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Electric power crisis is one of the major problem in Bangladesh, day by day the gap 
between demand and generation is increasing. Moreover, most of the power plants are 
gas based which will be phased out in future. An alternate electric supply is an essential 
part for electrifying the developing countries, in this context an innovative approach of 
rural electrification including DC microgrid, mini-grid and nanogrid would be technically 
and economically feasible. The thesis also attention on the development of technology 
which enables community owned power system to emerge in the rural areas based on 
distributed SHS and demand of that community. 
 
Firstly, the electric status and renewable potential in Bangladesh studied and considered 
those data into the software based simulation to analysis the technical feasibility to 
implement DC microgrid by Homer pro tools. The distributed RES (Renewable Energy 
sources) considered solar PV and biomass. The booming of a large number of individual 
SHS (Solar Home System) in Bangladesh, bottom-up energy sharing concept would have 
studied to configure the optimal design of microgrid system and different configuration 
including grid connected and DC and AC system studied.  
 
Secondly, The PV module is highly dependent on cell temperature and solar irradiance, 
the ambient temperature, and solar irradiance mathematical equation have considered 
to model and simulate in MATLAB/SIMULINK based environment. Similarly charge 
controller, battery operation, and performance analysis with respect to the PV model. In 
the distributed energy sources are mainly SHS including large size and regular also model 
and simulate in MATLAB/SIMULINK software. For instance, the thesis mainly focuses on 
an optimal design, planning, sizing of DC hybrid microgrid, the SHS, and biomass-based 
power system with the goal of maximizing the efficiency and reliability. Homer Pro tool 
used in the work for design an optimal configuration and sizing for technical feasibility.  
 
Finally, a model of DC microgrid compresses with micro sources like SHS systems, µ-CHP, 
the household loads model in MATLAB/SIMULINK. Decentralized SHS control strategies 
(droop control) and operation also design and model in MATLAB/SIMULINK 
environment, where DC – DC converter needs to couple SHS and DC microgrid. 
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Introduction 

 

Electrical power crisis is one of the major problems in developing countries like 

Bangladesh, the gap between electric power demand and supply is increasing terrifyingly 

day by day. Due to high population growth in Bangladesh, the demand for electrical 

power increases and a number of people are living in energy poverty, despite a continued 

positive efforts experienced for electrification across all over the Bangladesh [1]. The 

modern energy system access in the developing countries which are integrating with 

local renewable energy sources is paramount to resolve the energy shortage. At present, 

only 62 % of overall people have the access to electricity, whereas urban electrification 

rate 90 % and only 48 % of rural electrification in Bangladesh [2].    According to the 

report of Bangladesh Power Development Board (BPDB), the total electricity produced 

8,177 MW, while the peak demands 12,000 MW until August 2015. Hence during peak 

time 32 % of electricity shortage compare to the demand, causes load shedding. Most of 

the enterprises in Bangladesh along with BPDB limited their electricity supply within the 

urban areas; while rural access to electricity less than 10 % compares to urban areas. 

Although 80 % of the population are living in the rural areas, yet about 60 % of the rural 

population are electrified in Bangladesh. Currently, about 53 % of total electrical power 

has produced by the public sector and rest 47 % produced by private sector including 

several independent power producers (IPPs). Most of the power plants in Bangladesh are 

natural gas based, the future gas reservation cannot meet the demand, and the natural 

gas based system will be out of phase it is just a matter of time. Now Bangladesh is 

searching for an alternative solution, as reliable energy sources that can minimize the 

burden on natural gas and alternative source enhance energy access in Bangladesh. The 

numerous studies about renewable energy penetration in South Asian country’s 

electricity mix hit up to only 5 %, but next six years the number become double [3] , and 

the biggest portion will account solar power. In Bangladesh renewable energy 

contributes 176 MW of electricity including 150 MW has contributed by the Solar Home 

System (SHS), 16 MW of power from rooftop PV, and 614 kW of solar minigrid, 2 MW 

from the wind, and 6 MW from Biomass achieved in October 2015. 

Yet over 1.3 billion of people not having access to electricity, while 95 % of them without 

electricity in Sub-Saharan African and South Asian countries, and about 84 % of them are 
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representing as rural population. Aside from socio-economic context, it has agreed that 

access to electricity is one of the primary and fundamental conditions to move up from 

the subsistence economy by rural electrification. Nonexistence of electricity access 

hampers to progress and development, while limits the opportunities for income, social 

life standards, education, and health issues. To achieve Millennium Development Goals 

(MDG), and “vision 2021” a noble vision of GOB; electricity for all, as Bangladesh is 

suitable geographic location and enormous opportunities from solar, agricultural lands 

offer the prospect of Biomass immensely. The policies and reformation of the energy 

sector will restructure opulently endowed renewable energy integrating enormous solar 

and biomass energy, while modern power system configuration offers dependable and 

reliable electricity to access. 

 

1.1 Motivation 

 

The whole world is struggling against climate change and global warming terrifyingly, 

while electricity is producing predominately use of fossil fuel which causes excessive CO2 

emission to the atmosphere, about 8,365 million metric tons of carbon been released 

which represents all-time high and 1.7 % increases the number from 2006 [4]. In 

Bangladesh traditionally used fuel including coal and furnace oil is the second and third 

big shares to contribute electricity which release the higher level of harmful emissions 

which contains NOX and SO2, besides release participle like ash, those does not burn 

rather pollute the environment frighteningly [5]. Currently, about 99 % of electricity 

produces from the traditional fossil fuel which contributes the large volume of emission 

that hazardous for the environment and contributes to global warming, as Bangladesh is 

the most susceptible climate that contributes about 0.35 % of total global emissions [6]. 

The global electricity demands been increasing rapidly since last decade, which imposes 

a great burden on existing electricity producing resources such as coal, oil; thus 

subsequently in an exponential increases emission and release poisonous substances 

resulting in environmental pollution, instability, and global warming. In the next 25 years, 

the global demand for energy is expected to increase by 50 % because of the growth in 

population and economic development  [7] - [8]. It is time to develop sustainable future 
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with renewable energy, while the large population growth instantaneously increases the 

demand for electricity and it is commonly agreed that to meet the present demand is the 

burden for natural gas, for the future alternate source of energy should be cost-effective, 

environmentally friendly, and enormous capacity. The main goal of rural electrification 

by renewable sources that complement with socio-economic conditions which eradicate 

rural poverty, simultaneously transforming away from dependency on fossil fuel [9]. 

Instead of fossil fuel, Bangladesh has enormous potential on solar PV, and biomass 

integrated system. 

Renewable energy resources in Bangladesh including PV, biomass and hydro has shown 

significant potential which attracting the attention of future energy system towards 

sustainability. Renewable energy is also an important alternative for rural electrification 

deployed by mini-grids or microgrid; because of high oil prices and cost of transmission 

line expansion, combined with the desire to reduce carbon dioxide (CO2) emissions. The 

cost of energy from conventional sources is typically lower than that from renewable 

energy resources, an energy supply-mix of renewable energy reduce the overall cost of 

energy in an MG [10], and diesel-based generator provides the reliability in hybrid MG 

system. Renewable Energy Technologies (RET) has significant potential in Bangladesh, 

especially biomass and solar integrated power system, the deployment of off-grid PV and 

biomass hybrid system would be the best option than other conventional power plants 

those run by sources like gas, coal, and oil. It is contrasted that gas reserve is not 

sufficient, imported coal and furnace oil expensive and release a huge amount of CO2, 

which is threat for climate change. Most of the country have at least one abundant 

renewable resource and many countries have a portfolio of resources, currently RET 

plays a crucial part of an assortment of fuel options that are needed for achieving a secure 

clean fuel and sustainable energy mix, together with energy efficiency and other low-

carbon options. A diversified portfolio of renewable energy can provide countries with a 

number of benefits that are not fully internalized in current energy market prices: (1) 

Environmental impacts, including greenhouse gas emissions and local pollutants; (2) 

energy security; (3) strategic economic development, including rural development, the 

agricultural sector and high-tech manufacturing; (4) energy access through distributed 

or off-grid solutions[11]. 
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At Present scenario, the power system has dominated by centralized configured power 

generation system, along with electricity distributed to users through a Macro-grid. Due 

to increasing the electricity demand while the rise of global emissions of greenhouse 

gasses, the current centralized energy generation system which is questioned for its 

future practicability that needs to be restructured to meet the world’s growing electricity 

needs [11]. A Microgrid (MG) is emerging as an integral feature of the future power 

systems and are considered as a promising alternative to centralized generation. As a 

localized energy providing system, problems arise along with the processes of design and 

utilization.  The MG have been recently introduced in distribution networks and are 

defined as small power systems that consist of various distributed micro generators 

which are capable of supplying a significant portion of the local demand, MG provides 

multiple benefits to the system including reducing customers’ interruption costs, 

reducing system losses, and accommodating higher penetration levels of renewable 

resources[12]. 

According to a report of IEA; Over 1.3 billion people representing 18 % of world 

population have no access to electricity and 2.6 billion people lack clean cooking facilities. 

95 % of them live in sub-Saharan Africa or developing Asia and 84 % of them live in rural 

areas. Over 1.9 billion people in developing Asia still rely on traditional use of biomass 

for cooking, and over 100 million in Bangladesh By definition, these people are 

considered to live in energy poverty as they lack access to modern energy services. Due 

to population growth, the number of people living in energy poverty is estimated to 

increase, despite continued efforts for electrification [World Energy Outlook, 2012]. In 

order to provide affordable energy access to everyone and to combat climate change, 

sustainable energy solutions are essential [11]. 

1.2 Aim and scope of thesis 

 

Limited fossil fuels will soon not be enough to meet up the electricity production, 

imported furnace oil cost increases the price of electricity; electricity-shortage in 

Bangladesh increases as higher growth in population, and therefore enhanced attention 

must be given to RES and their utilization to produce electricity. The technological and 

organizational stability, the electricity sector is undergoing a deep and systemic 



 
6 

 

transformation that will pose new electricity security challenges and to achieve vision 

2021 in Bangladesh. Complement with the geographical location, Bangladesh is 

predominantly an agrarian country, about 75 % of the population are living in rural and 

remote areas; agricultural waste has enormous biomass potential. Another strong 

experienced to use Solar PV powered are important contributors to energy sustainability 

in Bangladesh and can help economic growth, but integrating these variable renewable 

energy sources into the power grid successfully. The modern era is looking at the 

sustainable resources for energy for a permanent solution to the future power demand 

all over the world whereas the countries of the third world like Bangladesh is still a failure 

to meet the present basic power demand. Bangladesh which is going to be one of the most 

prominent and dominating among all developing countries is the failure to its energy 

demand. 

The proposal an optimum decentralized solar-biomass-fossil fuel based MG power 

system congregate the energy demand. The potential of decentralized MG system in 

Bangladesh is estimated by the utilization of NASA SSE solar radiation data and Homer 

Pro Optimization Software, and Graphical representation is very important for research; 

as MATLAB/SIMULINK would be the best software for analysis data and constraints and 

present the graphical presentation. 

The objectives and aim of this work is to understand the significant meaning of 

decentralized energy sources especially solar PV and biomass, the potentiality of local 

available sources and the optimal design of power system that integrated along with 

renewable energy sources. The distribution network proposition with distributed 

generating sources and distributed load shares the generated electricity, and system 

should be reliable and efficient. The outcomes of the thesis will be provided a better 

understanding of denaturalized microgrid, the generation and consumption followed by 

multi agent system but decentralized control in each participants (SHS) enhance 

flexibility and performance. Microgrid equipped with intelligent elements from smart 

grids has been adopted and active control of small scale energy resources is included in 

such smart Micro grid. The issues enclosed in this work and contributions of this thesis; 

efficient and reliable energy management system design within decentralized microgrid, 

where the consumers reduce the peak demand and share those among other participants 

in the system. The configuration of the system integrate with local renewable sources and 
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enable to connect with the existing grid, fair settlement price for participants in the 

proposed micro-grid. Secondly, problem for sufficient energy and fair cost distribution 

The objectives and aim of this work are to understand the significant meaning of 

decentralized energy sources especially solar PV and biomass, the potentiality of locally 

available sources and the optimal design of power system that integrated along with 

renewable energy sources. The distribution network proposition with distributed 

generating sources and distributed load shares the generated electricity and the system 

should be reliable and efficient. The outcomes of the thesis will be provided a better 

understanding of denaturalized MG, the generation, and consumption followed by the 

multi-agent system but decentralized control in each participant (SHS) enhance flexibility 

and performance. A MG equipped with intelligent elements from smart grids has been 

adopted and active control of small-scale energy resources is included in such smart MG. 

The issues enclosed in this work and contributions of this thesis; efficient and reliable 

energy management system design within decentralized MG, where the consumers 

reduce the peak demand and share those among other participants in the system. The 

configuration of the system integrates with local renewable sources and enable to 

connect with the existing grid, fair settlement price for participants in the proposed MG. 

Secondly, the problem for sufficient energy and fair cost distribution among consumers; 

including SHS sharing common micro-grid is considered. As each consumer competes 

with others neighbours to obtain lowest energy bill by sharing electricity. An innovative 

approach of rural electrification by sharing electricity among all contributors including 

centralized Biomass Generator and decentralized SHSs. The development of the system 

would be designed, modeling, and planning based approach which will enable to 

integrate local renewable energy generation and storage (such as Solar Home System). 

By connecting all SHS, BHS (battery home system), centralized storage and generation 

into DC-MG. The objectives of the thesis consisting of; 

 60-80 % of renewable energy utilization for an optimum decentralized solar-

biomass-fossil fuel based MG system congregate the energy-demand 

 The Control and Energy Management Strategy for SHS and MG 

 Study the concept of optimal configuration of MG 

 The Optimization and Sensitivity analysis would be done by Homer Pro Software 

 Mathematical based Modelling and Simulation done by MATLAB/SIMULINK 
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 Planning, sizing, and optimization of MG; the optimal design feasibility analysis 

and feasibility analysis and investigate the various configuration of the optimum 

system by HOMER Pro microgrid software for design and optimization. 

1.3 Outline of thesis 

The Thesis work will be including about this chapter, the motivation and aim and scope 

of outcomes. Rest of the chapter is divided into 5 chapters. 

 

 

Chapter 2: Energy Access in Bangladesh 

A short description of overall Electricity profile and Power sector in Bangladesh, the 

infrastructure of Power sector. Short description and concept of rural electrification and 

an innovative approach of rural electrification to access electricity. Also, portray 

background information on Bangladesh; electricity of market, Renewable potential and 

sustainable development. The projects partners and organization are presented and 

previously worked described in Bangladesh. 

Chapter 3: Stand-alone PV System and MG Configuration 

Concept of MG, and along its different components such as PV and biomass sources and 

potential in proposed location in Bangladesh, brief description of each individual element 

used in proposed MG system. Concept of Solar Home System (SHS) and its individual 

components including households loads different mode of micro grid, integration of 

renewable resources within the proposed micro grid. 

Chapter 4: Modelling and Simulation result and Discussion 
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System Design, modelling, and simulation of DC-MG in MATLAB SILULINK based 

environment, Decentralized Energy Resource in the system like PV module design, 

modelling and simulation. The PV module design considered to temperature dependent 

and PV array modelling follow up and simulation will be done on specific whole day 

respect to different solar insolation in every minutes. The solar home system (SHS) 

design, and modelling and simulation also in SIMULINK. In the MG, there will be 2 

different types of SHS; named as large size SHS and regular size SHS, while the typical 

lead acid battery also simulates along with PV modules. The MG operation and electricity-

consumption, forecasted renewable energy output in proposed rural location in 

Bangladesh. Analyse and characterize the system components as steady state and the 

simulation cases that are evaluated. Present an introductory concept of the simulation 

tool HOMER that is used to evaluate different cases for the production system 

configuration. 

Chapter 5: Planning, Sizing, and Optimization of MG 

Discussion and analysis of simulation system that evaluated. Technical comparison to 

previous work also included. Proposition of distribution system and distribution loss is 

calculated based on chosen conductors and Inverter losses. 

Chapter 6: Conclusion and future work 

Discussion and ending up with recommendation of proposed MG operation and design. 

The limitation of the thesis will be further considered for future study and research. 
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Introduction 

 

The IEA estimates approximately 1.5 billion people have no access to electricity in 2008  

[13], which estimates more than 20 % of the total population in the world. According to 

UNDP report, more than 96.2 million of people which is more than half the total 

population in Bangladesh still remains without access to electricity [14], furthermore 

irregular power supply causes load shedding. Electric energy access is a far away dream 

for many families in the rural areas in developing countries, about 80 % of the population 

are living in the rural and remote areas in Bangladesh where only 25 % of the population 

have access to electricity. To overcoming the curse of poverty, a sustainable economic 

growth developed by energy access, and electricity is an essential prerequisite and major 

criterion for success. Electricity access with the modern form of energy resources is 

promoting social and economic growth. It is also an indispensable contribution to 

achieving Millennium Development Goal (MDG) and vision 2021. In the modern era, there 

is no country attained sustained economic growth without improving access to clean and 

modern energy; the modern form of energy delineates with the integration of locally 

available renewable energy sources. Rural electrification ensuring with improved 

electricity is fundamental for socio-economic development. Electrical energy access 

influences to the life standards, which affecting agricultural productivity, education, 

health. The government of Bangladesh has set a noble vision to access electricity for all 

inhabitants by 2021, to comply the vision integrating solar PV and biomass sources which 

are richly endowed in Bangladesh. 

In Bangladesh, it is commonly agreed that about 4-6 h of power outage per day in rural 

areas, but summer season the number of hours rises to 6-8 h, the circumstances mostly 

during 18:00 h to 22:00 h irregular power outage causes load shedding. The demand for 

electricity increases with increasing with Population but the generation of electricity is 

not increasing to meet the demand. At present, almost 52 % of total people in Bangladesh 

are connected to the grid [15], the power supply from the grid is inadequate to meet both 

peak and basic demand in Bangladesh. Almost 75 % of people in rural areas are not 

connected to the main grid, and only 15-20 % of electric demand comply by the BREB 

(Bangladesh rural electrification board) supplied electricity [16]. Due to change of life 

standards and social impact which enhance the electricity consumption rate and the rate 
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increased by 5.43 %, but the generation of electricity increased only at the rate of 5.37 % 

that increased the rate of 6.72 % load shedding per year [17], graphically present in figure 

2-3. According to LEAP (long range energy alternative planning) project [18], rural 

households loads comprises with lighting, mobile charger, ceiling fan, TV, and 

refrigerators. In rural areas lighting is the main loads in the rural households. In 2010 

rural households, consumes 300 kWh per year for lighting solely satisfied by electricity 

supplies. The demand for evening lighting growing at constant 1.67 % per year energy 

consumption for lighting purpose up to 350 kWh by 2020 [19]. A tropical country like 

Bangladesh, where summer seasons comprises almost 9 months requires cooling by a 

ceiling fan, consumes 250 kWh per year and assume the consumption rate increase up to 

1.9 % and per capita consumption will be 345 kWh in 2030. Likewise, refrigeration 

consumption demand rate increases 0.93 %, the energy consumption increase from 476 

kWh to 565 kWh by 2030. 

According to EIA (Energy Information Administration), Energy access for rural 

electrification; “a household’s entails reliable and affordable clean energy for cooking, 

electricity requires to meets the minimum level of consumption loads over time”. The 

percentage of energy consumption has experienced promptly increasing about 2.69 % 

from 2012 to 2013, but still remains lowest per capita consumption. The studies form 

EIA, the consumption has increased dramatically over 52 % within the past decade. [20]. 

2. 1 General Country Profile  
 

Bangladesh is moving towards achieving the tag of Developing country with an annual 

GDP almost 6 % over the last past decade [21]. Recently population thriving dramatically 

nearly 158 million and annual growth rate of 1.39 % over the past decade [22]. The 

majority of them are living in the rural areas, and only 32 % of households have access to 

electricity, but the availability of electricity about 22 % [23]. Bangladesh is one of the 

largest in population at 9th position in the world with 158 million people at the end of 

2014, where total 52 % people have partially electricity access, while only 10 to 15 % of 

rural have the access to electricity demand mainly meets the light, ceiling fan, 

refrigeration, irrigation, productive uses loads. In Bangladesh, the electricity demand of 
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all sectors including agriculture, commercial service, industry, and domestic services. The 

domestic households and industry sectors are consuming of electrical power about 43 % 

and 44 % respectively in the total of about 87 % [24]. The GDP growth rates is 

significantly depend on the production of a country, as Bangladesh is an agricultural and 

small size industrial production based country, and production always depends on 

electricity, the GDP growth and electricity generation growth present in figure (2-1). It is 

estimated that, increase in 1 % of per capita energy consumption causes an increase in 

per capita GDP by 0.23 %. 

2.1.1 Climate and Geography of Bangladesh 

 

Bangladesh is located between 20° to 26° North and 88° to 92° east. It is bordered on the 

west, north, and east by India, on the southeast by Myanmar, and on the south by the Bay 

of Bengal. Most of the country is low-lying land comprising mainly the delta of the Ganges 

and Brahmaputra rivers. Floodplains occupy about 80 % of the land in Bangladesh. Mean 

elevations range from less than 1 meter on tidal floodplains, 1 to 3 meters on the main 

river and estuarine floodplains, and up to 6 meters in the Sylhet basin in the north-east 

[Rashid, 1991]. The land is a deltaic plain with a network of numerous rivers and canals. 

The total area of the country is 147,570 km2, in which about 17 % is forested. There are 

a few hilly areas in the southeast and the northeast of the country [25]. Bangladesh enjoys 

generally a sub-tropical monsoon climate while there are six seasons in a year, with three 

being more prominent, namely winter, summer, and monsoon season. Winter begins in 

November and ends in February. In winter, there is not much fluctuation in temperature, 

which ranges from a minimum of 7 to 13°C to a maximum of 24 to 31°C. The maximum 

temperature recorded in the summer months is 37°C although in some places this 

occasionally rises up to 41°C (105°F or more). Monsoon season starts in July and lasts up 

to October. This period accounts for 80 % of the total rainfall. The average annual rainfall 

varies from 1,429 to 4,338 mm [25].Bangladesh is called (in Bangle Vatir desh) or ebb-

tide country. Day by day its sea level has been increasing. If world’s carbon dioxide giving 

out is not controlled, then melting down of the pole also continues. For which our coastal 

area may go under water. This threat is the upcoming risk for Bangladesh [26]. 
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The climate of Bangladesh is subtropical and tropical with temperature ranging from an 

average daytime low of 21 °C in the cold season to top of 35 °C in the hot season. Annual 

rainfall varies from 1000mm in the west to 2500 mm in the southeast and up to 5,000 

mm in the north near the hills of Assam. Three-quarters of the annual rainfall occurs 

between June and September. The humidity from 90 % to.95 % observed in the season is 

almost unbearable. The humidity remains high all year round, producing thick fog in 

winter, and making a chilly night in the north feel much colder than they are. Bangladesh 

has three main seasons: the monsoon or wet season from late May to early October; the 

cold season from mid-October to the end of February; and the hot season from mid-March 

to mid-May. Three or two cyclone seasons-May to June and October to November [27]. 

The annual rainfall and average temperature represents in Appendix-3 and Appendix-4 

simultaneously. 

2.1.2 Energy Sector in Bangladesh 

Electric energy is one of the affable terms of energy which is the fundamental contingent 

for socio-economic development, which alleviate poverty. But, Bangladesh has the major 

problem of the energy crisis that persisting poverty, conventional fossil fuel causes 

environmental degradation. Merely, 49 % of the population have the access electricity 

that met by 4,500 MW while peak demand 6,000 MW causes a power outage. Currently, 

53 % electricity produced by public sectors and rest produced by several private sectors 

with various form of generation[28]. The existing available power generation 10,500 MW 

by October, 2014 and vision set to 39,000 MW by 2030 [29]. The table (2-1), represents 

power generation from different organization and Bangladesh Power Development 

Board (BPDB) transmits and distributes across the country. Natural gas and coal 

expected the main source of power generation in Bangladesh, GOB also attentive on liquid 

fuel based power generation. The conventional fuel consumption to generate electrical 

power and traditional power plant influenced to increase CO2 emission, power generation 

sector alone contributes 40 % CO2 emission [30]. The primary energy considered to 

consumption estimated 62% of biomass, 25 % of natural gas, 12 % imported oil, and coal 

and hydropower contribute 1 %. 
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In Bangladesh, power sectors that highly dependent on conventional fossil fuel including 

natural gas and coal. The total capacity of electricity generation about 10,709 MW, and 

70.39 % of electricity generation by natural gas present in figure (2-1). Besides natural 

gas, 10 % high-speed diesel, 5 % of coal, and 3 % of heavy fuel oil used to produces 

electricity [31]. Only one hydropower PV and biomass contribute to total demand. Total 

power generation concerning fuel; 5,730 MW by natural gas available in the local region, 

1,876 MW by imported furnace oil, 511 MW by imported Diesel, 220 MW from hydro, and 

200 MW by coal [32]. 

Table 2-1: Daily Power Generation 

Company  Demand 

(MW) 

Day peak 

(MW) 

Evening peak 

(MW) 

Power Development Board 4332.00 1767.00 2702.00 

Electricity generation company Bangladesh Ltd 622.00 0.00 0.00 

Ashuganj Power Station Co. Ltd 1617.00 723.00 896.00 

Independent Power Producer (private)  325.00 248.00 283.00 

Small size producers 1987.00 1269.00 1440.00 

Rental Power Producers 825.00 1101.00 1189.00 

Total generation 10390.0 5515.0 6987 

 

According to (BPDB) report expresses, 55 % of people have access electricity, and per 

capita 321 kWh electricity generation [33], which comparatively lower than other 

developing countries. Access to power in Bangladesh is limited to about 45 % to 50 % of 

the population and those who have access faces severe power shortages. Load shedding 

in Dhaka in 2011 and during the summer of 2012 was about 5 hours per day. Power 

shortages have constrained the potential economic growth in Bangladesh and cost of 

which have been estimated to be about 0.5 % of GDP. According to “Vision 2021”; the 

government’s vision for the power sector is to ensure universal access to grid electricity 

by the year 2020, with an interim target to reach an access level of 68 % by the year 2015. 

According to government estimates, about 20,000 megawatts (MW) of new generation 
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capacity need to be added to the system by 2020, together with matching transmission 

and distribution improvements to reach the universal access [34]. 

 

 

Figure 2-1: Relationship between electricity generation and GDP growth rate [35] 

 

(a) 
 

(b) 

Figure 2-2: Installed electricity capacity (A) fuel type and (B) plant type [36] 

The total installed capacity was 5,262 MW in FY 2007 to 08, which has increased to 8525 

MW in FY 2012 to 13 with an annual increase of 10.34 %. However, the maximum 

generation was 4,130 MW in FY 2007 to 08, which has increased to 6,350 MW in FY 2012 

– 2013 with an annual increase of 8.96 %. The annual rise in the maximum generation 

(8.96 %) is lower than that of the installed capacity (about 10.34 %) between the FY 2007 

– 08 and 2012 to 13. This is mainly due to the less generation capacity of older power 
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plants and 

shortage of natural gas supply. The power generation capacity has increased more than 

8,000 MW in FY 2012 to 13, whereas the capacity was over 5,000 MW in FY 2005 to 2006, 

while the demand of electricity increases from lower than 5,000 MW to over 8,000 MW 

in FY shown in figure (2-5). 

 

Figure 2-3: Growth rate of Demand, Generation and Load Shedding [37] 

 

Figure 2-4: Installed Capacity and Highest Generation of Power in Bangladesh [24] 

Table 2-2: Different Fuel Consumption 

Gas Diesel Hydro Coal Furnace 

4,822 MW 186 MW 230 MW 250 MW 335 MW 

82.81% 3.19% 3.95% 4.29% 5.75% 

 

0

2000

4000

6000

8000

10000

2007-08 2008-09 2009-10 2010-11 2011-12 2012-13

capacity and max generation in Bangladesh

Installed Capacity (MW) Maximum Gemeration (MW)



 
18 

 

Though attribution is difficult, this technical assistance may have played a role in 

supporting a ‘balanced development’ of the power sector, which during the project period 

(2004-2013) saw an increase in electricity access from 35 percent to about 62 %; an 

increase in generation capacity from 3,622 MW in 2004 to 9,500 MW; a reduction of 

systems losses from about 20.0 percent to 1.3 percent; and a drop in accounts receivable 

from 6.45 months to 2.21 months.  About 40 % of electricity generated by private 

enterprises by April 2010 while the number has been increased to 44 % by April 2011. 

Currently, rental, quick rental, and some others peaking plants were undertaken on a first 

track based power generation to manage present power crisis. According to the Power 

System Master Plan (PSMP, the peak demand anticipated 10,283 MW in 2015, whereas 

total power generated about 12071 MW. The peak demand will be 25,199 MW 

anticipated in 2020 and 33,708 MW in 2030 show in figure (2-6). Electricity distribution 

through authority shown in the table (2-3). 

 

Figure 2-5: Electricity generation vs Crisis from 2005-2013 [36] [38] 

 

Figure 2-6: Yearly Anticipated Peak Demand 
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2.1.3 Infrastructure of Bangladesh Power development 

Bangladesh Power Development Board (BPDB), is the sole authority to delivered 

electricity to the national grid through a common transmission line, to meet the national 

demand BPDB produces and purchases electricity from independent power producers 

(IPPs). The five authorities contribute together to produces electricity in Bangladesh: 

1. Bangladesh Power Development Board (BPDB)  

2. Ashuganj Power Station Company Ltd. (APSCL) 

3. Electricity Generation Company of Bangladesh (EGCB) 

4. North West Power Generation Company  

5. Independent Power Producers  

Table 2-3: Share of electricity distribution by Authorities in Bangladesh 

Authority  BPDB DPDC DESCO WZPDC REB 

Share (%) 24.64 18.59 10.51 6.17 40.10 

 

Bangladesh power system including transmission system comprises along with 16 

substations capacity of 230/132 kV besides that 103 substations dimensions of 132/33 

kV substations, which total capacity of power contains 7,525 MVA and 11,892 MVA 

respectively. The distribution network comprises 33 kV, 11 kV, and 400 V [39]. 

Table 2-4: Authorities Involved Power Generation and Capacities and Market Share 

Name of Authorities  Capacity (MW) Market Share (%) 

Bangladesh Power Development Board (BPDB) 4442 42.75 

Ashuganj Power Station Company Ltd (APSCL) 682 6.56 

Electricity Generation Company of Bangladesh  622 5.98 

North West Power Generation Company Ltd 375 3.06 

Independent Power Producers (IPPs) 4269 41.08 

Total  10,390 100 
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Considering country size and population, Bangladesh electricity infrastructure is quite 

smaller than other countries which is insufficient and poorly managed by several 

authorities including BPDB, BPDC, DESCO and REB. Amongst all these authorities, REB is 

one of the most success government company since 1977 in Bangladesh, and 40.10 % of 

the total electricity generation used to electrifying the rural areas. 

 

2.2 Rural Electrification  

 

South Asia accounts for 37 % of the world's population without access to electricity [40]. 

Such a situation continues to exist despite several initiatives and policies to support rural 

electrification efforts by the respective country governments including the use of 

renewable energy technologies including PV, wind, and biomass. The pace of rural 

electrification over much of the developing world is excruciatingly slow. In many 

countries in South Asian and Sub-Saharan African, it is even lower than rural 

electrification growth in Bangladesh. Bringing the socio-economic development into the 

development countries like Bangladesh, the essential elements considers rural 

electrification [41], development of underprivileged rural people [42] [43]. The present 

demand of electricity for improvement of living standard, agricultural production, and 

community development in Bangladesh, the access to electricity through rural 

electrification still not sufficient enough, but the impressive growth of SHS and off-grid 

PV system in Bangladesh. Development and implemented by IDCOL (Infrastructure 

Development Company Limited). In figure (2-7) presents the electrification access in both 

urban and rural areas of deferent districts in Bangladesh. 

(a) 
 

(b) 

Figure 2-7: (a) Urban and rural electrification; (b) Energy Access [44] [45] 
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Electrification rate in rural areas still poor as only 38 % of households are electrified [23], 

IDCOL (Bangladesh Government owned agency) with other 30 partners Organization 

(POs) working together for improving the access of electricity around rural areas. Despite 

continuous efforts from the international community and governments, the pace of rural 

electrification still very slow  [46]. The Bangladesh Rural Electrification Program (BREP) 

clearly expresses which benefit greatly from the involvement of local communities 

improve electricity access in rural areas. According to the vision 2021; GOB aims at 100 

% access to electricity to entire rural areas by 2020, Connecting over 0.7 million 

consumers and only 3 % of electricity supplied by the REB, the dedicated government 

organization, rest of can be supplied by the including private company and partner 

organization (POs). The process of rural electrification in developing countries, which 

depends on various factors; 

i. The result of pre-phase economic and social impact  

ii. Development of PBS  

iii. Technically and financially power system  

iv. Available funding from international community  

There is main process of electrical access in rural areas centralized approach and 

decentralized approach; centralized approached constituted by government and partner 

stakeholders. In Bangladesh REB and BPS are the main organization for rural 

electrification. The decentralized approach formulated by both top-down and bottom-up 

concept, standalone PV system, SHS, and renewable integrated hybrid mini-grid the best 

example in Bangladesh. The approach follows up and development of rural electrification 

in Bangladesh considered; 

i. Extending and intensifying the central grid 

ii. Deploying off-grid technologies (off grid mini-grid, standalone MG, bottom up 

swarm electrification) 

2.3 Renewable Energy penetration in Bangladesh  

According to IEA Energy Access to comply the rural electrification, household having 

reliable and affordable electricity to clean cooking facilities, first electricity connection, 
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and increasing the level of electricity consumption over time as regional average. 

Bangladesh is the most potential country for renewable energy, significantly increases 

the number projects to meet the electrical energy throughout the country. The most 

existing form of renewable energy experienced in Bangladesh considering PV based off 

grid system including SHS, nano-grid, MG and mini-grid, where biomass also has high 

portentous to integrate significantly in the power system. With increasing both life 

standard, socioeconomic through urbanization is growing in developing countries 

rapidly, to meet the urbanization growth electricity demand also increases promptly in 

Bangladesh. The GOB has set a target about 90 % electricity access across the country by 

2018 [47], to meet this vision innovative rural electrification integrated renewable 

energy is the best solution followed by the recent experiences, and achieving the target 

2018 by connecting 450,000 households per months by 66 % of SHS, and hybrid power 

system with renewable sources. 

Although Bangladesh is the seven largest natural gas producer country among Asia, about 

56% of gas consumption as the primary source of energy. As high dependency on natural 

gas, and experiences shortage of gas supply. The regular peak demands 5,500 MW, but 

only 4,000 MW of electricity produced by the conventional power generation system that 

causes rolling electricity blackout. Remote areas and rural villages are the major 

mechanisms of holistic society; the development of socio-economy and environmental 

prominence in Bangladesh depends on productivity, and productivity depends on access 

to energy. But the true reality is a government of Bangladesh not frequently involves for 

rural development including rural electrification due to some geographical constraints. 

In figure (2-8) represents, the electricity access increasing rapidly from 2000 to 2015. 

Electrifying in rural areas by conventional electrification system is expensive due to 

households are situated scattered and remote, and consumption rate low compare to 

urban electrification. Hence, no- electrified remote areas and poor villages electrifying by 

the conventional basis not promoted and focused. Consequently, it is urgent for the 

development of social life in Bangladesh by the availability of the reliable, adequate, and 

reasonably priced source of energy that uninterrupted balance of electricity supply.  

Many countries and cities have already moved towards the low carbon and clean energy 

transformations. Germany, for instance, is undertaking the ‘Energiewende’, an economic 

turning point that aims to produce 80 % of its electricity from renewable by 2050  [48]. 
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Harnessing clean, renewable, and more efficient energy solutions will contribute not only 

to tackling a country’s or community’s energy challenges but also to the target of limiting 

global temperature rises to 2°C. As it is, a significant amount of GHG emissions are 

generated from energy production, thus tying sustainable energy directly to the climate 

change negotiations. 

Bangladesh today faces a different future than it did decades ago when abundant natural 

gas seemed to be the key to prosperity. At the same time as the centralized grid-based 

electrification has been the most common approach, decentralized renewable energy 

options especially, PV(photovoltaic) systems has also been adopted, especially for areas 

where it is techno-economically not feasible to extend the electricity grid. These off-grid 

communities are generally small, consisting of low-income households with 

characteristics that may have been economically unattractive to electricity distribution 

companies to extend the grid. Small-scale renewable energy options, such as a solar home 

system (SHS) and biogas plants, have evolved as a promising alternative for providing 

electricity to these disperse areas [49]. Other renewable energy options, such as wind 

energy and hydropower, have little potential to contribute to rural electrification in 

Bangladesh. Among the renewable technologies, the SHS option has accounted for the 

major share (80 %) of off-grid technologies in Bangladesh [50] [51] [52]. Bangladesh 

started its intensive rural electrification program in 1977 when only 10 % of its total 

population was connected to a grid. The country adopted a rural electric cooperative 

(REC) concept from the National Rural Electric Cooperative Association (NRECA), which 

had successfully electrified rural America in the 1930 [53]. To implement the rural 

electric cooperative concept in Bangladesh, a central statutory agency called the Rural 

Electrification Board (REB) was formed by the government. The REB was given the 

responsibility of organizing the rural electric cooperatives (Palli Bidyut Samity, PBS); it 

employed managers to oversee the financial and administrative activities of the 

cooperatives. According to the World Bank manifesto, to bring most of the people 

electrifying under project “Rural Electrification and Renewable Energy Development” 

which mainly deployed by PV system [54]. 
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Figure 2-8: Change in Access to Electricity, 1990-2015 [44] 

Amongst all 49 partners’ organization, and IDCOL has developed a competitive market 

for Solar PV system without any geographic constraints by offering solar incentives; SHS 

installation, PV system with battery and charge controller supplies across the country 

[55]. 

 

 Figure 2-9: Institutional development for off-grid program [56] 

Achieving quality and reliability of electricity supply is an important factor for each 

region, enhancement of reliability factor in integrating intermittent renewable energy 

like solar and the wind no choice except diesel generators, issues highlighted by (Foster 

and Steinbuks, 2009), estimates power system that generators owned compensated by 6 
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% of total capacity in sub-Saharan Africa and other low-income countries up to 20 %  [57]. 

Renewable electrification inspiring by the institutional framework in Bangladesh present 

in figure (2-9). Since renewable energy emerging in the power system of Bangladesh, the 

capacity gained 78 MW until 2012 which about 95 % of solar energy [56]. To comply the 

master plan, targeting 30 million of population electrified by the off-grid system by 2016 

which is about 18 % of total rural population, whereas the number was about 15 million 

in 2013. 

2.3.1 Biomass Potential 

It is proved that Bangladesh has significant potential in biomass and biogas. Bangladesh is a 

tropical monsoon region, and agricultural is the main income for people who are living in the 

rural areas. Agricultural waste provides an enormous amount of biomass resources assimilate 

with animal waste, household waste and MSW (Municipal Solid Waste) which utilized to 

produce the large scale of electricity. Biomass generation system offers a number of 

advantages, mainly sources in low cost but high in energy efficiency compare to other fossil 

fuel, which reduces fuel costs. Besides electricity generation, biomass waste also affords 

fertilizer simultaneously. In Bangladesh gas is the main source of electricity production, 

according to [58], about 88.8 % of electricity have generated by domestic gas and a big 

part of electricity generation from imported furnace oil. In Bangladesh, from agriculture 

produces rice, wheat, maize, coconut, vegetables, jute, sugarcane, etc. About 46 % of 

biomass energy sources from rice, straw, rice, husk, jute stick, sugarcane [59]. Most of the 

households in Bangladesh produces their vegetables and summer and winter accounted 

48.16 % and 51.84 % respectively in the year 2011 [60]. 

Power generation from biomass gasification is reasonably novel in Bangladesh and 

favorable technology. Electricity generation by biomass gasification can be solved our day 

to day problem at the immense scope. Eventually, the purpose of rural electrification 

which is the expression of grief need of Bangladesh. In addition to producing electricity, 

it is advantageous to the agricultural and industrial expansion and production. It is almost 

impossible without rural electrification to fulfill Bangladesh Government vision of 

ensuring access to reliable and affordable electricity for energy security-2020. The 
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traditional biomass and natural gas are the major sources of energy in Bangladesh, 

whereas 70 % of biomass energy consumption of total energy consumption [50]. Biomass 

is promising technology convert energy from all-purpose living materials including 

plants, animal, fungi, and bacteria. As Bangladesh is densely populated country, the 

opportunity of reuse for productivity would be the best usage of efficiency. Biomass 

encompasses of agricultural residues in Bangladesh mainly rice, maize, wheat, coconut, 

groundnut, bean, vegetables, jute, and sugarcane etc. About 46 % of total Biomass energy 

has produced from agricultural crop residues. Rice is the main agricultural crop, and 70 

% of rice husk energy is consumed. At present NGOs are promoting small scale biomass 

system for clean cooking and electricity generation. There are two minor projects which 

supported by IDCOL those generating 200 to 300 kW by using poultry litter, moreover, 

the studies also suggested that up to 800 MW of electricity by poultry waste litter. At 

present 15.00 tons of poultry litter produced each day, and a small fraction being used 

recycle. About 47 tons of waste expected, will be produced in 2025. In Bangladesh 

another available but significant raw material for biomass production rice husk, several 

searches showed that up to 400 MW of electricity can be generated single-handedly by 

rice husk. 

2.3.2 PV potential 

Bangladesh is blessed with enormous solar potential, as solar insolation. The average 

solar energy incident from 4 kWh/m2/day to 6.5 kWh/m2/day, with average 10.5 solar 

hours and about 300 clear sunny days. By combination of solar cell in PV module, under 

standard test condition (STC) module produces DC electricity at range 100 to 400 W. In 

figure (2-9) shown, clear bright sun light, except June and July average 7 to 9 h operates 

rest 10 months to produces solar energy. In the figure 2-10, represents monthly average 

solar irradiation in different regions in Bangladesh. The different solar insolation for 

different district in Bangladesh have shown in figure (2-11). 
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Figure 2-10: monthly solar average irradiation, average Sunday light 

 

Figure 2-11: Solar radiation of some selected area in Bangladesh [61] [62] 

2.3.3 Solar Home System in Bangladesh 

Solar sources and SHS has experienced a great success in Bangladesh, particularly the 

improvement of rural electrification. Currently, about 42 % of people have access 

electricity and per capita consumption of electricity is about 133 kWh in 2005 [63], which 

is the lower comparatively other developing countries. Nevertheless, the imbalance 

power supply makes the big difference between demand and supply, which makes load 

shedding. Started early in 1980, PV flourished across the country and the success factors 

focus on; 
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i. Rural areas electrified which is not yet accessible into the grid 

ii. Remote areas where electricity access is almost impossible 

iii. Insufficient power supply 

SHS generated electricity mainly used in rural households’ loads including low power devices, 

CFL or LED lights, TV, mobile charger [64]. Bangladesh annual variation of inclination of the 

sun, measured from the vertical varies from 0 degree to 46 degrees between the summer and 

the winter. Summer days are longer, around 14 hours, with average sunshine more than 6 

kWh/m2/day on the clear sunny day. Although winter days are shorter around 10 h, still there 

is more than 4.5 kWh/m2 per day of insolation on a clear sunny day. Solar Home System (SHS) 

are stand-alone photovoltaic systems that offer a cost effective mode of supplying power for 

lighting and appliances to remote off-grid households. In remote areas, which are not connected 

to the grid; SHS can be used to meet remote household’s energy demand. In Bangladesh, SHS 

usually at a rate of 12 V DC and provide power for low power DC appliances including lights, 

TV, mobile charger, for about four to five hours.  

 

In developing countries like Bangladesh, where the national grid extension is not 

economically and technically feasible, an array of PV cells is used to build solar home 

systems (SHS). The main components of SHS include a solar panel, battery and a charge 

controller which can be operated with minimum training [65]. Over the past decade, since 

the Bangladesh government launched a rural electrification program supported by World 

Bank and other international aid bodies, the number of off-grid installations in the 

country has rocketed. In 2002, installations rates stood at 7,000; today the figure has 

exploded to nearly 2 million and continues to counting, with average installation rates 

now topping 80,000 months [66]. 

Bangladesh annual variation of inclination of the sun, measured from the vertical varies 

from 0 to 46 degrees between the summer and the winter. Summer days are longer, 

around 14 hours, with average sunshine more than 6 kWh/m2/day on the clear sunny 

day. Although winter days are shorter around 10 h, still there is more than 4.5 

kWh/m2/day of insolation on a clear sunny day. Solar Home System (SHS) are standalone 

photovoltaic systems that offer a cost effective and technically feasible mode of supplying 

power for lighting and appliances to remote off-grid households. In remote areas, which 
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increases about 185 %from the previous year. In 2015 the growth rate increases to 300 

% and capacity raised 234 MW electricity generation potential from SHSs [35]. Generally, 

distance between SHS about 2-2.5 meter, where most of the system capacity configured 

with 60 WP. As shown in figure (2-13), SHS program promoted to increases more than 3.7 

million by May 2015 [67], about 98 % of SHS installed through IDCOL [68], and additional 

70,000 SHS being installed every month, and targeting more than 6 million more SHS by 

2016 [69]. 

2.4 Innovation Approach for RE 

 

To achieved the Millennium Development Goals (MDG), electrification across nationwide 

is one of the main topology widely believed contribution, renewable sources deploy to 

sustainable development which leads to improvement of environment and fosters of 

socio-economic life. In the modern time, only 11 % of people have the access electricity 

in the Sub-Saharan countries [70], whereas in Bangladesh about 40 % of households have 

the access electricity [71], and the improvement rate of electricity through SHS system 

and bottom-up swarm electrification successfully experienced in Bangladesh past 

decades. The households and communities are far away from the main grid and grid 

extension are not always cost effective due to infrastructure and insufficient power 

supply.  

According to authors’ of [72] suggested, DC-MG configured by several distributed 

generation such as SHS and from the local grid that might be connected to the main. A 

mini-grid can be configured by local distributed generation system and the distributed 

generation sources’ considering along with renewable resources such as PV, biomass, the 

wind.  According to swarm electrification concept, neighbouring households are 

assimilating in an intelligent network where scheme allows to share their information 

about supply, demand, and battery status within. To achieve this network by sharing 

electricity among participants within the scheme, consequently swarm network has the 

ability to integrate with legacy based where participants have the ability to produce 

electricity and consumption simultaneously, in order to propagate without or with 
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limited number single centralized unit which has the ability to function independently 

may be called nano-grid. 

 

 

Figure 2-14: Word wide electricity access through Rural Electrification [73] 

 

 

Figure 2-15: Swarm Electrification concept stepwise approaches [74] 

 

In (figure 2-15) represents the swarm concept, where the scheme developed by 

integrating several SHS and BHS1 (SHS and BHS characteristics and configuration details 

in chapter 3 and modelling simulation in chapter 4). It is obverses that a sunny day a SHS 

                                                        
1 Battery Home System configures with batter controlled by charge controller that connected to loads, the surplus electricity from 
neighborhood SHS available within the swarm network.  
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in Bangladesh does not utilized their own capacity respect to their loads connected within 

the system, and 30 % of surplus electricity available for others [75]. Tier based Swarm 

concept explain in figure (2-15) and (2-16), tier-1 represents a SHS configuration and the 

loads consumption, self-generated electricity from PV panel. Tier-2 and tier-3 

countenance SHS and BHS connected and formed a DC cluster, and tier-4 cluster grid also 

allow to connect to the grid to sellback surplus electricity. The major strategies for rural 

electrification to access electricity for all, some studies expressed only about 30 % of rural 

areas electrified by the centralized grid, whereas 70 % of people can be electrified by the 

small scale nanogrid or MG [76]. 

 

Figure 2-16: Schematic Layout of Tier based Swarm electrification 

2.5 Reforms and policies towards Renewable Energy 

Declining the fossil fuel along with natural gas, the electricity production reduces 

whereas demand increases day by day. GOB has restricted and privatized the electricity 

generation sector by National Energy policy (NEP) in 1996. The major target of the policy 

to increase the power generation to meet the desires present and future demand which 

adopted by following policies: 

I. Harnessing solar potential, and dissemination of RET in both urban and rural 

areas 

II. Enable and encourage facilitate public and private sector investment towards RE 

projects 



 
33 

 

III. Development of sustainable energy system to substitute non-renewable sources 

IV. Facilitating renewable energy at every level of energy including households to 

commercial and industrial 

The national Energy Plan (NEP) envisions 5 % of total renewable generation from 

renewable sources, and by 2020 achieved by 10 % energy from renewable. Bangladesh 

Power Development Board (BPDB) imposed the bulk tariff for electricity consumption 

for distribution companies including Dhaka Electric Supply Company (DESCO), Dhaka 

Electric Supply Authority (DESA), West Zone Power Distribution Company (WZPDC), 

Dhaka Power Distribution Company (DPDC), and Bangladesh Rural Electrification Board 

(BREB). The distribution companies are working in the urban areas and REB with 77 

rural electric cooperatives Palli Bidyut Samity (PBS) working for electrification in villages 

and remote areas.  

Summary 

It is clear that most of countries including low income and developing countries GDP 

affected by level of energy consumption, and per capita 0.23 % GDP increases by 

consuming 1 % of per capita energy consumption. The growth rate of electricity has 

increased at 5.5 % in the FY 2006-2007, which rapidly increased to about 13.2 % in the 

fiscal year 2012-2013. Likewise, the GDP of Bangladesh has increased at 6.8 % in the FY 

2012-2013 whereas in FY 2006-2007 the rate was just over fraction of 6 %. 

Bangladesh is the fast growing developing country, socio-economic, industrialization, 

other development booming while demand of electricity increases day by day. Currently, 

power sector of Bangladesh produces 10,445 MW by 2012, different government entities 

with non-government company working together to meet the electricity demand. Almost 

72.42 % of total electricity generated from natural gas in FY 2013-2014, and on the other 

side, the renewable penetration only about 2.5 % which is insignificant comparison to 

global power generation. Although, Bangladesh is one of the market leader for SHS, and 

PV system. In Bangladesh average 4 to 6.5 kWh/m2 solar irradiation, and Maximum 

amount of solar radiation is available almost each month except December and January, 
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however 300 high sunny days suggested solar generated system like standalone PV 

system, and SHS. IDCOL and other 47 partner organizations (POs), NGO working together 

to installing 3 million SHSs by 2013 and targeting almost 7 million by mid of 2018. 

Electrical power plays important role among all developing and industrialized countries, 

advancement of socio-economic conditions depends on per capita electrical power 

consumption. There are lots of crisis in present days, without solve electricity access, it is 

impossible to minimize the crisis. Although natural gas reserve sufficiently not enough to 

cope up the power generation, as demand cannot meet by the existing generation. By 

using renewable energy sources like PV, Biomass, and other available sources; and 

modern forms of power system deployment can be solved the crisis. Conventional power 

system is expensive to configure and present demand is lagging behind from the 

continuous power supply to electrification, especially for electrifying rural and remote 

areas. Notwithstanding, the conventional trends to generates electrical power from the 

top-down grid, and author convinced to follow up the concept of bottom up swarm 

electrification would be the best solution for electrifying rural areas in developing 

countries. A robust grid can be formed amongst hybrid power system which configures 

with integrating distributed renewable sources and back up diesel generator that highly 

efficient and reliable in the remote areas. 

Currently, 55.41 % of rural areas electrified by REB and cooperative organization PBS, 

whereas 5.05 million households connected to the grid. Yet 45 % of rural areas not 

electrified by REB which government owned company, but IDCOL and others POs 

working together to achieve Millennium Development Goad (MDG) and “Vision 2021” 

simultaneously, about 94 % households decreases about 1.7 litres of fuel (kerosene) 

consumptions compare to those not connected to the grid, average 90,000 households 

connected to the grid. During summer the number of new households slightly increased 

to 300,000, and to achieve 100 % of electrification about 450,000 new households need 

to connect to the grid by 2018. By the successful SHS program along other biomass 

integration, and enrichment of electric power generation Bangladesh has achieved 

almost 11,000 MW electricity by 2014, but still 40 % of population living without access 

to electricity. 
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Chapter3 

 
 

 

 

 

Stand-alone PV System and Microgrid Configuration 

 

  
 

 
 

“I’d put my money on the sun and solar energy, what a source of power! Hope we don’t have 

to wait until oil and coal run out before we tackle that” 

[Thomas Edison, 1931] 
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Introduction 

Energy access in any country or region is a fundamental and significant beginning for 

social and economic development. A country like Bangladesh where energy and power 

generation is not enough in proportion to the demand. According to the [77], about 45 % 

to 50 % energy access limited in Bangladesh, and those who have the access that does not 

sufficiently enough to meet 60 % of their demand. The shortage of demand causes about 

5 to 6 h load shedding during summer season per day. A delimited renewable energy 

integrated network such as nanogrid, minigrid, and microgrid are proposed to an 

alternative power system for rural electrification In the chapter, the required elements 

of an MG, and their basic operation have been described and an optimal design can be fit 

for the proposed MG. Increasing the opportunity of renewable energy deployment in 

Bangladesh would be the solution for sources of energy access in the present, and 

integration of those distributed energy renewable sources (DERs) with the existing 

system for the proposed future opportunity. The MG can be developed encompasses with 

small scaled energy network, which included loads like household, community based 

commercial loads, and a set of DERs, such as solar PV, the wind, energy storage devices, 

and generators fueled by either conventional fuel or biomass. An MG configured with 

some smart rudiments that control and regulate to responds demand, which adopted 

with some smart strategy that enables the prevalent of DERs and fortified with some 

intelligent devices for protection [78]. According to [79] a small scale MG configured with 

100 kW and [80] a micro-generation is measured with smaller scale no more than 3 kW 

electrical energy and 30 kW thermal energy by adopting cogeneration methodology 

technology, and conferring the authors of [81]. The tri-generation is one of the most 

viable forms of poly-generation; energy conversion process with combined heat, cooling, 

and electrical power, whereas EU restricts the micro-generation up to 50 kW on different 

schemes and residential scales. Despite the fact, authors of [82] cogitate smaller than 500 

kW, while authors of [83] energy generators and DERs should scaling the similar capacity 

and size as the loads attached in the system and positioned close to the end-users. In this 

chapter, MG prospects and involved well-suitable components as well as suitable energy 

sources and technical option for integration of renewable integration to determinate 

energy access in Bangladesh. 



 
37 

 

A successful arrangement of MG depends on local distributed energy resources, the 

capacity of sizing, operational strategy.  The local network collaborates with other MG 

mechanisms that deliver supply to sufficient power to comply demand and higher 

efficiency. The MG is applicable for single consumer with low demand to medium demand 

remote off-grid system, campus to community based MG, and utility bases MG with 

different local RES on the utility side with consumer interaction. Rural electrification 

functional MG configures with small size, as the system is not able to respond to sudden 

loads. Hence, energy storage device such as batteries are the essential components in the 

MG, especially the circumstances when the intermittent source like PV included in the 

system. 

 

3.1 Concept of Microgrid (MG) 

 

The MG configured with small-scale self-sufficient medium or low voltage network, which 

generated power from the local resources and supplied to the local consumers. The 

distributed energy resources (DER) constructed with DG technologies, controllable 

distributed storage system (DSS), and controllable-clustered loads. Integration of MG that 

describes the act of combining a couple of energy generation resources work together 

effectively[84]. An integrated MG system suggests the fact of adjoining operation strategy 

and control tactic, low or medium voltage distribution system operate effectively and 

efficiently. For the reliable and stable system, an effective control strategy, coordinated 

operation, and coupling DERs into the MG [85]. In Bangladesh about 40 % of people does 

not have electricity access from the main grid which representing 65 million people [86]. 

The grid-based energy access in Bangladesh, the government has the vision to integrate 

renewable energy sources share about 5 % of total generation by 2015. The total grid 

based configuration, about 500 MW of power generation from renewable sources by 

2015 and 10 % of total power generation about 2,000 MW by 2020 [87]. The average 5 

kWh/m2 solar irradiation deteriorating over 300 days per year and an average range of 

8 h-10 h sunlight hours offer a best possible solution for energy access in Bangladesh by 

amassing standalone SHS [[88]. The typical SHS in Bangladesh consist of 20 to 85 WP of 
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PV module, battery and charge controller [89]. SHS integrated MG present in figure (3-1), 

which also have the ability to tie with main grid. 

 

Figure 3-1: Neighbourhoods SHS integrated Micro grid 

 

According to Department of Energy, US [90]: 

“a group of interconnected loads and distributed energy resources (DER) with clearly 

defined electrical boundaries that acts as a single controllable entity with respect to the 

grid and can connect and disconnect from the grid to enable it to operate in both grid-

connected or island mode.” 

Zhang et al. [91] define as: 

“A cluster of loads and relatively small energy sources operating as a single controllable 

power network to supply the local energy needs.” 

According to Author: 

“An autonomous microgrid considered as integrated system where distributed small 

scaled energy generation participants associated with community-based generation and 

storage can be shared their energy each other” 
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3.1.1 Key components of Micro grid and Configuration 

 

The MG configures with distributed renewable energy sources, power level and 

conversion devices, controllers, Energy Storage system, energy management system, and 

communication system for controlling and protection [92]. The foremost advantage of 

MG, they have the capability to operate seamlessly which isolated from national grid 

without disruption to its load. The end-users including consumers and prosumers is 

another key component of the MG. Affording the best usage of local RES, DC loads, and 

micro sources like SHS sharing their excess energy among within the LV network. The RE 

sources operation strategy, controller scheme with exchange power with another 

network like national grid and end-users. Typically an interconnection of DGs, either set 

of generating units such as diesel generator or gas generators and fuel cells or non-

dispatchable generators such as wind generators, Photovoltaic units, electrical energy 

storage that meet customers demand discussed in [93], describes bellow;  

 Distributed Controllers in SHS and other micro sources control voltage and 

current level. 

 Power conversion device such as DC-DC converter, pole-mount transformer 

control their voltage level and power quality of MG. PV produce DC voltage, 

biomass fueled CHP micro turbine produce AC voltage with different amplitude, 

Power electronic converter interface solved the problem [94]. 

 Communication system used in the MG system for monitoring and control the 

system respect to setting data [95]. 

 EMS is the strategy for device control. Also, function for future power prediction 

from renewable energy, power planning, and load forecasting. 

 Micro source like CHP generated biomass driven electricity unit and this 

dispatchable source is non-controllable. Primarily gas fired biomass source one of 

the important source of energy in the micro grid. 
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3.2 Combined Heat and Power (CHP) 

Decentralized power generation with biomass fuel CHP is an important source of 

electricity for improving energy efficiency, energy security and emission of CO2. 

Combined heat and power (CHP), is a co-generation technology that simultaneously 

generate electricity and heat. By using absorption chiller, the heat has converted into 

cooling for cold storage.  A biomass-fueled cogeneration unit has to consider and 

specified in the terms of thermal rather electrical. There are many commercial CHP 

deliver heat to electricity ratio of 2:1, even down to 1:1; with organic ranking cycle can 

be possible as 5:1 [96]. By CHP technology always offer heat generation accompany 

electricity co-generation and suitable load complies during all operation including 

standalone and grid tied. According to offline optimization approach, minimize the 

energy cost and emission by integrated PV array, wind turbine, and CHP in the MG 

described in [97]. 

 

Figure 3-2: Micro-CHP technology and components [98] 

 

Figure 3-3: ORC in CHP enhancing electricity generation [99] 
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Today, CHP technology with excellent efficiency and better electrical output also adopted in 

the small-scale system. The micro combined heat and power micro-CHP describes all electrical 

power generation systems that utilize recoverable waste heat converted through absorption 

chiller for cooling. The range of micro-CHP from 10-30 kW or less, electricity generated on 

site from the combustion of biomass fuel source in an electrical generation set including the 

prime mover and generator. The excess thermal energy from micro-CHP converted into the 

cooling air for cold storage, cooling purpose increase the overall energy efficiency usage. A 

cogeneration CHP system or CCHP (Combined Cooling and Heat Power) consists of prime 

over, generator convert to electricity, heat recovery system, and absorption chiller convert to 

cool air, control system shown in figure (3-2). Heat released form Biomass combustion and 

used to produce steam can drive the steam turbine. In the micro-scaled biomass-fuelled CHP, 

biomass conversion technology has three choices for prime mover such as; gas turbine, internal 

combustion, and fuel cells [100]. In part-load conditions, the surplus energy including 

electricity and heat may sell to the grid and community. The electricity produces by 

congregating unit µ-CHP which located on site or distributed through AC or DC bus that 

delivers electricity to the loads through to grid or directly to loads without the grid. A load 

of thermal energy usually positioned on site. The advantage of the µ-CHP system has the 

ability to improve both electrical and thermal efficiency by use of fuel. However, the 

system requires total fuel to produces both electrical power and thermal power in a 

cooperation system is less than the total fuel involves producing same amount of 

electrical power and thermal power. The efficiency of fuel used in the µ-CHP system that 

transmuting fuel into thermal defined by (EFTHE) express in the (equation 3.1), that 

described by the first law of thermodynamics is the ratio of net energy output QH and 

divided by the fuel consumed (QF). The range of standard efficiency in the typical m-CHP 

65 % fuelled by biomass. Power generated by the m-CHP, efficiency of fuel transforming 

electrical power (EFTEE) shown in (equation-3.2) and define by the ratio of electric 

energy and the amount of fuel consumption (QF); the heat energy transferred into 

electrical energy done by mechanical work (WM). The standard range of electrical 

efficiencies in the typical m-CHP found from the studies about 33 to 35 % [101]. 

EFTHE =  
QH (kWh)

QF (kWh)
 

3-1 
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EETEE =  
E

QF
=

QHQME

QF QN WM
 

3-2 

 

3.2.1 Proposed Micro CHP 

A biomass-based boiler may have deployed as renewable energy based heating source, 

where hot water at temperature 100 °C to 140 °C supplied at ORC evaporator level to 

evaporate the organic fluid and at a temperature of 60 °C to 80 °C to desiccant generation 

to regenerate the weak liquid desiccant. The proposed tri-generation have the ability to 

provide electricity, heating, and cooling[102], and Organic Ranking Cycle (ORC) based tri-

generation have been widely used in electric power generation from low temperature 

heat sources [103]. Biomass fuel fired CHP, where electric power generation 10 kW, 

which has a great potential to meets the community based energy both electricity, and 

cooling demand. Sometimes OCR cycle based engines not considered where CHP system 

has relatively low electrical conversion efficiency. Yet, electrical efficiency comes to be 

considered less important issue where the proposed micro-CHP due to simple design, low 

costs, favourable operation, durability, and high performance in community cooling 

system or cold storage facility [103]. This proposed system considered with two cycles 

including hot water cycle heated by the biomass boiler and ORC cycle. The heat releasing 

from biomass combustion inside the boiler through heat exchanger, the hot water use 

follows ORC working principle to heat into vapour in the evaporator. The generated 

organic vapour drives the expander2 wheel in the evaporator of the system. The expander 

should be adaptable within the ORC system that utilize small gas turbine as thermal 

source of energy to generate 2 to 10 kW of electricity [104]. The CHP with 50 % heat 

recovery and about 80 % electrical efficiency configured with ORC based output present 

in (figure 3-3). The ORC working fluid at expander exhaust releases some heat through 

the recuperator, and pumped back to the evaporator. The cooling water from the 

condenser is heated and used to clean the cold storage weekly. The proposed CHP might 

have above 80 % of electrical efficiency [105]. 

                                                        
2 The expander wheel is a module in a turbine that rotate by the steam or vapor, the prime mover rotate 
coupling with the module and generate electricity through the electric generator. 
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The conversion of final energy that generated by the micro-CHP, the energy efficiency 

factor (EEF) defined by the equation (3.3) 

EEF = [ 
Eu

EP
] × 100 % 

3-3 

 

Where,  

                       EU = Useful Energy  

                       EP = Primary Energy  

 

3.2.2 Micro Turbine (MT) 

 

The MT is consisting of four major elements such as; turbine that transform pressure of 

hot steam or gas, alternators that generates electricity, compressor that compresses inlet 

air to high pressures, combustor that combustion begin between heated compressed air 

and fuel mixed and burned which is from biomass, recuperate that exchange the heat for 

transferring heat from exhaust gas to air before it enters into the combustor described in 

[106] - [107]. In CHP, the MT is the backbone of the system that produces electricity and 

heat converted through absorption chiller produce cooling air for cold storage. The MT 

has the advantage such as high power density, lighter weight than another turbine, clean 

emissions, fuel flexibility, low vibration and low maintenance, high reliability and high 

durability [108]. The process of a micro turbine is similar to a gas turbine, which has a 

heat recovery unit (recuperator) that exhaust heat and use preheat the combustion air, 

that heat from the turbine exhaust to preheat the intake air, raising the turbine’s internal 

temperature [109]. The recuperator act as radiator or heat exchanger that transfer heat 

from exhaust to the incoming air. As the system mainly used for electricity and Colling, 

the recuperator is important parts for the micro-turbine, an “intercoolers” preferred to 

design in the system; porcelain disk with holes that allow airflow through the system 

enlightened in Allison type micro generator[109]. Nevertheless, non-recuperative 

turbine generates electricity from gas with an efficiency 15 %. Most of the turbine 

configured with the rotation speed of 90,000 -120,000 rpm [101]. 
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Figure 3-4: Schematic diagram of a single shaft micro turbine [110] 

 

The nominal rpm speed does not depend on the capacity; the rpm depends on the 

manufacturer. The small-scaled micro-turbine rotational optimum speed rated at 40,000 

to 90,000 rpm and pressure ratio of 4:1 in the single stage. For small scale CHP, micro 

turbine configured with the electric generator either synchronous or permanent magnet, 

or a group of redresser-converter that supports adaptation to adapt electric charges to 

the grid. For the fast and faultless dynamic controlling including starting, shutting down 

and other speed control described in the model described in figure (3-4). The MT based 

CHP operates in the MG, which not only produces electricity but also heat that convert 

into cool air by using thermal driven chilling absorption module. The advantage and 

disadvantage of micro CHP bellow present in the table: 

Table 3-1: Micro CHP advantages and disadvantages 

Advantages Disadvantage 

 High reliability and durability 

 Low emission 

 No external equipment required 

for cooling 

 High pressure required for 

 Poor efficiency at low loading 

 Output drops as ambient 

temperature raise 
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3.2.3 CHP fuel 

Direct combustion from the available living and living organisms considered as biomass fuel 

used to harness energy. Biomass combustion has 68 % to 79 % efficiency depending on fuel 

moisture content, and combustor design, and combustion operation [111]. There are many 

types of fuel and sources for the micro CHP that produce heart and electricity such as; biomass, 

solar thermal, natural gas, LFG (liquid fuel gas), and hydrogen. The community food waste, 

crops, leafs, and animal manure to generate biogas that landfill avoided which reduces methane 

potential damage the atmosphere [112]. By using this waste from the project location, and 

utilizing these by CHP in the community to deliver electricity and cooling. The following 

section author will be discussed the potential of biomass in the location where CHP and MG 

under consideration. 

3.2.3.1 Biomass Potential from Plantations 

 

According to RED (renewable energy directive); “biomass is the biodegradable fraction differ 

from waste product to food waste, biological origin to animal substances, agricultural crops to 

vegetable and community and animal manure” that deliver electricity and heat from biomass. 

Processing of biomass assure no loss during the long-term process of biomass [113]. Initially 

about 20 % of moisture reduced from the biomass contents, as a small space required to 

densified biomass contents [114]. 

3.2.3.2 Field trip Data Collection 

The data collection regarding available average biomass opportunity for generating electricity 

in Gopalgong in Bangladesh. 

 To investigate the possible location of the MG system 

 Consideration: mapping the areas for agricultural crops, total number of population, 

household, and animals. 
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The assessment to evaluate the recent and future biomass energy resources and biomass waste 

production from all kinds of local available biomass resources such as; organic materials from 

living or dead organisms. 

Biomass Potential from source of Agriculture 

From the plantation of the local residues mainly from rice, jutes, sugar cane, coconut are 

available for electricity production. Among field crops, household’s areas’ have the control of 

plantation.  Local cows in Bangladesh produced 10 kg/day (khan, et al). According to 

persistence, the available average biomass from these tree plantation as followed in the (table 

3-2). 

Biomass Potential from Animals and others sources 

Cattle, goats, buffaloes, sheep, pouty and human manure are the general sources of 

biomass energy. According to the data have collected 80 households are where 

approximately 250 people, 200 cattle’s, 350 goats, 200 buffaloes and sheep.  From the 

two poultry and other individual households has 3000 ducks and chicken. The biomass 

potential from animal waste calculation bellow table (3-3) 

Table 3-2: Agriculture based biomass potential [115] 

Crops  Rice Jutes  Sugarcane Coconut Others3 

Production (tons/year) 18.5 12 5 0.2 0.1 

Fractions  Husk straw Stalk Bagasse Shell  

Amount in fractions [%] 100 40 58.84 36.0 24.4 13.91 

Crops reside [tons/year] 15.115 10.2 6.707 1.44 0.049 0.00139 

Average [tons/day] 0.07 0.018 0.008 0.00013 0.00003 

 

Total agricultural based biomass = 0.0961 tons/day 

Table 3-3: Biomass production from Animal waste [115] 

Livestock  Cattle Buffalo & sheep Goat Poultry 

                                                        
3 Others agricultural based biomass consist of tree branches, dry leafs, woods 
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Biomass (kg/animal/day) 2.86 2.54 0.55 0.18 

Biomass production (kg/day) 572 508 192.5 540 

 

Total biomass production = 1.81 tons/day 

According to determination, the available average biomass from these animal waste and 

other sources available in location site as followed in the (table 3-4) 

Table 3-4: Total biomass available from biomass waste 

Materials  Biomass production (kg/head/day) Biomass production   

Livestock - 1.81 tons/day 

Human manure  0.40 0.100 tons/day 

Rural solid  0.15 .03 tons/day 

 

Total biomass production = 1.94 tons/day 

Total biomass production 

Approximately 60 % of Agricultural residues, 30 % of animal waste and poultry and 10 

% of others average biomass production. 

The average biomass production = 2.04 tons/day. The available average biomass depends 

on the local site and the production depends on total production of agricultural crops, 

vegetable, and agricultural other production which also based on geographical location, 

temperatures, rainfall, and climate. The agricultural crops including rice, vegetable, 

pulses grown mostly in the winter rather than in summer. The monthly average based 

Biomass volume (tons/day) production are changing over a year bellow. 

 

Table 3-5: Average Biomass Production 

Jan  Feb Mar Apr May June July Aug Sept Oct Nov Dec 

2.04 2.04 1.90 1.85 1.80 1.80 1.80 1.95 1.95 1.95 2.0 2.048 
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3.2.3 Cold Storage Design 

The basic refrigeration or cooling cycle includes a refrigerant that undergoes phase 

changes in which it absorbs heat or rejects heat.  In the traditional refrigeration system, 

a compressor which is located in the cold storage that reject the heat [116]. The Cold 

storage gives up the heat, which is from the foods kept inside the cold storage that 

transfers the heat to heat rejection device such as absorption chiller (describe in the next 

section 3.2.4). After study and gathered knowledge about Cannington cold storage [112] 

and [117] A cold storage consisting of couple of components such as; 

 An evaporator: two phase coiled tube used for heat exchange 

 An absorber: two phase coiled tube mass and heat exchanger 

 Two regenerators including high temperature and intermediate temperature and 

two phase boiling coil 

 A condenser: heat exchanger from micro-turbine back to boiler 

 Three pumps: a sorbent pump, a refrigerant pump, and chilled water pump 

 A Fan: circulating cool air all over the cold storage 

 The cooling capacity of the cold storage or chiller load 

Qcold-storage = mcw × CP × (TCWE – TCWL) 3-4 

  

Where,  

               mcw = Chilled water flow rate 

               CP  = Specific heat of water 

               TCWE = Temperature of chilled water entering into the chiller 

               TCWL = Temperature of chilled water leaving form the chiller 

   

  Coefficient of Performance of Chiller  

     COP thermal = Qcooling /Qheat 

      Qheat = Msteam × (Hsteam  - Hcondensate) 
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  Heat delivered to the chiller by the system   

Where,    

           Msteam  = Flow rate of Steamer 

           Hsteam  = Enthalpie of steam supply 

           Hconden = Enthalpie  of consensate supply 

 

3.2.4 Absorption Chiller 

Absorption chiller is mechanical contraption that driven by heat and produce chilled 

water for cold storage and another form of the facility as required. There is no mechanical 

energy consumed in the absorption chiller, an absorption cycle which is similar to vapor 

compression cycle deepening on chemical affinity of absorbent for chilling or refrigerant 

to improve cooling effect [118]. The chiller produces chilled water by removing heat from 

cold storage and transfer the heat to the evaporator. For refrigeration, water is used for 

refrigerant and bromide is used for absorbent [119]. In the absorption chiller great 

variety of hot media or material can be used; such as LiBr (Lithium Bromide), ammonia-

water (NH3 –H20) [120]. One stage cycle used in vapor compression, where ammonia-

water used and two stage cycle used lithium bromide shown in figure (3-5). The 

absorption chiller consumes heat which supplied by CHP, and chiller also rejects same 

amount of heat. 

 

Figure 3-5: Absorption Chiller cycle (Left) & Vapour compression cycle (right) 



 
50 

 

3.3 PV panel Design and modelling 

 

3.3.1 Solar Cell and PV Module concept 

 

Solar energy (Photon) strikes onto the solar cell (semiconductor materials) electrons knocked 

loose from the atoms and producing hole-electron pairs (Lorenzo, 1994). As forming an 

electrical circuit by assigned an electrical conductor to the positive and negative sides the 

electrons are captured and form electric current Iph (photocurrent) of the cell. According to 

Lorenzo; one diode model of a solar cell; in darkness (no solar irradiance), cell not active and 

works as diode produce neither voltage nor current. Nevertheless, cell connected to an external 

supply it generates diode current or dark current Id. A PV cell charges by sunlight, cell produces 

DC photo-voltage range of 0.5 V to 1.0 V and some 10 mA per cm2 in short circuit [121]. 

 

Figure 3-6: Equivalent circuit of PV solar cell 

I = Iph −  Io  ×  exp
[(

q(V−IRS)
AKTC

)−1]
− [

V + IRS

Rsh
] 

3-5 

V =  
AKTC

q
 ln[

I+ − I0 + Iph  

I0
] − IRS 

3-6 

 

Where,   

               I = cell current (A)   

              Id = Diode current (A)  

              q = electron charge (1.602 × 10-19 C) 

              V = cell output voltage (V) 

             TC = cell temperature (K) 
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             A = diode Ideality factor 

              K = Boltzmann Constant (1.38 × 10-23 J/°k)  

              I0 = Dark saturation current. 

 

A single solar model comprehends a source current, Id for one diode, a parallel resistance 

RP and a series resistance RS; which represents the resistance of each cell and in the 

connection between the cells. The net current from the cell is the difference between the 

photocurrent Iph and diode current Id of the cell, and express by the equation.  

Assume ISC = Iph, the series resistance of solar cell is low and parallel resistance of solar 

cell is high. Photocurrent of solar cell depends on irradiance G and temperature equation 

extant in equation (3-7). I0 is the dark saturation current that is strongly dependent on 

temperature (Lorenzo, 1994). For adjusting I-V, characteristics of solar cell contingent 

factors taken into idealizing factor and temperature should be same in both Boltzmann 

constant K and cell temperature Tc. The voltage of solar array is the number of series 

connected solar cell in the solar array module multiplies the voltage of single solar cell in 

equation (3-5) & (3-6). The total current of solar array is the sum of the current drifting 

through single solar cells in parallel. The current obtained by divided total array current 

by the number of cell connected in parallel seen in equation (8), which is operative for 

certain cell temperature TC and corresponding solar irradiation G [122]. The temperature 

effect is detail explanation in section (4.1.2). 

 

Iph = (Iph,ref +  KIΔT)
G

Gref
 

3-7 

 

G: solar irradiance (W/m2), Gref: Irradiance at STC = 1000 W/m2, ∆T = TC – TC,ref (° K), TC 

: Cell temperature at STC=25°C, KI = Coefficient temperature of short circuit current 

(A/°K), Iph,ref : Photocurrent at STC. 

In practical solar Cells connected, either in parallel increase the current and in series 

provide greater output voltages. Tangible solar arrays are composed of several connected 

PV cells and the observation of the V-I characteristics seen in (figure 3-7); (a) The voltage 

increasing in PV module, the individual cell connected in series as V= 𝐕𝟏+ 𝐕𝟐+... (b) The 

current in the PV module, individual cell connected in series as I =𝑰𝟏 + 𝑰𝟐 +… 
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A PV module is consisting of group of solar cells, in practical solar Cells connected; either 

in parallel increase the current and in series provide greater output voltages. In the figure, 

illustrates solar arrays with NPM parallel branches each with NSM Series modules. With the 

intention of specification of each element in the PV module where parameters with 

subscript ‘M’ are referring PV module, while parameter with subscript ‘C’ are referring 

solar cell. 

The total current and voltage of PV module has presented in an implicit expression 

depending on following variables articulated bellow in equation (3-8) and (3-9). 

VOC
M = NPM ×  VOC

C  3-8 

ISC
M =  NSM ×  ISC

C  3-9 

 

Where 

 

           IC
M              = short circuit current of solar module 

           ISC
C    = short circuit current of solar cell 

           VOC
M    = pen circuit voltage of solar module 

           VOC
C    = short circuit current of solar cell 

           NSM = number of cell in series  

           NPM                  = number of cell in parallel 

 

Figure 3-7: Solar cell (a) series connection (b) parallel connection 
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V-I characteristics of typical solar cell for certain ambient irradiance and certain fixed cell 

temperature TC. Solar cells in PV module connected parallel increase current and 

connected series greater output voltage. 

Cell terminals shown in figure (3-6) as terminal “a-b” connected to variable resistance RS, 

the operating point determined by the intersection of I-V characteristics of solar cell 

figure (3-8). For the resistive load, the characteristic is a straight line with a slope 1/V 

=1/R. The power delivered to the load depends on the value of resistance only. When 

resistance is small, the cell operating point in the region MN of the curve, where cell 

perform as a constant current source, almost equal to short circuit current (ISC). If, R 

larger, cell operates in the red marked line in figure (3-8) region of the curve, where cell 

perform as constant voltage source almost equal to open circuit voltage (VOC). 

 

Figure 3-8: V-I Characteristics of Typical Solar Cell 

 
Module current at operating condition 

IM = NPMISC
M [1 − (VM −  NSMVOC

C  + IMRS
C  

NSM

NPM
)/(NSMVt

C)] 3-10 

VM =  ln [
ISC

M  − IM

ISC
M

] Vt
C +  VOC

M −  IMRS
M 

3-11 

 

 

The V-I and P-V characteristics and I curves of solar cell in figure (3-9), the cell operate in 

constant current source at low operating voltage, other hand the constant voltage source at low 

operating current. 



 
54 

 

PMAX =  VMAX  ×  IMAX = FF × VOC × ISC 3-12 

PM =  VM × IM 3-13 

 

Where, VMAX and IMAX are Maximum terminal voltage and current of the PV Array. The 

maximum power of the open-circuit voltage and short-circuit current are the maximum voltage 

and current respectively. Determining the maximum power of solar cell, Fill Factor (FF) is 

important parameter, which is unification with VOC and ISC. Graphically, FF defined as the ratio 

of area A and B seen in figure (3-8). 

FF =  
A

B
=  

VMAX  ×  IMAX

VOC ×  ISC
=  

PT

PMAX
 

3-14 

 

 

The quality of the solar cell substantially measures by FF measurement, associating maximum 

power (PMAX) and theoretical Power capacity (PT) in figure (3-8). 

 

Figure 3-9: V-I & P-V Characteristics curve of solar cell for Maximum Power Point 

 

3.3.2 Temperature dependence 

Electricity generation from solar cell depends on operation temperature. Through an 

increasing the temperature of solar cell while the short current (ISC) marginally 

increasing and open circuit voltage (VOC) significantly decreasing (about -2.3 mV for each 
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K) leading to electrical yield reduction ratio of -0.4 % per K to 0.5 % per K for mono and 

multi-crystalline silicon solar cell [123]. 

The cell operating temperature varying with the ambient temperature and irradiation 

level change as a result photo current and output voltage level changing. The operating 

temperature of solar cell fluctuates varies with ambient temperature and solar 

irradiation. The variable ambient temperature (temperature of location) Ta affects the 

cell photon current and cell output voltage. These affects in the solar module by the 

temperature coefficients KV of open circuit voltage VOC and temperature coefficients KI 

of short-circuit current ISC [124]. 

TC =  Ta + C2 Ga 3-15 

C2 =  
Tref

c   − Ta,ref 

Ga,ref
 

3-16 

 

Where, the value of C2 = 0.03 reasonable to approximate. At present time, temperature of 

Bangladesh is unpredictable almost every hour changes due to climate change. Assuming 

ambient temperature (Ta) 25 °C, whereas cell temperature TC is directly proportional to the 

irradiance Ga in equation (15). 

 

Figure 3-10: V-I Characteristics curve (a) increase short circuit (ISC) respect to solar 

irradiation (b) ISC & VOC Changes effect with cell temperature (d) precise observation 

impact on ISC and VOC 
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3.3.3 Maximum Power point tracking 

 

The optimal output power of PV modules by tracking the maximum power point (MPP) 

shown in the figure (3-8) and (3-9), maximum power point tracking commonly known as 

MPPT which tracking PMPP by electronic system that operates in the PV module through 

automatically find out VMPP or IMPP and achieve PMPP under variable temperature and solar 

insolation [125]. The variation of atmospheric parameters (Ta, Ga) the factional ISC and 

VOC changes, as the matter of fact IMPP and VMPP is linearly related to the ISC and VOC of the 

solar module respectively in shown equation (3-17) and (3-18); 

IMPP =  K1 × ISC 3-17 

VMPP =  K2 ×  VOC 3-18 

 

Where K1 and K2 are proportionality constant, the approximate value of K1 found 

between 0.78 and 0.92, and value of K2 between 0.71 and 0.78 [126]. 

Increase operating Voltage 

Start

Decreasing Operating Voltage

   Pk>Pk-1
     Pk>Pk-1

No
    Yes

Figure 3-11: Flowchart display for Perturbation & observation algorithm 

Technically and economically feasible is to choose MPPT used between the solar array 

and load to utilize available solar maximum power and matching impendence of the load. 

Generally, MPPT is the electronic control based particular tracking algorithm. Tracking 

the maximum power of solar cell following equation (3-11) from a solar cell or solar 

module MPPT algorithm used and increase the efficiency of the cell. The maximum power 
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Point (MPP) extent on ambient temperature, irradiance, and load. There are various 

methods obtainable such as Perturb & Observe (P & O) method, incremental conductance 

method, constant current method, constant voltage method, method, Fuzzy logic etc. 

Among all methods this P & O are commonly used, the flowchart bellow presents the 

simplified method of P & O present in figure (3-11). 

Relatively holding constant current based and voltage varied for different resistive load 

in the SHS circuit. In PV module both voltages varying according to its V-I characteristics, 

and resistive load considered as V=IR (V= terminal voltage, I = current, and R = resistive 

load). By studying and observing the PV model output of PV array in Simulink based 

environment observed; the consideration of maximum solar insolation on point for high 

load resistance the circuit operate at high voltage but current constant and power is high. 

Likewise, if the load resistance is small the circuit operate at low voltage but the current 

is high the power is low. As all most, every load in the SHS are in parallel and require a 

fixed voltage, so a battery used to constant voltage as well as to deliver power during the 

solar panel is not generating power. The SHS and DC bus set at the battery operating 

voltage, that reference voltage force to operate the system (explained in the chapter-4). 

3.4 Solar Home System Design and Configuration 

3.4.1 Concept of SHS Design 

In order to Energy Access with a renewable powered hybrid system for sustainable 

development depicted in figure (3-12). The Range of SHS power depends on  

 Solar panel peak power (WP) 

 Capacity of energy storage system (battery capacity (Ah) 

 Load and consumption characteristics and range.  

The ratio of lead acid battery capacity and solar capacity Ah/WP range from 0.9 to 1.5 

depending on a number of Autonomy SHS. The Solar Capacity ranges from 45 WP to 65 

WP and design considering no critical such as CFL or LED light, TV, radio, ceiling fan, 

mobile charger detailed in load section. According to the Author of this thesis SHS design 

and defined as;  
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“Source of energy generation from the Solar panel (45 WP to 65 WP), store energy in Lead 

Acid battery rated at 12 V, 60 Ah. The charge controller in the system between the battery 

and domestic load, and operate as the controller. The system design with 12 V, SHSs 

connected each other with 230 V with the grid-tied condition.” 

Operation of SHS in standalone mode or tied within MG: 

 Individual SHS independent 

 Share energy along with other SHS and BHS 

 Grid-tied with all SHS and BHS 

 Grid-tied with SHS with BHS 

 

Figure 3-12: Typical Solar Home System diagram, (Courtesy Morningstar Corporation) 

 

Particularly in the sunny and tropical country like Bangladesh, solar PV the most 

preferred renewable energy source to electrifying the nation. The most attractive part of 

SHS is PV panel easy installation, no maintenance, and easy to incorporate into the home 

system. An SHS defined as a standalone system integrated with PV panel, Battery, charge 

controller/regulator, and low powered loads are shown in figure (3-12). It basic concept 

is to utilize the solar power convert into electricity and supply to the household 

appliances, and excess energy can be stored in the battery. The goal of energy access in 

Bangladesh to comply the “vision 2020”, rural electrification is the important factor. 

Along within this goal increasing the number of standalone SHS, grid tied SHS nano-grid 

and the centralized MG would be the best solution for electrifying Bangladesh. Traditional 

houses offer rooftop PV system to the houses for home usage[127]. The System designed 

as DC; the power generation from rooftop PV panel to charge battery and supply to the 
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loads. In general, the primary and only source of power supply for SHS has PV generated 

electricity. 

3.4.2 PV panel configuration 

Afterward having the solar insolation data, design the system determines the demand 

(electrical load) that the system has to support. The demand estimation is one of the key 

factor of technical design and cost of standalone SHS. 

Size of solar panel (W) =
Total daily load consumtion (Wh)

daily Sun hour (h)
 

3-19 

 

 

As the system set at 12 V, but the maximum power point of solar does not occur at 12 V. 

It is typically set at a much higher voltage such as (14 to 24 V) to maintain the power 

output to 12 V, so there is no problem to charge during less solar isolation or partly 

cloudy.  Predefined 12 V system with solar panel wattage power rating cannot power to 

12 V wattage power to load. Such as 65 WP Load at 12 V requires 65 W / 12 V = 5.4 A 

(because P=V × I), typically a 45 WP SHS and 65 WP SHS configures along with PV module 

which design allow to produce maximum PV current about 3.2 to 3.5 A for regular SHS 

and 5.42-5.6 A for large SHS. 

The size of different constituents of SHS is done according to the system configuration, 

the consumers (among large SHS, Medium SHS, and BHS) manage their desire energy 

from grid or Battery, and the battery is connected to the PV panel through the charge 

controller. However, the consumer's first priority to consume energy from PV, then 

Battery and if not then grid. 

3.4.3 Load Modelling 

 

Profoundly, the load is the driving factor behind any power system, large or small. In a 

typical SHS, the electric loads are consisting of LED or CFL lights, cell-phone chargers, TV, 

Ceiling fan. In proposed system, there are three different types of loads categorized in 
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system configuration; including Large SHS load, Medium SHS Load, and BHS Load. 

According to the load profile, CFL or LED lights used from 19:00 h to 22:00 h, TV used 

from 18:00 h to 23:00 h, Mobile charger used in both 9:00 to 11:00 and 20:00 to 22:00, 

and the ceiling fan used from 22:00 h to 5:00.h The figure (3-13) represents the typical 

summer load of households in MG in the proposed location. 

 

Figure 3-13: Proposed Household Load Profile 

 

Figure 3-14: Load Profile Consumption 

The Loads are various electrical appliances that consuming energy directly or indirectly 

from Battery. Due to low power requirement for the system considered 12V DC circuit, 

as increasingly available DC electrical appliances such as LED and CFL lights, Small DC 

powered TV, mobile charger, and DC ceiling fan connected directly to the system. Each of 

system load profile modelling has two important characteristics to designing both SHS 

and BHS, the peak power (in watts) of each load and consuming time duration (in hours). 

In the figure (3-14) represents, the summer and winter loads by light blue and orange 
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histograms respectively, it is clear that due to ceiling fan requires high electricity in the 

summer season. 

Table 3-6: Load consumption of typical Large SHS 

Appliance  Rated  

Capacity  

Operation (h) Total energy  Energy consumption  

Summer  Winter  Summer Winter Summer  winter 

CFL (4) 6 W 5  5 30 30 120 120 

Ceiling fan (3) 60 W 8 0 420 0 1440 0 

M. Charger (2) 3 W 3 3 9 9 18 18 

TV (1) 20 W 5 5 100 120 100 100 

Total energy consummation (kWh/day) 1.1678 0.358 

 

Table 3-7: Load consumption of regular size SHS 

Appliance  Rated 

Capacity  

Operation (h) Total energy  Energy consumption  

Summer  Winter  Summer Winter Summer  winter 

CFL (3) 6 W 5  5 30 30 90 90 

Ceiling fan (2) 60 W 8 0 480 0 960 0 

M. Charger (1) 3 W 3 3 9 9 9 9 

TV (1) 20 W 5 5 100 120 100 100 

Total energy consummation (kWh/day) 1.159 0.199 

 

Table 3-8: Load Consumption of BHS 

Appliance  Rated 

Capacity  

Operation (h) Total energy  Energy consumption  

Summer  Winter  Summer Winter Summer  winter 

CFL (2) 6 W 5  5 30 30 60 60 

Ceiling fan (2) 60 W 6 0 420 0 360 0 

M. Charger (1) 3 W 3 3 9 9 9 9 

TV (1) 20 W 5 5 100 120 100 100 

Total energy consummation (kWh/day) .529 0.169 
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In the proposed MG there are three different types system attached; large size SHS, regular 

size SHS, and BHS load consumption both winter and summer represents in the table (3-6), (3-

7), and (3-8) respectively. 

3.4.4 Battery storage system Design 

 

In SHS and stand-alone PV system, most important component is battery. The BSS is 

indispensable in such system because of intermittent nature of solar PV. During the sun 

hour load directly connected to the PV array. Due to partial shading and cloudy hour, solar 

isolation is not sufficient for electricity generation. In SHS, battery configuration and 

design to operate with reliable and stable manoeuvre in evening peak load period. 

3.4.4.1 Ampere – hour (Ah) 

The measurement of battery capacity defined as Ampere Hour (Ah). In other words, it is 

an indication of how much energy can be stored by the battery and integrating 

discharging current in amperes over specific time. Ah, equal to transfer of one-ampere 

over one-hour. In the model, all batteries have 60 Ah capacity, which means delivers 3 A 

for 20 hours. 

3.4.4.2 Capacity of the Battery 

 

The measurement of a battery to store or deliver electrical energy, expressed as Ah. The 

capacity of the battery influenced its operational factors such as discharge rate, DOD, cut 

off voltage, temperature, and age and cycle history of the battery. The 12 V system of 60 

Ah energy storage capacity designed as bellow 

(Nominal voltage ofBattery ×Capacity of battery storage )

1000
 = capacity (kWh) 3-20 

The capacity of Battery = 
12 V ×60 Ah

1000
 = 0.72 KWh 
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3.4.4.3 Charge and Discharge of Lead Acid Battery 

In the PV system, Battery plays an important role; during day time solar generating 

electricity battery storages energy and discharge during loads requires. During charging 

voltage applied to the battery which set by the charge controller which is greater than 

battery voltage, and PV generated current drift to the battery in reverse direction. During 

discharging state current drifted off from the battery to the loads as charge reduces 

instantaneously battery voltage drawn off quickly. 

Depth of Discharge (DOD) 

The percentage of battery capacity (Ah) extract from a battery compared to the total 

charge capacity defined as DOD (in %). There are two important facts for the DOD in the 

PV based system. 

Allowable DOD 

The maximum percentage of full capacity withdrawn from the battery by the load called 

allowable depth of discharge.  Low Voltage Disconnect (LVD) set a point for the battery 

charge controller allow an allowable DOD limit at a given discharge rate in standalone PV 

system. In standalone SHS and other PV system with Lead acid battery considerable DOD 

high as 80 % for the deep cycle [128]. In practice allowable depth of discharge associated 

to the autonomy, the capacity of battery requires to operate the system without energy 

from PV array. 

Average Daily DOD 

Average daily DOD defined as the percentage of full rated capacity of battery that 

withdrawn from the load4 connected battery. The Average daily DOD differs through the 

load profile varies seasonally. Winter night hour in Bangladesh longer than summer and 

other seasons, the average DOD will be higher in winter day than the rest of the day, due 

to lower capacity and temperature. 

                                                        
4 The load that connected with battery in the PV system considered as average daily load profile for the system. 
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State of Charge 

The amount of stored energy remaining in the battery defined as State of charge (SOC). 

The SOC denoted battery fully charged, half charged, and completely discharged. The SOC 

of 100 % defined as battery fully charged, and 75 % of SOC indicated three-fourth (3/4) 

stored capacity remained for available further requirement. PV connected battery, charge 

increase in the battery but the charging current form the PV module decrease.  A lead acid 

battery in low state of charge (SOC %) is close to 11 V and higher state of charge above 

14 V. 

Table 3-9: SOC level of 12 V SLI type Battery [129] 

State of Charge SOC (%) Voltage Level Voltage level per cell 

100 12.70 2.12 

90 12.50 2.08 

80 12.42 2.07 

70 12.32 2.05 

60 12.20 2.03 

50 12.06 2.01 

40 11.90 1.98 

30 11.75 1.96 

20 11.58 1.93 

10 11.31 1.89 

0.0 10.5 1.75 

 

Figure 3-15: Lead-acid battery Voltage decreases over SOC decrease 
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3.4.4.4 Assumption of SOC for Lead Acid Battery 

 

Internal resistance of battery keeps constant, during charging and discharging cycle does 

not vary with current. 

 The parameters of battery deduced from discharge characteristics and keep same 

for charging characteristics same. 

 Battery capacity (Ah) does not change with the value of current. 

 The temperature, memory, and self-discharge does not take into account 

3.4.4.5 Lead Acid Battery Modelling Charging & Discharging 

 

Electric current supplied to the battery ad charge current and stored. Charging process 

requires amount of time and depends on rate of charge current from PV source. In general 

low rate of current (3 % to 5 % of battery capacity) are the best for charging. Battery 

should not charging at rate current 10 % of battery capacity [130]. As example 100 Ah 

battery should not charge current more than 10 A. The 12 V DC system, solar charge 

power from 45 WP and 65 WP PV module generate no more than 4.5 to 5 A, which is well-

matched for charging battery range from 60 Ah to 100 Ah Battery. The state of Discharge, 

when a load consumes the energy from the battery. The discharge current defined as the 

rate of current drawn from the battery during load consumption. Charging the battery by 

the PV system each day and then discharged through the load in each night. A 100 Ah 

battery charged up to 95 % of SOC within a cycle at 12.70 V. In the off-grid system 

typically number of days, need to last because each day is more or less the same as one 

cycle. In figure (3-16) represents discharging characteristics of Lead acid battery at 

nominal current. 

 

Figure 3-16: Discharge characteristics at nominal current 
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3.5 Charge Controller 

 

In the PV system charge controller, prevent the battery from overcharging. During 

charging the lead acid battery charging current turn on, and battery voltage raise 

repeatedly. The internal resistance of the battery resists the charging current Iq, and 

battery voltage immediately rises above the open circuit voltage. Voltage gradually raises 

after the initial jump, and battery charged. Charge controller such as series or shunt 

connected charge controller interrupting as on/off, acts as a switch. Charging stage: 

controller allow all current flow to the battery from PV panel. The voltage rises to an 

upper threshold level distinct as “voltage regulation” set point the charge current turn 

off. Voltage drifted down with the time until research “Voltage regulation reconnection” 

the set point little down to VR, and again the charge current Iq (highlighted in green 

figure-3-17) turned back on. Continuously the battery cycle between VR and VRR set 

point. Presenting in figure (3-17) when the set-point voltage of VRR is lower, then PV 

array current interrupting for charging the battery. Other hands, if VRR is closer to VR set 

point, then controller element oscillate and making noise even harming the switching 

element. 

In standalone PV system, charge controller regulates desire voltage and current for the 

system as required which is from PV panel drawn into a researchable battery. The DC 

output voltage of PV array supplies to the load through charge controller convert into the 

similar system DC voltage level. 

 

Figure 3-17: Charging and discharge state dedicate system On/off by charge controller 
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According to [129] there are two major operating conditions bellow: 

1. Normal operation: When battery voltage fluctuates in between maximum and 

minimum set point 

2. Overcharge and over-discharge: voltage researches some critical value 

                                                 

Figure 3-18: Block Diagram of Standalone PV system 

Charge controller in SHS act as a switch, during charging process controller, allow current 

drift into the battery from PV. Battery connected with the PV panel for charging required 

and disconnected from the PV panel as fully charged without any damage. With the 

advancement of modern power, electronics PV charge controller, getting the utmost 

reliability in the system, efficiency of operation, and availability in action. The system 

configured along with PV panel, DC Load connected to the battery backup and other 

additional mechanisms for stabilizing the system. PV Array connected with battery and 

load to attain such as 12 V, 24 or 48 V [130]. By the means of dual DC cutoff disconnect 

charge controller output should have connected to the Battery. Apart from DC cutoff 

disconnect, manually operated switch employed in the system to disconnect the load and 

PV simultaneously. During charging the battery, regulate the output current to inhibit the 

voltage level from the exceeding the voltage level.  

During the peak sun hour, PV power delivered to DC load connected to the PV panel in series 

and battery charging simultaneously. In standalone PV system, customize with MPPT scheme 

with a charge controller that offer maximum output driven power to the load shown in figure 

(3-18). 
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3.5.1 Charge controller design for Isolated SHS 

The series charge controller scheme applies a constant voltage (V) to the battery and the 

set point of full charge VR (voltage regulation) by series connected control element 

present in (figure 3-18). It acts as a variable resistor. In the series controlled charge 

controller, either solid-state switch or relay switch instigated to open (off) circuit 

between the battery and PV module for discontinuing charging, or technically limit the 

current in the series linear manner to hold the high battery voltage. 

Once again, controller reconnects the battery with PV panel when battery at bellow 

voltage from set point voltage of the system. The suggested design limits the current and 

holding high value of battery voltage. Current sensing the resistor in the controlled circuit 

so-called heat sinks circuit. 

Series connected on/off (interrupting) controller containing with one-step control 

represent in figure (3-19), battery charging through the array either on or off. The 

controller monitoring the battery voltage during charring process constantly. When the 

battery voltage drops the PV module, reconnect to the value of set point voltage, the 

battery, and PV module reconnected, and the cycle repeats. When the battery full charged 

the battery voltage reach to the VR and the cycle execution time more and shorter. 

 

Figure 3-19: Block Diagram of Series controlled charge controller 

Off controllers often, have difficulty fully charging batteries when the battery bank is 

small compared with the size of the photovoltaic array, a situation that tends to arise in 

systems with low levels of autonomy. This results from the relatively high charge currents 
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that occur during sunny days. The internal resistance of the battery causes higher 

currents to result in higher battery voltages. Thus, the gassing region and the VR set 

points reached a lower state-of-charge. Raising the VR set point does little to ameliorate 

this situation since it will simply permit more gassing. When the photovoltaic array will 

be regularly charging the batteries at a rate exceeding the C/20 rate, this may be a serious 

problem. If adding battery capacity ruled out, then constant voltage charging considered. 

3.5.2 Battery Charge and Overcharge Protection 

 

The PV module connected to the loads through charge controller shown in figure (3-19) 

and (3-20), the charge controller in the PV system which offers the system to protect 

over-charge and over discharge. The commonly used charge controller strategy based in 

On/Off interrupting [131]. Although this control strategy is not suitable for MG operation 

and applications while causes problem in battery charging process. Furthermore, in off-

grid mode, no energy transferred into the battery, as energy not stored properly in the 

battery, and voltage regulation cannot possible in this scheme [132] In this scheme, the 

operating conditions and charge controller design as battery charging in constant voltage 

while DC MG system regulated in an acceptable range as considered [130]. The scheme 

also offers, charging and discharging the control the battery with the intention of smooth 

control the DC system, the battery power charge, and discharge in accordance with 

consumption load. Nevertheless, the charge controller designed by limit the battery 

discharge current and avoid over-discharging. 

 

Figure 3-20: Operating Principle of protector (a) Overcharging and (b) discharging 
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According to the author of [130], the strategy of protection conditions represents in 

(figure 3-20a), the battery disconnects from the PV panel while the terminal voltage 

increases about certain threshold voltage (Vmax_off) and when loads require current which 

is lower than the current delivered by the PV module. The PV module connected to the 

battery when the terminal voltage decreases below a certain value (Vmax_on). 

The battery system protects from the excessive discharge, the load needs to disconnect 

from the battery; when terminal voltage decrease at a certain threshold voltage (Vmin_off) 

and the load requires current which is bigger than current that current delivered by the 

PV panel. Load again need to reconnect to the system, when the terminal voltage above 

reference voltage (Vmin_on), and the switching cycle represent in the (figure 3-20b). The 

charge controller strategy operates under the conditions concise in the table (3-10). 

Table 3-10: Summarize Charge Controller process and Conditions 

Conditions Constrains of charge controller 

(1) PV panel disconnect from the system  (Iload < IPV ) and (Vlerminal > Vmax_off)  

(2) Reconnect PV panel in the system  Followed by (1) done (V<Vmax_on) 

(3) Load Disconnect from the battery/system  (V < Vmin_off and Iload > IPV) 

(4) Reconnect the load within the system Followed by (3) done (V > Vmin_on) 

3.5.3 Battery charging without Charge controller 

This section standalone SHS designed without charge controller, charge controller in 

general used to manage the energy flow from PV to Battery and load by sensing current 

and voltage with understanding the maximum and minimum set voltage for the battery. 

Without charge controller, two schemes valid together with “self-regulating nodule” and 

“battery size” has to considered, where CR (charger regulation) not required. 

3.5.3.1 Low-voltage “self-regulation” PV module 

 

In this section, medium size SHS and BHS designed along with low voltage PV module, 

battery, and DC load. Medium size SHS consisting of small size PV, battery, and load but 

BHS consisting of battery and Load. Both Medium and BHS scheme designed without 
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charge controller by self-regulation. The self-regulating 12 V DC voltage PV module 

considering with 36 multicrystal (Kyocera KC65T) cell in series, consequential an open-

circuit voltage VOC = 21.7 V and maximum power voltage about VMPP = 17.4 V at STC 

25°C. In self-regulation scheme proposition with no overcharge to occur, for this two 

factors considering for designing and settings for the system describes bellow; 

The loads used consumes PV produced electricity on the daily basis. Battery obtains an 

excessive charge from PV, even though the module operates beyond knee charging 

current which is lower than maximum power current IMP. The loads consume daily, then 

the capacity of battery Ah receiving current from the PV module. This stored energy safely 

consumers by the loads daily without overcharging the battery. 

Climate should not either cold nor warm. The average temperature of the location 

considered for this thesis in between 20 to 28°C present in (Appendix-4). If the climate is 

very cold, the knee of VI curves not move down inadequate voltage, as the current not 

generated from PV module. The self-regulated system also used in arctic climate region 

where the system used for lighting. The drop-off current extreme in the warm climate 

and crop off current very low in the cold climate [133]. Voltage 2.3 mV decreases at 

escalation of 1°C temperature [134]. 

3.5.4 Charge controller Design and Modelling for large SHS 

Tow stage control PV array current immediately increase with battery voltage, when the 

load pulls down. Other control stages the current keep at small trickle charge level until 

the battery voltage gone down at range between 12.5 V to 12.8 V [135], before that point, 

the PV array current to resume.  In large SHS with 45 to 165 WP, PV module produces a 

large amount of power and loads are connected to the battery instead of PV panel directly 

as shown in figure (3-20). Design and modelling of charge controller with PWM described 

briefly and its technical configuration and simulation. The solid-state switch has 

considered at very high frequency (20-30 kHz) for the applied pulse of current. 

In the 12 V battery system, the voltage differs in between 10.5 V and 14.4 V, the depending 

factors are SOC, charge current and discharge current, type and battery age. When a full 
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loaded battery with no charging, discharging current flowing to the loads then battery 

voltage reach about 12.4 to 12.7 V. 

During solar power generation, charging current is flowing to the battery the battery 

voltage jump to about 13.7 V (depending on charging current), now if the loads are 

connected by the switch (LVD = on) the voltage drop down to 12.0 to 11.8 V (depending 

on the system). If control (PWM) allows, then current flowing into the battery so voltage 

level increases up to 14.4 V. By means of overcharge protection, at 14.4 V charge 

controller switched off by PWM. At this stage the loads allow to connect with the system 

(LVD= on) and loads can consume energy, battery discharging, until bellow 11.5 V. If 

battery voltage below 11.5 V (control = off) by PWM for minimum period of time 30 s, 

and all loads also disconnected from the system by (LVD= off). Until battery voltage raised 

to 12.5 V, the loads are reconnected again (LVD=on). In PWM charge controller, Power 

dissipation is smaller than other charge controllers like series and shunt charge 

controller presents in figure (3-21).  

 

Figure 3-21: PWM controlled Charge Controller 

3.5.5 Charge controller set point with different voltage level 

 

Controller set points are the battery different voltage level. According to [133], there are 

four major set points has considered for controlling charging and discharging. VR and 

AVR voltage level refer for the set point for charging features that allow PV module is 

connected and disconnected from the battery.  Similarly, load reconnects voltage (LRV) 

and low voltage load disconnect (LVD) set points state for charging the battery and 

allows. The charge controller set point in different voltage level present in (figure 3-22). 
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3.5.5.1 High Voltage Disconnect (HVD) 

The region between VR and ARV dedicated in the presentation shown in (figure 3-22), 

where set point voltage has no limited to operate between this point. But the charge 

controller set as maximum in VR to protect overcharge of the battery. Once charge 

controller sense that battery reaches the voltage regulation set point, the controller either 

disconnect form the system or regulate the amount of charge current deliver to the 

battery shown in figure (3-22). In figure (3-22) present battery charging with a constant 

voltage, the amount of charge current which controlled by the regulator that battery hold 

at the set point for voltage regulation. In the practice, the battery in PV system allows 

charging whatever the current produced by the PV panel. In figure (3-23) represents 

battery charging with constant voltage charge controller VR set point considers little 

more than VRR (voltage regulation reconnect); the VR set point little lower than the 

voltage produces by the battery has been charged up at 100 % of SOC. 

 

Figure 3-22: Charge controller Set point voltage 
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Figure 3-23: Battery charging with constant voltage 

3.5.5.2 Voltage regulation: (VR) Set point Voltage 

VR set point varying up or down depending on the battery type and operation strategy. 

Vindicating VR set point is difficult and stressful, but low VR set point approach avoids 

excessive overcharge. In practice, high VR set point allows ensuring full charge of battery 

cells. Photovoltaic charge controller with constant voltage charging process allow with 

whatever the PV current the PV module is able to deliver until VR set point shown in 

figure (3-23). 

 

3.5.5.3 Array Reconnect Voltage set point 

 

 After disconnect due to overcharge charging point with respect to VR, battery voltage 

again decreases from VR set point. If charging and the discharging rate are high enough, 

the battery voltage is decreased at the higher rate. When battery voltage decreases at the 

predefined set point voltage of charge controller allows reconnecting the PV module. The 

voltage of the battery at where PV module again reconnect to the battery called (ARV) 

pointed in blue pointed shown in figure (3-22). 
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3.5.5.4 Low Voltage Disconnect Set point 

 

Deep discharging of the battery has the negative impact of the battery performance 

including susceptible to freeze and shorten battery life. If the battery voltage drops down 

to the low level due to prolonged over load in the system or bad weather for the certain 

hour when PV does not generate PV current, charge controller disconnected from the load 

and avoid further over discharge. The set point voltage, where charge controller able to 

disconnected the load from battery delineate (LVD) red-lined shown in figure (3.22). 

3.5.5.5 Low Voltage Reconnect set point 

 

Disconnecting load from the battery at LVD set-point, battery voltage increases to open 

circuit voltage. When PV module connected to the system with battery, and battery 

charging up with the battery nominal voltage, a band of SOC high not enough (as proposal 

SOC=40 %) to reconnect the load again. The set point where charger allow the load to be 

reconnected called LVR. In practical practice, LVR should have 0.08 V/cell (0.5 V/ 12 V 

battery), and the voltage should be higher than LVD. An example if the charge controller 

LVD set-point defined at 12.5 V then the LVR at 13.0 V. 

 

3.6 Technical Standard of charge controller of SHS in Bangladesh 

 

The charge controller of PV system and SHS used in Bangladesh, the specification of low 

voltage disconnect (VLVD) and high voltage disconnect (VHVD) considered VHVD = 14.3 

± 0.2V and VLVD = 11.6 ± 0.1 V [136]. There are several types of lead acid battery typically 

used in SHS of Bangladesh, in the table (3-11). The Depth of Discharge (DOC) considers 

70 % to 60 % that prolongs to the SOC of the battery coupled to the load. Solar 

replacement ratio (SRR) is the indicator which expresses, the percentage of demand that 

replaced by the solar during light, and the battery can be charged simultaneously present 

in equation (17). The battery charge cycle considered as 40 % to 100 %; on every 

occasion the SOC below 40 %, power from the MG (DC bus) deliveries to the load. 
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𝑆RR =
Pdemand − PDC − PSOC

Pdemand
 

3-21 

 

 

Where   

                  PDemand  = Power demand for the load connected in the system 

                  PDC = Available power from the DC bus 

                  PSOC = Battery power 

 

Table 3-11: Recommended Charge controller regulation for Lead acid Battery [137] 

Regulation Voltage 12 V Battery types 

 Flooded (PbSb) Flooded (PbCa) 

LVR 14.4-14.8 14.0-14.4 

LVD 12.0 ± 1 11.5 ± 1 

 

3.7 Micro grid configuration and Design 

 

Distributed renewable energy integrated MG seemed to be exploiting the alternative and 

future source of energy, reducing the environmental risk. Last few years due increasing 

the population, comfort, and life standard style, however, the dependency on machinery 

demand of electrical power increasing rapidly [138]. With achieving the vision 2020, 

energy access in the country like Bangladesh, where the main extension both 

economically and technically not feasible, but average 6 kWh/m2/day solar irradiation 

and 10 h solar energy generation and huge amount of biomass waste offer a sustainable 

and reliable energy system is the best solution in Bangladesh; the infrastructure and 

formation is main problem in such power system. The authors of [139] finding that a large 

AC grid not economically not sustainable in Bangladesh, while a large number of small 

size electrical appliances which can also operate by the small scale DC grid rather than 

220 V AC system. The loads mainly considered which used in rural areas that also 

configured in DC such as CFL or LED light or incandescent lamp, DC ceiling fan, mobile 

charger, DC powered TV and DC brushless water pump for irrigation and rice mills. 
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The optimal design of MG generalized into two classifications such as an optimal design 

with suitable configuration and planning for operational strategy of MG [140]. According 

to IEG, to improve energy access in the developing countries should dispense to grid 

intensification rather than configuring the standalone system, whereas in Bangladesh, 

India, sub-Saharan-Africa solar PV based project have a lower cost per connection and 

comparatively easy to implement [141]. 

The proposed system design is focused on long-term, which involves PV configured SHS, 

and a community based biomass-fuelled CHP, electric power delivered to the household 

loads and community based cold storage load. In this section, MG configuration and 

optimal design proposition with decentralized DER components like PV and Biomass has 

chosen for the best suitable source of energy. The configuration of MG scheme shown in 

figure (3-24) in the proposed site in Bangladesh, where AC and DC sources and loads are 

connected corresponding AC and DC network respectively. DC networks configure with 

integrated SHS and main grid (AC network) coupled within DC MG through PCC (point of 

common coupling). The PCC associate together through a pole-mounted transformer 

described in next section (3.7.3). AC network system tied to the national grid and with 

CHP generation source. 

NS

E

W

CHP

Cold 
Storage

Subsattion

 

Figure 3-24: SHS and BHS integrated micro grid (MG) @ google earth  
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The proposed MG consisting of AC and DC network have their corresponding 

decentralized generation sources, and load and battery storage. AC network connected to 

the AC load (cold storage), circuit breaker. Grid power transfer through pole mounted 

transformer to the DC grid where SHS and BHS connected in the 12 V DC system. PV 

arrays are mounted within the SHS, and 60 Ah Lead acid battery mounted with the 12 V 

system. SHS system connected in parallel within the system. The variable DC loads 

connected within the SHS and BHS. 

In the figure (3-24), the proposed MG system, which coupled with several SHS and BHS 

configured. The proposed MG proposition that allows operating in both standalone and 

grid-tied operation mode, where system configured with DERs that consist of PV system 

distinct as SHS and biomass-fuelled CHP distinctively produce electrical power and 

thermal energy consumed by cold storage. The CHP in the proposed scheme which 

consists of a small scale MT that produces electricity and thermal energy simultaneously. 

Remote area, pier-urban, and small village far away from the national grid suitable for 

this proposed system. 

 

3.7.1 DC-MG Scheme 

 

The conventional energy sources like fossil fuel, coal are exhausting and becoming 

expensive day by day; while spreads greenhouse gasses including CO2 that causes global 

warming alarmingly. Considering these challenges, adopting local renewable energy 

sources that have the potential to transformation at the point of end users without 

conversion which also avoid inefficient energy transport [142]. Inspiring with the 

sustainable strategies to form several individual clusters within rural areas that configure 

with 100 % of local renewable sources to meet own energy demand. The DC system, there 

only active power include voltage and current involved in efficiency [143]-[144], whereas 

AC system consents TDH (total harmonic distortion) caused by the loads or effect of 

inductance of distribution line and loads causes reactive power flow [145]. 

The DC grid configures with DC power generated a source of energy, the proposed 

scheme PV is the well-suited source that well defined as SHS, which distributed within 

0.5 km and a smart power management strategy looked forward to coordinating SHS 
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along within the system and battery storage system effectively. The batteries and load 

are connected within the SHS, the PV panel produces power delivered to load and battery, 

to protect the battery from excessive overcharge and discharge by a charge controller, 

and DC - DC bidirectional converter used in the system which coupled SHS within the DC 

bus shown in figure (3-24). Loads of both large and regular SHS considered in (section 

3.3.3), the peak load configured with 1.14 kW and 0.7 kW respectively, however, solar 

power generation higher whereas the load is lesser than the demand A 60-80 Ah battery 

used in each SHS. In (figure 3-24) presents, the battery, associated loads, and PV panel 

coupled in the SHS through a DC-DC converter that controls the DC MG system. 

The DC-MG show in figure (3-25), the advantage of this scheme in the relationship of the 

system efficiency enhancement by eliminates DC/AC or AC/DC conversion. The proposed 

DC system operate in both off grid and grid tied as AC [146], grid connected mode 

considered while PV predictable to operate in MPPT and delivered maximum power to 

the loads, batteries, and surplus electricity to the grid. The main grid in the proposed 

scheme, act as a supportive grid which has the ability to supplies power into the MG at 

the same time the surplus power produces by the DC grid (SHS associated in the DC grid) 

sells back to the main grid. Total power produced by the DC system present in the 

(equation 18) 

PTotal = PPV_DC + PBattery - PLoad 3-22 

 

 

Figure 3-25: Layout of typical SHS configuration 
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the same network shown in figure (3-27a and 3-27b). Energy access to rural areas both 

radial or ring network deployed but the operation should be radial. 

The author [148]defined the capacity of battery in SHS defined in (equation 19) 

Capacity =  
E × A

V × T × ηcable ×  ηconverter 
 

3-23 

 

Where,    

              E = Daily energy requirement for battery sizing (Wh) 

               A = Days of autonomy, i.e. number of days of storage required 

               V = System voltage (12 V) 

               T = Maximum DOD of the battery (0.3–0.9) and co 

ηconverter  = converter efficiency (0.8–0.95) 

ηcable   Efficiency of the cables delivering the power from the battery  

 

3.7.3 Pole Mounted Transformer 

 

The DC MG connected to the main grid by a static device consisting of two winding 

without a magnetic core; power transfer by electromagnetic induction in between two 

circuits at the same frequency but different voltage and current. The proposed DC MG 

system configures along with 12 V SHS and DC bus 24-48 V whereas the main grid 230 V. 

Main grid side three phase 6.6 kV AC current coupled to the pole mounted transformer 

and in the MG side 220-230 V to the single phase. The main grid system frequency set at 

50 Hz. The SHS and BHS are connected to the main grid by single phase 220-230 V AC 

line. The pole mounted transformer defined as the substation in figure (3-24) and MG 

model presents in MATLAB/SIMULINK environment attached in (Appendix-1) 

 

Summary 

 

Standalone PV system, especially SHS has been a significant growth across the rural areas 

in the country throughout last five years in Bangladesh. The research investigates and 

demonstrates, the PV technology adaptability and flexibility for designing in different 
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regions with the different scheme. In the remote areas, it is straightforward to design a 

stand-alone system which possible to adopt with bottom up swarm concept, where 

energy can be sharing among participants’ in the system. Similarly, the country like 

Bangladesh where biomass potential has seen enormous prospective to produce 

electricity by small scale CHP or micro-generator. Almost 2.0 tons/day production of 

biomass resources available from agricultural based regions, where agricultural biomass 

waste and animal manure used a fuel and the process considers either gasification or 

combustion taken into consideration to produces 35 % of electrical power and 75 % of 

thermal energy from micro-CHP. Country like Bangladesh where summer season 

comprises with 10 months, while average solar irradiation 4.5 kW/m2/day offer 

sufficient electricity for both daytime and evening electric load demand, and the 

enormous biomass potential that generate electric power and the thermal energy can be 

converse into chill and usage in the cold storage to store huge amount of crops. PV 

produces DC current and modern technology offers DC generators and integration of 

these two potential to configures DC system, where the appliances also comply with the 

DC system. The optimal MG design scheme and sizing describe in chapter-5. 

According to the proposed design, PV system (SHS) coupled to the DC bus, and m-CHP 

tied with AC system with the main grid and cold storage also connected into the AC 

system. Electric power and thermal power produces by congregating m-CHP unit which 

located on site or distributed through AC or DC bus, the electricity delivered to the loads 

through to AC grid if cold storage connected to AC bus. The cold storage can be connected 

to the DC bus in MG, a DC micro-turbine can be used to produces electric power and 

thermal power or directly to loads without the grid. The thermal energy converts into the 

chill air by thermal driven absorption chiller. The advantage of µ-CHP system has the 

ability to improve both electrical and thermal efficiency 33 % and 65 % respectively. 

The studies show inclusive of decentralized electric power generates by several SHS and 

m-CHP, among all SHS coupled in parallel in the DC bus and followed by the radial 

network. Improving the efficiency both DC MG system and distribution, a dispatching 

model that comply by optimal size design, planning for desired operation strategy for the 

specific application. The efficiency also depends on the number of converter and charge 

controller used in each SHS, load power consumption, battery capacity and SOC. 
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Introduction 

 

The proposed MG consists of several components, where PV modules are one of the major 

elements in the system. In this chapter, MATLAB/SIMULINK based modelling and 

simulation result will be briefly discussed. The PV model mainly designed stand-alone 

mode, along with PV system battery and load also considered during the simulation and 

result also shown. The operation of MG conceded for the grid-connected mode. Along all 

the elements of MG also connected through the system. The PV module, cell temperature 

also taken under consideration for studying and analysis the MG, and SHS. The resulting 

analysis was done by using MATLAB/SIMULINK, and the result presented in graphical 

and verbal throughout this chapter. Individual PV panel as DERs source, DC loads, charge 

controller, DC-DC converter, battery charging and discharging and combined MG 

modelling and simulation tested and analysis their result simultaneously. PV panel using 

empirical mathematical equations and its characteristics such as temperature, solar 

insolation shown in figure (4-1) of the proposed location, and mathematical equation 

implemented and modelled the MATLAB/ SIMULINK based environment in section (4.1 

PV Module Modelling and Simulation). The implementation of PV general equations and 

modelling in SIMULINK is precise and straightforward. 

There are many charge controller schemes with unidirectional DC - DC converter, the two 

independent control strategy are obligatory for battery charging and discharging. In the 

proposed system battery charging and their sharing energy is important for reliability. 

The multiport converter may collectively use in the system shown in figure (4-39). The 

converter used in the renewable integrated system are characterized as non-isolated and 

isolated. As the proposed system does not require a transformer or another such devise 

for increases or decreases voltage and current level, and the non-isolated converter is 

preferred to implement.  The system where no access to the national grid or remotely 

designed MG with battery storage system preferred to use unidirectional DC - DC 

Converter. 

The simulation results will be measuring of each individual elements model deployed in 

the system by MATLAB/SIMULINK, the result will also be discussed in this chapter. 
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4.1 PV Module Modeling and Simulation 

In contemporary practice, the performance of PV module has influenced by its known 

conditions. The electrical performance and efficiency of the PV module characterized by 

the manufacturer are some special conditions counting with Standard Test Condition 

(STC) and Nominal Operating Cell Temperature (NOCT). NOCT (reference) condition 

parameters delivered to the module together with ambient irradiance Ga, ambient 

temperature Ta, the temperature of the cell TC. Under STC condition followed by solar 

Irradiance G (W/m2) and cell temperature (K), at least following parameters are 

measured: 

 Short circuit current for the module, ISC 

 Open circuit voltage for module, VOC 

 Maximum power for the module, PMAX 

Factual Solar data for Gopalgonj, Bangladesh of the year 2013 is especially global 

horizontal surface insolation with solar orientation preferable at south and tilt angle 

23.76 (NASA, 2015) to allow the maximum power production. At the optimum, tilt angle 

for a fixed type solar collector as acquires maximum possible radiation through the year 

present in figure (4-1). 

Figure 4-1: Solar Irradiance in the Proposed MG site @ 30 June, 2013 

Modelling the PV system developed in Simulink; at first PV array developed based on 

mathematical equations. The individual mechanisms of PV module considered by 

mathematical equations and parameters.  Figure (4-1) represent the PV module in 

Simulink model is responded by the different temperature. Figure (4-2) and (4-3) 
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portrayed the output characteristics including photovoltaic current, voltage, and power 

of proposed PV module. 

Table 4-1: Kyocera PV Module Specifications 

Electrical Performance under Standard Test Condition (STC) 

Maximum Power (PMAX) 65.0 W 

Maximum Power Voltage (VMPP) 17.4 V 

Maximum Power Current (IMPP) 3.75 A 

Open Circuit Voltage (VOC) 21.7 V 

Short Circuit Current (ISC) 3.99 A 

Temperature coefficient of VOC - 8.21×10-2 V/˚C 

Temperature Coefficient of ISC 1.59×10-2 A/˚C 

STC: irradiance 1000 W/m2 , AM1.5 spectrum, Module temperature 25 ˚C  

Electrical Performance Under Nominal Operating Cell temperature (NOCT)  

Maximum Power (PMAX) 46 W 

Maximum Power Voltage (VMPP) 15.03 V 

Maximum Power Current (IMPP) 3.01 A 

Open Circuit Voltage (VOC) 19.70 V 

Short Circuit Current (ISC) 3.22  A 

NOCT: irradiance 800 W/m2 , AM1.5, Cell temperature TC : 47 ˚C 

 

Figure 4-2: Proposed PV Module in Simulink Model 
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Figure 4-3:  V-I Characteristics of proposed PV module 

 

Figure 4-4: P-I Characteristics of proposed PV module 
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Figure 4-5: P-V output characteristics of PV module 

 

Figure 4-6: PV module output characteristics of PV module 
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4.1.1 Temperature Effect on PV 

Among (4-3) (4-4) (4-5) (4-6) all those characteristics figure shown, the generating 

current varying with respect to ambient temperature and solar irradiations. Solar Module 

output affected by both solar irradiation and ambient temperature. The PV module 

generating current and voltage increasing, thus resulting power increased by solar 

irradiation. 

As increasing ambient temperature (Ta) affected PV module terminal voltage, while PV 

generating current kept constant and resulting power slightly increased shown in figure 

(4-7) and (4-8) respectively. According to the representation of figure the peak output 

power 54 W at 30 °C and 55 W at 47°C shown in figure (4-7) and (4-8). The cell 

temperature depends on PV cell material which is described in temperature coefficient 

of open circuit voltage VOC. Most of the PV panel including polycrystalline and 

Multicrystal module PV panel, temperature decreased by ambient temperature (Ta °C), 

the voltage increased by 0.12 V [149]. The empirical equations of PV open circuit voltage 

and cell efficiency present (4-1) and (4-2) bellow; 

VOC = KV × TSTC  - Ta + VOC, ref  4-1 

ηC = ηT,ref [1- KV (TC-Tref) ] 4-2 

 

 

 

Where,   

                      VOC = Open circuit Voltage (V) 

                      ηC = Cell efficiency  

                     ηT,ref  Module electrical efficiency at reference temperature   

                      KV = Temperature Coefficient of open circuit voltage (V/℃ ) 

                     TC = Cell temperature  

                     Ta = Ambient temperature  

                     Tref = Reference temperature (25 ℃ ) 
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Figure 4-7: P-V Output Characteristics @ 30 °C 

 

Figure 4-8: P-V Output Characteristics @ 47°C 

 

4.2 Battery Charging and discharging simulation 

 

4.2.1 Lead Acid Battery Charging Model 

 

The individual Battery of the proposed MG considered as energy storage, lead acid a 12 

V, and 60 Ah connected to all SHS and BHS. The loads of SHS and BHS connected in 

parallel. When state of charge (SOC) is lower than 40 %, then load disconnected from the 

battery through charge controller. 
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(a) 

 

  (b) 

Figure 4-9: (a) Parameters of Lead acid battery & (b) Battery model charging with PV 

Lead acid battery from MATLAB/SIMULINK Sim Power System generic dynamic block 

taken, the parameters of Lead acid shown in figure (4-9a) considered according to 

MATHWORKS library [150] and battery charging with different solar irradiation shown 

in figure (4-9b). The nominal voltage of lead acid battery represents the end of linear of 

battery discharge, after reach that level voltage decreased shortly. Rated capacity (Ah) 

minimum effective capacity of battery under consideration, the capacity of battery; 

amount of energy released from a fully charged battery during discharge with a current, 

voltage and temperature. For an example, the current require for charging I = C/20; 

capacity C= C10 = 60 Ah, the current of battery I= 60 Ah/20 =3 A. Initially state of charge 

100 % distinct battery fully charged and 0 % denoted battery is empty. 

 

Figure 4-10: Equivalent circuit diagram of Lead acid the battery block 

As the battery is being charged at constant current, the voltage remains near its nominal 

value (1.2 V in the example) and rises abruptly to a peak when the battery is almost fully 
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charged. This voltage rising, remarked in the figure (4-13) with circled, starts when the 

cell enters the overcharge danger zone. From that instant, the temperature begins to rise 

rapidly since the chemical changes are complete and the excess of electrical energy is 

converted into heat. This point can therefore be detected by the increase of voltage and 

used to identify the peak charge and to cut off the charger when the battery has reached 

its full charge. 

 

 

Figure 4-11: Lead Acid Battery charging with variable PV Current 

 

During charging with variable current (generated during solar irradiation), at the 

beginning the voltage remains as nominal battery voltage (12 V) but voltage increases 

abruptly respect continuous charging over period of time. Voltage raising observed in 

figure (4-13) with blue circle peak charring voltage about 14.3 V, and black circle 

represent the fast charring voltage about 14.4 V of Battery. The battery voltage increases 

slowly with respect to PV current generated over solar irradiation. The battery 

continuously absorbing charge and charging rate gradually slow down. When battery 

about to full charged, the charging current gradually decreased. The simulation result of 

SOC of battery that increases during the solar peak hour in between 10:00 h to 14:00 h, 

and the initial SOC increases from 60 % to 75 % show in figure (4-12). 
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Figure 4-12: Simulation result of SOC over time for a day 

 

Figure 4-13: Battery Voltage 

 

4.2.2 Discharging with restive load  

 

A typical DC Load (resistive) are connected in parallel to the battery. Considering a 

constant restive load with the system. As the PV system produce 45 to 55 WP between 

10:00 - 15:00 h, at that time battery, can charge and discharge simultaneously. In figure 

(4-15), (4-16) and (4-17) represent the discharging current, discharge voltage and SOC 

simulation result in Simulink environment. In figure (4-14) present the layout of solar 
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Home system without charge controller which represent battery charging by the battery 

connected in the system and discharging through the resistive load. 

 

Figure 4-14: Battery charging and discharging simulation 

 

Figure 4-15: Discharging Current of Battery Simulation 

 

As shown in figure, (4-15) discharging current of the battery over a day, and in figure (4-

16) until 8:00 h the battery discharged, in between 8:00 h to 10:00h due to low solar 

irradiation the SOC level almost constant, soon after the solar irradiation starts the 

Module start to produce PV current shown in figure (4-15) and the battery starts charging 

till 15:30 h, SOC level shown in figure (4-16). The solar generation is not enough to charge 

the battery and battery starts discharging shown in figure (4-16), the battery charging 

and discharging without charge controller discharge to the resistive load. When solar 

irradiance increases the battery start charging and the battery voltage increases, while 

battery voltage reaches 13.4 V battery acts as float “charge” that remarkably constant 
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voltage during that time present in figure (4-17), as the PV module generate electricity 

that charging battery simultaneously battery discharge in the loads. During charging, the 

region of raising voltage called bulk charging, the constant voltage region called 

absorption charge, and the region voltage decrease called float charge shown in figure 

(5.17). 

 

Figure 4-16: Simulation Result of SOC with a Constant Resistive Load 

 

Figure 4-17: Voltage Level with a Constant Resistive Load 

 

In the SHS or PV system present in figure (4-14), increasing the resistive loads in the 

system, battery discharges over the loads and the SOC level decreases 60 % to 56 % in 

between 00:00 h to 8:00 h, as increases the solar insolation loads not consumes power 

from the battery rather PV supplies power directly to the load while the SOC remains 

constant show in figure (4-18). While there is no solar irradiation, battery again discharge 

overloads and SOC of the battery decreases to 33 % from 17:00 to 24:00 h shown in figure 

(4-18).  
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Figure 4-18: Charging and Discharging effect During Enhancement of Loads 

 

Figure 4-19: Voltage level during discharging and charging 

In figure (4-19) presents, during solar irradiation increases the battery voltage increases 

simultaneously. At 10:00 h the battery voltage increases remarkably from 11.6 to 12.9 V 

while solar insolation is available, and PV power supplies to the load and battery remains 

constant at 12.9 V. 
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Figure 4-20: Discharging current of battery 

 

 

Figure 4-21: PV generated current vs Battery Charging and discharge current  

In figure (4-20) and (4-21) present the charging and discharging current. The red spikes 

I figure 4-21 represents the PV generated current. 

 

4.3 SHS and BHS modelling and simulation 

A Solar home system connected in parallel with other battery home system, the proposed 

system three SHS and 2 small BHS system connected through a hub, defined a cluster 

According to the proposal the capacity of each medium size SHS 65 WP and large 100 WP. 

A 100 WP and two 65 WP SHS assimilated within the common cluster figured in (3-25a). A 

SHS model present in figure (4-14) and a Battery home system is loads are connected 

within a battery. The Battery home system connected with the SHS, and solar energy 

shared within these including SHS and BHS. 
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Figure 4-22: SOC of large size SHS Battery 

 

Figure 4-23: SOC characteristics of BHS 

According to the proposal, a Large SHS measured as 72 cell module with characterized 

short circuit current 5.99 A, and open circuit voltage 21.7 V. Large SHSs are generating 

solar energy which is comparatively large enough to share excess solar energy among 

another system. From the multi-micro grid concept, where a cluster is shown in figure (3-

25a and 3-25b), where two medium sizes SHS, 1 large size SHS, and two BHS sharing their 

energy among them. The ability to share excess energy among SHS and BHS within the 

cluster. Conferring to [151], many SHS do not utilize both solar energy and their battery 

energy, by midday the battery getting fully charged as in the rural areas electricity is not 

being used in the daytime. So SHS can share their energy to BHS, the system whose are 
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not afford Solar panel due to high cost. A small scale battery favorable for the low-income 

people whose can afford that battery and connected to the system. 

 

Figure 4-24: SOC characteristics of regular size SHS 

A regular size SHS with less capacity than the large SHS also has the ability to charge their 

battery and BHS. Figure (4-23) and (4-24) represent SOC characteristics of regular SHS 

and BHS respectively. Comparing figures (4-22), (4-23) and (4-24) SOC of large SHS 

levitation higher than regular size SHS. The SOC of BHS is progressively escalating which 

is connected to the large size SHS compare to the BHS that connected to the regular size 

SHS. When BHS connected to the regular size SHS, the charging, and discharging level are 

analogous for both SHS and BHS perceived the SOC characteristics shown in figure (4-23) 

and (4-24). Also, during sun peak hour, the value of SOC of regular size SHS are not high 

as large size SHS comparison shown in (4-21) and (4-.22). The BHS which is connected to 

the regular size SHS, the value of SOC much inferior to large SHS represent in (4-23). 

Without charge controller, the solar generated PV current (amp) also fluctuate with the 

solar insolation. The battery circuit designed for regular size SHS to charge 12 V, 65 Ah 

sealed lead acid battery, on the other hand for the large SHS 12 V, 100 Ah. 

 

4.3.1 Charge controller modelling and simulation 

 

Unbalanced discharging and overcharging of the battery is hazardous, and the result of 

degradation and corrosion of battery, which has a negative impact on battery capacity 

and state of health (SOH). The output constraints of the battery such as terminal voltage 
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VT and SOC varying on charging and discharging current. The variable charging current 

which are generated from variable solar insolation, and discharging current which 

varying on loads. State-of-charge (SOC) of lead acid battery decreases, consequently 

decreases of its terminal voltage. The terminal voltage about 12.6 to 12.7 V at SOC of 100 

% afterward discharge, the voltage decreased to 12.1 to 12.2 V at SOC of 50 % of a 

typically sealed lead [152] acid battery present in figure (4-25). When the battery is 

completely empty SOC is 0, the voltage is about 10.5 V. 

 

Figure 4-25: Terminal Voltage vs SOC% of Lead acid Battery 

The standalone PV system, SHS, and BHS configuration, DC load is always connected with 

a battery as the back power of the system. With a charge controller of the PV system 

additional components that afford a battery and system stability. A charge controller 

regulates the current from PV module and prevents maximum voltage level that 

exceeding during charging. The output of charge controller connected to the battery 

through a dual cut off disconnect. 

 

 Figure 4-26: Typical Charge Controller [153] 
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The output of the charge controller is reference PV voltage (VPV_ref) and input are 

including actual PV voltage (VPV) and current (IPV); battery voltage (Vbatt) and current 

(Ibatt) shown in figure (4-26). Measuring the Excessive battery current that flows in the 

battery, and typically rating of both battery and PV current which are decided the current 

for charging the battery. 

According [153] battery charging current always less than the system current as 

considered. As shown in figure (4-27) battery current and voltage are distinct as Ibatt-MAX 

and Vbatt-MAX respectively. VPV-ref and k are setting as initialized as starting. Every step the 

battery voltage and current (Vbatt & Ibatt) and PV current and voltage (VPV & IPV) are 

distinguished. The power has calculated form the PV generated voltage (VPV) and current 

(IPV). As showing in the algorithm flowchart (figure 4-27), compare the measured battery 

voltage and current with maximum set value of battery voltage (Vbatt-MAX) and current 

(Ibatt-MAX). If PNEW lower than POLD, the value of VPV_ref reversely changed. On the other 

hand, the value of VPV_ref is further changed when PNEW is higher than the POLD. 

Subsequently, the power reduces, the battery voltage and current also reduce. The 

battery voltage and currently less than the maximum set value the MPPT executed as 

flowchart described in an earlier chapter (section 4.3). Meanwhile, the battery voltage 

(Vbatt) and current (Ibatt) changed to maximum or above set point values then reduced the 

extraction of power from the PV module. 

According to the proposed charge controller scheme, a buck-boost converter 12 battery 

and 45 WP with (VOC=21.7 V and ISC=3.99 A) PV array simulate based on SIMULINK 

environment. The voltage changes from 24 V to 12.2 V in t= 0.06 sec and current change 

from 4.4 A to 3.80 A at no load, the result shown in figure (5.29). By using P & O method, 

maximum 65 W extracted from the PV module by using boost converter. Gassing voltage 

of the battery that used in the proposed system 14.3 ± 0.2 V. The voltage increased at 16.5 

V from 12.3 V, the power elevated at 65 W. With constant voltage at 12 V, where the 

battery upper threshold voltage maintained across the battery current increases to bulk 

value for charring the battery shown in figure (4-28). 
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K=0.1,  VPV,ref = 12 V                                                                      
Vbatt =(14.3  ± 2 )V  

IMAX = 4 A                                   

VPV        IPV        
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POLD = PNEW

Delay Ts

NO
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Figure 4-27: Charge Controller flowchart Algorithm 
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Figure 4-28: Charge controller at constant 12 V, and increased current 

In constant current (CC) the converter, battery charging with whatever the variation of 

PV array generated PV current along with a constant current. Different solar insolation, 

PV panel generated power fed into the converter and charge controller then a PWM signal 

from charge controller supply constant current to the battery throughout the a DC - DC 

converter during charging process. 

 

Figure 4-29: Internal Circuit of Charge Controller 

 

The SHS design consists of PV panel that connected to the battery through charge 

controller, and load loads. Due to voltage control in the system both SHS and MG uses 

bidirectional DC-DC converter. At temperature 20 °C to 25 °C of cell temperature of PV 
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module about 13 to 15 V and sometimes voltages raises to 16 V during cold and high solar 

insolation. A convert uses to control the voltage level in the system. In figure (4-30) and 

(4-31) shown the SHS and PV system modelling in Simulink environment. The MPPT 

tracker incorporate within the charge controller that control the battery SOC and uphold 

the battery health and life. However, charge controller On/Off followed by the SOC of 

battery; i.e. MPPT turns off while battery full otherwise operate in on state. 

 
 

Figure 4-30: Complete SHS with charge controller 

 

 

Figure 4-31: PV system connected by MPPT and boost converter 

Constant voltage charging scheme, amount of charging current regulated by the charge 

controller, as set VR maximum set point voltage. In practice, charging the battery with 

whatever the PV current generated by PV array until VR set point. As voltage increases 

the current also increases, controller prior to limit the maximum current by switch to 

constant voltage. The limiting shaped current at constant voltage controller passes as 

charge current that controller does not force more current into the battery. To protect 
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overcharge settling VR point up or down. Although setting VR set point is difficult and 

complex, as high VR set point battery will have overcharged often, and low VR set point 

battery will never fully have charged. The occasional full charge called “equalization 

charge”. For optimal charging, equalization charging phase has performed in non-sealed 

wet battery. Equalizing phase has a chemical effect such as stratification on the battery 

plate. By increasing 5 % of charge voltage over nominal voltage overcharge equalize and 

balance the voltage and specific gravity [154]. Any lead-acid battery cell above 2.15 V per 

cell, 12 V battery charging voltage above 12.9 V. however, the higher voltage used to 

forcefully charge a battery within short period of time, but with a low voltage charring 

will take longer period time than high voltage. 

 

Figure 4-32: Output PV voltage controlled by MPPT charge controller 

 

Figure 4-33: Output PV Current in MPPT charge controller 

As show in figure, (4-32) and (4-33), the output voltage and current about 13 V and 2.4 A 

current at cell temperature 25 °C with regular solar insolation about 450 W/m2. By using 

P&O method, it is contingent that the output voltage with achieved as desired. The 



 
106 

 

changing of solar irradiation, output voltage oscillate around the maximum power point 

(MPP), the output charge controller voltage increases as shown in figure (4-34). 

 

Figure 4-34: Output Voltage as increases solar insolation 

The amplitude of voltage of voltage increases which is depends on reference voltage 

considers Vref =12 V, and at constant solar irradiation MPP voltage also depends on 

reference voltage. In the system a bidirectional Dc-DC converter used as shown black box 

in figure (3-26a and 3-26b); SHS to DC bus converter act as boost converter, otherwise 

act as buck converter. In figure (4-35) and (4-36) presents the boost converter output, 

when the voltage raises about 16.6 V and current 3.9 A. 

 

Figure 4-35: Boost Converter output voltage 

 

Figure 4-36: Boost converter output current 
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4.3.2 DC - DC Converter 

 

Converting the power between PV panel and DC bus, the converter operate buck or boost 

mode followed by PWM signal show in figure (4-42) and (4-43), whereas S1 and S2 switch 

controlled PWM. The charge controller operates continuously when PV module still 

generate low value of PV current, the boost converter will boost the low level of current 

during less solar insolation up to the maximum charging current for charging the battery. 

Figure (4-35) and (4-36) depicted the output current and voltage of boost converter. A 

non-isolated type DC - DC converter used for each SHS instead of transformer or other 

FACT decides for stable the desire voltage, current in the system. The converter with 

MPPT in the SHS to regulate the output voltage of the PV array. The variable solar 

insolation generated inconstant voltage change to 12 -24 V. 

The DC - DC converter, on-state input voltage source from PV array directly connected to 

the inductor (L) and the energy gathered, the capacitor supplied the output voltage (V0) 

that is connected to the battery. In the off-state, accumulated energy from the inductor to 

the battery or load and energy transferred from inductor L to capacitor C and resistor R. 

The output voltage 

𝑉𝑜𝑢𝑡 =  
D × Vs

1 − D
 

4-3 

D= 
Vref −Vs 

Vref
 4-4 

Where  

VS  Input Voltage  

D  Duty cycle  

Vout  Output Voltage  

Vref  Reference voltage  

 

Switching mode step up DC - DC converter, the output voltage depends on source voltage 

from PV, the output voltage (Vout) related on duty cycle as switch. The regular SHS solar 

panel at 45 W, the power/W is equal to the voltage (V), required current is maximum 3.5 

A times 12.24 V = 45 WP. And Large SHS 65 W, required maximum current 4.9 A times 
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12.3 V= 61 W. According to the proposed MG, the system considered12 - 24 V. In practice, 

the on-state D ≥ 0.5 and off state D ≤ 0.5 suggested in [155]. 

 

Figure 4-37: Converter Current @ buck converter mode 

 

 

Figure 4-38: Converter voltage @ buck converter mode 

 

Figure 4-39: input power and output power (regular size SHS) 

In figure (4-39) and (4-40) present the both power including buck mode power represent 

by green line, and red line represent the boost mode power. As shown in figure (4-37) 

and (4-38) the output of current and voltage in buck mode. In figure (4-39) and (4-40) 
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represent the power of large SHS and regular size SHS output power; the green line 

represents output power of generated by the PV system, and magenta colour represent 

the output power converter delivers to the MG system. 

 

Figure 4-40: Input power and output power (large size SHS) 

 

Figure 4-41: Busk-boost converter output 

 

The charge controller incorporate with MPPT which controls the duty cycle of buck 

converter, the supplied voltage use input voltage of converter and output voltage supplies 

to the battery, the design show in figure (4-30). The converter operate at very high 

frequency 10 kHz, in practice converter designs to exchange power level on the system. 
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Figure 4-42: Schematic design of Buck converter 

 

Figure 4-43: Bidirectional Buck-Boost Converter 

12 V or 24 V DC system use in the proposed scheme for exchange power between SHS 

and DC bus, in practice the voltage comparatively higher than 12 V DC which reduces the 

system losses and increases the distribution system. The scheme proposed a 24 V DC bus 

system, which standard encouraged by Emerge Alliance also used 24 V protocol offers 

stability and reliability. The converter used among all SHSs, transforming 12 V/24 V in 

the system whereas 12 V used as the terminal voltage of the battery. The DC bus 

considered a common bus, among all SHS connected in the system while maintaining the 

proper voltage level in both sending and receiving power autonomously without any 

centralized MG controller. In figure (4-41) represent the output of converter used in the 

system, whereas the converter simulation act both buck- boost mode, in boost mode 

simulation result shown about 22 V and 5.3 A while buck mode about 12 V and 2.8 A. The 

bidirectional DC-DC converter V1 < V2; L1, D1, C1, and S1 parameters define the stand 

arrangement of buck converter shown in figure (4-43) correspondingly L1, D2, S2 and S2 

desalinate the standard parameters of boost converter. The switch S1 and S2 control by 

the PWM controller shown in figure (4-44), PWM controller controlled by the MPPT duty 

and switching frequency. 

Table 4-2: Converter Switching frequency varies with inductor and capacitor 
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Switching frequency  10 30 50  100 150 300 500 

L1 (µH) 47 8-10 5.5 2.5 1.8 1.3 0.5 

C1 (µF) 200 80 50 25 17 8 5 

 

The parameters L2 exertion with C2 present in figure (4-43) to form of a second order 

filter or EMI filter for boost converter. The corresponding DC-DC converter, it is essential 

to control together for appropriate and reliable operation. In this context, the switch S1 

and S2 should never be on at the same time in the operation, while S1 operates at duty 

cycle calculated by the ratio of V1/V2, and S2 operates with balancing signal the 

completing no power exchanged in between V1 and V2. When increases the duty cycle 

ratio of (V1/V2) and decreases duty ratio of S2 instantaneously converter operates in buck 

mode while transmit power from V2 to V1. Contrariwise, in the boost mode operation S1 

set at slightly higher duty ratio than previous of V1/V2 and adjusting S2 duty ration 

consequently, power transmit form V1 to V2. The different power level of both large size 

and regular SHS separately represents in figure (4-39) and (4-40). The boost converter 

can be design by using different switching frequency which varies with different L1, C1, 

C2, and L2 presents in table (4-3). The buck converter parameters countless PWM 

switching frequencies for operation expending 20 % of current ripple, 10 % voltage 

ripple, and 25 % safety margin considered. 

Table 4-3: Converter Switching frequency varies with inductor and capacitor 

Switching frequency  10 30 50  100 150 300 500 

L1 (µH) 120 80 46 28 17 8 3.6 

C1 (µF) 33 19 12 5.3 3.2 1.8 1.2 

C2 (µH) 250 120 54.3 27.1 19.2 8.9 5.2 

L2 (µH)  78 49.2 29.3 14.4 8.1 4.2 3.1 

 

The MG operation, where SHS and BHS operate through bidirectional converter in the 

same bus coupled in parallel and the elements (SHS and BHS) which supplies and receives 

power. With higher SOC, the equation (4-5) calculate boost voltage. Where SOCSHS define 

by the state of charge SHS, SOCSharing represents limits of sharing set by the SHS owner, 
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VSyst defines battery operating voltage, and K is the scaling factor; K measures by the value 

of surplus Wh available for sharing. In practice Voffset and Vsyst setup by 24 V and 12 V 

respectively. The scaling factor set as 200 to 300 Wh (watt-hour), and SOCSharing scaling 

up to 50 %. 

Vboost(n) =  Voffset +  
(SOCSHS(n) − SOCSharing )  × BattAh (n)  ×  Vsyst

K
 

4-5 

 

In the system, each SHS connected through an individual converter to the bus of its point 

of common coupling (PCC), while each of the converter control voltage of PCC to achieves 

to Vboost, and then the bus voltage Vbus roughly equal to the Vboost. 

4.4 MG Modelling and Simulation 

 

In the proposed MG, the system design as show in figure (4-45) where both large size and 

regular size SHSs connected through DC - DC bidirectional converters to the MG. The BHS 

system connected in the system without any converter, the battery coupled with the MG 

bus through charge controller. 

 

Figure 4-44: Schematic diagram of the system integrated individual DC-DC converter 
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Figure 4-45: Household demand on 31 June, 2013 

In the MG both large size and regular size SHS and BHS integrated in residential 

community defined as the cluster of energy producer and consumers shown in previous 

chapter figure (3-22). When these clusters are connected in a DC bus and sharing their 

generated energy called MG. The purpose of this community based MG to sharing energy, 

best utilization solar peak hour, energy consumption cost of the community rather 

purchasing electricity from the national grid. Three SHS (1 large size SHS, and 2 medium 

size SHS) connected in parallel in common hum called cluster described in multi cluster 

MG, connected cluster in a common DC bus called MG. the proposed MG operate in 

standalone mode and grid mode. Aiming with increasing the maximum PV generation and 

utilization among SHS and along BHS integration proposed MG considered to connect to 

the national grid. PV panel, battery, grid connection, and household loads are coupled 

through dedicated converters, and whole MG cluster accomplished on a common DC bus. 

Standalone mode, PV generation for DV loads within less than 0.5 km, avoiding 

conversion, and absence of reactive and harmonic. The traditional MG with PV is 

considered a source controlled MPPT algorithm. 

CHP modelling s not consider inside the MG, as CHP connected in the AC network side, 

but the CHP integrated system optimization describe in the next chapter by using HOMER 

Pro software. 

The system consisting of AC grid and SHS and BHS incorporated DC network shown in 

figure (Appendix-1). The DC network connected to the AC existing grid via substation, 
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where a pole mounted transformer used (6.6KV/200V). DC MG configuration and 

modelling features as described below; 

PV module (SHS) generates the power and used as primary source of MG. The battery of 

SHS and BHS stores energy, the excess energy generated from SHS is the source of energy 

for BHS. 

 The distribution network comprises in low voltage level. 

 SHS and BHS connected to from ad-hoc MG 

According to the design and modelling the solar panel generated DC current at a constant 

voltage 12 V. The PV panel mounted SHSs which are integrated within MG, the panels’ 

generated total power varied by solar insolation. Conferring to the SIMULINK simulation, 

from 11:00 h to 15:00 h with high solar irradiation 12 SHSs including (large size and 

medium size) produced 3.5 to 4.3 kW and 20:00 to 5:00 h generated power form SHS is 0 

W shown in figure (4-47). The AC network simulated with DC MG, total battery for the 

whole system considered 1200 Ah (each SHS and BHS mounted with 60 Ah capacity of 

lead acid battery). On DC Side, house loads and battery SOC (state of charge) indicate the 

load consumption and battery storage level respectively. The batteries in MG able to 

charge/discharge when SOC range varies SOCMIN ≤ SOC ≤ SOCMAX, where the SOCMAX is 

maximum value of SOC and SOCMIN presents the minimum value of SOC for the battery 

storage system operation. According to the proposal battery charge status SOCMAX = 80 % 

and SOCMIN=30 %. The proposed system assumed, that the energy storage charging 

moderately operated by PV generation. During “day time” 23:00 h to 18:00 h battery 

storage by charging with to high PV generated current, and night time battery discharge 

by the peak load between 19:00 h to 23:00 h. 
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Figure 4-46: Total PV_Power generation (11 SHS, 30 June 2013) 

The state of charge initially set at 80 % shown in figure (4-51), to prevent the over-

charging and over-discharging in operation conditions, the Energy management system 

and smart home energy management maintains SOC between 30 ≤ SOC ≤ 80. 

 

Figure 4-47: PV generated Power and load power (demand) 
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Figure 4-48: PV generated Power, Battery consumed power and Load power (demand) 

In SIMULINK simulation according to the demand and solar insolation on 30 June 2013 

PV-generated power is delivered to the load. PV-generated power is enough to comply 

the load power (the demand of 20 households) from 9:30 h to 17:00 h, but at evening 

18:00 h to 9:00 h solar power is not enough to delivered power to response households 

demand. Represent in figure (4-48) and (4-49) during 18:00 h to 10:00 h solar power 

were not enough delivered to the load, and grid power and battery power compensated 

the power gap between solar power and load (households demand). Battery delivered 

100 % power consumed by the load (blue dotted line represent the demand and gold line 

represent battery power shown in figure (4-49) from 20:00 h to 5:00. 

 

Figure 4-49: Load Power, Battery Power and Grid power 
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Battery delivered 100 % power consumed by the load (blue dotted line represent the 

demand and gold line represent battery power shown in figure (4-49) from 20:00 h to 

5:00 h. Due to high PV generation, in the “day time” load power (demand) is lower than 

PV generation, and the battery does not use. The shoulder price (off peak) of utility grid 

considered from 6:00 h to 18:00 h, MG preferred to the consumed power form utility grid. 

According to the proposed MG, the excess power generated from the PV both supplies to 

the household (load power) and grid simultaneously. As shown in figure (4-52) 

from12:00 h to 17:20 h, the excess power categorized between solar power represent in 

the red line (PV_power) and demand represent in blue line (load power) shown in figure 

(4-50). As battery controller kept as not in operation for charging/discharging and the 

surplus power which is not being used in the MG supplied back to the utility grid. 

The main circuit break (CB) of MG is connected to the utility grid shown in proposed MG 

model present in (Appendix-1), in grid connected mode 12:00 h to 18:00 h grid offer 

shoulder price (off peak). But 17:30 h load power (demand) is increasing as household 

peak demand, in that time grid power consumed by the load. After 18:00h, battery power 

consumed by the load power present figure (4-49), and battery start discharging shown 

in figure (4-51). During 0:00 h to 12:00h and 18:00 h to 24:00 h battery controlled by the 

battery controller. Between 12:00 h to 18:00 battery controller set as “off operation”, as 

SOC of the battery constant and does not charge and discharge shown in figure (4-52). 

This battery is considered a community storage in the MG. 

Figure 4-50: the state of SOC of MG 
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Figure 4-51: PV power, Load Power, grid power and battery power 

 

The secondary power flow from the grid to the as swing load. The grid considered as stiff 

source of power, and facilitates stable operation for the MG. Assumed a typical day, when 

PV is not generated enough power to execute the charge operation to charge batteries of 

SHS, and grid delivered to the power load. As utility grid is considered available to take 

care of load in the MG, when PV is not generated and battery capacity is almost critical 

level. The magenta line shown in figure (4-53) which is represent power load (demand) 

and blue line represents similar load consumed by the 20 neighbourhood households 

loads, the secondary power delivered from the utility grid. The utility grid is an ideal 

constant voltage source considered as (66 KV) of three phase AC and frequency of AC 

cycle set at 50 Hz connected to the MG through pole mount transformer. 

In the proposed MG, if the battery controller also considered to charging during grid tied 

mode; during daytime load power is lower than and battery not allowed to charge by grid, 

hence battery charging by the solar power present in figure (4-54) and the battery 

Controller designed as math function in SIMULINK environment presents in (Appendix-

2). The batteries coupled in the MG, the SOC level has increased from initial 80% to 91%, 

and electricity supply to the load simultaneously. And the surplus electricity considered 

according to the algorithm strategy over 90% of SOC and the produced electricity sellback 

to the grid.  

 



 
119 

 

Figure 4-52: Load power vs Grid power 

Figure 4-53: Battery SOC during charging 

4.5 Control Strategy of MG 

Small scale PV generation and effective advantages of power electronics MG are able to 

operate both grids connected and standalone mode. As the proposed MG consisting of 

SHSs and BHSs, individually control those are complex in operation. Each SHS operate 

with the smart home energy management system (SHEMS) and control strategy required 

for stable and reliable operation in MG. The MG primary source of energy is PV generated 

current, and power system is configured as DC bus. In the system, SHS and BHS are 

connected in parallel in DC MG shown in (4-55). The components in MG associated in 

parallel through power electronics module such as DC-DC converters, the system suggest 

several advantages including control and maximum utilization of DES power [156]. 
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Agreeing with [157] master-slave and voltage droop controller suggested in MG 

operation. 

 

Figure 4-54: Proposed SHS and BHS connection through DC-DC Converter 

4.5.1Master-Slave MG Control 
 

In figure (4-56) represent the master-slave control arrangement, where each SHS 

composed as DC source of power, a DC - DC converter, and controller. The top SHS 

illustrates in the figure (4-56) act as master and others operate as slaves. The Master 

module controls DC bus voltage, whereas slave controlled by the reference current (Iref). 

 

Figure 4-55: Typical Master-Slave control Strategy 
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In the proposed MG, Master-slave control strategy used among all SHS. The master slave 

control strategy proposed in the system when MG operate in the standalone mode. But 

the MG also operate in the grid tied mode, as controlled voltage also considered under 

the MG control strategy. The Reference current determined by the equation (4-6), where 

K = droop gain expressed in equation (4-8), Vbus = DC bus voltage, and Vref reference 

voltage. The reference current Iref in equation used as the input current of hysteresis 

current controller shown in figure (4-57) 

Iref = K (Vref  −  Vbus) 4-6 

Iref =  
Pref

VS
 

4-7 

K =
1

Rdroop
 

4-8 

VS =  VOC −  
1

K
 IS 

4-9 

 

 

Figure 4-56: Schematic diagram of Voltage control over DC-DC Converter [158] 

The local control (individual controller of each SHS) composed with DC - DC converters, 

autonomously share load current by detecting DC bus voltage shown in figure (4-57). 

According to the proposed control strategy, droop gain (K) converter’s the voltage error 

into command current for the source of the converter; where converter current tracks as 

reference current in the steady state relation [159]. The droop control strategy of MG, 

shares the reference current (Iref) among all converters available in the system without 
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any central controller. If a SSH fails or isolated from the system, remaining other 

components sensing decrease DC bus voltage and increase respective output current. The 

reference power Pref used as input for the community battery controller, the possible 

reference power can be calculated by the following equation suggested in [160] and [161] 

expressed bellow; 

Pref = G(s) [Vref − (
WLP

S + WLP
) VDC] VDC 

4-10 

VDC
∗  = Vref + K × VDC 4-11 

 

Where 

Pref = Reference Power  

G(s) = Transfer function  

WLP = Cutoff frequency  

Vref = Reference voltage  

VDC = DC bus voltage  

VS = DC source voltage  

 

To avoid or reduce failure in the MG system, proposed designed with some redundancy. 

A community battery proposed in the MG for backup power which is control by a central 

controller shown in figure (4-58). The reference DC bus voltage VDC
∗  of certain DC bus 

voltage is equal to the reference voltage Vref added with droop gain (K) multiply with 

input DC current present in equation (4.11) 

 

Figure 4-57: community storage controller 
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management and best utilization of PV power. The proposed smart energy management 

strategy is composed with a several Home Energy Management which is integrated into 

the MG system. By voltage control reduce the power consumption of the household. The 

individual SHS adopt HEMS algorithm with control load voltage and DC bus voltage by 

droop control. Voltage droop control mode of SHS Energy Management shown in the 

flowchart (4-60), when load power (demand) above the threshold power DC bus set to a 

minimum standard as 24 V, this mode operate until Load power bellow user defined of 

home threshold power level. 

Power generated by the PV module in each SHS exceeds the load power, the surplus 

delivered to the DC grid and BHS consumed and stored energy form the DC grid. The 

proposed energy management of MG present in the flowchart (4-61). If there any fault in 

the system MG operate standalone mode. The battery state of charge SOC above 95%, 

battery disconnected from PV module. 

SHS-EMS

Load Power Setting 

Measure Load Power
DC Bus voltage 

PLoad ≤ Threshold Power  

Set Voltage: Standard Nominal 
Voltage 

Set Voltage: Min Standard Nominal 
Voltage  

Yes
No

 

Figure 4-59: Home-Energy Management System 

 

A community battery storage or battery size can be increased in the proposed system to 

utilize those excess power. If battery power is higher than the load power (demand) and 

battery SOC ≥ 90 %, the surplus power delivered to the utility grid.  
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Energy Management

Fault grid
Load Sheding Islanded Mode

PPV > PLoad 

Energy Consumption by load 
(Household Applicance)

PLoad  >  PPV

SOC ≤ 30%

Disconnect Load 
From Battery 

     Pbattery  > Pload 

SOC ≥ 90%

SOC ≥ 95% 

 

Disconnect PV  

Power delivered to Grid

Grid Connected

(SOC ≥ 40%)       

  (SOC ≤ 90%)

DC bus

Utility grid

Local DC Bus

        Yes

       No

Pbattery > PLoad 

6:00 h to 18:00 h

Battery (Energy Storage)

    Pbattery > PLaod 

Energy consumption
By Load

BHS

  

   Pbattery  > Pload 

(SOC ≥ 60%)       

 

Not connected to DC bus 

60 ≤ SOC ≤ 95

SHS

Energy flow

SOC  ≥ 60%

Disconnect from 
Grid

 

   Figure 4-60: Energy Management of MG 

Nevertheless, the capacity of battery between (SOC ≥ 40 %) and (SOC ≤ 90 %) power 

supplied to the DC bus, as others SHS and BHS can be consumed by the loads and able to 

stored energy into the battery simultaneously. The stored energy in the battery at SOC ≥ 

90 %, the MG delivered back to the utility grid. If battery stored surplus energy at SOC ≥ 

95 %, then battery disconnected from PV. When PV generated power is greater is greater 

than the Load power (demand), PV supplied energy directly consumed by the loads and 
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stored into the battery. If battery SOC is lower than 30 % and the load power is lower 

than PV power, load disconnect from the battery. And load connected to the utility grid. 

As utility grid power penetrated into the MG bus, the energy consumed by the household 

loads until SOC ≤ 60 % of battery capacity. When battery capacity reached 60 % the grid 

disconnected from the MG.  If battery power is greater than load power, the surplus 

power delivered to the DC bus and household loads able to consume energy 

instantaneously. 

 

4.6.1 Smart SHS Management System 

For efficient and controlled power interface with loads of SHS and grid, entail a smart 

strategy for energy management. Keeping in mind to maximum utilization of PV as the 

major and primary source of energy for the MG, smart incorporation of all elements 

within the SHS and optimum operation requires for an efficient system. The concept of 

the smart home management system, by controlling each individual SHS including their 

own consumption along with storage, and share surplus energy to the system and sell 

back excess to the grid. The idea of SHS-Management System is the strategy to decide 

when battery need to charge, when to consume, real-time demand response and load 

management, how much surplus energy share among other SHS and BHS, and how much 

energy can be sold back to the grid by classified controllable, shiftable, and non-shiftable 

for building energy management [162]. It supports the SHS consumers to customize their 

energy demand, shares power among all neighbourhood SHS and BHS and monitors and 

control own power flow. The consumers can select their preferable source of energy. It 

can also control devices enabling their demand based on priority conditions. The 

operation of SHS-MS in various scenarios schemes presented in this as the proposal, 

which scenarios formation based on some possible combination of various topologies. 

The SHS-MS operates by a smart control unit within it, and each SHS individually control 

whether standalone or grid tied. 
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Senario-1 

Loads are connected with national grid along with SHS-MS. Individual storage of SHS used 

for self-consumption and no fed back to the utility grid. The operation formulated with 

SHS and utility grid along with ICT (information & communication technology) enabled 

control and monitored by SHS-MS. The household consuming energy from the reserved 

(private) storage system and operate as off-grid operation if utility failed. The system 

might also nosedive, and if SOC level is lower and PV not generates as desires show in 

figure (4-62). 

 

Figure 4-61: System layout for scenario-1, standalone SHS  

Scenario-2 

 

SHSs are connected to the centralized storage system (community based storage), where 

among all SHS in the MG storing their surplus energy into the CBS. The end consumers 

such as BHS, shop street lights are consuming energy from CBS in the night time.  

Controlling the centralized CBS is more effective than the private battery system in SHS, 

it has the ability to store a large amount of energy than individual batteries. Controlling, 

operation, monitoring, and maintenance can be possible communally by the community 

based network operator. The total energy charging is very fast and behaves like Electric 

vehicles storage, and unquestionably requires high power for a very short time within 

the system. The system turns into more flexible and robust. Due to sharing the PV source 

energy, if there is the fault in the grid system certain parts of the MG system behave like 

islanded mode. There is no loss of conversion of energy as generated power is DC, storing 

in Battery is DC, sharing DC power the power to the loads. 
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Scenario-3 

SHSs connected to the utility grid without CBS, energy storage in the own individual 

battery, and the surplus energy share among other BHS within the Ad-hoc hum. The 

scheme proposition allows to utilize the surplus energy rather than wastage. As 

unpredictable PV and lack of energy, storage opportunity the operation can be 

challenging with high efficiency. This problem can have solved by the prediction of PV 

and as accurately, as demand. In economic fact grid power should not supplies to the 

community based DC MG shown in figure (4-65). 

 

 

(a) 

 

(b) 

Figure 4-62: System layout for scenario-3; (a) SHS-MS with own battery storage and (b) 

SHS sharing surplus energy among BHS tied with the DC bus 

Scenario-4 

SHSs connected both with utility grid and CBS (Community Based Storage), but excess 

generating DC power store into the CBS along with SHS-MS. The operation mode allows 

2 parallel AC and DC grid. DC grid offers reliable network by providing dual voltage 

network. The excess energy also fed to the utility grid using AC network present in figure 

(4-65). 
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 Figure 4-63: Layout of scenario-4; Control SHS-MS tied with both AC and DC Grid 

Table 4-4: Comparison of SHS integration 

Operation  Technology Efficiency  Flexibility  

Scenario-1  Advance but complex in operation Low Low  

Scenario-2 Advance & robust but  grid can be affected due to 

numerous inverter during excess energy 

generation  

High High  

Scenario-3 Utility grid affected adversely due to inverter and 

power quality  

Very  Low  Limited  

Senario-4  Advance but Complex network 

Offer AC and DC dual network & 

Power quality enhanced 

High  

 

High degree 

of 

flexibility 
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Summary 

The components of the proposed MG systems models attained from theoretical and 

mathematical equation implemented in the MATLAB/SIMULINK environment. The 

analysis of power generation from PV panel which depends on real solar insolation and 

ambient temperature of the proposed location. As the solar irradiation of proposed 

location fluctuates the temperature also varies conferring to the solar irradiation, cell 

temperature of PV module effects by the equation (TC= Ta+0.03 × Ga). This cell 

temperature equation assimilated with the PV empirical equation embedded in 

SIMULINK based model and simulation gave the actual output of PV array. In order to 

maximum solar efficiency, the maximum power point of PV array tracked by the MPPT 

tracker strategy and model implemented in SIMULINK to analyzed optimal power 

generation from PV module. In the system, PV is the major source of energy which is 

variable and by deployed storage to utilize the best use of an intermittent source of 

energy. In the SHS, and Standalone PV system suggested charge controller strategy and 

charge controller model to charged battery and controlled. An extensive investigation of 

each individual MG components model and configured by SIMULINK based simulation in 

MATLAB. The dynamic behaviour of MG distinguished the suitable configuration and 

design can be deployed in the proposed system. The controller operates within the 

system to maintain constant DC bus voltage to perform the stable system. The batteries 

used in the SHSs, charged by the PV current and discharge into the loads (households’ 

appliance within the system). Batteries charged by the PV current that should not be 

higher than 10 % of the battery capacity. Each SHS and BHS composed with 60 Ah 

capacity batteries that charged with maximum 4 A current that controlled by the charge 

controller. In the proposed, there are two different types of SHS deployed as Large size 

SHS charging with 5.99 A and regular size SHS charging with maximum 4 A. If battery 

charging with the high current; electrolyte of battery lost promptly through the gassing, 

and PV cell configuration may be damaged as well. The MG design and configure with 12 

V system, batteries charged by constant 12 V and no more than 3.99 A and 5.99 A current 

which generated from 45 WP and 65 WP PV Array. The PV generated current 3.99 A and 

5.99 that well-suited for 60 Ah batteries in the regular size and large size SHS. These SHS 

consumed energy and charged the battery by their own generated PV module, the excess 
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energy measured by battery capacity (SOC ≥ 60 %) delivered to the DC bus of MG. 

Additionally, the surplus SHS generated power determined by the battery state of charge 

SOC ≥ 90 %, supplied to a utility grid. However, the SOC of SHS at 95 % disconnect the 

battery from PV module. 

Country like Bangladesh the one of the sunniest part in the world, where the most 

preferred renewable source of energy is PV, due to easy installation, almost maintenance 

free system that incorporates with others SHS, the growth of PV increasing almost 8 % in 

every year. With an enormous potential of PV and local biomass resources produces 

power which compromises the lossless system. The SHSs consists of a battery when they 

produce surplus energy sharing among all participants within the system. A smart control 

strategy for operation, droop voltage control in the MG and droop current control 

proposed for the SHSs load and demand management. Battery storage performs in the 

system to increases the dependability on PV and individual SHS control improves the 

total network stability. The MG system design and modelling only by PV and grid 

connected offers sharing energy that produces by the PV, and surplus energy sells back 

to the grid. Although the grid also has the ability to support the MG, but the proposed 

system only allows to sharing PV power, and each individual system has the aptitude to 

control the load operation to match PV generation and demand management by smart 

home management strategy. 
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Introduction 

 

Sufficient energy is the fundamental and essential obligation for economic development 

and social improvement. In Bangladesh, kerosene is the major fuel for lighting and 

cooking, 90 % to 92 % of energy consumed for lighting in the evening hour fuelled by 

kerosene and rest of energy comes from PV and utility grid. The high price of kerosene, 

expensive infrastructure of main grid, and generation and supply of electrical power 

lagging behind the demand of electricity in Bangladesh; causes an average 6h-8h 

interruptible load shedding per day. The daily base load in remote and peri-urban areas 

in Bangladesh reasonably low that sufficiently supplied by local available renewable 

resources such as solar energy and low scale battery. Demand and peak load in the rural 

areas in Bangladesh for lighting during the evening. The battery in the typical PV system, 

used for backup power and best utilization of PV power. To meet the base load and peak 

load, PV generated power directly supplied to the load in the daylight and evening load 

meets by the battery stored surplus energy. A typical village in Bangladesh consumes 

peak load into range 4 to 20 kW and energy consumption about 100 to 300 kWh per day. 

Progressively growth in electrical demand of such remote areas not yet connected to the 

national grid, and the energy access in the country like achieved by decentralized energy 

generation such as standalone PV system, and other renewable energy integration. The 

opportunity of renewable sources access into the system and well complementary of 

system configuration analysis, sizing and optimization described throughout in this 

chapter. 

According to [163] Bangladesh is the largest country by densely populated with 158.5 

million by 2015, where about 80 % of the population live in rural areas but only 49 % of 

rural population partially electrified. A great potential of solar and biomass resources 

meets up their demand without the main grid, even though the surplus energy supplies 

to the grid. In order to rural electrification, a hybrid off grid system integrated with 

decentralized energy renewable source is the best solution. The proposed site situated in 

Bangladesh, where the enough solar potential and biomass opportunity can be 

progressively utilization in the system. The major sources of energy country like 

Bangladesh play an important role in planning MG, where average solar insolation to 4.3 

to 6.5 kWh/m2 and average sunlight and 10.2 h correspondingly a huge amount of 
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biomass resources available including rice husk, jute stick, animal manure, sugarcane, 

and tree branches and leafs. About 70 % of the population in Bangladesh still directly or 

indirectly depending on biomass energy [164]; for cooking about 95 % of the population 

rely on biomass in rural areas and almost 99 % of people used dry cow dung, jute stick, 

tree branches and leafs  as biomass. In addition, 70 % of people consumes kerosene for 

lighting purposes [165]. In this chapter focus on optical planning, saying and operation 

of each component of the proposed MG for ophthalmic design and the degree renewable 

faction that minimize the dependencies on the utility grid. 

5.1 DERs MG Configuration and Planning 

Homer Pro dedicated to evaluating and analysis the technical and economic feasibility of 

hybrid MG system. By using Homer Pro microgrid Analysis Tool, the physical 

configuration of renewable integrated energy system design, the capital cost of 

investment, life-cycle cost, operating and maintenance costs and different types of 

technical appraisal taken under consideration for the best suitable planning of MG 

modelling [166]. The optimization of the technical assessment of MG planning done by 

different constraints such as renewable fraction, the capacity of energy generation and 

load demand. By simulating energy balance with hourly base and peak electrical demand 

Homer able to determines the local renewable source generated electricity supplies and 

the gap or surplus between the demand and supply. Homer pro tools also have the ability 

to configure the best technical and economic feasible design that utilize the renewable 

energy with a maximum degree of the fraction. The simulation result optimizes the design 

and configuration of the system that satisfies the desire technical and economic 

feasibility. During the simulation, modifying some input in the range of feasible and 

reliable in order to compare the different scenarios by the sensitivity analysis.  

5.1.1 Load Profile 

 

Traditionally the demand in Bangladesh restricted during the evening hours, mostly for 

lighting. As growth of human life style with socio-economic improvement, the electricity 



 
135 

 

demand also increasing. The winter load has considered half of the summer load due to 

absence of ceiling fan not in operation. The households load demand variation considered 

as 5 % day-to-day random variation. The peak load of the system with 20 household 

considered as 4.189 kW and daily energy demand about 46.102 kWh winter peak load 

decreased to 2.08 kW and daily consumption reduced to 20.40 kWh. However, the winter 

and summer base load shown in figure (5.1). 

Figure 5-1: Average Daily Load profile (left) summer & winter (right) 

       

Figure 5-2: Individual 12 months electrical Load Profile 

5.1.2 Thermal load 

In this chapter, the thermal load assumed only 5 % of the day-to-day random variation of 

the primary load present in figure (5-3). The scaled annual average thermal load 

consumption assumes around 12 kWh per day. The scaled peak load is 2.1 kW, with the 

capacity factor of 25 % to 35 % considered. The average peak load around 0.41 kW of 

thermal energy considered for the cold storage. The average thermal energy consumes 

around about 9.79 kWh during winter and 15.7 kWh per day thermal load consumption 
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during the summer period. During summer the cold storage operates 18:00 h and 10:00 

h in winter and consumes both thermal and electrical energy, the peak hour considers 9: 

00 h to 18:00 h and 11:00 h to 14:00 h summer and winter season respectively present 

in figure (5.3) and (5.4). The idea of adding thermal load in this chapter is to examine the 

impact of excess energy feeding thermal load. The figure (5-3) represents the thermal 

load profile that converted to chilled air or chilled liquid by absorption chiller, and the 

thermal energy generates by CHP that operates through micro turbine and boiler. In the 

system, cold storage load demand variation considered as 5 % of day-to-day random 

variation and load factor considered 0.2. 

Figure 5-3: Daily Load Profile of Thermal Load Summer (left) & winter (right) 

  

Figure 5-4: Individual 12 months thermal Load Profile 
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5.1.3 Community based cold storage 

 

The community based cold storage placed in system, where cold storage connected in the 

DC bus or AC bus. The different scenario based MG configuration, load of cold storage 

shown in figure (5-5). With the peak load 0.8 kW, and peak energy consumption 6 

kWh/day over summer seasons. Cold storage consumption of thermal energy and 

electricity from around 5:00 h to 24:00h during summer and 8:00 h to 18:00 h during 

winter season. 

Figure 5-5: Average electric load profile of Cold Storage 

5.1.4 Energy Sources 

 

The proposed system positioned in Gopalgonj, Bangladesh, 23.2 °N, 89.8° E. Due to low 

wind speed (average 2.55 m/s annual wind speed), the site does not have enough and 

sufficient wind potential to produce optimal power for the system. The flat land location 

does have any micro-hydro potential but enough biomass and PV is ready to use for the 

optimal and efficient result for planning MG. 

5.1.4.1 PV Module 

 

For the proposed MG planning and configuration, three sources took under consideration 

solar PV, biomass, and main grid. The proposed site does not have micro-hydro and wind 

potential for ready to use. There is some limitation to deploy wind energy due to less 
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wind speed and experiences. Nevertheless, solar PV and Biomass generated system have 

the potential to generate electricity with 80 % to 90 % degree of the renewable fraction. 

Solar availability in the suggested location obtained from NASA surface metrology 

available in Homer tool software. The annual average solar radiation for the proposed 

location is 4.68 kWh/m2 shown in figure (5-6). Installation on the rooftop of the 

traditional houses in the proposed location where design and planning for the position of 

PV module surface cause partial shade and according to [167] the performance factor of 

photovoltaic significantly affecting on the shade factor of significantly affected. 

Figure 5-6: Monthly based Daily Average Solar Irradiation (kWh/m2/day) 

PV module has selected for the system as proposed scheme, where 45 WP to 65WP peak 

SHS will be using these PV modules on their rooftop. The suggested Kyocera 65T 

Multicrystal PV module which has high efficiency in output and reduction of its efficiency 

in performance only 6.1 % of irradiance decrease 1000 W/m2 to 200 W/m2 [Annex-1]. 

In the small module has the better performance than large size module as the partial 

shading increases. The shading increases the module with a small size still, has better 

performance than the bigger one at the same percentage of shading. With increased 

shading of PV module from 25 % to 50 % and 75 %, the voltage and currents drop 

decreases. In practical experience, at 25 % shading Kyocera and Solara module voltage 

drops 19 % and 20 %; at 50 % shading voltage drops 20 % and 35 %; 26 % and 37 % 

[168]. Hence, Kyocera Module is the well-suited PV module for planning. The following at 

bellow explained PV module suggested for planning MG. 

Aging factor influence PV module performance for each and specific module, the PV 

module performance reduced about 85 % in 20 years. The reduction of performance 
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reduction about 0.99 % of such PV module per year. The empirical formula expressed the 

aging factor determined by the following equation in (5-1), that represents the PV module 

configuration for optimal MG design. 

Table 5-1: PV Module Configuration and Sizing 

PV Module Kyocera 
Module Consideration 

Case-1 size: Optimal Size Consideration 3 kW to 5 kW (0.5 kW in every step) 

Case -2 size: Optimal Size Consideration 3 kW to 8 kW (0.5 kW in every step) 
Life time [year] 20 

Derating factor [%] 80 

Temperature effects on Power [% / °C] -0.5 
Nominal Operating cell temp [°C] 47 

Efficiency at STC [%] 13 
Ground Reflection [%] 20 

Panel Slope 22.98 
Tracking System No tracking (partial shading) 

 

1

20
∑ 0.99𝑖 =

1

20
×

0.9920 − 1

0.99 − 1
= 0.91

19

𝑖=0

 
 
5-1 

 

5.1.4.2 Biomass 

 

In Bangladesh, around 49 % of the rural population connected to the grid, whereas 70 % 

population are living in the rural and remote areas, where only about 25 % people 

connected within the grid system [169]. The noble “Vision-2021” of Bangladesh 

government have set to the electrifying entire country by 2020, and according to the 

vision local resources especially DERs utilization would be the solution for energy access 

in Bangladesh. At present, residual waste and another form of biomass waste such as 

kitchen waste, firewood leafs, and agricultural waste destined as bio-energy. The 

proposed system located where, the biomass resources are collected from about 200 

castles, over 500 goats, poultry farm with over 5000 chickens and ducks produce biomass 

waste, and agricultural waste like rice husk, local tree branches, and leafs estimation has 

already been described in chapter-3 (in section 3.2.3.1). 
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Figure 5-7: Available Average monthly Biomass (tons/day) 

5.1.5 Battery  

 

The system suggested with 12 V batteries with maximum capacity 83.4 Ah from Homer 

tool software 1 kWh generic Lead Acid battery considered for the MG model. The 

proposed power system scheme configured with a number of battery range from 10 to 

20 strings connected in parallel, the step of change of battery taken under consideration 

2 for optimal design configuration and well suited for complying the storage backup. The 

table at bellow explains battery number and size suggested for planning MG. The 

proposed MG systems consist of integrated SHS; those are connected in parallel in the 

system. The total battery string is coupled separately to the individual SHS systems, are 

also connected in parallel. The capacity of batteries optimizes by the Homer simulation 

and the configuration.  

Table 5-2: Battery Configuration for MG System 

Battery Generic Lead Acid Battery 
Nominal Voltage [V] 12.0 

Maximum Capacity [Ah] 83.4/ each battery 
Round trip Ratio [%] 80 

Battery per string 1 
Initial SOC [%] 80 

Minimum SOC [%] 30 
Optimal size Consideration 4 to 15 String (in parallel) 

Nominal capacity  800 Ah-1200Ah 
Minimum Battery life (y) 8 
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5.1.6 Converter 

 

The system configured with DC –AC or AC - DC bus. PV generates DC electricity, whereas 

MT generates AC electricity. The residual loads connected within DC bus, and Cold 

storage connected in AC bus. Converter is required to transform both AC electricity into 

DC and vice versa. The converter considered along with rectifier and inverter. The system 

also configured with main grid where surplus electricity sells back to the grid. 

Assumptions considering for grid connected system bellow: 

 Batteries charging prohibit from grid 

 Electricity sell form battery 

 Prohibit grid sells from battery 

 Prohibit any battery discharging 

 Only surplus instantaneous electricity sell back to the grid 

 5.2 MG configuration and Modelling Assumptions 

The optimal design MG, energy supplies from the DERS sources, and assuming 80 % to 

100 % from PV and Biomass.  The biomass fuelled micro turbine also considered in the 

configured optimal MG design. The system configured along with 20 households DC loads, 

which consumed 37.5 kWh per day with 4.83 kW peak demand in the summer season and 

comparatively low in winter consumption about 22.6 kWh per day with 0.814 kW peak. 

Energy access and electrifying rural areas, MG and power system configured with several 

assumptions taken under consideration for best suitable configuration. Planning and 

configuration of MG factors assumptions bellow: the best renewable resources and size 

 The capacity of source of electricity 

 The cost of modules used in the system 

 Fuel cost and consumption capacity 

 The module sizes and their capacity 
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5.3 Optimum Configuration for Planning of Optimal MG Designs 

According to the scheme more reliable and flexible energy system design in order to 

incorporate local renewable energy resources such as solar, biomass integrated small 

scale MG that uses a combination of distributed energy generation through SHS pattern 

within the storage and consumption their energy and surplus share to others who does 

not have the ability to produce energy. In Bangladesh, Government strongly motivated to 

encourage designers and planners of MG to incorporate renewable energy into the 

system. 

5.3.1 Simulation and Result Analysis 

In this section four scenarios will be discussed according to its optimal result for the 

suitable planning for the MG. the configuration of the MG that is considered the well 

suited for technical feasibility, life cycle, and cost of capital of MG for each scenario under 

consideration. Although in this report author will not discuss cost or any other economic 

constraints but the optimal design must be complying with suitable for technical 

appraisal and economic feasible. In addition, the operation and schedules also considered 

for the best feasibility for the operation, in this context operational strategy and working 

scheduled is important constraints for optimization. After considered the variable 

constraints and configuration, the simulation would find out the suitable and feasible 

optimal design. The Homer Pro tool have the ability to define the optimal MG 

arrangement, analysis its design and operation which comply the minimum total NPC 

(Net Present Cost) and desired constraints has assumed [170]. The system has designed 

and configures with courage, that sharing surplus energy among the community and 

maximizes utilization of energy a flexible and reliable MG planning for rural 

electrification. In this context, painstaking renewable sources defined in several factors 

such as the well-suited source of energy, the capacity of generation and penetration in 

the system. In the following configuration, PV and Biomass are the major sources of the 

energy. 
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5.3.2 PV configured MG without main grid 

  

  
Figure 5-8: Optimal Configuration of MG: cold storage connected in AC bus (case-1) & 

cold storage connected in DC bus (case-2) 

 

Case-1 

The optimal configuration considered with the capacity of 2.1 kW of PV and 1.7 kW MT 

(CHP) produces 3100 kWh electricity and 4512 kWh electricity by PV and MT 

respectively. The optimal configuration as present in figure (5.8 case-1), 41 % of 

electricity produces by PV and 59 % of electricity produces by MT present in figure (5.9). 

In figure (5-10), the blue spike represents household loads that meet by the electricity 

that produces with PV modules shows in red spikes. Most of the electricity show in 

redline consumed by the household loads, and surplus electricity supplies to the cold 

storage cold. The PV module with capacity factor 16.83 % and produces maximum 1.98 

kW, and 8.08 kWh per day. PV modules operate 4370 h, and maximum 67.3 % PV 

penetration into the system. 
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Figure 5-9: Monthly based Average Electricity produces by PV and MT (CHP) 

Figure 5-10: Electricity produces by PV and household load 

Figure 5-11: MT (CHP) output 

Figure 5-12: Total Thermal Energy produces by MT and Boiler 

The system also configured with a combined heat and power MT that produces electricity 

shows in figure (5-11) and thermal energy in (5-12). In figure (5-12), the khaki color 

represents thermal energy produced by MT and light olive histogram represents thermal 

energy procured by the boiler. The combined 4,291 kWh of total thermal energy produces 

by the boiler and MT. The figure (5-13) present total thermal energy produced by the 
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boiler shows in spike and black line represent thermal energy produced by the MT (CHP), 

the grey spikes represents the thermal load. 

Figure 5-13: Thermal Load vs thermal energy of (MT and boiler) 

The MT (CHP) operates 4776 h and generates 4,512 kWh of electricity, 443.1 kWh of 

thermal energy produces throughout the year, and about 717 kWh (which is 20 % of total 

thermal energy) the excess amount of thermal energy produces by both MT and boiler 

over the year. The MT (CHP) with 30.3 % of capacity factor produces 0.94 kW of 

electricity and 0.09 kW of thermal energy simultaneously. The total 3.93 tons’ biogas fuel 

consumes by the MT (CHP) per year shown in figure (5.14). According to the proposed 

system, biomass fuelled MT consumes 0.01 tons per day and specific fuel 0.61 kg of fuel 

consume to produce 1 kWh of electricity.  The MT produced electricity with 107.4 % 

electrical efficiency. 

Figure 5-14: Fuel Consumption of CHP 

PV mainly generates electricity during daytime and the peak load in the evening, to meets 

the load energy stores in a battery. In this optimal configuration 15 lead acid battery 

string connected in parallel, each string considered a lead acid battery with 12 V and 

nominal capacity 84.4 Ah. The state of charge of the batteries represent in the figure (5-
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15), battery autonomy observes about 17 days. During winter, the PV produces surplus 

electricity and battery state of charge almost 80 % to 90 % shown in figure (5-15) and (5-

16), the charging power is higher than discharging power during January and December 

showed in figure (5.17). 

Figure 5-15: Battery State of Charge 

Figure 5-16: Load (green) vs SOC of batteries (red) 

Figure 5-17: Battery Charging Power (blue), discharge power (olive) and SOC (red) 

The configuration allows, converts power from MT to loads and PV to loads as well; cold 

storage positioned in the AC bus and household loads in DC bus. The household loads 

mainly consumed PV and battery delivered power. The cold storage and household loads 
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consumptions observed by the converter shown in (5-18). During January, loads are not 

high as generated by the PV; no power requires, as rectifier converts zero power in that 

time shown in (5-18 down).  Nevertheless, during winter households loads consumes 

both MT and PV power as convert about 0.01 to 0.02 kW power through inverter shown 

in figure (5-18 top), whereas in December requires some power from PV and battery to 

cold storage load shown in figure (5-18 down).  The optimal configuration produces 

about 1903 kWh of excess electricity per year. In figure (5-19) light purple spikes, present 

the excess electricity produces by the PV and MT, the excess electricity mostly produced 

by the MT, and red stripe represent the unmet load. 

Figure 5-18: Converter output: inverter (top) & rectifier (down) 

Figure 5-19: Excess Electricity (blue violate) and Unmet load (red) 
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Case-2 

The configured system considered along with the capacity 1.7 kW of PV and 1.8 kW of MT 

(CHP) shown in figure (5-8 case-2), PV generates 2,507 kWh and MT generates 5,314 

kWh of electricity of per year. The PV produces 32.73 % of electricity, and average 7 kWh 

electricity produces each day. In the system household, loads comprise with the PV 

generated power shown in figure (5-20), where light olive histogram represent the 

electricity generates from the MT (CHP) and 67.27 % power generates by the MT. 

Figure 5-20: Electricity Produces by PV and MT (CHP) 

The optimal configuration considered with the capacity of 1.7 kW of PV and 1.8 kW MT 

(CHP) produces 2,507 kWh electricity and 5,152 kWh electricity by PV and MT 

respectively. The system allows about 57 % of PV penetration, and the load does not meet 

by the PV power. Hence, the deficit power needs the household load and cold storage 

loads supplies from MT (CHP). 

Figure 5-21: Household load vs PV power 

The figure (5-21), the green spike represents the household loads and red spike produces 

by the PV. The MT (CHP) with 99.56 % of electrical efficiency operates 6015 h to produces 

5314.3 kWh of electricity and 985 kWh thermal energy simultaneously; the MT drives to 

produces electricity and thermal energy and consumes 0.01 kg biomass per day and 4.99 

tons per year shown in figure (5-22). The specific fuel consumes about 0.66 kg to 
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produces 1 kWh. The system operates as 84 % of renewable fraction, and mostly daytime 

renewable fraction generates by the PV and MT is shown in figure (5-23 top), and 100 % 

of renewable energy consumption as red marks shows in figure (5-23 down) 

Figure 5-22: Fuel Consumption of MT (CHP) 

Figure 5-23: renewable output divided by generation (top) & Non-renewable energy 

divided by the load. 

In the system most of the loads positioned in the DC-bus, and the cold storage peak load 

considers during the daytime; as the battery, size requires small in size to meet the both 

loads in the system. The system configures with 4 batteries string in the parallel and total 

capacity of battery 334 Ah. In figure (5-24) present the red line SOC of the batteries over 

the year, green spikes represent the loads and blue spike discharge power of the battery. 

The power generated by the MT and PV delivered to the DC-bus, as the only rectifier 

operates shown in figure (5-25). As MT operated more than to meets the electric power, 
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some excess electricity produces. The figure (5-26), the light olive colour spike represent 

excess electricity and red spike represents the unmet load. 

Figure 5-24: Converter; (top) Inverter & (bottom) Rectifier 

Figure 5-25: Excess Electricity (olive) and Unmet load (red) 
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5.3.3 PV configured MG without main grid 

 

Figure 5-26: DC configured MG 

The optimum configuration of DC-MG consists of 0.4 kW of PV, 1.6 kW of MT (CHP), and 

both loads are connecting to the DC bus shown in figure (5-27). As there is no AC bus 

system does not require any converter. The system, PV generates 590 kWh per year, 

which are produces around 12 % of the power that meets the demand. About 13.5 % of 

PV penetrates in the system, and 1.62 kWh produces per year. 

Figure 5-27: Monthly bases Average Electric Power Production 

Figure 5-28: Load (green) vs PV Power Generation (red) 

As MT (CHP) with 103 % electrical efficiency operates 5,843 h to produces 8,434 kWh of 

electricity and 850.53 kWh thermal energy. The olive colour and sandy brown shade 
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histogram presents the electricity produced by MT and PV respectively as shown in figure 

(5-28). The optimum configures allows PV power which is comparatively lower than the 

loads, figure (5-30) the green spike represents the load and red represents the PV power.  

The MT (CHP) mutually produces thermal energy along with electricity. The CHP with 

34.5 % capacity factor produces 851 kWh, which 23.3 % of total thermal energy. Rest of 

77.86 % thermal energy produces by the boiler in figure (5-29). Figure (5-30) the blue 

spike represent thermal load and yellow line represents thermal energy produced by the 

CHP. The MT produces thermal energy that is not meet to the desired load shown by blue 

spike, and boiler produced adequate thermal energy present red spike shown in figure 

(5-31). The red spikes represent sufficient enough thermal energy produced by the 

Boiler, on the other hand almost diminished blue spike represents thermal energy 

produced by CHP (MT) shown in figure (5-32). 

Figure 5-29: Thermal Energy produced by MT (CHP) and Boiler  

Figure 5-30: Thermal load (blue) vs MT (CHP) produced Thermal Energy (yellow) 

Figure 5-31: Thermal load (blue) vs Boiler produced Thermal Energy (red) 

The (MT) CHP consumes 4.4 tons of biomass each year, and the average feedstock about 

0.01 tons per day shown in figure (5-33). To meets the peak load power during the 
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evening, the power supplies from stored batteries. The optimum system configured with 

8 parallel string batteries with the total capacity of 667 Ah. In figure (5-34) red shaded 

spike and (5-35), the histogram represents the battery state of charge. The yellow spike 

present discharge power, blue pike represent charging power. 

Figure 5-32: Biomass consumption of MT (CHP) 

Figure 5-33: Battery Charging (blue), Discharging Power (yellow) vs SOC (red) 

The optimal system produces excess electricity and thermal energy 635 kWh and 268 

kWh represent in the figure (5-36) and (5-37) respectively. In figure (5-36) the yellow 

spike represents excess electricity produces by the system and red spike represent the 

unmet load, figure (5-37) the blue spike represent thermal load and the red line 

represents the excess thermal load. However, the configured system renewable fraction 

about 64 % and figure (5-38) represents renewable output divided by the total power 

generation; the red shade depicts 100 % of renewable penetration.  

Figure 5-34: State of charge of Battery 
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Figure (5-39) represents the non-renewable divided by the load; the red shade portrays 

100 % of non-renewable energy consumes by the load.  Nevertheless, in figure (5-38) 

exposes close to 100 % of renewable power generates throughout January and December 

during the daytime. Likewise, figure (5-39) exposes close to 100 % of non-renewable 

power consumes by the loads for the period of almost every evening and night 

throughout the whole year. 

Figure 5-35: Excess Electricity (yellow) and Unmet load (red)

Figure 5-36: Thermal load (blue) vs Excess Thermal Energy (red) 

Figure 5-37: Renewable Output divided by total Power Generation 
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Figure 5-38: Non-renewable output divided by total power load 

5.3.4 MG configured with Grid 

The configuration consists of PV system, battery, connected in the DC bus and cold 

storage positioned in either DC bus (case-1) or AC bus (case-2). 

 
(a)  

(b) 
Figure 5-39: Main grid connected configured MG: (left) Cold storage connected in AC 

bus (case-1) & (b) cold storage connected in DC Bus (case-2) 

5.3.4.1 Grid Connected MG: Cold storage connected in AC bus 

An external grid connected MG configuration consists of 2.0 kW of PV and 3.0 kW of MT 

generates in total 11,310 kWh electricity per year shown in figure (5-41); shade brown 

histogram represent PV and light rust histogram represent MT produced electricity. The 

PV module with 16.83 % of capacity factor energy produces 8.08 kWh per day. It is clear 

that there is no electricity required from the main grid to meets the primary load, 



 
156 

 

whereas the primary DC load requires 4380 kWh per year. The remains surplus 

electricity sells back to the grid through inverter shown in figure (5-51) and electricity 

quantity and sell price depicted in the figure (5-62). The optimal system produces 26.08 

% electricity from PV and 74 % of electricity from biomass, while the configured system 

load consumes 43.38 % and rest 55.02 % electricity sell back to the main grid. The 

maximum renewable penetration in the system about 13,970 that would be about 81.1 

% of renewable fraction. There is no excess electricity that wastage in this optimal 

configuration. In figure (5-42) green line and red line represents, the surplus Electrify 

Sellback to grid and Unmet Load respectively. The unmet load precisely present in the 

figure (5-43). 

Figure 5-40: Monthly based Average Electricity Generation 

Figure 5-41: Surplus electricity sell to the grid (green) and Unmet Load (red) 

Almost Similar fuel consumption compare with the previous scenario, the total thermal 

energy graphically represents in figure (5-44), whereas MT (CHP) production represents 

by sandy brown painted histogram and light olive histogram represents boiler generated 

thermal energy. The month of December and January, the low demand of electricity and 

thermal energy, MT produces zero 0 kW in January and almost zero kW in the month of 

December. Throughout the year, 34.69 % and 65.31 % of thermal energy produces from 

MT and boiler. The cold storage consumes chill air converts from thermal energy from 

MT (CHP) and boiler generated. In figure (5-45), the green spike presents boiler thermal 

output and green line shows MT (CHP) thermal energy. Thermal load consumption and 

the excess thermal output represent in the figure (5-46) and about 385 kWh the excess 
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thermal energy remains as unused per year. Hence 10.8 % of total generation of thermal 

energy wastage in a year. 

Figure 5-42: Unmet Electrical Load 

Figure 5-43: Monthly based Average thermal load 

 

The MT (CHP) with 31.81 % of capacity factor and 107.1 % of electrical efficiency 

generates maximum electricity 3.0 kW and 0.6 kW thermal energy. The MT operates 5032 

h per year and produces 8360.6 kW electricity shown in figure (5-47) and 1373.3 kW 

thermal energy with 148 throughout the year. The MT (CHP) operates by biomass, the 

specific biogas consumption with 0.02 kg per kWh and 7.3 kg per year shown in figure 

(5.48). The specific fuel consumption 0.61 L per kWh and total fuel consumption7.30 L 

per year. 

 

Figure 5-44: Thermal Energy Production (yellow) laod (green) and excess (red) 
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Figure 5-45: Thermal Load (blue) and Excess thermal Load (red) 

Figure 5-46: MT (CHP) optimal output electrify 

Figure 5-47: Fuel Consumption by the MT (CHP) 

The renewable generation divided by the load about 29.21 %, and renewable production 

divided by generation is about 26.08 %. About 81.1 % of renewable energy faction 

observed in scenario-4, and the non-renewable production divided by the load is 17.19 

% shown in figure (5-49). During daytime demand of peak load is lower than evening and 

PV produces electricity in the daytime, as battery stores electricity from PV. Configuring 

20 battery in parallel strings (each string 1 battery with 83.4 Ah) considered in the 
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system, and 1,978.3 kWh throughput per year and battery losses 430.62 kWh per year. 

The monthly average state of charge (SOC) shown in figure (5-50). 

The inverter and rectifier operates 3478 h and 3307 h per year, the PV generated surplus 

electricity supplied to the main grid through inverter shown in figure (5-51). Both 

residual and cold storage load connected in DC bus; PV generated electricity delivered, 

stored without any converter except sell back to the grid. The MT generated electricity 

delivered through rectifier (the electricity transform AC to DC) to the load, the surplus 

electricity from PV and battery sell back through inviter to the main grid shown in Figure 

(5-51) and the conversion of electricity shown in figure (5-52) Inverter (top) and 

Rectifier (down). 

Figure 5-48: Non-renewable energy divided by load 

 

Figure 5-49: SOC of Batteries 
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Figure 5-50: Electricity Sell back to the grid 

Figure 5-51: Converter:  Inverter (top) and rectifier (down) 

5.3.4.2 Grid Connected MG: Cold storage connected in DC bus 

An external grid connected configuration consisting of 2.0 kW of PV and 2.5 kW of MT 

(CHP) generates in total 14,098 kWh electricity per year shown in figure (5-53); shade 

brown histogram represent PV and light rust histogram represent MT produced 

electricity. The PV module with 16.83 % of capacity factor energy produces 8.08 kWh per 

day. The maximum output of 1.98 kW PV generated and about 67.34 % PV penetrates in 

the system, total electricity produces 2,949.4 kWh by the PV per year. The electricity 

generates 20.92 % and 79.02 % by PV module and MT (CHP) respectively. As Load 

requires 4380 kWh per year, which is 33.17 % of the total produced electricity produces 
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by the sources. The surplus 8658 kWh of electricity sell back to the grid per year. The 

remained surplus electricity sell back to the grid through inverter shown in figure (5-54) 

and electricity quantity and sell back to the grid price depicted in the table (5-8). 

Figure 5-52: Monthly based average electricity generation 

Figure 5-53: Surplus Electricity sellback to the grid 

In the system MT (CHP) operates 7234 h and produces 11,148 kWh electricity shown in 

figure (5-37) and the generators output shown in (5-55). Thermal energy produces by 

MT and boiler shown in figure (5-56), where both MT and boiler produces 38.58 % and 

61.42 % respectively. 

Figure 5-54: Generator Output 
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Figure 5-55: Thermal Energy output of MT and boiler 

The maximum renewable penetration in the system as renewable fraction 89 % rebelled 

in Homer simulation.  There is no excess electricity in this optimal configuration. In figure 

(5-57) the violate spike and red spike represents, the surplus Electrify sellback to grid 

and Unmet Load respectively. The unmet load precisely present in the figure (5-58), it is 

precisely shows that the unmet load is zero except weekend load demand is 

comparatively low as ability to sell back to the grid. In figure (5-58), the blue rounded 

rectangle spike present 12 April 2013 and 13 April 2013, and black rounded circle also 

represent weekend days. 

Figure 5-56: Sellback surplus electricity (violet) and unmet load (red) 

Figure 5-57: Unmet load 

Surplus Electricity sellback to the Grid 

When optimal system produces enough energy by peak solar power after meet up loads 

and battery SOC at 90 %, of the surplus electricity directly sellback to the grid. The 

electricity sellback to the grid has considered through the two assumptions as bellow; 
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Assumption-1: Weekday price (peak price) 

The grid power price 0.1 ($/kWh) and sellback price 0.05 ($/kWh); the surplus 12,454 

kWh electricity sellback to main grid per year present in the table (5-3). The optimum 

configured MG has ability to earn $ 622.7per year. 

Assumption-2: Weekend day price (shoulder Price) 

The grid power price 0.03 ($/kWh) and sellback price 0.01 ($/kWh); the surplus 7043 

kWh electricity sellback to main grid per year present in the table (5-3) and total earning 

by sellback to the main grid. 

 

Figure 5-58: Surplus Electricity sellback to the grid (peak price) 

 

 

Figure 5-59: Electricity Purchased and sellback to Grid (shoulder price) 
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Figure 5-60: Surplus Electricity sell back to the grid (peak price) 

 

Figure 5-61: Surplus electricity sell back to the grid (shoulder price) 

 

Both Case-1 and case-2; during weekdays the peak price considered grid purchase price 

0.1 $/kWh and sell back price 0.5/kWh. The figure (5-59) and (5-61) represent the 

amount of surplus electricity sell back to the grid and amount of money earnt by the MG. 

As shown in the figure (5-59) and (5-61), case-1 sell back about 5555 kWh and earns $ 

55.55 per year, whereas case-2, 8658 kWh surplus electricity sell back to the grid and 

earns $ 86.58. 

Weekend period the grid purchase considered as 0.03 $/kWh and sell back price as 0.01 

$/kWh, case-1, 8783 kWh surplus electricity sell back to the grid and earns 439.16 $ earns 

through the year. For case-2; 15,594 surplus electricity sell back to the grid and earns 

about 779.72 $ earns in each year present in figure (5-60) and (5-62). 



 
165 

 

5.4 MG Components Configuration and Sizing 

An autonomous off grid or grid tied renewable energy integrated power system 

configured with optimal positions, planning for suitable components and appropriate 

size of components that offers reliability and flexibility in the system. According to rural 

electrification, the bottom up concept used to more favourable in Bangladesh [171]. In 

the configured with PV and biomass, both PV and biomass are the major source of energy. 

The power system formed along with PV modules, biomass fuelled CHP, and loads. 

5.4.1 PV Modules Sizing 

Large SHS configuration 

The large SHS module sizing: To size the PV modules, initially demand of load 

consumption requires. 

Table 5-3: Large SHS load and consumption energy 

Appliance  Rated 
Capacity  

Operation (h) Total energy  Energy consumption  
Summer  Winter  Summer Winter Summer  winter 

CFL (4) 6 W 5  5 30 30 120 120 
Ceiling fan (4) 60 W 8 0 420 0 1920 0 
M. Charger (2) 3 W 3 3 9 9 18 18 
TV (1) 20 W 5 5 100 120 100 100 
Total energy consummation (kWh/day) 2.158 0.358 

 

The large SHS summer energy consummation about 2.158 kWh per day while winter 

energy consumption about 0.358 kWh per day. The proposed system site in the 

Bangladesh, where the winter considered only two months. Hence the system configures 

and sizing respect to the summer season. 

             Energy  consumption by the appliances =  2.158 × 1.2 
 = 2.5896 kWh per day   
                                      The Watt-peak of PV panel = 2590/5.99  
 = 432 WP 

The Large SHS panel short circuit (ISC) considered as 5.99 A 
Number of PV module needed for large SHS = 432 WP /65 WP  
 = 6.646 

The large SHS configuring with 7 PV module and loss factor assumed 1.2 
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Regular SHS module sizing 

Sizing the regular SHS by configures the PV modules, initially load energy consumption 

requires and loss factor 1.2 considered to reliable and stable system. 

 

Table 5-4: Regular SHS loads and Energy Consumption 

Appliance  Rated  
Capacity  

Operation (h) Total energy  Energy consumption  
Summer  Winter  Summer Winter Summer  winter 

CFL (3) 6 W 5  5 30 30 90 90 
Ceiling fan (3) 60 W 8 0 420 0 1440 0 
M. Charger (1) 3 W 3 3 9 9 9 9 
TV (1) 20 W 5 5 100 120 100 100 
Total energy consummation (kWh/day) 1.639 0.20  

 

             Energy consumption by the appliances =  1.639 × 1.2 
 = 1.966 kWh per day  
                                      The Watt-peak of PV panel    = 1966/5.99  
 = 328 WP 

The Large SHS panel short circuit (ISC) considered as 5.99 A 
Number of PV module needed for large SHS = 432 WP /65 WP  
 = 5 

Hence for configurin g regular size SHS; the system req uires 5 PV mod ule.  

5.4.2 Battery Sizing 

The configuration and sizing of battery requires appliances consumption, nominal system 

and battery voltage, and battery autonomy (days). Assuming, the battery nominal voltage 

12 V, battery loss 85 % and depth of discharge 60 % considers to design the battery 

capacity. Battery autonomy considered 2 days. 

Battery capacity  = Energy Consumption

Battery volatge × Battery losses × Battery DOD
 

 = 2280 Wh

12V × 0.85 × 0.6
× 2 days 

 = 740 Ah 
 So a large SHS battery should be rated for 12 V system about 740 Ah for 2 days. 

The configuration and sizing of battery requires appliances consumption, nominal system 

and battery voltage, and battery autonomy (days). Assuming, the battery nominal voltage 
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12 V, battery loss 85 % and depth of discharge 60 % considers to design the battery 

capacity. Battery autonomy considered 2 days. 

  = 1966Wh

12V × 0.85 × 0.6
× 2 

  = 643 Ah 
For the regular SHS, the battery should be rated for 12 V system about 7642 Ah for 2 days. 

 

5.4.3 Charge controller Sizing 

The charge controller sizing depends on PV configuration and most importantly the parameters 

of the of PV module. PV module parameter specifications  

Parameters    
Peak power (WP) = 65 W 
VMPP = 28V 
IMPP = 5.75 
ISC = 5.99 
VOC  32.1 

 

                                   Charge controller sizing for large SHS  = 7 string *5.99 A 
The large SHS charge controller configuration should be = 41.93 A or 42 A 
Regular SHS charge controller configuration should be  = 30 A 
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Summary 

 

The configuration and design optimization to analyse the potential to introduce energy 

access from locally available biomass and stand-alone PV system integrated scheme for 

the remote area in Bangladesh. The suggested system configures with the future demand 

that considers along with load power about 33,228 kWh and 8,743 kWh for summer and 

winter per day respectively. Both household and cold storage electrical load power 

consider as 5 % of day-to-day random variation and load factor 0.2. The suggested system 

households peak load demand from around 19:00 h to 23:00 h. Three different 

configurations studied based on exclusively on PV, CHP, and batteries, and some 

configuration considers along with main grid. The planning for configuring standalone 

PV and biomass fuelled MG system, optimization considered to meets the load power 

effectively and efficiently. The optimum sizing and configuration of each component that 

minimizes the cost of the system, but optimal output meets the demand. The system 

design in the different configuration such as standalone DC MG, grid connected MG and 

AC-DC combinational MG. The standalone DC-MG configuration consists of PV modules, 

batteries, DC-MT (CHP), all loads including household and cold storage connected to DC 

bus. AC-DC combinational MG associates along with DC and Ac bus; the PV modules, 

household loads, and batteries connected in DC bus. The MT (CHP) produces AC power 

and cold storage connected to either AC bus or DC bus through the converter. Grid 

connected MG encompasses along with both AC and DC bus; household load, PV module 

and battery coupled to DC bus, and MT (CHP) tied with the grid in AC bus. The studies 

also allow the cold storage allied in DC bus or AC bus. 

The (MT) CHP produces electricity and thermal energy with 100 % of electrical efficiency 

and 45 to 50 % heat recovery respectively. The cold storage consumes both electricity 

and thermal energy that produced by the (MT) CHP. Although the cold storage consumes 

chill air, moreover by using absorption chiller the thermal energy adapts into the chill air. 

The cold storage consumes about 9.79 kWh to 15.7 kWh during winter and summer per 

day respectively, and optimization considers at 5 % day-to-day random variation. Both 

winter and summer the thermal peak load from around 11:00 h to 15:00 h, as well as 

electrical power. The optimization of configuring the MG by using Homer tool based 

simulation for best suitable configuration; where the variable size of PV modules, MT 
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(CHP) generators, battery, and converters offer optimal design. The simulation of 

configuring and planning of MG, the electrical and thermal load Homer tool based on 

expected future demand in 2025 those including local biomass resources for the MT 

(CHP) fuel, solar insolation of PV module throughout the year. Standalone DC MG system, 

PV produces power is the main source of energy for household loads. However, MT (CHP) 

mainly used to generates thermal energy, which converts into chill air delivered to the 

cold storage, and produced electrical power that delivered into the system. The optimal 

configuration considered 2.1 kW PV and 1.7 kW MT, and associate system produced 8,000 

kWh per year. The optimum system offers 41 % of PV power and 49 % of MT (CHP) 

power, PV module operates 4,370 h.  

The grid connected MG configured to sell back surplus electricity to the grid. The PV 

module operates average 11 h per day and 4,370 h throughout the year. The optimal 

sizing and configuration of PV module and MT (CHP), which is important exertion for the 

planning of MG that meets both electrical and thermal power of the system. Studied 

among all configurations, the system offers about 70 to 90 % of the renewable fraction. 

Although this report does not, comprises any economic feasibility but mostly preferred 

technical appraisal considered for the well-suited MG system. A fully renewable-based 

MG that has almost zero CO2 emission, but the net present cost (NPC) is reasonably high. 

During daytime, the system offers 100 % of renewable power generation and 

consumption. 

DC microgrid, 0.4 kW of PV does not comply the total load power, as MT (CHP) produces 

rest of the power to meet the load power. But MT does not produce enough thermal to 

comply the desires thermal load. The system configured with 0.4 kW of PV and 1.6 kW of 

MT produced excess electricity about 600 kWh per year. The surplus power can be 

delivered to the community based water pump for irrigation for development purpose. 

The grid connected MG configuration the surplus electricity sell back to the grid, in (case-

2) the amount of sell back electricity larger than (case-1). 
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6.1 Concluding Remarks 

In this thesis, author represents a proposal of the new configuration of the modern power 

system for rural electrification, the scheme form by integrating several solar home 

system and CHP, the author also found the opportunity of biomass fuelled power 

generating system in Bangladesh. The goal is to achieve energy access in non-electrified 

areas by renewable energy integrated innovative rural electrification approach, the 

optimal design with renewable energy source integration in the proposed MG system, the 

demand side complemented by the locally distributed sources. The modelling of MG from 

the theoretical point of view of each element of the system, and theatrical equations, and 

data have been considered in MATLAB/SIMULINK environment. 

The present work focus mainly on grid-tied and stand-alone mode operation of MG, the 

model developed along with 20 households including 12 SHS, and 8 BHS those all 

connected to the grid through bidirectional converters to maintain the reliable and stable 

system under constant loads considered and also control strategy studied. The MPPT 

P&O algorithm has used to get the maximize the power from the PV panel, and centralized 

controller of MG control the power exchange in-between AC and DC system, share power 

among all SHS and BHS. In standalone mode, the proposed system operates as DC-MG, 

each converter coupled with an SHS and power level transform in between 12 to 24 V or 

12V to 48 V. The pole mounted transformer used in the AC/DC system to reduces electric 

loss, and the most cost effective electrical distribution components. 

The cold storage can be connected to the DC bus in MG, a DC microturbine can be used to 

produces electric power and thermal power or directly to loads without the grid. The 

thermal energy converts into the chill air by thermal driven absorption chiller. The 

advantage of µ-CHP system has the ability to improve both electrical and thermal 

efficiency 33 % and 65 % respectively. 

In chapter 1, the general introduction of thesis work and motivation has been discussed, 

while, the aim of the report also discussed to comply the motivation of the thesis. 

In chapter 2, has described total electricity access to Bangladesh, the development and 

GDP index of a country depends on a country’s continuous production, a country like 

Bangladesh which is agrarian offer enormous biomass potential to produce electricity 
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simultaneously thermal energy. The low income developing country like Bangladesh per 

capita GDP has increased by consuming 1 % of energy. The growth rate of electricity is 

increasing from 5.5. % to 13.2 % in last 5 years and access to electricity achieved about 

59 % of total population. At present, the total electricity has produced 12,171 MW by 

2015, whereas 10,445 MW in 2012. In Bangladesh, power sectors comprise with private 

and public sector along with Power Grid Company Bangladesh (PGCB) only company to 

engage in transmission of power across the country and other enterprises engage in 

distributing power including urban and rural areas. Although there is only Bangladesh 

Rural Electrification Board (BREB) employed to electrifies in the rural areas. Almost 90 

% of electricity have produced by the conventional fossil including gas, coal, and furnace 

oil, while natural gas serve is not enough to produce sufficient amount of electricity. 

Moreover, the electricity produces by imported coal, furnace oil, and (independent Power 

Producers) IPPs, which is the expensive to the end users, without subsidies of GOB it 

would be almost impossible to use electricity for the low and middle-income inhabitants 

in Bangladesh. 

Since renewable energy emerging into the Bangladesh’s power sector since 1994, the 

growth achieved 2 % of total electricity production by 2014. The GOB has stabilized 

Infrastructure Development Company Limited (IDCOL) in Bangladesh to promote 

renewable energy development to compliant socio-economic development. In 2003 solar 

program started, while IDCOL promoted solar home system across the country and 

reached 3 million SHS installation and become the market leader. Since 2009 GOB 

dedicated policy and reforms towards Renewable Energy policy of Bangladesh, which 

having envisions including 5 % power achieved by 2015, 10 % by 2020, and 20 % by 

2035. Geographically blessed Bangladesh receives an average 4-6 kWh/m2 daily solar 

irradiation promotes a high number of the solar home system across the rural and remote 

areas, and the number increases at 58 % in each year. The government has taken several 

approaches to promote renewable energy across the country by established Sustainable 

Renewable and Energy Development Authority (SREDA) and IDCOL. 

At present studies about 55.41 % population as estimated 5.05 million households has 

electrified by Bangladesh Rural Electrification Board (BREB) and Palliy Biyduit Samity 

(PBS) working as cooperative organization. Among IDCOL, SERDA, BREB working 

together for 100 % of electrification in rural areas, while 95 % of households will be 
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decreased their kerosene consumption about 1.7 litres compare to those not yet 

electrified. Complementing the "vision 2021" and Millennium Development Goal (MDG) 

the renewable energy integrated power system considered the ultimate solution for 

power shortage in Bangladesh. 

In Chapter 3, the details concept of MG and its elements described. Being shortage of finite 

stock of natural gas, and use of imported coal and furnace oil in power generation that 

have the negative impact on the environment. When the world faces the shortage of 

electricity, and learning new practice towards renewable energies such as solar PV, 

biomass, hydropower, and wind energy ensure energy security. Standalone solar PV 

system, especially SHS has been a significant growth across the rural areas in the country 

throughout last five years in Bangladesh. The research investigates and demonstrates, 

the PV technology adaptability and flexibility for designing in different regions with the 

different scheme. In the remote areas, it is straightforward to design the stand-alone 

system which possible to adopt with bottom up swarm concept, where energy can be 

sharing among participants’ in the system. Similarly, the country like Bangladesh, where 

biomass potential has seen enormous prospective to produce electricity by small scale 

CHP or micro-generator. Almost 2.0 tons/day production of biomass resources available 

from agricultural based regions, where agricultural biomass waste and animal manure 

used a fuel and the process considers either gasification or combustion taken into 

consideration to produces 35 % of electrical power and 75 % of thermal energy from 

micro-CHP. 

The studies show inclusive of decentralized electric power generates by several SHS and 

m-CHP, among all SHS coupled in parallel in the DC bus and followed by the radial 

network. Improving the efficiency both DC MG system and distribution, a dispatching 

model that comply by optimal size design, planning for desire operation strategy for the 

specific application. The efficiency also depends on a number of converter and charge 

controller used in each SHS, load power consumption, battery capacity and SOC, while 

DOD considers 70 % to 60 % that prolongs the SOC of lead acid battery and battery charge 

cycle considered as 40 % to 100 %. In the system charge controller are important 

elements that control the system that ensure stable and reliable operation. The MPPT 

algorithm P&O ensures harnessing the maximum power from PV and best utilization of 

solar power in PV system. 
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In chapter 4 comprises of results and discussion, each component of MG model and 

design based on MATLAB/SIMULINK environment. The main and important elements of 

the MG is PV module; the model has designed based on temperature dependency which 

also conferring solar insolation. The solar PV module designed by the theoretical 

equation and the temperature dependency defined by the equation (TC= Ta+0.03 × Ga). 

The cell temperature of PV module varies follows by the fluctuation of solar irradiation 

and ambient temperature of the location, while increases in temperature reduce the band 

gap of a solar cell. By increases the temperature, internal carrier combination increases 

while cell performance decreases instantaneously. The ambient temperature is 

extremely sensitive to the wind speed, and the PV cell temperature rises over ambient, 

while solar cell temperature also strongly depends on solar irradiation. The suggested 

power system, battery-based energy storage plays an important role, and charge 

controller allows reliable operation. The SHS including PV module, battery, and charge 

controller modelling and simulation have also done in MATLAB/SIMULINK environment. 

In the standalone system, an SHS suggested a charge controller strategy and charge 

controller model to charged battery and controlled. An extensive investigation of each 

individual MG components model and configured by SIMULINK based simulation in 

MATLAB. The dynamic behaviour of MG distinguished the suitable configuration and 

design can be deployed in the proposed system. The controller operates within the 

system to maintain constant DC bus voltage to perform the stable system. The battery has 

designed as PV-generated current should not 10 % of battery capacity, and charge control 

operation accordingly. In the proposed system, each battery capacity of SHS or BHS has 

composed with 60 to 80 Ah. The proposed charge controller operation strategy for large 

SHS charging with maximum 5.99 A, regular size SHS charging with maximum 3.99 A 

current, while battery home system charger controller also charging with maximum 4 A. 

In the MG system, the SHSs enable to share their surplus electricity among all SHS and 

BHS connected to the DC bus, while the battery state of charge considered as (SOC ≥ 60 

%) and the surplus electricity delivered to the DC bus. Additionally, battery state of 

charge at (SOC ≥ 90 %), excess electricity sells back to the main grid. 

In chapter 5 describes the optimal MG design, where PV system and CHP integrated 

configuration offers optimum output and result has discussed by simulating Homer Pro 

tool, the planning and sizing of MG system studied through the chapter. The optimal size 
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each element of MG and configuration minimize the cost of the system. Although this 

thesis economic and financial studies not considered and discussed. A typical rural area 

in Bangladesh, electricity consumption in the peak load considering the range 4 kW to 20 

kW, and energy consumption about 100 kWh to 300 kWh per day. The configuration and 

design optimization to analyze the potential to introduce energy access from locally 

available biomass and stand-alone PV system integrated scheme for the remote area in 

Bangladesh. The suggested system configures with the future demand that considers 

along with load power about 33.228 kWh and 87.43 kWh for summer and winter per day 

respectively. There are several configurations studied based on exclusively PV, CHP, and 

batteries, and some configuration also coupled with the main grid. The optimum size of 

each element of MG and configuration minimize the cost of the system. The main grid 

connected configured MG have the ability to produce surplus electricity that sells back to 

the grid. The (MT) CHP produces electricity and thermal energy with 100 % electrical 

efficiency and 45 % to 50 % heat recovery respectively. The cold storage consumes both 

electricity and thermal energy that produced by the (MT) CHP. Although the cold storage 

consumes chill air, moreover by using absorption chiller the thermal energy adapts into 

the chill air. The cold storage consumes about 9.79 to 15.7 kWh. The simulation of 

configuring and planning of MG, the electrical and thermal load Homer tool based on 

expected future demand in 2025 those including local biomass resources for the MT 

(CHP) fuel, solar insolation of PV module throughout the year. Standalone DC MG system, 

PV produces power is the main source of energy for household loads. 

Studied among all configurations, the system offers about 70 % - 90 % of the renewable 

fraction. Although this report does not, comprises any economic feasibility but mostly 

preferred technical appraisal considered for the well-suited MG system. A fully 

renewable-based MG that has almost zero CO2 emission, but the net present cost (NPC) 

is reasonably high. During daytime, the system offers 100 % of renewable power 

generation and consumption. The DC microgrid configures with 0.4 kW of PV does not 

comply the total load power, as MT (CHP) produces rest of the power to meet the load 

power. But MT does not produce enough thermal to comply the desires thermal load. The 

system configured with 0.4 kW of PV and 1.6 kW of MT produced excess electricity about 

600 kWh per year. The surplus power can be delivered to the community based water 

pump for irrigation for development purpose. 
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6.2 Future Work for Research  

 

In the modern power system, the amount of distributed sources increases as complexity 

also increases simultaneously, and the performance of the system complemented always 

by the control system. Although the distributed sources in power system enhance 

flexibility in operation but without proper control offer reliability and stability. Further 

research and analysis can develop based on purely DC power system modelling and 

configuration including SHS, DC loads, biomass-fuelled large scale DC generator. The MG 

control system design and research based on droop control, each SHS energy 

management system also focus on droop control strategy. An adaptive droop controls 

modelling and investigate the flexible performance and reliable operation. 

The research will also focus on the planning of poly-generation system and storage 

system, while a new configuration of DC microgrid where less use of electronics devices. 

As DC network helps to decrease the loss factors that increases the efficiency. The system 

model integrated with renewable sources as intermittent; modelling and simulation will 

consider dynamic load and dynamic pricing. The new configuration system will be 

modelling with load flow supply, the strategy entails of adapting the consumption 

illustration to the electricity production availability which can be influenced the end 

users. 

The Power system configuration and DC power flow modelling and simulation based on 

ETAP software which complies IEEE-946 standard and, the flexibility and performance 

enhanced by IEC 61850, which gives flexibility in performance and system also allow AC 

grid interface and centrally control system provides reliability by monitoring. The ETAP 

tools simulate in the real time system which enhanced electrical management through 

dynamic applications using distributed SCADA technologies. The applications consist of 

dispatchers, capabilities of prediction, control, visualization, and automation in the 

power system. However, the web-based ETAP technologies location based information 

which optimizes the decision based on planned and unplanned event. 

The MG system design and model in the PSCAD and MATLAB/SIMULINK especially 

decentralized control design and model for each SHS in SIMULINK environment that 

performs as reliable and stable energy management system. Likewise, a centralized 
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control system design in the system that controls the community based centralized 

energy storage. Another side investigates the feasibility of Battery home system and 

centralized energy storage. The controller configuration and design follow-up through 

back to the back converter, the converter and control modelling and simulation by 

MATLAB/SIMULINK. 

An optimal configuration and design investigate of the smart power system for the rural 

electrification and standardize the model. The configuration encompasses with 80 or 

more SHS, the surplus electricity will store in the community based battery storage and 

households without PV system consume energy from the community based battery. A 

water pump may also include in the system to utilize the daylight sun. 
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APPENDIX – 1: Microgrid model in MATLAB/SIMULINK environment  
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Appendix – 3: Matlab function for Battery control Startegy 

 

Function [Discharging, Charging] = fcn(SOC) 
%#codegen 
Charging=1; 
Discharging=1; 
if (SOC<=30) 
   Discharging=0; 
   Charging=1; 
end 
if (SOC >= 30)&& (SOC >= 90) 
Discharging=1;  
Charging=1; 
end 
end  

 

APPENDIX – 4: Average Temperature in Gopalgong, Bangladesh 

 

 
 



 

 

APPENDIX – 5: Average Rainfall in Gopalgong, Bangladesh 

 

 
 

 

 

 

 

 




