= rγ. To make the structure of LHARA4

visible and comparable with the notation in [50] we transform the basis of LHARA4

as follows

e1 =
rU3 + U4

κ− rγ
, e2 = U1

e3 = −κU3 + γU4

κ− rγ
, e4 = U2.
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6. REDUCTIONS OF PDES WITH HARA UTILITY

Now the generators of LHARA4 = 〈e1, e2, e3, e4〉 have a form

e1 =
r

κ− rγ
l
∂

∂l
+

r

κ− rγ
h
∂

∂h
+

1

κ− rγ
∂

∂t
−
(
V − (1− γ)r

κ(κ− rγ)
e−κt

)
∂

∂V
,

e2 =
∂

∂V
,

e3 = − κ

κ− rγ
l
∂

∂l
− κ

κ− rγ
h
∂

∂h
− γ

κ− rγ
∂

∂t
− (1− γ)

κ− rγ
e−κt

∂

∂V
,

e4 = ert
∂

∂l
,

where κ 6= rγ. In this basis the Lie algebra LHARA4 has only two non-zero com-

mutation relations

[e1, e2] = e2, [e3, e4] = e4. (6.14)

We can see that LHARA4 corresponds to 2A2 or in another common notation A2⊕
A2, according to the classification [50]. The system of optimal subalgebras for

an algebra of this type is listed in Table 6.2. We use this optimal system of

Dimension of System of optimal subalgebras of algebra LHARA4 , κ 6= rγ

the subalgebra

1 h1 = 〈e2〉 , h2 = 〈e3〉 , h3 = 〈e4〉 , h4 = 〈 e1 + ωe3〉 , h5 = 〈 e1 ± e4〉 ,
h6 = 〈 e2 ± e4〉 , h7 = 〈 e2 ± e3〉

2 h8 = 〈e1, e3〉 , h9 = 〈e1, e4〉 , h10 = 〈e2, e3〉 , h11 = 〈e2, e4〉 ,
h12 = 〈e1 + ωe3, e2〉 , h13 = 〈e3 + ωe1, e4〉 , h14 = 〈e1 ± e4, e2〉 ,
h15 = 〈e3 ± e2, e4〉 , h16 = 〈e1 + e3, e2 ± e4〉

3 h17 = 〈e1, e3, e2〉 , h18 = 〈e1, e4, e2〉 , h19 = 〈e1, e3, e4〉 , h20 = 〈e2, e3, e4〉 ,
h21 = 〈e1 ± e3, e2, e4〉 , h22 = 〈e1 + ωe3, e2, e4〉

Table 6.2: [50] The optimal system of one, two and three dimensional subalgebras

of LHARA4 for κ 6= rγ. Here ω is a parameter, −∞ < ω <∞.

subalgebras to obtain all non equivalent reductions and list them in the next

section.
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6.2 A special case of an exponential liquidation time distribution with
HARA utility function

6.2.2 One-dimensional subalgebras of LHARA4 , κ 6= rγ, and

corresponding reductions

LHARA4 in the case κ 6= rγ has ten one-dimensional subalgebras listed in the first

row of Table 6.2, but by far not all of them can provide meaningful reductions of

(6.11). Before we start a step-by-step discussion regarding each subalgebra in the

optimal system of subalgebras listed in Table 6.2 we should remind the reader that

we have already discussed two of them before. In Section 6.1.2 we have already

shown that subalgebras h1 =
〈
∂
∂V

〉
and h3 =

〈
ert ∂

∂l

〉
and h6 =

〈
∂
∂V
± ert ∂

∂l

〉
describe important invariant properties of the equation (6.11) but they do not

provide any new meaningful reductions.

Now we are going to regard other subalgebras in detail.

Case H2(h2). This subalgebra is spanned by a generator e3

h2 =< e3 > =

〈
− κ

κ− rγ
l
∂

∂l
− κ

κ− rγ
h
∂

∂h
− γ

κ− rγ
∂

∂t

− (1− γ)

κ− rγ
e−κt

∂

∂V

〉
. (6.15)

As in the case LHARA3 we can find invariants of the corresponding subgroup H4

solving the characteristic system

dl

κl
=
dh

κh
=
dt

γ
=
eκtdV

1− γ
.

Out of the characteristic system we find the following invariants

inv1 = z =
l

h
, inv2 = τ =

κ

γ
t− log h, (6.16)

inv3 = W (z, τ) = V +
1− γ
γκ

e−κt. (6.17)

Substituting these new independent variables z and τ and a new dependent vari-

85
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able W (z, τ) into (6.11) we obtain a two-dimensional equation

κ

γ
Wτ (z, τ) +

1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)

− (µ− δ)zWz(z, τ)− (α− r)2W 2
z (z, τ)

2σ2Wzz(z, τ)

− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ)) + η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)

+
(1− γ)2

γ
e−

γ
1−γ τW

− γ
1−γ

z = 0, W −→
τ→∞

0. (6.18)

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms

of the function W (z, τ)

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.19)

c(z, τ, h) = h(1− γ)Wz(z, τ)−
1

1−γ e−
γτ
1−γ . (6.20)

Case H4(h4). This sub algebra h4 is spanned by the generator e1 + ωe3

h4 =< e1 + ωe3 > (6.21)

=

〈
r − ωκ
κ− rγ

l
∂

∂l
+
r − ωκ
κ− rγ

h
∂

∂h
+

1− ωγ
κ− rγ

∂

∂t
−
(
V − (1− γ)(r − ωκ)

κ(κ− rγ)
e−κt

)
∂

∂V

〉
.

Since parameter ω can have any value due to the interplay of the constants we

need to regard three cases separately.

First, if ω = r/κ this case is defined by a generator

h4 =
〈
e1 +

r

κ
e3

〉
=

〈
1

κ

∂

∂t
− V ∂

∂V

〉
.

The invariants of the corresponding subgroup H4 for this case are as follows

inv1 = l, inv2 = h, (6.22)

inv3 = W (l, h) = V eκt. (6.23)

Using two invariants (6.22) as the new independent variables and (6.23) as the

dependent variable in (6.11) we obtain a two dimensional PDE

− κW (l, h) +
1

2
η2h2Whh(l, h) + (rl + δh)Wl(l, h) + (µ− δ)hWh(l, h)

− (α− r)2W 2
l (l, h) + 2(α− r)ηρhWl(l, h)Wlh(l, h) + η2ρ2σ2h2Wlh

2(l, h)

2σ2Wll(l, h)

+
(1− γ)2

γ
Wl(l, h)−

γ
1−γ − 1− γ

γ
= 0. (6.24)
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It also means that we have a value function V (l, h, t) = e−κtW (l, h), where W (l, h)

satisfies (6.24) and the time dependence of the value function V (l, h, t) is defined

completely by the factor e−κt and condition V −→
t→∞

0 will be satisfied for any

W (l, h). Here the investment π(l, h) and consumption c(l, h) look as follows in

terms of the function W

π(l, h) = −ηρσhWlh(l, h) + (α− r)Wl(l, h)

σ2Wll(t, l, h)
, (6.25)

c(l, h) = (1− γ)Wl(l, h)−
1

1−γ . (6.26)

The second case can be obtained if ω = 1
γ
. In this case the algebra h4 is spanned

by the generator

h4 =

〈
e1 +

1

κ
e3

〉
=

〈
−1

γ
l
∂

∂l
− 1

γ
h
∂

∂h
−
(
V +

1− γ
κγ

e−κt
)

∂

∂V

〉
. (6.27)

One can find the following invariants of the subgroup H4

inv1 = z =
l

h
, inv2 = t, (6.28)

inv3 = W (z, t) = h−γV +
1− γ
γκ

h−γe−κt. (6.29)

Substituting the invariants z and t (6.28) as independent variables and the invari-

ant W (z, t) (6.29) as the dependent variable into (6.11) we derive the following

two dimensional equation

Wt(t, z) +
1

2
η2
(
γ(γ − 1)W (t, z)− 2(γ − 1)zWz(t, z) + z2Wzz(t, z)

)
+ (rz + δ)Wz(t, z) + (µ− δ)(W (t, z)− zWz(t, z))

− (α− r)2W 2
z (t, z)− 2(α− r)ηρWz(t, z)((1− γ)Wz(t, z) + zWzz(t, z))

2σ2Wzz(t, z)

− η2ρ2σ2((1− γ)Wz(t, z) + zWzz(t, z))
2

2σ2Wzz(t, z)

+
(1− γ)2

γ
e−

κt
1−γW

− γ
1−γ

z = 0, W −→
t→∞

0. (6.30)

Here the investment π(t, z, h) and consumption c(t, z, h) look as follows in terms

of the function W

π(t, z, h) = h

(
ηρ

σ
z +

ηρσ(1− γ)− α + r

σ2

Wz(t, z)

Wzz(t, z)

)
, (6.31)

c(t, z, h) = h(1− γ)e
−κt
1−γWz(t, z)

− 1
1−γ . (6.32)
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6. REDUCTIONS OF PDES WITH HARA UTILITY

Before we move on, we need to point out two facts about this substitution. First

of all, it directly corresponds to the substitution (6.5) that we have found earlier

for a case of general liquidation time distribution. Second notion that we need

to make is that an analogous symmetry is used in [55]. The framework of the

problem is a bit different, since authors regard a fixed pre-determined liquidation

time, yet the substitution they use to reduce a three dimensional PDE to a two

dimensional one is very similar. The authors do not carry out a complete analysis

of their problem and have to work with an equation of the second order. This

makes a problem significantly more complicated, yet in their framework a Lie

type reduction to a one dimensional equation is possible, as it was shown in

Chapter 4. The authors in [22] work with the problem of random income in

an infinite time set-up, so their problem is two-dimensional by design. They

also use a similar substitution to reduce their two dimensional problem to a one

dimensional case. Yet it is clear that the substitution they use corresponds to

this one. Now, since we have carried out a complete analysis of all Lie type

substitutions we see which of them were explored in the literature before and we

give a solid mathematical explanation of this substitutions instead of an educated

guess that is most commonly used to simplify the problems of such type.

These two cases ω = r/κ and ω = 1
γ

are special since the generators, that

span h4, differ significantly form the generator in the most general case (6.21),

when ω 6= r
κ
, 1
γ
.

The invariants in this more general case are as follows

inv1 = z =
l

h
, inv2 = τ =

r − ωκ
1− ωγ

t− log h, (6.33)

inv3 = W (z, τ) = V e
κ−rγ
1−ωγ t +

1− γ
γκ

e
γ(ωκ−r)
1−ωγ t, ω 6= r

κ
,

1

γ
. (6.34)

As in previous cases we chose the first two invariants as independent variables

and the last invariant W (z, τ) defined as (6.34) as a new dependent variable.

Substituting these variables into (6.11) we obtain the reduced two dimensional
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equation

−κ− rγ
1− ωγ

W (z, τ) +
r − ωκ
1− ωγ

Wτ (z, τ) +
1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)

− η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)
+

(1− γ)2

γ
W
− γ

1−γ
z = 0. (6.35)

Indeed, the condition V −→
t→∞

0 is rewritten as W −→
τ→∞

0. Here the investment

π(z, τ, h) and consumption c(z, τ, h) look as follows in terms of the value function

W

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.36)

c(z, τ, h) = (1− γ)he−
γτ
1−γW

− 1
1−γ

z . (6.37)

Case H5(h5). This subalgebra is spanned by the following generator

h5 = < e1 ∓ e4 > (6.38)

=

〈(
r

κ− rγ
l ± ert

)
∂

∂l
+

r

κ− rγ
h
∂

∂h
+

1

κ− rγ
∂

∂t

−
(
V − (1− γ)r

κ(κ− rγ)
e−κt

)
∂

∂V

〉
.

Solving the corresponding characteristic system we find the following invariants

of the subgroup H5

inv1 = x = le−rt ∓ (κ− rγ)t, inv2 = y = he−rt, (6.39)

inv3 = W (x, y) = V e(κ−rγ)t − 1− γ
γκ

e−rγt. (6.40)

Using expressions (6.39) as new independent variables z and τ and (6.40) as a

new dependent variable W (x, y) we reduce (6.11) to the two dimensional PDE

−(κ− rγ)W (x, y) +
1

2
η2y2Wyy(x, y)

+ (δy ∓ (κ− rγ))Wx(x, y) + (µ− δ)yWy(x, y)

− (α− r)2W 2
x (x, y) + 2(α− r)ηρyWx(x, y)Wxy(x, y) + η2ρ2σ2y2Wxy

2(x, y)

2σ2Wxx(x, y)

+
(1− γ)2

γ
W
− γ

1−γ
x (x, y) = 0, W (x, 0) −→

x→∓∞
0. (6.41)
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Here the investment π(x, y, h) and consumption c(x, y, h) look as follows in terms

of the value function W (x, y)

π(x, y, h) = −hηρσWxy(x, y) + (α− r)y−1Wx(x, y)

σ2Wxx(x, y)
, (6.42)

c(x, y, h) = h(1− γ)y−1W
− 1

1−γ
x . (6.43)

Case H7(h7). The last one dimensional subalgebra listed in Table 6.2 is subalge-

bra h7 spanned by

h7 = < e2 ∓ e3 >=〈
∓ κ

κ− rγ
l
∂

∂l
∓ κ

κ− rγ
h
∂

∂h
∓ γ

κ− rγ
∂

∂t
−
(

1∓ 1− γ
κ− rγ

e−κt
)

∂

∂V

〉
.

Solving the characteristic system we find the following invariants of the corre-

sponding subgroup H7

inv1 = z =
l

h
, inv2 = τ =

κ

γ
t− log h, (6.44)

inv3 = W (z, τ) = V ± κ− rγ
γ

t+
1− γ
γκ

e−κt. (6.45)

As before to get solutions of (6.11) invariant under the action of H7 we use

the invariants (6.44) as independent variables z, τ and the invariant (6.45) as

the dependent variable W (z, τ). This way we reduce equation (6.11) to a two

dimensional PDE that looks as follows

κ

γ
Wτ (z, τ)± κ− rγ

γ
+

1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
(6.46)

+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)

− η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)
+

(1− γ)2

γ
e−

γ
1−γ τW

− γ
1−γ

z = 0, W (z, τ) −→
τ→∞

0.

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms

of the function W (z, τ)

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.47)

c(z, τ, h) = (1− γ)hWz(z, τ)−
1

1−γ e−
γ

1−γ τ . (6.48)
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We studied in detail all seven one dimensional subalgebras from optimal system

of subalgebras which can describe non equivalent invariant solutions of (6.2) in

the case κ 6= rγ. We demonstrated that only in four cases meaningful reductions

to a two dimensional PDEs are possible.

6.2.3 Two-dimensional subalgebras of LHARA4 , κ 6= rγ, and

corresponding reductions

As we studied one dimensional subalgebras we obtained the invariant solutions

which are unaltered under the action of a one parameter group generated by one

of the one dimensional subalgebras from the system of optimal subalgebras. Now

we are going to find all non equivalent invariant solutions which are invariant

under actions of two parameter subalgebras. This gives us a possibility to reduce

a three dimensional PDE to an ODE.

In this section we go further and looking at the second row of the Table 6.2 to

find the deeper reductions that can reduce PDE (6.2) to an ordinary differential

equation.

Case H8(h8). The first two dimensional sub algebra listed in Table 6.2 is

subalgebra h8 =< e1, e3 > spanned by two generator defined as follows

e1 =
r

κ− rγ
l
∂

∂l
+

r

κ− rγ
h
∂

∂h
+

1

κ− rγ
∂

∂t
−
(
V − (1− γ)r

κ(κ− rγ)
e−κt

)
∂

∂V
,

e3 = − κ

κ− rγ
l
∂

∂l
− κ

κ− rγ
h
∂

∂h
− γ

κ− rγ
∂

∂t
− (1− γ)

κ− rγ
e−κt

∂

∂V
, κ 6= rγ.

The two dimensional subalgebra is spanned by two generators and each of them

was actually studied before. We should find a simultaneous solution to both

characteristic systems. We can use our previous knowledge and reformulate one

of the characteristic systems in terms of invariant variables of the other one.

This could be done in the following way. We have found a general form of the

invariants of e3 in case H2(h2) (6.16), (6.17). Let us list them here again for the

convenience of the reader

inv1 = z =
l

h
, inv2 = τ =

κ

γ
t− log h,

inv3 = W (z, τ) = V +
1− γ
γκ

e−κt.
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If we rewrite the first generator of the subalgebra h8 in terms of these three invari-

ants z, τ and W as new independent and dependent variables correspondingly,

we obtain

e1 =
1

γ

∂

∂τ
−W ∂

∂W
. (6.49)

Solving a corresponding characteristic system dτ
1/γ

= dW
−W we obtain a new invariant

inve1 = Y (z) = W (z, τ)eγτ . (6.50)

This way we obtain an invariant solution under the action of two parameter

subgroup H8. It means that we can take Y (z) as a new dependent variable in

(6.18) and z as a new independent one. Substituting these invariants into PDE

(6.18) we obtain a new ODE

− κY (z) +
1

2
η2
(
2zYz(z) + z2Yzz(z)

)
+ (rz + δ)Yz(z)− (µ− δ)zYz(z)

− (α− r)2Y 2
z (z)− 2(α− r)ηρYz(z)(Yz(z) + zYzz(z)) + η2ρ2σ2(Yz(z) + zYzz(z))2

2σ2Yzz(z)

+
(1− γ)2

γ
Y
− γ

1−γ
z (z) = 0. (6.51)

The condition W (z, τ) −→
τ→∞

0 is satisfied for each finite solution Y (z), because

W (z, τ) = e−γτY (z).

Naturally, the investment π(z, τ, h) and consumption c(z, τ, h) in terms of

Y (z) look now as follows

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Yz(z)

Yzz(z)

)
, (6.52)

c(z, τ, h) = h(1− γ)Yz(z)−
1

1−γ . (6.53)

In terms of original variables t, l, h and V (t, l, h) the substitution looks as follows

z =
l

h
, τ =

κ

γ
t− log h, (6.54)

Y (z) =

(
V (t, l, h)eκt +

1− γ
γκ

)
h−γ.

It also means that if we obtain a solution Y (z) for (7.40) we obtain the value

function that in terms of original variables looks like

V (t, l, h) = e−κthγY (l/h)− 1− γ
γκ

e−κt,
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and the condition V (l, h, t) −→
t→∞

0 is satisfied.

All other two and three dimensional subalgebras listed in Table 6.2 do not

give meaningful reductions of the original equation (6.2), so we will not regard

them in detail.

6.2.4 System of optimal subalgebras of LHARA4 . Case κ =

rγ, i.e. LHARA4 = Aγ
3,5

⊕
A1

In Section 6.2.2 we worked with the case κ 6= rγ now we study the special case

κ = rγ. When κ = rγ as we have mentioned above LHARA4 has a different

structure according to the classification [50]. We substitute now κ = rγ into

(6.11) and regard the following equation

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

+
(1− γ)2

γ
e−

rγt
1−γ Vl(t, l, h)−

γ
1−γ − 1− γ

γ
e−rγt = 0, V (l, h, t) −→

t→∞
0. (6.55)

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in terms

of the value function V (t, l, h)

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (6.56)

c(t, l, h) = (1− γ)V
− 1

1−γ
l e−

rγ
1−γ t. (6.57)

In this case we transform the old basis of LHARA4 =< U1,U2,U3,U4 > described

in (5.23) and (5.24) into the following one

e1 = U2, e2 = U1, e3 = −1

r
U4, e4 = U3 +

1

r
U4,

where we use the relation κ = rγ. Now the new basis looks like this

e1 = ert
∂

∂l
, (6.58)

e2 =
∂

∂V
,

e3 = −1

r

∂

∂t
+ γV

∂

∂V
,

e4 = l
∂

∂l
+ h

∂

∂h
+

1

r

∂

∂t
+

1− γ
rγ

e−rγt
∂

∂V
.
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In this basis algebra LHARA4 has only two non-zero commutation relations

[e1, e3] = e1, [e2, e3] = γe2. (6.59)

Now we can see that LHARA4 corresponds to the algebra of the type Aγ3,5
⊕

A1, in

the notation of [50]. The system of optimal subalgebras for this algebra is listed

in Table 6.3.

Dimension of System of optimal subalgebras of algebra LHARA4 , κ = rγ

the subalgebra

1 h1 = 〈e1〉 , h2 = 〈e2〉 , h3 = 〈e4〉 , h4 = 〈 e1 ± e4〉 , h5 = 〈 e2 ± e4〉 ,
h6 = 〈 e3 + ωe4〉 , h7 = 〈 e1 ± e2 + ωe4〉

2 h8 = 〈e1, e2〉 , h9 = 〈e1, e4〉 , h10 = 〈e2, e4〉 , h11 = 〈e3, e4〉 ,
h12 = 〈e1 ± e2, e4〉 , h13 = 〈e1, e2 ± e4〉 , h14 = 〈e1 ± e4, e2 + ωe4〉 ,
h15 = 〈e3 + ωe4, e1〉 , h16 = 〈e3 + ωe4, e2〉

3 h17 = 〈e1, e2, e4〉 , h18 = 〈e3, e4, e1〉 ,
h19 = 〈e3, e4, e2〉 , h20 = 〈e3 + ωe4, e1, e2〉

Table 6.3: [50] The optimal system of one, two and three dimensional subalgebras

of LHARA4 , if κ = rγ, where ω is a parameter such that −∞ < ω <∞.

6.2.5 One-dimensional subalgebras of LHARA4 , κ = rγ, and

corresponding reductions

We use now the Table 6.3 to list all non equivalent possible reductions of the

three dimensional PDE (6.55) in the the case κ = rγ. As we have shown before

the first two subalgebras h1 and h2, spanned by h1 =
〈
ert ∂

∂l

〉
and h2 =

〈
∂
∂W

〉
correspondingly, provide no meaningful reductions of (6.11) or, correspondingly,

(6.55). Let us move on to the next case.

Case H3(h3). This subalgebra is spanned by e4, i.e.

h3 =< e4 >=

〈
l
∂

∂l
+ h

∂

∂h
+

1

r

∂

∂t
+

1− γ
rγ

e−rγt
∂

∂V

〉
.

Solving the corresponding characteristic system we find the following invariants

94



6.2 A special case of an exponential liquidation time distribution with
HARA utility function

of the subgroup H3

inv1 = z =
l

h
, inv2 = τ = rt− log h, (6.60)

inv3 = W (z, τ) = V +
1− γ
rγ2

e−rγt. (6.61)

Substituting these invariants into (6.55) we obtain a two dimensional PDE which

describes all solutions that are invariant under the action of the subgroup H3

rWτ (z, τ) +
1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)
(6.62)

− η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)
+

(1− γ)2

γ
e−

γ
1−γ τW

− γ
1−γ

z = 0,

W (z, τ) −→
τ→∞

0.

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms

of the value function W (z, τ)

(6.63)

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.64)

c(z, τ, h) = h(1− γ)Wz(z, τ)−
1

1−γ e−
γ

1−γ τ . (6.65)

Case H4(h4). As one can see in Table 6.3 this subalgebra is spanned by

h4 =< e1 ± e4 >=

〈
(l ± ert) ∂

∂l
+ h

∂

∂h
+

1

r

∂

∂t
+

1− γ
rγ

e−rγt
∂

∂V

〉
.

We find the following invariants solving the characteristic system of equations

inv1 = x = le−rt ∓ rt, inv2 = y = he−rt, (6.66)

inv3 = W (x, y) = V +
1− γ
rγ2

e−rγt. (6.67)

We use the invariants z and τ (6.66) of H4 as independent variables and the

invariant W (z, τ) (6.67) as the dependent variable. This way we reduce equation
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(6.55) to a two dimensional PDE that looks as follows

∓ rWx(x, y) + δyWx(x, y) + (µ− δ)yWy(x, y) +
1

2
η2y2Wyy(x, y)

−
(α− r)2W 2

x (x, y)− 2(α− r)ηρyWx(x, y)Wxy(x, y) + η2ρ2σ2y2W 2
xy(x, y)

2σ2Wxx(x, y)

+
(1− γ)2

γ
W
− γ

1−γ
x (x, y) = 0, W (x, 0) −→

x→∓∞
0. (6.68)

Here the investment π(x, y, h) and consumption c(x, y, h) look as follows in terms

of the value function W (x, y)

π(x, y, h) = −hηρσWxy(x, y) + (α− r)y−1Wx(x, y)

σ2Wxx(x, y)
, (6.69)

c(x, y, h) = h(1− γ)y−1W
− 1

1−γ
x (x, y). (6.70)

Case H5(h5). This subalgebra h5 is spanned by

h5 =< e2 ± e4 >=

〈
l
∂

∂l
+ h

∂

∂h
+

1

r

∂

∂t
+

(
±1 +

1− γ
rγ

e−rγt
)

∂

∂V

〉
.

We find the following invariants of the subgroup H5

inv1 = z =
l

h
, inv2 = τ = rt− log h, (6.71)

inv3 = W (z, τ) = V ∓ rt+
1− γ
rγ2

e−rγt. (6.72)

Substituting the invariants of H5 (6.71) as independent variables z, τ and the

invariant (6.72) as the dependent variable W (z, τ) into (6.55) we obtain a two

dimensional PDE

rWτ (z, τ)± r +
1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)
(6.73)

− η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)
+

(1− γ)2

γ
e−

γ
1−γ τW

− γ
1−γ

z = 0,

W (z, τ) −→
τ→∞

0.
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6.2 A special case of an exponential liquidation time distribution with
HARA utility function

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms

of the value function W (z, τ)

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.74)

c(z, τ, h) = h(1− γ)Wz(z, τ)−
1

1−γ e−
γ

1−γ τ . (6.75)

This equation for the new dependent variable W (z, τ) differs from (6.62) only by

the term r as well as the corresponding invariant (6.72) differs from (6.61) by the

linear term rt.

Case H6(h6). This subalgebra is spanned by

h6 =< e3 + ωe4 >=

〈
ωl
∂

∂l
+ ωh

∂

∂h
+
ω − 1

r

∂

∂t
+

(
γV + ω

1− γ
rγ

e−rγt
)

∂

∂V

〉
.

If ω = 1 that case is equivalent to (6.27) that we have regarded earlier, the only

difference is that we need to take into consideration that now κ = rγ. For all the

values of ω 6= 1 we find the following invariants of the subgroup H6 solving the

corresponding characteristic system

inv1 = z =
l

h
, inv2 = τ =

rω

ω − 1
t− log h, (6.76)

inv3 = W (z, τ) = V e−
rγ
ω−1

t +
1− γ
rγ2

e−
ωrγ
ω−1

t, ω 6= 1. (6.77)

We use the invariants of H6 (6.76) as independent variables z, τ and the invariant

(6.77) as the dependent variable W (z, τ) in (6.55) and obtain a two dimensional

equation

rγ

ω − 1
W (z, τ) +

rω

ω − 1
Wτ (z, τ) +

1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ) (6.78)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)

+
η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)
+

(1− γ)2

γ
e−

γ
1−γ τW

− γ
1−γ

z (z, τ) = 0,

W (z, τ) −→
τ→∞

0.

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms
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of the value function W (z, τ)

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (6.79)

c(z, τ, h) = h(1− γ)e
−γ
1−γ τW

− 1
1−γ

z (z, τ). (6.80)

Case H7(h7). This subalgebra is spanned by

h7 = < e1 ± e2 + ωe4 >=〈(
ert + ωl

) ∂
∂l

+ ωh
∂

∂h
+
ω

r

∂

∂t
+

(
±V + ω

1− γ
rγ

e−rγt
)

∂

∂V

〉
.

Let us note here that if ω = 0 this case is equivalent to the case (6.10) under a

condition κ = rγ that we have regarded before. If ω 6= 0 we can find the following

invariants of the subgroup H7

inv1 = x = le−rt − r

ω
t, inv2 = y = he−rt, (6.81)

inv3 = W (x, y) = V ∓ r

ω
t+

1− γ
rγ2

e−rγt, ω 6= 0. (6.82)

Substituting the invariants of H7 (6.81) as the independent variables x and y and

the invariant (6.82) as the dependent variable W (x, y) into (6.55) we obtain a

two dimensional PDE

± r

ω
− r

ω
Wx(x, y) +

1

2
η2y2Wyy(x, y) + δyWx(x, y) + (µ− δ)yWy(z, y) (6.83)

−
(α− r)2W 2

x (x, y)− 2(α− r)ηρyWx(x, y)Wxy(x, y) + η2ρ2σ2y2W 2
xy(x, y)

2σ2Wxx(x, y)

+
(1− γ)2

γ
W
− γ

1−γ
x (x, y) = 0, W (x, 0) −→

x→∓∞
0.

Here the investment π(x, y, h) and consumption c(x, y, h) look as follows in terms

of the value function W (x, y)

π(x, y, h) = −hηρσWxy(x, y) + (α− r)y−1Wx(x, y)

σ2Wxx(x, y)
, (6.84)

c(x, y, h) = h(1− γ)y−1W
− 1

1−γ
x (x, y). (6.85)
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HARA utility function

6.2.6 Two-dimensional subalgebras of LHARA4 , κ = rγ, and

corresponding reductions

In this section we continue working with Table 6.3 and look for the deeper re-

ductions that can reduce PDE (6.55) to an ordinary differential equation. First

of all, let us note that all two dimensional subalgebras listed in Table 6.2 but for

h11 do not give any meaningful reduction of the original equation (6.55), so we

will not regard them in detail.

Case H11(h11). The first two dimensional sub algebra listed in Table 6.2 is

subalgebra h11 =< e3, e4 > spanned by two generators defined as follows

e3 = −1

r

∂

∂t
+ γV

∂

∂V
, (6.86)

e4 = l
∂

∂l
+ h

∂

∂h
+

1

r

∂

∂t
+

1− γ
rγ

e−rγt
∂

∂V
.

As earlier, we look for a solution that would satisfy both characteristic systems.

Since we have already looked on one of the generators, we can use our previous

knowledge and reformulate one of the equations of the characteristic system in

terms of invariant variables of the other one. We have found a general form of the

invariants of e4 in (6.60), (6.61). Let us list them here again for the convenience

of the reader

inv1 = z =
l

h
, inv2 = τ = rt− log h,

inv3 = W (z, τ) = V +
1− γ
rγ2

e−rγt.

If we rewrite e3 (6.86) in terms of these three invariants z, τ and W as new

independent and dependent variables correspondingly, we obtain

e3 = − ∂

∂τ
+ γW

∂

∂W
. (6.87)

Solving a corresponding characteristic system dτ
−1

= dW
γW

we obtain a new invariant

inve3 = Y (z) = W (z, τ)eγτ . (6.88)

This way we obtain an invariant solution under the action of two parameter

subgroup H11. It means that we can take Y (z) as a new dependent variable in
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6. REDUCTIONS OF PDES WITH HARA UTILITY

(6.62) and z as a new independent one. Substituting these invariants into PDE

(6.62) we obtain a new ODE

− rγY (z) +
1

2
η2
(
2zYz(z) + z2Yzz(z)

)
+ (rz + δ)Yz(z)− (µ− δ)zYz(z)

− (α− r)2Y 2
z (z)− 2(α− r)ηρYz(z)(Yz(z) + zYzz(z)) + η2ρ2σ2(Yz(z)− zYzz(z))2

2σ2Yzz(z)

+
(1− γ)2

γ
Y
− γ

1−γ
z (z) = 0. (6.89)

Naturally, the investment π(z, τ, h) and consumption c(z, τ, h) in terms of Y (z)

look now as follows

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Yz(z)

Yzz(z)

)
, (6.90)

c(z, τ, h) = h(1− γ)Yz(z)−
1

1−γ . (6.91)

In terms of original variables l, h, t and V the substitution looks as follows

z =
l

h
, τ = rt− log h,

Y (z) =

(
V (t, l, h)eγrt +

1− γ
rγ2

)
h−γ.

This substitution is equivalent to the substitution (7.43) under the condition

κ = rγ. It is also important to note that if we obtain a solution Y (z) for (6.89)

we obtain the value function that in terms of original variables looks like

V (t, l, h) = e−κthγY (l/h)− 1− γ
γκ

e−κt,

and the condition V (l, h, t) −→
t→∞

0 is satisfied.

6.3 Results of the chapter

In this chapter we have found all Lie type reductions of the PDE with HARA

utility function and different liquidation time distributions that follow from the

results of Lie group analysis of the problem that was carried out in Chapter 5.
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6.3 Results of the chapter

Using the notation provided in [50] we show that for a general liquidation

time distribution LHARA3 can be classified as Aγ3,5, whereas in a special case of

exponentially distributed liquidation function the admitted Lie algebra is four

dimensional is either classified as A2⊕A2 in terms of the notation used in [50] or,

if κ = rγ, i.e. there is a certain dependency between the parameter of HARA util-

ity function and the corresponding liquidation time distribution, the symmetry

algebra LHARA4 has the structure that corresponds to Aγ3,5
⊕

A1.

Using a system of optimal subalgebras for all admitted algebras allows us

to provide all non equivalent reductions of the studied equations and describe

the solutions which can not be transformed to each other with a help of the

transformations from the admitted symmetry group. For every case we list all

possible Lie type reductions of the problem. The reduced equations that are two

dimensional PDEs or in some special cases are even ODEs. Such equations are

more convenient for further analytical or numerical studies.

We also show how one can rewrite corresponding optimal policies in every

case. They can be described using solutions of the reduced equations. One can

see that optimal policies tend to classical Merton policies as h → 0, that is

only logical, since by construction this situation should correspond to a portfolio

without illiquid asset.

In there next chapter we carry out the same analysis for the case of logarithmic

utility.
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7

Reductions of PDEs with

logarithmic utility

Now let us discuss the reductions of the equations with logarithmic utility func-

tion. These reductions follow from the results of Lie group analysis of the problem

that was carried out in Chapter 5. We obtain the complete set of possible symme-

try reductions of three dimensional PDE (5.35) for the case of log-utility function

and a general liquidation time distribution. We also regard a special case of an

exponentially distributed liquidation time in Section 7.2. The logarithmic utility

could be regarded as a special case of HARA-utility, as we have mentioned earlier

(5.19), moreover we see that LHARA3,4 −→
γ→0

LLOG3,4 . Yet logarithmic utility is widely

used in financial mathematics and therefore deserves our attention.

7.1 Reductions in the case of general liquidation

time distribution and logarithmic utility

Analogously to the previous sections we look for the optimal system of subalgebras

for the Lie algebra LLOG3 (5.38) admitted by the equation (5.35). In order to

describe all non equivalent symmetry reductions and not loose any of them one has

to study an optimal system of Lie subalgebras. We present here for a convenience
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of the reader the main equation for this chapter

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

− Φ(t)
(
log Vl(t, l, h)− log Φ(t) + 1

)
= 0, V −→

t→∞
0. (7.1)

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in terms

of the value function V (t, l, h)

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (7.2)

c(t, l, h) =
Φ(t)

Vl(t, l, h)
. (7.3)

We list all symmetry reductions that can reduce the dimension of the problem

by one or two and study them closely in the next Section. We demonstrate how

the problem (7.1) transforms after every substitution.

7.1.1 System of optimal subalgebras of LLOG3

At first let us reassign the basis of LLOG3 (5.38) so that it is possible to use the

classification [50] in a convenient way. This can be done in the following way

U1 = −e3,U2 = e2,U3 = −e1. The basis is now defined as

e1 = −l ∂
∂l
− h ∂

∂h
+

∫
Φ(t)dt

∂

∂V
, e2 = ert

∂

∂l
, e3 = − ∂

∂V
. (7.4)

In the new basis the algebra has just one non zero commutation relation

[e1, e2] = e2. (7.5)

Now we can see that LLOG3 corresponds to A1

⊕
A2 case, in the notation of

[50]. The system of optimal subalgebras is given in Table 7.1.

7.1.2 One dimensional subalgebras of LLOG3 and correspond-

ing reductions

Let us now look at one dimensional subalgebras of LLOG3 one by one to find all

non equivalent reductions of (7.1).
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7.1 Reductions in the case of general liquidation time distribution
and logarithmic utility

Dimension of System of optimal subalgebras of algebra LLOG3

the subalgebra

1 h1 = 〈e1 cos β + e3 sin β〉 , h2 = 〈e2 ± e3〉 , h3 = 〈e2〉
2 h4 = 〈e1, e3〉 , h5 = 〈e2, e3〉 , h6 = 〈e1 + ωe3, e2〉

Table 7.1: [50] The optimal system of one and two dimensional subalgebras of

LLOG3 (5.23), where ω and β are parameters such that−∞ < ω <∞ and 0 ≤ β < π.

Case H1(h1). This subalgebra is spanned by the generator

h1 = < e1 cos β + e3 sin β >

=

〈
cos βl

∂

∂l
+ cos βh

∂

∂h
+

(
sin β − cos β

∫
Φ(t)dt

)
∂

∂V

〉
.

Solving a corresponding characteristic system for the invariants of H1 we obtain

independent invariants

inv1 = t, inv2 = z =
l

h
(7.6)

inv3 = W (z, t) = V + log h

(
tan β +

∫
Φ(t)dt

)
. (7.7)

Substituting (7.6) as new independent variables t, z and (7.7) as a new dependent

variable W (z, t) into (5.35) we get

Wt(z, t) +
1

2
η2
(
2zWz(z, t) + z2Wzz(z, t)

)
+ (rz + δ)Wz(z, t)− (µ− δ)zWz(z, t)

− (α− r)2W 2
z (z, t)− 2(α− r)ηρWz(z, t)(Wz(z, t) + zWzz(z, t))

2σ2Wzz(z, t)

− η2ρ2σ2(Wz(z, t)− zWzz(z, t))
2

2σ2Wzz(z, t)
(7.8)

− Φ(t) logWz(z, t)−
(

1

2
η2 − µ+ δ

)∫
Φ(t)dt+ Φ(t)(log Φ(t)− 1)

−
(

1

2
η2 − µ+ δ

)
tan β = 0.

Indeed the condition V −→
t→∞

0 holds only for the situation when β = 0. When

β = 0, the investment π(z, t, h) and consumption c(z, t, h) look as follows in terms
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of the value function W

π(z, t, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, t)

Wzz(z, t)

)
, (7.9)

c(z, t, h) = h
Φ(t)

Wz(z, t)
. (7.10)

Cases H2(h1) defined by subalgebra h2 =
〈
ert ∂

∂l

〉
and H3(h3) defined by h3 =〈

∂
∂V

〉
were in principle discussed in Section 6.1.2 hence we do not repeat this

discussion, we just emphasize that they do not provide any reductions. We can

see that for a general liquidation time distribution we have only one meaningful

Lie type reduction of the equation (7.1). This does not mean that the problem can

not be simplified or solved using other methods, nevertheless the two dimensional

such as (7.8) is usualluy more convenient to work with.

7.2 A special case of an exponential liquidation

time distribution and log utility function

In Theorem 13 we have shown that the case of an exponential liquidation time

distribution is a special one and the equation (5.35) admits an extended Lie

algebra. There are four Lie symmetries in this case, describe in (5.38) and (5.39).

We would like to pay some special attention to the case of a logarithmic utility

since this particular case is broadly regarded in the literature. The equation (7.1)

we study in this section now, when we insert Φ(t) = e−κt, looks as follows

Vt(t, l, h) +
1

2
η2h2Vhh(t, l, h) + (rl + δh)Vl(t, l, h) + (µ− δ)hVh(t, l, h)

− (α− r)2V 2
l (t, l, h) + 2(α− r)ηρhVl(t, l, h)Vlh(t, l, h) + η2ρ2σ2h2Vlh

2(t, l, h)

2σ2Vll(t, l, h)

− e−κt (log Vl(t, l, h) + κt+ 1) = 0, V −→
t→∞

0. (7.11)

Here the investment π(t, l, h) and consumption c(t, l, h) look as follows in terms

of the value function V (t, l, h)

π(t, l, h) = −ηρσhVlh(t, l, h) + (α− r)Vl(t, l, h)

σ2Vll(t, l, h)
, (7.12)

c(t, l, h) =
e−κt

Vl(t, l, h)
. (7.13)
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7.2 A special case of an exponential liquidation time distribution and
log utility function

7.2.1 System of optimal subalgebras of LLOG4

As in previous cases we change the basis of LLOG4 to use the convenient classifi-

cation provided in [50]. Let us at first transform the basis as follows

e1 =
rU3 + U4

κ
, e2 = U1, e3 = −U3, e4 = U2.

Now the generators of the new basis of L4 =< e1, e2, e3, e4 > look like this

e1 =
r

κ
l
∂

∂l
+
r

κ
h
∂

∂h
+

1

κ

∂

∂t
−
(
V − r

κ2
e−κt

) ∂

∂V
,

e2 =
∂

∂V
,

e3 = −l ∂
∂l
− h ∂

∂h
− 1

κ
e−κt

∂

∂V
,

e4 = ert
∂

∂l
.

In this basis there are only two non-zero commutation relations on LLOG4

[e1, e2] = e2, [e3, e4] = e4. (7.14)

We see that LLOG4 corresponds to 2A2, in the notation of [50]. The system of

optimal subalgebras of LLOG4 is listed in Table 7.2.

Dimension of System of optimal subalgebras of algebra LLOG4

the subalgebra

1 h1 = 〈e2〉 , h2 = 〈e3〉 , h3 = 〈e4〉 , h4 = 〈 e1 + ωe3〉 , h5 = 〈 e1 ± e4〉 ,
h6 = 〈 e2 ± e4〉 , h7 = 〈 e2 ± e3〉

2 h8 = 〈e1, e3〉 , h9 = 〈e1, e4〉 , h10 = 〈e2, e3〉 , h11 = 〈e2, e4〉 ,
h12 = 〈e1 + ωe3, e2〉 , h13 = 〈e3 + ωe1, e4〉 , h14 = 〈e1 ± e4, e2〉 ,
h15 = 〈e3 ± e2, e4〉 , h16 = 〈e1 + e3, e2 ± e4〉

3 h17 = 〈e1, e3, e2〉 , h18 = 〈e1, e4, e2〉 , h19 = 〈e1, e3, e4〉 , h20 = 〈e2, e3, e4〉 ,
h21 = 〈e1 ± e3, e2, e4〉 , h22 = 〈e1 + ωe3, e2, e4〉

Table 7.2: [50] The optimal system of one, two and three dimensional subalgebras

of LLOG4 , where ω is a parameter such that −∞ < ω <∞.
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7.2.2 One dimensional subalgebras of LLOG4 and correspond-

ing reductions

Now we are going to study all invariant reductions of the problem (7.11). Let us

first note that the subalgebras h1, h3 and h6, defined as h1 =
〈
∂
∂V

〉
, h3 =

〈
ert ∂

∂l

〉
and h6 =

〈
∂
∂V
± ert ∂

∂l

〉
correspondingly, do not give us any interesting reductions

so we omit the detailed study of these cases here. We start with a first interesting

and non-trivial case.

Case H2(h2). The sub algebra is spanned by the generator e3, i.e.

h2 =< e3 >=

〈
−l ∂
∂l
− h ∂

∂h
− 1

κ
e−κt

∂

∂V

〉
.

To find all invariants of the subgroup H2 we solve the corresponding characteristic

system of equations and obtain

inv1 = z =
l

h
, inv2 = t,

inv3 = W (z, t) = κeκtV − log h. (7.15)

Substituting two invariants of H2 (7.15) as the new independent variables z, t and

(7.15) as the dependent variable W (z, t) into (7.11) we get

Wt(z, t) − κW (z, t) +
1

2
η2
(
2zWz(z, t) + z2Wzz(z, t)

)
+ (rz + δ)Wz(z, t)− (µ− δ)zWz(z, t) (7.16)

− (α− r)2W 2
z (z, t)− 2(α− r)ηρWz(z, t)(Wz(z, t) + zWzz(z, t))

2σ2Wzz(z, t)

− η2ρ2σ2(Wz(z, t) + zWzz(z, t))
2

2σ2Wzz(z, t)
− κ logWz(z, t)

−
(

1

2
η2 − µ+ δ

)
+ κ(log κ− 1) = 0, W −→

t→∞
0.

Here the investment π(z, t, h) and consumption c(z, t, h) look as follows in terms

of the function W (z, t)

π(z, t, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, t)

Wzz(z, t)

)
, (7.17)

c(z, t, h) = h
κ

Wz(z, t)
. (7.18)
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7.2 A special case of an exponential liquidation time distribution and
log utility function

Case H4(h4). The subalgebra that corresponds to H4 is spanned by e1 +ωe3 and

defined as

h4 = < e1 + ωe3 >

=

〈( r
κ
− ω

)
l
∂

∂l
+
( r
κ
− ω

)
h
∂

∂h
+

1

κ

∂

∂t
−
(
V − r − ωκ

κ2
e−κt

)
∂

∂V

〉
.

We need to regard two special cases ω = r/κ and ω 6= r/κ here.

If ω = r/κ this case h4 is defined as

h4 =< e1 +
r

κ
e3 >=

〈
1

κ

∂

∂t
− V ∂

∂V

〉
, ω =

r

κ
.

The invariants for this case are as follows

inv1 = l, inv2 = h, (7.19)

inv3 = W (l, h) = V eκt (7.20)

Using two invariants (7.19) as the new independent variables and (7.20) as the

dependent variable in (7.11) we obtain a two dimensional PDE

− κW (l, h) +
1

2
η2h2Whh(l, h) + (rl + δh)Wl(l, h) + (µ− δ)hWh(l, h)

− (α− r)2W 2
l (l, h) + 2(α− r)ηρhWl(l, h)Wlh(l, h) + η2ρ2σ2h2Wlh

2(l, h)

2σ2Wll(l, h)

− (logWl(l, h) + 1) = 0, W −→
t→∞

0. (7.21)

We see that in this case the value function V (l, h, t) = e−κtW (l, h) and the com-

plete dependence on t is described just by the factor e−κt. Here the investment

π(l, h) and consumption c(l, h) look as follows in terms of the function W (l, h)

π(l, h) = −ηρσhWlh(l, h) + (α− r)Wl(l, h)

σ2Wll(t, l, h)
, (7.22)

c(l, h) = h
κ

Wl(l, h)
. (7.23)

To find the invariants of H4 when ω 6= r/κ we can move according to a stan-

dard procedure. We obtain three independent invariants using a corresponding

characteristic system

inv1 = z =
l

h
, inv2 = τ = (r − κω)t− log h, (7.24)

inv3 = W (z, τ) = eκtV +
(
ω − r

κ

)
t. (7.25)
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7. REDUCTIONS OF PDES WITH LOGARITHMIC UTILITY

Analogously substituting expressions for the invariants z and τ (7.24) as the new

independent and W (z, τ) (7.25) as the new dependent variables into (5.35) we

get

(r − κω)Wτ (z, τ)− κW (z, τ) +
1

2
η2
(
2zWz(z, τ) + z2Wzz(z, τ)

)
+ (rz + δ)Wz(z, τ)− (µ− δ)zWz(z, τ) (7.26)

− (α− r)2W 2
z (z, τ)− 2(α− r)ηρWz(z, τ)(Wz(z, τ) + zWzz(z, τ))

2σ2Wzz(z, τ)

− η2ρ2σ2(Wz(z, τ) + zWzz(z, τ))2

2σ2Wzz(z, τ)

− logWz(z, τ)− τ − ω +
r

κ
− 1 = 0, W −→

t→∞
0. (7.27)

Here the investment π(z, τ, h) and consumption c(z, τ, h) look as follows in terms

of the value function W

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Wz(z, τ)

Wzz(z, τ)

)
, (7.28)

c(z, τ, h) = h
κ

Wz(z, τ)
. (7.29)

Case H5(h5). This subalgebra h5 is defines as

h5 =< e1 ± e4 >=

〈( r
κ
l ± ert

) ∂

∂l
+
r

κ
h
∂

∂h
+

1

κ

∂

∂t
−
(
V − r

κ2
e−κt

) ∂

∂V

〉
.

According to a standard procedure for finding the invariants of the subgroup H5

we obtain three independent invariants as a solution of the characteristic system

inv1 = x = le−rt ∓ κt, inv2 = y = he−rt, (7.30)

inv3 = W (x, y) = eκtV +
r

κ
t. (7.31)

Substituting the new independent variables x, y (7.30) and the new dependent

variable W (x, y) (7.31) into (7.11) we get a two dimensional PDE

± κWx(x, y)− κW (x, y) +
1

2
η2τ 2Wyy(x, y) + δyWx(x, y) + (µ− δ)yWy(x, y)

− (α− r)2W 2
x (x, y) + 2(α− r)ηρyWx(x, y)Wxy(x, y) + η2ρ2σ2y2Wxy

2(x, y)

2σ2Wxx(x, y)

− logWx(x, y) +
r

κ
− 1 = 0, W (x, 0) −→

x→∓∞
0. (7.32)
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7.2 A special case of an exponential liquidation time distribution and
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Here the investment π(x, y, h) and consumption c(x, y, h) look as follows in terms

of the value function W (x, y)

π(x, y, h) = −hηρσWxy(x, y) + (α− r)y−1Wx(x, y)

σ2Wxx(x, y)
, (7.33)

c(x, y, h) = h
1

Wx(x, y)
. (7.34)

Case H7(h7). The last one dimensional subalgebra in the list of optimal system

of subalgebras in Table 7.2 is defined as

h7 =< e2 ± e3 >=

〈
l
∂

∂l
+ h

∂

∂h
+

(
1

κ
e−κt ∓ 1

)
∂

∂V

〉
.

According to a standard procedure we look for invariants of the subgroup H7 and

obtain three independent invariants

inv1 = t, inv2 = z =
l

h
, (7.35)

inv3 = W (z, t) = V −
(

1

κ
e−κt ∓ 1

)
log h (7.36)

Using the invariants (7.35) as the new independent variables z, t and the

invariant (7.36) as the new dependent variable W (z, t) and substituting them

into (5.35) we obtain a two dimensional PDE

Wt(z, t) +
1

2
η2
(
2zWz(z, t) + z2Wzz(z, t)

)
+ (rz + δ)Wz(z, t)− (µ− δ)zWz(z, t)

− (α− r)2W 2
z (z, t)− 2(α− r)ηρWz(z, t)(Wz(z, t) + zWzz(z, t))

2σ2Wzz(z, t)

− η2ρ2σ2(Wz(z, t)− zWzz(z, t))
2

2σ2Wzz(z, t)
(7.37)

− e−κt
(

logWz(z, t)−
1

2
η2 − µ+ δ

)
= 0.

We list this reduction here, but need to note that this substitution means that

condition V (t, l, h) −→
t→∞

0 is not satisfied. So, the solution of (7.37) would not

be a solution of the original problem, that is why we do not demonstrate how

π(z, t, h) and c(z, t, h) look in this case.
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7. REDUCTIONS OF PDES WITH LOGARITHMIC UTILITY

7.2.3 Two dimensional subalgebras of LLOG4 and correspond-

ing reductions

With the help of Table 7.2 we can find the deeper reductions that can reduce PDE

(7.11) to an ODE. To do that we have to look on two parameter subalgebras listed

in the second row of Table 7.2.

Case H8(h8). The first two dimensional subalgebra listed in Table 7.2 is

subalgebra h8 =< e1, e3 > spanned by two generator defined as follows

e1 =
r

κ
l
∂

∂l
+
r

κ
h
∂

∂h
+

1

κ

∂

∂t
−
(
V − r

κ2
e−κt

) ∂

∂V
,

e3 = −l ∂
∂l
− h ∂

∂h
− 1

κ
e−κt

∂

∂V
.

Since we have studied before both of these generators, we can use our previous

results and rewrite one of the equations in the characteristic systems in terms of

invariant variables of the other one.

Indeed if we assume that ω = 0 in the case h4 =< e1 + ωe3 > then the

invariants listed in (7.24) will be invariants of < e1 >, i.e. we get

inv1 = z =
l

h
, inv2 = τ = rt− log h,

inv3 = W (z, τ) = eκtV − r

κ
t.

If we rewrite the second generator e3 of subalgebra h8 in terms of these three in-

variants z, τ and W as new independent and dependent variables correspondingly,

we obtain

e3 =
∂

∂τ
− 1

κ

∂

∂W
. (7.38)

Solving a corresponding characteristic system dτ
1

= dW
−1/κ

we obtain a new common

invariant

inve3 = Y (z) = κW (z, τ) + τ. (7.39)

This is a solution invariant under the action of two parameter subgroup H8.

Now we can take Y (z) as a new dependent variable in (7.11) and z as a new

independent one. Substituting these invariants into PDE (6.18) with ω = 0 we
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7.3 Results of the chapter

obtain a new ODE

Y (z) +
1

2
η2
(
2zYz(z) + z2Yzz(z)

)
+ (rz + δ)Yz(z)− (µ− δ)zYz(z)

− (α− r)2Y 2
z (z)− 2(α− r)ηρYz(z)(Yz(z) + zYzz(z)) + η2ρ2σ2(Yz(z)− zYzz(z))2

2σ2Yzz(z)

− log Yz(z) + log κ− 1 = 0. (7.40)

The investment π(z, τ, h) and consumption c(z, τ, h) in terms of Y (z) now look

like

π(z, τ, h) = h

(
ηρ

σ
z +

ηρσ − α + r

σ2

Yz(z)

Yzz(z)

)
, (7.41)

c(z, τ, h) = h
κ2

Yz(z)
. (7.42)

In terms of original variables t, l, h and V (t, l, h) the substitution looks as follows

z =
l

h
, τ = rt− log h, (7.43)

Y (z) = κeκtV (t, l, h)− log h.

It also means that if we obtain a solution Y (z) for (7.40) we obtain the value

function that in terms of original variables looks like

V (t, l, h) =
e−κt

κ
Y (l/h) +

e−κt

κ
log h,

and the condition V (l, h, t) −→
t→∞

0 is satisfied.

All other two dimensional subalgebras listed in Table 7.2 do not give any

meaningful reductions of the original equation (7.11) to an ODE, so we will not

regard them in detail.

7.3 Results of the chapter

In Chapter 5 the Lie group analysis of the problem was carried out. In this

chapter we have found all Lie type reductions of the equations with logarithmic

utility function that follow from the results of that analysis.

Using the notation provided in [50] we show that for a general liquidation time

distribution LLOG3 can be classified as A1

⊕
A2. In a special case of exponentially
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7. REDUCTIONS OF PDES WITH LOGARITHMIC UTILITY

distributed liquidation function the admitted Lie algebra is four dimensional is

classified as A2 ⊕ A2.

For all admitted algebras we used a system of optimal subalgebras. We provide

all non equivalent reductions of the studied equations and describe the solutions

which can not be transformed to each other with a help of the transformations

from the admitted symmetry group. We list all possible Lie type reductions of the

problem for every case and demonstrate how the corresponding optimal policies

look like in a feedback form.

Once again, as well as in HARA utility case, the optimal policies tend to

classical Merton policies as h→ 0, which is only to be expected, since by design

the model, when h = 0 corresponds to a portfolio without an illiquid asset.

The results of Chapter 6 and Chapter 7 are especially important since there

are several models connected with the optimization of a portfolio in a presence of a

random income and due to the growing importance of liquidity as a financial factor

that affects market behavior one can expect further developments in this area.

We have mentioned several works that use some of the substitution mentioned in

these chapters without any explanation of this usage. It is only to be expected

that new related models will emerge and we hope that listed substitutions and

the proved possibility to reduce the HJB equation to an ODE in the case of

exponentially distributed liquidation time can help the other researchers in the

field to broaden their scope and regard simplified equations when need be or

change their model setting in correspondence with their research focus.

In the next, and final, chapter we summarize the results of this work.
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8

Conclusion

In this work we regard a portfolio optimization problem for a basket consisting

of a riskless liquid, risky liquid and risky illiquid assets. The illiquid asset is sold

in a random moment of time T that has a distribution with a survival function

Φ(t), satisfying general conditions limt→∞Φ(t)E[U(c(t))] = 0 and Φ(t) ∼ e−κt

or faster as t → ∞. This, to our knowledge, is a new generalization of the

illiquidity models that opens a new class of optimization problems within the

adapted resource allocation approach developed in [41]. At the same time this

model has considerable importance for the practical needs of financial markets,

since the importance of the mathematically tractable models of illiquidity was

understood after the global financial crisis of 2009 and draws constant attention

of the practitioners.

In Chapter 2 we explain economical meaning and significance of financial liq-

uidity. We list the most important approaches to the issue of liquidity starting

with purely qualitative definitions and finishing with quantitive models. We dis-

cuss the advantages and disadvantages of every model and pay special attention to

the results in the are of portfolio optimization, since we believe that this approach

is the most interesting and promising.

In Chapter 3 we formulate the problem in a framework that was proposed in

[55] but make it considerably broader, showing how one can regard an exogenous

random liquidation time instead of a fixed deterministic time horizon. We also

show how one can move from this problem with random time horizon to a problem

with infinite horizon and special weight function that is characterized by the
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probability distribution of the liquidation time T . Further in this work we focus

on the latter formulation of the problem. Applying the technique of so-called

viscosity solutions to the problem we prove the existence and uniqueness of the

solution for a broad class of liquidation time distributions. It is important to

note here, that though particular results similar to the ones described in this

work were obtained before for different problems, this is a first result of such

generality obtained in the context of illiquidity models.

In Chapter 4 we consider specific liquidation time distributions, namely, ex-

ponential and Weibull distributions, in order to show that the formulation of

the problem proposed in Chapter 3 is actually applicable to the real world and

provides optimal strategies that differ from the policies, found by Merton in [42],

yet that policies tend to the classical Merton ones as the share of illiquid capital

vanishes. This way we show that our model stands in line with the optimization

models that did not take liquidity into consideration, but at the same time it

gives new results in presence of liquidity factor. We work with exponential dis-

tribution, since it is widely regarded in the literature and, indeed, has certain

distinguishing properties. As an example of another distribution we use Weibull,

since it is a distribution that is often regarded in the context of illiquid assets.

For both distributions we find upper and lower bounds and compare these two

cases using a numerical simulation.

In Chapter 5 we carry out a complete Lie group analysis for two different utility

functions, namely, HARA and logarithmic utility functions that correspond to two

different three dimensional PDEs (5.20) and (5.35) with an arbitrary function

Φ(t). We solve these voluminous problems and find the admitted Lie algebras

LHARA3 and LLOG3 correspondingly. The study of such three dimensional problems

is, unfortunately, connected with a lot of ’manual’ calculations. This is especially

relevant when one has to work with an equation that has an arbitrary function.

We obtain two voluminous systems of partial differential equations (137 equations

in the first system and 130 equations in the other) that define the generators of

the corresponding algebras. Solving these systems is a step-by-step handmade

procedure that can be only slightly facilitated with certain computer packages.

As far as we know, this is a first Lie group analysis of such problem for a general

liquidation time distribution.

However, we demonstrate that there is a possibility to choose HARA-utility
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in such a form that UHARA −→
γ→0

ULOG. This fact was mentioned in some pub-

lications before but, to our knowledge, it was not demonstrated explicitly, in a

step-by-step manner how deep this connection is on the analytical level. May

be because of that majority of the HARA utilities that we found in the litera-

ture do not actually posses this quality. They are certainly utility functions of

the HARA type but the limit procedure applied to such utility function can at

its best be reduced to some modification of logarithmic utility (not log c), while

some of them do not even have anything that remotely resembles a logarithm. To

demonstrate the connection between two problems we choose UHARA in the form

(5.18) and show that not only we obtain correct form of logarithmic utility as

γ → 0, i.e. UHARA −→
γ→0

ULOG but, naturally, a three-dimensional HJB equation

(3.11) corresponding to HARA-utility formally transforms into an HJB-equation

that corresponds to logarithmic case as γ → 0. After a formal maximization of

(3.11) we obtain three dimensional PDEs corresponding to HARA and logarith-

mic utility correspondingly. We demonstrate that the PDE (5.35) arising in the

case of logarithmic utility function can be formally regarded as a limit case of the

PDE (5.20) arising in the case of HARA utility function as γ → 0 .

We also show that if and only if the liquidation time defined by a survival

function Φ(t) is distributed exponentially, then for both types of the utility func-

tions we get an additional symmetry. We prove that both Lie algebras admit this

extension, i.e. we obtain the four dimensional LHARA4 and LLOG4 correspondingly

for the case of exponentially distributed liquidation time. Indeed, the case of ex-

ponentially distributed liquidation time is actually similar to the infinite-horizon

random income problem and several other models studied in the literature (see,

for instance, [22]), yet our work is the first to our knowledge that explicitly shows

which properties make an exponentially distributed liquidation time a distin-

guished case, that allows a reduction of an original three-dimensional PDEs to

ODEs. This result is particularly important, since there is a number of works in

the field that use similar reductions without any explanation that there is actu-

ally no other distribution that allows a Lie type reduction of a PDE to an ODE.

With a help of Lie group analysis we explain what makes exponential liquidation

time distribution a distinguished case, the only situation when one can reduce

the three dimensional HJBs to ODEs.

In Chapter 6 and Chapter 7 we study the internal structure of the admitted Lie

117



8. CONCLUSION

algebras further in order to use their structures and obtain convenient and useful

reductions of both PDEs (5.20) and (5.35), correspondingly. Using the notation

provided in [50] we show that for a general liquidation time distribution LHARA3

can be classified as Aγ3,5 and LLOG3 as A1

⊕
A2. We use the system of optimal

subalgebras provided in [50] and obtain corresponding reductions of both three

dimensional PDEs. We show how each of the original problems can be reduced

to a corresponding two dimensional one and prove that in general case with an

arbitrary function Φ(t) there is no Lie type reduction that leads to an ODE.

We also look at the symmetry algebras LHARA4 and LLOG4 admitted by the

corresponding equations (6.11) and (7.11) in the case of exponential liquidation

time distribution and either HARA or logarithmic utility respectively. In general,

LHARA4 can be classified as A2⊕A2 in terms of the notation used in [50]. However,

if κ = rγ the symmetry algebra LHARA4 has the structure that corresponds to

Aγ3,5
⊕

A1, in the notation of [50]. LLOG4 is classified as A2 ⊕ A2.

Using a system of optimal subalgebras for all admitted algebras allows us

to provide all non equivalent reductions of the studied equations and describe

the solutions which can not be transformed to each other with a help of the

transformations from the admitted symmetry group. For every case we list all

possible Lie type reductions of the problem. The reduced equations that are two

dimensional PDEs or in some special cases are even ODEs. Such equations are

much more convenient for further analytical or numerical studies. We also show

how one can rewrite corresponding optimal policies in every case.
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