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Abstract

With the integration of smart objects into the Internet users should gain new possibilities
to directly interact with their physical environment. This vision is called Internet of Things
(IoT) and is enabled by the development of micro Internet Protocol (IP) stacks that allow
one to directly connect smart objects to the Internet. IP alone cannot ensure a seamless
integration because advanced services (e.g., service discovery, identity management) can
only be provided at the application layer. The current development of application protocols
for the IoT focuses on the Machine-to-Machine (M2M) communication and introduces
specialized protocol gateways, smart object-specific code or data representations that
hinder a seamless integration. This thesis deals with the seamless integration, discovery,
and employment of smart objects into the current Internet infrastructure under Human-
to-Machine (H2M) communication aspects by using and adapting already established
protocols that have been standardized by the Internet Engineering Task Force (IETF),
such as the Extensible Messaging and Presence Protocol (XMPP), Multicast DNS (mDNS),
and DNS Service Discovery (DNS-SD). The proposed approach is called Chatty Things.
So smart objects may become a natural part of the network making the IoT readily usable
for (non-technical) users and network administrators providing them with the same level
of usability that is predominant in the current Internet infrastructure.

The applicability of XMPP and mDNS/DNS-SD for smart objects has been evaluated
with implementations of minimized, modular, and extensible software stacks for the
IoT operating system Contiki. This includes a readily usable Application Programming
Interface (API), an essential set of XMPP extension protocols, a proposal for lightweight
and user-friendly event notification, a standardized bootstrapping, and a seamless fallback
mechanism for ad hoc use cases when infrastructure services are failing for XMPP-driven
smart objects. Furthermore, this thesis presents optimizations for the used protocols to
reduce the network traffic in low data rate smart object networks (e.g., sensor-specific
groups, enhanced message compression mechanisms). To sum up, this thesis shows how
XMPP and mDNS/DNS-SD can be used economically on smart objects for the seamless
integration with low effort into the current Internet infrastructure to enable a transparent
(H2M) interaction and service discovery for the IoT.
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1 Motivation

Extending the current Internet with a “things”-oriented concept [1] will allow these “things”
of the physical world and humans to directly interact with each other [2]. This vision was
named “Internet of Things” by Kevin Ashton [3] and describes a technological progress
in which wirelessly communicating constrained devices (e.g., smart objects [4]) will work
in synergy to help improving our daily lives [2]. Connecting the real world with the
Internet opens a new way of observation and a new view of detail on the underlying
physical processes. The Internet of Things (IoT) vision enables new kinds of pervasive and
ubiquitous Internet applications and services which can be used by humans to remotely
control and monitor the environment, while reacting on events or interpreting real-time
data of the physical world [5]. The integration of smart objects into the Internet enables an
intuitive Human-to-Machine (H2M) interaction with the physical world through computer-
based and mobile devices [6]. These objects belong to the Internet analogously ordinary
computational devices today. The access to their provided information should simply be
available for all Internet users via well-known applications and protocols [7].

There is a wide range of IoT applications covering many areas, such as retail, logistics,
pharmaceutical, ubiquitous intelligent devices, ambient assisted living, environmental
and social aspects. The monitoring of objects during their lifetime will offer a complete
history of any item to protect consumer rights, to prove rightful ownerships, and to
improve the quality management along the supply chain of goods. In the future goods
may be transported automatically without user interaction directly from the producer
to the consumer including intelligent decisions about the shortest path. These smart
objects can assist human beings in the optimal use of drugs and can protect them from
overdoses. Ubiquitous intelligent devices around us (e.g., smart clothes, smart books) will
be able to exchange information with each other to dynamically adjust the climate control
or to interact with entertainment systems in houses or cars. Intelligent homes can be
realized without developing dedicated and expensive systems using smart objects to address
and to control lamps, light bulbs, and every single smart device in an intelligent way.
Smart hotel rooms will preconfigure themselves (e.g., temperature, lighting, tv channels)
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1 Motivation

when the traveler arrives because everyone and everything can be connected to the
Internet of the future to exchange information. Early warning systems can be set up
by connecting worldwide sensor information to detect and prevent catastrophes. The
Internet of Things allows the design of smart and cost-efficiency communication systems
for the disaster avoidance and management on top of hybrid and heterogeneous networked
systems/sensors, which can be installed permanently or deployed ad hoc in emergency
situations. Furthermore, smart objects can be used to reach and monitor inaccessible or
remote locations to gather information for the rescue forces [2].

The Internet of Things offers a wide area of new possibilities for developing novel Internet
services, but it poses a number of challenges that have to be solved [5, Sec. 4]:

• Scalability: The extension of the Internet with a large number of smart objects
requires certain basic functionalities, e.g., communication and service discovery, which
have to equally efficiently work in all given network environments without hindering
the growth of the Internet at the same time;

• Self-configuration: The inclusion of smart objects into a new environment should
be carried out, if procurable, without any user interaction or a complicated setup.
Smart objects should configure themselves to automatically adapt to given situations;

• Interoperability: Since smart objects possess varying capabilities, they need stand-
ardized communication procedures to address and cooperate with each other in a
vendor-independent manner;

• Discovery: Smart objects should be able to announce their availability and their
advertised services in the given environment for automatically being identified or
found by other objects or nearby users via discovery, look up, or name services;

• Data Volumes and Data Interpretation: There will be scenarios with rare
communication, which produce small amounts of data, and real world scenarios, such
as smart object networks or logistics, producing huge data volumes. To support users
with useful information of their environment, filter mechanisms need to address data
or events target-oriented;

• Security and Personal Privacy: Security mechanism are needed on each smart
object to ensure privacy, while blocking unwanted information flows which may
contain sensitive personal data;
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1.1 Problem Statement

• Power Supply: Ideally, smart objects should work very power-efficient and harvest
energy from their environment, so that they do not need to be connected to a power
supply, but the current development of batteries and energy harvesting technologies
progresses only slowly. Therefore energy-efficient hardware (e.g., low power processors
and communications modules) and software (e.g., protocol stacks) is required;

• Wireless Communication: For the communication between smart objects, low
power wireless technologies are preferred to adapt to a low bandwidth because energy
is the most concerning aspect of this device class.

A large number of different smart objects will emerge as new dynamic and global resources
of the Internet for use by networks, services, and applications (cp. [8, Sec. 1.2]).

The implementation of the IoT vision is strictly coupled with the development of Internet
Protocol (IP) based solutions for smart objects. IP is the dominating basic technology of
the Internet used to couple different network infrastructures and has proven to be highly
scalable [9, Sec. 1.2.3]. Connecting smart object networks directly to the Internet with IP
would be an ideal way to ensure interoperability [10] because the development and use
of diverse networking protocols can be omitted [11]. This allows a simplified connectivity
model without using specialized protocol gateways, which are unavoidable when proprietary
protocols are deployed. Instead, routers can be used, which are the standard way to connect
networks in the Internet (cp. [12, 13]). Moreover, IP-based protocols enable users and
programmers to reuse the experience and solutions that have widely been applied in the
Internet for decades [1, 14]. Thus, standardization and interoperability are an important
presumption for the Internet of Things. [7, Sec. 14].

1.1 Problem Statement

IP alone cannot ensure an automatic integration of smart objects due to varying protocols
used at the higher layers in the IoT and Internet. Current IoT application protocols
introduce new mechanisms or new dependencies, such as smart object-specific code or
data representations, that differ from the established standards used in the Internet at
the application layer for computational devices (cp. [12]). Therefore application protocol
gateways are required that introduce additional complexity in terms of message translation
and protocol version support [11, 15]. Message translation is typically time-consuming and
failure-prone [16]. It reduces the flexibility, scalability, and end-to-end functionality from
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1 Motivation

the protocol [5] and security [17] point of view. In addition, gateways as single point of
failures interrupt the communication among the smart objects when they fail. Protocol
gateways are a limiting factor that should be omitted when integrating smart objects
into IP-based infrastructures because they again separate smart objects from ordinary
computational devices at the application layer and neutralize the existing integration of
both worlds at the IP layer (“One Internet vs. Islands”, [18]). Thus, a similar situation
may repeat at the application level as at the IP level years ago [13]. Currently a seamless
integration of smart objects into the Internet is, therefore, not possible. With IP as the
underlying protocol, running established standards at the application layer can boost the
handling/interaction with and the integration of smart objects [12].

Furthermore, a seamless integration strategy should also have the human user in mind, i.e.,
the Human-to-Machine (H2M) communication. Current IoT application protocols for the
integration into the Internet focus on Machine-to-Machine (M2M) communication. The
use of wireless-enabled mobile devices has grown exponentially during this decade and
created scenarios in which access to a wide variety of services from ubiquitous resources is
desired without a deep knowledge by the user [19]. Smartphones represent a programmable
and flexible platform with a wide range of applications (apps), while at the same time
leveraging from the human element when carried as ubiquitous and pervasive commodity
hardware [20]. Instead of requiring users to learn new interaction schemes to access data
from their environment, smart objects should seamlessly be integrated into the Internet
infrastructure with known and standardized approaches. As users already use smartphones
for their daily communication (e.g., Instant Messaging (IM) and chat) and stay in touch
with their (human) environment, we prefer solutions that support the Internet’s end-to-end
principle and that integrate into the software a user is familiar with. Therefore, smart
objects should become directly accessible by the Internet community via established
Internet mechanisms (e.g., applications, protocols) [7, Sec. 10.3]. There is a broad range of
approaches to overcome this issue. Web services and middlewares are two of them, but
they provide similar features with an incompatible integration paradigm. This produces
an unnecessary variety and intricacy for a smooth user interaction with smart objects
in the IoT [11]. Such a scenario should be strictly avoided because it would lead to a
fragmentation of the IoT in the worst case, prevent its growth, and lower its acceptance
rate [2]. A common protocol stack as basic communication concept for all supported classes
of IoT devices would easily enable a seamless integration of smart objects into the Internet
(cp. [18, Sec. 3.1.2]). Smart objects cannot be divorced from the rest of the Internet if the
Internet of Things should couple all connected devices and should allow them to discover
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and communicate vendor-independent with each other, while respecting the end-to-end
principle of the Internet.

Therefore, we prefer the use of an established application protocol for discovery, interoper-
ability, addressability, and self-configuration (“arrive and operate”, scalability) through
a standardized scheme that complies with the conventional Internet domain [5]. Self-
configuration and self-management are key-enablers to allow the seamless integration and
automatic handling of billions of devices independent of the network environments and
user interaction. Adding smart objects to any operational environment has to be possible
without a long and difficult installation procedure because the growing amount of such
devices in the IoT cannot be handled with manual setups (i.e., parameter-less bootstrap-
ping and service discovery). Smart objects can be placed everywhere. If no infrastructure
network (e.g., no fixed access point) is available or the devices are mobile, the smart objects
should automatically adapt to their environment by forming ad hoc networks for routing
information towards the infrastructure or to a dedicated smart object which is accessible
by users (i.e., hybrid smart object networks) [2]. Since IoT “applications are typically
event-based: the application performs most of its work in response to external events” [9,
Sec. 1.2.2]. Thus, application protocols which are based on the publish-subscribe paradigm
should be favored to support the nature of smart objects (i.e., “things”-oriented concept)
and to realize an efficient notification of events from objects to human beings (cp. [21]).
Beside the (technical) integration of smart objects at the network and application layer,
the integration into the workflow and the life of the users is very important (i.e., usability)
because smart objects communicate with their environment, e.g., with nearby people
carrying computational devices and vice versa [5, Sec. 2]. To sum up, an established applic-
ation protocol for the IoT should combine scalability, usability, efficiency, and flexibility to
provide a common set of features as core (e.g., publish-subscribe, identity management,
authentication, bi-directional communication) and as extension (e.g., service discovery,
hybrid smart object networks). Only then the collaboration between all IoT-based devices
and human beings can be realized without limiting the manifold possibilities for future
demands and solutions, as required in [11].

1.2 Focus of this Thesis and Research Issues

In this thesis, an XMPP layer for IP-based smart objects is proposed that provides a
minimized, modular, and standardized protocol stack to seamlessly integrate constrained
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devices into the current Internet infrastructure and to enable an easy H2M interaction with
the physical environment through familiar software in hybrid (ad hoc and infrastructure)
networks. The Extensible Messaging and Presence Protocol (XMPP) [22], Multicast DNS
(mDNS) [23], and DNS Service Discovery (DNS-SD) [24] are standardized by the Internet
Engineering Task Force (IETF) and widely deployed in the Internet. XMPP itself is a
set of flexible and open Extensible Markup Language (XML) technologies for real-time
data stream and IM applications that are expandable through XMPP Extension Protocols
(XEPs) to adopt to various environments and scenarios. From the network point of view,
using XMPP as the default communication protocol allows us to implement pervasive
networking without using a middleware or a protocol gateway. This approach will guarantee
the end-to-end access for all classes of devices which should be supported in the IoT because
the functionality is directly placed in the devices and their offered services can be accessed
at the higher layers as required by [18, Sec. 3.1.3]. XMPP simplifies the interconnection of
devices [5]. An important aspect for pervasive networking is that XMPP provides ad hoc
Peer-to-Peer (P2P) communication with XEP-0174 Serverless Messaging [25] via mDNS
and DNS-SD. These technologies are based on work of the IETF’s Zeroconf working group
that defined several standards in the field of service-oriented networking, also known as
Bonjour. Both, XMPP and Bonjour, offer a rich variety of open source software for servers,
clients, and libraries. They support several mobile and desktop operating systems. Thus,
the implementation of IoT applications will strongly benefit from it. The time and cost
needed to develop, test, and maintain IoT applications on smart objects can be reduced
because existing tools can simply be reused [11]. Developers can use the Application
Programming Interface (API) and concentrate on the real problem instead of struggling
with the constrained resources of smart objects and new programming paradigms, while
users will get in touch with complete and consumer-friendly IoT solutions.

An important focus of this thesis is the optimization of the H2M interaction because
XMPP was initially designed for the communication among humans. As smart object
networks have an event-driven nature [9, Sec. 1], the publish-subscribe paradigm of XMPP
is very well suited for the notification of events from smart objects to users (cp. [26, Sec.
III.4]) without disturbing users in their daily workflow. The efficient event distribution
cannot be handled well by Web-based approaches (e.g., HTTP/REST, cp. [27]). As the
Hypertext Transfer Protocol (HTTP/1.1) [28] is based on the request-response paradigm,
data changes are not automatically pronounced to interested entities and have to be
checked periodically by each interested entity itself. This polling mechanism is inefficient
and can cause a high network traffic, even if there is no data change (cp. [21]). Smart
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objects can collect a huge amount of data from their environment [29] and thus a lot of
information has to be pushed to the Internet which can confuse and overstrain ordinary
users. Therefore, mechanism supporting users to easily subscribe to events and information
they are really interested in via an XMPP chat client will be investigated, which allow users
to filter and prioritize information. Further significant drawbacks of HTTP/REST-based
approaches are that following links become insufficient for the search and the discovery of
services in the IoT [27] and that no bi-directional communication between HTTP clients
is possible without running a HTTP server additionally at the client side [30, Sec. 5].
In conjunction with mDNS/DNS-SD, the (automatic) discovery of smart objects and
their services is investigated. This is still an open issue in the IoT, as it requires that
smart objects describe themselves in a way human beings and computational devices can
understand (cp. [27]). Furthermore, self-configuration and bootstrapping in hybrid network
environments are validated as part of the XMPP layer for smart objects, i.e., helping to set
up smart environments without any user interaction (including a simple and standardized
fallback strategy based on XEP-0174 Serverless Messaging).

Due to the scarce resources of smart objects in terms of low memory, slow microcontrollers,
and low data rate, the adaption of XMPP and mDNS/DNS-SD focuses on these parameters
because of their initial design target for larger computer systems with nearly no limit of
bandwidth and hardware resources. Therefore, the most essential functions for typical IoT
appliances and H2M/M2M communication need to be prioritized, mapped to existing or
possibly new XEPs, implemented, and tested for the efficient use of these protocols on
smart objects. Redesigning XEPs, splitting up functionalities, and reducing redundant
transmitted data will be therefore necessary. Following the building blocks concept, each
XEP will be implemented as an independent module and can be chosen as an optional
feature to complete the XMPP Core functions as needed during compile time of the
minimized protocol stack. A special challenge is the implementation of XEPs as tiny
modules with reduced code size and an economic use of message exchange (e.g., 127 bytes
maximum packet size for IEEE 802.15.4), while extracting protocol behavior unnecessary
for resource-constrained devices and analyzing several possibilities to reduce the XML
message overhead with and without compression techniques. The minimized XMPP and
mDNS/DNS-SD implementations have still to be standard-compliant despite maintaining
a low memory and bandwidth profile. In this sense, an application-specific protocol support
should be enabled that depends on the actual duties and scenarios of smart objects in the
IoT vision but retains the strength of XMPP and its expandability though XEPs. Note
that the avoidance of protocol gateways requires to prevent the introduction of smart
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1 Motivation

object-specific code and data representations, since all classes of IoT devices should be
treated equally. To sum up, the implementation of XMPP and mDNS/DNS-SD with a low
memory footprint leads to a general system design for the IoT vision.

This thesis validates the applicability of XMPP and mDNS/DNS-SD to smart objects in
terms of memory efficiency, low data rate support, high flexibility, and H2M interaction to
ensure the interoperability of smart objects with the Internet as well as the scalability of
the complete XMPP-based system design. Thus, the research questions we address in this
thesis are: (1) how to scale XMPP down to work as substrate on constrained devices for the
Internet of Things; (2) what are the minimum memory requirements for using XMPP and
mDNS/DNS-SD on constrained devices; (3) what are possible improvements for XMPP
and mDNS/DNS-SD in order to achieve a low network traffic; (4) how to support human
users filtering and getting an up-to-date view on all interested events to which a user
has subscribed to; (5) how to search and discover smart objects using the established
DNS protocol to bootstrap XMPP-driven smart objects without the need for any user
interaction or manual pre-configuration. To foster the proposed approach we provide the
following contributions to the Internet community: open source implementations of parts
of the developed XMPP and mDNS/DNS-SD components for the Contiki operating system
and active involvement in the standardization of discovering XMPP-driven (smart) objects
for the IoT as XMPP Extension Protocol (XEP).

As this thesis is based on the benefits of IP for smart objects, it concentrates on the
seamless integration into the existing Internet infrastructure and the H2M interaction at
the application layer. Thus, research issues related to network layer and lower layers (e.g.,
multi-hop scenarios which are mostly used for M2M communication), power consumption
measurements, and implementations of security functions are not in the scope of this thesis.
Secured communication is an important aspect in the Internet of Things. XMPP supports
secured communication, e.g., using the Transport Layer Security protocol (TLS) [31]. There
is ongoing research on implementing the protocol for smart objects. The considerations
of this thesis to use XMPP as a dedicated application protocol for seamlessly integrating
smart objects into the Internet do not have any impact on this. Therefore, security aspects
are not the main concern of this thesis.
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1.3 Outline of this Thesis

An introduction of smart objects, their integration into the Internet, and their technical
limitations is given in Chapter 2. Furthermore, currently developed application layer
protocols and their drawbacks are discussed. It will be shown that a seamless integration
of smart objects into the Internet cannot be achieved with these approaches.

Chapters 3, 4, 5, and 6 present the main contributions of this thesis. Chapter 3 presents
our approach to scale XMPP down to work as substrate on highly constrained devices for
the Internet of Things. For this, the Chatty Things approach is introduced that provides a
standardized application layer and system architecture based on XMPP and mDNS/DNS-
SD for a seamless integration of IP-based smart objects into the Internet at the application
layer. It is discussed which essential set of XMPP features is required to make the H2M
interaction readily usable for the IoT.

The following Chapters 4 and 5 focus on the minimization of the memory requirements for
using XMPP and mDNS/DNS-SD on highly constrained devices and possible improvements
for these protocols to reduce the network traffic. Therefore, the required technical steps
and the architectural solutions for the adaption of XMPP and mDNS/DNS-SD on IP-
based smart objects without the introduction of smart object-specific code and data
representations are described. We present a minimized and modular implementation of
an XMPP stack that provides a readily usable API, an essential set of XEPs for the IoT,
and a proposal for lightweight event notification to support human users with a filter
mechanism and an up-to-date view on all interested events to which a user has subscribed
to. Moreover, we present a minimized mDNS/DNS-SD implementation with adjustments
for smart objects to enable a standardized service discovery at the application layer for
the IoT. Based on this we present a solution for Chatty Things to discover and to connect
to XMPP servers in a given network without any pre-configured parameters. It further
implements enhanced DNS message compression mechanisms to effectively reduce the
number of exchanged IP packets in low data rate smart object networks.

In Chapter 6 we evaluate the performance of the prototypical implementations of the Chatty
Things’ main components. Chapter 7 completes this work with concluding remarks.
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2 Connecting Smart Objects to the Internet

Smart objects [7] can be described from a hardware point of view as highly constrained
devices equipped with sensors, actuators, a low power microprocessor with scarce memory
(Kbytes of ROM and RAM), and a low power radio device (e.g., IEEE 802.15.4, low power
WLAN), which often operate battery-powered [2, 4]. From the software point of view a
smart object runs a (tiny) operating system (e.g., Contiki OS [32], Tiny OS [33]) and
specific applications that define its behavior. The integrated sensors are used to detect
characteristics of physical objects, whereas actuators can be used to actively interact with
physical objects or systems of the real word [34, Sec. 3.2]. The communication between
smart objects and the environment is an essential part of the IoT vision. Therefore, radio
devices have to work very efficient to allow a long lifetime of battery-operated smart objects
because sending and receiving data consume much more energy than for the processing of
data [7, Sec. 11.3]. IEEE 802.15.4 [35] defines a low power, low data rate, and low cost
wireless link standard at the physical and the MAC layer for the efficient communication
over lossy links, which is heavily desired to ensure interoperability at higher layers [36,
Sec. 4]. Therefore, IEEE 802.15.4 is an often used radio technology in conjunction with
the realization of smart object networks [7, Sec. 9.2.2]. The combination of hardware
components and the energy-efficient behavior of the IEEE 802.15.4 standard [37, Sec. 2.2]
allow smart objects to sense, save, and transfer measured values as well as to make decisions
about themselves, while communicating and interacting with other objects, devices, or
systems [38, Sec. 3.1]. Smart objects require a small physical size to be embedded in
everyday objects and their price should be low to create versatile things [13].

The following chapter describes the interconnection of smart objects with ordinary compu-
tational devices via IP in Section 2.1 and their technical limitations due to the heterogeneity
of available hardware platforms in Section 2.2. Furthermore, Section 2.3 introduces the
requirements for a seamless integration of smart objects at the application layer and
reviews state of the art integration approaches and developed application layer protocols
for the IoT. Section 2.4 discusses the drawbacks of the current approaches and the need
for a seamless integration of smart objects at the application layer.
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2.1 Using IP to Interconnect Different Classes of Devices

IP-based integration strategy for smart objects has become widely used [39], since it
provides efficiency in terms of routing, message overhead, latency, and energy cost [36]. The
routing between smart object networks and traditional IP networks is carried out by the
border routers which convert 802.15.4 (i.e., 127 bytes maximum packet size) / 6LoWPAN1

frames to Ethernet / IPv6 frames (i.e., 1280 bytes minimum MTU size) and vice versa.
To efficiently embed IPv6 packets in 802.15.4 frames (e.g., fragment oversized packets,
statelessly compress packet headers, forward packets via multi-hop wireless routes) to use
IP in smart object networks the Internet standard RFC2 4944 [41] was proposed to allow
a seamless integration of resource-constrained devices [5, Sec. 6]. Thus, smart objects can
communicate natively with IP to other IP networks, with each other, and with any IP
device respecting IP’s end-to-end principle [36], as depicted in Figure 2.1.

Complex Sensors
(e.g., Power Meter)

= Simple Sensors 
(e.g., Temperature)

= Actuators
(e.g., Control Unit)

=

Border Router

Mobile DevicesDesktops

Servers
Internet Industrial Controllers

IEEE 802.15.4 
Radio Links=

Figure 2.1: Interconnecting several classes of devices over IP (adapted from [36, Sec. 2])

1IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals (RFC 4919 [40]).

2Request for Comments (RFC) [Online] http://www.ietf.org/rfc.html.
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2.1 Using IP to Interconnect Different Classes of Devices

Sensors, actuators, and other embedded devices can be part of the same IP network as
servers, industrial controllers, PCs, or smartphones without specialized gateways because
the interoperability is provided at the network layer [11, 42]. This will allow the development
of a new set of future applications which require the integration and the interoperability
with existing network infrastructures and existing applications as well as the heterogeneity
for technologies on the hardware, software, and communication level [43].

2.1.1 Drawbacks of Protocol Gateways

The current Internet is based on the IP end-to-end principle. First smart object networks
were not based on IP [5, Sec. 2]. Multi-protocol gateways were used to interconnect these
networks with IP networks, either encapsulating the traffic into IP packets or translating
the protocols. Protocol translation is a complex task because network protocols differ in
their used semantics, mechanisms, and logic. Protocol translation gateways may cause
further limitations, such as incomplete address management, restricted support for a set
of specialized protocols [44, Sec. 3.1], or even break the network models on both sides if
their protocol paradigms are not mapped exactly. Management and failure analysis are
very difficult and augment with the number of supported protocol translations which can
only be handled by experts rather than by usual administrators. Moreover, multi-protocol
translation gateways represent a networking bottleneck in terms of scalability, flexibility,
and reliability. They introduce an undesirable state and a single point of failure in the
network, while each protocol improvement entails changes in the gateways. With the use
of IP in smart object networks, gateways are not needed and not recommended any more
because they lead to a wrong architectural design of the IoT vision that will hinder the
development of future innovative applications [7, Sec. 3.8].

2.1.2 IP is Lightweight and Low Power

With the development of memory-efficient and low power IP stacks like uIP(v6) [45],
resource-constrained devices can implement IP using only a low memory footprint of a few
Kbytes of ROM / RAM on low power 8-bit microcontrollers [46] and run over sub-milliwatt
radio links enabling years of operation even for multi-hop scenarios [13]. The Contiki
operating system for the Internet of Things integrates uIP [47] – a full RFC-compliant
TCP/IP stack for 8-bit microcontrollers that is well known in the IoT community. Real
world tests with a home-monitoring application have shown that IP-based smart objects can
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achieve an average duty-cycle3 of 0.65%, an average per-hop latency of 62 ms, and a data
reception rate of 99.98% [36]. Furthermore, the cost of IP to transmit 1 byte is only 1.67
µJ, and the transmission of an IP packet is correspondingly 630 µJ [36]. These results were
achieved through implementing useful optimization techniques for uIP, such as distributed
TCP caching, spatial IP address assignment, header compression, and application overlay
routing [46] in conjunction with optimizations on the link layer, such as duty cycling
mechanisms (e.g., power-saving MAC protocols [42, Sec. 3.2], [49]), and efficient routing
with effective link estimation [36]. To sum up, IP for smart object networks has become
widely accepted [42] because it facilitates the integration of these devices into the Internet
and it has shown that it can provide the same performance (e.g., energy consumption,
data throughput) as using specialized protocols on resource-constrained smart objects [10].
In addition, IP provides scalability, stability, interoperability, and efficiency to enable the
communication among billions of devices to set up large-scale networks. Combining the
availability of small and low power IP stacks for smart objects IP is the promising choice
for the IoT vision [13].

2.2 Heterogeneity of Smart Object Hardware Platforms

The multitude of available hardware platforms for smart objects needs hardware-independent
solutions that provide an homogeneous access, such as the Contiki operating system and
small IP stacks, to overcome their different characteristics (see Table 2.1). Unfortunately,
these differences are not fully abstracted by Contiki and its integrated IP stack leading to
technical limitations (i.e., supported IP packet and memory sizes) for adapting established
application protocols. In the following, we discuss these limitations.

Table 2.1: Classes of constrained smart objects (in Kbytes, taken from RFC 7228 [4])

Name ROM RAM

Class 0 << 100 << 10
Class 1 ∼ 100 ∼ 10
Class 2 ∼ 250 ∼ 50

3A duty cycle is the time a smart object is active for sensing, computing, and sending data. The rest of
the time it is in sleep mode to save energy [48, Sec. 3.4].

14



2.2 Heterogeneity of Smart Object Hardware Platforms

2.2.1 The Contiki Operating System

Contiki [32] OS is an open source operating system for the Internet of Things running on
embedded hardware with constrained memory and computing resources with a typical
configuration of 40 Kbytes of ROM / 2 Kbytes of RAM. Version 2.5 of the Contiki operating
system was released in September 2011 and is used as basis for the implementation and the
evaluation of the developed prototype in this thesis. Contiki’s core system is based on an
event-driven kernel with on-demand preemptive multi-threading to effectively share the low
memory resources among all processes. To provide concurrency processes are implemented
as event handlers that run till completion and return to the kernel when finished. A process
is implemented either as an application program or as a service. Services provide functions
that can be used by application programs. When running the Contiki system, processes
and services can dynamically be loaded and unloaded. Inter-process communication is
provided through the kernel by posting events.

In addition, the operating system Contiki provides a tool chain to facilitate software
development and debugging. The software-based power profiling mechanism [50] can be
used to determine the power-efficiency of existing smart object hardware platforms and
software designs, while requiring only small code changes to the tested application. The
COOJA cross-layer network simulator [51] helps to shorten the compile-run-debug cycle
for the development and test of a set of smart objects combining low level simulation of
the node hardware and high-level simulation of the node behavior. COOJA is able to
run Contiki programs as compiled native code or simulates unmodified target platform
firmware via the instruction level simulator MSPsim [52] for the MSP430 microcontroller
[53]. Furthermore, COOJA supports cross-vendor interoperability simulation by running
non-Contiki nodes (e.g., TinyOS-based nodes [54] or nodes implemented in Java) [55].

2.2.2 uIP: Low Power IP Stack

The uIP [56] stack supports the protocols ARP, IPv4/v6, Serial Line IP (SLIP), ICMP
echo, UDP, and TCP. It implements all protocol features of RFC 1122 [57] for the host-
to-host communication, but it skips certain mechanisms for the interaction between the
application and the stack (e.g., IP options, multiple interfaces, TCP congestion control,
out-of-sequence TCP data, data buffered for rexmit) to reduce the code size to only a few
Kbytes. Implemented TCP/IP features of uIP are: IP and TCP checksums, IP fragment
reassembly, multiple TCP connections, TCP options, variable TCP Maximum Segment
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Size (MSS), Round Trip Time (RTT) estimation, TCP flow control, and TCP urgent data.
Retransmissions have to be handled by the application because outgoing data are not
buffered by the stack. Instead the corresponding application is called with a flag by uIP to
resend the data. The IPv6 version of uIP is a fully tested (IPv6 Ready Phase 1 certified)
and a low power IP stack due to power-efficient radio mechanisms, such as ContikiMAC
[49], which allows smart objects to operate with IP-based networks.

The memory use of uIP depends on the application requirements: the amount of traffic, the
number of simultaneous connections, and the choice of the Application Program Interface
(API). For programmers, uIP provides two APIs. Protosockets is a BSD socket-like API
implementation without full multi-threading, whereas the raw API is event-based and more
low level than protosockets, but it uses less memory. The event-driven interface informs the
application on top of uIP and is the recommended API for UDP-based communications.
Protosockets is only available for TCP connections and advertises a transparent API to
send data without handling retransmissions, acknowledgements, and to read data which is
split into several TCP segments.

IP Message Size Limits

Contiki’s uIP stack uses the layers below IP (e.g., Rime [58] for IPv4, 6LoWPAN [40] for
IPv6) and their provided features (e.g., fragmentation) to efficiently route IP packets in a
network, in the following for short lower layer(s). An IP packet relies on the lower layer
fragmentation skills, which again depend on the hardware platform and its built-in radio
transceiver. This limits the supported IP packet size of Contiki and the allocated global
packet buffer of uIP without using IP fragmentation.

Table 2.2 summarizes the maximum available sizes of an IP packet for each supported
hardware platform and radio module, which were collected from the Contiki platform
folder. If these values are exceeded, IP fragment reassembly must be enabled, which costs
an additional amount of RAM and 700 bytes of code size. Experiments with lower layer
fragmentation have shown that this mechanism is energy-efficient for request-response
cycles, as there is no need to optimize the number of fragments [68, Sec. VI]. Devices
like the AVR Raven or the Redbee Econotag can handle the lower layer fragmentation
very well and thus support a higher IP packet size compared to other hardware platforms
(e.g., Tmote Sky, Zolertia Z1). Therefore, it is recommended that applications respect the
available IP payload size for sending application data to avoid the use of IP fragment
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Table 2.2: Supported IP packet sizes of Contiki 2.5 (in bytes)

Hardware Platform / Radio Module IPv4 IPv6

AVR Raven [59] 1300 1300
AVR ZigBit [60] 240 240
ESB [61] 110 110
MEMSIC IRIS [62] 128 240
STM32 [63] 140 140
MSB430 [61] 116 116
MEMSIC MICAz [64] 128 240
Redbee Econotag [65] 1300 1300
Tmote Sky / MEMSIC TelosB [66] 108 240
Zolertia Z1 [67] 108 140

reassembly. The Zolertia Z1 has one of the lowest IP packet sizes for IPv4/v6, while the
Tmote Sky supports a medium IP packet size for IPv6, as depicted in Table 2.2. Thus, the
two hardware platforms are good reference devices to test under which circumstances and
limits messages of standard application protocols, which were originally designed for the
use of an MTU size of 1280 bytes4, fit into a single IP packet of the uIP stack.

Available IP Payload Sizes of Application Data

The available size of application data for sending a single IP packet depends on the
maximum IP packet size supported (e.g., global packet buffer, UIP_BUFSIZE) of each
device driver (see core/net/uip.h) subtracted by the following header sizes:

• Link Level (LL) Header Size: Offset to the IP header in the global packet buffer.
This value is only used for Ethernet and set to 14. The default value is 0. It is defined
in core/net/uipopt.h, but it can be overwritten by each hardware platform.

• IP Header Size: This value is set to 40 for IPv6 and to 20 for IPv4. It is defined
in core/net/uip.h.

• TCP Header Size: The value is set to 20 as defined in core/net/uip.h.
4Minimal MTU for IPv6 which all links must handle [69, Sec. 5].
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Table 2.3 shows the available TCP / UDP payload sizes for IPv4 and IPv6 of the Tmote
Sky and the Zolertia Z1, which are determined by the corresponding device drivers and
provided through the macro UIP_APPDATA_SIZE of the uIP API. The sizes of the link
level header and the sizes of the TCP payload for each hardware platform were taken from
the platform-specific contiki-conf.h configuration files in the Contiki platform folder.

Table 2.3: IPv4 and IPv6 header and payload sizes of uIP under Contiki for selected
hardware platforms (in bytes)

Hardware Platform Header (LL / IP / TCP) Payload (TCP / UDP)

Tmote Sky (IPv4) 0 / 20 / 20 48 / 68
Zolertia Z1 (IPv4) 0 / 20 / 20 48 / 68
Tmote Sky (IPv6) 0 / 40 / 20 48 / 180
Zolertia Z1 (IPv6) 0 / 40 / 20 48 / 80

The available TCP payload size is preconfigured as TCP Maximum Segment Size (MSS),
thus the TCP payload is limited by uIP on both hardware platforms and the used IP
version. In contrast to UDP that supports lower layer fragmentation to enlarge the available
IP payload size, TCP has a header overhead problem for each sent IP packet because TCP
(in conjunction with protosockets) does not make use of this lower layer fragmentation for
non of the selected hardware platforms. So the TCP, IP, and lower layer headers consume
the largest part of each sent TCP packet over IEEE 802.15.4 links (cp. [37, Sec. 4]).

2.2.3 Focused Smart Object Hardware Platforms

For the development and evaluation of our software stacks and IoT applications, we focus
on the Zolertia Z1 and the Tmote Sky/TelosB hardware platforms. Both represent typical
constrained devices of class 0 (i.e., limited memory under 100 Kbytes of ROM and 10
Kbytes of RAM [4], cp. Table 2.1). They offer a variety of connectors (e.g., IEEE 802.15.4
and USB) for debugging, testing, and deployment of the firmware images. Moreover,
these devices have comparable hardware specifications because both are based on the
MSP430 16-bit microcontroller [53] family. The Zolertia Z1 [67] is based on a low power
MSP430F2617 microcontroller with 92 Kbytes of ROM5 and 8 Kbytes of RAM. The Z1
also has built-in sensors (e.g., temperature, accelerometer, battery level), support for

564 Kbytes maximum are available, since MSP430 has no 20-bit address space extension.
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external sensors [70], and communication capabilities with an IEEE 802.15.4-compliant
RF transceiver (Chipcon 24206 [71]) and a microUSB connector. The Tmote Sky/TelosB
[66] is equipped with a MSP430F1611 microcontroller, 48 Kbytes of ROM / 10 Kbytes of
RAM, built-in sensors (e.g., temperature, humidity, light) and uses the same radio module7

as the Zolertia Z1.

2.3 Integration Approaches at the Application Layer

The integration of smart objects does not stop at the network layer because for a seamless
integration a solution at the application layer is needed to advertise advanced services
(e.g., discovery, identity management) for the implementation of IoT applications (cp.
[42, 72]). In the following, we give an overview on currently used concepts and application
protocols on top of IP, which were designed for or adopted to smart object networks with
the promise to fulfill these requirements of the IoT.

2.3.1 Web of Things

As the web is the most used Internet service today, the idea behind the Web of Things is to
make smart objects directly accessible via the Hypertext Transfer Protocol (HTTP/1.1) [28]
on top of TCP over 6LoWPAN [73]. This can be done either by running a web server on
smart objects or by using gateways which translate HTTP requests to proprietary protocol
requests for accessing the sensed data of smart objects placed behind this gateway. Both
variants have been implemented and successfully tested for resource-constrained smart
objects. The first variant has the advantage that no additional translation mechanism
is needed to seamlessly integrate smart objects into the web [27]. The second variant
has the drawbacks argued in Section 2.1.1. RESTful web services allow the access to
HTTP-driven smart objects via the Representational State Transfer (REST). This is a
lightweight architectural model providing resource abstraction through Uniform Resource
Identifiers (URI) [42, Sec. 3]. URIs link resources and offer smart objects in a simple way
to use services of the resources by following their links [27]. Discovering and identifying
the required resources via links is inefficient because a link can become outdated, i.e.,

6It has a buffer size of 128 bytes.
7The differences under Contiki (cp. Table 2.2) may related to different board layouts, the integration
and the choice of the other used third party hardware components.
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smart objects provide contextual information, whereas a context can often move from
one to the other [27]. Moreover, a link is defined by a long string of characters that is
hard to remember when accessing smart objects spontaneously [48]. Short links are not an
optimal solution for this problem [74], since they require an additional shortener service
acting as a translator from long to short links and vice versa similar to a redirector. This
causes performance and several security issues, such as phishing [75] or spam [76], because
intermediated services advertised by third parties are required.

REST uses the request-response paradigm of HTTP (e.g., the HTTP operations GET, PUT,
POST, DELETE), which allows clients to request information from a server and get the
answer as a response. This paradigm fits well for control-oriented applications, but it has a
real drawback for scenarios (e.g., event-driven and streaming applications) in which changes
in the sensed data have to be sent immediately to interested devices or human beings.
Monitoring-oriented applications require a form of asynchronism because smart objects
should be able to send updates of the physical world in real-time or when results were
computed rather than being polled periodically (cp. [27, 77]). There are many technologies
to overcome this issue of HTTP (e.g., server-sent events [78], pubsubhubbub [79]), but
these solutions are workarounds and can only be used in an application-specific manner
(e.g., supported by a web browser). The Web of Things can be seen as one possible
direction for the integration of smart objects at the application layer, but it has the
drawback of a non-appropriate event handling for larger scale implementations (cp. [21, 80]).
Protocols based on the push mechanism offer a more suitable solution for real-time event
handling and communication, but they have not been considered as research topic to
realize the IoT vision up to now because web services have been the research focus in the
last years (cp. [77, Sec. 1.3]).

2.3.2 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) [81, 82, 83] has been developed by the IETF
Constrained RESTful Environments (CoRE) working group and has been standardized
since June 2014. It is a REST-based transfer protocol designed for M2M communications
with a very low message overhead, reduced response times, and a set of basic services (e.g.,
reliability, discovery) in comparison to HTTP. In contrast to HTTP, CoAP uses UDP
as basis transport protocol and introduces a compact binary message format. Reliability
is implemented with an own approach at application layer by marking a message as
confirmable in the CoAP header. For the discovery of CoAP instances, the CoRE link
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format [84] was invented, which is a dedicated description for available CoRE resources,
their attributes, and link relationships. CoAP instances can be interconnected with the
Internet via CoAP-to-HTTP protocol gateways. Thus, CoAP accepts advantages, e.g., well-
known interaction methods and reliability, and disadvantages, e.g., request-response and
discovery of resources via web linking, of the HTTP/REST approach (cp. Section 2.3.1).
Moreover, CoAP relies on smart object-specific code and data representations, while
reinventing TCP-like features at the application layer. According to [85, Sec. 3.3.2], a TCP
reinvention must be omitted, since most application layer protocols are based on TCP
and need to be redesigned to work with UDP. This endangers the interoperability of the
Internet according to the former IETF chair Russ Housley because current standards are
not embraced [86]. To make CoAP a more suitable solution for the Internet of Things (cp.
[80]) further protocol extensions are currently being investigated by the CoRE working
group, such as pushing of information [87] or a TCP transport [88]. The latter solves
integration issues of CoAP into current infrastructures regarding UDP blocking by firewalls,
Network Address Translation (NAT), or the unawareness of CoAP in middleboxes.

2.3.3 Message Queuing Telemetry Transport for Sensors (MQTT-S)

The Message Queuing Telemetry Transport (MQTT) protocol [89] has been designed for
the efficient M2M communication of sensors and implements a lightweight broker-based
publish-subscribe paradigm. Specification 3.1 of MQTT provides features, such as three
Quality of Service (QoS) levels, command messages, or dynamic topics. Since MQTT could
hardly be implemented on smart objects, a low bandwidth version, called Message Queuing
Telemetry Transport for Sensors (MQTT-S) [90], has been introduced to fit the needs
of smart object networks. However, MQTT-S is not compatible with the used transport
protocol (i.e., MQTT-S uses UDP and MQTT uses TCP), message format, and feature-set
(e.g., only support of QoS level-1) with MQTT. For the interconnection of MQTT and
MQTT-S clients MQTT-S protocol gateways, MQTT-S forwarder, and MQTT broker
are needed. The scalability of the architecture highly depends on the performance and
the connection management overhead of the gateway (e.g., transparent or aggregating)
[91]. Further drawbacks of MQTT(-S) are that there exist only a few implementations
for computational devices and that the protocols are not an Internet standard, which
definitely will lower their acceptance rate.
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2.3.4 Devices Profile for Web Services (DPWS) for Embedded
Devices (uDPWS)

The Devices Profile for Web Services (DPWS) for embedded devices (uDPWS) [92] provides
web services for embedded microcontrollers to integrate them in existing infrastructures.
Therefore, uDPWS uses standardized protocols like IP, UDP/TCP, and the Simple Object
Access Protocol (SOAP). Services like dynamic discovery, subscribing to services, and
receiving events from web services are supported by uDPWS. The main drawback at
the moment is that DPWS is only available for systems running Microsoft’s Windows
operating system and Microsoft’s Universal Plug’n’Play (UPnP) stack. Thus, an application-
and network-independent announcement of services to couple different classes of devices
cannot be implemented.

2.3.5 Sensor Web Enablement (SWE)

Sensor Web Enablement (SWE) [93] is a standard developed by the Open Geospatial
Consortium (OGC). SWE is a generic framework for a platform- and protocol-independent
interaction between sensors to realize complex scenarios, such as traffic, environmental,
and industrial process monitoring. It, however, requires a large infrastructure support [93,
Sec. 4.1]. Appliances of SWE depend on a complex middleware for the sensor network
management. Different versions of the middleware can disturb the cooperation if needed
updates fail. In addition, the middleware must be available for nearly every used operating
system to ensure a frictionless integration of a wide range of device classes.

2.4 Towards a Seamless Integration of Smart Objects

uIP provides the possibility to support many standardized high-level services on smart
objects [12]. This interoperability at the application layer is crucial for the integration of
smart objects into existing Internet infrastructures because already available software and
configuration tools can be used, testing efforts can be reduced, while at the same time
easing installation and deployment. The reason is that all IP devices can immediately
interoperate with each other without additional translation mechanisms or dedicated
software support [7, Sec. 3.1]. Unfortunately, the further direction of the Web of Things
is influenced by the ongoing development of CoAP/MQTT-S. Both bring back already
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solved issues from the network layer to the application layer. Protocol gateways separate
traditional computational devices (e.g., use of HTTP, MQTT) from smart objects (e.g., use
of CoAP, MQTT-S) and new protocols are explicitly introduced to work only in resource-
constrained environments (e.g., use of smart object-specific code or data representations,
many features are limited [88, 94]). Gateways represent bottlenecks. They are single points
of failure for the whole network traffic to and from the smart object network introducing an
undesirable state to the network. When a protocol gateway fails, the interaction with the
smart objects is disrupted because no fallback mechanisms for an ad hoc communication
with ordinary computational devices are foreseen (i.e., no support of hybrid smart object
networks). Latest scalability measurements of CoAP for its web integration show that
using CoAP-to-HTTP gateways is significantly slower compared to web platforms that
speak CoAP directly [80]. Thus, a frictionless integration of smart objects into current
infrastructures and a scalable IoT architecture cannot be realized at the same time using
protocol gateways (cp. [44, Sec. 3.1]).

The reduction of protocol gateways makes it important to avoid the introduction of smart
object-specific code and data representations, especially on computational devices, because
this will break already available software. This is a real issue for current application
protocols, such as CoAP, because their focus is on the data transport. Moreover, MQTT
and MQTT-S are not standardized by the IETF. This can lower their acceptance rate or
lead to a fragmentation of the IoT [11]. Currently, there are only a handful of prototypical
implementations and simulation results of CoAP and MQTT-S, but no experiences with
a widely deployed and well tested real world scenario in terms of scalability and actual
integration cost. This will limit the evolution, the innovation, and the interoperability of
the IoT (cp. [7, Sec. 14.1]). To illustrate the wide range of upcoming IoT applications we
describe two different use cases:

Smart Home, Smart Office, and Smart Hotel Room. Home automation should sup-
port consumers in their daily routines ranging from a simple environment control (e.g.,
lighting, temperature, safety, comfort) to assisted living [7, Sec. 23.2]. Unfortunately, home
automation produces high acquisition and installation costs because it lacks standardization
[7, Sec. 23.1]. In contrast to smart homes, a smart office and a smart hotel room can be
seen as a temporary place to stay. These places need to adapt very fast to the needs and
the preferences of their alternating users. Today a smartphone can be considered as the
central element of a modern mobile user. Such a mobile device can be used to interact with
the environment to store and push preferences of users to any stationary sensor, actuator,
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or smart object without the need of tracking a user’s profile. In the vision of [2] such a
scenario should allow users to query their current location, temperature, or local weather
and to get noticed via a mobile device about the local weather forecast or friends who stay
already at the same building. A smart office will provide useful information on events of the
building or the outer environment to the user. It can automatically adjust the workplace
to the user’s preferences (e.g., printer settings, room temperature, presence status) or
to changing conditions (e.g., solar altitude). Nowadays, typically used technologies for
smart homes are proprietary, not IP-enabled ones [95]. They require gateways and protocol
adapters. Latest approaches like the openhab project [96] are based on IP, but still require
skilled technical users for the installation and integration. Thus, these solutions are not
readily usable for the masses, yet, which require an easy setup and configuration to reach
a high acceptance rate [7, Sec. 23.3.9].

Flexible Post-Disaster Management. In [213, 214] we have proposed a flexible post-
disaster management system which couples smart objects and computational devices
with cloud technology. Post-disaster management is never a fixed task, especially when
deployed sensors and the communication infrastructure get destroyed (by earthquakes
or tsunamis). Thus, in a short time a new infrastructure has to be established for this
temporary challenge, which should provide an uncomplicated system with an easy setup
and comprehensible data access. The applications and the underlying technology should
enable communication and data sharing inside the local Peer-to-Peer (P2P) user group as
well as sharing the data with other users over the Internet to provide a global view on
self- and remotely-sensed data. Sensor data measured by rescue forces will assist crisis
management in various ways, namely in getting accurate incident reports and in making
adequate real-time situation-dependent choices. A further combination of sensed data,
place and time of the sensing event, and the specific sensing entity (e.g., fire fighter, rescue
specialist) enables an even wider range of applications, such as environmental monitoring,
marking of dangerous spots for non-involved bystanders, or traceable scanning of sites for
endangered civilians. The system design should provide the flexibility to change decisions
about which sensor types to integrate, where to place the smart objects, how to access
them in-field, or how to interconnect the smart object network to any external network
(i.e., the Internet) alongside and after the deployment. Smart objects can be used to extend
smartphones with a wider array of sensors, while using such smart objects for scenarios
in which the area cannot safely be reached or where rescue forces are not allowed to stay
over a longer time period (e.g., next to radioactive zones).
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These varying requirements can only be fulfilled either through a set of specialized protocols
each designed for a dedicated use case (e.g., M2M, network management) or using a single
but highly extensible application protocol. First approaches with a dedicated application
protocol use HTTP (cp. Section 2.3.1) and the Simple Network Management Protocol
(SNMP). So Schönwälder et al. [16, 39] use SNMP as the sole management protocol for all
device classes to show that the adaptation of a widely used standard application protocol to
smart objects is feasible, thus simplifying the management of such devices in the same way
as with traditional computers in IP networks. SNMP was designed as a simple management
protocol with a limited feature set. It misses aspects of active collaboration and the
extensibility for new functions and future demands. A significant drawback of HTTP/1.1
is that it cannot handle well the efficient event distribution (cp. [27]). In addition to HTTP
and SNMP, the standardized Extensible Messaging and Presence Protocol (XMPP) [22]
had been proposed as a further candidate protocol, but it has never been analyzed for
this, in particular whether it can directly be implemented on smart object hardware and
whether it can be efficiently used in low data rate networks (cp. [26, 77]). XMPP is a
set of flexible and open Extensible Markup Language (XML) technologies standardized
by the Internet Engineering Task Force (IETF) and widely deployed in the Internet to
implement Instant Messaging (IM), real-time user collaboration, and Voice over IP (VoIP)
applications. The XML-based message structure can easily be extended with additional
functions by protocol extensions, so-called XMPP Extension Protocols (XEPs) [97], to
support a wide range of use cases. We discuss the applicability of XMPP for the Internet
of Things in detail in Section 3.1.

Existing research on the use of XMPP in the IoT can be divided into publish-subscribe
architectures, which couple sensors and actuators with an XMPP network, and specific
implementations of XMPP for resource-constrained hardware platforms running Contiki.
An approach to realize an XMPP-based architectures for large-scale sensing and actuation,
called Sensor Andrew, has been introduced in [98]. The goal of this project is to create a
highly scalable and extensible network which consists of several classes of devices (e.g.,
sensors, actuators, desktops) and supports a wide range of applications for point-to-point
and multicast messaging as well as data logging. XMPP components are used as basic
protocol to achieve interoperability and to reuse already established technologies. On top
of it, a so-called Sensor Over XMPP (SOX) library was implemented as a sublayer to
integrate sensors and actuators via protocol gateways (i.e., SOX adapters). Thus, the
resource-constrained hardware platforms do not directly implement an XMPP stack, since
they send only SOX messages with a JID of the receiving XMPP entity to a protocol
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gateway (cp. [98, Sec. V.B]) which converts the message and forwards it to entities of the
XMPP network. Another similar approach [99] uses so-called sensor bots (e.g., smartphones)
as gateways to retrieve customized and squeezed down XML messages from embedded
devices via USB connections at the MAC layer. The sensor bots are used to transform
these messages to XMPP-compatible messages and forward them to the XMPP network at
the application layer. This approach also lacks a direct implementation of the XMPP stack
on the embedded devices. These two approaches introduce the same issues as discussed
earlier in this section because they decouple different classes of devices at the application
layer through gateways. Initial steps towards an XMPP stack for resource-constrained
devices were made with the uXMPP [100] and the XMPPClient for mbed [101]. Each of
them presents a lightweight XMPP client implementation with only a rudimentary XMPP
Core function set and no optimizations for smart object networks. A difference between
the two prototypes is that uXMPP (see Chapter 4) is based on the Contiki OS and uses
the uIP stack, whereas the XMPPClient for mbed uses Ethernet frames which provide a
larger MTU size for IP packets.

Further research can be found in the area of custom XMPP Extension Protocols (XEP).
The project OpenSpime [102] provides XEPs for digital signatures, encryption, authority
claiming, data reporting, and seeking for the communication of physical devices. Dedicated
XEPs for IoT scenarios are being developed by Peter Waher8 and focus on large-scale
M2M communication for industrial-like environments. The IoT XEPs allow sensor data
interchange (XEP-0323 ), provisioning of services, access rights and user privileges (XEP-
0324 ), remote control (XEP-0325 ) and introduce a so-called Concentrator (XEP-0326 ),
i.e., a gateway running an XMPP client who translates sensor data into XML messages.
These XEPs rely heavily on the Efficient XML Interchange (EXI) format (XEP-0322 ) to
transmit detailed XML messages containing additional, yet redundant meta data for the
raw sensor data. This meta data is needed to interpret the raw sensor data once, but it is
also included in each message, thus increasing message size. A direct implementation of
these XEPs on resource-constrained devices cannot be realized because these XEPs require
too much use of bandwidth and memory. Thus, these XEPs do not solve the problem of
integrating smart objects seamlessly into the Internet. To solve the problem, it requires a
reduced set of XEPs fitting in the memory of smart objects, allowing a low bandwidth
usage in smart object networks, and providing useful features for the IoT at the same time.
Such a solution is presented in the following chapters.

8[Online] http://wiki.xmpp.org/web/Tech_pages/IoT_XepsExplained.
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3 Chatty Things

In order to solve the problem of the seamless integration of smart objects into the Internet
at the application layer we present in this chapter an approach that uses XMPP as the
underlying communication protocol to interact with different device classes. It is called
Chatty Things [215]. This introduced style of communication via XMPP extends IP-based
smart objects in the Internet of Things to Chatty Things, as depicted in Figure 3.1.

IP-Based
Smart
Object

Chatty
Thing

XMPPApplication Layer

IPInternet Layer

802.15.4Link Layer

TCPTransport Layer UDP

Figure 3.1: Extending IP-based smart objects to Chatty Things

3.1 Extensible Messaging and Presence Protocol
(XMPP) and the IoT

XMPP is a XML-based protocol that has been designed for supporting collaborative
applications, such as instant messaging and chat. It has proven to be highly scalable
(e.g., 100k+ servers, 50+ million clients in 2007) because it streams XML data over
long-lived TCP connections in a decentralized network for the use of inter-domain mes-
saging [103, 104]. XMPP provides useful features as core functionalities, such as identity
management, authentication, inter-domain messaging, and bi-directional communication,
which are required for the seamless integration of smart objects and the development of
IoT applications. A feature comparison of XMPP with CoAP and MQTT(-S) is given
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in Table 3.1. A vital aspect of XMPP is that the XMPP Standards Foundation (XSF)1

provides a continuous maintenance of the XMPP protocol family allowing system designers
to benefit from all aspects of sustainability and expandability. XMPP supports various
application types beside the usual message or presence propagation. Examples are ad
hoc grid computing [105], intercloud directory and exchange [106], multi-agent system
platform [107], or pervasive social computing applications [108]. A diversity of systems
ranging from social networks (e.g., Movim [109]) to unified communication solutions (e.g.,
Cisco [110], Microsoft [111]) and computational devices ranging from desktop computers
to mobile entities can easily be connected through XMPP. Furthermore, XMPP offers
a rich variety of open source software [112] for servers, clients, and libraries supporting
several operating systems thus reducing development costs. It ensures a high extensibility
for various IoT scenarios and future demands.

Table 3.1: Feature comparison of currently developed IoT application protocols with XMPP

Feature XMPP CoAP MQTT(-S)

IETF Standard Since 2004 Since 2014 No
Use of Protocol Gateway No Yes Yes
Inter-Domain Messaging Yes No No
Message Bus Publish-

Subscribe
Request-
Response

Publish-
Subscribe

Message Format XML / EXI Binary Binary
Message Overhead High / Low Lowest Low
Transport Protocol TCP UDP TCP (UDP)
Security TLS DTLS TLS (No)
Authentication SASL No Password
Identity Management Yes [30] No No
Service Discovery Only XEPs Yes Yes
Available Implementations Many Few Few
Available Protocol Extensions Many Few Few

The main advantage of XMPP is that it allows both the interaction with a server infra-
structure (XMPP Core) and alternatively the ad hoc communication (P2P) via the XMPP

1The XMPP Standards Foundation (XSF) is an independent, nonprofit standards development organiza-
tion with the goal to define extensions (open protocols) to XMPP.
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extension (XEP) 0174 Serverless Messaging [25]. The latter enables ad hoc communication
through the use of Multicast DNS (mDNS) and DNS Service Discovery (DNS-SD) without
any connection to an XMPP server. This provides a fallback mechanism for IoT applica-
tions when XMPP servers are unavailable. The high flexibility and extensibility of XMPP
is deeply rooted in XML. XML enables cross-platform and cross-language communications
[38, Sec. 5]. The downside of XML is its high memory and processor usage due to complex
message handling and parser implementation (cp. [18, Sec. 3]). Recent researches have
shown that XML-based protocols can efficiently be used in combination with message
compression on smart objects in low data rate networks [85, Sec. 3]. An overview of feasible
compression methods for smart objects, such as Efficient XML Interchange (EXI), is given
in Section 4.2. XMPP’s publish-subscribe paradigm can help users to filter and prioritize
information. Publish-subscribe is organized as an interaction of components that publish
messages and subscribe to classes of messages they are interested in [113]. This enables
XMPP entities to efficiently interact with each other based on their own context, whereas
the events are automatically distributed. It provides a bandwidth- and energy-efficient
event distribution [114] in which only data changes need to be transmitted to the interested
entities. This mechanism guards users from situations where they are overwhelmed with
information because the collected data of the IoT will be huge [29]. In contrast, a poll
mechanism can cause a high network traffic because interested entities have to regularly
query all the corresponding entities when they want to be informed about the latest data
(e.g., Web of Things, CoAP, cp. Section 2.3). Figure 3.2 depicts these differences and shows
an optimized message flow for the use of push notification.
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Figure 3.2: Poll (left) in comparison with push (right) (adapted from [26, Sec. III])
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Beside the message overhead that can be compensated through EXI, XMPP outperforms
its competitors in terms of standardization, inter-domain messaging, ease of integration,
extensibility, and distribution. Depending on the requirements and challenges of the IoT,
XMPP can be seen as a sort of least common denominator of the mostly needed protocol
features for enabling a seamless integration of smart objects into the established Internet
and a high interoperability of different classes of devices.

3.1.1 XMPP Core/IM, Address Format, and Session

The XMPP Core [22] (RFC 6120) specifies the use of long-living TCP connections for the
exchange of Extensible Markup Language (XML) elements between XMPP entities over
XML streams. As long as the XML stream is established, any number of XML elements,
so-called XML stanzas, can be transmitted in an efficient manner and in near real-time.
XMPP Core defines three types of XML stanzas (listed in the following). Each stanza has
five common attributes: ’to’, ’from’, ’id’, ’type’, and ’xml:lang’ to describe the rules of the
client-to-server and the server-to-server streams:

• Message: Is used to push information from one XMPP entity to another. The ’to’
attribute specifies the receiving XMPP entity.

• Presence: Is a publish-subscribe broadcast service to efficiently publish presence
information (i.e., network availability information) from an XMPP entity to all
subscribed entities. No ’to’ attribute is set by the XMPP client for direct processing
by the server (e.g., broadcast presence to other entities).

• IQ: Is a request-response mechanism which enables to directly query information
and to receive the response from another XMPP entity similar to HTTP.

To secure XML streams the XMPP Core supports the Transport Layer Security protocol
(TLS) [31]. However, the memory requirements of existing TLS implementations limit its
applicability for smart objects. First approaches for implementing TLS with a low memory
footprint have been published in [39, 115, 116]. For the authentication of an XMPP-
specific profile, the Simple Authentication and Security Layer protocol (SASL) [117] is
required. SASL supports a variety of standardized mechanisms, such as PLAIN [118],
CRAM-MD5 [119], DIGEST-MD5 [120], SCRAM-SHA-1 [121] or ANONYMOUS [122].

An XMPP entity is addressed via a unique Jabber Identifier (JID) [123] that consists
of a local part (e.g., client name, chat room name), a domain part (e.g., server name),
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and an optional resource part (e.g., device name, location). With a successful negotiation
(i.e., client connects to server with same domain part), the client retrieves its contact list,
called roster, publishes and receives the presence information to/from all XMPP entities
bookmarked in the roster. Then messages can be exchanged with various XMPP entities of
the same or a foreign domain similar to the email system (cp. [26, Sec. I]). XMPP IM [124]
(RFC 6121) defines additional features for the XMPP Core for Instant Messaging (IM) and
presence information exchange, include the subscription and the roster management.

3.1.2 XMPP Localization in Hybrid Network Environments

The localization of XMPP entities in ad-hoc and infrastructure environments (i.e., hybrid
networks) can be implemented by combining XMPP Core and XEP-0174 Serverless Mes-
saging. Entities with Internet access directly register and authenticate at an XMPP server,
whereas entities in ad-hoc environments find each other via XEP-0174 (see Figure 3.3).
The uniqueness of the Jabber Identifier (JID) is guaranteed by the XMPP server when an
XMPP entity is connected to its domain. In contrast to the infrastructure mode, the ad hoc
XMPP network cannot ensure an unique JID because XEP-0174 Serverless Messaging is
based on the third party protocols Multicast DNS (mDNS) [23] and DNS Service Discovery
(DNS-SD) [24]. mDNS’s functionality is to resolve domain names without the help of any
unicast Domain Name System (DNS) server by sending DNS messages to a multicast
group. DNS-SD announces a detailed service information (e.g., availability time, access
protocol, IP address, port) via so-called DNS resource records to other devices in the
network in a way that applications and users can simply look up or wait for available
or needed services. Each entity analyzes the released records inside the multicast group
and each of them generates a list of entities based on the received records. This means IP
addresses and JIDs are generated randomly.

To ensures that XMPP entities are accessible in the two networks by the same JID an agent
is used to connect ad hoc networks with the conventional XMPP infrastructure. The agent
provides physical links between different network access technologies and relays connections
from each entity of the ad hoc network to the XMPP server. This has the advantage that
each entity directly authenticates itself at the XMPP server. Thus, a dedicated entity that
exclusively acts as gateway is not required and the existing XMPP infrastructure can
be used (for details we refer to [213]). Figure 3.3 illustrates the network structure of the
localization system. The localization system was used in the uBeeMe platform [216, 217]
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Ad Hoc Connections

Server Connections

IP

Multicast Group

Ad Hoc Network

Local Network Local Network
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Agent with Internet Access

NAT NAT

NAT

Figure 3.3: Connecting XEP-0174 (ad hoc) clients with an XMPP infrastructure

to enable mobile collaborative applications. It can be seen as a predecessor of a possible
XMPP layer for the IoT, since the agent can be easily extended to support network access
technologies for smart objects (e.g., IEEE 802.15.4 radio links). For the seamless integration
of smart objects into the Internet, it only requires to directly run an XMPP client on these
objects without introducing smart object-specific code and data representations.

3.2 Chatty Things Approach

The Chatty Things approach aims at supporting the collaboration of smart objects with
computational devices in IP-based network with a special focus on the Human-to-Machine
(H2M) communication. The interaction between the different classes of devices in the IoT is
handled through XMPP, as depicted in Figure 3.4. XMPP ensures the interoperability with
existing service infrastructures and with currently used software. So all kind of devices can
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directly chat with each other. Chatty Things are based on a modular XMPP (client) stack.
In the minimal configuration only an implementation of the XMPP Core/IM is needed
to enable basic management and communication functions (e.g., identity management,
message exchange, status updates) as common services on all IoT devices. Optional XMPP
features, such as XEP-0045 Multi-User Chat (MUC) and XEP-0174 Serverless Messaging),
ensure high extensibility and can be implemented on top of XMPP Core/IM on-demand
depending on the actual duties and scenarios.

Transport Layer

Internet Layer

Link Layer Ethernet 802.11 802.15.4 ...

IP

TCP UDP

Application Layer
XMPP Core / IM

Additional XEPs (XEP-0045, XEP-0174, ...)

Figure 3.4: XMPP layer (and protocol extensions) for the IoT

Since the integrated sensors of smart objects are used to detect characteristics of physical
objects (cp. Chapter 2), the sources for the provided information about the environment
or about its status are restricted to the integrated sensors. Thus, the advertised services
of smart objects are closely linked to their integrated sensors. Therefore, the services in
Chatty Things, which a smart object can advertise to users and objects, are defined by
the integrated sensors. The data provided by these sensors are grouped according to their
semantics (sensor-specific grouping) to simplify the access. This approach will be presented
in Section 3.3. In this way, the user interaction with the environment is simplified by
browsing through the XMPP network for offered services and subscribing to them for
upcoming events and information.

3.2.1 System Architecture for the IoT

For the seamless integration of Chatty Things, the currently established infrastructure
of the Internet is used, i.e., the existing public XMPP server infrastructure and XMPP
client software. Both have become widely accepted as the basic software instruments
for real-time communication that can be installed on nearly every operating system to
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provide users an easy access to XMPP-driven devices. Additionally, private XMPP servers
can be deployed for local XMPP domains. In an XMPP infrastructure XMPP servers
are Internet-connected or interconnected with each other by a domain-based network.
The XMPP network consists of a decentralized client-server architecture enabling an
inter-domain communication similar to the email system, as depicted in Figure 3.5.

Server-to-Server

Client-to-Server

Inter-Domain Communication

Domain BDomain AUser

User@A/Mobile

User@A/Office

ChattyThing-02@B

ChattyThing-01@B

Figure 3.5: Decentralized client-server architecture of XMPP

XMPP clients are able to send messages to their domain-specific XMPP servers, while
servers from foreign XMPP domains can also communicate with each other to forward
messages. A single point of failure or overload situations can be prevented because a
server malfunction only affects a certain domain and not the whole XMPP network. This
decentralized client-server structure strengthens the scalability and the reliability of
our system architecture because it can be extended with local XMPP servers or connected
to remotely available once. Traffic bottlenecks can be bypassed by a direct integration
of Chatty Things in IP-based networks (i.e., one-hop to local XMPP server). A basic
anchor point in our system architecture is the use of the General Purpose Access Point
(GPAP) [125] which provides physical links between different network access technologies
for smart objects (e.g., IEEE 802.15.4 radio links) and ordinary computational devices
(e.g., IEEE 802.11 radio links). So it interconnects different classes of devices over IP links.
At the application layer all classes of devices can communicate locally and can be accessed
remotely (i.e., authorized access from the Internet) at the same time through XMPP.

The GPAP in our system architecture is implemented through commodity router hardware
that runs embedded Linux systems like OpenWrt [126] to implement the physical intercon-
nection. OpenWrt routers are low priced (i.e., at the same price as smart object hardware),
widely deployable (e.g., WLAN access points), and support a wide range of router hardware.
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Already established routers can be upgraded to run OpenWrt and to act as GPAP. Routers
are equipped with USB adapters to physically link IEEE 802.15.4 and Ethernet (mapped
as network interfaces in the operating system). They also support additional software
packages. In the following we call them enhanced router(s). An enhanced router runs the
XMPP server Prosody [127] and the Avahi [128] daemon. Thus, the GPAP and the XMPP
server can be assembled only in a single hardware unit. Prosody XMPP servers can be
used to deploy local and private XMPP domains or to advertise public XMPP domains
for an environment of specific interests to users. The Avahi daemon is responsible for
the forwarding of mDNS/DNS-SD messages to the different network interfaces that are
interconnected by the router to enable service discovery and parameter-less bootstrapping
of smart objects in the local network. Figure 3.6 depicts the generic system architecture in
an exemplary use case (e.g., smart home).

IEEE 802.11 
Radio Links= IEEE 802.15.4 

Radio Links=

Complex Sensors 
(e.g., Power Meter)

= Simple Sensors 
(e.g., Temperature)

= Actuators
(e.g., Control Unit)

=

Local Access Remote Access

XMPP (Inter-Domain)

XMPP XMPP

IEEE 802.15.4
USB Adapter=

Enhanced
Router

XMPP

XMPP

Figure 3.6: System architecture for a smart home use case

As XMPP servers are interconnected with each other similar to the email system, multi-hop
scenarios can be bypassed. The reason to bypass multi-hop scenarios can be manifold.
Since multi-hop provokes a higher energy consumption over long distances [129] and a
bandwidth share for each involved relaying smart object, its influence on the whole network
performance can be huge [130]. Furthermore, a large number of smart objects acting as
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relays are required to pass a long distance. Interconnecting enhanced routers via (W)LAN
allows us to pass long distances and forward data to the Internet. The advantage is that
popular and efficient standards designed for a wide range communication can be used and
that a hierarchical system via XMPP domains can be realized (see Figure 3.7). To pass
the short distance each enhanced router covers the communication range of IEEE 802.15.4
radio links (i.e., a single router is able to interconnect several smart objects in a typical
room of a household, cp. [21]).

Floor 1
(Domain A)

Room 1
(Domain B)

Room 2
(Domain C)

To / From Internet

To / From Smart Objects

Long Distance Short Distance

To / From Smart Objects

Figure 3.7: Hierarchical system of XMPP domains in a smart home use case

Fallback Mechanism: XEP-0174 Serverless Messaging

As users should have the possibility to interact with nearby Chatty Things independently
of the availability of XMPP servers (i.e., infrastructure services), XEP-0174 Serverless
Messaging (i.e., ad hoc services) is an integral part of the Chatty Things approach. This
additional feature can be activated to support hybrid smart object network environments,
as depicted in Figure 3.8. XEP-0174 can be used then as a fallback mechanism if an
infrastructure network (e.g., connection to the smart object network via a border router)
is not present, so that an ad hoc communication can be set up directly between a
computational device and a nearby Chatty Thing. If no further enhanced router is in the
range of Chatty Things in case of a router failure, users can communicate ad hoc via IEEE
802.15.4 USB adapters from computational devices to directly access Chatty Things. The
use of XEP-0174 Serverless Messaging requires an implementation of mDNS/DNS-SD for
the discovery of XMPP entities via DNS messages (cp. Section 5.1). For the announcement
of XEP-0174 Serverless Messaging, an XMPP entity advertises its online status with four
DNS resource records (i.e., SRV, TXT, A(AAA), and PTR). The value of the field name of
the SRV record is set to the JID of the entity. When an entity joins the ad hoc network,
it sends a PTR record (_presence._tcp.local) immediately to the multicast group.
Now the other entities reply with their information (one SRV, TXT, A(AAA), and PTR

record per entity). If an entity wants to leave the network it has to send a PTR record
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with Time-To-Live (TTL) set to zero. So users can discover nearby Chatty Things and
can then initiate an XML stream to a Chatty Thing through a direct TCP connection.
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Figure 3.8: Fallback mechanism of the system architecture

Bootstrapping Chatty Things

Connecting a Chatty Thing to a server requires the IP address and the port number
of the XMPP server. Since smart objects are supposed to be used in different network
environments and to automatically adapt themselves, no pre-configured IP addresses
can be used. This diversity of infrastructure and ad hoc networks requires an intelligent
bootstrapping for Chatty Things to support hybrid network environments. At the moment,
there is no standard for this process. To enable a bootstrapping without fixed and hard-
coded start-up parameters (e.g., IP address or domain of the XMPP Server, JID of the
XMPP entity), Chatty Things must attempt to find an XMPP server in their given
network. For this, we propose the service discovery of an XMPP server using mDNS/DNS-
SD similar to finding nearby Chatty Things using XEP-0174 Serverless Messaging. Network
configuration and management is simplified with mDNS and DNS-SD because entities
can detect each other inside a network without a previous distributed configuration or a
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prior mutual acknowledgment [131]. The extension of a network with additional devices
is simplified due to the fact that all devices are able to explore their network vicinity for
available services and running applications. An XMPP server announces its availability
through publishing four DNS records using the service type ’xmpp-client’2. If no XMPP
server can be discovered in the given network during bootstrapping, Chatty Things have
to enable XEP-0174 as fallback mechanism. The overall process is called parameter-less
bootstrapping in this thesis and described in detail in Section 5.2.1.

H2M Communication

Chatty Things particularly supports the Human-to-Machine (H2M) communication because
it enables human beings to directly interact with their environment through standard
chat clients (e.g., XMPP clients) – a software all Internet users are familiar with today
– in a way they already know from interacting with their friends in social networks or
chat rooms (cp. [26, Sec. III.4]). This allows an intuitive information handling and a
centralized notification area for the users on their ordinary computational devices. So users
are able to access data from smart objects and to communicate with them using standard
technologies. These technologies are available for every operating system nowadays, e.g., for
discovering objects and their services, for organizing objects in a contact list (e.g., an XMPP
roster), for subscribing to topics that users are interested in (e.g., what happens in the
user’s neighborhood) or for interconnecting objects to automatically control a monitored
environment (i.e., M2M). Location-aware content can directly be advertised to users who
pass Chatty Things by adding them temporary to a user’s roster. Bookmarking Chatty
Things in the XMPP roster allows users to easily manage and group information as well as
to permanently receive relevant updates of their environment similar to presence updates
of their human friends. This is a huge benefit in contrast to the Web of Things approach
that presents information on a website and provides the browse-ability of resources “by
clicking on links” because links are inappropriate for the discovery of billions of devices
[27]. Users benefit from easy-to-use and easy-to-learn (chat client) software to participate
in the IoT because no special training, software, or hardware is needed to interact with
their environment from commodity hardware. From the application development and
administration point of view, only a single protocol has to be maintained. This boosts the
development of consumer-friendly applications for the H2M interaction via a standardized

2Reserved name for client-to-server connections by Internet Assigned Numbers Authority (IANA) as
described in RFC 6120 [22].
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communication scheme because it allows programmers and administrators to use existing
tools and handling expertise, while reducing integration cost and compatibility tests.

3.2.2 Essential Set of XEPs

It is not necessary to implement all XEPs and each XEP feature for Chatty Things. A
reasonable set of XEPs is sufficient for supporting the H2M communication. The following
XEPs are of particular interest for Chatty Things and have been adapted from the proposal
of Hornsby et al.’s selection [26, Sec. III, Table 2]:

• XEP-0030 Service Discovery: Allows the discovery of extended information
(e.g., identity, capabilities, advertised features, supported XEPs, joined chat rooms)
about XMPP entities [132];

• XEP-0045 Multi-User Chat (MUC): Defines a many-to-many chat for XMPP
entities in which chat room names represent currently available topics [133];

• XEP-0050 Ad Hoc Commands: Allows users to initiate a command session and
to interact with an automated process through an XMPP client [134];

• XEP-0060 Publish-Subscribe: Defines a generic publish-subscribe framework,
which enables XMPP entities to broadcast extended information (i.e., publish) to all
interested entities (i.e., subscribe) via pushing event notifications [135];

• XEP-0174 Serverless Messaging: Allows two XMPP entities to establish an
XML stream without the need of an XMPP server (i.e., ad hoc communication) [25].

Compared to this selection of XEPs, Hornsby et al. [26] propose XEP-0166 Jingle instead
of XEP-0050 Ad Hoc Commands. We have not chosen XEP-0166 Jingle because we do
not see a need for signalizing multimedia sessions for Chatty Things, since Jingle is mainly
used for the H2H interaction (e.g., voice or video chat, file transfer). XEP-0050 instead
allows the implementation of an easy-to-use H2M interaction and control in future IoT
scenarios. Another important point is the availability of the preferred XEPs in current
XMPP servers and clients to achieve a high acceptance rate of the XMPP stack with
current XMPP-based systems and software solutions. The selection process of Hornsby
et al. [26] did not consider this aspect. Therefore, we analyzed the supported XEPs of
popular and widely used XMPP servers and clients (for desktop and mobile systems). The
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results3 are summarized in Table 3.2 and Table 3.3 and show that most XMPP servers
implement the favored XEPs for IoT appliances.

Table 3.2: Supported XEPs of popular XMPP servers

XMPP XEP-
Server 0030 0045 0050 0060 0174

Prosody IM [127] Yes Yes Yes Yes Implemen-
tation on
client
side only

ejabberd [136] Yes Yes Yes Yes
Openfire [137] Yes Yes Yes Yes
Tigase [138] Yes Yes Yes Yes

In contrast to XMPP servers, XMPP clients less support the selected XEPs. While the
desktop XMPP clients (e.g., Pidgin, Psi) implement in general more features in form of
XEPs, mobile and cross-platform XMPP clients (e.g., Xabber for Android4, iChat/iMessage
for OS X5 and iOS6, XMPPFramework for iOS, libpurple7, and Smack API for desktop and
Android operating systems) concentrate on supporting XEP-0030 Service Discovery and
XEP-0045 Multi-User Chat. One exception are iChat/iMessage that use Wide-Area DNS
Service Discovery (DNS-SD) [139] instead of XEP-0030. It is conspicuous that XEP-0060
Publish-Subscribe is not or only partially implemented by all analyzed XMPP clients. The
reason is that its specification and implementation is quiet complex. Instead, XMPP clients
implement XEP-0163 Personal Eventing Protocol that uses only a minor part of XEP-
0060, while in all other cases XEP-0060 seems to be avoided. Furthermore, it seems that
XEP-0050 Ad Hoc Commands has still not become widespread in mobile XMPP clients.
As XEP-0050 is not very usable for H2H communication in mobile scenarios nowadays
(i.e., it is a manual process by humans), we believe that it may become interesting for H2M
interaction use cases in IoT, such as the remote controlling of Chatty Things. The issue
with XEP-0174 Serverless Messaging is that it has a high implementation effort, since
it relies on the third party protocols mDNS and DNS-SD (cp. Chapter 5). In addition,
XEP-0174 has been developed for an one-to-one ad hoc communication when no XMPP

3Implemented version and function set can differ for each XEP, since these information are not documented
in detail in the corresponding data sheets.

4Linux-based operating system for mobile devices.
5Operating system for desktop devices developed by Apple.inc (e.g., MacBook, iMac, Mac Pro).
6Operating system for mobile devices developed by Apple.inc (e.g., iPhone, iPod).
7Feature-rich and open source XMPP library written in C which is maintained by the Pidgin team.
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server is available or needed. In the Internet XMPP servers are usually reachable so that
this type of communication is seldom needed.

Table 3.3: Supported XEPs of popular XMPP clients

XMPP XEP-
Client 0030 0045 0050 0060 0174

Pidgin (libpurple) [140] Yes Yes Yes Partial Yes
Psi [141] Yes Yes Yes No No
XMPPFramework [142] No Yes No Partial No
Xabber [143] Yes Yes No No No
iChat/iMessage No (DNS-SD) Yes No Partial Yes
Smack [144] API Yes Yes No Partial Yes [145]

Our decision for a basic XEP set has been based on the following criteria: availability,
complexity of the message structure to reduce bandwidth, and code footprint. Therefore,
we selected only the following XEPs for our minimized XMPP stack: XEP-0045 Multi-User
Chat, XEP-0050 Ad Hoc Commands, and XEP-0174 Serverless Messaging. The reason for
skipping XEP-0030 and XEP-0060 is their heavy use of complex XML message structures
and iq stanzas, which rely on the request-response mechanism (cp. Section 3.1.1) that we
want to bypass for automated processes and event notification. The push notification is
more suitable (cp. Section 2.4). The proposed sensor-specific grouping approach allows us
to further reduce the number of XEPs by replacing XEP-0060 through a slim XEP-0045
implementation (cp. Section 3.3).

3.2.3 Addressed Use Case Scenarios

In the following we show how the use cases introduced in Section 2.4 can be implemented
using Chatty Things. We assume all devices, ranging from smart objects to ordinary
computational devices, run an XMPP stack to ensure that these devices can simply be
accessed via an XMPP interface. Such a solution was also introduced by the open Home
Automation Bus (openhab) project [96] during the work on this thesis. The XMPP interface
is used to control things of a household via standard XMPP chat clients. In contrast to our
vision, chat requests are mapped to the internally used Java-based Open Services Gateway
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initiative (OSGi) runtime environment [146], which can be seen as a dedicated middleware
connecting only smart objects (cp. discussion of the drawbacks of CoAP in Section 2.3.2).
The two use cases have in common that our proposed XMPP-based system architecture
is used to seamlessly integrate Chatty Things and other XMPP-driven devices into the
Internet directly via enhanced (OpenWrt) routers.

Smart Home, Smart Office, and Smart Hotel Room. With Chatty Things, a point
is reached where devices can easily be integrated by non-technical users in their homes.
These devices detect automatically nearby devices and search the network for services they
are interested in and then subscribe to them, and advertise their own services. Thus, smart
homes can be set up and upgraded at moderate cost. Users will gain access to information
of the environment they live in and get the possibility to interact with it. Moreover, devices
from different vendors can seamlessly be coupled and integrated making the extension of
new smart home services really simple without relying on a proprietary and costly solution
from a dedicated vendor. Figure 3.6 depicts an example of the possible home automation
use case. Rooms of a building can be separated by a small power outlet connected via
an access point for IEEE 802.15.4, comparable to the enhanced router (e.g., OpenWrt or
Sheevaplug [147]), to bypass multi-hop for Chatty Things and to monitor and (access)
control a building with the help of a domain-based room management. Current solutions
and ideas for smart offices or hotel rooms either focus on a smart room control system [148]
or need to track the behavior of the guests [149]. The benefit of an XMPP-based smart
hotel room is that no tracking of guest profiles is necessary because the preferences of the
guest are stored on the user’s mobile device. They are only shared with the hotel room if
the guest agrees to it (protection of privacy). For the privacy of smart offices and smart
hotel rooms, separate XMPP domains have to be used. This ensures that only Chatty
Things of the given room (domain) can be accessed and controlled by the user. A smart
hotel room should allow a hotel guest to push its preferences directly to all surrounding
Chatty Things for the adjustment of the temperature, the favorite radio or tv show, and
the dimming of the light during the user steps into the booked room. The check in and
checkout process can also be simplified through coupling the booking number to the user’s
unique JID allowing remote access of the guest to push the preferences to the booked room
before arriving or allowing an automatic notification to the reception and the cleaning
staff when the guest leaves the room.
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Flexible Post-Disaster Management. Combining sensored objects with cloud techno-
logy is a new trend [150], [151], which replaces a Wireless Sensor Network (WSN) by
a hybrid system composed of powerful, but portable hand-held devices with the ability
to integrate smart objects (through a one-hop communication). A main advantage of
this approach is that time-critical sensor data can be processed instantaneously. Using a
plain WSN for this has several drawbacks [152]: energy is a big concern for typical sensor
nodes, so data need to be transported hop-by-hop to a network sink causing delays in
real-time data streams. The processing capabilities of resource-constrained devices are also
limited compared with more powerful platforms. In our approach the integration has to
be performed through communication with Chatty Things over smartphones to avoid the
limitation of sensing capabilities that is typical for energy- and resource-constrained smart
object networks. A consequence of our design choice is a limitation of the system’s life
time compared with pure WSNs, but monitoring critical infrastructures and supporting
post-disaster management is only a temporary challenge (e.g., days to weeks). Despite the
shorter life time, we still gain the important benefit of flexibility and the ability to transfer
and process larger data quantities in time-critical situations.

Sensor Data Storage
XMPP

XMPP

XMPP

XMPP

Common Web-
based Access

(via WLAN/UMTS)

Domain B Chatty Things

(with IEEE 802.15.4)

Sensor-equipped 
Portable Device

(with GPRS)

Volunteer
(via UMTS)

Domain A

Figure 3.9: System reference model of the flexible post-disaster management
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Our proposed system consists of sensor-equipped portable devices, Chatty Things (with
short range communication), stakeholders with different (sensor-equipped) devices, and
cloud services, as depicted in Figure 3.9. In our design hand-held devices and Chatty
Things are connected either directly to the Internet or through a one-hop communication
via XMPP over another hand-held device to deliver a real-time data stream with a high
resolution directly to the cloud service. XMPP couples different devices and networks
together to enable a cross-border communication and collaboration to support post-disaster
management stakeholders, to collect data from Chatty Things over different IP-based
communication technologies, and to share it with other devices or users. Each device runs
an XMPP client through which it can access the XMPP network and publish sensed data.
The cloud service manages a data storage for the sensed data and several XMPP domains
which facilitate an interconnection and data exchange among different organizations (e.g.,
rescue teams, government). Data access for third parties / volunteers can be enabled by
giving access to the sensor data storage. Querying data from Chatty Things at close range
can be done through XEP-0174.

To sum up, our design choice fulfills the following system criteria: (1) Use of standard
protocols to avoid gateways for linking different protocols and networks which offers the
user a transparent access to the various devices, to different networks, and to the sensor
data storage; (2) Temporary use of commodity hardware instead of dedicated wireless
sensor network hardware; (3) Scalability, reliability, data exchange, expandability, seamless
integration, and cost efficiency is realized through the use of XMPP; (4) Simple sensor
data access by means of a standard XMPP chat client on the computational devices that
ensures a slim and fast implementation for various operating systems on many devices
ranging from desktop systems to hand-held devices (cp. [213, Sec. 4.2]).

3.3 Sensor-Specific Grouping Approach

Sensor-specific grouping is an important part of the Chatty Things approach that restricts
the advertised services of a smart object to its integrated sensors. Thus, it directly maps
the capabilities of a smart object to XEP-0045 Multi-User Chat (MUC) rooms to support
a slim implementation for filtering and grouping sensor data. The topics of the chat rooms
represent the sensor type. During bootstrapping Chatty Things automatically detect
the integrated sensors, create/join the chat room with the sensor type as topic, i.e., a
sensor-specific grouping, and push the gathered sensor data to the room (see Figure 3.10).
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Figure 3.10: Sensor-specific grouping approach and event distribution of Chatty Things
using XEP-0045 Multi-User Chat rooms

This concept is simple and allows us to reduce the number of XEPs needed for a minimized
and modular XMPP stack [215, 218] because the implementation of XEP-0060 Publish-
Subscribe is avoided for Chatty Things (see Table 3.4). XEP-0045 Multi-User Chat exhibits
similarities with publish-subscribe: the chat room itself presents the topic, joining a chat
room can be seen as ’subscription’ to a topic, and the sending of a message to a chat room
as ’publication’ (cp. [153]). Additionally, XEP-0045 also supports access control (e.g., roles,
affiliations, privileges), presence broadcast, and it allows inter-domain communication.

Table 3.4: Feature comparison of XEP-0045 Multi-User Chat (MUC) and XEP-0060
Publish-Subscribe

Feature XEP-0045 XEP-0060

Event Distribution Yes Yes
Discovery Yes Yes
Content Filter (Topics) Yes Yes
Access Control Yes Yes
Presence Yes No
Publish-Only No Yes

Furthermore, the use of chat rooms also provides a simple and efficient event distribution
because many users can simultaneously be informed about an event with a single group
chat message. The XMPP server automatically pushes this information to all other entities
in the same chat room (see Figure 3.10). The advantage of XEP-0045 in comparison to
XEP-0060 is that XEP-0045 is well supported by the majority of all XMPP clients (cp.
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Section 3.2.2), since it presents a core XMPP service and it was specified before XEP-0060
(cp. [153]). A drawback of XEP-0045 is its lack of a publish-only affiliation. This issue will
be addressed later in Section 4.3.

Users can discover chat rooms by sending a service discovery ’disco#items’ via XEP-0030
Service Discovery to an XMPP server which returns a list of available rooms. Discovering
chat rooms of a foreign XMPP domain works the same way and is realized through
inter-domain communication (see Figure 3.5 and Figure 3.11). We use these chat rooms
as access control and content filter because only registered entities get updates about a
topic they have joined. Moreover, redundant data are avoided which further reduces the
XMPP message size in smart object networks, since meta data are only transmitted once.
The first message after joining a chat room transmits the unit of the sensed data and
additional meta data (e.g., geo-location). All other messages only transmit the sensed
value. The management of the selected sensor-specific groups and the re/join is handled
by the user’s XMPP client. The latter, e.g., Pidgin [140], can remember the last used chat
rooms and enter them automatically if the user reconnects to the same XMPP domain, so
that the user will always be informed about events of nearby Chatty Things. Pidgin is
available for a wide range of operating systems and can be used for free if no XMPP client
is preinstalled.

Server-to-
Server

Communication

XMPP Server
Domain B

User

MUC Service 
Discovery

Join Room
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XMPP Server
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XMPP Login 
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Figure 3.11: Discovering XEP-0045 Multi-User Chat rooms of a foreign XMPP domain
through inter-domain communication

3.4 Summary

Chatty Things provide the application developers a transparent access to the Internet
of Things. User and devices have not to be aware of the given network situation or the
network infrastructure. This allows to create IoT-driven devices which can operate out-of-
the-box without any user interaction for manual configuration or setup before their first
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startup (e.g., Plug’n’Play). Chatty Things meet the service-oriented aspects of the technical
challenges of the IoT (cp. Chapter 1). The following service characteristics are provided
by Chatty Things at the application layer to enable the development of user-friendly IoT
applications for the H2M interaction:

• Interoperability and (Service) Discovery: XMPP and mDNS/DNS-SD enable a
standardized interaction between different devices and a standardized advertisement
of their services via discovery, look up, and name services.

• Identity Management: Chatty Things are uniquely identifiable through JIDs and
published information can be linked to them (as required by [5, Sec. 2]).

• Expandability and Flexibility: XMPP ensures a hardware-independent integra-
tion of Chatty Things into the Internet. Chatty Things can easily be extended with
new protocol features and accessed through applications that support XMPP.

• Self-configuration: The support of different smart object technologies and the
integration of a flexible bootstrapping process for any subsequent interaction between
different devices in hybrid networks [6] (automatic environment detection) is imple-
mented by means of mDNS/DNS-SD.

• User Interaction: Chatty Things provide inexperienced users an easy-to-use
interface using standard XMPP client software for accessing sensor data and for
setting thresholds.

• Support for Hybrid Smart Object Networks: The interaction with Chatty
Things works independently of the given smart object network environment. When
infrastructure services are failing or are unavailable during bootstrapping the inter-
action can be established through ad hoc communication.

• Event Distribution and Information Filtering: The sensor-specific grouping
approach provides users a mechanism to address information or events target-oriented,
since only changes in sensed data are transmitted to subscribed users.

• Data Privacy: Privacy can simply be achieved through the setup of private XMPP
domains which grant access only to users with a registered JID on this XMPP
server or remotely through confirmed subscriptions to JIDs of this domain when the
corresponding XMPP server is interconnected to a public/foreign XMPP server.
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Since smart objects usually have limited memory and computing resources, implementation
of a modular, memory-efficient, and extensible XMPP stack which is optimized for low data
rates and additionally supports XEP-0174 and mDNS/DNS-SD have not been realized,
yet. The upcoming Chapters 4 and 5 describe our solutions for solving the implementation
challenges for the required protocols XMPP and mDNS/DNS-SD on smart objects running
the Contiki OS.
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Available XMPP libraries and clients have been developed for desktop or mobile systems.
They are mostly written in the programming languages C/C++, Python, or Java. In
contrast to desktop or mobile systems, smart objects usually have very limited memory
and computing resources as well as constrained wireless links (e.g., 127 bytes maximum
packet size for IEEE 802.15.4). Thus, these XMPP libraries and clients cannot be used
for constrained devices of class 0 and 1 (cp. Section 2.2) because these implementations
are too large for such hardware platforms. The first approach running an XMPP client on
smart objects was uXMPP [100]. The initial version of which (v0.1) was released in 2009
for the Contiki [32] operating system as an early proof-of-concept. It supports IPv4 and
implements only certain XMPP Core functions (e.g., login to a specified XMPP server,
send/receive one-to-one chat messages, send presence messages). As the original code
of uXMPP v0.1 was in an early developing state, no further controlling options, readily
usable API, memory optimizations, or low data rate enhancements for smart objects
were implemented. The provided XMPP Core functions are fixed and hard-coded. The
work on uXMPP v0.1 has not been continued. We have taken up this approach for the
implementation of Chatty Things. This chapter introduces a fundamentally improved,
minimized, and modular XMPP stack for smart objects. We call this stack uXMPP2.

4.1 Architectural Solutions

For the implementation of uXMPP2, we chose a building blocks concept of replaceable
XMPP features to ensure a predictable memory consumption and to support different
use cases. In the Contiki OS a process is implemented either as an application program
or as a service. The latter provides functions that can be used by application programs
(cp. Section 2.2.1). uXMPP v0.1 was implemented as a single application program. The
drawback of this solution is that uXMPP v0.1 works only stand-alone. It provides no
API for other processes and no options to dynamically load and unload parts of the
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XMPP stack (i.e., application program and XMPP stack cannot be separated from each
other). To overcome this problem each component (e.g., XMPP client, XEP-0174 client)
of the uXMPP2 stack is implemented as a service of the Contiki OS to enable XMPP
API calls for other processes. It allows a simple interconnection between processes and
it decouples the application program from the XMPP stack, as depicted in Figure 4.1.
Furthermore, the implementation as a service allows the developer to dynamically load
and unload XMPP components which do not fit together in the memory at the same time.
This feature is very useful if a component is only needed during bootstrapping and others
afterwards. uXMPP2 supports IPv6 to manage and connect up to billions of smart objects
via XMPP over uIP.
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Figure 4.1: uXMPP v0.1 versus uXMPP2

The XMPP client component implements the Core/IM module, which is an integral
part of uXMPP2 as basis. Additionally required XEPs can be implemented on-top on
demand, such as XEP-0045 Multi-User Chat (MUC). uXMPP v0.1 uses a simple, but
memory-efficient string comparison for message handling. We added an optional XML
parser for enhanced message handling to support more authentication mechanisms. The
two implementations are compared in Section 4.2. As login method, ANONYMOUS [154]
is favored because connecting entities get a randomized and unique JID from the server.
This avoids hard-coded or double-assigned JIDs for Chatty Things. They also have not to
be pre-configured on an XMPP server. The disadvantage is that an alias for a JID has
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a very long length in a chat room. To shorten the displayed name of a Chatty Thing in
a multi-user chat and to reduce the size of a group message, we propose ANONYMOUS
JID cutting for MUC. It uses only a dedicated length of a JID as an alias for a chat
room. Version 0.1 of uXMPP sends each XML element of a specified XMPP message in a
separate and independent TCP/IP packet which strongly increases the number of sent
packets. We avoid this by using the full available TCP/IP payload length (see Table 4.5)
and through the reduction of the number of exchanged messages as well as the frequency
of the information exchange, as explained in Section 4.3.

The XEP-0174 client component implements XEP-0174 Serverless Messaging. Since XEP-
0174 requires also a tiny implementation of mDNS/DNS-SD on Contiki-based smart objects,
which was still not available, an XEP-0174 client for Contiki has not been implemented
so far. We developed our own tiny XEP-0174 -based communication stack working with
Contiki’s integrated IP stack. It consists of our tiny mDNS/DNS-SD implementation, called
uBonjour (cp. Chapter 5), and an XEP-0174 client. Compared to the XMPP Core/IM
client, it is necessary to implement a TCP listener process for the XEP-0174 client because
users initiate a direct XML stream with a Chatty Thing. The TCP handler manages
incoming TCP connection requests via a connection state and accepts the opening of XML
streams from other XMPP entities in the network.

Readily Usable API

uXMPP2 supports the application developer in several ways: API to gain simple access to
all implemented XMPP functions and to easily implement new features through XEPs.
The API provides a basis set of XMPP Core/IM and XEPs for IoT applications (cp.
Section 3.2.2) and allows the developer to concentrate on the real problem instead of
struggling with constrained resources and new programming paradigms for smart objects.
The architecture of uXMPP2 is designed in a way that developers are able to simply
implement further XEPs without a deeper knowledge of the Contiki OS because the
expandability through XEPs is an important benefit of XMPP. As the focus of this thesis
lies on the H2M interaction, only H2M related parts of XMPP Core/IM and corresponding
XEPs are implemented in uXMPP2 to ensure a slim code footprint and a low memory
usage (see Appendix A.1). All other features can easily be integrated by the application
developer. The following Listing 4.1 shows an example implementation of an XMPP client
using the uXMPP2 API in line(s): 7 – establish a connection to an XMPP server; 13, 17,
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and 21 – receiving connection related events; 15 – joining a chat room; 19 – sending a
group chat message. The example skips files for the header and the includes.

1 /* ... */

2 uip_ipaddr_t ipaddr;

3

4 PROCESS_THREAD(example_process, ev, data)

5 {

6 PROCESS_BEGIN();

7 xmpp_connect(&ipaddr,"’example.net’","’romeo@example.net’");

8

9 while(1)

10 {

11 PROCESS_WAIT_EVENT();

12

13 if(ev == xmpp_auth_done)

14 {

15 xmpp_join_muc("’room@chat.example.net/romeo’");

16 }

17 else if(ev == xmpp_joinmuc_done)

18 {

19 xmpp_send_muc_msg("Hello Capulets", "’room@chat.example.net’");

20 }

21 else if(ev == xmpp_msg_received_or_send)

22 {

23 if (data != NULL) printf(">Received message: %s\n",(char *) data);

24 }

25 /* ... */

26 }

27 PROCESS_END();

28 }

Listing 4.1: uXMPP2 API example

Control and Management: XEP-0050 Inspired Remote Commands

The exchange of control and management commands with Chatty Things is implemented
through XMPP message stanzas with which threshold values for the sensors can be
adjusted, sensor updates can be received, and the battery state can be monitored. The
concept was inspired by XEP-0050 Ad Hoc Commands that allows users to initiate a
command session and to interact with an automated process through an ordinary XMPP
client. Since XEP-0050 is not well supported by current XMPP clients, because it depends
on XEP-0030 Service Discovery and uses iq stanzas, we have not integrated the remote
commands as a dedicated module into uXMPP2. Instead, developers can implement their
own application-specific commands to offer a simple way for users to adjust thresholds
(e.g., for alarming), to view sensed data (e.g., exceeded thresholds, maximum reached
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values), or to access recently sensed data. The IoT application announces a command list
when an XML stream is opened (XEP-0174 Serverless Messaging) or when an XMPP
chat message (XMPP IM) with empty or predefined content arrives. Moreover, the use
of message stanzas combined with XEP-0045 Multi-User Chat allows us to facilitate the
control and management of Chatty Things by grouping related devices in a chat room.

Lightweight XML Parsers

The XML parser is responsible for the en-/decoding of XML streams. uXMPP v0.1 does not
use an XML parser. Instead, it uses a simple string comparison which checks hard-coded
strings against parts of an XML stream, as depicted in the Listing 4.2, to control sequences
of the expected XMPP data flow implemented as a state machine. This has the advantage
that the implementation is kept simple because it consists of a few lines of code, is fast and
memory-efficient. On the other hand, the string comparison is a static filtering approach
and not really flexible because only predefined strings are detected. Minimal modifications
are not recognized. XMPP servers and clients can differ in the use of the character for
delimiters to indicate the start and the end of literals (e.g., the values of attributes) and
upper- and lowercase spelling1 (e.g., the names of attributes) in XML. This breaks a simple
string comparison. For instance, simple or double quotes are used by different XMPP
implementations as delimiters2 in XMPP messages. A string comparison drops the whole
string if it only looks for a string containing double quotes instead of a string containing
single quotes and vice versa.

1 if(strncmp(c,"<?xml version=’1.0’?>",21) != 0)

2 {

3 printf("xml version not received or wrong");

4 }

Listing 4.2: Example of a simple string comparison in C language

In order to overcome this issue we implemented a lightweight XML parser in the C
programming language that works more resistant against these failures. We found two
promising projects as a starting point for an XML parser integration: SimpleXML [155]
and iksemel [156]. SimpleXML is a simple tree-based XML language parser of valid XML
1.0 documents which is small and fast to be included directly into C/C++ applications.
When precompiling the header files with msp430-gcc, the SimpleXML takes 15.81 Kbytes

1FROM=’romeo@example.net’ versus from=’romeo@example.net’.
2from=’romeo@example.net’ versus from=“romeo@example.net“.
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of ROM / 1.06 Kbytes of RAM, but this is without defining the needed XMPP messages
for the XML parser that requires additional memory. For the integration of SimpleXML
in uXMPP2, its code needs to be heavily refactored, as explained in [77, 5]. iksemel is
another XML parser library designed for XMPP applications. It is highly portable (as
suitable for embedded systems). The implementation is small and modular, it provides a
Simple API for XML (SAX), Document Object Model (DOM) and XMPP parsers, and
Simple Authentication and Security Layer (SASL) support. Our memory measurements
for the precompilation of its headers show that 12.01 Kbytes of ROM without defining
XML messages and 18.23 Kbytes of ROM including XMPP message definitions for the
parser are used. The compilation on the MSP430 of the two XML parser implementations
with direct access to their provided library functions was not possible because the two
libraries exceeded the available memory of the Zolertia Z1. To sum up, these lightweight
XML parser implementations cannot run on a smart object without deeper modifications
for the XMPP message parsing due to their high memory requirements.

Therefore, we decided to use a modified variant of the simple string comparison as default
for uXMPP2 because an efficient memory usage is more important than a flexible, but
high memory consuming XML parser. We optimized the parsing of XMPP messages in
a way that only characteristic keywords have to match rather than comparing static
and predefined strings. This is similar to the manner regular expressions work and very
memory-efficient. As an alternative option, we have implemented an XML parser based on
the code of iksemel parser library to achieve more robustness and to support more SASL
mechanisms. For the integration of iksemel in uXMPP2, its code was refactored and only
necessary features were kept, such as the SAX interface, XML parser core functions, the
XMPP message parser, SASL, and DIGEST-MD5. The memory size for uXMPP2 with
the optimized version of iksemel is 30 Kbytes of ROM, i.e., seven times the size of the
uXMPP2 Core/IM using string comparison and no DIGEST-MD5 support for SASL.

On the Use of UDP as Transport Protocol for the Exchange of XML Stanzas

Most developed application protocols for IoT use UDP as transport protocol (e.g., CoAP),
but these approaches extend UDP with proprietary reliability and sequence number support
to adopt desired characteristics of TCP (cp. Section 2.3.2). The use of (a proprietary)
UDP contradicts our main idea of using already established and standardized application
protocols to seamlessly integrate smart objects in IP-based networks. This approach is
therefore not recommended for uXMPP2. We explicitly want to avoid extensive adaptations
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of XMPP clients, libraries, and servers because this would break the compatibility with
the current XMPP infrastructure [157]. Therefore, approaches like the TCP Support for
Sensor nodes (TSS) [158], Distributed TCP Caching (DTC) [159], and cache and control
(cctrl) [160] make TCP applicable to work in low data rate networks. They enable a more
energy-efficient use and increase the data throughput of TCP in comparison with UDP.

4.2 XML Compression for the Use on Smart Objects

As the flexibility and the extensibility of XMPP is based on XML, the intensive use of
XML in low data rate networks can cause a high network traffic load due to a large message
overhead. This overhead can either be reduced through (1) XML compression techniques
or through (2) the reduction of the number of exchanged messages and the frequency of
the information exchange. An analysis for solutions of (1) is discussed in detail in this
section. We analyze the memory usage, the compression ratio, and the implementation
effort of current XML compression techniques if they are feasible for the use in uXMPP2.
An approach for (2) will be presented in Section 4.3.

4.2.1 XMPP Stream Compression with ZLIB Algorithm

The XEP-0138 Stream Compression [161] provides a modular framework that can offer
several companding algorithms for negotiating compression modes of XML streams. So
the size of the exchanged XMPP messages in the network can be reduced using one of
the existing standards available for several XMPP clients, servers, and libraries. In the
case of uXMPP2, the number of sent and received IP packets should be minimized if the
compression ratio of an algorithm provides good results. For XEP-0138, it is mandatory to
implement the ZLIB [162] compression algorithm. The following two-step ZLIB checkup
gives an overview whether the compression method is usable on smart objects. The first
step analyzes the compression ratio3 (cp. [164, Sec. 3]) of ZLIB for the use in combination
with XMPP. The results of our measurement with typical XMPP message types in Table 4.1
and in Table 4.3 show that ZLIB has a best case compression ratio of 80%. Consequently,
the space savings of compressing XMPP messages with ZLIB are only 20% (group chat
message), whereas it reduces the number of sent IP packets by only one for each XMPP
message type (except for presence) compared to the numbers presented in Table 4.5.

3Compression ratio =
(

compressed size
uncompressed size

)
; lower value means better performance [163].
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Table 4.1: Sizes of typical XMPP messages compressed with ZLIB (in bytes) and their
corresponding number of used TCP/IP packets (theoretically)

Message Type Normal Size Compressed Size TCP/IP Packets

Presence 38 max 35 max (92%) 1
One-to-One Chat 164 140 (85%) 3
Chat Join 101 90 (89%) 2
Group Chat 164 130 (79%) 3

In the second step, we evaluated three C-based libraries to prove whether it is possible to
run a ZLIB implementation on Contiki-based smart objects (compiled with msp430-gcc for
the Zolertia Z1) with a low memory footprint. We chose the tiny, portable and C-based
libraries easy zlib [165], zlib.net [166], and miniz [167] implementing the ZLIB compressed
data format specification [162] for this analysis. In particular, miniz is written in a single
source file providing a high compression speed and an easy integration in current projects.
The easy zlib library allows an in-memory XML de/compression and the library zlib.net
provides a typical compression ratio between 2:1 and 5:1. The results of the code size of
the three ZLIB libraries are contained in Table 4.2. None of the evaluated libraries fits in
the memory of the Zolertia Z1 without any complex modifications or additional overhead
because the used internal structure for the de/compression of each library is too large
and has to be heavily modified to run properly on Contiki. Moreover, these optimized
implementations of the ZLIB standard show that the code is too complex for smart objects
and that the code size cannot be shrinked further. In addition, XEP-0138 requires the
ZLIB standard, as it ensures the backward compatibility with existing XMPP libraries
and clients for other platforms and their chosen ZLIB implementation.

Table 4.2: Code sizes of available ZLIB libraries (in Kbytes)

ZLIB Library Code Size Fits in Z1?

easy zlib 340 No
zlib.net 114 No
miniz 217 (+33) No

As the ZLIB compression ratio and the space savings for XML messages are very low
compared to the needed complexity of the code and no further results for memory usage
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and CPU load on a smart object can be gathered, we decided to look for alternative
XML stream compression methods. All in all, the ZLIB-based compression algorithm of
XEP-0138 has not proven to be an advantage for the use in uXMPP2.

4.2.2 XMPP Stream Compression with EXI

The Efficient XML Interchange (EXI) format [168] is currently suggested as an alternative
XML compression method to ZLIB by XEP-0322 [169]. The EXI specification defines an
encoding format that allows an efficient interchange of XML and an effective processor
implementation. It should provide a small code footprint for implementations, while being
completely compatible with XML [170]. A study comparing different XML encodings (e.g.,
Binary XML (BXML) [171], Fast Infoset (FI) [172]) of binary XML parsers for embedded
systems shows that the most compact representation is achieved using EXI [164, Sec. 3].
The comparison analyzes the encoding efficiency of typical XML contents (e.g., RDF/XML
sensor data, Smart Energy (SE) and SensorML [173] example) and the complexity for
running each encoding technique on resource-constrained devices using the reference
implementation EXIficient v0.3 [174]. The results (i.e., data in bytes, compression ratio
in percent) of the XML encodings comparison in conjunction with the ZLIB compression
method are presented in Table 4.3.

Table 4.3: Comparison of efficient XML encodings (adapted from [164, Sec. 3]) extended
with our ZLIB compression results

Encoding Complexity RDF Test SE Test SensorML Test

XML Medium 206 409 300
EXI Low 6 (3%) 13 (3%) 57 (19%)
BXML Medium 177 (86%) 210 (51%) 177 (59%)
FI Medium 143 (69%) 200 (49%) 185 (62%)
ZLIB High 177 (86%) 210 (51%) 176 (59%)

They clearly show that EXI delivers the best compression ratio of all encodings. Moreover,
EXI can encode an XML content in such a manner that the encoding would fit into a
single IP packet of uIP (cp. Section 2.2.2). The other approaches of binary encoding
and compression methods offer only low compression rates compared to their needed
complexity (e.g., medium and high) for the parser implementation and use. This may
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be the reason why XEPs (e.g., XEP-0239 ) proclaiming binary XML for XMPP streams
were rejected by the XMPP Standards Foundation (XSF) so far. The shortage of the
EXIficient parser is that its implementation is written in Java. It takes around 1.9 Mbytes
for the Java archive (jar), which includes the parser and all external libraries. Another
EXI implementation is the Embeddable EXI implementation in C (EXIP) [175] which
promotes a small code and low memory size through using limited external dependencies,
but it currently supports only the default EXI encoding and decoding options (so it is not
feature complete and the used code and memory size may increase with the next releases).
The testing platform for the evaluation of EXIP is presented in [170]. It has been a Mulle
hardware device (10 MHz Renesas M16C/65 with 47 Kbytes of RAM and 512 Kbytes of
ROM) [176]. With Contiki-based smart objects, we are unfortunately far away from these
hardware specifications (usually only a fifth of it). Therefore, running these XML encoding
implementations on smart objects is not suitable.

The project WS4D-uEXI [177] has the aim to provide a solution for the described problem.
WS4D-uEXI is working on a proof-of-concept implementation of EXI for smart objects. It
supports all EXI features that are necessary to realize scenarios of all Devices Profile for
Web Services (DPWS) stacks of the Web Services for Devices (WS4D) initiative. uEXI
is implemented in plain C and supports only a reduced set of encoding modes of the
EXI specification because evaluations showed that not all encoding modes are feasible for
6LoWPAN [178]. The parser of uEXI uses only around 1 Kbyte of ROM compiled for the
MSP430 microcontroller, but it can only parse incoming messages. It provides functions
for handling strings, qualified names, integers, unsigned integers, booleans, dates, and EXI
event codes. The needed RAM depends on the parsed message structure. The processing of
outgoing messages is realized through the generation of predefined messages and message
formats (schemas) using EXIficient during compile time, which are then statically included
as EXI grammar for the parser in the application. This causes additional ROM usage and
strongly depends on the included schema files. The DPWS stack additionally uses around
3.2 Kbytes of ROM for SOAP, XML, XML schema, and XML namespace.

Ongoing work on the introduced EXI projects has shown that a low memory footprint
EXI parser is not easy to implement. The research about EXI on smart objects is not
completed, yet, and cannot deliver a generic solution (cp. [179]). Furthermore, XEP-0322
Efficient XML Interchange (EXI) Format is still experimental and there is still no official
XMPP implementation. Stream compression through EXI is not compliant to available
XMPP servers and clients. EXI seems an interesting way to reduce the XML overhead,
but EXI implementations for smart objects need to be very slim and memory-efficient.
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Instead, approaches are preferred that reduce the number and the frequency of exchanged
messages. A solution for this without using any XML compression technique and providing
a low memory footprint is presented in the next section.

4.3 Temporary Subscription for Presence (TSP)

The aspect of a many-to-many chat (XEP-0045 ) that is used in our proposed sensor-specific
grouping approach (cp. Section 3.3) has several disadvantages for low data rate smart
object networks. Group chat messages are broadcasted to every room member. This can
cause a high network traffic. Entering a chat room implies that all registered entities can
only be seen with their aliases instead with their JIDs. Further (chat) presence information
from all room members is automatically available with manual subscription through
presence broadcast [133, Sec. 7.2.3] (also known as “presence leak”) because the alias of
each room member is used to preserve the privacy of each XMPP entity. Unfortunately,
this kind of presence announcement has a larger message size (around the size of a chat
join, see Table 4.5) than a normal presence message. The reason is that a (chat) presence
message includes additional attributes to get handled and forwarded to the chat room
by the XMPP server because the JID of each room member has to be replaced by its
alias. To solve this problem we propose the Temporary Subscription for Presence (TSP)
that provides a publish-only affiliation for XEP-0045 and uses small presence messages
to reduce the network traffic of Chatty Things. Since presence notification is an integral
part of XMPP Core/IM, it is supported by all XMPP clients. Access control and content
filter are provided by XEP-0045 Multi-User Chat. The advantages of TSP in comparison
to other XMPP approaches are summarized in Table 4.4.

Table 4.4: TSP in comparison with XEP-0045, XEP-0060, and presence notification

Feature XEP-0045 XEP-0060 Presence TSP

Content Filter Yes Yes No Yes
Access Control Yes Yes Yes Yes
Message Size Medium High Low Low
Publish-Only No Yes No Yes
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4.3.1 Lightweight and User-Friendly Event Notification

The TSP approach is based on the fact that presence messages (38 bytes maximum) fit
into a single TCP/IP packet (48 bytes maximum4) within IEEE 802.15.4 radio frames (127
bytes maximum). The reason is that presence information (not to confuse with directed
presence [124, Sec. 4.6] or presence for entering a chat) is sent from a client without a
’from’ or ’to’ attribute. Table 4.5 shows the sizes of typical XMPP messages (e.g., presence
[124, Sec. 4.4.1], one-to-one chat session [124, Sec. 5.2.1], presence to join a chat room
[133, Example 18], group chat message [133, Example 44]), and the number of used IP
packets in Contiki for both uXMPP versions.

Table 4.5: Size of typical XMPP messages and sent IP packets as well as the corresponding
push of information stage

Message Type Size uXMPP v0.1 uXMPP2 Stage

Presence 38 bytes max 5 packets 1 packet I
One-to-One Chat 164 bytes 12 packets 4 packets II
Chat Join 101 bytes - 3 packets -
Group Chat 164 bytes - 4 packets II

From the user point of view, there should be a notification when thresholds are exceeded
to indicate the need of adjustment or maintenance, instead of continually receiving data
from objects as long as everything proceeds normally. Detailed information should only be
requested when an intervention by the user is required. Thus, the frequency of information
exchanges can be kept low when only status information (e.g., threshold reached) is
transmitted. Furthermore, the coordinated subscription to interested/selected events and
the avoidance of sending redundant data (i.e., meta data) allow further reductions of the
number of exchanged messages. In order to reduce the bandwidth utilization we introduce
with TSP two stages in XEP-0045 (cp. Table 4.5) for pushing information:

• Stage I: The presence notification is activated through temporary subscriptions to
topic-related Chatty Things. It is used to indicate data changes via traffic lights to
interested users and objects. In this stage XMPP message types are used that fit
into a single IEEE 802.15.4 frame, i.e., stage I uses only presence messages. During
bootstrapping a chat join message is used additionally (cp. Section 4.3.3);

4Measured for IPv6 packets.
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• Stage II: Detailed information about the event can be requested via remote com-
mands by users and objects (cp. Section 4.1). This stage applies XMPP message
types that require more than one TCP/IP packet for sending XML data.

The separation in two stages has the advantage that small presence messages for the event
notification as in stage I and all XEP-0045 -compliant XMPP chat clients can be used
without any modifications because TSP has to be implemented only by the Chatty Things
(CT) and by the XMPP server (see below). Thus, XML compression techniques, expensive
in terms of memory usage and local computation (cp. Section 4.2), are not necessary to
implement a low bandwidth usage for the XMPP message exchange. Figure 4.2 depicts
the message flow in detail.
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Figure 4.2: TSP message flow for Chatty Things (CT) and users

Presence Subscription Dilemma

The dilemma for users that receive small stage I presence messages is that they have to
manually subscribe to each sending entity for each joined network. Presence information is
private. Therefore, each subscription request to an XMPP entity has to be approved by
the requested XMPP entity (see Figure 4.3). As the entities in a network can change (e.g.,
Chatty Things leave, join) and a user can get in touch with different network environments
(e.g., just by walking along), the user’s subscriptions to Chatty Things are neither fixed
nor stable. The number of publishing Chatty Things can increase considerably. The roster
of the user’s XMPP client can thus become outdated very fast, as depicted in Figure 4.4.
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The XMPP roster depicts each Chatty Thing to which a user has subscribed to as roster
item with the name (JID) and the presence information as a status icon. Usually a user
is especially interested in topic-related information which (a set of) Chatty Things can
provide from the given environment and not directly in a dedicated Chatty Thing.
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Figure 4.3: XMPP IM presence subscription request
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Figure 4.4: XMPP client with roster and outdated roster items

Therefore, an automatic and approved subscription of a user to a topic-related group
of Chatty Things (i.e., information filtering) should be provided. For this, we propose
a dynamic and up-to-date roster that holds Chatty Things of the current network (e.g.,
XMPP domain B) and of the user’s selected sensor-specific groups only temporary to
access their private presence information.

Dynamic Roster and Traffic Lights

TSP enables Chatty Things to approve the temporary subscription to their private
presence information by all members of a topic-related chat room (cp. approve subscription
in Figure 4.3 with bootstrap phase in Figure 4.7). This enables the automatic subscription
to Chatty Things which joined the same sensor-specific groups of a user and adds them
with their JID to the user’s roster, as shown in Figure 4.5. If the user leaves the network
the temporary Chatty Things is removed automatically from its roster to keep it clean and
up-to-date (i.e., temporary subscription, cp. exit in Figure 4.7). Thus, the roster enables
a sorted and up-to-date view on all interested events of a user. This avoids the use of
several IP packets for sending a chat presence or group chat message that do not fit into a
single IP packet and use only an alias. With TSP, we overcome the issues of the manual
grouping of a set of Chatty Things by means of aliases and preserve the XEP-0045 ’s way
of easy-to-use and familiar user interaction (e.g., access control and content filter). Users
and Chatty Things without enabled TSP still act as ordinary chat room members (e.g.,
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sending and receiving many-to-many chat messages) as defined in XEP-0045 with the
enhancement of filtering presence information by topics.
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Figure 4.5: XMPP client with the dynamic roster and temporary subscriptions

For Chatty Things, the importance of an event is mapped to the predefined presence status
types5 of the XMPP Core/IM (e.g., ’available’, ’away’, ’dnd’, ’unavailable’). So the status
icon in the XMPP roster can be used to represent the condition of a Chatty Thing’s sensed
data. Presence information is sent to the XMPP network only when a threshold value of
a sensor is exceeded. Thus, the status icons can be depicted like traffic lights6 to simply
indicate changes of a monitored environment directly to the user:

• Green: The sensed data is below the threshold value (i.e., everything proceeds
normally), no presence update is necessary. The presence status type is ’available’;

• Yellow: The sensed data exceeds the threshold value, a presence message informs
all registered users. The presence status type is set to ’away’;

• Red: The sensed data repeatedly exceeds the threshold value, a presence or a detailed
chat message with the actual sensor value(s) is announced to all interested users.
The presence status type is set to ’dnd’;

• Grey: No presence information is reported. The Chatty Thing is either not available
in the network or it is broken. The presence status type is ’unavailable’.

TSP allows users to retrieve updates from their local environment (temporary) or events
of specific sensors they have subscribed to (XMPP roster) without getting overwhelmed

5The used data for the XML element is not meant for presentation to a human user [124, 4.7.2.1].
6Most XMPP clients, such as Pidgin, implement this color mapping for presentation of the predefined
presence status (types) to a human user.
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with information they are not interested in. Stage I dynamically reduces the exchange of
presence information to a minimum if everything proceeds normally (e.g., green traffic
lights). Detailed information can be requested via remote commands in stage II when an
intervention by the user is required (e.g., yellow or red traffic lights).

4.3.2 Publish-Only Affiliation for Sensor-Specific Groups

The behavior of the XEP-0045 Multi-User Chat may cause bottlenecks in the message flow
of a low data rate network because such a network may consist of a large number of devices
each using a part of the limited bandwidth. An XMPP node always takes the role of a
subscriber when publishing data. Hence, it gets information about every update just like a
normal subscriber because XMPP (chat) presence and chat messages are broadcasted to
each room member (see Figure 4.6). This causes a high number of exchanged messages
for two reasons. Each message has to be delivered separately and the message does not
fit into a single IP packet. This again produces a high number of messages as already
mentioned earlier in this section. The reason is that XEP-0045 misses a publish-only
affiliation (i.e., dedicated role of a publisher, cp. Table 4.5). This feature would allow
Chatty Things to act only as publisher that monitors the environment and pushes the
sensed data in a sensor-specific group without receiving data updates from this group they
are not interested in (i.e., less subscriptions and less data traffic).

In order to further reduce the network traffic TSP defines a publish-only affiliation, i.e.,
uninterested entities do not need to be informed about value changes of other sensors.
They just collect data and publish them to the subscribers. Chatty Things with enabled
TSP act only as publishers without getting updates from the XMPP network. So Chatty
Things will receive no group chat or presence messages from the XMPP server, as depicted
in Figure 4.7. The disadvantage is that the configuration of Chatty Things becomes more
complicated. Sending one-to-one chat messages to Chatty Things still works for the user
interaction via remote commands. With TSP, a definition of interaction roles for the
different device classes of the IoT can be enabled. In networks with different classes of
devices, each device has a different role and varying duties which have to be taken into
account to minimize the network traffic, i.e., there are different priorities and time intervals
for receiving updates of sensor data in a network. The results of [180] for the use of
so-called transmit-only nodes (i.e., a comparable idea to TSP enabled publish-only nodes,
but implemented at the MAC layer) have proven that the efficiency (e.g., cost and energy)
and reliability of smart object networks are improved considerably.
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4.3.3 Enabling TSP

A Chatty Thing announces TSP by adding the optional <status/> element to the presence
message used to join a chat room. This kind of presence message is sent only once during
bootstrapping to initiate TSP on the XMPP server side and to set up the respective topics
of the Chatty Thing. The <status/> element is already defined for this message type in
XMPP IM. It specifies a detailed description of the presence status. Unmodified XMPP
servers recognize it, but do not react differently (i.e., joining XMPP entity enters the chat
room). Backward compatibility is thus ensured. The <status/> element is automatically
included when the TSP module is activated in uXMPP2. The following Listing 4.3 depicts
an example (according to [133, Example 20]) of a TSP enabled presence message:

1 <presence

2 from=’hag66@shakespeare.lit/pda’

3 id=’n13mt3l’

4 to=’coven@chat.shakespeare.lit/thirdwitch’>

5 <status>TSP</status>

6 <x xmlns=’http://jabber.org/protocol/muc’/>

7 </presence>

Listing 4.3: Example TSP chat join message

The TSP flag is only a small adding to the original presence message to join a chat room.
It extends the message size only by 20 bytes, as depicted by <status>TSP</status>
in line 5 in the Listing 4.3.

uXMPP2 Modifications

TSP reduces the needed type of XMPP messages to a minimum set. As pointed out,
the join chat message has only be extended with the <status>TSP</status> (cp.
Figure 4.2 and Listing 4.3), while all other needed message types for sending and receiving
presence and group chat messages are already given by the XMPP Core/IM and XEP-0045
modules of our XMPP stack. In general, TSP relies on the XMPP message types presence,
chat join, and group chat. When an announcement of TSP is needed, the XEP-0045
module internally sends a join chat message with activated TSP flag. The XEP-0045
module is also used to parse the group chat message. This ensures that the memory usage
to generate and parse XML messages is kept very low. So the implementation effort can
also be reduced to a minimum which results in a small code footprint of uXMPP2.
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XMPP Server Modifications

We have implemented a TSP prototype for the XMPP server Prosody version 0.8.2
with modifications of its roster manager and its Multi-User Chat plug-in. Backward
compatibility was tested until version 0.9. Prosody was chosen as XMPP server because it
runs on embedded Linux systems. Thus it is the ideal software for the enhanced router (cp.
Section 3.2.1). When a TSP enabled presence message to enter a chat room is received
by the XMPP server, it checks the <status/> element for TSP. If the element is set the
server registers the joining Chatty Thing as a new group member flagged with TSP to the
room list. The server also adds the Chatty Thing to the roster and forwards its presence
message to every non-TSP enabled room member. Afterwards a roster update is sent to
these XMPP clients and the Chatty Thing appears remotely in the user’s roster. Incoming
group chat or presence messages are not forwarded to room members with enabled TSP.
Removing the Chatty Thing from the list is done automatically by the XMPP server
when it or the user leaves the chat room by sending a presence of type ’unavailable’. Thus,
obsolete Chatty Things are not contained in the user’s roster. To be compliant with existing
XMPP software, the implementation of TSP requires only modifications of the XMPP
server. The advantage is that existing XMPP clients do not need to be adapted. Users can
benefit from an up-to-date roster and Chatty Things from the reduced network traffic.

To sum up, the proposed TSP approach minimizes the network traffic for Chatty Things
in XEP-0045 Multi-User Chat (MUC) by using small presence messages and introducing a
publish-only affiliation. It explicitly avoids the use of XML compression methods to achieve
the optimal trade-off between local computation and the XMPP message exchange (cp.
[181, Sec. IV.C]). In general, TSP reuses a subset of functions and descriptions of existing
XMPP Core/IM and XEPs, while extending it with useful functions for the Internet of
Things. The introduced TSP flag is piggybacked on existing message types. So TSP can
be treated as a draft of a custom XEP for the IoT (cp. Section 2.4).
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5 uBonjour: Minimized Software Stack for the
DNS-Based Service Discovery

Self-configuration is mandatory for the Chatty Things approach to automatically bootstrap
smart objects independent from the user interaction, the given network environment
(e.g., infrastructure or ad hoc), hard-coded start-up parameters (e.g., IP address of an
XMPP server), and other pre-configurations (e.g., JIDs for logging in on XMPP servers).
Failure-resistant network bootstrapping can be enabled by a service-oriented approach
(cp. [182]). It provides transparency with service abstraction for specific device functions
and seamless interaction with various device types, while the devices browse their network
domain for neighbors and newly published services (cp. [183]). The process in which
devices automatically detect joining or leaving devices and available services in a network
environment is called service discovery. Currently there is no service discovery for the IoT
that directly addresses different classes of devices with the same Internet mechanisms [73,
27]. In RFC 6574 [18, Sec. 3.2.1] established service discovery protocols, e.g., Multicast DNS
(mDNS) [23] with DNS Service Discovery (DNS-SD) [24], are favored to let different classes
of network devices work seamlessly and vendor-independent with each other. This reduces
the learning threshold for non-technical users (cp. [184, Sec. 2]). In this chapter the DNS-
based service discovery uBonjour is introduced. This approach is based on the combination
of mDNS and DNS-SD with adjustments for smart objects (e.g., small code footprint,
minimized overhead) and allows the service discovery of smart objects with the same
Internet mechanisms which are already used. We propose optimizations for mDNS/DNS-SD
to effectively reduce the number of exchanged IP packets to meet the requirements of low
data rate smart object networks, while ensuring compatibility with DNS.

5.1 Service Discovery in the IoT

Existing approaches for service discovery in the Internet of Things can be divided in service-
oriented architectures and specific implementations of 6LoWPAN approaches. Service-
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oriented IoT architectures use either a residential gateway [185] or a complex middleware
[6]. Current developments of smart object-specific application protocols reinvent similar
approaches to DNS-SD for 6LoWPAN. Resource Directory (RD) [186] or registry-based
TRENDY [187] use CoAP as underlying communication protocol and provide service
discovery only in a smart object network with a dedicated feature set and a description of
available CoRE resources. The discovery of smart objects from ordinary computational
devices, however, requires in both cases a gateway, e.g., an HTTP/CoAP translator (cp.
[73]) or a directory agent as a proxy (cp. [187]). Moreover, TRENDY needs to expand
the role of a 6LoWPAN border router to additionally act as a directory agent because
it operates at lower layers. A seamless service discovery that directly addresses different
classes of devices with the same Internet mechanisms (cp. [73, 27]) cannot be set up.
Compared to service discovery implementations at lower layers, implementations at the
application layer, such as DNS-SD and RD, have the advantage that no additional mapping
mechanisms onto a high-level service discovery are required [7, Sec. 7].

With mDNS/DNS-SD, a user-friendly and seamless discovery of smart objects can be
implemented. Multicast DNS (mDNS) is part of a group of standards that is used to
automatically enable computers to look for or find other devices and to share their services
with each other in network environments without manual configuration by the user. The
task of mDNS is to resolve domain names without the help of any unicast DNS server
by delivering messages to the reserved multicast addresses 224.0.0.251 (IPv4) and
ff02::fb (IPv6) via UDP port 5353. Devices inquire network addresses with requests
to a multicast group. The respective device responds with its list of DNS resource records.
mDNS is often implemented together with DNS Service Discovery (DNS-SD). The two are
available for various platforms, e.g., for Mac OS, iOS and Windows with Bonjour [188],
and for Linux, BSD, OpenWRT, and Android with Avahi [128]. DNS-SD is another part of
the standards used to discover devices and share their services. It is combined with mDNS
and also supported by Bonjour and Avahi. DNS-SD enables the location and announcement
of services of entities in a network domain. DNS resource records are again used to provide
information about services. A device usually offers its service by propagating the following
DNS resource records:

• SRV Resource Record: Defines the service (e.g., service type [189], protocol,
domain name), the port, and the hostname of the service offering device in a domain;

• A / AAAA Resource Record: Used to map the hostname of the service offering
device to an IPv4 / IPv6 address;
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• PTR Resource Record: Used to resolve devices hostnames in a domain through
their network addresses. Also used in mDNS to assign service instances to a service;

• TXT Resource Record: Used to propagate user-defined text, e.g., distribute
presence in XMPP Serverless Messaging (cp. Section 3.2.1).

In contrast to other service discovery protocols (e.g., Service Location Protocol (SLP) [190],
Universal Plug and Play (UPnP) [191]), DNS-SD is simple and it has a small protocol
overhead, which makes it especially suitable for smart objects. Furthermore, no dedicated
peers or centralized instances are necessary (i.e., in use with mDNS), such as directory agents
in the case of SLP (cp. [7]). Examples for practical mDNS and DNS-SD implementations
are Bonjour [188] and Avahi [128], both widely used on desktop and mobile systems. They
are open source and written in C/C++, but too big to fit in the memory of a smart
object. A smaller implementation is Liaison [192], which has around 100 Kbytes code size
and is written in C++. The porting of one of these three implementations onto smart
objects would be an extensive and time-consuming task because a complex refactoring with
subsequent restructuring of the design is necessary to adapt the implementations to the
requirements of these devices. In [16], a mDNS implementation into Contiki with a memory
footprint of only 1.0 Kbytes ROM and 0.5 Kbytes RAM has been reported, but there is no
code proof available. A direct integration of mDNS for Contiki can be found online [193].
It offers an advanced version of the uIP hostname resolver function and supports IPv4
and IPv6, but not DNS-SD. The most promising mDNS and DNS-SD implementation
with only 14 Kbytes code size is Ethernet Bonjour [194] for the Arduino platform [195].
It was written in C++ for the WIZnet chipset on the Ethernet shield by Georg Kaindl
and supports only IPv4 for Ethernet frames. Thus, there is still no mDNS and DNS-SD
implementation available for smart objects that uses the uIP stack and supports IPv6.

5.2 Architectural Solutions and Limitations

We propose here a DNS-based service discovery for smart objects on top of uIP that we
call uBonjour [219]. It enables a standardized service discovery of smart objects with the
same Internet mechanisms which are already used for ordinary computational devices.
Interoperability is guaranteed by the established Domain Name System (DNS) for the IoT
at the application layer. Thus, there is no need to use specialized protocol gateways nor to
run smart object-specific code on computational devices.
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uBonjour is a minimized implementation of mDNS and DNS-SD [219] on smart objects to
discover and address devices and available services in IP-based network environments. It
is based on the Ethernet Bonjour project (cp. Section 5.1). For uBonjour, the Ethernet
Bonjour code was extended and reimplemented in an optimized way for the Contiki OS
with IPv6 support. The interoperability was tested to work with the mDNS/DNS-SD
implementation Avahi, as it will be described in Section 6.3. We reused the parser/message
generator and its function stub. C++ parts were ported to C and the WIZnet chipset related
code was rewritten to use the uIP stack of the Contiki OS. These measures ensure that
uBonjour runs properly on Contiki with a minimized memory consumption. The general
features of uBonjour for application protocols and developers are the resolving of hostnames,
the discovering, registration, removal, and updating of services. The implemented mode of
operation is described in detail in Appendix A.2. Applications can register and announce
their availability as services in the network and discover other devices that support the
same application protocol to establish a direct communication.

uBonjour supports an application-, device-, and vendor-independent announcement for
smart objects that want to offer their services in a network domain. It implements the
standardized behavior of mDNS according to [23] and DNS-SD [24] to ensure a compliant
message exchange with different kinds of computer systems using either Bonjour or
Avahi. This enables computational devices to discover and address smart objects and
their advertised services in an easy-to-use and transparent way without using application
protocol gateways. uBonjour supports self-configuration instead of hard-coded addresses,
so that smart objects can scan their network environment and share results without the
need to know the exact network topology. Adding a new smart object is performed through
requesting information from surrounding devices, while a coordinated exit is enabled
using “service unavailable” messages. Bootstrapping of smart object networks is simplified
because services can be found and accessed autonomously by all network devices without
any manual configuration or user intervention (cp. [27, 196]). Therefore, uBonjour is an
essential part of the Chatty Things approach. It implements a parameter-less bootstrapping
in hybrid networks and provides the basis for the XEP-0174 Serverless Messaging when
XMPP servers are unavailable during bootstrapping and at run-time.

5.2.1 Parameter-Less Bootstrapping of Chatty Things

Adding a Chatty Thing to a network is possible by requesting services (e.g., XMPP server)
or by receiving information from surrounding devices. The respective device responds
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with its list of DNS resource records that contains its host/domain name(s), IP address,
port, and the assigned service(s). Due to the constrained resources of smart objects, not
all available components of the uXMPP2 stack (cp. Section 4.1) can be activated during
bootstrapping and at run-time. The IPv6 stack memory footprint (see Appendix A.4) and
the dynamic memory use are the limiting factors. An intelligent handler process for the
two XMPP clients (e.g., Core/IM, XEP-0174 ) and uBonjour is therefore very important
to ensure memory-efficiency and flexibility. We use multi-level bootstrapping to reduce the
memory consumption of the XMPP stack by stepwise enabling its components depending
on the given network environment:

I: uBonjour is activated to discover an XMPP server in the given network environment.
If an XMPP server is found step II follows, otherwise step III;

II: Infrastructure mode – Deactivate the uBonjour client, activate the XMPP client,
and connect to the XMPP server;

III: Ad hoc mode – Activate the XEP-0174 client.

During run-time an automatic switching between infrastructure and ad hoc mode is
triggered depending on incoming DNS resource records (e.g., XMPP server is un-/available)
or the connection state to the XMPP server (e.g., connected, lost). The switching process
follows these rules:

IV: Infrastructure mode – If the connection to the server gets lost and a predefined
number of reconnections attempts fails then deactivate the XMPP client, goto step I;

V: Ad hoc mode – If an XMPP server joins the network deactivate the XEP-0174 client,
goto step II.

The incremental activation of components is a resource-efficient way for the discovery, the
self-configuration, and the seamless integration of Chatty Things in IP-based networks
without the need for any user interaction or manual pre-configuration. Chatty Things
automatically discover their given network environment and react autonomously on topology
changes and un/available services. An extension of this discovery functionality beyond local
network boundaries is possible using Wide-Area DNS-SD [197] with the same DNS-SD
APIs. This can ultimately boost the integration of smart objects into the current Internet
infrastructure [198] and support service discovery in wired and wireless networks. The
extensions for Scalable DNS Service Discovery (dnssd) proposed by the IETF working
group [199] focuses on this aspect. In conjuction with Wide-Area DNS-SD, a solution for a
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general bootstrapping of different network devices can be implemented that overcomes
the problems of a dedicated server-based rendezvous point, as explained in [220]. This
has the advantage that devices can be found via registered services in the Internet using
standardized DNS messages. As mDNS and DNS-SD rely on DNS, which can be seen as
the backbone of the Internet, the DNS-based service discovery is widely deployed.

5.2.2 Limitations for the Use of DNS in Smart Object Networks

As mDNS and DNS-SD were initially designed for computational devices in home networks
with nearly no limit of bandwidth, memory, and processor resources, the two protocols
lack optimizations for low data rate smart object networks [199, Sec. 2.3]. Therefore, the
following DNS mechanisms require optimizations for their use in low data rate smart object
networks and in uBonjour.

DNS Message Compression

A DNS message is composed of a DNS header and at least one resource record [200, Sec.
4.1]. The DNS header takes 12 bytes of a DNS message. The number of embedded resource
records in a DNS message is stored in fields of the DNS header. A DNS record contains
fields for the (domain) name (e.g., owner name, hostname, service name), the resource
type, the class code, the Time-To-Live (TTL), the length of the resource data, and the
resource data. Figure 5.1 depicts the DNS resource record format.
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Figure 5.1: DNS resource record format, as defined in RFC 1035

Embedding a set of resource records in a single DNS message saves 12 bytes for avoiding an
additional DNS header for each resource record. Furthermore, DNS message compression
allows one to shorten names by using pointers to a prior occurrence of the same name
[200, Sec. 4.1.4]. The length of a pointer takes only 2 bytes because it is represented by a
two octet sequence containing the pointer flag (the first two bits are set to one) and the
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offset from the start of the prior occurrence of the same name. Figure 5.2 gives an example
of the DNS message compression for a DNS message containing the two resource records
SRV and PTR. The DNS name pointer can be used within a record (i.e., the pointer of
the SRV record uses the prior occurrence of the name local) or to a prior record if two
records are sent within the same DNS message (i.e., PTR name and resource data point to
a prior occurrence of the same name or a substring located in the SRV record).

53 bytes

Ty
pe

: S
RV

C
la

ss
: I

N

TT
L:

 3
60

0

co
n

_p
re

se
nc

e
_t

cp
lo

ca
l

12
34

5
ct

k

Ty
pe

: P
TR

C
la

ss
: I

N

TT
L:

 3
60

0

Re
s.

 L
en

gt
h:

 2
6

_p
re

se
nc

e
_t

cp
lo

ca
l

“_
pr

es
en

ce
...

”
“l

oc
al

”

“c
on

...
”

Re
s.

 L
en

gt
h:

 2

TT
L:

 3
60

0

C
la

ss
: I

N
Ty

pe
: P

TR

Ty
pe

: S
RV

C
la

ss
: I

N

TT
L:

 3
60

0

Re
s.

 L
en

gt
h:

 1
3

co
n

_p
re

se
nc

e
_t

cp
lo

ca
l

co
n

_p
re
se
nc
e

_t
cp

lo
ca
l

12
34

5
ct

k

Repetition of name

DNS name pointer

Field with fixed length

Shortened view of field with variable length

lo
ca

l

49 bytes

58 bytes

14 bytes

Re
s.

 L
en

gt
h:

 1
7

12 bytes

D
N

S 
H

ea
de

r

12 bytes

D
N

S 
H

ea
de

r

68 BytesFigure 5.2: Example DNS message compression

A DNS record has fields with fixed lengths (e.g., type, class, TTL, resource length) and with
variable lengths (e.g., name, resource data). The use of DNS name pointers preferentially
concentrates on the fields with variable lengths to decrease the DNS message size. This
requires only a minimal larger code size and no additional buffers for the generation of
name pointers and the calculation of their offsets. The highest DNS message compression
ratio is achieved if all four required DNS records fit into a single IP packet, since only then
every occurrence of a name can be replaced by a pointer and only one DNS header is used.
The minimal DNS message compression ratio requires the integration of at least two DNS
resource records and the use of one DNS header, as shown in Figure 5.2. This avoids the
exchange of redundant data.

As the available IP payload sizes vary for different smart object hardware platforms (with
disabled reassembly, cp. Section 2.2.2), not all required DNS resource records can fit into
a single IP packet without adaption. Thus, a strategy is required to efficiently implement
DNS message compression for uBonjour in respect to available IP payload sizes of different
smart object hardware platforms for Contiki. For this, we propose as solution the Adjustable
DNS Message Compression (ADMC) which will be described in Section 5.3.2. To achieve
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the highest compression ratio for all available IP payload sizes further enhancements are
required. They are proposed as ADMC Enhanced in Section 5.3.3.

Availability Time of a Service

The TTL field in each DNS resource record needs to be set to a time value in seconds
to specify how long a published service will be available. A normal value in this case is
120 seconds, which may be increased for further optimization. The use of larger values
minimizes the number of sent messages between devices. This setting does not interfere
with the joining of new devices because these can explicitly ask for available services in
the network. The default value is set to 3600 seconds in uBonjour, i.e., each smart object
has only to re-announce its service every hour.

mDNS Traffic Reduction

mDNS specifies optimizations [23, Sec. 7] to keep the data traffic to a minimum, such
as the Known-Answer Suppression or the Duplicate Question Suppression method. The
Known-Answer Suppression method reduces the total number of answers. If a device wants
to send a query and it has some cached answers to it these answers are added to its own
query. For this, each device needs to cache the published service offerings in the network
and wait a randomly chosen time before it answers a request. If other devices recognize
answers in a query matching their own they refrain from sending their own answers. Thus,
the number of necessary responses to gather information about the network is reduced.
The Duplicate Question Suppression method, in contrast, reduces the total number of
requests. A device does not send a request when it notices that another device sends a
request that matches its own. This prevents the sending of redundant DNS responses
because less PTR query messages are sent. Again, each device has to wait a random period
before it can send its request.

Up to now, we have refrained implementing these two message suppression methods for
uBonjour because the two optimizations require to store a bundle of message related
data for their proper functionality. This increases the needed buffer and code size, thus
increasing the use of RAM and ROM for the discovery service. To avoid this we developed
another optimization approach for uBonjour, which will be introduced in Section 5.3.1.
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5.3 Optimization Approaches

This section introduces optimizations for the implementation of mDNS/DNS-SD on typical
smart object hardware platforms with the focus on low memory consumption and efficient
DNS message transport. To enable a high compatible and device-independent DNS-based
service discovery uBonjour strictly avoids the need to run smart object-specific code
or data representations on computational devices. Instead, uBonjour’s message transfer
optimizations focus on increasing the ratio of maximum DNS payload size to DNS header
length for all available IP payload sizes in conjunction with known and newly introduced
DNS compression methods. This enables the efficient integration of all required DNS
resource records into a single IP packet.

Jara et al. [73] analyzed mDNS/DNS-SD and published theoretical optimizations to
reduce the message overhead from another point of view: the avoidance of any authority
and additional record and the reduction of the number of used IEEE 802.15.4 frames
per sent DNS resource record by redefining the format of the TXT record entries. Here,
multiple TXT entries are summarized to a unique entry by using the CoRE link format [84]
description and data compression techniques (e.g., Lempel-Ziv 1977 (LZ77) algorithm).
This introduces smart object-specific data representations to mDNS/DNS-SD. On the other
hand, it annuls the backward compatibility because current DNS implementations expect
only one information per TXT record. Therefore, a further indication for this type of data
representation is needed, but it was not considered. The approach strongly concentrated
on shrinking each DNS resource record to fit into a single IEEE 802.15.4 frame, but not on
re-using redundant information of lower layers. This introduces a message overhead of 36
bytes for using a set of dedicated DNS headers because each DNS resource record is sent in
a separate DNS message (cp. Section 5.2.2). Since these ideas are not backward compatible
to the DNS standard and introduce smart object-specific code to computational devices,
they were not implemented in uBonjour. In addition, the recommended compression
mechanisms rely on external algorithm, which are not optimized for memory-constrained
systems and produce a high memory usage on smart objects (cp. Section 4.2).

5.3.1 Memory and Traffic Reduction

uBonjour is supposed to assist smart objects in finding available services and being
discovered by other classes of computational devices inside a network. Therefore, the
implementation must be as slim as possible to allow other applications to reside in the
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smart object’s limited memory as well. A large quantity (about 60%) of uBonjour’s source
code size is consumed by the handling of received DNS records and by the generation
of DNS responses. Therefore, we optimized the memory management for this code part
to minimize the memory consumption. The buffer size of the parser could be reduced
because the handling is now done directly inside the uIP buffer. The generation of DNS
responses requires only a small buffer of the size of a DNS header, while the rest of the
message generator directly uses the uIP buffer. This in-place processing strategy facilitates
a memory-efficient service discovery for the Contiki OS [68, Sec. III-H].

One-Way Traffic (OWT)

Since the Known-Answer Suppression and the Duplicate Question Suppression method
would consume too much memory (cp. Section 5.2.2), we propose a traffic reduction for
mDNS and DNS-SD in smart object networks, called One-Way Traffic (OWT) [219]. The
OWT optimization is a built-in function and can be activated during the compilation of
uBonjour. This optimization puts a smart object into a passive mode in which the device
only publishes its services periodically and responds only to incoming name and service
requests. Passive mode disables the active resolving of hostnames and the ability to parse
service query responses. Thus, OWT explicitly enables queries for advertised services in
one direction: from outside to inside the smart object network. Service query responses
are targeted only to ordinary computational devices. The activation of OWT and the
subsequent disabling of hostname resolving and service query response parsing significantly
reduces the used code size and can also save energy because message parsing and network
traffic are minimized overall (cp. Section 6.3).

Furthermore, the OWT optimization also reduces the needed of lines of code, since the
parser handling for incoming service query responses can be skipped. These are about 400
lines of code. We do not lose much of the core functionality of uBonjour because smart
objects are still able to actively register services and to react to requested services from
outside the smart object network. Overall, this behavior facilitates the lightweight aspect
of the discovery service by coupling ordinary computational devices with smart objects.
Computational devices can scan their environment for smart objects with a preinstalled
mDNS and DNS-SD service, while nearby smart objects can directly answer to them
with DNS records without the need of installing additional protocols or using application
protocol gateways. This establishes an easy-to-use and well-known discovery mechanism
for consumers and offers a simple integration strategy for system administrators.
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Memory Optimization Stages

OWT enables different memory optimization stages for uBonjour that can be chosen during
compilation depending on the use case:

• Stage I: No optimization - all implemented mDNS/DNS-SD features are enabled.
This causes the highest memory consumption.

• Stage II: Low optimization - One-Way Traffic (OWT) extended with additional A
and AAAA record detection. It deactivates the active resolving of hostnames and the
parsing of SRV and TXT query responses. The state offers a reduced function set of
uBonjour, but the memory usage can be decreased significantly. This stage is used
for the parameter-less bootstrapping (cp. Section 5.2.1).

• Stage III: High optimization - OWT is fully enabled. It deactivates the active
resolving of hostnames and the parsing of service query responses (e.g., SRV, TXT, A,
AAAA). This stage offers the lowest memory consumption and a minimal feature set.

With each stage, a loss of features in favor of memory savings is accompanied. Beside
memory optimizations (e.g., parsing and generating DNS responses) and traffic (i.e., OWT )
reduction, we also reduce the needed number of exchanged DNS messages in smart object
networks by implementing DNS compression for uBonjour.

5.3.2 Adjustable DNS Message Compression (ADMC)

The aim of the Adjustable DNS Message Compression (ADMC) [219] is to automatically
adjusts the number of DNS resource records that can be sent in an IP packet to minimize
the DNS message overhead independent from the used smart object hardware platform.
The optimal integration strategy for the correct numbers of DNS records depends on the
minimal length of each DNS resource record and their combinations. The minimal length
of a DNS record is the sum of fields with fixed lengths, the length of additional information
(e.g., port, IP address, user-defined text), and the sum of the lengths of all name pointers
which completely replace each name. Table 5.1 shows examples of all required DNS records
and their lengths to announce the availability of XEP-0174 (cp. Section 3.2.1). The column
for the length holds three values: the first value shows the full length of the DNS record
including the service name (e.g., _presence._tcp.local for XEP-0174 ) without the
use of name pointers, the second value shows the length of a DNS record if name pointers
are only used within the record (i.e., each record has to be sent by a separate DNS message
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or the record is included as the first one), and the third value shows the minimal length (for
details see Appendix A.3). It is important to note that the second value does not include
the length of the service type (e.g., _presence) because this is an individual value and
its length cannot be predetermined (cp. [189]). The lengths of the unique owner name and
the hostname are limited for simplicity to 3 bytes1 in each case. Furthermore, Table 5.1
depicts the repetition of DNS names. The name field of the SRV record is included in the
name field of TXT, in the resource data field and as a substring in the name field of PTR;
the name field of A and AAAA occurs in the resource data field of SRV; the last substring
of all names is repeated in every mentioned field and a prior occurrence can be replaced
with a pointer within a single DNS resource record.

Table 5.1: Examples of used DNS resource records for XEP-0174 and their length (full/use
of name pointers only within a record/minimal)

Type Example (name, type, class, TTL, resource {length, data}) Length

SRV con._presence._tcp.local, SRV, IN, 3600, 17, 12345 ctk.local 53/39/20
PTR _presence._tcp.local, PTR, IN, 3600, 26, con._presence._tcp.local 58/29/14
TXT con._presence._tcp.local, TXT, IN, 3600, 13, status=avail 49/40/25
A ctk.local, A, IN, 3600, 4, 172.16.150.0 25/25/16
AAAA ctk.local, AAAA, IN, 3600, 16, aaaa::212:7402:2:202 37/37/28

Enabling all pointer possibilities is only feasible if all required DNS resource records are
included in a single DNS message because only then the beginning SRV record holds a
sequence of labels for all required names. The other DNS resource records can then use
name pointers to this prior occurrence. Thus, these DNS resource records can be integrated
with minimal length. In this case, the minimal needed DNS payload size is 94 bytes for
IPv4 and 106 bytes for IPv6. Unfortunately, some hardware platforms only support a
very low IP payload size when running Contiki for usable application data (with disabled
reassembly, cp. Section 2.2.2). This prevents that the combination of all required DNS
resource records can fit into a single DNS message. The Zolertia Z1 hardware platform has
one of the lowest IPv4/v6 payload sizes which allows an available DNS payload size of 56
bytes for IPv4 and 68 bytes for IPv6. It is, therefore, a good reference to calculate the
necessary boundaries for the optimal number of DNS resource records fitting into a single

1A string of the length of three offers more than 2 million possibilities (e.g., 1283) in the case of using
American Standard Code for Information Interchange (ASCII) to create enough unique names for a
number of smart objects in a local domain.
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IP packet of the uIP stack. The minimal DNS message compression ratio (cp. Section 5.2.2)
can only be achieved for the Z1 if the combination of the two DNS resource records is
chosen in a way that all name pointer possibilities for the second record can be enabled,
as demonstrated in Figure 5.3 (for details see Appendix A.3). In contrast to the Z1, most
hardware platforms (e.g., Tmote Sky, AVR Raven, Redbee Econotag) can handle a DNS
payload size of (or larger than) 168 bytes for IPv6.
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Figure 5.3: Example combinations of the integration of two DNS resource records

For this, ADMC uses a decision matrix (see Table 5.2) to summarize the boundaries of
the available IP payload size2 with the number of DNS records that can be integrated into
a single IP packet depending on the available DNS payload size. The integration of two
DNS records into a single DNS message is possible for a DNS payload size of 56 bytes (i.e.,
a PTR and an A record) if service types [189] with a string length shorter than 8 bytes
are used. For larger strings (e.g., _presence or _xmpp_client), further optimizations
are necessary (cp. Section 5.3.3). Thus, each DNS resource record has to be sent by a
separate DNS message. Four IP packets are needed for this. Possible combinations for the
integration of two DNS resource records into a single DNS message in case of 68 bytes
payload size are: a PTR record with a TXT (54 bytes; leaving 14 bytes for the service type)
or with a SRV record (53 bytes; leaving 15 bytes for the service type), as depicted in
Figure 5.3. So only three DNS messages need to be sent.

2The IP payload size does abstract from the different IP header sizes of IPv4 and IPv6.

83



5 uBonjour: Minimized Software Stack for the DNS-Based Service Discovery

Table 5.2: Decision matrix to integrate the correct number of DNS resource records into a
single IP packet (in bytes)

IP Payload Size (x) Min. DNS Payload Size IP Packet(s) Free Bytes

x < 80 56 (IPv4) 4 (3) > 10 (7)
80 ≤ x ≤ 140 68 (IPv6) 3 (2) > 10 (4)
x > 140 94/106 (IPv4/v6) 1 > 10

ADMC implements these calculated boundaries shown in Table 5.2 in uBonjour. This
ensures the efficient use of DNS name compression for each supported hardware platform
of Contiki through the integration of the correct number of DNS records into a single
DNS message depending on the available IP payload size of a device. ADMC is totally
compatible with existing DNS standards. It uses the default configuration parameters (e.g.,
6LoWPAN fragmentation, uIP buffer sizes, no header compression) of Contiki for each
supported hardware platform.

5.3.3 Enhanced Optimizations: The Way to ADMC Enhanced

Hardware platforms with a very low IP payload size cannot fully be optimized with ADMC
for low data rate networks because the sending of a service announcement still requires
four IPv4 or three IPv6 separate DNS messages, respectively. This section proposes further
optimizations to reduce the overhead and the response time for the efficient exchange of
DNS messages in smart object networks. The ultimate goal is to enable standard-compliant
compression approaches to integrate all four DNS resource records into a single IP packet
and to simultaneously support most hardware platforms of Contiki. We propose here some
approaches for the enhanced compression of further fields and additional information of DNS
resource records to achieve the maximum compression ratio which avoids any repetitions
within the DNS message. Each enhanced optimization (e.g., compression methods) is
compared in terms of the implementation effort, the number of used IP packets, and the
level of compatibility with the RFC 1035 [200, 4.1.4].
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Using 6LoWPAN Compression

The reason for the small available IP payload sizes for application data is that the IP
and UDP headers take most of each sent IP packet (48 bytes maximum), as explained
in Section 2.2.2. To overcome this restriction a compression format for IPv6 datagrams
over IEEE 802.15.4-based networks was defined in RFC 6282 [201], called IPv6 Header
Compression (IPHC) and Next Header Compression (NHC). For the communication with
global addresses, the IP and UDP headers are compressed down to 10 bytes [202]. This
releases 38 bytes of the two headers and can theoretically enlarge the DNS payload size of
the Zolertia Z1 to 106 bytes. As the minimal length for all four DNS resource records is 106
bytes, a single DNS message cannot be sent without further optimizations because there is
no space left for the string of the service type. In contrast to ADMC, the number of sent
IP packets can be reduced from three to two for the Zolertia Z1 hardware platform leaving
enough space for the service type. Overall, the 6LoWPAN compression is very helpful for
hardware platforms with very low IP payload sizes. Since the compression works at the
lower layers, no changes of the DNS standard and of implementations at the application
layer are necessary. Drawbacks are that not all required DNS resource records can be
integrated into a single DNS message (e.g., single IP packet) and that IPv4 cannot profit
from this kind of compression because it is only available for IPv6.

Class Code and TTL Field Compression

The standardized DNS message compression does not consider repetitions in the fields
with fixed lengths. For this reason, a size of 10 bytes is unusable in each DNS record,
although a repetition of the class code or the TTL value can occur when multiple DNS
resource records are sent in a single DNS message, as shown in Table 5.1. In this case,
all DNS records have to set the same values for the class code and the TTL field. The
two fields take a length of 6 bytes (e.g., 2 bytes for class code, 4 bytes for TTL), while
the use of a pointer to a prior occurrence requires only 2 bytes. We propose the use of
such a pointer for the two fields to reduce the unusable amount to 6 bytes (leaving the
type, the resource length fields, and a pointer). In the best case, 12 bytes can be saved
if all four DNS resource records are sent in a single DNS message (see Figure 5.6) or 4
bytes in the worst case if only two DNS resource records fit into a single DNS message
(see Figure 5.4). The second case would lead to a length of 18 bytes for the service type
for the combination of a PTR and a TXT record or to a length of 19 bytes for the service
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type when combining a PTR and a SRV record in the case of 68 bytes (cp. ADMC in
Section 5.3.2). Furthermore, the following combinations are possible for IPv6: a SRV with
a TXT record (60 bytes; leaving 8 bytes for the service type) and a PTR with an AAAA

record (57 bytes; leaving 11 bytes for the service type). Thus, only two DNS messages for
IPv6 need to be sent. For a DNS payload size of 56 bytes (IPv4), the second case allows
the combination of a PTR and an A record and leads to a length of 11 bytes for the service
type instead of 7 bytes, i.e., only three DNS messages need to be sent.
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Figure 5.4: Example of the class code and the TTL field compression

As the proposed compression scheme of the class code and the TTL field differs from
the compression of (domain) names, another pointer flag is required to indicate this
optimization. Thus, the first two bits cannot start with two zero bits (indicates a label)
or two ones (indicates a pointer to a name). All other combinations (e.g., 10 and 01)
are reserved by RFC 1035 (for future use) and can be used to indicate a pointer for the
proposed class code and the TTL compression. This optimization, however, saves only
a few bytes, but its implementation requires only few lines of code and provides a high
compatibility level with the current DNS standard.

Redundant Information Filtering

Sending four DNS resource records to announce a service in the network contains a lot
of redundant information (e.g., names, IP addresses). From our perspective, these data
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can be reconstructed by retaining redundant information to reduce the network traffic.
The SRV record holds information to build a whole PTR record and the beginnings of TXT
and A(AAA) records. The rest of the information (i.e., IP address, user-defined text, and
their respective resource lengths as data delimiters) can easily be appended to the resource
data of the corresponding SRV record. Thus, the minimal length of a single DNS message
containing all information for the four DNS resource records is reduced from 94 bytes
to 60 bytes for IPv4 and from 106 bytes to 72 bytes for IPv6. The latter is depicted in
Figure 5.5.

ADMC: 106 bytes

SRV record including user-defined text and IP address: 72 bytes

Redundant information filtering: 54 bytes
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Figure 5.5: Example of the redundant information filtering for IPv6

Unfortunately, this is not small enough for the available DNS payload sizes of the Zolertia
Z1 hardware platform, but we can divide the needed number of DNS messages in half3

and send only a SRV record with the appended IP address and an additional TXT record.
The IP addresses of the A and AAAA records are another redundant information which
may be reconstructed from the lower layers using the source address of the IP header. This
principle has been inspired by RFC 2464 [203] that defines the reconstruction of 128 bit
IPv6 addresses from 64 bit MAC addresses. An implementation can be either realized via

3It uses two instead of four separate DNS messages, cp. Table 5.2.
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a pointer flag4 in the DNS resource record or by directly extracting5 the source address
from the IP packet. With the latter in mind, the user-defined text of a TXT record can
be appended to a SRV record. This reduces the minimal length of a single DNS message
simulating all four DNS resource records to 54 bytes for IPv4 and IPv6, as depicted in
Figure 5.5. Thus, a single DNS message for the Zolertia Z1 platform can be used in the
case of IPv6 (e.g., 68 bytes maximum available for the DNS payload size per IP packet)
which leaves 14 bytes for the service name.

The main disadvantage of our optimization is that it cannot be understood from mDNS-
and DNS-SD-compliant implementations because they expect all four DNS resource records
each represented by a dedicated record. To overcome this issue and to enable backward
compatibility a filter mechanism (comparable to a filter rule used in firewalls) is needed.
Such a filter mechanism can be integrated in the Avahi daemon, which already acts as a DNS
message repeater between different network interfaces (e.g., IEEE 802.15.4, IEEE 802.11
radio links), as explained in Section 3.2.1. Our filter mechanism works in bidirectional order:
the TXT, PTR and A(AAA) records sent to the IEEE 802.15.4 network interface are blocked
and their information is appended to the corresponding SRV records; the SRV records
sent from the IEEE 802.15.4 network interface are used to generate the necessary TXT,
PTR and A(AAA) records. This information is removed from the respective SRV records
before forwarding them to the other network interface. This optimization needs a high
implementation effort to provide backward compatibility to existing implementations (e.g.,
Avahi, Bonjour). On the other hand, it significantly reduces the minimal needed length
of a single DNS message (in combination with IP address reconstruction) for hardware
platforms supporting only a very low IP payload size. For IPv6, it provides the minimal
needed length to integrate all four DNS resource records into a single IP packet and for
IPv4, it can save up to 50% of the sent IP packets.

Reasonable Trade-Off: ADMC Enhanced

Regarding the aforementioned compression approaches, the largest compression rate can
be achieved with redundant information filtering (especially for IPv4). However, the
implementation effort is very high. It introduces new dependencies at the application
layer. The rest of the optimizations are lightweight and can ensure a high compatibility

4This will work without heavy modifications when no IP header compression method (e.g., HC1, HC2,
IPHC/NHC) is enabled in the 6LoWPAN.

5The lower layer (IP stack) has to provide such functionality via API calls.
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level to existing mDNS and DNS-SD implementations, as their modifications can easily
be adopted. Table 5.3 summarizes the advantages and disadvantages. Furthermore, the
required number of DNS messages (e.g., sent IP packets) for the Zolertia Z1 hardware
platform are listed to compare each enhanced optimization with ADMC.

Table 5.3: Comparison of the enhanced DNS message compression methods with ADMC

Optimization Implementation
Effort

Compatibility
Level to DNS

IPv4/v6
Packet(s)

Free
Bytes

ADMC Low Highest 4 / 3 > 10
6LoWPAN Compression Lowest Highest 4 / 2 > 10
Class Code and TTL Field
Compression

Low High 3 / 2 11 / 8

Redundant Information
Filtering

Highest Low 2 / 1 11 / 14

ADMC Enhanced Low High 3 / 1 13 / 26

As a high compatibility level6 is very important to comply with current DNS standards, we
favor optimizations that can seamlessly be integrated. The reserved pointer flags (e.g., 10
and 01) of RFC 1035 can indicate the use of the enhanced compression methods for the class
code / TTL field and the IP address reconstruction. In contrast, the proposed redundant
information filtering requires a lot more adaptions to DNS and to the application layer
to guarantee compatibility with existing implementations. Therefore, the requirement of
using four DNS resource records to announce services with DNS-SD should not be changed.
Combining the class code and TTL field compression with the IP address reconstruction
allows a more optimized message flow of DNS in smart object networks, while preserving
the defined formats of the four required DNS resource records. We call this approach ADMC
Enhanced [221]. Figure 5.6 depicts this structural difference between ADMC Enhanced and
the redundant information filtering as well as the compatibility of ADMC Enhanced (i.e.,
use of pointers) to DNS message compression (e.g., ADMC ). Compared to ADMC, the
PTR and A records for IPv4 and the TXT and AAAA records for IPv6 can still be integrated
into a single DNS message. The needed number of IP packets is reduced to three ones for
IPv4 and to only two ones for IPv6. In the case of IPv4, the two enhanced compression
methods save 6 bytes and provide a larger available length for the service type of 13 bytes

6Highest: ensures backward compatibility; High: reuse of already defined methods (e.g., pointer) and the
message format; Low: introduces new methods or changes the message format.
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instead of 7 bytes, for IPv6, 14 bytes are still available for the service type. The class code
and TTL field compression save 4 bytes and the IP address reconstruction additionally
14 bytes. The activation of the 6LoWPAN compression (IPHC/NHC) allows us to send
all four DNS resource records in a single IP packet because the best compression ratio
of 12 bytes for the class code and TTL field compression can be used within a single
DNS message. The minimal length of all four DNS resource records is reduced to only 80
bytes, whereas the maximum available DNS payload size is extended to 106 bytes when
communicating with global addresses. For this configuration, the string of the service type
can have a maximum length of 26 bytes.

ADMC: 106 bytes

ADMC Enhanced: 80 bytes

Redundant information filtering: 54 bytes

N
am

e 
Po

in
te

r

N
am

e 
Po

in
te

r

N
am

e 
Po

in
te

r

Ty
pe

: T
X

T

N
am

e 
Po

in
te

r

N
am

e 
Po

in
te

r

C
la

ss
: I

N

TT
L:

 3
60

0

Re
so

ur
ce

 L
en

gt
h

Re
so

ur
ce

 L
en

gt
h

Re
so

ur
ce

 L
en

gt
h

TT
L:

 3
60

0

TT
L:

 3
60

0

C
la

ss
: I

N

C
la

ss
: I

N
Ty

pe
: P

TR

Ty
pe

: A
A

A
A

Ty
pe

: S
RV

C
la

ss
: I

N

TT
L:

 3
60

0

Re
so

ur
ce

 L
en

gt
h

N
am

e

Re
so

ur
ce

 D
at

a

Re
so

ur
ce

 D
at

a

Re
so

ur
ce

 D
at

a

Ty
pe

: S
RV

C
la

ss
: I

N

TT
L:

 3
60

0

Re
so

ur
ce

 L
en

gt
h

N
am

e

Re
so

ur
ce

 D
at

a

N
am

e 
Po

in
te

r

Cl
as

s 
&

 T
TL

 P
oi

nt
er

Ty
pe

: P
TR

Re
so

ur
ce

 L
en

gt
h

Re
so

ur
ce

 L
en

gt
h

Re
so

ur
ce

 L
en

gt
h

Ty
pe

: T
X

T

Ty
pe

: A
A

A
A

N
am

e 
Po

in
te

r
N

am
e 

Po
in

te
r

N
am

e 
Po

in
te

r

Re
so

ur
ce

 D
at

a

N
am

e 
Po

in
te

r

C
la

ss
 &

 T
TL

 P
oi

nt
er

C
la

ss
 &

 T
TL

 P
oi

nt
er

Cl
as

s 
&

 T
TL

 P
oi

nt
er

IP
 P

oi
nt

er

Ty
pe

: S
RV

C
la

ss
: I

N

N
am

e

TT
L:

 3
60

0

Re
so

ur
ce

 L
en

gt
h

Re
so

ur
ce

 D
at

a Field with fixed length

Shortened view of field with variable length

DNS name pointer

Newly proposed type of pointer

Figure 5.6: Comparison of the enhanced DNS compression methods for IPv6

To sum up, the implementation of ADMC Enhanced in uBonjour enables an efficient and
standardized DNS message transport in low data rate networks without introducing smart
object-specific code to DNS. A high compatibility can be ensured by using the reserved
pointer flags to indicate the two compression methods of ADMC Enhanced.
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6 Evaluation

In this chapter we present the results of the evaluation of the main components of the
Chatty Things approach, uXMPP2 and uBonjour. The objective of this evaluation has
been to measure the performance of the two components in order to show that XMPP and
mDNS/DNS-SD can efficiently be implemented on smart objects. Furthermore, we want
to prove that the XMPP layer for the IoT allows the seamless integration of smart objects
and an efficient event distribution. The evaluation starts with a description of the used test
environment, followed by the evaluation of uXMPP2 and uBonjour regarding the memory
footprint and the response time. Finally this chapter presents results of the integration of
Chatty Things into a real world IoT testbed and the performance of the XMPP layer.

6.1 Experimental Setup

The evaluation testbed corresponds to a typical IoT scenario in which various computational
devices, such as smartphones, netbooks, and smart objects can be connected via enhanced
routers over IP links, as described with the smart home use case in Section 3.2.1 and
illustrated in Figure 3.6. The enhanced router provides physical links between different
network access technologies (General Purpose Access Point (GPAP) [125]) and supports
additional software packages, such as the XMPP server Prosody [127] and the mDNS/DNS-
SD implementation Avahi [128]. The setup is depicted in Figure 6.1. It requires a dedicated
smart object that runs Contiki’s implementation of a 6LoWPAN border router to bridge
the IEEE 802.15.4 radio technology over a USB connection to a computational device, i.e.,
Linux PC. The border router converts 802.15.4 / 6LoWPAN frames to Ethernet / IPv6
frames. The smart object network and the computational network are interconnected via
the Serial Line Internet Protocol (SLIP) [204]. For administrative simplicity, the Linux PC
runs the enhanced router, and the two XMPP clients Pidgin [140] and Empathy [205] to
verify the user interaction with Chatty Things. The forwarding of mDNS/DNS-SD messages
to the Ethernet interface is automatically handled by Avahi (i.e., pre-configured parameters
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were enable-reflector=yes and allow-point-to-point=yes), while XMPP
messages are directly forwarded to the XMPP server.

Linux PC

USB Ethernet

Linux Kernel
IP Forwarding

802.15.4 USB

Contiki uIP

Linux PCSmart Object

Serial Line
IP

To / From
Smart Object

Network
To / From
Internet

User 1CT-01

CT-02

Enhanced Router

CT-XX User 2

User N

XMPP
Client(s)

XMPP

XMPP

XMPP

XMPP

XMPP
XMPP

XMPP Server
& Avahi

GPAP

Figure 6.1: Connecting a smart object network to the Internet (adapted from [206])

For larger test setups, the COOJA network simulator (included in Contiki, cp. Section 2.2.1)
was used. The advantage is that the behavior of the developed applications for MSP430-
based hardware platforms can be directly simulated with different network topologies and
without programming hundreds of smart objects because the native firmware image of
these hardware platforms can be run in the COOJA simulator without any modifications
on the source code [51, 207]. Simulation results can easily be reproduced with a wide
range of network topologies and any number of nodes. In addition, we were able to use
COOJA’s integrated data logger for a detailed analysis of our experiments. To enable a
direct interconnection from the COOJA simulator to the real world a simulation node had
to be programmed with a 6LoWPAN border router that forwards all packets from COOJA
via SLIP to the network of the host computer (e.g., Linux PC, cp. Figure 6.1).

All experiments were performed with Contiki on Zolertia Z1 and Tmote Sky hardware
platforms that feature an IEEE 802.15.4-compliant Chipcon 2420 RF transceiver (cp.
Section 2.2.3). The compiled firmware images for these devices differ only in the size
of the Contiki operating system and not in the size of the compiled applications. This
is caused by their used hardware components (e.g., integrated sensors, memory size)
which need a different driver abstraction for each hardware platform. The respective
firmware images of the applications were built with msp430-gcc (GCC) 4.4.5 [208]. If
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not mentioned separately, ContikiMAC [49] is used for all smart objects, i.e., the default
MAC layer in Contiki OS. The number and configuration of the used smart objects is
described separately in the respective section of each tested component. Presented results
are averaged over 100 runs.

6.2 uXMPP2 Evaluation

The evaluation of uXMPP2 consisted of two steps. First we determined the memory
footprint of the XMPP stack for Contiki. Next we investigated the message optimization
achieved with the Temporary Subscription for Presence (TSP).

6.2.1 Memory Footprint

The memory footprint is very important for a lightweight and memory-efficient implement-
ation of the protocol stack (see Appendix A.4). As the code footprint of a firmware image
increases with additional function definitions and external calls (cp. [206]), we use only
one single file for uXMPP2 to avoid external calls and to minimize function definitions as
much as possible. Furthermore, we use several compiler flags1 to reduce the firmware size
of uXMPP2. The sizes of the implemented modules of uXMPP2 are listed in Table 6.1.

Table 6.1: Memory footprint of uXMPP2 for MSP430 (in Kbytes)

Component / Module ROM RAM

uXMPP2 Core/IM 4.14 0.18
uXMPP2 XEP-0045 module 1.19 0
uXMPP2 TSP module 0.01 0
uXMPP2 XEP-0174 2.96 0.14
uBonjour (OWT enabled) 3.56 0.3

uXMPP2 Total 11.85 0.62

The uXMPP2 Core/IM takes only 4.14 Kbytes of ROM / 0.18 Kbytes of RAM. In
comparison with the uXMPP v0.1 stack, which needs 12.42 Kbytes of ROM / 0.65 Kbytes

1Reducing Contiki OS’ Firmware Size [Online] http://www.sics.se/contiki/wiki/index.php/
Reducing_Contiki_OS’_Firmware_Size.
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of RAM with less XMPP features, the memory footprint of the uXMPP2 Core/IM uses only
a third of this size. This shows that the proposed architectural changes and optimizations of
uXMPP2 allow a more efficient implementation. The memory use of the XEP-0174 -based
communication stack (including uBonjour) is 6.51 Kbytes of ROM / 0.44 Kbytes of RAM.
Enabling all implemented features of uXMPP2 takes only 11.85 Kbytes of ROM and
0.62 Kbytes of RAM. Compared to implementations of REST-based approaches, such as
uDPWS or CoAP (cp. Section 2.3), uXMPP2 is in the same range regarding the memory
footprint. The current uDPWS implementation uses 10.03 Kbytes of ROM / 3.07 Kbytes
of RAM on a Tmote Sky hardware platform, but this implementation misses some features
of DPWS (cp. [92, 209]). The open source library libcoap requires about 12 Kbytes of ROM
on the Contiki OS to implement the two basic CoAP operations PUT and GET, whereas
the Contiki’s CoAP example implementation rest-server-example uses from about 8.5 to
26 Kbytes of ROM without debug code and resource-specific handlers (cp. [68, 210]).

6.2.2 TSP Message Optimization

TSP (cp. Section 4.3) has been proposed to minimize the network traffic for Chatty Things
in XEP-0045 Multi-User Chat (MUC) by using small presence messages and a publish-only
affiliation. In order to prove this we measured the bootstrap time for a set of Chatty
Things that join a chat room. In doing so the Chatty Things simultaneously exchange
several XMPP messages, so that the effect of TSP can be measured by the reduction of
the number of exchanged packets and the bootstrap time. The evaluation of TSP was
performed with the COOJA network simulator. The setup consisted of simulation nodes
with the uXMPP2 stack and a simulation node programmed with Contiki’s 6LoWPAN
border router implementation running in COOJA. The test runs were done with 2, 4, 6,
8, and 10 nodes booted at the same time. During each test run every node connected to
the modified XMPP server Prosody (cp. Section 4.3.3) and joined the test room to sent a
group chat message afterwards. Three different test runs were performed: MUC (no node
ran with TSP), TSP (all nodes ran with TSP), and Mixed (50% of the nodes ran TSP,
whereas the rest switched TSP off).

Number of Sent Packets during Bootstrap

It can be seen in Figure 6.2 that TSP significantly reduces the network traffic of Chatty
Things during the bootstrap phase. In the scenario with 10 nodes the number of sent
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packets reduces by 24.86% for the mixed setup and by 54.04% when TSP runs on all nodes.
As reference, the number of exchanged messages in uXMPP v0.1 is indicated. uXMPP v0.1
requires that a separate IP packet is sent for each XML element (cp. Table 4.5). Since each
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Figure 6.2: Network traffic comparison of TSP, MUC, and Mixed (in packets)

XMPP login requires a series of messages (at least 9 XMPP messages for ANONYMOUS),
a large number of packets is exchanged during bootstrapping. This includes the XMPP
acknowledge messages to the XMPP server and vice versa as well as all involved IP packets
needed to establish and handle the TCP connections. After this point the network traffic
for smart objects with enabled TSP will not increase further because these nodes not
receive messages any more which are related to the topic (joined chat room).

Bootstrap Time

Figure 6.3 shows that the bootstrap time for nodes with enabled TSP is reduced because
less packets need to be exchanged between the node and the XMPP server. In the 10 node
scenario TSP reduces the bootstrap time by 20.07% for the mixed setup and by 46.73%
for the TSP setup. The bootstrap time increases with the number of joining nodes because
more packets are sent.
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Figure 6.3: Bootstrap time for the TSP, MUC, and Mixed setup (in seconds)

The results show that TSP lowers the network traffic for Chatty Things without the need
for XML compression techniques, while being standard-compliant to existing XMPP chat
clients. The evaluation of the uXMPP2 stack with Contiki OS shows good results in terms
of memory footprint, feature coverage, and bandwidth usage.

6.3 uBonjour Evaluation

In this section we evaluate the compatibility and the performance of uBonjour regarding
memory footprint and response time for both IPv4 and IPv6.

6.3.1 Memory Footprint

uBonjour consists only of 1450 lines of code. Table 6.2 shows the detailed memory footprint.
uBonjour including one service registration requires 3.5 Kbytes of ROM / 0.3 Kbytes of
RAM for IPv4, and 3.56 Kbytes of ROM / 0.3 Kbytes of RAM for IPv6. As mentioned in
Section 5.3.1, the One-Way Traffic (OWT) optimization significantly reduces the amount
of used memory. It is cut into halves and the lines of code are reduced to around 1050.
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Each additional service registration for uBonjour costs around 0.13 Kbytes (IPv4) and
0.14 Kbytes (IPv6) of ROM. These two values were both measured including the total sum
of freely selectable parameters for the DNS records (cp. Section 5.3.2) and the memory for
providing the needed storage structure.

Table 6.2: Memory footprint of all implemented stages of uBonjour with/without uIP stack
for MSP430 (in Kbytes)

uBonjour ROM RAM

IPv4 / IPv6 Stage I 5.67 / 5.69 0.4
IPv4 / IPv6 Stage II 3.93 / 3.95 0.3
IPv4 / IPv6 Stage III (OWT ) 3.5 / 3.56 0.3
IPv4 / IPv6 Stage I with uIP stack 15.46 / 25.24 1.6 / 3.26
IPv4 / IPv6 Stage II with uIP stack 13.71 / 23.5 1.55 / 3.21
IPv4 / IPv6 Stage III (OWT ) with uIP stack 13.28 / 23.11 1.45 / 3.21

The difference in the memory footprint of uBonjour between IPv4 and IPv6 is small because
the two variations just differ in the IP address lengths (16 bytes for IPv6 versus 4 bytes
for IPv4 addresses). Minimal larger buffers for sending and storing registered services are
therefore needed with IPv6. This is not supported though by the uIP stack in general: the
uIPv6 stack is two times larger in RAM and twice as large in ROM consumption compared
to its IPv4 counterpart. This means that for the Zolertia Z1 nearly half and for the Tmote
Sky around 85% of ROM is allocated by the uIPv6 stack and the Contiki OS alone (see
Figure A.1). A slim and memory-efficient implementation of uBonjour is therefore even
more important for IPv6 than for IPv4. In general, uBonjour runs on Contiki-based smart
object hardware platforms with a ROM size of at least 48 Kbytes (e.g., Tmote Sky, cp.
Section 2.2.3) for both IPv4 and IPv6.

6.3.2 Response Time

The test setup for IPv6 uses a one-hop network with static routes (cp. Section 6.1). Two
additional smart objects (i.e., hops two and three) running uBonjour complete the IPv6
setup, as depicted in Figure 6.4. The IPv4 test setup consists of a smart object running
uBonjour that is directly connected via SLIP to a computer. We monitored incoming DNS
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packets with Wireshark2 for the two cases to verify the correctness of the DNS records
generated by the smart object, and to monitor the interaction between the computer (i.e.,
Linux PC) and the smart objects.

CT-01CT-02CT-03
DNS DNS DNS

Smart Object Network Enhanced Router

Wireshark

 Avahi

GPAP

Linux PC

Figure 6.4: IPv6 multi-hop scenario of uBonjour

The response time was measured by sending a PTR record to the multicast group. It is
the time between the sending of the record and the reception of all DNS records of the
respective smart objects. uBonjour does not support specific optimizations and an active
forwarding of DNS messages. Multi-hop routing is handled by Contiki’s IP stack and
depends on the performance of its used lower layers [211]. The average response times for
a set of multi-hop scenarios with enabled Adjustable DNS Message Compression (ADMC)
(Enhanced) and disabled ADMC (Enhanced) are listed in Table 6.3.

Table 6.3: Response time (in ms) of uBonjour

IP Packet(s) IPv4 SLIP IPv6 1-Hop IPv6 2-Hops IPv6 3-Hops

1 (ADMC Enh.) - 346 ms (72%) 781 ms (60%) 1226 ms (47%)
1 (ADMC ) - 600 ms (51%) 1008 ms (48%) 1488 ms (36%)
3 (ADMC ) - 776 ms (37%) 1292 ms (34%) 1706 ms (27%)
4 (ADMC ) 43 ms (39%) 1028 ms (17%) 1420 ms (27%) 2196 ms (6%)
4 (No ADMC ) 71 ms 1233 ms 1954 ms 2324 ms

Service discovery with uBonjour takes 43 ms with and 71 ms without DNS name compression
for directly connected smart objects over SLIP for IPv4. In IPv6 scenarios a 6LoWPAN
border router is mandatory, hence packets are always delayed by one-hop. The measured
response times for multi-hop with en-/disabled ADMC (Enhanced) are: 346 ms to 1233 ms
for a one-hop scenario, 781 ms to 1954 ms for a two-hop one, and 1226 ms to 2324 ms

2Wireshark network protocol analyzer [Online] http://www.wireshark.org/.
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for three-hop scenarios. The outcome shows that ADMC and especially ADMC Enhanced
significantly reduce the response time in all scenarios (IPv4 / IPv6). The highest reduction
of the response time (e.g., the average hop savings are around 59% for ADMC Enhanced
and around 45% for ADMC ) is reached when all required DNS records can be integrated
into a single DNS message. Less IP packets and thus less IEEE 802.15.4 radio frames need
to be sent if all repetitions can be replaced within a DNS message. Furthermore, using only
DNS name compression in a DNS resource record reduces the response time and lowers
the network traffic for low data rate smart object networks as well (in comparison to four
IP packets with ADMC ) because less data is transmitted per IP packet. Comparing the
response times of IPv6 with IPv4 over SLIP shows that the 6LoWPAN border router is
responsible for a certain amount of latency for IPv6 which cannot be avoided. Figure 6.5
visualizes all results of the measured values for the response time of uBonjour.
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Figure 6.5: Comparison of the response time (in ms) of all IP scenarios

The evaluation of ADMC and ADMC Enhanced shows that the proposed DNS message
compression methods are efficient enough for reducing the overhead of DNS messages
in smart object networks (e.g., 6LoWPAN). Furthermore, the implementation of ADMC
(Enhanced) can be used for a variety of smart object hardware platforms because ADMC
(Enhanced) always combines several compression methods for uBonjour depending on
the available IP payload size, e.g., DNS name compression, class code and TTL field
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compression, and IP address reconstruction. As the class code / TTL field compression
and the IP address reconstruction are not restricted to smart objects, these optimizations
can easily be integrated into the current DNS standards.

6.4 XMPP Layer Performance

Finally we prove the seamless integration of Chatty Things into a real world IoT testbed
and evaluate the performance of the XMPP layer regarding the distribution time of events.
The latter allows a direct performance comparison between different application protocols.
Furthermore, we can show XMPP’s efficiency and scalability for the push of information
which is used by the sensor-specific grouping approach. The test consists of three parts.
The first part introduces the testbed and evaluates the seamless integration of Chatty
Things into current Internet infrastructures. The second one measures how much time is
needed to distribute an event (e.g., change of a sensor value) from a smart object to a
user (i.e., into a computational network). The third part measures how much time and
resources are needed to distribute an event from the computational network (e.g., XMPP
server) to a set of concurrent users.

6.4.1 Seamless Integration of Chatty Things

The seamless integration of Chatty Things into the Internet is evaluated by means of
the ACDSense scenario introduced in [218]. ACDSense is an interorganizational network
scenario for sensor data exchange spanning the three universities RWTH Aachen University,
TU Dresden, and BTU Cottbus–Senftenberg. Each site contributed heterogeneous sensor
implementations and developed different types of client applications for accessing and
controlling sensors, ranging from standard general-purpose XMPP clients over custom
mobile apps (i.e., Dresden) to web-based widget dashboards (i.e., Aachen). The used
sensor implementations were commodity hardware with a USB-connected thermometer
at Aachen, a sensor data generator using historical weather data at Dresden, and Chatty
Things at Cottbus. We used the setup described in Section 6.1 to seamlessly integrate
Chatty Things into the ACDSense scenario. The three sites are connected over the Internet
through their hosted XMPP servers using inter-domain communication, as depicted in
Figure 6.6. The pushing of sensor data in ACDSense follows the proposed sensor-specific
grouping approach: events are grouped by XEP-0045 Multi-User Chat (MUC) rooms and
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are pushed simultaneously to many users (cp. Section 3.3). Thus, access to the sensor
data is possible with any XMPP client using any XMPP server as rendezvous point of the
ACDSense scenario.

Sensor App 
(iOS)

Zolertia Z1 
(Chatty Things)

XMPP Server

Multi-User 
Chat

RWTH Aachen BTU CottbusTU Dresden

Multi-User 
ChatROLE SDK

XMPP Server XMPP Server

Multi-User 
Chat

Mobilis 
Framework

Sensor Data 
Generator

Raspberry Pi 
with Sensors

Widget 
Dashboard

Standard 
XMPP Client

TSP

Figure 6.6: Architecture of the ACDSense scenario and the integration of Chatty
Things ([218])

The whole scenario was set up within four weeks and then tested and evaluated over
several weeks. Most work of the setup related to administrative challenges for the inter-
domain communication (for details see to [218, Sec. VI.D]). To sum up, the ACDSense
scenario proves that Chatty Things can seamlessly be integrated into XMPP infrastructures.
Furthermore, we proved that the sensor-specific grouping approach as part of the XMPP
layer can easily be implemented and efficiently be used by different XMPP client and
server implementations.

6.4.2 Completion Time

A typical benchmark for the comparison of the performance of application protocols is
the completion time which measures the time between requesting a service and getting
the sensed data (e.g., temperature) in a response message (cp. [42, Sec. 6.3]). As reference
systems for uXMPP2, we chose two REST-based approaches: the RESTful web services
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of [42] and uDPWS [209], as introduced in Section 2.3. The three approaches have in
common that a (single) standardized protocol at the application layer (i.e., HTTP or
XMPP) is used to interconnect different classes of devices ranging from ordinary computers
to smart objects. Differences exist in the notification of the events: HTTP uses the request-
response mechanism, XMPP the publish-subscribe paradigm. For uXMPP2, this means
that updates of the sensed data are directly pushed to the interested devices without the
need of dedicated request messages. Additionally, CoAP is used as a reference protocol
because of its proclaimed very low message overhead and reduced response times for M2M
communication in smart object networks, but it is not treated as an equivalent reference
system (i.e., it requires HTTP for a full integration into the Internet, cp. Section 2.3.2).

In order to compare the completion time of uXMPP2 with that of the other approaches we
used the built-in temperature sensor of the Zolertia Z1 to generate a comparable message
data payload and service characteristic (e.g., temperature reception). In addition, we
reconstructed the test scenarios of uDPWS [209] and RESTful web services [42, Sec. 6.3]
to be compliant: one-hop network (IPv6), while one Zolertia Z1 runs the 6LoWPAN border
router and is connected via SLIP to the computer (cp. Section 6.1). The Chatty Thing
pushes its sensed temperature data to the chat room with the sensor-specific topic ’temp’.
The results of the performance test are compared with the REST-based approaches in
Table 6.4. The completion time of uXMPP2 was measured for the presence status, the
one-to-one chat, and the group chat message exchanges to give a general performance
overview of the most used XMPP XML message stanzas. The exchange of the group chat
message requires 3, the one-to-one chat message requires 2, and the presence message
requires 1 TCP/uIP packet(s). For the tests with CoAP, only requests of a CoAP client3

outside the smart object network to smart objects running CoAP server instances4 were
used (i.e., delay times of the CoAP/HTTP gateway are not included). Note that the
message sizes of uDPWS include TCP and lower layer header sizes, while its completion
time was measured under Contiki OS version 2.3. The code of uDPWS is not compatible
with newer Contiki OS versions and thus the completion time for uDPWS cannot be
measured with currently available MAC layers, such as ContikiMAC [49]. All measurements
for uXMPP2 and CoAP were done with a disabled MAC layer (i.e., nullmac5) to measure
only the raw performance of the application protocol without the influence of the lower
layers and with ContikiMAC (i.e., values in brackets for completion time in Table 6.4).

3Copper (Cu) CoAP user-agent for Firefox.
4Contiki REST example with enabled CoAP.
5„A MAC protocol that does not do anything.”, nullmac.c,v 1.15 2010/06/14 19:19:17 Adam Dunkels.
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Table 6.4: Comparison of the XMPP layer for the IoT performance with REST-based
approaches (publish-subscribe versus request-response)

Approach Request
Size

Response
Size

Completion
Time

uDPWS 650 bytes 751 bytes 343 ms
RESTful Web Services 85 bytes 141 bytes 440 ms
CoAP 15 bytes 19 bytes 54 ms (211 ms)
uXMPP2 (Group Chat) - 144 bytes 200 ms (540 ms)
uXMPP2 (One-to-One Chat) - 96 bytes 122 ms (362 ms)
uXMPP2 (Presence) - 35 bytes 38 ms (121 ms)

The results of Table 6.4 show that the uXMPP2 stack is very competitive in comparison
to the considered reference systems. On the one hand, the use of publish-subscribe in
uXMPP2 saves data packets for avoiding the request message and time for its transfer
between two entities. On the other hand, XMPP messages of the size of the presence
message allow a very low completion time which is compared to the CoAP completion
time6 (i.e., for the integration into existing Internet infrastructure the delay time for a
CoAP/HTTP gateway needs to be added) a really good value. This means for XMPP
if a stream compression method can be used which is able to compress XML stanzas
to the available payload size of a single TCP/uIP packet then XMPP messages can in
general be exchanged with a very low completion time in smart object networks. Such a
compression method for the efficient interchange of XML stanzas (i.e., EXI) is currently
being developed as uEXI [177, 179] for smart objects. Therefore, the use of EXI in Chatty
Things might significantly decrease the number of exchanged TCP/uIP packets and the
completion time.

6.4.3 Efficiency of Information Distribution

The event distribution of the sensor-specific grouping approach depends on the performance
of the XMPP server because the server is responsible to push a group chat message to

6CoAP observe (server push of notifications) can further reduce the completion time between CoAP
instances. This was not considered, since it is a unique feature of CoAP and server push is not available
for HTTP/1.1 (cp. [80]) or compatible to other workarounds (cp. Section 2.3.1).
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all XMPP clients that joined the same chat room. This test evaluated the effect of the
number of joined XMPP clients per chat room (i.e., 10, 100, and 1000) in terms of message
delivery time and message throughput. The XMPP server (i.e., Openfire [137]) hosting
the chat room ran on a dedicated physical machine (i.e., Intel i7 Quadcore). A second
machine emulated the data sender and a large number of XMPP clients (i.e., Smack XMPP
library [144]). The exchanged sensor data consisted of weather data from [212] and the
average message size was 385 bytes. The test results are listed in Table 6.5.

Table 6.5: Efficiency of distributing information via chat rooms ([218])

Measurement 10 Clients 100 Clients 1000 Clients

Message Delivery Time 2.5 ms 12.1 ms 103.9 ms
Delivered Messages per Second 116 1171 11644

The increase in the message delivery time is proportional to the total number of messages
sent per second. For the transport, an impressive workload of 42 Mbit/s upstream and 4.1
Mbit/s downstream was measured in the case of 1000 joined clients. The CPU load of the
XMPP server ran at 12-18% in this test. This proves the high scalability of the sensor-
specific grouping approach because chat rooms can be used for the efficient distribution of
events from one XMPP entity to many entities.
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This thesis has presented an approach for the seamless integration of smart objects into the
Internet under Human-to-Machine (H2M) communication aspects, called Chatty Things,
that uses established and standardized application protocols to make the Internet of
Things (IoT) readily deployable. The IoT describes a technological progress in which
smart objects connect the real world with the Internet to provide services that can be
used by human beings to directly interact with their physical environment. Current
application protocols for the IoT focus on the Machine-to-Machine (M2M) communication
and introduce dedicated protocols for smart objects requiring specialized protocol gateways,
smart object-specific code or data representations that hinder a seamless integration. The
Chatty Things approach uses as a standardized application layer XMPP and mDNS/DNS-
SD for IP-based smart objects and their integration into the Internet without the need of
application protocol gateways [213, 214, 215, 218, 219, 221, 222, 223]. This allows the use
of established Internet mechanisms and software human beings are familiar with for the
H2M interaction.

The implementation of the XMPP layer for smart objects requires a modular and minimized
XMPP stack. For this, we have designed the optimized XMPP stack for low data rate
networks uXMPP2. The characterizing features of this stack are: a readily usable API,
an essential set of XMPP Extension Protocols (XEPs) (i.e., sensor-specific groups), a
proposal for lightweight and user-friendly event notification (i.e., TSP), a parameter-less
bootstrapping, and a seamless fallback mechanism for ad hoc use cases when infrastructure
services are failing for Chatty Things. The evaluation of the uXMPP2 stack with Contiki
OS shows good results regarding a low memory footprint and a high compatibility to
existing XMPP software and infrastructures. The uXMPP2 Core/IM takes only 4.14
Kbytes of ROM and 0.18 Kbytes of RAM. Our experiences with uXMPP2 result in an
open source implementation for the Contiki OS version 2.6. It reimplements the uXMPP2
API methods (cp. Appendix A.1) besides the XEP-0174 client component. The source
code is available online at [224].
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The proposed sensor-specific grouping approach restricts the advertised services of a smart
object to its integrated sensors and directly maps its capabilities to XEP-0045 Multi-User
Chat rooms to support a slim implementation for filtering and grouping sensor data. To
further reduce the network traffic for Chatty Things in chat rooms we have developed and
evaluated the Temporary Subscription for Presence (TSP) approach. TSP introduces a
publish-only affiliation for XEP-0045 and uses small presence messages that fit into one
single IP packet to signalize topic-related status updates and events of smart objects to
subscribed XMPP entities in the whole network through temporary presence subscription.
It provides an XMPP-compliant message reduction without using complex and costly
techniques like XML compression. Thus, TSP introduces two stages in XEP-0045 for
pushing information. Stage I uses only presence messages and dynamically reduces the
exchange of messages to a minimum if everything proceeds normally. Stage II allows users
and objects to request detailed information about the event via remote commands.

In order to support the self-configuration of smart objects we further have developed a
discovery service for the IoT based on mDNS and DNS-SD, called uBonjour [219, 221]. It al-
lows one to autonomously integrate smart objects into a given network environment without
requiring hard-coded bootstrap parameters. Thus, smart objects can more precisely react
on topology changes and to joining or leaving network devices. Finding an XMPP server
using mDNS/DNS-SD was developed as part of this thesis under the term parameter-less
bootstrapping for Chatty Things. The research results of the parameter-less bootstrapping
were proposed in Section 3.3.2 of XEP-0347 Internet of Things - Discovery [223]. The
aim of XEP-0347 is to standardize and simplify the installation, the configuration, the
discovery, and the connection of XMPP-driven smart objects. If no XMPP server can
be discovered in the given network during bootstrapping, Chatty Things use XEP-0174
Serverless Messaging as fallback mechanism. Therefore, we have implemented the first
XEP-0174 compatible XMPP client on smart objects to provide a Peer-to-Peer (P2P)
communication between a computational device and a nearby Chatty Thing for ad hoc
use cases. The XEP-0174 client component of uXMPP2 takes 2.96 Kbytes of ROM /
0.14 Kbytes of RAM and uBonjour uses 3.56 Kbytes of ROM / 0.3 Kbytes of RAM. Our
experiences with uBonjour in implementing DNS-SD on IP-based smart objects resulted
in a rewrite of the DNS-SD core functionalities for the Contiki OS version 2.6. It uses the
uIP hostname resolver function of the merged mDNS code of [193]. The source code can
be found online at [225].

Moreover, we have proposed an enhanced DNS message compression method for the
efficient use of mDNS/DNS-SD-based service discovery in low data rate smart object

106



networks. In the first step, we implemented the standardized DNS message compression
for uBonjour as Adjustable DNS Message Compression (ADMC) that significantly reduces
the response time by integrating all four DNS resource records into a single IP packet for
most smart object hardware platforms (with support of an IP payload size larger than 140
bytes). In the second step, further optimizations were investigated to reduce the length
of a single DNS message including all required DNS resource records for smart object
hardware platforms with a very small IP payload size but without breaking standards. In
this way, we have introduced two enhanced message compression methods for DNS (i.e., the
class code / TTL field compression, and the IP address reconstruction) and implemented
both as ADMC Enhanced for uBonjour. The two enhanced approaches ensure a high
compatibility level to existing DNS implementations and can simply be adopted by RFC
1035 because these methods are indicated by pointer flags reserved for future use.

To sum up, we have proved the seamless integration of smart objects into the Internet
using XMPP and mDNS/DNS-SD. The Chatty Things approach enables a transparent
(H2M) interaction and service discovery for the IoT that allows a standardized integration
with low effort into the current Internet infrastructure. Inexperienced users can access
Chatty Things through ordinary notebooks or computers with any familiar and available
XMPP software at the application layer. Smart objects can thus be simply deployed and
handled comparable to consumer electronics. Through the implementation and evaluation
of the minimized XMPP and mDNS/DNS-SD stacks for Contiki, we showed that these
protocols run on smart object hardware platforms with a ROM size of at least 48 Kbytes.
TSP and the enhanced DNS message compression methods demonstrate that existing
standards can economically be used in low data rate networks without introducing smart
object-specific code or data representations, while providing (a high level of) compatibility
(i.e., they are not restricted to smart objects).

The results presented in this thesis have shown that established standards at the application
layer can boost the handling/interaction with smart objects and their integration into
the Internet. In order to support encrypted communication for the uXMPP2 stack future
work should focus on the provision of efficient implementations of security standards,
such as TLS, on all classes of constrained smart object hardware. Using security requires
additional memory and code size. Ongoing work of implementing TLS on smart objects
show that the required memory footprint exceeds the available memory size of class 0
devices (e.g., 48 Kbytes of ROM for Tmote Sky, cp. [39, 115, 116]). Therefore, it has to
further be investigated how and which functionality of (established) security mechanisms
can efficiently be used in low data rate smart object networks and how their respective
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implementations can take only a very low memory footprint. Another important focus
for the seamless integration of smart objects into the Internet should be to enable a
standardized service discovery that operates over existing networks and that directly
addresses different classes of devices with the same Internet mechanisms. DNS-SD may
be a solution for the IoT as the results of this thesis have demonstrated. Drawback of
a DNS-based service discovery for the IoT is that its current design misses features of
handling smart objects that are offline for certain periods (e.g., these devices fail to respond
to queries) or to provide the discovery functionality beyond local network boundaries. The
extensions for Scalable DNS Service Discovery proposed by the Internet Engineering Task
Force (IETF) working group will focus on these aspects (cp. [199]).
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A.1 Implemented uXMPP2 API Methods

XMPP Core/IM. Implements most parts of an XMPP client, such as client-to-server
XML streams [22, Sec. 4, 8.1 and 8.2], TLS and SASL negotiation [22, Sec. 5 and 6],
exchanging presence and messages [124, Sec. 4.2.1, 4.4.1, 4.5.1, and 5].

XEP-0045 Multi-User Chat. Supports the ’occupant use cases’ entering a chat room via
groupchat 1.0 protocol [133, Sec. 7.2.1] and presence broadcast [133, Sec. 7.2.3], sending a
group chat message to all room members [133, Sec. 7.4] and leaving a chat room [133, Sec.
7.14].

XEP-0050 Inspired Remote Commands. Does not implement the standardized protocol
flow (i.e., uses iq stanzas), instead it provides the sending of a set of determined commands
(i.e., specified by the application developer) to Chatty Things through the use of message
stanzas.

XEP-0174 Serverless Messaging. Implements discovering other XMPP entities [25, Sec.
4], exchanging presence [25, Sec. 5] and stanzas [25, Sec. 7], XML stream initiation [25,
Sec. 6] and closing [25, Sec. 8], going offline [25, Sec. 9].
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A.2 Implemented uBonjour API Methods

Resolving Hostnames. To discover the address of another device in the network a device
needs to send a DNS query for the domain name to the multicast group of the network.
The device with the corresponding domain name replies with an A record including its
network address. If the hostname can be resolved uBonjour broadcasts an event to all
listening processes with the IP address, otherwise a timeout for the query is triggered. Only
one name can be resolved at the same time. Sending a new query at the same time stops
the ongoing search for a hostname and starts a new search with the currently submitted
hostname.

Discovering Services. The service discovery works analogously to the resolving of a
hostname. A device initiates the service discovery by sending a PTR record to the multicast
group containing the name of the searched service. If a service query is resolved uBonjour
posts an event to all processes with PROCESS_BROADCAST containing the resolved IP
address and the port as data.

Registration, Removal, and Update of Services. To publish an available service a
smart object has to send four DNS records as described in Section 5.1. Each application
running on a device has to register a service with its service name, IP address (provided
by Contiki), and port, if it wants to be found in the network by other devices. If a PTR
query arrives, the corresponding device replies with one SRV, TXT, A or AAAA, and PTR

record. To remove a service from a network the device needs to send a PTR record with
the Time-To-Live (TTL) set to zero. uBonjour API also supports updating an already
published service by resending the four DNS records with changed data. uBonjour can
handle up to eight service registrations per device by default. This value can be adjusted
to the memory size of the specific device.
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A.3 Byte Counting of the DNS Record Length

In DNS a name has to be split into a sequence of label lengths and then labels. A label
length (LL) counts 1 byte, while each label is taking 1 byte per character. The length of a
pointer (P) takes only 2 bytes. Pointers are distinguished from a label by setting the first
two bits to ones (pointer flag), whereas labels must start with two zero bits (cp. [200, Sec.
4]). The fields with fixed variable lengths (FVL) (e.g., type, class, TTL, resource length)
take each 10 bytes. In a SRV record the prio/weight/port (PWT) field takes 6 bytes. The
length of a byte sequence is calculated with the following function d, whereas x is the
input of a sequence (e.g., string) and N the length of x : d(x) = N (in bytes).

A.3.1 Example Calculation of the Minimal DNS Record Length

This subsection describes the calculation of the third value of the length values (in bytes)
summarized in Table 5.1.

d(SRV) = d(P) + d(FVL) + d(PWT) + d(P) = 20
d(PTR) = d(P) + d(FVL) + d(P) = 14
d(TXT) = d(P) + d(FVL) + 13 = 25
d(A) = d(P) + d(FVL) + 4 = 16
d(AAAA) = d(P) + d(FVL) + 16 = 28

A.3.2 Example Calculation of the DNS Record Length Using Name
Pointers Only Within a Record

This subsection describes the calculation of the second value of the length values (in bytes)
summarized in Table 5.1. The free space for the length of the service type is named in the
following FS4ST and takes 0 bytes.

d(SRV) = d(LL) + d(con) + d(LL) + d(FS4ST) + d(LL) + d(_tcp) + d(LL) + d(local)
+ d(LL) + d(FVL) + d(PWT) + d(LL) + d(ctk) + d(P) = 39
d(PTR) = d(LL) + d(FS4ST) + d(LL) + d(_tcp) + d(LL) + d(local) + d(LL) + d(FVL)
+ d(LL) + d(con) + d(P) = 29
d(TXT) = d(LL) + d(con) + d(LL) + d(FS4ST) + d(LL) + d(_tcp) + d(LL) + d(local)
+ d(LL) + d(FVL) + 13 = 40
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d(A) = d(LL) + d(ctk) + d(LL) + d(local) + d(LL) + d(FVL) + 4 = 25
d(AAAA) = d(LL) + d(ctk) + d(LL) + d(local) + d(LL) + d(FVL) + 16 = 37

If we assume that the substring local in the A and AAAA records can be replaced by a
name pointer:

d(A) = d(LL) + d(ctk) + d(P) + d(FVL) + 4 = 20
d(AAAA) = d(LL) + d(ctk) + d(P) + d(FVL) + 16 = 32

A.3.3 Example Calculation of the Highest DNS Message
Compression Ratio

This calculation uses the precalculated values of Sections A.3.1 and A.3.2. The first record
that needs to be integrated uses its precalculated value of Section A.3.1, whereas the rest
of the records use the precalculated values of Section A.3.2 because each occurrence of
name can be replaced completely by a name pointer. This is shown in the following using
the SRV record as the beginning record:

d(IPv4) = d(SRV) + d(PTR) + d(TXT) + d(A) = 39 + 14 + 25 + 16 = 94
d(IPv6) = d(SRV) + d(PTR) + d(TXT) + d(AAAA) = 39 + 14 + 25 + 28 = 106

A.3.4 Example Calculation of the Minimal DNS Message
Compression Ratio

This calculation uses the precalculated values of Sections A.3.1 and A.3.2. The first record
that needs to be integrated uses its precalculated value of Section A.3.1, whereas the
second record uses the precalculated values of Section A.3.2. Cases if all occurrences of
names can be replaced completely by a name pointer for the second record:

d(SRV) + d(PTR) = 39 + 14 = 53
d(SRV) + d(TXT) = 39 + 25 = 64
d(SRV) + d(A) = 39 + 16 = 55
d(SRV) + d(AAAA) = 39 + 28 = 67
d(PTR) + d(TXT) = 29 + 25 = 54
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Cases if only occurrences of a substring (e.g., local) can be replaced by a name pointer
for the second record:

d(PTR) + d(A) = 29 + 20 = 49
d(PTR) + d(AAAA) = 29 + 32 = 61
d(TXT) + d(A) = 40 + 20 = 60
d(TXT) + d(AAAA) = 40 + 32 = 72

A.3.5 Example Calculation of the Redundant Information Filtering

The minimal length of a single DNS message for appending redundant information (e.g.,
IP address, user-defined text) to the resource data of the SRV record (including a delimiter
like the resource length field, i.e., 2 bytes):

d(IPv4) = 39 + 2 + 13 + 2 + 4 = 60
d(IPv6) = 39 + 2 + 13 + 2 + 16 = 72

Send only a SRV record with the appended IP address:

d(IPv4) = 39 + 2 + 4 = 45
d(IPv6) = 39 + 2 + 16 = 57

Appending the user-defined text of the TXT record to the SRV record:

d(IPv4/6) = 39 + 2 + 13 = 54

A.3.6 Example Calculation of ADMC Enhanced

The highest DNS message compression ratio of IPv6 (cp. Section A.3.3) is reduced by
using three times the class code and TTL pointer (i.e., saves 4 bytes each time) and the
IP pointer (i.e., saves 14 bytes):

d(IPv6) = 106 - 3 ∗ 4 - 14 = 80
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A.4 IPv6 Stack Memory Footprint

The uXMPP2 implementation consists of different modules which again use different parts
of Contiki’s uIP stack. XMPP Core/IM uses TCP to establish connections, the XEP-0174
client uses TCP to listen for incoming connection requests, and uBonjour uses UDP to
send and receive multicast DNS messages. This results in a diverse memory use for the
uIP stack (shown in Table A.1) because each requirement enables different functions of
the uIP stack. Enabling all components of uXMPP2 on Contiki results in a total memory
consumption of 21.18 Kbytes of ROM / 3.76 Kbytes of RAM for the IPv6 stack, i.e., 1.63
Kbytes of ROM and 0.87 Kbytes of RAM are thus additionally used for TCP functions
when compared to running only an UDP/IP stack (e.g., uBonjour). For the parameter-less
bootstrapping of Chatty Things this means that the IPv6 stack memory footprint increases
and leaves less memory for the uXMPP2 stack at run-time because the functions of uIP
can only be enabled during compile time.

Table A.1: Memory footprint of the IPv6 stack in Contiki (in Kbytes)

Connection Type / Component ROM RAM

UDP / uBonjour 19.55 2.89
TCP (Listen) / uXMPP2 XEP-0174 19.50 3.58
TCP (Connect) / uXMPP2 Core/IM 20.40 3.08
All 21.18 3.76

In general, UDP consumes less memory compared to TCP, although the difference between
using TCP listeners and TCP connectors are small (0.9 Kbytes of ROM / 0.5 Kbytes
of RAM). The reason lies in the different buffer management for sending and receiving
messages. A UDP-based communication is handled efficiently and dynamically through
the IP stack, whereas a TCP connection needs additional static and application-related
buffers, i.e., 150 bytes for uXMPP2.
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Figure A.1: ROM usage of uIP running with different configurations (in Kbytes)
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Acronyms

6LoWPAN IPv6 over Low power
Wireless Personal Area
Network

A Address record for IPv4

AAAA Address record for IPv6

ADMC Adjustable DNS Message
Compression

API Application Programming
Interface

ARP Address Resolution Protocol

ASCII American Standard Code for
Information Interchange

AVR Microcontroller family from
Atmel

BXML Binary XML

BSD Berkeley Software
Distribution

CoAP Constrained Application
Protocol

CoRE Constrained RESTful
Environments

CPU Central Processing Unit

CRAM Challenge Response
Authentication Mechanism

CT Chatty Thing

DPWS Devices Profile for Web
Services

DNS Domain Name System

DNS-SD DNS Service Discovery

DOM Document Object Model

DTC Distributed TCP Caching

DTLS Datagram Transport Layer
Security

EXI Efficient XML Interchange

EXIP Embeddable EXI
implementation in C

FI Fast Infoset

GCC GNU Compiler Collection

GPAP General Purpose Access
Point

H2H Human-to-Human

H2M Human-to-Machine

HTTP Hypertext Transfer Protocol
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Acronyms

IANA Internet Assigned Numbers
Authority

ICMP Internet Control Message
Protocol

IEEE Institute of Electrical and
Electronics Engineers

IETF Internet Engineering Task
Force

IM Instant Messaging

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IPHC IPv6 Header Compression

IPSec Internet Protocol Security

JID Jabber Identifier

LL Link Level

LZ77 Lempel-Ziv 1977

M2M Machine-to-Machine

MAC Media Access Control

MD Message-Digest Algorithm

mDNS Multicast Domain Name
System

MQTT Message Queuing Telemetry
Transport

MQTT-S Message Queuing Telemetry
Transport for Sensors

MSP430 Microcontroller family from
Texas Instruments

MSS Maximum Segment Size

MTU Maximum Transmission Unit

MUC Multi-User Chat

NAT Network Address Translation

NHC Next Header Compression

OGC Open Geospatial Consortium

OS Operating System

OSGi Open Services Gateway
initiative

OWT One-Way Traffic

P2P Peer-to-Peer

PC Personal Computer

PEP Personal Eventing Protocol

PTR Pointer record

QoS Quality of Service

RAM Random Access Memory

RD Resource Directory

RDF Resource Description
Framework

RELOAD REsource LOcation And
Discovery

REST Representational State
Transfer

RF Radio Frequency

RFC Request For Comment
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ROM Read-Only Memory

RTT Round Trip Time

SASL Simple Authentication and
Security Layer

SAX Simple API for XML

SCRAM Salted Challenge Response
Authentication Mechanism

SE Smart Energy

SHA Secure Hash Algorithm

SNMP Simple Network Management
Protocol

SLIP Serial Line IP

SLP Service Location Protocol

SOAP Simple Object Access
Protocol

SOX Sensor Over XMPP

SRV Service record

SWE Sensor Web Enablement

TCP Transmission Control
Protocol

TLS Transport Layer Security

TSP Temporary Subscription for
Presence

TSS TCP Support for Sensor
nodes

TTL Time To Live

TXT Text record

UDP User Datagram Protocol

uDPWS micro DPWS for embedded
devices

uIP micro IP stack for embedded
devices

UPnP Universal Plug and Play

URI Uniform Resource Identifier

USB Universal Serial Bus

uXMPP micro XMPP stack for
embedded devices

VoIP Voice over IP

WLAN Wireless Local Area Network

WS4D Web Services for Devices

WSN Wireless Sensor Networks

XEP XMPP Extension Protocol

XML Extensible Markup Language

XMPP Extensible Messaging and
Presence Protocol

XSF XMPP Standards
Foundation

ZLIB Data compression algorithm
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