
A Knowledge Discovery Cycle for Monitoring

Mobile Cyber-Physical Systems

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universität

Cottbus – Senftenberg

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Master of Science

Tino Noack

geboren am 01.07.1981 in Königs Wusterhausen

Gutachter: Prof. Dr.-Ing. I. Schmitt, BTU Cottbus – Senftenberg

Gutachter: Prof. Dr.-Ing. H. T. Vierhaus, BTU Cottbus – Senftenberg

Gutachter: Prof. Dr.-Ing. A. Nürnberger, OVGU Magdeburg

Tag der mündlichen Prüfung: 03.02.2015

I dedicate this to my lovely little family.

Abstract

Mobile cyber-physical systems (MCPSs) such as motor vehicles, railed vehicles, air-
craft, or spacecraft are commonly used in our life today. These systems are location-
independent and embedded in a physical environment which is usually harsh and
uncertain. MCPSs are equipped with a wide range of sensors that continuously
produce sensor data streams. It is mandatory to process these data streams in an
appropriate manner in order to satisfy different monitoring objectives, and it is an-
ticipated that the complexity of MCPSs will continue to increase in the future. For
instance, this includes the system description and the amount of data that must be
processed. Accordingly, it is necessary to monitor these systems in order to provide
reliability and to avoid critical damage. Monitoring is usually a semi-automatic
process while human experts are responsible for consequent decisions. Thus, ap-
propriate monitoring approaches are required to both provide a reasonably precise
monitoring process and to reduce the complexity of the monitoring process itself.

The contribution of the present thesis is threefold. First, a knowledge discovery cy-
cle (KDC) has been developed, which aims to combine the research areas of knowl-
edge discovery in databases and knowledge discovery from data streams to monitor
MCPSs. The KDC is a cyclic process chain comprising an online subcycle and an
offline subcycle. Second, a new data stream anomaly detection algorithm has been
developed. Since it is necessary to identify a large number of system states auto-
matically during operation, data stream anomaly detection becomes a key task for
monitoring MCPSs. Third, the KDC and the anomaly detection algorithm have
been prototypically implemented and a case study has been performed in a real
world scenario relating to the ISS Colombus module.

v

Kurzfassung

Mobile cyber-physikalische Systeme (MCPS) wie z.B. Kraft-, Schienen-, Luft- oder
Raumfahrzeuge sind in der heutigen Zeit sehr weit verbreitet. Diese Systeme sind
ortsunabhängig und in eine raue bzw. unsichere physikalische Umwelt eingebet-
tet. MCPS sind mit einer Vielzahl von Sensoren ausgestattet, die kontinuier-
lich Sensordatenströme erzeugen. Um den unterschiedlichen Zielsetzungen der
Überwachung gerecht zu werden, ist eine angemessene Verarbeitung dieser Sen-
sordaten wichtig. Es zeichnet sich ab, dass die Komplexität von MCPS in der
Zukunft weiter steigt. Damit sind die Systembeschreibung sowie die Menge der
zu verarbeitenden Daten gemeint. Aus diesem Grund und um die Zuverlässigkeit
der Systeme zu gewährleisten sowie kritische Systemausfälle zu vermeiden, ist eine
Überwachung zwingend notwendig. Der Überwachungsprozess ist üblicherweise
semi-automatisch und menschliche Experten sind verantwortlich für die getrof-
fenen Entscheidungen. Daher werden Überwachungsansätze benötigt, die eine
angemessen präzise Überwachung ermöglichen und gleichzeitig die Komplexität des
Überwachungsprozesses verringern.

Der Beitrag der vorliegenden Arbeit ist dreigeteilt. Zunächst wird ein Knowledge
Discovery Cycle (KDC) entwickelt, der die Forschungsgebiete Wissensentdeckung in
Datenbanken und Wissensentdeckung aus Datenströmen miteinander kombiniert.
Weiterhin wird ein neuer Algorithmus für die Anomalieerkennung in Datenströmen
vorgestellt. Für die Überwachung von MCPS ist eine Unterscheidung in verschiedene
Systemzustände notwendig. Daher wird die Anomalieerkennung in Datenströmen
zu einer Schlüsselaufgabe. Zuletzt werden der KDC und der vorgestellte Algo-
rithmus zur Anomalieerkennung prototypisch implementiert und eine Fallstudie
durchgeführt. Diese Fallstudie basiert auf einem realen Szenario, welches sich auf
das Columbus-Modul der internationalen Raumstation ISS bezieht.

vii

Contents

1 Introduction 1
1.1 Mobile Cyber-physical Systems (MCPSs) 2
1.2 Life-time Phases of MCPSs . 3
1.3 Key Challenges for Monitoring MCPSs 4
1.4 Real World Scenario . 6

1.4.1 ISS Columbus Failure Management System 6
1.4.2 ISS Columbus Air Loop . 8
1.4.3 Failure Event . 9

1.5 Characteristics of MCPSs . 10
1.6 Scope . 12
1.7 Combining KDD and KDDS . 13
1.8 Contribution . 14
1.9 Selected Publications . 14
1.10 Structure and Organization . 15

2 Foundations and Related Work 17
2.1 Brief Overview . 17
2.2 Data . 19

2.2.1 Definition . 19
2.2.2 Data Scales . 20

2.3 Error, Fault, and Failure . 20
2.4 KDD Process Model . 21
2.5 Data Mining . 22

2.5.1 Learning Methods . 23
2.5.2 Data Mining Types . 23
2.5.3 Combining Classifiers for Multi-class Classification 24

2.6 Information Flow Processing (IFP) 25
2.6.1 Stream Model . 26
2.6.2 DBMSs versus IFP engines 26
2.6.3 DSMS Reference Architecture 27
2.6.4 IFP Engine Reference Architecture 27

ix

2.6.5 SDW Reference Architecture 29

2.6.6 Stream Windows . 30

2.6.7 Requirements for Data Stream Classification 30

2.6.8 Specialized IFP Approaches 31

2.7 MOA Data Stream Classification Cycle 32

2.8 Expert Systems . 32

2.9 MAPE-K Reference Model . 33

2.10 Monitoring . 34

2.10.1 Definition . 34

2.10.2 Monitoring Variants . 35

2.10.3 Monitoring Types . 36

2.10.4 Monitoring Objectives . 38

3 The Knowledge Discovery Cycle (KDC) 41

3.1 Requirements for Monitoring MCPSs 41

3.2 Characteristics of the Knowledge Discovery Cycle 43

3.3 Relation between Key Challenges and KDC Characteristics 47

3.4 Stream Model Extension . 48

3.4.1 Controversial Discussion . 48

3.4.2 Storage-aware Stream Model 49

3.4.3 Training Methods . 51

3.5 KDC Processing Steps . 52

3.5.1 Online Processing Steps . 52

3.5.2 Offline Processing Steps . 54

3.6 KDC Concept Assignments . 57

3.6.1 Concepts of the Online Subcycle 57

3.6.2 Concepts of the Offline Subcycle 58

3.7 Comparison with Related Work . 60

3.7.1 MOA Data Stream Classification Cycle 60

3.7.2 Expert Systems . 60

3.7.3 MAPE-K Reference Model 61

3.7.4 Summary . 61

3.8 Conclusion . 61

4 Multi-Class Data Stream Anomaly Detection 63

4.1 System States . 64

4.1.1 Default and Novel States . 64

4.1.2 Irregular, Error, and Anomaly States 65

4.2 Basic Anomaly Detection Model . 66

4.3 Anomaly Detection Techniques . 67

4.3.1 Classification-based . 67

x

4.3.2 Nearest Neighbor-based . 68

4.3.3 Clustering-based . 68

4.3.4 Statistical . 69

4.4 Data Stream Anomaly Detection Algorithms 69

4.5 Example - ISS Columbus Air Loop 70

4.6 Problem Statement . 72

4.7 Solution Statement . 72

4.7.1 Minimizing the Processing Time on Average 74

4.7.2 Filter Function . 77

4.8 One-class Classification for Anomaly Detection 83

4.8.1 Gaussian Distribution . 83

4.8.2 K-centers . 87

4.8.3 Nearest Neighbor . 90

4.8.4 Support Vector Domain Description 93

4.8.5 Summary . 95

4.9 Conclusion . 96

5 Experiments and Case Study 99

5.1 Evaluation Scheme . 100

5.2 Experimental Setup . 102

5.3 Selected Data Stream Anomaly Detection Algorithms 103

5.3.1 K-means One-Class Classification 104

5.3.2 Hoeffding trees . 104

5.3.3 Half-Space Trees . 105

5.3.4 Presented Approach . 105

5.3.5 Comparison . 106

5.4 Selected Data Sets . 107

5.4.1 ISS Columbus Air Loop - IRFA 108

5.4.2 ISS Columbus Air Loop - Failure Event 108

5.4.3 ISS Columbus Air Loop - Full 109

5.4.4 Space Shuttle . 110

5.4.5 Artificial Data Sets . 110

5.5 Assessments . 112

5.5.1 Anomaly Detection Performance 113

5.5.2 Summary of the Time-efficiency 118

5.6 Case Study . 120

5.6.1 Offline Subcycle . 120

5.6.2 Online Subcycle . 123

5.7 Conclusion . 126

xi

6 Conclusions and Future Work 127
6.1 Summary of the Thesis . 127
6.2 Subjects for Future Work . 129

Appendix 133
A Bibliography . 133
B List of Publications . 151
C Acronyms . 153
D Glossary . 157
E Notation . 165
F List of Figures . 167
G List of Tables . 169
H List of Listings . 171
I Acknowledgements . 173

xii

CHAPTER 1
Introduction

“If we knew what it was we were doing, it
would not be called research, would it?”

Albert Einstein (1879-1955)

A large number of today’s products contain embedded systems. Many of these
products are safety-critical and rely on real-time requirements. A system is a com-
pound structure consisting of objects which cohere due to interaction and interde-
pendency [Bac00]. An embedded system is a mechatronic system which is embedded
into a product, processes information, and interacts with the product and the system
environment by sensors and actuators [Wol02]. The system environment describes
the immediate surroundings of a system [Bos89]. Sensors collect information about
the system environment and actuators influence the system environment [Mar07]. A
mechatronic system is a system which comprises mechanic, electronic, and software
domains [BGJ+09]. A real-time system works under timing constraints, while the
correctness of the computational results is time-dependent [Kop11]. A safety-critical
system is a system which is subject to the consequences of failure [Kni02].

Basic approaches of contemporary cyber-physical systems (CPSs) [Lee08] are widely
disseminated in application domains such as manufacturing, home entertainment,
healthcare, transportation, or aerospace. As stated by Lee et al. [LS11], the acronym
’CPS’ is inspired by the term cybernetics. The term ’cybernetics’ was coined over a
half century ago and describes the conjunction of physical processes, computation,
and communication. The acronym ’CPS’ redefines the term ’cybernetics’ and is
intended to bring ’cybernetics’ into a context of today’s technologies. Amongst
others, these include digital computing, software intensive computation, and massive
use of networks.

1

1 Introduction

1.1 Mobile Cyber-physical Systems (MCPSs)

It is possible to distinguish between stationary CPSs and mobile CPSs [NS13]. Sta-
tionary CPSs such as power grids, manufacturing plants, or research facilities are
strongly tied to a specific location. Whereas mobile cyber-physical systems (MCPSs)
[GD06], such as motor vehicles, railed vehicles, aircraft, or spacecraft, are location-
independent and embedded into a physical environment. A physical environment
is a system environment which is subject to physical conditions. The present the-
sis focuses on MCPSs. Figure 1 depicts a sketch of an MCPS as it is used in this
thesis. Sensors and actuators are used for interaction between an MCPS and the
embedding physical environment. MCPSs consist of hardware such as electronic
assemblies (e.g. processors, memory, and batteries). These electronic assemblies are
components of embedded systems. Moreover, software is an integral and substantial
part of embedded systems. These embedded systems are usually connected via an
internal network. Embedded systems and the internal network are commonly used
for monitoring and controlling physical processes. An external network connects
an MCPS with external information systems. Embedded systems and electronic as-
semblies are subject to resource restrictions such as processor capacity, memory, and
power consumption. In general, external information systems are stationary parts
of MCPSs and are used to compensate resource restrictions. Accordingly, MCPSs
are very complex systems [NS13] (see also [Noa11a, Noa11b, NS12a]).

Physical environment

Mobile cyber-physical system

Embedded system

Electronic

assemblies

Internal network
External

network

Electronic

assembly
Electronic

assembly

External

information

systems

Sensors Actuators

Sensors Actuators

Electronic

assemblies

Electronic

assemblies

Electronic

assemblies

Embedded system

Figure 1: A sketch of an MCPS (based on [NS13])

2

1.2 Life-time Phases of MCPSs

1.2 Life-time Phases of MCPSs

The life-time of MCPSs can be separated into four phases: design, test, dispatch
and commissioning, and operation. The ’design phase’ relates to the conceptional
engineering. The ’test phase’ relates to the implementation of the conceptional
design and the subsequent tests. The ’dispatch and commissioning phase’ relates to
the shipment and activation to the application environment. Finally, the ’operational
phase’ relates to the runtime of an MCPS until its deactivation [NNS+13].

A general bathtub curve separates the operational phase of MCPSs into three more
phases. As depicted in Figure 2, these include: wear in, normal wear, and wearout.
The ’wear in phase’ follows after the dispatch and commissioning phase. It is charac-
terized by a relatively high failure rate and infant mortality. This typically includes
design and manufacturing defects, assembly mistakes, or installation and commis-
sioning errors. The ’normal wear phase’ is a relatively long period where the failure
rate is proportionally low. The ’wearout phase’ is characterized by a gradually in-
creasing failure rate at the end of the expected life-time due to metal fatigue, wear
on mechanisms between moving parts, corrosion, and obsolescence. However, the
shape of a specific bathtub curve is machine-dependent [Sil05] (see also [KKW03]).

F
ai

lu
re

ra
te

Time in operation

Wear inWear in WearoutNormal wear

Figure 2: General bathtub curve (based on [Sil05])

The application of MCPSs demands a high degree of reliability. The term ’relia-
bility’ describes the continuity of correct service and probability of default [BM00].
As described by the above-mentioned bathtub curve, current system components
as subparts of a system can become increasingly unreliable during operation due to
wear and tear or aging effects. Additionally, design and manufacturing errors, which
may occur during the design and test phases, can compromise the reliability. Ac-
cordingly, monitoring MCPSs is essential and necessary to ensure reliability and to
avoid critical damage. After the dispatch and commissioning phase, an appropriate
monitoring approach must provide initial reliability and be flexible and dynamically
adaptable during operation (wear in, normal wear, and wearout phases).

3

1 Introduction

1.3 Key Challenges for Monitoring MCPSs

Monitoring MCPSs is very challenging. MCPSs are under constant remote mon-
itoring and control to keep these systems reliable, healthy, and stable. MCPSs
are being monitored by telemetry and commands. To fulfill these monitoring tasks,
such systems are equipped with sensors that produce continuous sensor data streams.
Generally, data streams consist of data items and are produced in real-time with
a potentially infinite length [BW01]. These data streams are commonly examined
for the purpose of online monitoring and control, and to a lesser degree for offline
monitoring. Online and offline monitoring are prerequisites for recognizing specific
event occurrences, anomaly detection, and early detection of sensor degradation.
Anomalies are patterns in data which deviate from normal behavior [CBK09]. An
event is an incident that has occurred within a particular system or domain [EN10].
Monitoring and control tasks are very time consuming and resource intensive, and
for remote systems any equipment failure must be avoided [NSS13b]. The key chal-
lenges for monitoring MCPSs are identified as: change, time dependence, continuity,
data processing, and autonomy [NS12a, NS13].

1. Change: Changes in the system behavior of MCPSs are specific event oc-
currences which must be monitored and detected. Thus, variation in system
behavior is one of the main challenges for monitoring MCPSs. The physical
environment, in which MCPSs are embedded, is usually harsh and uncertain.
Conditions of the physical environment such as heat or humidity influence
the system behavior continuously. Hence, the system behavior changes dur-
ing operation and may be significantly different from the behavior which has
been observed during the design and test phases. For example, outer space is
a physical environment which differs from terrestrial conditions such as zero
gravity, no atmospheric pressure, or the absence of the earth’s magnetic field.
Moreover, chemical elements inside of spacecraft behave differently in contrast
to terrestrial conditions. For instance, water or dust collection is very difficult
under gravity-free conditions. Such variant behavior cannot always be suffi-
ciently analyzed during the design and test phases under terrestrial conditions.
Consequently, it is necessary to adapt the applied monitoring process to the
emerging conditions continuously during operation.

As depicted in Figure 3, a distinction is usually made between sudden change
and gradual change. ’Sudden change’ is also known as concept shift, whereas
’gradual change’ is also known as concept drift [BHKP11]. For the sake of
clarity, the terms ’sudden change’ and ’gradual change’ are used hereinafter.
Sudden change such as a crash (e.g. a collision with space debris) cannot be
excluded and must be immediately followed by an appropriate action. Condi-
tions of the physical environment can also induce gradual change, such as wear

4

1.3 Key Challenges for Monitoring MCPSs

and tear. Gradual change can in turn cause sudden change. Hence, monitoring
gradual change is necessary to forecast sudden change which relates to gradual
change.

Behavior

change

Time

Sudden change

Gradual change

Figure 3: Distinction between gradual and sudden change

2. Time dependence: Depending on the resulting effects, the appearance of
gradual and sudden change need to be detected within a previously defined
time frame. Subsequently, the monitoring process is subject to real-time re-
quirements. The time dependence is a key challenge due to the prevailing
resource restrictions of MCPSs.

3. Continuity: Continuity is a key challenge and refers to the process of knowl-
edge discovery. It is necessary to discover knowledge during the test, dispatch
and commissioning, and operational phases of MCPSs. Such discovered knowl-
edge must be continuously brought into connection with expert knowledge
which has been carefully deliberated upon during the design phase. This is
required since the monitoring process presupposes knowledge about the tar-
get system, the belonging physical environment, and the intended or related
system behavior. A target system is an MCPS which have to be monitored.

4. Data processing: As aforementioned, the conditions of the physical environ-
ment and the system behavior are changing over time. Thus, it is also impor-
tant to discover knowledge continuously during operation and to associate new
derived knowledge with historical information obtained during design, test, or
dispatch and commissioning phases. It is necessary to process streaming data
and historical data to provide continuous monitoring of MCPSs. Therefore,
appropriate mechanisms are required which consider processing of persistent
and transient data. ’Data persistence’ describes the ability for data to outlive

5

1 Introduction

the operational phase and possibly the overall life-time of an MCPS [CB10].
’Data transience’ constitutes the opposite.

5. Autonomy: Autonomy relates to the online monitoring process and the ex-
ternal network connection. The monitoring process is commonly a semi-
automatic process with the support of human experts. Johnson describes the
term ’expert’ as follows: “An expert is a person who, because of training and
experience, is able to do things the rest of us cannot; experts are not only pro-
ficient but also smooth and efficient in the actions they take.” [Joh83, p. 78].
As stated by Huebscher et al.: “Autonomic computing seeks to improve com-
puting systems with a similar aim of decreasing human involvement.” [HM08,
p. 1]. Processing data streams in real-time and interaction with human ex-
perts are mutually exclusive. Moreover, the external network connection is
usually unreliable and can be interrupted from time to time. Hence, the on-
line monitoring process must be able to act autonomously in order to benefit
from knowledge which is discovered during the life time phases of MCPSs and
to detect sudden changes in real-time.

1.4 Real World Scenario

This section presents a real world scenario which relates to the International Space
Station (ISS) Columbus module and is structured as follows. First, a particular view
on the current implementation of the ISS Columbus failure management system
[NBW+10] is given. Second, the ISS Columbus air loop [NBW+10] is explained.
Third, a failure event is presented which has occurred on the ISS Columbus module
during operation [NBW+10]. This failure event emphasizes the relation of gradual
and sudden change. This section is related to the author’s publication [NS13].

1.4.1 ISS Columbus Failure Management System

As depicted in Figure 4, the ISS Columbus failure management system is distributed
over various instances. Each instance is responsible for specific functions, capabil-
ities, and constraints, with a distinction between on-board and ground instances.
The ISS Columbus module is an MCPS and contains on-board instances. On-
board instances are embedded systems which are connected via an internal network.
On-board instances work automatically and in real-time. However, on-board in-
stances suffer from resource restrictions. Ground instances are stationary parts of
the ISS Columbus module and represent external information systems. They are
applied semi-automatically and without real-time constraints. Furthermore, ground
instances are used for long-term analysis and provide support for human experts.
Nevertheless, they suffer from bandwidth limitations and the availability of the ex-
ternal network connection (see also [NBW+10, NNP+11, NS12b, NLS+12]).

6

1.4 Real World Scenario

1. ISS Columbus: The ISS Columbus module is embedded into outer space and
employs an air loop as a life-support system. The on-board failure manage-
ment system is responsible for crew health and mission success. The system
works automatically and is applied for monitoring the ISS Columbus air loop.
Aboard the ISS Columbus module, automatic detection of time critical fail-
ures is a vital necessity. This process encounters difficulties, since the existing
on-board instances are subject to resource restrictions. For example, the ISS
Columbus module consists of a variety of sensors, and the on-board failure
management acquires approximately 3000 analogue and digital measurements
per second. Due to resource restrictions, only a small proportion (about 230)
of these measurements can be adequately monitored on-board and in real-
time. The acquired measurements are sent to the ground control when the
external network is available. However, they cannot be sent directly in case
of a loss of signal (LOS). Consequently, acquired measurements have to be
stored temporally on-board.

2. Ground control: The ground control is a ground instance and works semi-
automatically. Human experts are responsible for manual failure detection
and recovery. As with the on-board failure management system, the ground
control is responsible for crew health and mission success. The ground control
is also used to plan short-term corrective actions. Not all on-board measure-
ments are available at the ground control because of the external network and
its bandwidth limitations. Delays can occur from time to time due to LOS.
Accordingly, on-board acquired measurements do not arrive in real-time at the
ground control.

3. Engineering support center: The engineering support center is another
ground instance which is used for root cause failure analysis and to plan long-
term corrective actions. Human experts work offline and use data analysis
tools intensively. Furthermore, data and information available from persistent
storage (the mission archive) and the ground control are used.

4. Assembly, integration, and test facility: The assembly, integration, and
test facility is amongst others used for engineering tests, troubleshooting, and
validation tests. Troubleshooting of on-board issues and validation of updated
or new functions and services, such as experiment facilities along with failure
detection methods, are very important. The assembly, integration, and test
facility uses data and information which are available from persistent storage
(the mission archive) and the ground control. Moreover, this facility is used
to adapt and reconfigure on-board instances.

5. Mission archive: The mission archive is a persistent storage which contains
historical data and information which were obtained during all life-time phases

7

1 Introduction

of the ISS Columbus module. Data transferred from the ISS Columbus module
to the ground control is stored entirely in the mission archive. Furthermore,
the mission archive contains annotations, expert knowledge, and additional
information.

5. Assembly,

integration, and test

facility

2. Ground control

Wireless network

On-board

instances
automatic

real-time

Ground

instances

semi-automatic

long-term

3. Engineering

support center
4. Mission archive

1. ISS Columbus module

Figure 4: ISS Columbus failure management system (based on [NBW+10, NS13])

1.4.2 ISS Columbus Air Loop

The ISS Columbus air loop is an embedded system and part of the life-support sys-
tem of the ISS Columbus module. The air loop is monitored by the ISS Columbus
failure management system. As depicted in Figure 5, the air loop contains an inter
module ventilation supply fan assembly (ISFA) that is used to aspirate air from the
ISS. The ISS Columbus air loop also consists of two redundant cabin fans (CFAs)
which are used for air circulation inside of the ISS Columbus module. These cabin
fans work redundantly to provide a failover if one of them breaks down. The air
pressures which are produced by the ISFA and a single cabin fan are joined after-

8

1.4 Real World Scenario

wards. The resulting air flow passes a condensate heat exchanger (CHX) that is used
for temperature regulation and dehumidification. Afterwards, the air flow passes a
diffuser and is blown into the ISS Columbus module. The forced air flow leaving the
diffuser prevents dead air pockets and enables fire and smoke detection of the ISS
Columbus center aisle. Furthermore, the ISS Columbus air loop contains an inter
module ventilation return fan assembly (IRFA). The IRFA aspirates air from the
ISS Columbus module while the air passes a return grid and smoke detectors. The
aspirated air is then forwarded to the ISS where air revitalisation takes place. The
fan assemblies are responsible for air exchange between the ISS Columbus module
and the ISS (see also [NBW+10, KPD10, PSRD11]).

ISFA

IRFA

Cabin fans

Diffuser

Return grid

Smoke

detectors

Condensate

heat exchanger

Coolant

(Water)

ISS

ISS

Figure 5: ISS Columbus air loop (based on [NBW+10])

1.4.3 Failure Event

The ISS Columbus air loop is intended to be at service 24/7. Due to continuous
operation, aging effects, such as wear and tear, occur and cause a wide range of
problems. As described by Noack et al. [NBW+10] and Parzianello et al. [PSRD11],
bearing wearout has induced a functional loss of the IRFA. The occurred wearout
effects refer to gradual change (cf. Section 1.3) of the system behavior.

The IRFA is monitored by sensors. For the sake of simplicity, only three sensor
attributes are selected initially. An attribute is at least one measurable property or

9

1 Introduction

a combination of several measurable properties of a system or a system component
[Cha09]. An attribute value is a specific measurement which relates to an attribute.
These include speed, current, and pressure. Figure 6 depicts the collected measure-
ments. The speed relates to the rotating speed of the fan assembly, and the unit
of measurement is 1/min. The current relates to the electrical input current of the
IRFA and is equivalent to the produced air flow and the mechanical friction losses.
The unit of measurement is ampere. The pressure relates to the pressure head that
is generated by the IRFA, and the unit of measurement is kilopascal.

The uppermost diagram (i) of Figure 6 shows gradual changes which relate to the
wearout effects. The undermost diagram (ii) shows sudden changes of the system
behavior and the consequent failure event. The gradual change of the system be-
havior (bearing wearout) led to a continuously increasing input current from the
beginning of February to the beginning of April. However, the pressure and the
speed were uninfluenced (i). The consequent failure event, which lasted 210 sec-
onds, occurred on day 106 in 2008 (ii). The failure event led to an erratic speed
of the IRFA and consequently to erratic air flow. Currently, there are two exist-
ing implementations for automatic failure detection and deactivation of the IRFA.
Though, neither of these implementations covered the unknown failure signature.
For that reason, the failure event was manually detected and manually recovered by
the flight control team instead of automatic detection. In the worse case scenario,
such failure situations could remain undetected for long periods of time.

1.5 Characteristics of MCPSs

It is possible to identify four main characteristics of MCPSs. This identification
is based on the aforementioned challenges for monitoring MCPSs (cf. Section 1.3).
The previously stated real world scenario (cf. Section 1.4) is used as an example.
These characteristics include: physical environment, restricted computing resources,
real-time constraints, and external network. This section is closely related to the
author’s publication [NS13].

1. Physical environment: The physical environment of MCPSs is usually harsh
and uncertain. For instance, various climate zones on earth where the tempera-
ture or humidity varies greatly. Moreover, conditions of a physical environment
can change within short periods of time. For example, the physical environ-
ment of outer space differs considerably from terrestrial conditions. These
variable conditions can induce sudden or gradual change (cf. Section 1.3).

2. Restricted computing resources: MCPSs are usually subject to resource
restrictions. External information systems are commonly used to compen-
sate these restrictions. However, external information systems are not always

10

1.5 Characteristics of MCPSs

07−Feb 17−Feb 27−Feb 08−Mar 18−Mar 28−Mar 07−Apr
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time [day−month]

P
re

ss
u
re

 [
k
il

o
p
as

ca
l]

 −
 C

u
rr

en
t

[a
m

p
er

e]

i. Bearing wearout − gradual change

Current [ampere]

Speed [1/min]

Pressure [kilopascal]

IR
F

A
 m

an
u
al

 d
ea

ct
iv

at
io

n

8200

8400

8600

8800

9000

9200

S
p
ee

d
 [

1
/m

in
]

15:07 15:14 15:21 15:28 15:36 15:43
0

0.5

1

1.5

2

Time [hour:minute]

P
re

ss
u
re

 [
k
il

o
p
as

ca
l]

 −
 C

u
rr

en
t

[a
m

p
er

e]

ii. Failure event − sudden change

Current [ampere]

Speed [1/min]

Pressure [kilopascal]

IR
F

A
 m

an
u
al

 d
ea

ct
iv

at
io

n

7500

8000

8500

9000

9500

10000

10500

S
p
ee

d
 [

1
/m

in
]

Figure 6: Gradual and sudden change (based on [NBW+10, Noa11b, NS13])

11

1 Introduction

available due to an unreliable network connection and LOS. For example, the
existing computational resources of the ISS Columbus module, such as proces-
sor capacity and memory or power consumption, are limited (cf. Section 1.4.1).
Accordingly, only a small proportion of the acquired measurements can cur-
rently be adequately monitored on-board and in real-time. Hence, computing
resources have to be used as efficiently as possible.

3. Real-time constraints: MCPSs are prevailingly subject to real-time con-
straints. Sudden changes and unforeseeable situations, such as the aforemen-
tioned bearing wearout (cf. Section 1.4.3), can occur at any time during op-
eration. Considering such uncertainty, the computational processing and the
resulting actions must also be performed in real-time. Such failure situations
have to be detected reliably and must be immediately followed by an appro-
priate action to ensure reliability and to avoid critical damage.

4. External network: The external network connection is uncertain and subject
to bandwidth limitations. One reason for this is the mobility of MCPSs. The
external network of MCPSs is a temporal connection and not always available.
Thus, appropriate mechanisms for providing a quality of service are required.
However, providing a high quality of service is quite difficult. For example,
the downlink of the ISS Columbus module (cf. Section 1.4.1) suffers from
bandwidth limitations and is continuously interrupted due to LOS.

1.6 Scope

Monitoring MCPSs is the principal aim of this thesis. The author of the present
thesis therefore proposes to combine the research areas of knowledge discovery in
databases (KDD) [FPSM92] and knowledge discovery from data streams (KDDS)
[GKA06] in order to attain this aim. KDD is a well studied and widely acknowledged
research area. Fayyad et al. described the attempt of KDD as follows: “KDD is an
attempt to address a problem that the digital information era made a fact of life for
all of us: data overload.” [FPSS96, p. 38]. KDD is a process of identifying valid, novel,
and potentially useful patterns in data and is intended to facilitate and speed-up the
extraction of knowledge from persistent data sources (see also [ES00, KZ02, MR05]).
The digital information era is constantly evolving and reinventing itself. Thus, it is
necessary to reconsider existing data processing approaches and to adapt them to
the demands of upcoming challenges [NS13].

KDDS, contrary to KDD, is a relatively new research area. The perspective on
data has changed significantly since Fayyad et al. [FPSS96] described the attempt
of KDD. Currently, data is more dynamic and produced rapidly by continuous data
sources (e.g. automatic stock trading, Internet click streams, online advertisement, or

12

1.7 Combining KDD and KDDS

sensor data streams). This development motivates the new research area of KDDS.
The following three intentions of KDDS can be identified. First, KDDS attempts
to extract knowledge from data streams (e.g. data stream mining [DH00]) so that
computer systems are able to communicate using real-time events or information in
order to trigger real-time decisions (e.g. complex event processing (CEP) [Luc02]).
Second, KDDS can be used to slow down the speed of information by aggregating
data so that relevant information can be sufficiently presented to human experts
(e.g. cockpits or round robin databases [Oet13]). Third, KDDS can be applied to
sample the data down so that they can be adequately stored into historical data
repositories (e.g. streaming data warehouse (SDW) [GJSS09]) [NS13].

1.7 Combining KDD and KDDS

Figure 7 associates relevant technologies to the research areas of KDD and KDDS
and illustrates the differences between both research areas. The x-axis relates to
the complexity of the applied queries and the availability of system resources. The
x-axis starts with complex queries which necessitate many system resources and
ends with restricted system resources where only simple queries can be executed.
The y-axis relates to the data flow, starting with static data, persistently stored in
archives, and ending with dynamic data which arrive in a continuous and potentially
infinite stream of data items. The lower section of Figure 7 relates to KDD where
knowledge is extracted from persistent storages. The uppermost section of Figure 7
relates to KDDS where knowledge is extracted from data streams. The complexity
of the used queries relates to the provided system resources.

As depicted in Figure 7, data warehouses (DWHs) [Inm02] and database management
systems (DBMSs) [Cod82] relate to the KDD process where many system resources
are intensively used to extract knowledge from persistent repositories. Embedded or
lightweight DBMSs [Egy85] address the challenges of data storage under restricted
computing resources. Moreover, SDWs are used to store dynamic and streaming
data into persistent repositories and universal information flow processing (IFP)
[CM12] systems are applied for data stream processing [BBD+02] where many system
resources are available. Furthermore, lightweight IFP systems can be used for data
stream processing under resource restrictions. As illustrated in Figure 7, the current
thesis intends to combine KDD and KDDS for monitoring MCPSs.

Concerning the KDD process, data is stored persistently, queries are complex, and
computational resources are almost unrestricted. Concerning the KDDS process,
data arrives in a continuous stream of data items, queries are mostly simple, and
computational resources are restricted. In order to proceed with this intention,
pre-existing technologies are used. Therefore, it is possible to identify pitfalls and
challenges of existing technologies for future work. The scope of the current thesis

13

1 Introduction

is very interdisciplinary and covers a variety of research areas. More information
about the above-mentioned technologies and a discussion on related work is given
in Chapter 2 on page 17.

Data

Queries and

system resources

SDW

DWH

simple,

restricted

complex,

unrestricted

static

(persistent)

dynamic

(stream)

universal

DBMS
Combinati

on

lightweight

DBMS

universal

IFP

lightweight

IFP

KDD

KDDS

Figure 7: Combining KDD and KDDS for monitoring MCPSs (based on [GO10])

1.8 Contribution

The contribution of this thesis is threefold. First, the principal contribution is the
definition of a knowledge discovery cycle (KDC) [NS13]. The KDC aims to combine
the research areas of KDD and KDDS for the purpose of monitoring MCPSs with
support of IFP. Second, a novel approach for data stream anomaly detection is
explained. This approach is based on the KDC. Third, the implementation of the
KDC identifies pitfalls and challenges for future work in the area of IFP.

1.9 Selected Publications

This section presents a list of selected publications. A complete list of publications
is shown in the appendix on page 151. Publications 1 and 2 describe the real world
scenario which is related to the ISS Columbus module. Moreover, these publications
are the foundation of the cooperation with EADS Astrium Space Transportation.
Furthermore, publication 3 describes the KDC in more detail, which constitutes
the background of the current thesis. Publication 4 presents a case study which is
based on the KDC and IFP. In addition, publication 5 provides a discussion on ISS
Columbus data streams. Lastly, publication 6 discusses open challenges for data
stream mining research.

14

1.10 Structure and Organization

1. E. Noack, T. Noack, V. Patel, I. Schmitt, M. Richters, J. Stamminger, and
S. Sievi. Failure Management for Cost-Effective and Efficient Spacecraft Op-
eration. In Proceedings of the 2011 NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS). IEEE Computer Society, 2011

2. E. Noack, A. Luedtke, I. Schmitt, T. Noack, E. Schaumlöffel, E. Hauke,
J. Stamminger, and E. Frisk. The Columbus Module as a Technology Demon-
strator for Innovative Failure Management. In German Air and Space Travel
Congress, Deutscher Luft- und Raumfahrtkongress, 2012

3. T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems by Means
of a Knowledge Discovery Cycle. In Seventh IEEE International Conference
on Research Challenges in Information Science (RCIS), 2013

4. T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems by Means
of a Knowledge Discovery Cycle - A Case Study. In Workshop on Knowledge
Discovery, Data Mining, and Machine Learning (KDML), 2012

5. T. Noack, E. Noack, I. Schmitt, S. Sievi, and S. Mirzakhyl. A Discussion
on ISS Columbus Data Streams. In ECML/PKDD Workshop on Real-World
Challenges for Data Stream Mining (RealStream), 2013

6. G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last, V. Lemaire,
T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and J. Stefanowski. Open
Challenges for Data Stream Mining Research. ACM SIGKDD Explorations
Newsletter – Special Issue on Big Data, 16(1):1–10, 2014

1.10 Structure and Organization

The present thesis is structured as follows. Chapter 2 outlines foundations of the
present thesis. Moreover, related work referring to the KDC is presented. In Chapter
3, the KDC is described in more detail and compared with the presented related
work. Chapter 4 introduces a novel algorithm for data stream anomaly detection.
In Chapter 5, experiments are performed to evaluate the introduced data stream
anomaly detection approach and a case study is carried out. Finally, Chapter 6
concludes the present thesis and outlines subjects for future work.

This manuscript is written in American English and the Oxford comma is used. New
and important terms are highlighted once in italics and are explained. Terms which
are referenced and explained once again are highlighted by means of single quotation
marks. In addition, important terms which are intensively used throughout this
theses are listed in a glossary on page 157. References are sorted in ascending order
by the publication year if more than one reference is used. Direct citations provide
a page number.

15

CHAPTER 2
Foundations and Related Work

“If you have built castles in the air, your work
need not be lost; that is where they should be.
Now put the foundations under them.”

Henry David Thoreau (1817-1862)

This chapter describes foundations of the present thesis along with related work
and is structured as follows. First, a brief overview on the adjacent research areas
is given and the term data is described in more detail since the term ’data’ is fre-
quently used throughout the present thesis. Moreover, a distinction is made between
the terms error, fault, and failure. This distinction is necessary in order to ensure a
consistent use of the terminology within this thesis. Next, the KDD process is ex-
posed, and, based on this, the research area of data mining [FPSS96] is considered.
Furthermore, selected topics of IFP are described and requirements for data stream
classification are listed. The KDD process and the selected topics of IFP form the
basis for the development of the KDC are described in Chapter 3 on page 41. The
research area of data mining forms the basis for a new data stream anomaly detec-
tion algorithm presented in Chapter 4 on page 63. Following this, a particular view
on related work is given. This includes specialized IFP approaches: the massive
online analysis (MOA) data stream classification cycle [BHKP11], expert systems
[HRWL83], and the monitor, analyse, plan, execute, and knowledge (MAPE-K) ref-
erence model [IBM03]. Lastly, monitoring is described in more detail since monitor-
ing MCPSs is the scope of the present thesis.

2.1 Brief Overview

The present thesis is very interdisciplinary and covers a variety of subjects. Thus,
it is impossible to describe each research area in detail. Accordingly, this section

17

2 Foundations and Related Work

attempts to give a brief overview on the adjacent research areas. This section relates
to Section 1.6 along with Section 1.7 and is closely related to the author’s publication
[NS13].

From the author’s point of view, KDD is the basement for appropriate sys-
tem monitoring. KDD incorporates storage mechanisms such as DBMSs and
DWHs. A DBMS is a software which is used to manage databases. As stated
by Inmon: “A data warehouse is a subject-oriented, integrated, nonvolatile, and
time-variant collection of data [...]” [Inm02, p. 31]. Data mining as an in-
dependent research area constitutes an essential component of KDD (see also
[DHS01, TSK05, Bis06, HK06, Cha09, WFH11]).

MCPSs are equipped with sensors which continuously produce sensor data streams
(cf. Section 1.3). The research area of ’data stream processing’ addresses the
machining of data streams and is mandatory to provide online monitoring in a
real-time manner. Based on the definition of the stream model, data stream
management systems (DSMSs) [MWA+02] such as STREAM [BBD+02], Aurora
[CcC+02], or PIPES [KS04] have been developed for data stream processing (see
also [CJ09, GO10]). As reported by Stonebraker et al. [ScZ05], such DSMSs should
provide high level query languages. Examples are the continuous query language
[ABW06] and the stream query algebra [ACc+03]. Data stream processing engen-
dered new storage mechanisms, such as SDWs (see also [GJSS09, GO10, GJ11]),
and concepts for data stream mining. ’Data stream mining’ is the application of
data mining and machine learning algorithms directly onto data streams (see also
[GZK05, WYH05, HK06, Agg07, BHKP11]). Several data stream mining frame-
works such as MOA [BHKP10], VEDAS [KBL+04], or SMM [TLM+11] have been
developed. The aforementioned concepts for data stream processing and mining can
be grouped together under the acronym ’KDDS’ (see also [GKA06, Gam10]).

For some time, data stream processing has been reconsidered under a certain per-
spective. This perspective aims to extend stream query languages by pattern defi-
nitions and action parts. This endeavor is already known from active databases as
the event-condition-action (ECA) paradigm [DGG96, PD99]. Based on the ECA
paradigm it is possible to formulate ECA-rules which imply: “[...] when an event oc-
curs, check the condition and if it holds, execute the action [...]” [DGG96, p. 2]. The
combination of the ECA paradigm and data stream processing is called CEP (see
also [Luc02, EB09, EN10]). The acronym ’CEP’ describes the deduction of complex
events from fundamental or underlying events in a data stream context. Several
CEP engines such as SASE [WDR06], Cayuga [DGH+06], Esper [Esp13], Stream-
Base [Str13], or Drools Fusion [JBo14] have been developed. Standards for CEP in
combination with ECA-rules has been discussed by Paschke et al. [PVS11]. CEP has
induced new storage strategies such as event data warehouses [RSOR10]. However,

18

2.2 Data

an exact differentiation between DSMSs, frameworks for data stream mining, and
CEP engines is not always possible. Accordingly, the acronym ’IFP’ attempts to
combine these approaches by means of a uniform base (see also [CM12]).

Amongst others, further information about the term ’system’ is provided by several
authors, including Gordon [Gor72], Bossel [Bos89], Backlund [Bac00], and Imboden
et al. [IK03]. More detailed descriptions of ’embedded systems’ are provided by sev-
eral authors, including Marwedel [Mar07], Peckol [Pec07], Bertsche et al. [BGJ+09],
and Berns et al. [BST10]. More information about ’CPSs’ is provided by several au-
thors, including Tan et al. [TGP08], Sha et al. [SGLW08], Rajkumar et al. [RLSS10],
Lee et al. [LS11], and Shi et al. [SWYS11]. Additional information about ’MCPSs’ is
provided by several authors, including Xu et al. [XLZ+08] and Fok et al. [FPS+11].
Further information about the term ’monitoring’ is provided by several authors,
including Snodgrass [Sno88], Schroeder [Sch95], and Junior et al. [JR08]. More in-
formation about embedded or lightweight ’DBMSs’ is provided by several authors,
including Ortiz [Ort00], Nori [Nor07], and Rosenmüller et al. [RLAS07, RALS09].

2.2 Data

The term ’data’ is broadly used over a variety of research domains. Moreover, it
is frequently used throughout the present thesis. Accordingly, this section aims to
describe this term in more detail and to introduce data scales. Data scales are
introduced in order to ensure a consistent use of the terminology in this thesis.

2.2.1 Definition

It is necessary to describe the term ’data’ (singular: data item) in more detail. As
stated by Chattamvelli: “Data are basic facts on an entity.” [Cha09, p. 2]. Fayyad
et al. describe the term ’data’ as follows: “[...] data are a set of facts (for example,
cases in a database) [...]” [FPSS96, p. 41]. This results in the following definition of
the term ’data’ in the context of the present thesis for monitoring MCPSs.

Definition 2.1 (data):
Data are a set of attribute values which describe a system (or a system component)
within a particular time frame.

Furthermore, there is a distinction between univariate data and multivariate data.
Univariate data refer exclusively to one attribute, and multivariate data refer to
more than one attribute [Ste09, Han10].

19

2 Foundations and Related Work

2.2.2 Data Scales

Attribute values can be subject to a variety of scales. Amongst others, these include:
nominal scale, ordinal scale, interval scale, and ratio scale. It is always possible to
scale-down from a higher scale to a lower scale, although down-scaling is tantamount
to loss of information [Cha09] (see also [BW08, Ste09, Han10]).

Nominal Scale

The nominal scale is used to categorize attribute values by means of a name con-
vention. This name convention can consist of numbers, characters, or character
strings (e.g. names). Binary scaled attributes constitute only two outcomes of a
name convention (e.g. on and off).

Ordinal Scale

Ordinal scaled attribute values exhibit a meaningful order. Consequently, compar-
ison operations (e.g. >, ≥, <, ≤, =, Ó=) can be applied between these attribute
values. Ordinal scaled attribute values can always be mapped to the numbers 1 to
n (e.g. school marks).

Interval Scale

The interval scale is a metric scale where the intervals are appropriately inter-
pretable. The zero point is chosen indiscriminately (e.g. temperature or loudness).

Ratio Scale

The ratio scale is a metric scale where a fixed zero point exists and pre-defined
intervals are interpretable (e.g. weight and size).

2.3 Error, Fault, and Failure

It is necessary to describe the terms ’error’, ’fault’, and ’failure’ in more detail.
Lapire defines these terms as follows: “A system failure occurs when the delivered
service deviates from the specified service, [...] an error is that part of the system
state which is liable to lead to failure, [...] The cause [...] of an error is a fault.”
[Lap95, p. 3]. Avižienis et al. describe these terms as follows: “[...] failure, is an
event that occurs when the delivered service deviates from correct service. [...] The
adjudged or hypothesized cause of an error is called a fault. [...] an error is the
part of the total state of the system that may lead to its subsequent service failure.”
[ALRL04, p. 13]. Moreover, Schuster gives the following definition of these terms:

20

2.4 KDD Process Model

“The manifestation of a fault will produce errors in the state of the system, which
could lead to a failure [...].” [Sch08, p. 26] (see also [SS94, BM00]).

Based on these statements, it is possible to deduce the following descriptions. The
term ’error’ describes a system state where the system does not work as expected.
The term ’fault’ constitutes the root cause of an error. Finally, the term ’failure’
describes a situation where the intended functioning of the system (or the subsystem)
cannot be guaranteed any longer.

The correlation of the above-mentioned terms is exemplified by means of the fail-
ure event of the IRFA which has occurred on the ISS Columbus module (cf. Sec-
tion 1.4.3). Bearing wearout is the fault because it constitutes the root cause. The
manifestation of bearing wearout led to the following errors: a continuously increas-
ing input current, an erratic speed of the IRFA, and consequently to erratic air flow.
Finally, the delivered service deviated from the specified service. This constitutes
the failure.

2.4 KDD Process Model

The KDD process model is described in more detail since it constitutes the basis
for the KDC which is described in Chapter 3 on page 41. As stated by Fayyad et
al. [FPSS96], the KDD process is an interactive and iterative process which entails
several processing steps where many decisions must be made by human experts.
As depicted in Figure 8, the KDD process includes five processing steps: selection,
preprocessing, transformation, data mining, and evaluation.

1. Selection: The first processing step is used to identify the objectives of a
planned discovery process. Therefore, it is necessary to understand prior
knowledge from the viewpoint of the related application domain. A target
data set is selected which focuses on a relevant subset of variables and data
samples.

2. Preprocessing: The second processing step encompasses data cleaning and
preprocessing. Amongst others, this includes noise reduction, handling miss-
ing data fields, and accounting for time-sequence information. As a result,
preprocessed data are created.

3. Transformation: The third process step involves data reduction and pro-
jection. Therefore, useful features are selected to represent relevant data de-
pending on the previously identified discovery objectives. This processing step
includes dimensionality reduction along with transformation methods and pro-
duces transformed data.

21

2 Foundations and Related Work

4. Data mining: The fourth processing step comprises the selection of particular
data mining methods such as clustering, classification, or regression analysis.
These methods are applied to search for patterns of interest. Data mining is
described in more detail in the following section.

5. Evaluation: The fifth processing step is used for interpretation and evaluation
of the mined patterns by human experts. This also includes visualization,
documentation, and storage of the patterns and the discovered knowledge.

As depicted in Figure 8, the KDD process involves iteration steps and loops between
any two steps. For example, a specific discovery process could return from the pro-
cessing step ’evaluation’ to any of the previous processing steps for further iteration
and adaptation.

5. Evaluation1. Selection

Data

Target

data

Preprocessed

data

Transformed

data
Patterns

KnowledgeData

2. Preprocessing 4. Data mining

3. Transformation

Iterative loops

Figure 8: The KDD process model (based on [FPSS96])

2.5 Data Mining

Data mining is an important part of the aforementioned KDD process and is de-
scribed by Fayyad et al. as: “[...] the application of specific algorithms for extracting
patterns from data.” [FPSS96, p. 39]. This section attempts to describe selected
topics of data mining in more detail. This description constitutes the basis for a
new data stream anomaly detection algorithm which is presented in Chapter 4 on
page 63. The current section is structured as follows. Initially, learning methods
are described, followed by data mining types. Table 1 summarizes the relation be-
tween learning methods and data mining types. Furthermore, two methods for the
combination of classifiers are described. The descriptions of the learning methods,

22

2.5 Data Mining

data mining types, and combination of classifiers are essential to understand the
presentation of the new data stream anomaly detection algorithm.

2.5.1 Learning Methods

In the research areas of data mining and statistical machine learning, a distinction
is usually made between supervised learning and unsupervised learning. Supervised
learning methods use labeled data, while unsupervised learning methods use unlabeled
data. Labeled data provide class labels which indicate the membership to classes,
whereas unlabeled data do not provide them [Cha09]. A ’class’ represents a logical
grouping of data and a cluster is a homogeneous group of data. This correlation is
known from the cluster assumption [See00].

2.5.2 Data Mining Types

Amongst others, a distinction can be made between the following two data min-
ing types: clustering and classification. The aforementioned data mining types are
described as follows.

Clustering

Clustering is a technique to break a large heterogeneous set of data into a small
number of homogeneous groups or clusters so that data items of a cluster are more
similar to each other than to those in other clusters. Clustering is commonly an
unsupervised learning method [Cha09] (see also [JMF99]).

Classification

Classification is a technique to assign data into a set of distinct classes. It is usu-
ally a supervised learning method and includes three steps: training, assessing, and
classifying. Training is used to learn a classifier model (short form: a classifier) from
a set of labeled training data. Assessing is used to evaluate and refine the learned
model by data items of the training data (e.g. cross validation [Efr83]). Finally,
classifying is used to assign unlabeled data items to the distinct classes by means of
the trained classifier model [Cha09] (see also [JMF99]).

However, classifiers are often used to distinguish between just two classes (e.g. sup-
port vector machines (SVMs) [CV95]), while many real world scenarios entail a
larger number of classes. Such a classification problem is called multi-class classi-
fication (MCC) [TD02, HL02] hereinafter. Thus, it is necessary to combine these
classifiers in an appropriate manner in order to solve such a multi-class classification
problem.

23

2 Foundations and Related Work

One-class classification (OCC) is a specific classification technique. As stated by
Moya et al.: “We call a classifier that can recognize new examples of target patterns
and distinguish those from non-target patterns a one-class classifier. A desirable
feature in a one-class classifier is the ability to learn to characterize the target class by
examining only target data without requiring training samples of non-target data.”
[MH96, p. 1]. OCC can be appropriately applied when only a small proportion of
training instances of a single class is available. Therefore, the classifier model usually
comprises a trained boundary around the present class. The resulting classifier
model is consequently used to decide if an unlabeled data item is either a member
or a non-member of this class [Tax01].

Methods

u
n
su
p
er
v
is
ed

su
p
er
v
is
ed

Clustering ✓

Classification ✓

T
y
p
es

OCC ✓

Table 1: Relation between learning methods and data mining types

2.5.3 Combining Classifiers for Multi-class Classification

The combination of classifiers is a well-studied research area, and a large number of
combining mechanisms are already available. Therefore, the individual decisions of
all classifiers are combined in some way, typically by voting or averaging, to classify
unlabeled data items [Kun04] (see also [Die97, KR00, Gam10]). Amongst others,
there are two general mechanisms for combining classifiers to solve a multi-class
classification problem: one-against-rest (OAR) and one-against-one (OAO) [TD02,
HL02] (see also [HYMK09]). Two sets of three classes {ω1, ω2, ω3} are considered in
an example shown in Figure 9. The variable h ∈ N denotes the number of classes
(in this example h = 3). As stated by Tax et al. [TD02], both mechanisms assume
that the applied classifies output binary decisions.

24

2.6 Information Flow Processing (IFP)

One-against-rest

As depicted on the left in Figure 9 (i), an OAR-based multi-class classification
model is trained between each class and the h − 1 remaining classes. Consequently,
h many classifiers must be trained. Each discriminant classifier of the OAR-based
mechanism outputs two decisions: ωi (member of class ωi) or ωC

i (complement of
class ωi) with i = {1 .. h}.

One-against-one

As depicted on the right in Figure 9 (ii), an OAO-based multi-class classification
model is trained between each pair of classes. Consequently, h(h − 1)/2 classifiers
must be trained. Each classifier of the OAO-based mechanism outputs two decisions:
ωi (member of class i) or ωj with j = {1 .. h} (member of class j).

i. OAR

ω1

ω 3
ω2

ii. OAO

ω1

ω 3

ω2

ω2

ω 3

ω3

C

ω1

ω2

C

ω1

C

ω 3

ω2

ω2

ω1
ω1

ω 3

Figure 9: OAR versus OAO (based on [TD02])

2.6 Information Flow Processing (IFP)

This section discusses selected topics of the IFP domain which form the basis for
the development of the KDC. First, the stream model is described. Based on this,
differences between DBMSs and IFP engines are outlined. Further on, reference
architectures of a DSMS, an IFP engine, and a SDW are presented. Moreover,
specialized data stream processing approaches are briefly outlined. Furthermore,
windows are described. Lastly, the MOA data stream classification cycle [BHKP10]
is explained and requirements for data stream classification are listed.

25

2 Foundations and Related Work

2.6.1 Stream Model

As described by Babcock et al. [BBD+02], input data that arrive as one or more
continuous data streams, are not available for random access from memory and differ
from the conventional stored relation model in different ways (see also [GO10]).

• Data items arrive online, and the sequence is potentially infinite.

• The processing system cannot control the order of the arriving data items.

• An already processed data item is discarded or stored.

2.6.2 DBMSs versus IFP engines

As listed in Table 2, DBMSs process persistently stored data while the update rate
is relatively low. IFP engines process data streams while the update rate is very
high and sometimes bursty. During query execution, DBMSs have random access
to all stored data, whereas IFP engines process data streams at one sequential pass.
The process model of DBMSs is usually passive, query-driven, and short-dated or ad
hoc queries are executed once by pulling an answer by means of persistently stored
data. Results are presented only when explicitly asked by users or applications. This
process model is called human-active database-passive (HADP) [ACc+03]. However,
the process model of IFP engines is active, data-driven, and long-dated or continuous
queries are deployed, pushing new results as new data arrive. This process model is
called database-active human-passive (DAHP) [ACc+03]. DBMSs process one query
at a time and use a fixed query plan. Consequently, an exact result is anticipated.
Since IFP engines process many continuous queries at a time, adaptive query plans
are necessary, and only approximate results are anticipated [GO10].

DBMSs IFP engines

Data persistent data data streams

Update rates relatively low high, bursty

Data access random sequential or one-pass

Process model HADP (query-driven, pull) DAHP (data-driven, push)

Queries one-time, ad hoc continuous

Query plans fixed adaptive

Query results exact approximate

Table 2: Differences between DBMSs and IFP engines (based on [GO10])

26

2.6 Information Flow Processing (IFP)

2.6.3 DSMS Reference Architecture

Figure 10 depicts a reference architecture of a DSMS. It comprises the following
components: streaming inputs, input buffer, input monitor, working storage, local
storage, query repository, query processor, and streaming outputs. The input buffer is
used to capture the streaming inputs. The input monitor is an additional component
which can be used to collect various statistics such as inter-arrival times. The
working storage stores recent portions of the streaming inputs temporarily. The
stored data is then used for query execution. The local storage contains meta data,
and the query repository is used to register continuous queries. Continuous queries
are transformed into execution plans after registration. The query processor executes
the registered queries and produces streaming outputs which can be used for further
processing. The query processor may communicate with the other components to
optimize query execution [GO10].

Streaming

inputs

Buffer and

Input monitor

Working

storage

Local

storage

Query

processor

Query

repository

Streaming

outputs

Adaptive query processing

Figure 10: Reference architecture of a DSMS (based on [GO10])

2.6.4 IFP Engine Reference Architecture

Figure 11 depicts a reference architecture of an IFP engine. It includes the following
components: streaming inputs, receiver, clock, decider, history, rules, knowledge base,
producer, forwarder, and streaming outputs. This IFP reference architecture is used
to explain the main functional components and to compare existing IFP engines.
Since this reference architecture aims to provide a uniform base, it extends the
reference architecture of DSMSs from the viewpoint of IFP.

As a DSMS, an IFP engine captures and processes streaming inputs approaching
from different sources and produces streaming outputs. Rules are applied to process
the streaming inputs. Amongst others, this includes functions such as filtering,
combining, or aggregation. The receiver is used to manage the streaming inputs

27

2 Foundations and Related Work

and to forward them to the next component. The clock is an additional component
which can be connected to the receiver to create special data stream elements (e.g.
time stamps) and to allow periodic processing of streaming inputs.

From the viewpoint of IFP, rules (or ECA-rules) are logically composed by the fol-
lowing two parts: condition and action. The condition part defines the constraints
that must be satisfied by incoming data items (e.g. streaming inputs and time
stamps), and the action part defines what to do. Based on this distinction, the
reference architecture entails two phases: detection and production. The detection
phase is realized by a decider, while the production phase is realized by a producer.
The decider gets data items from the receiver and compares them with the condition
part of the existing rules. The decider may need to accumulate or access synopsis
information and historical data in order to process the incoming data items. Con-
sequently, the action part of each triggered rule is passed on to the producer for
execution. The producer sends the results to the forwarder. Moreover, there exists
a loop which forwards selected results to the receiver. The knowledge base consti-
tutes a read-only memory which contains information used during the detection and
production phases. Lastly, the forwarder sends the generated streaming outputs to
expected sinks for further processing [CM12].

Receiver

Streaming

inputs

Clock

Decider

HistoryHistoryHistory

Rules

Knowledge

base

RulesRules

ForwarderProducer

Streaming

outputs

Loop

Figure 11: Reference architecture of an IFP engine (based on [CM12])

28

2.6 Information Flow Processing (IFP)

2.6.5 SDW Reference Architecture

Golab et al. define the acronym ’SDW’ as follows: “[...] an SDW faces the same chal-
lenges as standard data warehouses, among them the need to store massive amounts
of data on disk for offline-analysis.” [GO10, p. 39]. Figure 12 depicts an abstract
reference architecture of an SDW. It includes the following components: data feeds,
data files, extract, transform, and load (ETL) process, update scheduler, base tables,
and derived tables. Along with streaming inputs, data feeds arrive continuously from
various data sources. In some cases, these inputs are in the form of text or zipped
files. The update scheduler is used to decide which data or files should be integrated
next. As in DWHs, the data then pass through an ETL process and are subse-
quently stored into persistent databases. For example, an ETL process includes
simple data cleaning, converting, or time stamp standardization. The persistent
databases include base tables and derived tables. Base tables are sourced directly
from data input, and derived tables refer to materialized views. Additionally, the
update scheduler decides which derived table must be updated next [GO10].

Data feedsData feeds
Base tables

Derived tables

ETL

process

Update

sheduler

Data files

Data feeds

Figure 12: Reference architecture of an SDW (based on [GO10])

As summarized in Table 3, there are differences between DWHs and SDWs. A
fundamental difference relates to the frequency and asynchronism of updates. In
contrast to DWHs, SDWs are subject to a high update frequency and asynchronous
update propagations. Furthermore, SDWs attempt to integrate arriving data con-
tinuously rather than refreshing the entire warehouse periodically. Additionally,
SDWs make recent and historical data available for analysis and further processing.
Consequently, a fast ETL process and efficient update propagation across derived
tables are required in order to keep them up with the streaming inputs [GO10].

29

2 Foundations and Related Work

DWHs SDWs

Update frequency low high

Update propagation synchronized asynchronous

Data historical recent and historical

ETL process complex fast, lightweight

Table 3: Differences between DWHs and SDWs (based on [GO10])

2.6.6 Stream Windows

As stated by Golab et al. [GO10] and Cugola et al. [CM12], stream windows are
constructs of data stream query languages that are applied to language operators
to restrict the scope of continuous queries. Stream windows can be classified by the
way they bind the move. Amongst others, these include: fixed windows, landmark
windows, and sliding windows.

Fixed Windows

Fixed windows define starting and ending points and do not move. For example,
they can be used to process data items received within a defined time frame.

Landmark Windows

Landmark windows provide one fixed and one moving point. For example, the start-
ing point is fixed and the ending point moves forward in time. This configuration
can be used to process data items which arrive since a fixed time.

Sliding Windows

Sliding windows are the most commonly used window type. Typically, they provide
a fixed size where the starting and ending points slide forward in time. For example,
sliding windows can be used to process the last ten data items received.

2.6.7 Requirements for Data Stream Classification

Data stream classification is a part of KDDS and data stream mining. Based on the
stream model (cf. Section 2.6.1), Bifet et al. identified four requirements for data
stream classification [BHKP11].

30

2.6 Information Flow Processing (IFP)

1. Processing: The first requirement claims to “Process an example at a time,
and inspect it only once (at most)” [BHKP11, p. 8]. This requirement implies
that data items arrive in a continuous stream, random access is not available,
and processed data items are discarded. Although, this very strong require-
ment is softened by two limitations: an algorithm which provides a short-term
storage can remember previous data items, and a data stream can be resent.

2. Memory: The second requirement claims to “Use a limited amount of mem-
ory” [BHKP11, p. 8]. This requirement implies that a single data stream is
many times larger than the accessible memory.

3. Time: The third requirement claims to “Work in a limited amount of time”
[BHKP11, p. 9]. This requirement implies that the runtime complexity of an
algorithm must be linear in the number of processed data items.

4. Preparation: The fourth requirement claims to “Be ready to predict at any
point” [BHKP11, p. 9]. This requirement implies that a data stream classifica-
tion algorithm must be able to prepare a classification model during operation
as efficiently as possible.

2.6.8 Specialized IFP Approaches

There are several IFP approaches which refer to specialized application domains
[NS13]. One of such approaches is Odysseus [Bol09]. Odysseus is a data stream
management framework intended to combine and integrate different techniques for
data stream processing and CEP. Based on Odysseus, Geesen [Gee13] provides a
discussion on the integration and optimization opportunities of machine learning
mechanisms into DSMS. A second approach is VEDAS [KBL+04]. VEDAS is a
mobile and distributed data stream mining system for real-time vehicle monitoring.
A third approach is described by Bell et al. [BKZ10]. This approach presents a sensor
event abstraction language for spacecraft monitoring. A fourth approach is called
Mini-ME [CEW01]. Mini-ME is a rule-based fault monitoring system for spacecraft
monitoring. A fifth approach is mentioned by Madden et al. [MF02]. It describes an
architecture for queries over streaming sensor data. A sixth approach is presented
by Li et al. [LPV+08]. It reflects real-time storm detection and weather forecasting
by means of data mining and event processing. A seventh approach is mentioned
by Stojanovic et al. [SA11]. This approach is related to the application of CEP in
real-time situations. An eighth approach is presented by Weigert et al. [WHF11].
It is related to mining large distributed log data in near real-time. Moreover, this
approach also considers real-time fault diagnoses. Yet another approach is called
Pharos [FPS+11]. Pharos is a testbed for the validation of MCPSs.

31

2 Foundations and Related Work

However, the above-mentioned approaches consider key challenges for monitoring
MCPSs (cf. Section 1.3) and complex characteristics of MCPSs (cf. Section 1.5)
more or less insufficiently.

2.7 MOA Data Stream Classification Cycle

The MOA data stream classification cycle extends the general classification pro-
cess for handling data streams and is based on the requirements for data stream
classification (cf. Section 2.6.7). As depicted in Figure 13, the MOA data stream
classification cycle contains three steps. First, a labeled data item is caught from
the data stream. Second, the labeled data item is processed and is used to adapt
the present model. Third, the classification cycle is ready to process the next data
item. The learned model can be used to predict the class of an unlabeled data item
on request [BHKP10, BHKP11].

Labeled data

1. Input 2. Learning

3. Model

Unlabeled data Predictions

Figure 13: The MOA data stream classification cycle (based on [BHKP11])

2.8 Expert Systems

Expert systems technology derives from the research area of artificial intelligence.
As stated by Hayes-Roth et al.: “The area of expert systems investigates methods
and techniques for constructing man-machine systems with specialized problem-
solving expertise.” [HRWL83, p. 3]. Jackson describes the term ’expert system’

32

2.9 MAPE-K Reference Model

as follows: “An expert system is a computer program that represents and reasons
with knowledge of some specialist subject with a view to solving problems or giving
advice.” [Jac90, p. 3]. In other words, expert systems are computer systems which
aim to combine human expertise with artificial expertise. An expert system can be
used to apply expert knowledge to difficult real world problems and to augment and
enhance the user’s skills [Wat86] (see also [Ped89, Ign90]).

Figure 14 depicts an abstract structure of an expert system. The knowledge base of
an expert system comprises the knowledge about the problem domain or the domain
knowledge. The knowledge base involves facts and rules which are the basis for
decision making. The inference engine of an expert system contains an interpreter
and a scheduler and draws conclusions from the domain knowledge. The interpreter
decides how to apply the rules to infer new knowledge, whereas the scheduler decides
the order in which the rules should be applied [Wat86].

Expert system

Knowledge base

Facts

Rules

Interpreter

Scheduler

Inference engine

Figure 14: An abstract structure of an expert system (based on [Wat86])

2.9 MAPE-K Reference Model

The MAPE-K reference model is intended to provide an autonomic control loop
with the purpose to achieve autonomic computing. As depicted in Figure 15, the
MAPE-K reference model comprises a managed element and an autonomic man-
ager. The managed element is a system component which represents any software
or hardware resource and is controlled through its sensors and actuators. The sen-
sors provide mechanisms to collect information about the state of an element, and

33

2 Foundations and Related Work

the actuators are mechanisms to change the state of an element. The autonomic
manager is a software component that implements the control loop. The autonomic
manager should ideally be configurable by human experts. Moreover, the control
loop is dissected into four parts that share knowledge: monitor, analyze, plan, and
execute. The monitor part is used to collect, aggregate, filter, manage, and report
information. The analyze part is used to learn correlations and to model complex
situations. The plan part is used to structure actions. The execute part is used to
control the execution of the previously constructed plan [IBM03, HM08].

Autonomic element

Autonomic manager

Analyse

Monitor

Plan

ExecuteKnowledge

Sensors Actuators

Managed element

Figure 15: The MAPE-K reference model (based on [IBM03])

2.10 Monitoring

The term ’monitoring’ is broadly used over many application domains, and there ex-
ist a lot of specific terms which are related monitoring terms. Therefore, this chapter
discusses foundations for monitoring and attempts to discuss and to structure these
terms in the context of the current thesis. Accordingly, monitoring is discussed in
more detail and monitoring characteristics are explained. Furthermore, monitoring
types and monitoring objectives are outlined.

2.10.1 Definition

It is necessary to describe the meaning of the term ’monitoring’ in more detailed.
Schroeder specifies it as follows: “Monitoring gathers information about a compu-

34

2.10 Monitoring

tational process as it executes [...]” [Sch95, p. 72]. Snodgrass gives the following
definition: “Monitoring is the extraction of dynamic information concerning a com-
putational process, as that process executes.” [Sno88, p. 157]. Kopetz formulates it
as follows: “An important function of a real-time computer system is the continuous
monitoring [...] to detect abnormal process behaviors.” [Kop11, p. 5]. Tsai et al.
describe monitoring as: “[...] the recording of specified event occurrences during [...]
execution in order to gain runtime information that cannot be obtained merely by
studying [...]” [TY95, p. 9]. Dvorak et al. describe it as follows: “[...] monitoring is
a continuous real-time task of recognizing anomalies in the behavior of a dynamic
system and identifying the underlying faults.” [DK89, p. 1]. This results in the
following definition of the term ’monitoring’ in the context of the present thesis.

Definition 2.2 (monitoring):
Monitoring is a continuous task of recognizing specific event occurrences in the
behavior of MCPSs and the identification of underlying faults during operation.

2.10.2 Monitoring Variants

Amongst others, it is possible to identify the following six monitoring variants:
periodic monitoring [Sil05], continuous monitoring [Sil05], local monitoring, global
monitoring, online monitoring [Sch95], and offline monitoring. These variants are
explained further.

Periodic Monitoring

The term ’periodic monitoring’ describes a monitoring variant where data are only
collected at specific times. This involves intermittent data gathering and analysis
where removable monitoring equipment can be used. Due to periodic interruptions
during the monitoring process, it is mostly used to monitor uncritical system com-
ponents. The focal points of periodic monitoring are trend analysis and severity
level checks [Sil05] (see also [PP09]).

Continuous Monitoring

The term ’continuous monitoring’ describes a monitoring system which is perma-
nently installed. In contrast to periodic monitoring, a very frequent data collection
is continuously analyzed in an automatic fashion. It is carried out on critical equip-
ment such as the ISS Columbus air loop (cf. Chapter 1.4.2). Changes of the system
behavior should trigger more detailed investigation or possibly an automatic deacti-
vation of the system components such as the failure event of the IRFA (cf. Chapter
1.4.3) [Sil05] (see also [PP09]).

35

2 Foundations and Related Work

Local Monitoring

The term ’local monitoring’ describes a monitoring variant where only a few system
components of an MCPS can be monitored. Failures or events that relate to few
system components should be detected by the use of local monitoring. Local mon-
itoring is widely applicable, and the implementation costs for local monitoring are
reasonably low [NS13].

Global Monitoring

The term ’global monitoring’ describes a monitoring variant where an MCPS is
monitored entirely. Complex interrelations and influencing factors exist between
an MCPS and the physical environment embedded within. Furthermore, complex
interrelations and influencing factors exist between the system components due to
the complex characteristics of MCPSs (cf. Chapter 1.5). Hence, it is a requirement
to gather and to detect such complex interrelations by the use of global monitoring.
The monitoring costs for global monitoring are usually much higher than for local
monitoring. Depending on the application domain, global monitoring can be more
accurate than local monitoring [NS13].

Online Monitoring

The term ’online monitoring’ describes a monitoring variant where a monitoring
system is synchronously applied with the target system. It relates to monitoring
and data analysis which work in an automatic and real-time manner [Sch95].

Offline Monitoring

The term ’offline monitoring’ describes a monitoring variant where a monitoring
system is asynchronously applied from a target system. It relates to monitoring
and data analysis which work in a semi-automatic and near real-time or long-term
manner.

2.10.3 Monitoring Types

Amongst others, it is also possible to identify the following three monitoring types:
model-based monitoring [DK89], limit monitoring [FYM05], and condition moni-
toring [Sil05]. These monitoring types are described below. Table 4 associates
the aforementioned monitoring variants to monitoring types along with the lifetime
phases of the bathtub curve (cf. Section 1.2).

36

2.10 Monitoring

Model-based Monitoring

For model-based monitoring, a static and preliminary model of the target system
is built which is implemented in hardware. For example, such a preliminary model
could be built using a prototype during the design and test phases of an MCPS
[DK89]. Model-based monitoring comprises two monitoring variants, continuous and
local monitoring. Model-based monitoring is necessary to provide basic reliability of
the target system during the normal wear phase (cf. Section 1.2). However, building
such a static and preliminary system model is highly expensive and very time con-
suming. Model-based monitoring approaches suffer from limited knowledge about
the target system, the surrounding physical environment, and the related system
behavior during the design and test phases (cf. Section 1.2). Moreover, model-based
monitoring approaches suffer from the inflexibility of the resulting model during
operation, and it is very difficult to adjust a hardware implementation during oper-
ation. This includes no dynamic adjustments or revisions of the static model during
operation [NS13] (see also [dKW89, HB95]).

Limit Monitoring

Limit monitoring (or limit checking) is a very common monitoring type. Limit
monitoring uses thresholds [FYM05, NBW+10] mostly defined by means of one-
dimensional functions. A message is generated if an attribute value reaches a pre-
viously defined threshold. Limit monitoring supports periodic, continuous, and lo-
cal monitoring variants. Amongst others, limit monitoring can be implemented
by means of intelligent [OC92] or smart sensors [Mei08]. An intelligent or smart
sensor integrates information gathering with additional signal processing functions.
Moreover, the cumulative sum [Pag54] is another possibility for implementing limit
monitoring. Limit monitoring is an appropriate monitoring approach that can be
easily applied over a variety of application domains. According to the real world sce-
nario, limit monitoring can be used to detect the gradual changes caused by bearing
wearout (cf. Chapter 1.4). Although, limit monitoring ignores complex interrelations
between system components and the reliability of the sensor itself. For example, a
sensor could be broken and send defective data. According to the aforementioned
failure event of the IRFA (cf. Chapter 1.4.3), limit monitoring is not always the best
approach. A failure event can constitute complex interrelations of more than one
attribute or sensor. Moreover, the monitoring effort increases with the number of
sensors which must be monitored [NS13].

37

2 Foundations and Related Work

Condition Monitoring

Condition monitoring is applied to monitor the conditions or system states of
MCPSs. It is used to obtain convenient information on the condition of system com-
ponents to human experts. Therefore, n-dimensional mathematical models or vector
spaces are used to describe the conditions or system states of MCPSs. Condition
monitoring includes all monitoring variants and can be appropriately applied over
all phases of the bathtub curve (cf. Section 1.2). Furthermore, it includes advantages
against the aforementioned monitoring types. These include: increased reliability,
improved efficiency, extended operational phase, improved safety, and flexibility and
adaptability during operation. Condition monitoring can also be applied for mon-
itoring legacy systems. However, there are some disadvantages such as monitoring
equipment costs, operational costs, and costs for training the mathematical models
[Sil05] (see also [Rao96, PP09]).

Variants Phases
P
er
io
d
ic
m
on
it
or
in
g

C
on
ti
n
u
ou
s
m
on
it
or
in
g

L
o
ca
l
m
on
it
or
in
g

G
lo
b
al
m
on
it
or
in
g

W
ea
r
in
p
h
as
e

N
or
m
al
w
ea
r
p
h
as
e

W
ea
ro
u
t
p
h
as
e

Model-based monitoring ✗ ✓ ✓ ✗ ✗ ✓ ✗

Limit monitoring ✓ ✓ ✓ ✗ ✗ ✓ ✗

T
y
p
es

Condition monitoring ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Monitoring types associated to variants and phases of the bathtub curve

2.10.4 Monitoring Objectives

Figure 16 summarizes three possible monitoring objectives from the angles of data
usage and time reference. The first monitoring objective relates to the past where
persistent data coming from historical data archives are used. This monitoring
objective is applied for long-term and root cause failure analysis. Moreover, it can
be used to detect gradual changes of the system behavior. The second monitoring
objective relates to the present time where synopsis information of persistent and

38

2.10 Monitoring

transient data such as data streams are computed. This monitoring objective can be
used for failure detection, anomaly detection, and state change detection. Moreover,
it can be used to detect gradual and sudden change of the system behavior. The
third monitoring objective relates to the future where prediction models built by
means of persistent and transient data are used. This monitoring objective can be
used for failure prediction and to forecast possible changes of the system behavior
in the future.

Monitoring

Present timePast Future

Synopsis

information and

transient data

Persistent

data

Long-term and root

cause failure

analysis

Failure, anomaly, and

state change

detection

Failure and

state change

prediction

Prediction

models

Time:

Data:

Objective:

Figure 16: Monitoring objectives (based on [SLM10])

39

CHAPTER 3
The Knowledge Discovery Cycle (KDC)

“The greatest obstacle to discovery is not
ignorance – it is the illusion of knowledge.”

Daniel Joseph Boorstin (1914-2004)

In this chapter, the KDC is described in more detail. The structure of this chapter
is as follows. First, requirements for monitoring MCPSs are identified. Second, char-
acteristics of the KDC are outlined. Third, key challenges for monitoring MCPSs
(cf. Section 1.3) are compared with the aforementioned characteristics of the KDC.
Fourth, the stream model (cf. Section 2.6.1) and the requirements for data stream
classification (cf. Section 2.6.7) are discussed. Based on this discussion, a storage-
aware stream model for data stream classification is introduced and training methods
are described. Fifth, processing steps for the KDC are identified. Sixth, these pro-
cessing steps are assigned to pre-existing concepts. Seventh, the KDC is compared
with related work. Finally, this chapter is concluded.

3.1 Requirements for Monitoring MCPSs

The following five requirements for monitoring MCPSs can be identified: time, lo-
cality, knowledge, system resources, and sharpness. The identification is based on
the abstract architecture of MCPSs (cf. Section 1.1), key challenges for monitoring
MCPSs (cf. Section 1.3), characteristics of MCPSs (cf. Section 1.5), and monitoring
variants (cf. Section 2.10.2). The previously discussed real world scenario (cf. Sec-
tion 1.4) is used as an example. As depicted in Figure 17, each requirement contains
two conditions. This section is closely related to the author’s publication [NS13].

41

3 The Knowledge Discovery Cycle (KDC)

1. Time: This requirement refers to behavioral changes of an MCPS (or tar-
get system) under a temporal reference. There is a distinction between ’sud-
den changes’ and ’gradual changes’ (cf. Section 1.3). Sudden changes such
as crashes can be unforeseen and may occur at any time. Depending on the
resulting effects, it can be necessary to detect sudden or gradual changes im-
mediately and in real-time. Moreover, gradual changes such as wear and tear
can require long-term analysis in order to identify potential system threats.

2. Locality: This requirement refers to interrelation effects of influencing factors
and the spatial location of monitoring. Two types of locality can be distin-
guished: ’local monitoring’ and ’global monitoring’ (cf. Section 2.10.2).

3. Knowledge: This requirement refers to available information about an MCPS,
the physical environment in which the system is embedded, and the related
system behavior. The author of the present thesis distinguishes between two
conditions: known and unknown. This distinction is closely related to the
division of known and unknown system states which is described in Section 4.1
on page 64.

The condition ’known’ refers to the existence of knowledge and information
about a monitored MCPS. It means that it is necessary to employ available
knowledge and information as comprehensively as possible for monitoring.

The condition ’unknown’ refers to the unawareness of an MCPS. Because of
unforeseeable conditions, a dynamic, flexible, and adaptable monitoring pro-
cess is required. The monitoring process should be able to gain knowledge
continuously to decrease unawareness over time. Simultaneously, it is required
to detect and predict unexpected situations. This requirement considers that
previously acquired knowledge can expire. Accordingly, mechanisms able to
calculate the degradation of knowledge truthfulness over time are required.

4. System resources: This requirement refers to all available computational
resources for monitoring, data processing, and data analysis. There are two
types of system resources: restricted and unrestricted. An MCPS is subject to
resource restrictions (cf. Section 1.4.1). Thus, external information systems
are usually used to compensate these restrictions. Online monitoring (cf. Sec-
tion 2.10.2) refers to automatic as well as real-time monitoring and should be
directly applied onto an MCPS. Offline monitoring (cf. Section 2.10.2) refers to
semi-automatic and long-term analysis. Offline monitoring should be applied
by means of external information systems. Long-term analysis in particular
requires an extreme amount of system resources. Consequently, a combination
of online and offline monitoring is required to provide enough system resources
for the entire monitoring approach.

42

3.2 Characteristics of the Knowledge Discovery Cycle

5. Sharpness: This requirement refers to the interpretation of conditions. Two
types of processing can be distinguished: crisp and non-crisp. System states
must be detected exactly and reliably by the use of binary processing (Boolean
logic; e.g. if a threshold value is reached). Although, crisp processing can be
inadequate for particular problems. Hence, it is necessary to generalize binary
processing by means of affiliation degrees between 1 and 0 as fuzzy member-
ship values [Zad73]. Value 1 implies full affiliation, while value 0 implies the
opposite.

Requirements

Sharpness

Non-crisp

Crisp

System resources

Unrestricted

Restricted

Knowledge

Locality

Time

Unknown

Known

Global

Local

Gradual

Sudden

Figure 17: Requirements for monitoring MCPSs (based on [NS13])

3.2 Characteristics of the Knowledge Discovery Cycle

The KDC is a cyclic, dynamic, and abstract arrangement of data processing con-
cepts. Furthermore, it comprises data-, knowledge-, and event-oriented data analysis
concepts. Figure 18 depicts a simplified version of the KDC. The characteristics of
the KDC are discussed below. This section is based on the author’s publication
[NS13] (see also [NS12a, NS12b, NSS13b]).

1. Cyclic: The KDD process is an iterative process which comprises a set of
processing steps and provides loops between any of two processing steps. These
loops are used for iteration and adaptation (cf. Section 2.4). Therefore, the

43

3 The Knowledge Discovery Cycle (KDC)

KDD process model can be represented as a cyclic process which includes
iterative loops.

The reference architectures of DSMSs (cf. Section 2.6.3) and IFP systems (cf.
Section 2.6.4) can be interpreted as preliminary process models for KDDS.
However, to the best of the author’s knowledge, no concluding process model
for KDDS exists as yet. In accordance which the KDD process model, a
potential KDDS process model is also an iterative process and must provide
loops between processing steps as well. Consequently, a KDDS process model
can also be represented as a cyclic process and must include iterative loops.

The KDC is intended to combine the KDD process model with a KDDS process
model into a cyclic process model for monitoring MCPSs. This cyclic process
model aims to increase information and knowledge about an MCPS, the system
environment, and the related system behavior at each round trip in an iterative
process. A round trip is a complete cyclic pass through the KDC. As depicted
in Figure 18, a distinction is made between an online subcycle and an offline
subcycle.

The online subcycle refers to the KDDS process where online monitoring (cf.
Section 2.10.2) is applied in an automatic and real-time manner. The support
of human experts is usually not needed. Thus, the online subcycle reflects
the properties of IFP engines where the DAHP process model is used (cf. Sec-
tion 2.6.2). The online subcycle reflects the aforementioned three intentions
of KDDS (cf. Section 1.6). First, it extracts knowledge from data streams to
invoke real-time decisions. Second, it is used to slow down the speed of data so
that relevant information can be presented to human experts (e.g. cockpits).
Third, it samples data down so that data can be adequately sent to exter-
nal information systems. The iterative loop is required to adapt the online
monitoring process iteratively and automatically during operation. For exam-
ple, existing data or information can be used, depending on the monitoring
objectives (cf. Section 2.10.4), for predictive analysis or for optimizing online
monitoring.

The offline subcycle refers to the KDD process where offline monitoring (cf.
Section 2.10.2) is applied for semi-automatic and long-term analysis. Human
experts plan objectives for knowledge discovery and evaluate discovered knowl-
edge. Thus, the offline subcycle reflects the properties of DBMSs where the
HADP process model is used (cf. Section 2.6.2). According to the intention of
the KDD process (cf. Section 1.6), the offline subcycle is used to facilitate and
speed-up the extraction of knowledge from historical data sources.

44

3.2 Characteristics of the Knowledge Discovery Cycle

The subdivision of the KDC is based on the assumption that automatic deci-
sions are necessary to evoke actions in real-time, even though it is necessary to
maintain a human expert in the loop. Hence, the KDC aims to provide auto-
matic and semi-automatic data processing. Both subcycles are weakly coupled
and work asynchronously. At certain times, a synchronization of these sub-
cycles becomes necessary. A complete round trip of the KDC requires two
synchronizations. For example, the first synchronization can be used for data
transfer to the offline subcycle. The second synchronization can be used to
submit information and knowledge to the online subcycle.

Online subcycle

Mobile cyber-physical

system

Offline subcycle

External information

system

Wireless network

Figure 18: The Knowledge Discovery Cycle [NS13]

2. Dynamic: Sudden changes to the system behavior of MCPSs are unforeseeable
and can occur at any time during operation (cf. Section 1.5). On that score,
the KDC is a dynamic, iterative, and continuous process which reflects changes
in the system behavior of MCPSs and data stream processing. It is necessary
to adapt the online monitoring process to the changing system behavior during
operation.

45

3 The Knowledge Discovery Cycle (KDC)

3. Abstract: The KDC is an abstract infrastructure where concepts and tech-
nologies only are used for description. The subsequent implementation of the
KDC depends on a specific target system. Accordingly, algorithms which ap-
propriately refer to the requested monitoring process can be selected. The
KDC becomes very flexible and easily extensible due to the usage of concepts
and technologies. Consequently, the KDC can be easily accommodated to the
demands of specific monitoring situations and problems.

4. Data-oriented: The implementation of the KDC requires many different data
storage and data access strategies which must be appropriate for the required
application field. On one hand, an appropriate monitoring task is required to
process data streams which represent transient data. On the other hand, these
transient data must be stored in persistent data repositories. In most cases,
the online subcycle reflects streaming data and a small amount of persistent
data. The offline subcycle reflects persistent data and some streaming data.
At the first round trips of the KDC (during test and operational phases),
only a small amount of persistent or historical data exists. Over time, more
and more persistent data are gathered. This continuously increasing amount
of persistent data can be used for offline monitoring, long-term analysis, and
knowledge discovery.

5. Knowledge-oriented: One of the main objectives of the KDC is to discover
knowledge of an MCPS, the system environment, and the related system be-
havior during operation to increase knowledge continuously over time. This
continuity implies a successive sequence of round trips of the KDC. Meanwhile,
knowledge storage and access strategies are used intensively. The offline subcy-
cle is mostly used to discover knowledge by the application of data mining (cf.
Section 2.5). The discovered knowledge is consequently stored into persistent
knowledge repositories. The online subcycle is mostly used to apply the pre-
viously discovered knowledge. For example, the application of knowledge onto
the online subcycle can be implemented by means of rule sets. The applied
knowledge is used for online monitoring in a real-time manner. In online mon-
itoring, synopsis and summarized knowledge can be applied to decrease the
processing overhead for the present system resources. The online subcycle can
also be used for knowledge discovery. However, the application of knowledge
discovery increases the processing requirements.

6. Event-oriented: Based on the discovered knowledge, the KDC is intended
to detect events or complex events from continuously arriving data streams.
Therefore, adequate event storage techniques are necessary. Additionally, it
could also be useful to create event metrics (e.g. cockpits).

46

3.3 Relation between Key Challenges and KDC Characteristics

3.3 Relation between Key Challenges and KDC Characteristics

The aforementioned characteristics imply that the KDC recognizes the key chal-
lenges for monitoring MCPS (cf. Section 1.3). These include change, time depen-
dence, continuity, data processing, and autonomy. Table 5 correlates the character-
istics of the KDC with the key challenges for monitoring MCPS.

1. Change: The cyclic, dynamic, and abstract characteristics of the KDC refer
to the key challenge ’change’. Due to consequent round trips of the KDC,
it is possible to adapt the monitoring process to the changing system behav-
ior dynamically and iteratively during operation. The KDC is independent
from implementation and can be accommodated to the demands of specific
monitoring situations and problems.

2. Time dependence: The cyclic and abstract characteristics of the KDC refer
to the key challenge ’time dependency’. Apart from synchronizations, the on-
line subcycle works automatically and is decoupled from human interactions.
Thus, decisions and actions can be triggered in real-time. The KDC is in-
dependent from a specific implementation due to its abstractness, and it is
possible to apply algorithms which respect time dependency.

3. Continuity: The cyclic and knowledge-oriented characteristics of the KDC
refer to the key challenge ’continuity’. Expert knowledge can be continuously
brought into connection with the current system behavior during operation.
For example, expert knowledge can be used to satisfy such monitoring ob-
jectives (cf. Section 2.10.4) as failure and anomaly detection along with state
change prediction.

4. Data processing: The data-, knowledge-, and event-oriented characteristics
of the KDC refer to the key challenge ’data processing’. Data is stored per-
sistently and can be used to discover knowledge. This knowledge can then be
implemented to detect events.

5. Autonomy: The cyclic characteristic of the KDC refers to the key challenge
’autonomy’. The online subcycle of the KDC works autonomously, asyn-
chronously, and is weakly coupled with the offline subcycle.

47

3 The Knowledge Discovery Cycle (KDC)

Characteristics

C
y
cl
ic

D
y
n
a
m
ic

A
b
st
ra
ct

D
a
ta
-o
ri
en
te
d

K
n
ow
le
d
g
e-
or
ie
n
te
d

E
v
en
t-
o
ri
en
te
d

Change ✓ ✓ ✓

Time dependence ✓ ✓

Continuity ✓ ✓

Data processing ✓ ✓ ✓ ✓

K
ey
ch
al
le
n
ge
s

Autonomy ✓

Table 5: Relation between key challenges and characteristics

3.4 Stream Model Extension

In this section, the aforementioned stream model (cf. Section 2.6.1) and the require-
ments for data stream classification (cf. Section 2.6.7) are discussed. Based on this
discussion, a storage-aware stream model for data stream classification is introduced
and training methods for data stream classification are identified.

3.4.1 Controversial Discussion

There exists a widely adopted assumption that data streams should not be stored en-
tirely. A closer look on this assumption is provided below to discuss the controversies
of this assumption in more detail. Amongst others, the following three statements,
which were noted by leading experts in the data stream processing research area,
can be found in the literature.

1. As stated by Gama: “It is impractical to store all data to execute queries
that reference past data. These types of queries require techniques for storing
summaries or synopsis information about previously seen data.” [Gam10, p. 9].

2. An example, presented by Cugola et al., relates to fire detection: “[...] there is
no need to store sensor readings if they are not relevant for fire detection [...]”
[CM12, p. 15:2].

48

3.4 Stream Model Extension

3. In accordance to the requirements for data stream classification (cf. Sec-
tion 2.6.7), Bifet et al. state: “The amount of data that has arrived and will
arrive in the future is extremely large; in fact, the sequence is potentially in-
finite. Thus, it is impossible to store it all. Only a small summary can be
computed and stored, and the rest of the information is thrown away. Even
if the information could be all stored, it would be unfeasible to go over it for
further processing.” [BHKP11, p. 109].

The first statement discusses queries and algorithms which are used for data stream
processing. However, monitoring of MCPSs requires storage of data streams (e.g. by
means of SDWs) and application of algorithms which generate classification mod-
els. These classification models provide summaries or synopsis information about
historical data and can subsequently be used for data stream processing.

The second statement declares that sensor readings do not have to be stored. How-
ever, considering the monitoring objectives (cf. Section 2.10.4), it is necessary to an-
alyze the root cause of the occurred fire event. Currently, it is impossible to provide
an in-depth analysis directly on MCPSs due to resource restrictions and the absence
of human experts. Consequently, only local monitoring of current system states
can be applied aboard an MCPS, whereas global monitoring (cf. Section 2.10.2) can
only be provided by analyzing historical data. In-depth analysis requires reasonable
computing resources and interaction with human experts. Hence, historical data are
a prerequisite for in-depth analysis, and it is necessary to store sensor readings for
further processing.

The third statement shows two main concerns. The first concern states that data
streams cannot be stored entirely and are discarded. The second concern states
that it would be unfeasible to go over the stored data for further processing. These
concerns contradict the functioning of monitoring MCPSs, such as aboard the ISS
Columbus module (cf. Section 1.4). The presented example shows that data streams
are stored in mission archives. Historical data are a prerequisite for long-term failure
analysis and for planning long-term corrective actions. Furthermore, these concerns
contradict the new and upcoming research area of big data [Jac09]. There is a
demand for tools to process big data, and many practical solutions to process big
data, such as cluster [BM06], grid [FK03], or cloud computing [AFG+10], are already
available.

3.4.2 Storage-aware Stream Model

The assumption that data streams should not be stored in their entirety holds for
some application domains, but not for all. Accordingly, a storage-aware stream

49

3 The Knowledge Discovery Cycle (KDC)

model is introduced which aims to extend the current stream model (cf. Sec-
tion 2.6.1). The storage-aware stream model combines KDDS with KDD for moni-
toring MCPSs.

In general, monitoring MCPSs is a semi-automatic process. For example, the
ISS Columbus failure management system (cf. Section 1.4.1) dispatches incoming
data streams almost completely (down-sampled) to an external information system
(ground control) to provide historical data (mission archive). However, complete
storage is very expensive. Amongst other reasons, human experts are responsible
for related decisions and consequent actions. With respect to the aforementioned
monitoring objectives (cf. Section 2.10.4), historical data are necessary for long-term
failure analysis, adequate monitoring, and to avoid failures which have occurred in
the past. The KDD process is used to facilitate knowledge discovery with the support
of human experts. The KDDS process is used to process continuous data streams
automatically. Thus, it is necessary to consider KDD and KDDS as a combination
and to build links between both research areas [NS13].

Based on the KDC, the storage-aware stream model encompasses the following dif-
ferences to the existing stream model (cf. Section 2.6.1):

1. The online subcycle provides enough memory to manage a defined number of
arrived data items.

2. The offline subcycle provides enough memory to store arrived data items en-
tirely.

3. Data stream mining algorithms account for online training, offline training, or
hybrid training (cf. Section 3.4.3).

The first difference enables the opportunity to collect a set of data items before
further processing. Consequently, it is possible to control the order of the arrived
data items, and it becomes feasible to process data items separately or a as set of
collected data items by pooled computation. This aspect is already partly addressed
by stream windows (cf. Section 2.6.6).

The second difference enables the opportunity to store the arrived data items in
their entirety. It becomes possible to provide long-term analysis. Regarding the
importance and age of the data, it is possible to subsequently decide which data
items must be deleted, down-sampled, or remain unchanged.

The third difference enables the opportunity to apply different training methods
depending on the demanded knowledge discovery objectives.

This results in the following definition of the term ’storage-aware stream model’ in
the context of the present thesis for monitoring MCPSs.

50

3.4 Stream Model Extension

Definition 3.1 (storage-aware stream model):
The storage-aware stream model extends the commonly known stream model by
the ability of storing incoming data streams entirely.

3.4.3 Training Methods

Classification presupposes a training phase of a classifier (cf. Section 2.5.2). The
requirements for data stream classification (cf. Section 2.6.7) do not include specific
training methods. Accordingly, the author introduces three training methods for
data stream classification: online, offline, and hybrid training. This section is closely
related to the author’s publication [NS13].

Online Training

The requirements for data stream classification (cf. Section 2.6.7) refer to online
training. Online training neglects the existence of external information systems.
According to the definition of the stream model (cf. Section 2.6.1), it is assumed that
data streams cannot be stored in their entirety. Online training provides the ability
for simultaneous training and classification during operation. Algorithms which refer
to online training are online adaptive. For this purpose, online training methods
refer to one-pass algorithms only while a small window-based set of training data is
available. User interaction is usually impossible in order to provide fast algorithms.
Hence, the verification by human experts is very difficult, and the accuracy of the
resulting classifier is proved insufficient. Online training reflects online knowledge
discovery without any previously extracted knowledge and without any previous
round trips of the offline subcycle or long-term analysis.

Offline Training

Offline training benefits from the existence of external information systems which
provide many system resources. Thus, resource intensive algorithms can be ap-
plied on the offline subcycle while a large set of historical training data is available.
Classifier training can be very resource intensive, while the online resources are
not adversely affected. Additionally, the resulting classifiers can be easily assessed
by human experts. Accordingly, both subcycles of the KDC have to be synchro-
nized from time to time. The online subcycle is used to apply the trained classifiers.
Computational resources of the online subcycle are exclusively used for classification
and decision making. Hence, classification becomes very fast and resource-saving.
However, it becomes necessary to prepare the incoming data streams for persistent
storage.

51

3 The Knowledge Discovery Cycle (KDC)

Hybrid Training

Hybrid training benefits from both aforementioned training methods. Previously
extracted knowledge can be used to train the required classifiers. Consequently,
these classifiers are online adaptive and can be changed during runtime without
synchronization between both subcycles of the KDC.

3.5 KDC Processing Steps

As depicted in Figure 19 on page 56, a distinction is made between four types of
processing steps. These include repository management, preprocessing, transfer, and
analysis. Repository management involves data streams and transient or persistent
storage techniques. Processing steps for repository management are depicted by
means of cylinders. Preprocessing steps, represented by rhombuses, include data,
knowledge, or event preprocessing. Transfer preprocessing steps, represented by
ellipses, include the transfer of data, knowledge, or events from one subcycle to
another. Analysis processing steps, represented by squares, include stream analysis
and analysis from persistent repositories.

Afterwards, twelve processing steps are identified, and each processing step is dis-
cussed in more detail. The identification starts with the online subcycle followed
by the offline subcycle. This section is closely related to the author’s publication
[NS13] (see also [NS12a, NS12b, NSS13b]).

3.5.1 Online Processing Steps

This section identifies processing steps of the online subcycle which relates to online
monitoring. Figure 19 on page 56 summarizes the identified processing steps.

1. Streaming inputs: According to the reference architectures of DSMS (cf.
Section 2.6.3) and IFP engines (cf. Section 2.6.4), the first processing step
reflects the streaming inputs approaching from heterogeneous data sources.
As depicted in Figure 19 on page 56, data stream items arrive continuously
and asynchronously at the KDC.

2. Preprocessing: This processing step includes the extraction of relevant sub-
streams or specific data stream items. Furthermore, it also includes transfor-
mations such as dimensional reduction, noise reduction, scaling, time stamp
standardization, and correlation.

3. Online analysis: The third processing step is the core of the online subcy-
cle and the online monitoring process. Online analysis is intended to identify

52

3.5 KDC Processing Steps

the current system behavior and to detect failure situations of the target sys-
tem. Therefore, data stream processing algorithms are applied which follow
the storage-aware stream model (cf. Section 3.4.2). Contrary to the KDD pro-
cess, data stream processing algorithms provide continuous queries (cf. Sec-
tion 2.6.2). Hence, the knowledge discovery objectives must be defined in
advance before algorithms are applied. Subsequent changes of the knowledge
discovery objectives can be considered by the different training methods (cf.
Section 3.4.3).

This and the following processing steps are associated with a repository. It is
used to store queries, rules, or data stream processing algorithms. Accordingly,
it refers to the functionalities provided by the local storage along with the
query repository of DSMSs (cf. Section 2.6.3) and by the knowledge base of
IFP engines (cf. Section 2.6.4).

4. Actions: As depicted in Figure 19 on page 56, the fourth processing step
is directly related to online analysis. The deduction of decisions or events
necessitate the initiation of actions as known from the ECA paradigm. A
distinction is made between hardware actions and software actions. However,
hardware and software actions can also be triggered in combination.

• Hardware actions, such as toggling of switches, effect hardware directly.

• Software actions do not directly effect hardware. Amongst their many
functions, they can be used for message sending, alarm triggering, or
to provoke storage mechanisms. Software actions could also include the
preparation of metrics and can be used to initiate the synchronization of
both subcycles.

5. Temporal storage: The fifth processing step includes temporal storage on
the online subcycle. This requires an integration of the arrived data items
into an existing data schema. The temporal storage is a window-based (cf.
Section 2.6.6), preliminary, and short-term storage. It includes the storage of
down-sampled data from data streams as well as the storage of events and
metrics. For example, metrics could include the counting of specific events
or frequency of arriving data items. The author distinguishes between two
fundamental storage strategies: complete and incomplete storage.

• Complete storage refers to persistent data storage and assures that data
items are not deleted. Several applications, such as the ISS Columbus fail-
ure management system (cf. Section 1.4.1), presupposes complete storage.

53

3 The Knowledge Discovery Cycle (KDC)

• Incomplete storage refers to transient data storage strategies and does not
assure complete storage. Hence, data and event sketches or samples of
the down-sampled data can be used. Previously stored data can be over-
written or deleted if necessary. Incomplete storage can be an adequate
storage strategy due to restricted system resources.

The cyclic process model branches after the fifth processing step. This branch
demonstrates that the online subcycle and the real-time monitoring process
are asynchronous and decoupled from the offline subcycle and from long-term
analysis. The online subcycle provides an iterative loop where temporally
stored data and metrics can be applied for online training (cf. Section 3.4.3).

6. Data and event transfer: The sixth processing step is the last step of the on-
line subcycle. It is used for synchronization and to transmit temporally stored
data, events, or metrics from the online subcycle into a persistent memory on
the offline subcycle. After the transfer is completed, stored data are deleted
from the temporal storage. However, synopsis information, such as metrics,
can be preserved on the temporal storage. This synopsis information can
be applied for automatic adaptation of online and hybrid training algorithms
for online adaptivity which are related to the online analysis processing step.
Data transmission is optional and not always performed at each pass-through.
It is triggered from time to time on condition that the external network is
available. Amongst others, triggering factors can be near exhaustion of the
temporal storage, change of the system behavior, or detection of anomalies.

3.5.2 Offline Processing Steps

This section discusses processing steps of the offline subcycle which relates to the
offline monitoring process. Figure 19 on page 56 summarizes the identified processing
steps.

7. Persistent storage: The offline subcycle starts with a data source. The
persistent storage is the basis for offline monitoring and long-term analysis.
It includes necessary, compacted, and integrated data as well as events and
metrics. This processing step also takes the quality of the stored data into
account [Ols02]. As depicted in Figure 19 on page 56, it is also possible to
import data from external data sources.

8. Preprocessing: The eighth processing step reflects the selection and trans-
formation of relevant data and events as known from the KDD process model
(cf. Section 2.4). This preprocessing step is supported by human experts and
is used to define the knowledge discovery objectives for both offline and online

54

3.5 KDC Processing Steps

analysis. On one hand, knowledge discovery objectives for offline analysis are
required in case of root cause or long-term analysis. On the other hand, knowl-
edge discovery objectives are required to create or update models for online
analysis appropriately.

9. Offline analysis: The ninth processing step constitutes the core of the offline
subcycle and offline monitoring. Offline analysis is well-known from the KDD
process model. It is used to discover knowledge by means of data mining
and preprocessed data. The offline subcycle works semi-automatically and is
controlled by human experts.

10. Validation: The tenth processing step is directly related to offline analysis.
This validation step can be used by human experts to interpret the discovered
knowledge and to evaluate the results of analysis.

11. Knowledge storage: The knowledge storage includes three tasks. First,
newly derived knowledge must be stored, combined, and integrated with al-
ready existing knowledge. Second, the knowledge is then translated into query
language expressions to obtain rule sets. Third, human experts should anno-
tate the derived knowledge with additional information. A distinction can be
made between two operational methods: evolutionary method and re-launch
method.

• The ’evolutionary method’ is the most common operational method and is
also an evolutionary process. The evolutionary process refers to the ’nor-
mal wear phase’ of the aforementioned bathtub curve (cf. Section 1.2) and
is used to increase knowledge about the target system during the opera-
tional phase. It can be used to obtain an overview of existing knowledge
and information. Newly derived knowledge can be used to evaluate pre-
existing knowledge.

• The ’re-launch method’ starts from scratch without any pre-existing
knowledge. This operational method relates to the ’wear in phase’ and
’wearout phase’ of the the aforementioned bathtub curve (cf. Section 1.2)
and can be used when the system behavior differs totally from pre-existing
knowledge. For example, the re-launch method is useful in the initial
round trip of the KDC directly after the ’dispatch and commissioning
phase’. Moreover, this operational method can be useful when the failure
rate significantly increases during the ’wearout phase’. After the re-launch
method, it is possible to switch back to the evolutionary method in order
to gather new knowledge over time again. For example, this is necessary
after the transition from the ’wear in phase’ to the ’normal wear phase’.

55

3 The Knowledge Discovery Cycle (KDC)

The cyclic process model branches after the eleventh processing step. This
branch indicates that the offline subcycle is asynchronous, decoupled, and in-
dependent from the online subcycle. The offline subcycle provides an iterative
loop to adapt or refine discovered knowledge.

12. Knowledge transfer: The twelfth processing step is the last step of the
offline subcycle and the KDC. It is used for synchronization and to transmit
knowledge from the offline subcycle to the online subcycle. This processing
step reflects reconfiguration, refinement, or adaptation of the online monitoring
process and the online subcycle. Knowledge transfer can affect the following
processing steps of the online subcycle: preprocessing (2), online analysis (3),
actions (4), temporal storage (5), and data or event transfer (6).

Online subcycle

Mobile cyber-physical

system

Offline subcycle

External information

system

Wireless network

2. Preprocessing

4. Actions

3. Online

analysis
Hardware or

software

actions

5. Temporal

storage

6. Data or event

transfer

7. Persistent

storage

External

data
8. Preprocessing

10. Validation
9. Offline

analysis

11. Knowledge

storage

Annotations

12. Knowledge

transfer

1. Streaming

inputs

Figure 19: Processing steps of the KDC (based on [NS13])

56

3.6 KDC Concept Assignments

3.6 KDC Concept Assignments

The KDC is not intended to surrogate the aforementioned monitoring types (cf.
Section 2.10.3). These monitoring types have their justifications. For example,
model-based monitoring and limit monitoring are necessary to provide basic relia-
bility of an MCPS during the normal wear phase (cf. Section 2.10.3). However, it
is hardly possible to apply model-based monitoring and limit monitoring during the
wear in and wear out phases. The KDC is intended to be an additional monitor-
ing approach which combines and improves these monitoring types for monitoring
MCPSs. Therefore, KDD is used to build a preliminary model during the design and
test phases (e.g. by means of a prototype). This preliminary model defines limits
and reflects model-based monitoring and is subsequently translated into rule sets.
These rule sets represent the preliminary knowledge about the MCPS, the system
environment, and the assumed system behavior. Rule sets are applied onto an MCPS
for online monitoring by means of KDDS or IFP. This reflects one-dimensional and
n-dimensional limit monitoring. Based on the aforementioned ’storage-aware stream
model’ (cf. Section 3.4.2), more and more data is collected and transmitted to the
offline subcycle during operation. The offline subcycle is used for knowledge discov-
ery which is used for revision, adjustment, and adaptation of the existing model.
The refined model can be translated into rule sets again and can be used for the
refinement of pre-existing rule sets on the MCPS. Hence, the KDC is a dynamic
and continuous process which includes revision, adjustment, and adaptation during
operation. KDD, KDDS, and IFP provide an appropriate foundation to build a
flexible, adaptable, dynamic and continuous monitoring process.

The contribution is twofold. First, the KDC, including processing steps for a com-
bined KDD and KDDS process model, has been defined. In addition, this section as-
signs the previously identified processing steps to existing concepts which are known
from literature. The assignment is intended to provide a uniform arrangement. This
consideration starts with the offline subcycle and is followed by the online subcycle.
The assignment of concepts is depicted in Figure 20. This section is closely related
to the author’s publication [NS13] (see also [NS12a, NS12b, NSS13b]).

3.6.1 Concepts of the Online Subcycle

This section assigns concepts to the identified processing steps of the online subcycle
which relates to online monitoring.

i. Data stream management: The first and second processing steps are
grouped together. This group is a fundamental setup for data stream man-
agement. Transformations (e.g. noise reduction, time stamp standardization,

57

3 The Knowledge Discovery Cycle (KDC)

or scaling) can be adequately applied by existing data stream query language
expressions which are provided by IFP engines.

ii. Data stream mining/IFP: The third and fourth processing steps are as-
signed with data stream mining and IFP. As previously mentioned, data
stream analysis is an automatic process and previously derived rules sets can
be translated into data stream query language expressions. IFP engines are
intended to derive complex events and it is intended to invoke automatic de-
cisions along with triggering actions.

iii. SDW: The fifth processing step is associated with an SDW which is used to
temporally store the arrived data items. Such an SDW can also be applied
as an upstream staging area which integrates the arrived data items into an
existing data schema.

iv. ETL: The sixth processing step initializes the offline subcycle. An ETL process
is required to synchronize both subcycles. However, it is impossible to make
an explicit distinction between KDD and KDDS at that point.

3.6.2 Concepts of the Offline Subcycle

This section assigns concepts to the identified processing steps of the offline subcycle
which reflects offline monitoring.

v. SDW: The seventh processing step is associated with an SDW. It is required
to store the arriving data items persistently for further processing. However,
it is impossible to make an explicit distinction between KDD and KDDS at
that point.

vi. Data mining and machine learning: Data mining and machine learning is
used to discover knowledge semi-automatically from data, events, and metrics
which are provided by an SDW. This concept assignment refers to preprocess-
ing, offline analysis, and evaluation. Data mining and machine learning as well
as evaluation are controlled by human experts. Since the KDC is a cycle, this
also includes concepts which are known from KDDS. For instance, resource
intensive IFP engines such as MOA [BHKP10], Esper [Esp13], or StreamBase
[Str13]. Furthermore, it is also possible to apply data stream mining algo-
rithms to provide near real-time analysis of DWH or SDW updates.

vii. Archiving: This concept assignment refers to knowledge storage and includes
the integration of evaluated knowledge into a persistent repository. For ex-
ample, the storage of the integrated knowledge can be implemented by an
already existing SDW. Additionally, this concept assignment also includes the

58

3.6 KDC Concept Assignments

representation of knowledge by means of standard CEP vocabularies or se-
mantic ontologies [PVS11]. Moreover, this concept assignment also refers to
the annotation of the discovered knowledge by human experts. Further on, it
is required to translate the discovered knowledge into specific query language
expressions.

viii. Adaption: The adaption is used to refine the online subcycle and refers to the
transmission of the previously discovered knowledge and the resulting queries
to the online subcycle. Adaption reflects offline or hybrid training (cf. Sec-
tion 3.4.3).

Online subcycle

Mobile cyber-physical

system

Offline subcycle

External information

system

Wireless network

2. Preprocessing

4. Actions

3. Online

analysis

5. Temporal

storage

6. Data or event

transfer

7. Persistent

storage

8. Preprocessing
10. Validation

9. Offline

analysis

11. Knowledge

storage

12. Knowledge

transfer

a.

b.

c.

a. HW/SW actions

b. External data

c. Annotations

i
.

D
a

t a
s
t r

e
a

m
m

a n a g e m e n t
i i . D a t a s t r e a m m i n i n g / I F P

i i i .
S

D

W

i
v

.
E

T
L

v
.

S
D

W

v i . D a t a m i n i n g a n d m a c h i n e l e a r n i n g

v
i

i
i

.
A

d
a

p
t
i
o

n

v
i i .

A
r c h i v i n g

K
D
D
S

K
D
D
S
/
K
D
D

K
D
D

1. Streaming

inputs

Figure 20: The KDC with associated concepts (based on [NS13])

59

3 The Knowledge Discovery Cycle (KDC)

3.7 Comparison with Related Work

This section is intended to compare the aforementioned approaches: MOA data
stream classification cycle (cf. Section 2.7), expert systems (cf. Section 2.8), and the
MAPE-K reference model (cf. Section 2.9) with the key challenges for monitoring
MCPSs (cf. Section 1.3). Finally, this comparison is summarized.

3.7.1 MOA Data Stream Classification Cycle

The MOA data stream classification cycle is not a priori a monitoring system, but
it can be used for monitoring. The key challenge ’change’ is considered by the
MOA data stream classification cycle. The MOA data stream classification cycle is
intended to adapt the present model whenever a new item has been caught from
the arriving data stream. The MOA data stream classification cycle considers the
key challenge ’time dependence’. Algorithms which are capable of working in real-
time can be applied. The MOA data stream classification cycle is undoubtedly a
continuous cycle and does not recognize the key challenge ’continuity’. However,
the intention of the key challenge ’continuity’ is the integration of expert knowledge
into the monitoring process continuously during operation. This is not provided
by the MOA cycle. The key challenge ’data processing’ is not considered by the
MOA data stream classification cycle. The intention of the key challenge ’data
processing’ is the processing of transient and persistent data. This is categorically
ruled out by the MOA data stream classification cycle. The key challenge ’autonomy’
is considered by the MOA data stream classification cycle because it is intended to
work autonomously.

3.7.2 Expert Systems

Expert systems are not a priori monitoring systems. However, it is possible to
use an expert system for monitoring. The key challenge ’change’ is considered by
expert systems. Expert systems provide possibilities to adapt the monitoring process
during operation. This could be done by updating the knowledge base. The key
challenge ’time dependency’ is not directly considered by expert systems. Under
certain circumstances, time-critical decisions cannot be appropriately made due to
the internal structure and the complex interrelations between the knowledge base
and the inference engine. Expert systems recognize the key challenge ’continuity’.
It is potentially possible to bring expert knowledge into connection with the current
system behavior during operation. Expert systems do not consider the key challenge
’data processing’. The reason for this appraisal lies in the internal structure of expert
systems. Data streams which arrive at an expert system have to be integrated into
the knowledge base. Subsequently, facts and rules which are already available have

60

3.8 Conclusion

to be updated continuously. Such updates modify the knowledge base significantly.
On that score, a clear distinction between transient and persistent data cannot be
recognized. The key challenge ’autonomy’ is considered by expert systems. Existing
rules can be automatically applied by the inference engine.

3.7.3 MAPE-K Reference Model

The MAPE-K reference model is an autonomic computing architecture which can be
used for monitoring. However, similarities between expert systems and the MAPE-K
reference model can be recognized. The MAPE-K reference model considers the key
challenge ’change’. The acquired sensor readings are used to adapt the autonomic
manager. The key challenge ’time dependence’ is not considered by the MAPE-K
reference model. The reason for this appraisal lies in the internal structure of the
MAPE-K reference model. Under certain circumstances, time-critical decisions can-
not be appropriately made due to the complex structure of the autonomic manager.
The MAPE-K reference model does not consider the key challenge ’continuity’. The
integration of expert knowledge during operation would interrupt the autonomic
manager. The MAPE-K reference model does not consider the key challenge ’data
processing’. It is unclear how the data or the knowledge is integrated by the auto-
nomic manager. On that score, a clear distinction between transient and persistent
data cannot be recognized. The key challenge ’autonomy’ is recognized by the
MAPE-K reference model because it is intended to work autonomously.

3.7.4 Summary

Table 6 summarizes the comparison of the existing approaches with the key chal-
lenges for monitoring MCPSs (cf. Section 1.3). As this table implies, the existing
approaches entail deficits for monitoring MCPSs. On that score, the KDC attempts
to eliminate these deficits (cf. Section 3.2) and to provide an appropriate monitoring
approach.

3.8 Conclusion

As described in Section 1.7 on page 13, this thesis aims to combine KDD with
KDDS for monitoring MCPSs. Therefore, the development of the KDC has been
described in this chapter. Furthermore, requirements for monitoring MCPSs (cf.
Section 3.1) have been identified, characteristics of the KDC (cf. Section 3.2) have
been outlined, and the key challenges for monitoring MCPSs have been compared
with the characteristics of the KDC (cf. Section 3.3). Moreover, a storage-aware
stream model (cf. Section 3.4.2), which extends the pre-existing stream model (cf.
Section 2.6.1) and combines KDD with KDDS for monitoring MCPSs, has been

61

3 The Knowledge Discovery Cycle (KDC)

Approaches

M
O
A
C
y
cl
e

E
x
p
er
t
sy
st
em
s

M
A
P
E
-K

K
D
C

Change ✓ ✓ ✓ ✓

Time dependence ✓ ✗ ✗ ✓

Continuity ✗ ✓ ✗ ✓

Data processing ✗ ✗ ✗ ✓

K
ey
ch
al
le
n
g
es

Autonomy ✓ ✓ ✓ ✓

Table 6: Comparison of the key challenges with existing approaches and the KDC

introduced. Additionally, processing steps for the KDC (cf. Section 3.5) have been
identified, and the KDC has been associated with existing concepts (cf. Section 3.6).
Finally, the KDC has been compared with related work. As a result, the KDC is a
cyclic, dynamic, and abstract arrangement of data processing concepts and attempts
to eliminate existing deficits of pre-existing approaches.

62

CHAPTER 4
Multi-Class Data Stream Anomaly Detection

“The positive heuristic of the programme saves
the scientist from becoming confused by the
ocean of anomalies.”

Imre Lakatos (1922-1974)

Anomaly detection is an interdisciplinary and widely disseminated research area.
In the literature, terms such as outlier detection [RG97] or novelty detection [Bis93]
are used synonymously with the term ’anomaly detection’. The main emphasis of
anomaly detection is to find data subsets or single data items from a set of data
that do not conform to expected behavior. Algorithms for anomaly detection are
commonly borrowed from research areas such as statistics, machine learning, data
mining, or KDD [CBK09] (see also [MS03a, MS03b, HA04, PP07]).

At the beginning, this chapter categorizes conditions of MCPSs into specific system
states [NS12b]. Further on, the basic anomaly detection model used in the present
thesis is introduced. Moreover, techniques for anomaly detection are presented.
Based on this, the problem of anomaly detection, subsequently exemplified by means
of the ISS Columbus air loop (cf. Section 1.4.2), is stated. To develop a solution for
the stated problem, a novel data stream anomaly detection algorithm is presented
which attempts to minimize the average time consumption for a multi-class data
stream anomaly detection approach. Additionally, the algorithm is discussed from
the viewpoint of filtering and a set of selected one-class classifiers which can be used
for anomaly detection are described in detail. Finally, this section is concluded.

63

4 Multi-Class Data Stream Anomaly Detection

4.1 System States

It is necessary to look at the general term ’system states’ in more detail. As stated
by Gordon [Gor72], the term ’system states’ is used to describe the conditions of
a system under consideration of all system components, attributes, and activities
within a specific time period. As described by Kecher [Kec05], the term ’system
states’ defines situations in which certain and precisely defined conditions hold.
However, MCPSs are very complex systems and comprise many system states during
the life-time phases (cf. Section 1.2). This results in the following definition of the
general term in the context of the present thesis. Figure 21 illustrates the fine-
grained division of system states. This section is closely related to the author’s
publication [NS12b].

Definition 4.1 (system states):
The general term ’system states’ abstracts the conditions of an MCPS in order to
abstractly describe the system and its components under consideration of relevant
and well-defined attributes within a specific time period.

Further on, the author of the present thesis subdivides the general term into normal
system states and abnormal system states. Normal system states are system states
that can be interpreted as correct service of an MCPS or a target system during
operation. Abnormal system states are complementary to normal system states, and
it is assumed that an MCPS works incorrectly during operation.

The main emphasis of monitoring MCPSs is on the detection of current system
states. However, the aforementioned division is very preliminary and coarse-grained.
Hence, it is necessary to provide a more detailed division of the general term using
pre-existing knowledge. Consequently, the author of the present thesis subdivides
the terms ’normal system states’ and ’abnormal system states’ into known system
states and unknown system states, respectively. Figure 21 illustrates this subdivi-
sion. Known system states represent knowledge, whereas unknown system states
represent the unawareness about an MCPS. This results into a set of four categories
of system states. For ’normal system states’, these include normal known system
states and normal unknown system states. For ’abnormal system states’, these in-
clude abnormal known system states and abnormal unknown system states. This
subdivision is discussed more precisely in the following descriptions.

4.1.1 Default and Novel States

The term ’normal known system states’ is replaced with the term default states.
If the system is in a default state, it is assumed that the system works correctly

64

4.1 System States

and knowledge about the system behavior exists. Further on, the term ’normal
unknown system states’ is replaced with the term novel states hereinafter. If the
system reaches a novel state, it is assumed that the system works correctly, but no
knowledge about the system behavior exists. For example, novel states can occur due
to system reconfiguration or as a result of the replacement of system components.

4.1.2 Irregular, Error, and Anomaly States

The term irregular states is used synonymously with the term ’abnormal unknown
system states’. If the system reaches an irregular state, no knowledge about the
system behavior exists . Moreover, the term error states is used synonymously with
the term ’abnormal known system states’. If the system reaches an error state, it is
assumed that the system works incorrectly and knowledge about the faulty system
behavior exists.

As depicted in Figure 21, it is not always possible to differentiate between ’novel
states’ and ’irregular states’. Accordingly, novelty and anomaly detection techniques
are often synonymously used in the literature [CBK09]. Thus, human experts must
be involved in order to interpret if the current system state relates to a novel or to an
irregular state. For the sake of clarity the term ’anomaly states’ is used hereinafter
to describe both situations.

System states

Normal system states Abnormal system states

known unknown unknown known

Default states Novel states Irregular states Error states

Anomaly states

Figure 21: A set of system states (based on [NS12b])

65

4 Multi-Class Data Stream Anomaly Detection

4.2 Basic Anomaly Detection Model

A vector space S = R
n [Bel61] and the cluster assumption [See00] are the basic

foundations of anomaly detection models. A vector space S is spanned by a set of n
∈ N mutually independent or orthogonal vectors which are represented by attributes
of the target system {A1, ... , An}. Thus, the variable n denotes the number of
selected attributes. A multi-class anomaly detection problem is based on a set of
known classes Ω = {ω1, ω2, ..., ωh} with h ∈ N that can be interpreted as bounded
regions ωi ⊆ S with i = {1 .. h}. These classes represent expert knowledge about the
system states of an MCPS. A multi-class anomaly detection problem corresponds
to the detection of the anomaly class ΩC = S\

⋃

i ωi. The anomaly class represents
the unawareness about the system states. Attribute values are functions over time
T , i.e. values of Ai with i = {1 .. n} are values of ai : T → R. For the present
thesis, the time is denoted as an index and not as an attribute. Consequently, state
transitions are not considered, and an unlabeled data item (vector) with index τ
∈ T is represented as sτ = (aτ,1 aτ,2 ... aτ,n)

′ where sτ ∈ S [NSS13a].

Figure 22 depicts a two-dimensional vector space which comprises two selected at-
tributes: A1 and A2. Moreover, Figure 22 contains the three classes: ω1, ω2, and
ω3. Additionally, three anomalies are illustrated which are located outside of these
three classes or bounded regions.

Anomalies as

elments of

Ω
C

ω1

ω 2

ω 3*

*
*

A2

A1

Figure 22: A multi-class anomaly detection problem (based on [CBK09])

66

4.3 Anomaly Detection Techniques

4.3 Anomaly Detection Techniques

A variety of anomaly detection techniques exists. Amongst others, these include
classification-based, nearest neighbor (NN)-based, clustering-based, and statistical
anomaly detection [CBK09].

4.3.1 Classification-based

Classification-based anomaly detection operates in a similar fashion to classification
(cf. Section 2.5.2). The general assumption states: “A classifier that can distinguish
between normal and anomalous classes can be learned in the given feature space.”
[CBK09, p. 19]. As depicted on the left (i) in Figure 23, classification-based anomaly
detection attempts to find minimal boundaries around the present classes.

Classification (cf. Section 2.5.2) can be interpreted as h-class classification. The
variable ’h’ denotes the number of known classes h = |Ω|. An unlabeled data item
is assigned to one of the present classes in any case. In contrast, classification-based
anomaly detection can be interpreted as h+1-class classification. The extension ’+1’
represents the complement ΩC or an anomaly state. Data items which cannot be as-
signed to the present classes are declared as anomalies. Classification-based anomaly
detection techniques are commonly grouped into two categories: MCC anomaly de-
tection and OCC anomaly detection [CBK09].

Multi-class Classification Anomaly Detection

As depicted on the left in Figure 23 (i), MCC anomaly detection techniques are based
on the assumption that the training data contain labeled data items and that each
data item belongs to exactly one of several known classes [DSSV00]. MCC anomaly
detection techniques, which train a single classifier to distinguish between set of
known classes and the complement, are called homogeneous multi-class anomaly
detection hereinafter.

One-class Classification Anomaly Detection

In OCC anomaly detection, only one known class exist. As depicted on the right in
Figure 23 (ii), OCC anomaly detection assumes that all data items of the training
data entail only one class label. Accordingly, a discriminative boundary around
the present class is trained using an OCC algorithm. An unlabeled data item that
cannot be assigned to the trained boundary is an anomaly.

67

4 Multi-Class Data Stream Anomaly Detection

ii. OCCi. MCC

*

*

*

*

*Anomalies as

elments of

Ω
C

ω1

ω 2 ω 3
ω1

Anomalies as

elments of

Ω
C

A2

A1 A1

A2

*

Figure 23: MCC (i.) versus OCC (ii.) anomaly detection (based on [CBK09])

4.3.2 Nearest Neighbor-based

As with others, NN-based anomaly detection techniques require a distance or sim-
ilarity measure between two data items. The general assumption states: “Normal
data instances [items] occur in dense neighborhoods, while anomalies occur far from
their closest neighbors.” [CBK09, p. 22]. There are different ways to compute the
distance or similarity between two data items which are discussed later.

4.3.3 Clustering-based

Clustering-based anomaly detection techniques are grouped by means of two as-
sumptions. These assumptions are discussed as follows.

• The first assumption states: “Normal data instances [items] belong to a cluster
in the data, while anomalies do not belong to any cluster.” [CBK09, p. 27].
Algorithms which refer to this assumption employ a clustering algorithm (cf.
Section 2.5.2) to the data. A data item that cannot be assigned to one of the
present clusters is declared as anomalous. A disadvantage of these algorithms
is that they attempt to find clusters and are not optimized to find anomalies.

• The second assumption states: “Normal data instances [items] lie close to their
closest cluster centroid, while anomalies are far away from their closest cluster

68

4.4 Data Stream Anomaly Detection Algorithms

centroid.” [CBK09, p. 27]. Anomaly detection techniques which rely on this
assumption consist of two steps. First, the data is clustered and second, for
each data item the distance to its closest cluster centroid is calculated as its
anomaly score.

4.3.4 Statistical

For statistical anomaly detection, a statistical model (usually by known system
states) is generated using the present data. This model is used to apply a statistical
inference test to determine if an unlabeled data item fits to it or not. Data items
which are subject to a low probability of being generated from the trained model
are declared as anomalies. The general assumption states: “Normal data instances
[items] occur in high probability regions of a stochastic model, while anomalies occur
in the low probability regions of the stochastic model.” [CBK09, p. 29].

4.4 Data Stream Anomaly Detection Algorithms

This section aims to provide a brief overview on existing data stream anomaly de-
tection algorithms. As mentioned earlier, a widely recognized survey on anomaly
detection is provided by Chandola et al. [CBK09]. To the best of the author’s knowl-
edge, currently a widely recognized survey on data stream anomaly detection does
not exist. However, preliminary surveys, such as the survey contributed by Singh et
al. [SS13], exist.

An anomaly detection approach, which is called fast rank-Adaptive row-householder
subspace tracking [dSTM10], is a rank-adaptive algorithm for fast principal subspace
tracking. It works in an unsupervised manner and is used to identify anomalies in
streaming data of low dimensions. Therefore, the subspaces are built using dimen-
sionality reduction. Observed data that cannot be sufficiently explained by the
current model is considered anomalous.

Another anomaly detection approach is called online novelty and drift detection algo-
rithm (OLINDDA) [SdLFdCG07]. OLINDDA implements a cluster-based approach
for detecting novel classes and gradual change. By default, OLINDDA works in an
unsupervised manner and uses the k-means clustering algorithm [Bis06] to identify
unknown clusters. The OLINDDA algorithm is an offline training method and is
online adaptive.

A very fast decision tree for one-class classification of data streams has been de-
scribed by Li et al. [LZL09]. During the training phase, this algorithm constructs
a tree forest, and then the best tree is chosen as the final output classifier. This
approach is an extension of Hoeffding trees (HT) [DH00]. The HT approach is an in-
duction algorithm for decision trees. The HT approach is an online training method

69

4 Multi-Class Data Stream Anomaly Detection

which is trained incrementally and aims to process high-speed data streams. This
algorithm is based on the assumption that the probability distribution of the data
items, which refer to the present classes, do not change over time. In the literature,
HT are also known as very fast decision trees.

An anomaly detection method which uses ensembles of streaming half-space trees
(HST) has been described by Tan et al. [TTL11]. A HST is a binary tree where
each node is used to capture a number of data items within a particular subspace of
the data stream. The HST method aims to be a fast one-class anomaly detector for
evolving data streams and requires only ’normal’ data, which excludes the anomaly
class, for training and retraining of the anomaly detection model. The used one-class
classifier separates the vector space by means of hyperplanes which are parallel to the
axes. It is an online training method which is also online adaptive (cf. Section 3.4.3).
The model is retrained continuously at the end of a window with a specific size (cf.
Section 2.6.6). However, multi-class classification is not supported.

Another algorithm is called multi-class learning algorithm for data streams (MINAS)
[FGC13]. Amongst others, the MINAS algorithm takes data stream multi-class clas-
sification and novelty detection into account. This algorithm provides two training
phases: online and offline. The offline training phase is executed only once and is
used to train the decision model. Therefore, the k-means clustering algorithm is
used in order to train the decision model. The online training phase is used to clas-
sify a data item either as one of the known classes or as unknown. If a previously
defined number of data items is classified as unknown, the MINAS algorithm applies
a clustering algorithm in order to discover new classes.

Masud et al. [MGK+11] have described an algorithm which takes classification and
novel class detection into account. This approach is applied on two different classifi-
cation techniques: decision tree and k-nearest neighbor. The algorithm is an online
training method, and the initial classifier is trained by a chunk of labeled data items.
In order to provide novel class detection, this algorithm entails several buffers. The
algorithm tries to classify an unlabeled data item. Data items which cannot be
classified immediately are stored in a buffer for future processing. Already classified
data items are used to retrain the model.

4.5 Example - ISS Columbus Air Loop

Concerning the aforementioned real world scenario (cf. Section 1.4), Figure 24 de-
picts a data set that relates to the IRFA with three selected attributes: speed, cur-
rent, and pressure (cf. Section 1.4.3). The data set comprises seven known classes
Ω = {ω1, ω2, ..., ω7} and one anomaly class ΩC. Each of the known classes is as-
sociated with a specific system state (cf. Section 4.1) of the IRFA. The values in

70

4.5 Example - ISS Columbus Air Loop

the round brackets denote the number of data items. The values of the attributes
are ratio scaled (cf. Section 2.2.2), and the data set was previously clustered by hu-
man experts. To obtain an appropriate training data set, the data is preprocessed,
normalized, scaled, and relevant state vectors are selected.

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−0.5

0

0.5

1

1.5

2

2.5

3

Pressure [kilopascal]

ω
1

ω
2

ω
5

ω
3

ω
4

ω
6

ω
7

Speed [10000/min]

C
u

rr
en

t
[a

m
p

er
e]

Class ω
1
 (|ω

1
|=168)

Class ω
2
 (|ω

2
|=43)

Class ω
3
 (|ω

3
|=144)

Class ω
4
 (|ω

4
|=136)

Class ω
5
 (|ω

5
|=3478)

Class ω
6
 (|ω

6
|=743)

Class ω
7
 (|ω

7
|=1779)

Anomalies Ω
C

 (|Ω
C

|=487)

Figure 24: IRFA training data

71

4 Multi-Class Data Stream Anomaly Detection

For example, class ω1 relates to an error state where the speed of the IRFA is unusu-
ally increased. Class ω5 refers to a default state where the IRFA works as expected.
Class ω7 describes another default state where the IRFA is turned off. Obviously,
the shapes or geometrical interpretations of these classes are very heterogeneous.

4.6 Problem Statement

According to the key challenges of monitoring MCPSs (cf. Section 1.3), the monitor-
ing objectives (cf. Section 2.10.4), and the requirements for monitoring MCPSs (cf.
Section 3.1), it is possible to identify three main problems for data stream anomaly
detection in order to monitor MCPSs. These include time-efficiency, adaptability,
and heterogeneity.

1. Time-efficiency: With respect to the key challenge ’time dependence’ and
the requirement ’time’, very fast data stream anomaly detection algorithms are
required. The time-efficiency relates to the time complexity which is required
to process an unlabeled data item. However, only a few studies on time-efficient
data stream algorithms have been done so far.

2. Adaptability: With respect to the key challenges ’change’ along with ’conti-
nuity’ and the requirement ’knowledge’, the shape of the previously identified
classes can change during operation. Consequently, it is necessary to adapt
the underlying model of the applied anomaly detection approach during op-
eration. Depending on the required monitoring approach, different training
methods (cf. Section 3.4.3) can be necessary.

3. Heterogeneity: An MCPS is subject to a variety of system states, and the
shape of the present classes that must be approximated can diverge widely.
Thus, the geometrical interpretations are heterogeneous. Consequently, a mon-
itoring task is a heterogeneous multi-class anomaly detection problem, and data
stream anomaly detection techniques must identify a large number of system
states during operation in order to monitor MCPSs.

4.7 Solution Statement

In order to address the aforementioned problem statement, an approximated solution
of a present heterogeneous multi-class anomaly detection problem is required. This
solution must be time-efficient and reasonably precise. The author of the present
thesis therefore introduces a new data stream anomaly detection algorithm, which
uses a distinct and optimized class detector for each of the known classes. This dis-
tinct and optimized class detector is called a dichotomous class detector hereinafter.
A dichotomous class detector is independent from the underlying anomaly detection

72

4.7 Solution Statement

technique (cf. Section 4.3). A dichotomous class detector provides two mutually
exclusive decisions. It returns true (ωi) if an unlabeled data item was assigned
to a class and returns false (ωC

i) otherwise. Thus, the heterogeneous multi-class
anomaly detection problem becomes a set of binary decisions and falls apart into a
set of simple anomaly detection problems [NSS13a]. With regards to the aforemen-
tioned example (cf. Section 4.5), the heterogeneous multi-class anomaly detection
problem comprises h = 7 dichotomous class detectors.

The set of dichotomous class detectors must be combined in an appropriate manner
to solve a heterogeneous multi-class anomaly detection problem time-efficiently. As
depicted in Figure 25, the author of the present thesis introduces a consecutive
arrangement of these dichotomous class detectors by a detector chain. For the sake
of simplicity, the notation of the classes is used to identify the associated class
detectors. The brackets around the index state that the order of the dichotomous
class detectors refers to a permutation. The aforementioned problem statement is
discussed as follows.

1. Time-efficiency: The resulting detector chain provides a very flexible struc-
ture due to permutation of the present dichotomous class detectors. Addi-
tionally, the administrative overhead is reasonably low. Such a chain offers
numerous capabilities for minimizing the processing time.

2. Adaptability: During operation, it is easily possible to add, delete, and adapt
dichotomous class detectors of the detector chain. Further on, such a detector
chain provides the ability to easily rearrange the order of the present class
detectors which leads to a set of permutations.

3. Heterogeneity: Each dichotomous class detector in the chain is optimized
for a single anomaly detection problem and fits best, depending on the under-
lying anomaly detection technique, to the associated class. Thus, the anomaly
detection approach becomes very accurate while the anomaly detection per-
formance is also improved.

Since each dichotomous class detector provides a discriminative boundary, it is possi-
ble to identify a combining mechanism (cf. Section 2.5.3). The author of the present
thesis has decided to use the OAR-based combining mechanism because a discrimi-
native boundary is trained between the target class and the other classes, including
the anomaly class. To the best of the author’s knowledge, no substantial research
has been conducted so far to study OAR-based data stream anomaly detection. The
presented approach is based on the following two main assumptions.

1. Disjointness: To achieve a distinct anomaly detection result, the geometrical
interpretation of the present classes must be disjoint. Consequently, a chain of

73

4 Multi-Class Data Stream Anomaly Detection

disjointed class detectors leads to a distinct result for a heterogeneous multi-
class anomaly detection problem.

2. Independence: The present dichotomous class detectors are independent
from one another and can be rearranged into different orders (permutations).

The termination condition of such an OAR-based multi-class anomaly detection ap-
proach entails two possibilities. First, the algorithm terminates when an unlabeled
data item has been accepted by a class detector. At most, one of the class detectors
yields true due to disjointedness. Second, the algorithm terminates when all class
detectors fail. As depicted in Figure 25, the worst case scenario relates to the sit-
uation when an unlabeled data item has to be processed by all of the present class
detectors. Thus, the worst case relates to a very long runtime of the algorithm.
In the following, possibilities to minimize the processing time of the suggested het-
erogeneous multi-class anomaly detection approach are discussed. This section is
closely related to the author’s publication [NSS13a].

ω(1)

True True

False

True

. . .

Worst

case

FalseFalse

Detector
ω(2)

Detector
ω(h)

Detector

ω(1)
C

ω(1)
C
∩ω(2)

C Ω
C

Figure 25: Detector chain (based on [NSS13a])

4.7.1 Minimizing the Processing Time on Average

The main disadvantages of such a detector chain relates to the time consumption
until the termination conditions has been reached. The reduction of the overall
processing time can also help to reduce power consumption. The time and power
consumptions relate to the requirement ’restricted system resources’ (cf. Section 3.1)
and must be as low as possible. Accordingly, the main purpose is to minimize the
overall processing time which is consumed by a detector chain to solve a heteroge-
neous multi-class anomaly detection problem.

Due to the consecutive application of the dichotomous class detectors, an OAR-
based anomaly detection approach becomes to a sequential search problem. Further
information about sequential searching is provided by Knuth [Knu98]. Each dichoto-
mous class detector entails a processing time ti, which is assigned to a probability
of occurrence pi and refers to a specific class ωi. It is initially assumed that only

74

4.7 Solution Statement

one data item is processed at a time. The absolute processing time depends on a
specific target machine. The present dichotomous class detectors can be rearranged
into h! many different permutations, and the intention is to find the permutation
which minimizes the overall processing time on average. This is called the optimal
permutation hereinafter.

With regards to a set of training data X tr, it is possible to estimate the probabilities
of occurrence for each class pi, where p1 + p2 + ...+ ph + ph+1 = 1. The probability
ph+1 = 1 −

∑h
i pi refers to the complement of known classes (anomaly class). The

probabilities, which refer to a known class, are assigned to the corresponding class
detectors and can be estimated as follows.

pi =
|
{

sτ ∈ X tr ∧ sτ ∈ ωi
}

|

|X tr|
(4.1)

Based on these estimates, it is possible to select a permutation so that the termina-
tion condition is reached as early as possible for the majority of the unlabeled data
items. According to Knuth [Knu98], it can be achieved when the class detectors are
sorted in a descending order by the estimated probabilities.

p1 ≥ p2 ≥ · · · ≥ ph (4.2)

However, the main disadvantage is that the individual processing times of the di-
chotomous class detectors were not taken into account. Consequently, the author
of the present thesis integrates the probability of occurrence as product with the
processing time. Due to the consecutive chain of class detectors, the cumulative
processing time t̃(i) of a dichotomous class detector relates to the sum of the previ-
ously executed class detectors. This relationship refers to the expected value µρ of
a permutation ρ (l = {1...h!}). When the processing times of all present dichoto-
mous class detectors are equal t(1) = t(2) = ... = t(h), this reduces to (4.2). Since
ζ= t̃h · ph+1 is a constant, it does not effect the ordering and can also be neglected.

t̃(i) =
i

∑

j=1

t(j), µρl
= ζ +

h
∑

j=1

p(j) · t̃(j) (4.3)

The optimal permutation provides the minimal average processing time as long as
the probability distribution holds. The empirical calculation of the minimal expected
value represents a feasible solution. However, this solution is very resource intensive
due to the calculation of h! many permutations. Accordingly, the author of the
present thesis introduces the following theorem which is based on the descriptions
provided by Smith [Smi56] and Knuth [Knu98].

75

4 Multi-Class Data Stream Anomaly Detection

Theorem 1. Let p(i), t(i) and t̃(i) be as defined above. The arrangement of the
dichotomous class detectors in an OAR-based detector chain is optimal if

p(1)

t(1)
≥

p(2)

t(2)
≥ · · · ≥

p(h)

t(h)
. (4.4)

In other words, the optimal permutation, which provides the minimal expected value
over all permutations ρ, provides the minimal average processing time if (4.4) holds.

Proof. Suppose that p(i) · t̃(i) and p(i+1) · t̃(i+1) are interchanged and a permutation
changes from

· · · + p(i) · t̃(i) + p(i+1) · t̃(i+1) + · · · (4.5)

to
· · · + p(i+1) · (t̃(i+1) − t(i)) + p(i) · t̃(i+1) + · · · . (4.6)

This results in a change of the expected processing time by p(i) · t(i+1) − p(i+1) · t(i).
Under the given assumptions, it follows that the change from (4.5) to (4.6) increases
the processing time. Consequently, the permutation (4.6) is not optimal and (4.4)
holds for any optimal permutation.

It has been shown that the optimal permutation, which provides the minimal ex-
pected value, is locally optimal, and adjacent interchanges lead to no further im-
provements. Furthermore, it is necessary to show that the permutation is globally
optimal. Following the description of Knuth [Knu98], two more proofs are consid-
ered.

First proof. The first proof is based on a computer science approach. Assume that
(4.4) holds and consider that the dichotomous class detectors are sorted as follows:
ω(1), ω(2), ..., ω(h+1). Starting from any arbitrary permutation, such an arrangement
can be achieved by using a sequence of interchanges so that each interchange replaces
..., ω(j), ω(i), ... by ..., ω(i), ω(j), ... for some i < j. This decreases the overall processing
time on average by the non-negative amount p(i) · t(j) − p(j) · t(i). Thus, the optimal
permutation, which provides the minimal expected value, also provides the minimal
average processing time.

Second proof. The second proof uses a mathematical trick (“tie-breaking”) which
considers the case when some of the quotients of (4.4) are equal. In this case,
more than one optimal permutation exists and a solution which excludes equality is
sought. Accordingly, each probability p(i) is replaced by

p(i)(ǫ) = p(i) + ǫi − ǭ, (4.7)

76

4.7 Solution Statement

where ǫ is a really small positive number (ǫ ∈ R>0) and ǭ denotes the mean value
ǭ = (ǫ1 + ǫ2 + ... + ǫh)/(h). This replacement assures the main assumption of the
probability theory p(1)(ǫ) + p(2)(ǫ) + ... + p(h)(ǫ) = 1.

In case ǫ is sufficiently small, it can be excluded that x1p1(ǫ) + · · · + xhph(ǫ) =
y1p1(ǫ) + · · · + yhph(ǫ) unless x1 = y1, ..., xh = yh. Consequently, equality will not
hold in (4.4). When considering all h! permutations of the present class detectors,
it is obvious that there is at least one optimal permutation which satisfies (4.4).
Although, due to the exclusion of equality, only one permutation satisfies (4.4), and
the Theorem 1 uniquely characterizes the optimal arrangement of class detectors
for the probabilities p(i)(ǫ), whenever ǫ is sufficiently small. By continuity, this also
holds if ǫ is set equal to zero.

4.7.2 Filter Function

The previous section discusses possibilities to find an optimal permutation which
minimizes the overall processing time for the majority of unlabeled state vectors on
average. However, the main problem remains: in order to classify an unlabeled state
vector, a large number of dichotomous class detectors must be processed. Thus, the
entire detector chain must be processed in the worst case scenario, and the overall
processing time is relatively high.

In the following outline an additional filter function, which aims to further minimize
the overall processing time of an already optimal ordered detector chain (optimal
permutation), is discussed. This already optimal ordered detector chain is called
origin chain ρorigin hereinafter.

Motivation and Conditions

One possibility to further minimize the overall processing time refers to a filter
function which excludes dichotomous class detectors time-efficiently from an origin
chain. Accordingly, the filter function intends to find dichotomous class detectors
in an origin chain so that the found dichotomous class detectors can be excluded
without processing. As a result, two detector chains are derived. The first derived
detector chain contains excluded dichotomous class detectors. These excluded di-
chotomous class detectors need no further processing and are not further considered.
The second derived detector chain contains pre-selected or candidate dichotomous
class detectors. This second detector chain is called candidate chain hereinafter.

77

4 Multi-Class Data Stream Anomaly Detection

Thus, the filter approach is a function ffilter which maps the origin chain ρorigin to
a candidate chain ρcandidate.

ffilter : ρorigin → ρcandidate (4.8)

The filter function comprises the following three possible outcomes: equality, re-
duction, or emptiness. The corresponding processing time of the filter function is
denoted as tfilter, the corresponding overall processing time of the origin chain is
denoted as torigin, and the overall processing time of the candidate chain is denoted
as tcandidate. The aforementioned outcomes are discussed below.

1. Equality: If none of the dichotomous class detectors is excluded, the origin
detector chain and the candidate chain are equal ρcandidate = ρorigin. Accord-
ingly, the overall processing time also equals tcandidate = torigin.

2. Reduction: If some of the dichotomous class detectors are excluded, the
candidate chain contains a reduced number of dichotomous class detectors
|ρcandidate| < |ρorigin| which must be processed. Accordingly, the overall pro-
cessing time is reduced to tcandidate < torigin.

3. Emptiness: If all of the dichotomous class detectors are excluded, the can-
didate chain is empty, and the number of dichotomous class detectors, which
must be processed, is equal to zero |ρcandidate| = 0. Accordingly, the overall
processing time is reduced to tcandidate = 0, and the algorithm terminates im-
mediately. In this case, an unlabeled state vector cannot be assigned to any
of the known classes and is directly classified as an anomaly.

In addition, the author of the present thesis introduces the following theorem.

Theorem 2. Let p(i), t(i) and t̃(i) be as defined above. The candidate chain is still
in optimal order when an applied filter function excludes one or more dichotomous
class detectors out of an origin chain and the order is not changed.

ffilter :

(

· · ·
p(i)

t(i)
≥

p(i+1)

t(i+1)
≥

p(i+2)

t(i+2)
· · ·

)

→

(

· · ·
p(i)

t(i)
≥

 p(i+1)

t(i+1)
≥

p(i+2)

t(i+2)
· · ·

)

(4.9)

Proof. Suppose that the following origin chain is in optimal order and the summand
p(i+1) · t̃(i+1) is excluded. Accordingly, the permutation changes from

· · · + p(i) · t̃(i) + p(i+1) · t̃(i+1) + p(i+2) · t̃(i+2) + · · · (4.10)

78

4.7 Solution Statement

to
· · ·+ p(i) · t̃(i) + p(i+2) · (t̃(i+2) − t(i+1)) + · · · . (4.11)

The probabilities do not change, and the relation of the cumulative processing times
is preserved since the excluded processing time is subtracted from all of the following
summands. Consequently, adjacent interchanges lead to no further improvements,
and the presented Theorem 2 holds in any case.

In accordance with the presented Theorem 2, the filter function is subject to the
following two requirements.

1. The filter function must ensure that an unlabeled state vector does not belong
to a class which refers to an excluded dichotomous class detector.

2. The filter function must ensure that the ordering of the dichotomous class
detectors is not changed.

Filter Approach

The previous section motivates and defines two requirements for the usage of a filter
function. This section intends to present a specific filter function which takes the
defined conditions into account.

The author of the present thesis introduces a filter function which aims to com-
pletely enclose each of the dichotomous class detectors by an additional discrimina-
tive boundary. As depicted in Figure 26, a set of hyperspheres is used. A single
hypersphere is centered around each class. A single hypersphere bi provides a cen-
troid ci and a radius ri. In general, the centroid is defined as follows.

ci =

∑

τ

{

sτ ∈ X tr ∧ sτ ∈ ωi
}

| {sτ ∈ X tr ∧ sτ ∈ ωi} |
(4.12)

Moreover, it is necessary to define a radius. The presented filter function necessitates
the maximum Euclidean distance from the centroid of the hypersphere to the bound-
ary of the underlying dichotomous class detector. Consequently, it is concluded that
a hypersphere binds an underlying dichotomous class detector minimally.

Contrary to the underlying dichotomous class detectors, these hyperspheres need
not to be disjoint. Hence, a filter function can select a set of candidate dichotomous
class detectors.

79

4 Multi-Class Data Stream Anomaly Detection

d i(s τ
, c i)

*

c3

c1

c2

r1

r2

r3

b1

b 3

b 2

Figure 26: Filter function based on hyperspheres

To process an unlabeled data item sτ , the Euclidean distances to all of the hy-
persphere centers di(sτ , ci) must be calculated. An underlying dichotomous class
detector becomes a candidate if the calculated Euclidean distance is less than or
equal to the radius of the referring minimal bounding hypersphere. This is defined
as follows.

ωi ∈ ρcandidate, if di(sτ , ci) ≤ ri (4.13)

The aforementioned requirements are fulfilled by the presented filter function. The
first requirement is ensured due to the application of a minimal bounding hyper-
sphere. If a dichotomous class detector is excluded, it is impossible that an unlabeled
state vector belongs to the referring class. The second requirement is also ensured.
Since the presented filter function works in a first in, first out manner, it does not
change the given order of the dichotomous class detectors.

In order to achieve an appropriate filter result, the author of the present thesis
defines the filter function as a function that is executed before the processing of the
candidate chain starts.

Furthermore, the filter function should ensure that the overall processing time is
effectively reduced tfilter+tcandidate ≤ torigin. However, it is very difficult to estimate if
the overall processing time is effectively reduced by a filter function. For example, the
presented filter function ensures that the processing time is effectively reduced when
all minimal bounding hyperspheres are disjoint or only a small set are joint. With an

80

4.7 Solution Statement

increasing number of joint minimal bounding hyperspheres, the filter function can no
longer ensure that the overall processing time is effectively reduced. The probability
that hyperspheres are joint increases in high dimensional spaces. Consequently, the
presented filter function must be empirically tested (e.g. by means of the training
data set) if it ensures that the overall processing time is effectively reduced.

Moreover, the processing time of the filter function tfilter should be very small. The
processing time of the presented filter function is very small since only the Euclidean
distances to the hypersphere centers must be calculated. To further reduce the
processing time of the presented filter function, it is also possible to estimate the
distance of an unlabeled state vector to the hypersphere centers by using the triangle
inequality [Sam05].

Filter Example

Figure 27 depicts the presented filter approach by means of the example data set (cf.
Section 4.5). For better illustration, only three minimal bounding hyperspheres b4,
b5, and b6 are depicted. These hyperspheres relate to the three classes ω4, ω5, and
ω6. The remaining four hyperspheres b1, b2, b3, and b7, which relate to the classes
ω1, ω2, ω3, and ω7, are disjoint.

As mentioned earlier, it is not necessary that the hyperspheres of the presented filter
approach are disjoint. For example, the hyperspheres b4 and b5 are intersecting, and
an intersecting plane exists. The hypersphere b6 lies within the hypersphere b5.
More precisely, it is completely enclosed by the hypersphere b5. The hyperspheres
b4 and b6 are disjoint.

In the following description, three issues are discussed in detail. These issues are
exemplified by the state vectors s1, s2, and s3.

Based on the current example, the filter function delivers an empty candidate chain
when all distances, from an unlabeled state vector to the hypersphere centers, are
greater than the radii of the hyperspheres. This issue is exemplified in Figure 27
by means of the state vector s1. Hence, the state vector s1 refers to an anomaly
state, and the overall processing time, in the worst case scenario, is significantly
reduced.

Furthermore, the filter function delivers a candidate chain with one candidate di-
chotomous class detector if the distance between an unlabeled state vector and one
center of a hypersphere is less than or equal to the referring radius. In Figure 27,
this issue is depicted by means of the state vector s2. Thus, the overall processing
time, in the worst case scenario, is significantly reduced.

81

4 Multi-Class Data Stream Anomaly Detection

Moreover, the filter function delivers a candidate chain which contains more than
one candidate dichotomous class detector when more than one distance between an
unlabeled state vector and the centers of the hyperspheres is less than or equal to the
referring radii. In Figure 27, this issue is depicted by means of the state vector s3.
The maximum number of candidate dichotomous class detectors in a candidate chain
is two. Thus, the overall processing time, in the worst case scenario, is significantly
reduced.

0
0.2

0.4
0.6

0.8
1

0.4
0.6

0.8
1

1.2
1.4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Pressure [kilopascal]

b
5

b
4

b
6

Speed [10000/min]

s
1

C
u
rr

en
t

[a
m

p
er

e]

Class ω
4
 (|ω

4
|=136)

Class ω
5
 (|ω

5
|=3478)

Class ω
6
 (|ω

6
|=743)

Examples (s
1
,s

2
,s

3
)

s
2

s
3

Figure 27: Filter example with three hyperspheres

82

4.8 One-class Classification for Anomaly Detection

4.8 One-class Classification for Anomaly Detection

So far, the problem of heterogeneous multi-class anomaly detection was treated on
an abstract level. Therefore, it is required to identify a set of algorithms which
provide the ability to implement the above stated assumptions. The author of the
present thesis suggests to use one-class classifiers [Tax01] which are well suited to
the given challenges. Amongst others, versatile performance studies of one-class
classifiers have been contributed by Janssens et al. [JFP09] and Brereton [Bre11].

As stated by Tax [Tax01], each one-class classifier algorithm comprises two distinct
elements: a distance or a resemblance of a data item to a class and a threshold θ on
this distance or resemblance. The threshold is used to define a one-class classifier
as a dichotomous class detector. The following one-class classifiers are described
below: Gaussian distribution, k-centers, nearest neighbor, and support vector domain
description (SVDD) [TD99b]. In order to prepare example figures, the DDTools
[Tax12] and the PRTools [DJP+07] MATLAB [Mat14] packages have been partly
used.

4.8.1 Gaussian Distribution

The Gaussian distribution [Bis06], also known as the normal distribution, is the basis
for a Gaussian one-class classifier [Tax01]. A Gaussian one-class classifier refers to
statistical anomaly detection (cf. Section 4.3.4). Advantages and disadvantages are
discussed below.

• Advantages: The Gaussian one-class classifier is a very simple OCC ap-
proach. It is an appropriate algorithm when the referring data set is Gaussian
distributed. Classification consumes very few system resources and is very
fast.

• Disadvantages: It is preconditioned that the data set is Gaussian distributed.

The multivariate Gaussian distribution in particular is examined below. For an
n-dimensional (number of attributes) state vector sτ , the multivariate Gaussian
distribution N is defined as follows.

N (sτ |µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{

−
1

2
(sτ − µ)′Σ−1(sτ − µ)

}

(4.14)

The vector µ entails the expected values of the individual attributes, the symbol Σ
refers to a covariance matrix, the symbol π denotes the ratio of the circumference of
a circle to its diameter, and the symbol |Σ| describes the determinant of Σ. From

83

4 Multi-Class Data Stream Anomaly Detection

the exponent of the multivariate Gaussian distribution follows the Mahalanobis dis-
tance [Mah36] from an unlabeled state vector sτ to µ. The Mahalanobis distance
dMahal(sτ , µ) is a distance measure. It is translationally invariant and is a general-
ization of the Euclidean distance. The squared Euclidean distance is obtained when
the matrix Σ equals the identity matrix.

When a set of training data is used to create such an one-class classifier, the expected
values are unknown. Accordingly, it is necessary to estimate the expected values by
an arithmetic mean x̄ [OSB+72], and it follows x̄ ≈ µ. The vector x̄ constitutes a
center, which is also called centroid, of the data set. Further on, each state vector in
the training data must be normalized sτ − x̄ and finally it is possible to estimate the
covariance matrix Σ from the training data (see also [KM83, JW92, Bis06, DD09,
Han10]). The Mahalanobis distance is defined as follows.

dMahal(sτ , x̄) =
√

(sτ − x̄)′Σ−1(sτ − x̄) (4.15)

Classification

To classify an unlabeled state vector, it is necessary to define a threshold θMahal.
There are several possibilities for this. One feasible solution is to use one of the
quantiles Q of the density function. This results in the following decision function.

sτ ∈

ω, if dMahal(sτ , x̄) ≤ θMahal

ωC, else
(4.16)

Since only the distance from an unlabeled state vector to the centroid must be cal-
culated, the processing effort is relatively low. It is necessary to store the threshold
θMahal along with the vector which defines the centroid x̄. Thus, the memory usage
is also relatively low.

Example

As a geometrical interpretation, the elliptic shape of the Gaussian distribution or
Mahalanobis distance follows from the covariance matrix Σ. Thus, the training data
set is bounded by a convex hull. The vector x̄ refers to the centroid of the ellipse,
and the eigenvectors of the covariance matrix are the new axes. Figure 29 depicts
this circumstances of this case by means of the known class ω1 (cf. Section 4.5).
To illustrate this example better, only two attributes are selected: pressure and
current.

84

4.8 One-class Classification for Anomaly Detection

In order to train this one-class classifier, class ω1 is defined as Gaussian distributed.
A large number of testing methods to test whether a data set is Gaussian distributed
exist. More detailed information and a comparison of these testing methods are
provided by D’Agostino et al. [DS86]. A fundamental assumption of a multivariate
Gaussian distribution is that the univariate attributes must be Gaussian distributed
[JW92]. As depicted in Figure 28, a quantile-quantile plot [WG68] is a very simple
visual method to verify a data set against the Gaussian distribution. Therefore, the
quantiles of the data set are depicted in relation with the quantiles of a Gaussian
distribution. Figure 28 shows that the attributes of the given data set are reasonably
precisely Gaussian distributed. For the sake of simplicity, it is assumed that class
ω1 refers to a multivariate Gaussian distribution, so further analysis is not carried
out. Furthermore, the arithmetic mean is estimated and the class ω1 (data set) is
normalized. Afterwards, the covariance matrix is determined, and, based on this,
the eigenvectors u1 and u2 are calculated. For the sake of clarity, the eigenvectors
are displayed by straight lines in Figure 29.

−5 0 5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Gaussian distribution

Q
u

an
ti

le
s

o
f

th
e

at
tr

ib
u

te
 p

re
ss

u
re

 [
k

il
o

p
as

ca
l]

−5 0 5
2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

Gaussian distribution

Q
u

an
ti

le
s

o
f

th
e

at
tr

ib
u

te
 c

u
rr

en
t

[a
m

p
er

e]

Figure 28: Quantile-quantile plot

85

4 Multi-Class Data Stream Anomaly Detection

As mentioned earlier, a threshold is required in order to classify an unlabeled data
item. The present example, depicted in Figure 29, comprises two thresholds. The
first threshold θMahal1 = Q1, depicted by a solid line, refers to a 100% quantile
and expresses that 100% of the data items are bounded by the ellipse. The second
threshold θMahal2 , depicted by a dotted line, refers to a 98.5% quantile and expresses
that only 98.5% of the data items are bounded by the ellipse. It follows the expansion
of the ellipses in the direction of the eigenvectors.

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Pressure [kilopascal] −

C
u

rr
en

t
[a

m
p

er
e]

 −

x̄

x̄

u
2

u
1

θ
Mahal

1

=Q
1

θ
Mahal

2

=Q
0,985

Class ω
1
 (|ω

1
|=168)

Centroid

Figure 29: Gaussian distribution

Filter

To construct a reasonably precise filter function for the Gaussian one-class classifier,
the centroid of the training data set is calculated. The centroid of the training data
set constitutes the centroid c of the hypersphere. Moreover, when the threshold is

86

4.8 One-class Classification for Anomaly Detection

based on the 100% quantile, the Euclidean distance to the furthest state vector in
the training data set to the centroid constitutes the radius r of the hypersphere.

4.8.2 K-centers

As stated in Tax [Tax01], the k-centers approach is a boundary method which covers
the data set with k ∈ N many balls. These balls have equal radii, the centers of
the balls are medoids, and the number k is user defined. A medoid m is a center
of a ball where m ∈ X tr. The k-centers method refers to clustering-based anomaly
detection (cf. Section 4.3.3). Advantages and disadvantages are discussed below.

• Advantages: The k-centers method is a very simple OCC approach. Gen-
erally, classification requires very few system resources because an unlabeled
data item must be compared with a fixed number of medoids.

• Disadvantages: Usually, the calculation of the k many medoids is very re-
source intensive. Moreover, it is very difficult to find an appropriate number
of k many balls manually, and the algorithm tends to overfitting.

The k-centers methods uses the Euclidean distance dEuklid between an unlabeled
data item sτ and a medoid mk. The Euclidean distance is defined as follows.

dEuklid(sτ , mk) =

√

√

√

√

n
∑

i=1

(sτ,i − mk,i)2 (4.17)

In many cases, the squared Euclidean distance dEuklid(sτ , mk)
2 is used.

dEuklid(sτ , mk)
2 =

n
∑

i=1

(sτ,i − mk,i)
2 = ||sτ,i − mk,i||

2 (4.18)

As mentioned earlier, the k-centers method tries to find k many balls with equal
radii to approximate the data set minimally. Therefore, medoids are selected from
the data set so that the distance to all state vectors of the data set is minimized.
During the training phase an error is minimized Ek-center.

Ek-center = max
τ

(

min
k

||sτ − mk||2
)

(4.19)

87

4 Multi-Class Data Stream Anomaly Detection

Classification

To classify an unlabeled state vector, the Euclidean distances to all k many medoids
is calculated, and the smallest distance of the resulting set of distances is sought.
The distance calculation by means of the k-centers method is defined as follows.

dk-center = min
k

||sτ − mk||2 (4.20)

The threshold θk-center refers to the radii, and the decision function is as follows.

sτ ∈

ω, if dk-center ≤ θk-center

ωC, else
(4.21)

Since only the distance from an unlabeled state vector to the medoids must be cal-
culated, the processing effort is relatively low. It is necessary to store the threshold
θk-center along with the vectors which define the medoids mk. Thus, the memory
usage relates to the number k and is, excluding overfitting, relatively low.

Example

Figure 30 depicts the k-centers method by means of the known class ω3 (cf. Sec-
tion 4.5). In order to illustrate this better, only two attributes are selected: pressure
and current. The number of balls is set to k = 3. In order to train this one-class
classifier, the medoids and the corresponding radii or thresholds are calculated.

As mentioned above, the number k is a user-defined parameter. An increasing
number of k leads to a increasing complexity of the geometrical interpretation of the
training data set. It follows that the processing effort increases as well. Accordingly,
it is necessary to find an appropriate trade-off between the approximation of the
training data and the computational complexity [YD98].

Figure 31 depicts the circumstances of the given example when the known class is
ω3 (cf. Section 4.5) and different values are chosen for the variable k. The upper
left diagram (i) shows the k-centers method where k = 1. The data set is poorly
approximated because a large distance exists between many sections of the circum-
ferences and the next state vector. The k-centers method with k = 1 refers to a
special case where the training data set is bounded by a single ball. In this case,
the boundary is a convex hull. When k > 1, the hull is not convex. As depicted
in the bottom left corner (iii) and in the bottom right corner (iv) in Figure 31, the
k-centers method tends to overfitting when a larger value for k is chosen. This means

88

4.8 One-class Classification for Anomaly Detection

0.66 0.68 0.7 0.72 0.74 0.76
1.26

1.28

1.3

1.32

1.34

1.36

1.38

Pressure [kilopascal]

C
u

rr
en

t
[a

m
p

er
e]

θ
k−centers

=r

Class ω
3
 (|ω

3
|=144)

Medoids

Figure 30: K-centers method with k = 3

that only a few state vectors are inside of one ball. For example, the diagram in the
bottom right corner (iv) entails balls where only one state vector is inside which,
in turn, is the medoid. As depicted in the upper right corner (ii) in Figure 31, an
appropriate trade-off exists when the value of k = 5. The training data set is better
approximated in the diagram in the upper right corner (ii) than in the diagram in
the upper left corner (i). In comparison with both diagrams at the bottom (iii and
iv), the diagram in the upper right corner (ii) gives no indication that the trained
one-class classifier is overfitted.

Filter

To construct a reasonably precise filter function for the k-centers one-class classifier,
the mean value of all medoids is calculated. This mean value constitutes the centroid
c of the hypersphere. Moreover, the Euclidean distance to the furthest medoid is

89

4 Multi-Class Data Stream Anomaly Detection

calculated. This distance plus the threshold θk-center constitutes the radius r of the
hypersphere.

0.65 0.7 0.75

1.26

1.28

1.3

1.32

1.34

1.36

C
u

rr
en

t
[a

m
p

er
e]

i. k=1

0.65 0.7 0.75

1.26

1.28

1.3

1.32

1.34

1.36

ii. k=5

0.65 0.7 0.75

1.26

1.28

1.3

1.32

1.34

1.36

C
u

rr
en

t
[a

m
p

er
e]

Pressure [kilopascal]

iii. k=15

0.65 0.7 0.75

1.26

1.28

1.3

1.32

1.34

1.36

Pressure [kilopascal]

iv. k=28

Figure 31: K-centers with different values of k

4.8.3 Nearest Neighbor

As stated by Tax [Tax01], the NN one-class classifier approach is a boundary method
and based on a NN classifier which uses a local density estimation. The NN one-
class classifier approach uses the distance to the first nearest neighbor rather than
the estimation of explicit density. It refers to NN-based anomaly detection (cf.
Section 4.3.2). Advantages and disadvantages are discussed below.

90

4.8 One-class Classification for Anomaly Detection

• Advantages: The NN one-class classifier works in an unsupervised manner
and is data-driven. It works very well in high-dimensional spaces (many at-
tributes).

• Disadvantages: The NN one-class classifier is a lazy learning method. In
general, the entire training data set must be stored for classification. Thus,
the computational complexity is very high, system resources are heavily used,
and classification becomes relatively slow.

The NN method is introduced here very briefly. More detailed information is pro-
vided by Tax [Tax01]. To train a NN one-class classifier, an hypersphere is centered
around a state vector, and the volume of the hypersphere is grown until it captures
the next state vector (nearest neighbor) in the training data set. The local density
gNN (sτ) of the considered state vector is estimated as follows.

gNN (sτ) =
1

V (||sτ − NN tr(sτ)||) · |X tr|
(4.22)

The volume of the hypersphere is denoted by the variable V , and the nearest neigh-
bor of the considered state vector is denoted by NN tr(sτ). Thus, the local density
increases when the volume of the hypersphere decreases.

Classification

To classify an unlabeled data item sτ , the distance between the unlabeled data item
to its nearest neighbor NN tr(sτ) is compared with the distance from this nearest
neighbor to its nearest neighbor NN tr(NN tr(sτ)). In general, the threshold θnn is
set to 1. This results in the following decision function.

sτ ∈

ω, if
||sτ − NN tr(sτ)||

||NN tr(sτ)− NN tr(NN tr(sτ))||
≤ θnn

ωC, else

(4.23)

Since the distance from an unlabeled state vector to all other state vectors in the
training data set must be calculated, the processing effort is very high. It is necessary
to store the threshold θnn along with the entire training set. Thus, the memory usage
relates to the number |X tr| and is also very high.

91

4 Multi-Class Data Stream Anomaly Detection

Example

Figure 32 shows a sketch of the NN method by means of the known class ω2 (cf.
Section 4.5). In order to better illustrate this example, only two attributes are
selected: pressure and current. Since the NN method is a boundary method, a
boundary around the data set is generated. The generated boundary is not convex.
As depicted in Figure 32, an unlabeled state vector sτ is classified as anomaly if

d1

d2
> θnn. (4.24)

0.7 0.8 0.9 1 1.1
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

s
τ

d
1

d
2

Pressure [kilopascal]

C
u

rr
en

t
[a

m
p

er
e]

Class ω

2
 (|ω

2
|=43)

Example (s
τ
)

Figure 32: Sketch of the NN one-class classifier

92

4.8 One-class Classification for Anomaly Detection

Filter

To construct a reasonably precise filter function for the NN one-class classifier, the
centroid of the training data set is calculated. The centroid of the training data set
constitutes the centroid c of the hypersphere. Moreover, the Euclidean distance to
the furthest state vector in the training data set to the centroid is calculated. This
distance plus the value of the local density of furthest state vector constitutes the
radius r of the hypersphere.

4.8.4 Support Vector Domain Description

As stated by Tax [Tax01], the SVDD (see also [TD99a, TD99b, TD04]) is another
boundary method. The SVDD is a one-class classifier which refers to classification-
based anomaly detection (cf. Section 4.3.1). The SVDD tries to find a hypersphere
with minimum volume which contains almost all state vectors of the training data
set. Moreover, support vectors are used. The SVDD is inspired by the SVM [Vap95]
which is based on a straight line or hyperplane [SWSST00]. Advantages and disad-
vantages are discussed below.

• Advantages: The SVDD can be used to approximate a training data set very
precisely.

• Disadvantages: The processing effort relates to the number of support vec-
tors. Thus, the processing effort increases with the number of support vectors
and can become very high.

In the following outline, the SVDD is introduced very briefly. More detailed infor-
mation is provided by Tax [Tax01]. A state vector from the training data set is a
support vector zτ if the associated Lagrangian multiplier ατ > 0. As stated above,
the SVDD one-class classifier is based on a hypersphere which comprises a radius r
and a centroid c with

c =
∑

τ

ατ zτ . (4.25)

The approximation of a training data set by means of a hypersphere is very inflexible.
Accordingly, Tax [Tax01] has introduced a kernel function K (“kernel-trick” [Vap98])
which maps the training data into a higher dimensional feature space. The mapping
Φ allows to train a potentially more precise boundary around the training data set.
The kernel function relates to the inner product sτi

· sτj
and is defined as follows.

K(sτi
, sτj

) = Φ(sτi
) · Φ(sτj

) (4.26)

93

4 Multi-Class Data Stream Anomaly Detection

A variety of kernel functions exists. In this thesis, the Gaussian kernel or radial basis
function (RBF) is used exclusively. The RBF is defined as follows where σ denotes
the width of the RBF.

K(sτi
, sτj

) = exp

(

−||sτi
− sτj

||2

σ2

)

(4.27)

Classification

To classify an unlabeled state vector sτ , the distance dSVDD RBF(sτ , c) to the center
of the hypersphere is calculated.

dSVDD RBF(sτ , c) =
∑

i

αi exp

(

−||sτ − zi||
2

σ2

)

(4.28)

The threshold is defined as follows.

θSVDD RBF =
1

2
(B − r2), B = 1 +

∑

i,j

αiαjK(zi, zj) (4.29)

Finally, this results in the following decision function.

sτ ∈

ω, if dSVDD RBF ≤ θSVDD RBF

ωC, else
(4.30)

Since the distance from an unlabeled state vector to the centroid must be calculated,
the processing effort depends on the number of support vectors. Classification can
be very fast, if the number of support vectors is relatively low, but it can also be
very slow, when a larger number of support vectors is trained. It is necessary to
store the threshold θSVDD RBF and the support vectors. Thus, the memory usage
depends on the support vectors as well.

Example

Figure 33 depicts the SVDD method by means of the known class ω6 (cf. Section 4.5).
In order to illustrate this example better, only two attributes are selected: pressure
and current. The SVDD is trained with the parameters σ = 0.04 and C = 0.6. The
parameter C regulates the trade-off between the volume of the hypersphere and the

94

4.8 One-class Classification for Anomaly Detection

number of support vectors which are located outside of the hypersphere. In general,
the generated boundary is not convex.

0.34 0.36 0.38 0.4 0.42 0.44 0.46
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

Pressure [kilopascal]

C
u

rr
en

t
[a

m
p

er
e]

Class ω

6
 (|ω

6
|=743)

Support vectors

Centroid

Figure 33: SVDD with RBF, σ = 0.04 and C = 0.6

Filter

To construct a reasonably precise filter function for the SVDD one-class classifier, the
centroid of the support vectors which constitutes the centroid c of the hypersphere is
calculated. Moreover, the Euclidean distance to the furthest support vector of this
centroid is calculated. This distance constitutes the radius r of the hypersphere.

4.8.5 Summary

This section describes very different one-class classifiers. As summarized in Table 7,
the differences relate to the geometrical interpretation, convexity of the boundary,
and computational effort. The Gaussian one-class classifier describes the training

95

4 Multi-Class Data Stream Anomaly Detection

data by means of an ellipsoid. An ellipsoid as geometrical interpretation is convex
and the computational effort of the Gaussian one-class classifier is comparatively
low. The k-centers one-class classifier describes the training data by a set of k many
balls. A set of k many balls is not convex, and the processing effort, with respect to
the number k, is relatively low. The NN one-class classifier describes the training
data by means of a density region. A density region as geometrical interpretation
is not convex, and the processing effort, with respect to the number of training
data items, is very high. The SVDD describes the training data by an adapted
hypersphere. Therefore, the training data is mapped into a high dimensional space
and a set of support vectors is calculated. An adapted hypersphere as geometrical
interpretation is not convex, and the processing effort, with respect to the number
support vectors, is relatively high.

Depending on the available training data and the application scenario, it is possible
to apply one or more of the presented one-class classifiers in order to create the
previously introduced detector chain (cf. Section 4.7).

Geometry Convexity Effort

Gaussian ellipsoid convex low

K-centers k many balls not convex relatively low

NN density region not convex very high

SVDD adapted hypersphere not convex relatively high

Table 7: Summary of selected one-class classifiers

4.9 Conclusion

As described in Section 1.7 on page 13, the present thesis aims to combine KDD
with KDDS for monitoring MCPSs. Therefore, a new OAR-based data stream
anomaly detection algorithm has been presented in this chapter (cf. Section 4.7).
The presented OAR-based data stream anomaly detection algorithm is based on
the storage-aware stream model described in Section 3.4.2 on page 49 and the KDC
described in more detail in Section 3.5 on page 52. Additionally, an approach to
minimize the processing time of an OAR-based detector chain on average has been
introduced (cf. Section 4.7.1), and a filter function, which can be applied to reduce
the average processing time in the worst case scenario, has been presented (cf. Sec-
tion 4.7.2). In order to provide a consistent terminology, a set of system states have
been explained in more detail (cf. Section 4.1) and a basic anomaly detection model

96

4.9 Conclusion

has been presented (cf. Section 4.2). Furthermore, several anomaly detection tech-
niques (cf. Section 4.3) and existing data stream anomaly detection algorithms (cf.
Section 4.4) have been discussed. In order to illustrate the circumstances of het-
erogeneous multi-class anomaly detection, an example of the ISS Columbus air loop
(cf. Section 4.5) referring to the presented real world scenario (cf. Section 1.4) has
been presented. Finally, Section 4.8 on page 83 provides a set of selected one-class
classifiers for anomaly detection, which can be applied for the presented OAR-based
data stream anomaly detection algorithm.

97

CHAPTER 5
Experiments and Case Study

“If something can go wrong, it will.”

Edward Aloysius Murphy (1918 -1990)

In this chapter, experiments and a case study are presented. Two independent
KDC implementations are described here. The first KDC implementation is ex-
clusively used to assess and evaluate the effectiveness along with the efficiency of
data stream anomaly detection algorithms. The effectiveness of an anomaly detec-
tion algorithm refers to the ability to detect anomalies in the context of a given
data set. According to the literature [Faw06], the effectiveness is called performance
hereinafter. The efficiency refers to the time that an anomaly detection algorithm
requires to process a single data item. For the sake of clarity, the efficiency is called
time-efficiency hereinafter.

The second KDC implementation is used to perform a case study which refers to
the above-stated real world scenario (cf. Section 1.4) by means of an existing IFP
engine and the presented data stream anomaly detection approach (cf. Section 4.7).
Therefore, the Esper CEP [Esp13] engine is used. The distinction between these
two KDC implementations is made in order to provide pure performance and time-
efficiency assessments without side effects which may occur due to the usage of an
additional IFP engine.

The structure of the present chapter is as follows. First, the evaluation scheme is
presented, which is subsequently used to compare and assess the presented data
stream anomaly detection approach with selected data stream anomaly detection
algorithms. Second, the first KDC implementation and the experimental setup,
used to compare and assess the presented data stream anomaly detection approach

99

5 Experiments and Case Study

with selected data stream anomaly detection algorithms, are explained. Third, de-
tailed information about the selected data stream anomaly detection algorithms,
subsequently used for comparison with the presented data stream anomaly detec-
tion approach, is presented. Fourth, selected data sets are described. Fifth, the
experiments are performed and an assessment is made. Sixth, the second KDC
implementation is used to perform a case study which relates to the ISS Colum-
bus module and recognizes IFP for monitoring MCPSs. Finally, this chapter is
concluded.

5.1 Evaluation Scheme

The evaluation scheme used in this thesis is based on receiver operating charac-
teristics (ROC) [Spa89]. As stated by Fawcett [Faw06], ROC graphs are used for
visualizing, organizing, and assessing classifiers based on their performance.

Figure 34 depicts a confusion matrix. As shown in the matrix, an anomaly detection
algorithm that processes an unlabeled data item can produce four possible outcomes.
First, the unlabeled data item is positive and is classified as positive. The first
outcome is counted as a true positive (TP). Second, an unlabeled data item is positive
and is classified as negative. The second outcome is counted as a false negative
(FN). Third, an unlabeled data item is negative and is classified as negative. The
third outcome is counted as a true negative (TN). Fourth, an unlabeled data item
is negative and is classified as positive. This fourth outcome is counted as a false
positive (FP).

True

positive

False

positive

False

negative

True

negative

Hypothesized

class

True class

Positive Negative

P
o
si

ti
v
e

N
eg

at
iv

e

Figure 34: The confusion matrix (based on [Faw06])

100

5.1 Evaluation Scheme

It is possible to calculate a wide range of metrics by using the confusion matrix.
Amongst others, they include false positive rate (FPR), true positive rate (TPR),
precision, and accuracy.

The FPR corresponds to the ratio between incorrectly classified negative data items
and the total number of negative data items. The FPR is sometimes also called false
alarm rate or fall-out.

FPR =
FP

FP + TN
(5.1)

The TPR corresponds to the ratio between correctly classified positive data items
and the total number of positive data items. The TPR is sometimes also called hit
rate, sensitivity, or recall.

TPR =
TP

TP + FN
(5.2)

The precision corresponds to the ratio between correctly classified positive data items
and the total number of positive classified data items. The precision is sometimes
also called positive predictive value.

precision =
TP

TP + FP
(5.3)

The accuracy corresponds to the ratio between correctly classified data items and
the total number of classified data items.

accuracy =
TP + TN

TP + FP + FN + TN
(5.4)

As stated by Fawcett [Faw06], an ROC graph is a two-dimensional plot of the true
positive and false positive rates. Accordingly, an ROC graph can be used to depict
the performance of classifiers. The area under an ROC curve (AUC) [HM82] is
commonly used to compare the performance of classifiers. The AUC is a single
scalar value and represents the expected performance (see also [Run10]).

101

5 Experiments and Case Study

5.2 Experimental Setup

The experimental setup is used to evaluate the presented heterogeneous multi-class
anomaly detection approach and to compare it with selected data stream anomaly
detection approaches. Therefore, the anomaly detection performance and the time-
efficiency of each anomaly detection algorithm are measured. The experimental
setup is based on the KDC (cf. Chapter 3). The aforementioned KDC implementa-
tion, initially described in the author’s publication [NSS13a], is used to perform the
experiments. An extended version has been described by Kaltschmidt [Kal13].

The time-efficiency of each data stream anomaly detection algorithm and each sin-
gle one-class classifier algorithm are determined empirically by means of a wall-clock
time. Obviously, the measurements of wall-clock times are not very precise. Accord-
ingly, the average of ten runs is calculated in order to determine a reasonably precise
time-efficiency.

As depicted in Figure 35, the implementation comprises an offline and an online
subcycle. Each of both subcycles is represented by a dedicated computing system.
Both dedicated computing systems are weakly coupled, and the communication takes
place by an external network.

The offline subcycle comprises a DBMS (PostgreSQL [Pos14]) which is used to store
the training data. The offline subcycle is used to train the anomaly detection al-
gorithms if a referring algorithm requires offline training. Preprocessing, clustering,
and classifier training are realized using MATLAB [Mat14] along with the DDTools
[Tax12] and PRTools [DJP+07] packages. Thereafter, the trained models are stored
in the same database.

The communication between both dedicated computing systems is implemented by a
protocol. The offline subcycle provides a Java-based implementation to retrieve the
trained models from the database and to register these models in the online subcycle.
Moreover, the offline subcycle provides the functionality to generate continuous data
in order to simulate data streams. Therefore, unlabeled and labeled data items
(when labeled data items are required for online training) are retrieved from the
database and sent to the online subcycle using the implemented protocol. For the
offline subcycle, an off-the-shelf computer system (Intel Core i3 with 2.26 GHz and
4 GB memory) and the Windows 7 personal computer operating system are used.

The online subcycle provides the counterpart of the protocol implementation. When
the online subcycle is started, it awaits the handshake with the offline subcycle. If
the communication is established, the online subcycle waits for the registration of
a data stream and the requested anomaly detection algorithms. Finally, when all
necessary parts are registered, the online subcycle awaits the initialization of the

102

5.3 Selected Data Stream Anomaly Detection Algorithms

data stream. The anomaly detection algorithms produce results which are sent
to the offline subcycle by the protocol. The retrieved results are stored in the
aforementioned database. The online subcycle is implemented by means of Java.
The Raspberry Pi [Ras13] is used as a target machine to simulate restricted system
resources aboard an MCPS. The Raspberry Pi provides a low budget ARM processor
(700 MHz with 512 MB memory), and a Debian GNU/Linux wheezy is used as an
operating system.

Online subcycle

Mobile cyber-physical

system

Offline subcycle

External information

system

Wireless network

Data stream

anomaly detection

Protocol

PostgreSQL

Training

data

MATLAB

PRTools,

DDTools

PostgreSQL

Protocol

Rasberry Pi

Off-the-shelf computer system

Figure 35: The experimental setup

5.3 Selected Data Stream Anomaly Detection Algorithms

A brief overview of existing data stream anomaly detection algorithms is already
given in Section 4.4 on page 69. The current section aims to extend this brief
overview in order to give additional implementation-specific information about se-
lected data stream anomaly detection algorithms, which are subsequently used for

103

5 Experiments and Case Study

comparison with the presented multi-class data stream anomaly detection approach.
These include the k-means one-class classifier, HT, and HST. Finally, the selected
approaches are compared against each other and with the presented approach.

5.3.1 K-means One-Class Classification

The k-means one-class classifier resembles the k-centers one-class classifier (cf. Sec-
tion 4.8.2). As stated by Tax [Tax01], the important difference refers to the error
which is minimized. The k-centers method uses medoids and tries to optimize the
centers and the radii of the balls in order to describe the entire training data set.
In contrast, the k-means one-class classifier uses centroids, and the distances to the
centroids of all objects are averaged. Accordingly, the k-means one-class classifier is
more robust against outliers in the training data set.

The OLINDDA algorithm recognizes the problem of novel class detection from a
one-class classification perspective and is based on the k-means one-class classifier.
Moreover, the OLINDDA approach aims to extend the k-means one-class classifier
approach by gradual change (cf. Section 1.3) and novel class detection. Since novel
class detection is not considered by the presented multi-class classification approach,
the k-means one-class classifier is used separately in this thesis.

There is a difference between the k-means one-class classifier approaches described
by Tax [Tax01] and Spinosa et al. [SdLFdCG07]. The k-means one-class classifier
method described by Tax [Tax01] uses equal radii for all balls. The k-means one-class
classifier method described by Spinosa et al. [SdLFdCG07] uses a different radius
for each ball. For the OLINDDA approach, a radius is defined by the calculation
of the maximum distance from all data items belonging to a cluster to the referring
cluster centroid. By definition, the k-means one-class classifier can be used for data
stream anomaly detection. However, multi-class classification is not supported by a
single k-means one-class classifier.

5.3.2 Hoeffding trees

The HT (cf. Section 4.4) approach is used for comparison with the presented data
stream anomaly detection approach. The HT approach is a widely accepted data
stream processing algorithm, and the implementation is taken from the MOA frame-
work [BHKP10]. To predict a referring class, the HT algorithm outputs a prediction
value for each class of a multi-class classification problem. However, the HT algo-
rithm is not an a priori anomaly detection algorithm. In order to apply the HT
approach to an anomaly detection problem, it is necessary to calculate an appropri-
ate anomaly score which is independent from the given data set. In this thesis, the
anomaly score is calculated as follows. First, the maximal and minimal prediction

104

5.3 Selected Data Stream Anomaly Detection Algorithms

values concerning all correctly classified data items are obtained. Both values are
used to normalize the classification result of an unlabeled data item in order to ob-
tain an affiliation probability. The ’maximal prediction probability’, corresponding
to 100%, constitutes full affiliation to a class, while the ’minimal prediction probabil-
ity’, proportional to the maximal prediction value, constitutes the lowest affiliation
to a class used as threshold. An unlabeled data item is classified as an anomaly if
the calculated anomaly score is below this threshold.

5.3.3 Half-Space Trees

Moreover, the HST (cf. Section 4.4) approach is used for comparison with the pre-
sented data stream anomaly detection approach. As stated by Tan et al. [TTL11],
the HST approach requires three important input parameters. The first input pa-
rameter specifies the maximum depth of the created trees to capture the data profile.
The second input parameter specifies the number of trees to construct. Finally, the
third input parameter specifies the size of the update window. The implementation
used in this thesis has been described by Kaltschmidt [Kal13] and was inspired by
the original HST implementation [Tan14].

5.3.4 Presented Approach

Listing 5.1 shows the implementation of the presented heterogeneous multi-class
data stream anomaly detection algorithm (cf. Section 4.7.1) without the application
of the filter function. Depending on a specific data set and monitoring objective (cf.
Section 2.10.4), various sets of one-class classifiers can be used differently.

1 INPUT unlabeled data item

2 OUTPUT labeled data item

3 REPEAT

4 GET next data item from stream

5 SET label of the data item to anomaly

6 FOR each registered one -class classifier

7 CALL classify data item

8 IF classification result is true THEN

9 SET label of the data item equal to the name

10 of the current class

11 EXIT LOOP

12 END IF

13 END FOR

14 UNTIL stream or algorithm stopped

List. 5.1: Implementation of the presented anomaly detection algorithm

105

5 Experiments and Case Study

Moreover, Listing 5.2 shows the same implementation, including the filter function
(cf. Section 4.7.2). Rounding errors, which influence the classification result, can
occur while the filter function is applied. Thus, the implementation of the filter
function includes a tolerance range in order to compensate rounding errors. If the
filter function is calculated properly, it does not influence the anomaly detection
performances.

1 INPUT unlabeled data item

2 OUTPUT labeled data item

3 REPEAT

4 GET next data item from stream

5 SET label of the data item to anomaly

6 CALL filter function

7 FOR each one -class classifier of the candidate chain

8 CALL classify data item

9 IF classification result is true THEN

10 SET label of the data item equal to the name

11 of the current class

12 EXIT LOOP

13 END IF

14 END FOR

15 UNTIL stream or algorithm stopped

List. 5.2: Extended implementation (including the filter function)

5.3.5 Comparison

The selected anomaly detection approaches (k-means one-class classifier, HT, and
HST) and the presented multi-class data stream anomaly detection approach are
very different with respect to the fundamental assumptions. Consequently, the com-
parison of the presented approach with the selected anomaly detection approaches is
very difficult. Table 8 summarizes the properties of the selected algorithms and the
previously presented approach. The k-means one-class classifier is an offline training
method; it is offline adaptive, and multi-class classification is not supported. The
HT is an online training method; it is online adaptive, and multi-class classification
is supported. The HST is an online training method; it is online adaptive, and
multi-class classification is not supported. The presented multi-class data stream
anomaly detection approach is an offline training method; it is offline adaptive, and
classification is supported.

The online training methods (HT along with HST) neglect the existence of external
information systems and assume that a data stream cannot be stored completely.
These online training methods provide the ability for training the anomaly detec-
tion model and, simultaneously, for classifying unlabeled data items in real-time

106

5.4 Selected Data Sets

k-means HT HST Presented approach

Training offline online online offline

Adaptivity offline online online offline

Classification ✗ ✓ ✗ ✓

Table 8: Comparison of selected anomaly detection approaches

or near real-time. For this purpose, online training methods are applied by means
of one-pass algorithms, while only a small window-based (cf. Section 2.6.6) set of
training data items is available. In the context of online data stream anomaly de-
tection, user interaction and fast algorithms are mutually exclusive. Consequently,
the assessment of the resulting model is often neglected by online training methods
due to the absence of a reasonable number of training data items, since window
functions are applied. Hence, the accuracy is insufficiently proved. Besides, the
verification of classifying results by human experts is very difficult. These online
training methods require an input of labeled training items during operation and at
certain time intervals for training or retraining the anomaly detection model. These
online training methods entail three drawbacks for monitoring MCPSs. First, the
provision of labeled training data during operation cannot be always guaranteed
and it contradicts the functioning of several real world applications. Second, model
training or retraining during operation expends computational resources actually
envisaged for system monitoring. Third, training such an unevaluated model during
operation can cause unforeseeable and critical side effects for the entire monitoring
process.

Taking these drawbacks into the account, the current thesis presents a multi-class
data stream anomaly detection algorithm. This anomaly detection algorithm is
an offline training method (cf. Section 3.4.3), offline adaptive, and based on the
previously developed KDC. The reason for this is that monitoring MCPSs is a semi-
automatic process, and human experts (e.g. the flight control team) are responsible
for decisions and consequent actions. Consequently, the presented multi-class data
stream anomaly detection approach intends to provide data stream anomaly detec-
tion where the human expert needs to be maintained in the loop.

5.4 Selected Data Sets

This section describes selected data sets used to assess the performance along with
the time-efficiency of the presented multi-class anomaly detecting approach. The
selected data sets are used to compare the presented anomaly detecting approach

107

5 Experiments and Case Study

with the selected anomaly detection approaches. The first data set relates to the
IRFA of the ISS Columbus air loop (cf. Section 4.5). The second data set also relates
to the IRFA and, additionally, it includes the sudden changes (cf. Section 1.3) of the
presented failure event (cf. Section 1.4.3). The third data set relates to the full ISS
Columbus air loop. The fourth data set relates to a space shuttle [BL13]. Finally,
the fifth and the sixth data sets are artificial data sets.

5.4.1 ISS Columbus Air Loop - IRFA

The first data set relates to the IRFA of the ISS Columbus air loop, and a compre-
hensive description is made in Section 4.5 on page 70. The data set includes three
selected attributes: speed, current, and pressure (cf. Section 1.4.3). As summarized
in Table 9, the data set comprises seven classes with 6978 data items and is denoted
as Xirfa hereinafter.

|ω1| |ω2| |ω3| |ω4| |ω5| |ω6| |ω7| |ΩC| Total

Xirfa 168 43 144 136 3478 743 1779 487 6977

Table 9: Summary of data set Xirfa

5.4.2 ISS Columbus Air Loop - Failure Event

The second data set refers to the same case as the first data set. Additionally, it
comprises a set of data items which describe sudden changes and were measured
during the failure event of the IRFA (cf. Section 1.4.3). The second data set is
denoted as Xfailure hereinafter, and a subset of this data set is depicted in Figure
36. For a better illustration, only three classes (ω4, ω5, and ω6) are shown. The
additional data items are anomalies and should be detected reasonably precisely by
an anomaly detection algorithm. As summarized in Table 10, the data set Xfailure

contains seven classes and 9901 data items.

|ω1| |ω2| |ω3| |ω4| |ω5| |ω6| |ω7| |ΩC| Total

Xfailure 168 43 144 136 3478 743 1779 3410 9901

Table 10: Summary of data set Xfailure

108

5.4 Selected Data Sets

0.2

0.4

0.6

0.8

1

0.7

0.8

0.9

1

1.1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pressure [kilopascal]

ω
6

ω
5

ω
4

Speed [10000/min]

C
u

rr
en

t
[a

m
p

er
e]

Class ω
4
 (|ω

4
|=136)

Class ω
5
 (|ω

5
|=3478)

Class ω
6
 (|ω

6
|=743)

Failure event Ω
C

 (|Ω
C

|=2923)

Figure 36: An example of the data set Xfailure

5.4.3 ISS Columbus Air Loop - Full

The third data set refers to the full ISS Columbus air loop (cf. Section 1.4.2) and
is denoted as Xfull hereinafter. The data set was previously clustered by human
experts. To obtain an appropriate training data set, the data is preprocessed, nor-
malized, scaled, and relevant state vectors are selected. The data set includes 16
attributes, and each attribute is ratio scaled (cf. Section 2.2.2). Each fan assembly
(CFAs, IRFA, and ISFA) comprises the three attributes: speed, current, and pres-
sure. Additionally, the air pressure and air flow rate at the CHX are measured. More
detailed information on the selected data set is provided by Kaufmann [Kau12] and
Dietrich [Die12].

109

5 Experiments and Case Study

The data set comprises five classes (ω11, ..., ω15). For example, the class ω11 refers
to a default system state where all fan assemblies are switched off. The classes ω12

and ω13 refer to default system states where either the first or the second CFA is
switched off. The classes ω14 and ω15 refer to error states where the speed of the
ISFA is unusually increased or decreased. The selected anomalies refer to a failure
of the ISFA and to a clogging of the return grid. As summarized in Table 10, the
data set Xfull contains five classes and 2130 data items. Classification and anomaly
detection are the monitoring objectives.

|ω11| |ω12| |ω13| |ω14| |ω15| |ΩC| Total

Xfull 382 841 256 203 74 374 2130

Table 11: Summary of data set Xfull

5.4.4 Space Shuttle

The fourth data set Xshuttle relates to a space shuttle and is taken from the UCI
machine learning repository [BL13]. The original data set contains seven classes.
Only three classes are selected in this thesis, while the fourth class is excluded. The
data items which belong to the rest of the classes are used as anomalies. Table 12
summarizes this data set.

|ω21| |ω22| |ω23| |ΩC| Total

Xfull 1000 132 500 73 1705

Table 12: Summary of data set Xshuttle

5.4.5 Artificial Data Sets

The data sets Xart 1 and Xart 2 are generated by means of the DDTools [Tax12]
package. For the sake of simplicity, both data sets include only two attributes.

The first artificial data set Xart 1 comprises six classes, each including 200 data items.
As depicted in Figure 37, the shapes of the classes are identically. The anomalies are
generated by means of a block-shaped (rectangle or hypercube) uniform distribution
covering all classes. Table 13 summarizes the provided classes of the data set Xart 1,
and Figure 37 depicts the described data set.

110

5.4 Selected Data Sets

|ω31| |ω32| |ω33| |ω34| |ω35| |ω36| |ΩC| Total

Xart 1 200 200 200 200 200 200 268 1468

Table 13: Summary of data set Xart 1

10 20 30 40 50 60 70
15

20

25

30

35

40

45

50

55

60

65

First attribute

S
e
c
o

n
d

 a
tt

ri
b

u
te

Class ω

31
 (|ω

31
|=200)

Class ω
32

 (|ω
32

|=200)

Class ω
33

 (|ω
33

|=200)

Class ω
34

 (|ω
34

|=200)

Class ω
35

 (|ω
35

|=200)

Class ω
36

 (|ω
36

|=200)

Anomalies Ω
C

 (|Ω
C

|=268)

Figure 37: Data set Xart 1

The second artificial data set Xart 2 also comprises six classes with very heterogeneous
shapes. The anomalies are located between these classes, and it is impossible to
separate the classes from the anomalies by parallel lines of axes. Table 14 summarizes
the provided classes of the data set Xart 2, and Figure 38 depicts the described data
set.

111

5 Experiments and Case Study

|ω41| |ω42| |ω43| |ω44| |ω45| |ω46| |ΩC| Total

Xart 2 150 200 200 150 200 200 360 1460

Table 14: Summary of data set Xart 2

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

First attribute

S
e
c
o

n
d

 a
tt

ri
b

u
te

Class ω

41
 (|ω

41
|=150)

Class ω
42

 (|ω
42

|=200)

Class ω
43

 (|ω
43

|=200)

Class ω
44

 (|ω
44

|=150)

Class ω
45

 (|ω
45

|=200)

Class ω
46

 (|ω
46

|=200)

Anomalies Ω
C

 (|Ω
C

|=360)

Figure 38: Data set Xart 2

5.5 Assessments

In this section, the experiments are described in more detail and their results are
assessed. First, the anomaly detection performances are discussed. Second, the
time-efficiency is discussed.

112

5.5 Assessments

5.5.1 Anomaly Detection Performance

This section aims to assess the anomaly detection performances of the selected data
stream anomaly detection approaches. At first, each data set is considered sepa-
rately. Thereafter, the performances of the data stream anomaly detection algo-
rithms are compared.

Data Set Xirfa

The data set Xirfa, excluding the anomaly class, is used for classifier training. The
k-means one-class classifier is trained and the number k is set to the number of
known classes. The HT algorithm does not provide necessary input parameters.

As stated above (cf. Section 5.3.3), the HST approach requires three input param-
eters. As sated by Tan et al. [TTL11], the maximum depth is a critical parameter,
since it used to capture the data profile in a comprehensive manner. Thus, a large
number should be preferred. However, this parameter is limited by the present
amount of memory. In order to find a trade-off, the variable ’maximum depth’ is set
to 12. Moreover, the number of trees must be defined. The number of trees is set
to 25 (as suggested by Tan et al. [TTL11]). Finally, the size of the update window
is set to 10% of the training data set (excluding the anomaly class).

Regarding the presented data stream anomaly detection approach, a single one-class
classifier is trained per class. The resulting one-class classifiers are also evaluated by
means of a 10-fold cross validation. In accordance with the aforementioned example
(cf. Section 4.5), the presented data stream anomaly detection approach aims to pro-
vide high classification and anomaly detection performances for all present classes.
Accordingly, a well suitable one-class classifier is selected for each class. As summa-
rized in Table 15, this includes two Gaussian one-class classifiers (cf. Section 4.8.1),
two nearest neighbor one-class classifiers (cf. Section 4.8.3), a k-centers one-class
classifier (cf. Section 4.8.2), and two SVDD one-class classifiers (cf. Section 4.8.4).
Based on the measurements presented in Table 15, it is empirically shown that a
Gaussian one-class classifier provides the lowest processing time. The processing
times of the Gaussian one-class classifiers are approximately equal. The difference
occurs due to measurement uncertainties. The processing time of an SVDD one-class
classifiers is relatively high and relates to the number of support vectors. Further-
more, the processing time of an NN one-class classifier is very high and increases
significantly with the number of training data items. In accordance with the afore-
mentioned Theorem 1 on page 76 (cf. Section 4.7.1), the optimal permutation of the
one-class classifiers is as follows: ω7, ω5, ω6, ω1, ω3, ω2, ω4.

113

5 Experiments and Case Study

ω1 ω2 ω3 ω4 ω5 ω6 ω7

Gauss NN K-centers NN SVDD SVDD Gauss

|ωi| 168 43 144 136 3478 743 1779

pi 0.026 0.007 0.022 0.021 0.536 0.114 0.274

ti in ms 0.627 4.469 1.831 19.785 3.369 2.143 0.5918

pi/ti · 102 4.131 0.148 1.212 0.106 15.903 5.341 46.312

Table 15: Summary of one-class classifiers

Table 16 summarizes the performances of all anomaly detection algorithms for the
data set Xirfa.

FPR TPR precision accuracy AUC

K-means 0.086 0.891 0.438 0.912 0.903

HT 0 0.620 1.000 0.974 0.810

X
ir

fa

HST 0.149 0.959 0.325 0.858 0.905

Presented approach 0.007 0.906 0.906 0.987 0.949

Table 16: Summary of the anomaly detection performances Xirfa

Data Set Xfailure

The data set Xfailure, excluding the anomaly class, is used for classifier training.
The previously described settings of the data set Xirfa are used for all data stream
anomaly detection algorithms. Table 17 summarizes the performances of all anomaly
detection algorithms for the data set Xfailure.

FPR TPR precision accuracy AUC

K-means 0.086 0.833 0.836 0.886 0.873

HT 0 0.089 1.000 0.686 0.544

X
fa

il
u

re

HST 0.152 0.158 0.354 0.610 0.503

Presented approach 0.007 0.876 0.985 0.953 0.934

Table 17: Summary of the anomaly detection performances Xfailure

114

5.5 Assessments

Data Set Xfull

The data set Xfull, excluding the anomaly class, is used for classifier training. The
settings of the selected data stream anomaly detection algorithms are the same as
for the data set Xirfa.

For the presented data stream anomaly detection approach, the setting entails two
k-centers one-class classifiers (cf. Section 4.8.2), two SVDD one-class classifiers (cf.
4.8.4), and one NN one-class classifier (cf. Section 4.8.3). It turns out that the
Gaussian one-class classifier (cf. Section 4.8.1) is not applicable with the given data
set. Table 18 summarizes the performances of all anomaly detection algorithms for
the data set Xfull.

FPR TPR precision accuracy AUC

K-means 0.043 0.516 0.720 0.880 0.737

HT 1.000 1.000 0.176 0.176 0.500

X
fu

ll

HST 0.155 0.190 0.207 0.730 0.518

Presented approach 0.132 1.000 0.618 0.892 0.934

Table 18: Summary of the anomaly detection performances Xfull

Data Set Xshuttle

The data set Xshuttle, excluding the anomaly class, is used for classifier training.
The settings of the selected data stream anomaly detection algorithms are the same
as for the data set Xirfa. Regarding the presented data stream anomaly detection
approach, an SVDD one-class classifier (cf. Section 4.8.4) is used three times. Table
19 summarizes the performances of all anomaly detection algorithms for the data
set Xshuttle.

FPR TPR precision accuracy AUC

K-means 0.002 0.055 0.571 0.958 0.527

HT 1.000 1.000 0.043 0.043 0.500

X
sh

u
tt

le

HST 0.074 0.685 0.292 0.916 0.805

Presented approach 0.021 1.000 0.680 0.980 0.989

Table 19: Summary of the anomaly detection performances Xshuttle

115

5 Experiments and Case Study

Data Set Xart 1

The data set Xart 1, excluding the anomaly class, is used for classifier training. The
settings of the selected data stream anomaly detection algorithms are the same as
for the data set Xirfa.

Regarding the presented data stream anomaly detection approach, all classes are
trained by means of a Gaussian one-class classifier (cf. Section 4.8.1). Table 20
summarizes the performances of all anomaly detection algorithms for the data set
Xart 1.

FPR TPR precision accuracy AUC

K-means 0.649 0.996 0.255 0.469 0.674

HT 1.000 1.000 0.183 0.183 0.500

X
a
rt

1

HST 0.233 0.735 0.414 0.762 0.751

Presented approach 0.004 1.000 0.982 0.997 0.998

Table 20: Summary of the anomaly detection performances Xart 1

Data Set Xart 2

The data set Xart 2, excluding the anomaly class, is used for classifier training. The
settings of the selected data stream anomaly detection algorithms are the same as
for the data set Xirfa.

Regarding the presented data stream anomaly detection approach, all classes are
trained by means of an SVDD one-class classifier (cf. Section 4.8.4). Table 21
summarizes the performances of all anomaly detection algorithms for the data set
Xart 2.

FPR TPR precision accuracy AUC

K-means 0.013 0.167 0.811 0.785 0.577

HT 0.020 0.022 0.267 0.744 0.501

X
a
rt

2

HST 0.468 0.736 0.340 0.582 0.634

Presented approach 0.318 1.000 0.507 0.760 0.841

Table 21: Summary of the anomaly detection performances Xart 2

116

5.5 Assessments

Summary of the Anomaly Detection Performances

As summarized in Figure 39, the k-means one-class classifier (cf. Section 5.3.1)
provides appropriate anomaly detection performances for the data sets Xirfa and
Xfailure. The anomaly detection performance for the data set Xfull is very low. For
the rest of the data sets, the k-means one-class classifier practically does not detect
anomalies, and the anomaly detection performances are very poor. However, the
number k of the k-means one-class classifier is set to the number of classes. The
anomaly detection performance of the k-means one-class classifier might be improved
by the selection of a better choice of the number k. Amongst others, possible
approaches might be the usage of micro-clusters [AHWY03] or the application of an
evolutionary k-means algorithm [NCHC11].

The HT (cf. Section 5.3.2) approach provides a low anomaly detection performance
for the data sets Xirfa and Xart 1. For the rest of the data sets, the HT approach
practically does not detect anomalies, and the anomaly detection performances are
very poor. The HT approach is not intrinsically developed for anomaly detection.
In this thesis, the anomaly score relates to a calculated threshold. To improve
the anomaly detection performance of the HT approach, it might be necessary to
improve the calculation of the anomaly score or to reduce the threshold.

The HST (cf. Section 5.3.3) approach provides an appropriate anomaly detection
performance for the data set Xirfa. The anomaly detection performances for the
data sets Xshuttle and Xart 1 are relatively low. For the rest of the data sets, the
HST approach practically does not detect anomalies, and the anomaly detection
performances are very poor. To improve the anomaly detection performance of the
HST approach, it might be necessary to increase the parameter ’maximum depth’.

The presented data stream anomaly detection approach provides appropriate anomaly
detection performances for all selected data sets. The presented data stream anomaly
detection approach provides the best anomaly detection performance in comparison
with the selected data stream anomaly detection approaches. In contrast to the
other selected anomaly detection approaches, the presented approach is very flex-
ible and tries to approximate all present classes very precisely in order to provide
appropriate anomaly detection performances. However, the selected data stream
anomaly detection algorithms are trained automatically. This fact is underscored
by the experimental results. However, the good results come at the expense of expert
knowledge being used for classifier training.

117

5 Experiments and Case Study

0 0.5 1
0

0.5

1
T

ru
e

p
o

si
ti

v
e

ra
te

i. χ
irfa

0 0.5 1
0

0.5

1

ii. χ
failure

0 0.5 1
0

0.5

1

iii. χ
full

0 0.5 1
0

0.5

1

False positive rate

T
ru

e
p

o
si

ti
v

e
ra

te

iv. χ
schuttle

0 0.5 1
0

0.5

1

False positive rate

v. χ
art_1

0 0.5 1
0

0.5

1

False positive rate
test

vi. χ
art_1

K−means Hoeffding trees Half space trees Presented approach

Figure 39: ROC curves

5.5.2 Summary of the Time-efficiency

This section focuses on the the time-efficiency of the selected anomaly detection
algorithms. The aforementioned settings are used identically for each data set.
Table 22 and Figure 40 summarize the experimental results. The processing times
are measured in milliseconds and relate to the average processing time that the
anomaly detection algorithm needs to process a single data item.

As summarized in Table 22 and as shown in Figure 40, the k-means one-class clas-
sifier requires the lowest average processing time. The HT approach also requires
low average processing time. The HST requires the highest average processing time.
The average processing time of the presented data stream anomaly detection ap-
proach is listed twice. At first, the average processing time is measured without the
filter function. Following that, the average processing time is measured while the
filter function is applied. As summarized in Table 22 and in Figure 40, the average

118

5.5 Assessments

processing time of the presented data stream anomaly detection approach lies in
the mid-range, and the application of the filter function can be used to significantly
reduce the average processing time.

Xirfa Xfailure Xfull Xshuttle Xart 1 Xart 2

K-means 0.447 0,585 2.042 0.402 0.663 0.518

HT 4.228 3,242 4.694 4.077 2.827 2.767

HST 44.876 52,625 138.871 109.439 51.075 38.030

Presented approach 5.336 8.869 57.526 7.070 1.749 8.924

Plus filter function 4.117 5.520 26.390 7.530 1.967 3.197

Table 22: Summary of the average processing time per data item in milliseconds

0

20

40

60

80

100

120

140

χ
irfa

χ
failure

χ
full

χ
shuttle

χ
art_1

χ
art_2

Data sets

A
v

er
ag

e
p

ro
ce

ss
in

g
 t

im
e

in
 m

s

K−means

HT

HST

Presented approach

Plus filter function

Figure 40: Summary of the average processing time per data item in milliseconds

119

5 Experiments and Case Study

5.6 Case Study

This section provides a case study of the KDC (cf. Chapter 3), which relates to the
aforementioned real world scenario (cf. Section 1.4). The case study is intended to
demonstrate the KDC in a real-life situation and to integrate the presented data
stream anomaly detection algorithm. Both the offline and the online subcycle are
discussed in more detail. The case study is depicted as a float chart in Figure 41
on page 125. This figure aims to extend the aforementioned processing steps of the
KDC (cf. Section 3.5) by additional decisions.

5.6.1 Offline Subcycle

The offline subcycle starts with the first processing step: persistent storage.

1. Persistent storage: Initially, the persistent storage does not contain any
content. In order to perform this case study, a data set relating to the ISS
Columbus air loop (cf. Section 4.5) is imported.

2. Preprocessing: As depicted in Figure 41 on page 125, the second processing
step is executed whenever new data is available. As mentioned earlier in
Section 3.5.2 on page 54, preprocessing is used to select and transform relevant
data. For the sake of simplicity, only data referring to the IRFA is used.
Henceforth, the data set Xirfa (cf. Section 5.4.1) is used.

3. Offline analysis: The third processing step includes clustering and classifier
training. As described in Section 5.5.1 on page 113, the selected data set is al-
ready clustered, and a well suitable one-class classifier is selected for each class.
This includes two Gaussian one-class classifiers (cf. Section 4.8.1), two nearest
neighbor one-class classifiers (cf. Section 4.8.3), a k-centers one-class classifier
(cf. Section 4.8.2), and two SVDD one-class classifiers (cf. Section 4.8.4).

4. Validation: The fourth processing step refers to the validation of the obtained
classes and classifiers by automated processes and human experts. For exam-
ple, the one-class classifiers of a heterogeneous multi-class classifier can overlap.
One of the fundamental assumptions of the presented data stream anomaly de-
tection approach is that the dichotomous class detectors must be disjoint (cf.
Section 4.7). Consequently, human experts must identify the interpretation of
such possible intersections. It is necessary to resolve the occurring intersection
in some way in order to avoid ambiguous anomaly detection results.

The good anomaly detection performance of the presented data stream anomaly
detection approach comes at the expense of an increased workload. This in-
cludes the extraction of expert knowledge by means of clustering, classifier

120

5.6 Case Study

training, and validation. However, there are several possibilities to automate
classifier training and to reduce the human effort, which must be spent on
offline analysis and validation. For example, it is possible to identify a well-
suited one-class classification algorithm automatically for a considered class.
Moreover, parameters required for classifier training can be iteratively im-
proved by a consecutive application of cross validation. The human expert is
still responsible for consequent decisions along with resulting actions and needs
to be maintained in the loop. As a consequence, currently there is no other
choice for a sophisticated monitoring approach in order to provide reliability
and avoid critical damage.

As depicted in Figure 41 on page 125, if the validation process cannot be
successfully completed or the obtained classifiers must be refined, the sec-
ond (preprocessing), third (offline analysis), and fourth (validation) processing
steps are repeated in iterative loops until the validation process is successfully
completed.

5. Knowledge storage: The fifth processing step is executed when the vali-
dation is completed successfully and refers to the storage of newly derived
knowledge. A difficult decision relates to the choice of an adequate storage
strategy of the obtained classifiers. For example, this could be implemented
by means of relational tables or object references such as JavaScript object
notation (JSON) or extensible markup language (XML). Furthermore, it is
necessary to translate the dichotomous class detectors into query languages.
In order to provide a sophisticated monitoring process, these rule sets must be
human-readable and processable by means of existing IFP engines.

For example, Listing 5.3 presents an obtained query of a Gaussian one-class
classifier (cf. Section 4.8.1) using the event processing language (EPL) pro-
vided by the Esper CEP engine [Esp13]. Moreover, Listing 5.4 presents an
EPL query of a SVDD one-class classifier (cf. Section 4.8.4), which includes
the RBF kernel function. For the sake of simplicity, both queries comprise only
two selected attributes: pressure and current. Each presented query outputs
a result whenever an unlabeled state vector is classified as anomaly. Conse-
quently, these queries can be arranged in an appropriate execution sequence.
Referring to Theorem 1 on page 76 (cf. Section 4.7.1), the appropriate execu-
tion sequence refers to the optimal permutation.

Obvious disadvantages of such rule sets are the increased complexity and un-
readability. The complexity and unreadability of these rule sets increase enor-
mously with the number of selected attributes (dimensionality) and when using
more complex one-class classifiers. However, the application of user-defined
functions, which are provided by a variety of query languages such as EPL,

121

5 Experiments and Case Study

can help to reduce the complexity and improve the readability of these rule
sets. For example, Listing 5.5 provides an EPL query where the classifier is
replaced by a user-defined function.

1 select pressure , current

2 from data_stream

3 where

4 ((((Σ−1
1,1 * (pressure - x̄1)) +

5 (Σ−1
1,2 * (current - x̄2)))

6 * (pressure - x̄1)) +

7 (((Σ−1
2,1 * (pressure - x̄1)) +

8 (Σ−1
2,2 * (current - x̄2)))

9 * (current - x̄2))

10) > θMahal

List. 5.3: Translation of a Gaussian one-class classifier into EPL [NS12b]

1 select pressure , current

2 from data_stream

3 where (

4 (α1 * java.lang.Math.exp (-1* (

5 ((pressure - x1,1) * (pressure - x1,1))

6 + ((current - x1,2) *

7 (current - x1,2)))/σ2)) +

8 (α2 * java.lang.Math.exp (-1* (

9 ((pressure - x2,1) * (pressure - x2,1))

10 + ((current - x2,2) *

11 (current - x2,2)))/σ2)) +

12 (α3 * java.lang.Math.exp (-1* (

13 ((pressure - x3,1) * (pressure - x3,1))

14 + ((current - x3,2) *

15 (current - x3,2)))/σ2)) +

16

17

...(many more lines)

18

19) > θSVDD RBF

List. 5.4: Translation of a SVDD one-class classifier into EPL [NS12b]

1 select pressure , current

2 from data_stream

3 where classifier . classify (pressure , current) > θ

List. 5.5: Application of a user-defined function

122

5.6 Case Study

6. Knowledge transfer: As mentioned before, the sixth processing step is the
last step of the offline subcycle and is used to synchronize the offline subcycle
with the online subcycle. Newly derived knowledge is transferred to the online
subcycle on condition that the external network is available.

5.6.2 Online Subcycle

The online subcycle starts with a decision. Whenever new knowledge is available,
the following processing steps are adapted: preprocessing (8), online analysis (9),
actions (10), temporal storage (11), and data or event transfer (12). When no new
knowledge is available or the adaption is successfully finished, it follows the seventh
processing step: streaming inputs.

7. Streaming inputs: The seventh processing step refers to the streaming in-
puts approaching from heterogeneous data sources (e.g. sensors). For exam-
ple, these data sources can provide tuple-like data streams, whereas a tuple is
interpreted as a single event. Additionally, it is also possible that more com-
plex data streams are provided. This includes complex events such as objects
(e.g. identification of incorrect system behavior or collision detection). In the
present case study, the simulated data stream is a tuple-like data stream, and
each arriving tuple is construed as a state vector.

8. Preprocessing: As mentioned before, preprocessing includes the extraction
of relevant data along with the extraction of specific data items or complex
events. Preprocessing can be implemented by means of select statements or
by stand-alone rules. In this case study, each attribute is an element of the set
of real numbers. Additionally, it could be useful to apply principal component
analysis [Pea01] in order to reduce the dimensionality (number of attributes).

9. Online analysis: As mentioned earlier, the ninth processing step constitutes
the core of the online subcycle and the real-time monitoring process. On-
line analysis reflects automatic, online, and real-time data processing. This
includes classification, data stream mining, or a combination of both. For ex-
ample, classification can be applied by using rule sets. As discussed in the
sections on reference architectures of DSMS (cf. Section 2.6.3) and IFP (cf.
Section 2.6.4), a component is required in order to store these rule sets. Clas-
sification, which is based on offline training methods, presupposes a previous
pass through of the offline subcycle. This previous pass through is required
for long-term analysis, knowledge extraction, rule set generation, and transfer
to the online subcycle. Online training methods are able to extract knowledge
without pre-existing knowledge and without any previous pass through of the
offline subcycle. The main intention of the online analysis is the assessment

123

5 Experiments and Case Study

of the current system behavior by the use of single events. Based on these
single events, it is possible to detect complex events (e.g. failure and anomaly
detection).

This case study is based on the Esper CEP engine, and the aforementioned
one-class classifiers are applied. Accordingly, it is possible to classify unlabeled
state vectors as belonging to one of the known classes or as anomaly.

10. Actions: The tenth processing step is related to the previous processing step.
The detection of events necessitates the initiation of actions. Those actions
can be used to send alarm messages or to effect hardware (e.g. toggling of
switches). Actions could also include the preparation of data or event metrics.
In this case study, the action part is represented using a listener. The listener
simply writes a message on the screen if an anomaly is detected.

The processing step ’actions’ is followed by another decision, which refers to
the adaption of the online subcycle. As described in Section 3.5.1 on page 52,
the online subcycle is a loop, which can be used to further adapt the process-
ing steps of the online subcycle. Hence, the online subcycle is asynchronous
and decoupled from the offline subcycle. Accordingly, it is possible to auto-
matically adapt anomaly detection algorithms in iterative loops. For example,
the presented data stream anomaly detection approach is based on an ex-
pected probability of each applied dichotomous class detector. However, the
probability distribution can change during operation. In this case, it becomes
necessary to rearrange the dichotomous class detectors in order to provide the
optimal permutation. Therefore, it is necessary to count the frequency of the
arriving data items and the classification results. Such frequency counts have
been discussed by Manku [MM02].

11. Temporal storage: The eleventh processing step reflects the temporal storage
on the online subcycle. The temporal storage is a window-based, preliminary,
and short-term storage. This involves storage of data items along with the
storage of single events, complex events, and metrics. In this case study, each
state vector is simply stored into a data base. This includes a label which
includes the classification result for each data item.

12. Data and event transfer: The twelfth processing step is the last step of
the online subcycle. It reflects the synchronization and transmission of tem-
porally stored data, events, and metrics from the online subcycle into a per-
sistent memory on the offline subcycle. Data and event transfer is an optional
processing step executed whenever a data transfer is necessary (e.g. near ex-
haustion of the temporal storage). For example, the initiation of data and

124

5.6 Case Study

event transfer could be implemented by action rules. However, the initiation
depends on prerequisites such as the availability of the external network.

Start
New data

available?
2. Preprocessing

1. Persistent

storage

3. Offline

analysis

4. Validation

Validation

successful?

no

Iterativ
e

lo
o
p
s

5. Knowledge

storage

Annotations

External

data

6. Knowledge

transfer

Start
7. Streaming

inputs

New

knowledge

available?
8. Preprocessing

9. Online

analysis

10. Actions

11. Temporal

storage

Adaption

yes

12. Data or

event transfer

Adaption

necessary?

yes

Iterativ
e

lo
o
p
s

Data transfer

required?

O
n
li
n
e
su
b
cy
cl
e

O
ff
li
n
e
su
b
cy
cl
e

noyes

Wireless network

no

yes

no

yes/no

yes

Figure 41: The case study

125

5 Experiments and Case Study

5.7 Conclusion

In this chapter, the evaluation scheme (cf. Section 5.1) and the experimental setup
(cf. Section 5.2) used to perform the experiments have been explained. Moreover,
a set of three data stream anomaly detection algorithms have been selected (cf.
Section 5.3) which were subsequently used for comparisons with the presented data
stream anomaly detection approach. These algorithms include the k-means one-
class classifier (cf. Section 5.3.1), the HT approach (cf. Section 5.3.2), and the HST
approach (cf. Section 5.3.3). Furthermore, six data sets have been selected and
described in more detail (cf. Section 5.4). As a result, the presented data stream
anomaly detection algorithm provides a very good anomaly detection performance
and outperforms the selected data stream anomaly detection algorithms (cf. Sec-
tion 5.5.1). Moreover, the time-efficiency of the presented data stream anomaly
detection algorithm lies in the mid-range (cf. Section 5.5.2). In contrast to the
k-means one-class classifier and the HT approach, the good anomaly detection per-
formance of the presented data stream anomaly detection algorithm comes at the
expense of a decreased time-efficiency.

Furthermore, a case study of the KDC has been presented in this chapter (cf. Sec-
tion 5.6). This case study is related to the aforementioned real world scenario (cf.
Section 1.4). The presented case study demonstrates the KDC in a real-life situa-
tion and integrates the presented data stream anomaly detection algorithm into the
KDC.

126

CHAPTER 6
Conclusions and Future Work

“Master books, but do not let them master
you. Read to live, not live to read.”

Edward Robert Lytton Bulwer-Lytton
(1831-1891)

This chapter summarizes the individual parts of this thesis and the results of
experiments. Moreover, several remaining problems and possible subjects for future
works are discussed.

6.1 Summary of the Thesis

As described in more detail in Section 1.6 on page 12, Section 1.7 on page 13,
and Section 1.8 on page 14, the contribution of this work is to combine the KDD
process with the KDDS process for monitoring MCPSs. Therefore, a KDC described
in Chapter 3 on page 41 has been developed. Based on this, a new data stream
anomaly detection algorithm has been presented in Chapter 4 on page 63. Finally,
experiments and a case study have been presented in Chapter 5 on page 99.

The foundations of this thesis are described in Chapter 2 on page 17. The founda-
tions include a brief description of the KDD process model (cf. Section 2.4), selected
topics of data mining (cf. Section 2.5), selected topics of IFP (cf. Section 2.6), and
a detailed view on monitoring (cf. Section 2.10). To the best of the author’s knowl-
edge, no concluding process model for the KDDS process exists as yet. Accordingly,
the reference architectures of DSMSs (cf. Section 2.6.3) and IFP (cf. Section 2.6.4)
are interpreted as preliminary process models for the KDDS process in this thesis.
Moreover, related work, including specialized IFP approaches (cf. Section 2.6.8),

127

6 Conclusions and Future Work

the MOA data stream classification cycle (cf. Section 2.7), expert systems (cf. Sec-
tion 2.8), and the MAPE-K reference model (cf. Section 2.9), has been discussed in
Chapter 2 on page 17.

The KDC developed in this thesis is described in Chapter 3 on page 41. Therefore,
requirements for monitoring MCPSs (cf. Section 3.1), characteristics of the KDC
(cf. Section 3.2), and a relation between key challenges for monitoring MCPSs (cf.
Section 1.3) and the KDC characteristics have been identified. In addition, a widely
adopted assumption that data streams should not be stored entirely has been dis-
cussed (cf. Section 3.4.1). Based on this discussion, a storage-aware stream model
(cf. Section 3.4.2) which extends the commonly used stream model (cf. Section 2.6.1)
has been presented. Also, training methods have been divided into online, offline,
and hybrid training methods (cf. Section 3.4.3). The KDC comprises an online and
an offline subcycle. The online subcycle refers to KDDS where online monitoring
(cf. Section 2.10.2) is applied in an automatic and real-time manner. The offline
subcycle refers to KDD where offline monitoring (cf. Section 2.10.2) is applied for
semi-automatic and long-term analysis. Moreover, twelve processing steps have been
identified for the KDC (cf. Section 3.5). These include six processing steps for the
online subcycle (cf. Section 3.5.1) and six processing steps for the offline subcycle (cf.
Section 3.5.2). These processing steps have been assigned to existing concepts which
are known from literature. Finally, the aforementioned related work, which includes
the MOA data stream classification cycle (cf. Section 2.7), expert systems (cf. Sec-
tion 2.8), and the MAPE-K reference model (cf. Section 2.9), have been compared
with the KDC. As a result, the existing approaches entail deficits for monitoring
MCPSs, while the KDC attempts to eliminate these deficits (cf. Section 3.2) and to
provide an appropriate monitoring approach for monitoring MCPSs.

Furthermore, a new OAR-based data stream anomaly detection algorithm has been
presented in Chapter 4 on page 63. The presented data stream anomaly detection
algorithm is based on the KDC (cf. Chapter 3) and the above-mentioned storage-
aware stream model (cf. Section 3.4.2). To provide a consistent terminology, a
set of system states have been explained in detail (cf. Section 4.1) and a basic
anomaly detection model has been presented (cf. Section 4.2). Furthermore, several
anomaly detection techniques (cf. Section 4.3) and existing data stream anomaly
detection algorithms (cf. Section 4.4) have been discussed. In order to illustrate
the circumstances of heterogeneous multi-class anomaly detection, an example of
the ISS Columbus air loop (cf. Section 4.5) referring to the presented real world
scenario (cf. Section 1.4) has been presented, and a problem statement has been
stated (cf. Section 4.6). Based on these, the solution statement (cf. Section 4.7)
comprises a detector chain which is based on an OAR-based multi-class anomaly
detection approach (cf. Section 2.5.3). Additionally, an approach to minimize the
average processing time of this detector chain has been introduced (cf. Section 4.7.1).

128

6.2 Subjects for Future Work

In addition, a filter function, which can be applied to reduce the average processing
time in the worst case scenario, has been presented (cf. Section 4.7.2). Finally, a
list of selected one-class classifiers for anomaly detection has been introduced (cf.
Section 4.8).

Experiments and a case study have been discussed in Chapter 5 on page 99. There-
fore, the evaluation scheme (cf. Section 5.1), the experimental setup (cf. Section 5.2),
additional implementation-specific information about selected data stream anomaly
detection algorithms (cf. Section 5.3), and selected data sets (cf. Section 5.4) have
been explained. Furthermore, the selected data stream anomaly detection algo-
rithms along with the presented data stream anomaly detection approach have been
assessed and compared to each other. The anomaly detection performances have
been assessed and compared first, followed by the time-efficiency. As a result of the
comparison of the anomaly detection performances, the anomaly detection approach
presented in this thesis outperforms the selected data stream anomaly detection al-
gorithms. As a result of the comparison of time-efficiency, the presented anomaly
detection approach comes at the expenses of time consumption.

Finally, the KDC and the presented data stream anomaly detection approach have
been accepted as an experiment [NSS13b] of the ESA OPS-SAT laboratory [ESA14].
The ESA OPS-SAT laboratory aims to provide an in-orbit test-bed to promote
advanced innovations for future space missions.

6.2 Subjects for Future Work

Requirements for monitoring MCPSs have been described in Section 3.1 on page 41.
The requirements ’time’, ’locality’, ’knowledge’, and ’system resources’ have been
recognized in detail by the KDC (cf. Chapter 3) and the presented data stream
anomaly detection approach. However, the requirement ’sharpness’ has not been
recognized, and it is necessary to integrate this requirement into the presented data
stream anomaly detection approach.

Moreover, the KDC has been developed under the assumption that only one MCPS is
monitored. However, in many real world scenarios a large number of MCPSs must
be monitored at the same time. Consequently, it becomes necessary to combine
several KDC implementations in order to integrate the discovered knowledge and
to provide a more sophisticated monitoring approach for all target systems. This
combination could be applied by a side by side implementation of several KDCs or
by extending the KDC processing steps into a larger cycle.

The offline subcycle of the KDC is characterized by a large involvement of human
experts. In the future, it could be possible to automate some processing steps and to
provide a dynamic history analysis in order to further reduce the effort which must

129

6 Conclusions and Future Work

be provided by human experts. Additionally, it becomes necessary to develop new
concepts to provide a sustainable use of the acquired data and derived knowledge
for research and future space missions.

The basic data stream anomaly detection model described in Section 4.2 on page 66
denotes the time as an index. Consequently, transitions are not considered. How-
ever, it is possible to increase the complexity of the described data stream anomaly
detection model and to consider the time as an additional dimension. Then trajec-
tories arise in the vector space (cf. Section 4.2) and it becomes possible to monitor
state transitions.

To monitor MCPSs it is necessary to assess the reliability of data stream mining
and data stream anomaly detection algorithms. Thus, a quality of service of the
algorithmic description and the resulting implementation must be provided by these
algorithms in order to avoid critical damage.

Furthermore, it is also possible to extend the presented data stream anomaly detec-
tion approach by means of novel class detection. For instance, it might be possible
to combine the the presented data stream anomaly detection approach with the
OLINDDA approach for novel class detection. Furthermore, it is also possible to re-
arrange the dichotomous class detectors in order to provide the optimal permutation
dynamically during operation.

The performed case study (cf. Section 5.6) presents challenges and open problems
for further research. This discussion on further research is closely related to the
author’s publications [NS12b] and [NS13]. The application of data stream process-
ing on the online subcycle demands lightweight IFP engines which are able to work
under resource restrictions. These lightweight IFP engines should provide language
expressions for crisp and non-crisp processing of conditions and should be able to in-
tegrate data stream mining algorithms such as data stream clustering, classification,
or anomaly detection. Moreover, these IFP engines should provide the aforemen-
tioned training methods: online, offline, and hybrid training (cf. Section 3.4.3). For
example, MOA [BHKP10] already provides online and offline training methods. Al-
though, MOA is not designed to easily handle resource restrictions of MCPSs. Basic
examples of such lightweight IFP engines are SwissQM [MAK07] or a data stream
management system described by Wolf et al. [WR08]. Furthermore, MOA does not
provide an appropriate query language as claimed by the eight requirements for
real-time stream processing [ScZ05].

A variety of data stream query languages are already present, however, there exists a
lack of standardization [PVS11]. Moreover, the translation of a specific data stream
mining task into existing stream query languages is very challenging. As a solution,
it could be possible to develop a new abstract stream query language that enables the

130

6.2 Subjects for Future Work

possibility to present the data stream mining task and the data stream query in an
appropriate manner. Based on this abstract stream query language, an automated
translator, which aims to translate the query into several specific data stream query
languages, can be built.

Data stream items must be temporally stored on an MCPS. Thus, a lightweight com-
bination of a data stream and event stream warehouse reflecting resource restrictions
of MCPSs is required. This combined data and event stream warehouse should be
able to provide different storage strategies such as complete and incomplete storage
(cf. Section 3.5.1).

Currently, it is impossible to distinguish the ETL process between KDD and KDDS.
ETL commonly refers to KDD, whereas data transmitted to the offline subcycle
reflects streaming data. Thus, an adequate ETL process, which takes this problem
into account, is required.

Data stream mining algorithms can also be applied on the offline subcycle to pro-
vide near real-time processing. These algorithms could be massively parallelized
onto large computational infrastructures (e.g. computer clusters and grid or cloud
computing).

In addition, the adaptation of the online subcycle includes a large number of open
problems. How to transmit new queries to an IFP engine without stopping the
engine and without evoking critical side effects? First, it is required to define and
register streams using a data definition language. Second, it is required to define
and register queries by a data manipulation language. In contrast to conventional
DBMSs, IFP engines provide continuous queries (cf. Section 2.6.2). Such continu-
ous queries process the data stream continuously. What happens when the stream
definition changes during operation? How to register new queries or change and
delete already existing queries during operation? Some basic discussions of these
problems are provided by Müller et al. [MAK07] and Wolf et al. [WR08]. How to
provide transaction protocols and properties such as atomicity, consistency, isolation
and durability as known from conventional DBMSs? Furthermore, standardized in-
terfaces such as the open database connectivity or Java database connectivity are
not yet available. However, not every query language provides concepts of a data
definition language. For example, the event processing language provided by Esper
[Esp13] necessitates a Java-based implementation of data streams. Moreover, query
languages for stream processing do not provide concepts for procedural extensions
such as transact SQL or PL/SQL.

Lastly, an in-depth discussion of open challenges for data stream mining research is
provided by Krempl et al. [KvB+14].

131

Appendix

A Bibliography

[ABW06] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution. The VLDB
Journal, 15:121–142, 2006.

[ACc+03] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New
Model and Architecture for Data Stream Management. The VLDB
Journal, 12:120–139, 2003.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
A View of Cloud Computing. Commun. ACM, 53(4):50–58, 2010.

[Agg07] C. C. Aggarwal, editor. Data Streams: Models and Algorithms.
Springer, 2007.

[AHWY03] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for
Clustering Evolving Data Streams. In Proceedings of the 29th in-
ternational conference on Very large data bases - Volume 29, VLDB
’2003, pages 81–92. VLDB Endowment, 2003.

[ALRL04] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Con-
cepts and Taxonomy of Dependable and Secure Computing. IEEE
Trans. Dependable Secur. Comput., 1:11–33, 2004.

[Bac00] A. Backlund. The Definition of System. Kybernetes, 29:444–451,
2000.

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and Issues in Data Stream Systems. In Proceedings of the 21st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), pages 1–16. ACM, 2002.

133

[Bel61] R. Bellmann. Adaptive Control Processes. Princeton University Press,
1961.

[BGJ+09] B. Bertsche, P. Göhner, U. Jensen, W. Schinköthe, and H.-J. Wun-
derlich. Zuverlässigkeit mechatronischer Systeme. Springer, 2009.

[BHKP10] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive
Online Analysis. Journal of Machine Learning Research (JMLR),
11:1601–1604, 2010.

[BHKP11] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Data Stream
Mining - A Practical Approach. Technical report, Centre for
Open Software Innovation (COSI) - Waikato University, 2011.
Available from: http://heanet.dl.sourceforge.net/project/

moa-datastream/documentation/StreamMining.pdf.

[Bis93] C. M. Bishop. Novelty Detection and Neural Network Validation. In
S. Gielen and B. Kappen, editors, ICANN, pages 789–794. Springer,
1993.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[BKZ10] S. Bell, D. Kortenkamp, and J. Zaientz. A Data Abstraction Architec-
ture for Mission Operations. In International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS), 2010.

[BL13] K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.
Available from: http://archive.ics.uci.edu/ml.

[BM00] W. R. Blischke and D. N. P. Murthy. Reliability: Modeling, Prediction,
and Optimization. John Wiley & Sons, 2000.

[BM06] H. Bauke and S. Mertens. Cluster Computing. Springer, 2006.

[Bol09] A. Bolles. A flexible Framework for Multisensor Data Fusion using
Data Stream Management Technologies. In Proceedings of the 2009
EDBT/ICDT Workshops, EDBT/ICDT ’09, pages 193–200. ACM,
2009.

[Bos89] Hartmut Bossel. Simulation dynamischer Systeme. Vieweg, 1989.

[Bre11] R. G. Brereton. One-Class Classifiers. Journal of Chemometrics,
25(5):225–246, 2011.

[BST10] K. Berns, B. Schürmann, and M. Trapp. Eingebettete Systeme.
Vieweg+Teubner, 2010.

134

[BW01] S. Babu and J. Widom. Continuous Queries over Data Streams.
SIGMOD Record, 30(3):109–120, September 2001.

[BW08] S. Boslaugh and P. A. Watters. Statistics in a Nutshell. O’Reilly,
2008.

[CB10] T. Connolly and C. Begg. Database Systems: A Practical Approach
to Design, Implementation, and Management. Addison Wesley, 5th
edition, 2010.

[CBK09] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A
Survey. ACM Comput. Surv., 41:15:1–15:58, 2009.

[CcC+02] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring Streams:
A New Class of Data Management Applications. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB),
pages 215–226. VLDB Endowment, 2002.

[CEW01] S. H. Chung, J. M. Van Eepoel, and B. C. Williams. Improving
Model-based Mode Estimation through Offline Compilation. In Pro-
ceedings of the 6th International Symposium on Artificial Intelligence
and Robotics and Automation in Space, 2001.

[Cha09] R. Chattamvelli. Data Mining Methods. Alpha Science International,
Ltd, 2009.

[CJ09] S. Chakravarthy and Q. Jiang. Stream Data Processing: A Quality
of Service Perspective. Springer, 2009.

[CM12] G. Cugola and A. Margara. Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM Comput. Surv.,
44(3):15:1–15:62, 2012.

[Cod82] E. F. Codd. Relational Database: A Practical Foundation for Pro-
ductivity. Commun. ACM, 25(2):109–117, 1982.

[CV95] C. Cortes and V. Vapnik. Support-Vector Networks. Mach. Learn.,
20(3):273–297, 1995.

[DD09] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009.

[DGG96] K. R. Dittrich, S. Gatziu, and A. Geppert. The Active Database
Management System Manifesto: A Rulebase of ADBMS Features.
SIGMOD Rec., 25(3):40–49, 1996.

135

[DGH+06] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White.
Towards Expressive Publish/Subscribe Systems. In Proceedings of
the 10th International Conference on Extending Database Technology
(EDBT), 2006.

[DH00] P. Domingos and G. Hulten. Mining High-Speed Data Streams. In
Proceedings of the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 71–80. ACM,
2000.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification.
Wiley, 2001.

[Die97] T. G. Dietterich. Machine-Learning Research: Four Current Direc-
tions. AI Magazine, 18:97–136, 1997.

[Die12] M. Dietrich. Anwendung des KDC-Ansatzes zur Überwachung des
Frischluftkreislaufs auf der internationalen Raumstation ISS. Mas-
ter’s thesis, Brandenburg University of Technology Cottbus, Institute
of Computer Science, 2012.

[DJP+07] R. P. W. Duin, P. Juszczak, P. Pacĺık, E. Pȩkalska, D. de Ridder,
D. M. J. Tax, and S. Verzakov. PRTools, A Matlab Toolbox for
Pattern Recognition, 2007. Available from: http://prtools.org/.

[DK89] D. Dvorak and B. Kuipers. Model-based Monitoring of Dynamic
Systems. In Proceedings of the 11th International Joint Conference on
Artificial Intelligence, volume 2, pages 1238–1243. Morgan Kaufmann
Publishers Inc., 1989.

[dKW89] J. de Kleer and B. C. Williams. Diagnosing with Behavioral Modes.
In Proceedings of the 11th IJCAI, 1989.

[DS86] R. B. D’Agostino and M. A. Stephens, editors. Goodness-Of-Fit Tech-
niques. Marcel Dekker, Inc., 1986.

[DSSV00] C. De Stefano, C. Sansone, and M. Vento. To reject or not to re-
ject: that is the question-an answer in case of neural classifiers. Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 30(1):84–94, 2000.

[dSTM10] P. H. dos Santos Teixeira and R. L. Milidiú. Data Stream Anomaly
Detection through Principal Subspace Tracking. In Proceedings of
the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
1609–1616. ACM, 2010.

136

[EB09] M. Eckert and F. Bry. Aktuelles Schlagwort: Complex Event Pro-
cessing (CEP). Informatik-Spektrum, 32:163–167, 2009.

[Efr83] Bradley Efron. Estimating the Error Rate of a Prediction Rule: Im-
provement on Cross-Validation. Journal of the American Statistical
Association, 78(382):pp. 316–331, 1983.

[Egy85] C. Egyhazy. Using Database Machines in Embedded Computer Sys-
tems. Inf. Manage., 8(4):197–203, 1985.

[EN10] O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Co., 2010.

[ES00] M. Ester and J. Sander. Knowledge Discovery in Databases: Tech-
niken und Anwendungen. Springer, 2000.

[ESA14] ESA. OPS-SAT, 2014. 26.05.2014. Available from: http://www.esa.

int/Our_Activities/Operations/OPS-SAT.

[Esp13] EsperTech Inc. Esper - Complex Event Processing, 2013. 20.03.2013.
Available from: http://esper.codehaus.org/.

[Faw06] T. Fawcett. An Introduction to ROC Analysis. Pattern Recogn. Lett.,
27(8):861–874, 2006.

[FGC13] E. R. Faria, J. Gama, and A. C. P. L. F. Carvalho. Novelty Detection
Algorithm for Data Streams Multi-class Problems. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, SAC ’13,
pages 795–800. ACM, 2013.

[FK03] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers Inc., 2003.

[FPS+11] C.-L. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and S. Vishwanath.
Pharos: A Testbed for Mobile Cyber-Physical Systems. Technical
report, University of Texas at Austin, 2011. Available from: http:

//pharos.ece.utexas.edu/pubs/TR-ARiSE-2011-001.pdf.

[FPSM92] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge
Discovery in Databases: An Overview. AI Magazine, 13:57–70, 1992.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Min-
ing to Knowledge Discovery in Databases. AI Magazine, 17(3):37–54,
1996.

137

[FYM05] R. Fujimaki, T. Yairi, and K. Machida. An Approach to Spacecraft
Anomaly Detection Problem Using Kernel Feature Space. In Pro-
ceedings of the eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (KDD), pages 401–410. ACM,
2005.

[Gam10] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall,
2010.

[GD06] S. Goddard and J. S. Deogun. Future Mobile Cyber-Physical Sys-
tems: spatio-temporal computational environments. In Proceedings
of the 2006 National Science Foundation Workshop on Cyber-Physical
Systems, 2006. Position paper.

[Gee13] D. Geesen. Maschinelles Lernen in Datenstrommanagementsyste-
men. PhD thesis, University of Oldenburg, 2013. OlWIR Verlag
für Wirtschaft, Informatik und Recht.

[GJ11] L. Golab and T. Johnson. Consistency in a Stream Warehouse. In
CIDR, pages 114–122, 2011.

[GJSS09] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream
Warehousing with DataDepot. In Proceedings of the 35th SIGMOD
International Conference on Management of Data, pages 847–854.
ACM, 2009.

[GKA06] J. Gama, R. Klinkenberg, and J. Aguilar, editors. The Fourth Inter-
national Workshop on Knowledge Discovery from Data Streams, 2006.
Available from: http://www.ecmlpkdd2006.org/ws-kdds.pdf.

[GO10] L. Golab and M. T. Özsu. Data Stream Management. Morgan &
Claypool Publishers, 2010.

[Gor72] G. Gordon. Systemsimulation. Oldenbourg, 1972.

[GZK05] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining Data
Streams: A Review. SIGMOD Rec., 34(2):18–26, 2005.

[HA04] V. J. Hodge and J. Austin. A Survey of Outlier Detection Method-
ologies. Artificial Intelligence Review, 22:85–126, 2004.

[Han10] A. Handl. Multivariate Analysemethoden. Springer, 2010.

[HB95] E. Horvitz and M. Barry. Display of Information for Time-Critical
Decision Making. In Proceedings of the Eleventh Conference on Un-
certainty in Artificial Intelligence, pages 296–305. Morgan Kaufmann
Publishers Inc., 1995.

138

[HK06] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., 2006.

[HL02] C.-W. Hsu and C.-J. Lin. A Comparison of Methods for Multiclass
Support Vector Machines. Neural Networks, IEEE Transactions on,
13(2):415–425, 2002.

[HM82] J. A. Hanley and B. J. McNeil. The Meaning and Use of the Area
Under a Receiver Operating Characteristic (ROC) Curve. Radiology,
143:29–36, 1982.

[HM08] M. C. Huebscher and J. A. McCann. A Survey of Autonomic Com-
puting — Degrees, Models, and Applications. ACM Comput. Surv.,
40(3):7:1–7:28, 2008.

[HRWL83] F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors. Building
Expert Systems. Addison-Wesley, 1983.

[HYMK09] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari. Adapted
One-versus-All Decision Trees for Data Stream Classification. IEEE
Transactions on Knowledge and Data Engineering, 21(5):624–637,
2009.

[IBM03] IBM. An Architectural Blueprint for Autonomic Computing. Tech-
nical report, IBM, 2003. Available from: http://cs.nju.edu.cn/

yangxc/autonomic-computing/ACwpFinal.pdf.

[Ign90] J. P. Ignizio. A Brief Introduction to Expert Systems. Computers &
Operations Research, 17(6):523 – 533, 1990.

[IK03] D. M. Imboden and S. Koch. Systemanalyse. Springer, 2003.

[Inm02] W. H. Inmon. Building the Data Warehouse. John Wiley & Sons,
Inc., 2002.

[Jac90] P. Jackson. Introduction to Expert Systems. Addison-Wesley Long-
man Publishing Co., Inc., 2nd edition, 1990.

[Jac09] A. Jacobs. The Pathologies of Big Data. Commun. ACM, 52(8):36–
44, 2009.

[JBo14] JBoss. Drools Fusion, 2014. 22.04.2014. Available from: http://

www.jboss.org/drools/drools-fusion.html.

139

[JFP09] J. H. M. Janssens, I. Flesch, and E. O. Postma. Outlier Detection
with One-Class Classifiers from ML and KDD. In Proceedings of
the 2009 International Conference on Machine Learning and Appli-
cations, ICMLA ’09, pages 147–153. IEEE Computer Society, 2009.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review.
ACM Comput. Surv., 31:264–323, 1999.

[Joh83] P. E. Johnson. What Kind of Expert Should a System Be? Journal
of Medicine and Philosophy, 8(1):77–97, 1983.

[JR08] J. C. Junior and D. Renaux. Efficient Monitoring of Embedded Real-
Time Systems. Information Technology: New Generations, Third In-
ternational Conference on, 0:651–656, 2008.

[JW92] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical
Analysis. Prentice-Hall, 1992.

[Kal13] S. Kaltschmidt. Entwurf eines Anomalie-Erkennungssystems für Sen-
sordatenströme. Master’s thesis, Brandenburg University of Technol-
ogy Cottbus, Institute of Computer Science, 2013.

[Kau12] M. Kaufmann. Datenbankentwurf und Datenauswertung von Teleme-
triedaten des Columbus-Moduls der ISS. Diploma thesis, Branden-
burg University of Technology Cottbus, Institute of Computer Sci-
ence, 2012.

[KBL+04] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra,
J. Dull, K. Sarkar, M. Klein, M. Vasa, and D. Handy. VEDAS: A
Mobile and Distributed Data Stream Mining System for Real-Time
Vehicle Monitoring. In Proceedings of the Fourth SIAM International
Conference on Data Mining, 2004.

[Kec05] C. Kecher. UML 2.0 Das umfassende Handbuch. Galileo Computing,
2005.

[KKW03] G.-A. Klutke, Peter C. Kiessler, and M. A. Wortman. A Critical Look
at the Bathtub Curve. IEEE Transactions on Reliability, 52(1):125–
129, 2003.

[KM83] B. Krause and P. Metzler. Angewandte Statistik. VEB Deutscher
Verlag der Wissenschaften, 1983.

[Kni02] J. C. Knight. Safety Critical Systems: Challenges and Directions. In
Proceedings of the 24th International Conference on Software Engi-
neering (ICSE), pages 547–550. ACM, 2002.

140

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., 2nd
ed. edition, 1998.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Springer, 2 edition, 2011.

[KPD10] A. O. Kohlhase, N. Porth, and J. Doyé. Operational Engineering of
the Columbus Thermal and Environmental Control System: Achieve-
ments, Optimizations. In AIAA SpaceOps 2010 Conference, 2010.

[KR00] J. Kittler and F. Roli, editors. Multiple Classifier Systems, First In-
ternational Workshop, MCS 2000, Cagliari, Italy, June 21-23, 2000,
Proceedings, volume 1857 of Lecture Notes in Computer Science.
Springer, 2000.

[KS04] J. Krämer and B. Seeger. PIPES – A Public Infrastructure for Pro-
cessing and Exploring Streams. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages
925–926. ACM, 2004.

[Kun04] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algo-
rithms. Wiley-Interscience, 2004.

[KvB+14] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and
J. Stefanowski. Open Challenges for Data Stream Mining Research.
ACM SIGKDD Explorations Newsletter – Special Issue on Big Data,
16(1):1–10, 2014.

[KZ02] W. Klösgen and J. M. Zytkow, editors. Handbook of Data Mining
and Knowledge Discovery. Oxford University Press, Inc., 2002.

[Lap95] J. C. Laprie. Dependable Computing and Fault Tolerance: Con-
cepts and Terminology. In Fault-Tolerant Computing, 1995, High-
lights from Twenty-Five Years., Twenty-Fifth International Sympo-
sium on, 1995.

[Lee08] E. A. Lee. Cyber Physical Systems: Design Challenges. In Proceedings
of the 2008 11th IEEE Symposium on Object Oriented Real-Time Dis-
tributed Computing, pages 363–369. IEEE Computer Society, 2008.

[LPV+08] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and
H. Conover. Real-time Storm Detection and Weather Forecast Acti-
vation Through Data Mining and Events Processing. Earth Science
Informatics, 1:49–57, 2008.

141

[LS11] E. A. Lee and S. A. Seshia. Introduction to Embedded Systems: A
Cyber-Physical Systems Approach. Published by Authors, 2011.

[Luc02] D. Luckham. The Power of Events. Addison-Wesley Longman, 2002.

[LZL09] C. Li, Y. Zhang, and X. Li. OcVFDT: One-class Very Fast Decision
Tree for One-class Classification of Data Streams. In Proceedings
of the Third International Workshop on Knowledge Discovery from
Sensor Data, SensorKDD ’09, pages 79–86. ACM, 2009.

[Mah36] P. C. Mahalanobis. On the generalised distance in statistics. In Pro-
ceedings National Institute of Science, volume 2, pages 49–55, 1936.

[MAK07] R. Müller, G. Alonso, and D. Kossmann. SwissQM: Next Genera-
tion Data Processing in Sensor Networks. In Biennial Conference on
Innovative Data Systems Research (CDIR), 2007.

[Mar07] P. Marwedel. Eingebettete Systeme. Springer, 2007.

[Mat14] MathWorks. MATLAB, 2014. 10.03.2014. Available from: www.

mathworks.com/products/matlab/.

[Mei08] G. Meijer, editor. Smart Sensor Systems. Wiley, 2008.

[MF02] S. Madden and M. J. Franklin. Fjording the Stream: An Architec-
ture for Queries Over Streaming Sensor Data. In Proceedings of the
18th International Conference on Data Engineering. IEEE Computer
Society, 2002.

[MGK+11] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham.
Classification and Novel Class Detection in Concept-Drifting Data
Streams under Time Constraints. Knowledge and Data Engineering,
IEEE Transactions on, 23(6):859–874, 2011.

[MH96] M. M. Moya and D. R. Hush. Network Constraints and Multi-
objective Optimization for One-class Classification. Neural Netw.,
9(3):463–474, 1996.

[MM02] G. S. Manku and R. Motwani. Approximate Frequency Counts over
Data Streams. In Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, pages 346–357. VLDB Endow-
ment, 2002.

[MR05] O. Maimon and L. Rokach, editors. Data Mining and Knowledge
Discovery Handbook. Springer, 2nd edition, 2005.

142

[MS03a] M. Markou and S. Singh. Novelty detection: a review—part 2: neural
network based approaches. Signal Processing, 83(12):2499 – 2521,
2003.

[MS03b] M. Markou and S. Singh. Novelty Detection: A Review Part 1: Sta-
tistical Approaches. Signal Processing, 83(12):2481 – 2497, 2003.

[MWA+02] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query Process-
ing, Resource Management, and Approximation in a Data Stream
Management System. Technical Report 2002-41, Stanford InfoLab,
2002. Available from: http://ilpubs.stanford.edu:8090/549/.

[NBW+10] E. Noack, W. Belau, R. Wohlgemuth, R. Müller, S. Palumberi, P. Par-
odi, and F. Burzagli. Efficiency of the Columbus Failure Management
System. In AIAA 40th International Conference on Environmental
Systems, 2010.

[NCHC11] M. C. Naldi, R. J. G. B. Campello, E. R. Hruschka, and A. C. P.
L. F. Carvalho. Efficiency Issues of Evolutionary K-means. Appl.
Soft Comput., 11(2):1938–1952, 2011.

[NLS+12] E. Noack, A. Luedtke, I. Schmitt, T. Noack, E. Schaumlöffel,
E. Hauke, J. Stamminger, and E. Frisk. The Columbus Module as
a Technology Demonstrator for Innovative Failure Management. In
German Air and Space Travel Congress, Deutscher Luft- und Raum-
fahrtkongress, 2012.

[NNP+11] E. Noack, T. Noack, V. Patel, I. Schmitt, M. Richters, J. Stamminger,
and S. Sievi. Failure Management for Cost-Effective and Efficient
Spacecraft Operation. In Proceedings of the 2011 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS). IEEE Computer
Society, 2011.

[NNS+13] T. Noack, E. Noack, I. Schmitt, S. Sievi, and S. Mirzakhyl. A Discus-
sion on ISS Columbus Data Streams. In ECML/PKDD Workshop on
Real-World Challenges for Data Stream Mining (RealStream), 2013.

[Noa11a] T. Noack. Echtzeitüberwachung und Langzeitanalyse mittels einge-
betteter Systeme. In Proceedings of the 23nd GI-Workshop on Foun-
dations of Databases, 2011.

[Noa11b] T. Noack. Real-Time Monitoring and Long-Term Analysis by Means
of Embedded Systems. In Proceedings of the CAiSE Doctoral Con-
sortium, 2011.

143

[Nor07] A. Nori. Mobile and Embedded Databases. In Proceedings of the
2007 ACM SIGMOD International Conference on Management of
Data, pages 1175–1177. ACM, 2007.

[NS12a] T. Noack and I. Schmitt. A Cyclic Process Model for Monitor-
ing Mobile Cyber-Physical Systems. Technical Report 04/12, Bran-
denburg University of Technology Cottbus, Institute of Computer
Science, 2012. Available from: http://www-docs.tu-cottbus.de/

dbis-informatik/public/paper/TechRep_PP_Noack_Final.pdf.

[NS12b] T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems
by Means of a Knowledge Discovery Cycle - A Case Study. In Work-
shop on Knowledge Discovery, Data Mining, and Machine Learning
(KDML), 2012.

[NS13] T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems
by Means of a Knowledge Discovery Cycle. In Seventh IEEE Inter-
national Conference on Research Challenges in Information Science
(RCIS), 2013.

[NSS13a] T. Noack, I. Schmitt, and S. Saretz. OVA-based Multi-Class Classifi-
cation for Data Stream Anomaly Detection. Technical Report 01/13,
Brandenburg University of Technology Cottbus, Institute of Com-
puter Science, 2013. Available from: http://opus.kobv.de/btu/

volltexte/2013/2818/.

[NSS13b] T. Noack, I. Schmitt, and S. Sievi. Knowledge Discovery Cycle for
OPS-SAT. Technical report, ESA/ESOC OPS-SAT Open Day, 2013.

[OC92] Y. Ohba and Y. Chba, editors. Intelligent Sensor Technology. John
Wiley & Sons, Inc., 1st edition, 1992.

[Oet13] T. Oetiker. Rrdtool, 2013. 18.07.2013. Available from: http://oss.

oetiker.ch/rrdtool/.

[Ols02] J. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann
Publishers Inc., 2002.

[Ort00] S. Ortiz. Embedded Databases Come out of Hiding. Computer,
33(3):16–19, 2000.

[OSB+72] G. Ose, G. Schiemann, H. Baumann, F. Stopp, W. Körner, and
G. Lochmann. Ausgewählte Kapitel der Mathematik. VEB Fach-
buchverlag Leipzig, 1972.

144

[Pag54] E. S. Page. Continuous Inspection Schemes. Biometrika, 41:100–115,
1954.

[PD99] N. W. Paton and O. Dı́az. Active Database Systems. ACM Comput.
Surv., 31(1):63–103, 1999.

[Pea01] K. Pearson. On Lines and Planes of Closest Fit to Systems of Points
in Space. Philosophical Magazine, 2(6):559–572, 1901.

[Pec07] J. K. Peckol. Embedded Systems: A Contemporary Design Tool. John
Wiley & Sons, 2007.

[Ped89] K. Pedersen. Expert Systems Programming – Practical Techniques
for Rule-based Systems. Jo, 1989.

[Pos14] PostgreSQL Global Development Group. PostgreSQL, 2014.
10.03.2014. Available from: http://www.postgresql.org/.

[PP07] A. Patcha and J.-M. Park. An Overview of Anomaly Detection Tech-
niques: Existing Solutions and Latest Technological Trends. Comput.
Netw., 51:3448–3470, 2007.

[PP09] A. G. Piersol and T. L. Paez. Harris’ Shock and Vibration Handbook.
McGraw-Hill, 6 edition, 2009.

[PSRD11] G. Parzianello, M. Schmid, E. Roberts, and O. Duforet. Investigation
of an Anomalous Failure of Bearing on a Fan within the Columbus
Module of the ISS. In 14th European Space Mechanisms and Tribology
Symposium (ESMATS), 2011.

[PVS11] A. Paschke, P. Vincent, and F. Springer. Standards for Complex
Event Processing and Reaction Rules. In F. Olken, M. Palmirani,
and D. Sottara, editors, Rule - Based Modeling and Computing on the
Semantic Web, volume 7018 of Lecture Notes in Computer Science,
pages 128–139. Springer, 2011.

[RALS09] M. Rosenmüller, S. Apel, T. Leich, and G. Saake. Tailor-made Data
Management for Embedded Systems: A Case Study on Berkeley DB.
Data Knowl. Eng., 68:1493–1512, 2009.

[Rao96] B. K. N. Rao. Handbook of Condition Monitoring. Elsevier Science,
1996.

[Ras13] Raspberry Pi. Raspberry Pi, 2013. 10.03.2014. Available from: http:

//www.raspberrypi.org/.

145

[RG97] G. Ritter and M. T. Gallegos. Outliers in Statistical Pattern Recog-
nition and an Application to Automatic Chromosome Classification.
Pattern Recognition Letters, 18(6):525–539, 1997.

[RLAS07] M. Rosenmüller, T. Leich, S. Apel, and G. Saake. Von Mini- über
Micro- bis zu Nano-DBMS: Datenhaltung in eingebetteten Systemen.
Datenbank-Spektrum, 7(20):33–43, 2007.

[RLSS10] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-Physical Sys-
tems: The Next Computing Revolution. In Proceedings of the 47th
Design Automation Conference (DAC), pages 731–736. ACM, 2010.

[RSOR10] H. Roth, J. Schiefer, H. Obweger, and S. Rozsnyai. Event Data Ware-
housing for Complex Event Processing. In Fourth International Con-
ference on Research Challenges in Information Science (RCIS), pages
203–212, 2010.

[Run10] T. A. Runkler. Data Mining: Methoden und Algorithmen intelligenter
Datenanalyse. Vieweg+Teubner, 2010.

[SA11] N. Stojanovic and A. Artikis. On Complex Event Processing for Real-
Time Situational Awareness. In Nick Bassiliades, Guido Governatori,
and Adrian Paschke, editors, Rule-Based Reasoning, Programming,
and Applications, volume 6826 of Lecture Notes in Computer Science,
pages 114–121. Springer, 2011.

[Sam05] H. Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Morgan Kaufmann Publishers Inc., 2005.

[Sch95] B. A. Schroeder. On-Line Monitoring: A Tutorial. Computer, 28:72–
78, 1995.

[Sch08] A. Schuster. Robust Intelligent Systems. Springer, 2008.

[ScZ05] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 Requirements of
Real-Time Stream Processing. ACM SIGMOD Record, 34(4):42–47,
2005.

[SdLFdCG07] E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. Gama. OLINDDA:
A Cluster-based Approach for Detecting Novelty and Concept Drift
in Data Streams. In Proceedings of the 2007 ACM symposium on
Applied computing, SAC ’07, pages 448–452. ACM, 2007.

[See00] M. Seeger. Learning with Labeled and Unlabeled Data. Techni-
cal report, University of Edinburgh, 2000. Available from: http:

//lapmal.epfl.ch/papers/review.pdf.

146

[SGLW08] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-Physical Sys-
tems: A New Frontier. In IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC), pages
1–9, 2008.

[Sil05] C. W. de Silva, editor. Vibration and Shock Handbook. Taylor &
Francis, 2005.

[SLM10] F. Salfner, M. Lenk, and M. Malek. A Survey of Online Failure
Prediction Methods. ACM Comput. Surv., 42:10:1–10:42, 2010.

[Smi56] W. E. Smith. Various Optimizers for Single-Stage Production. Naval
Research Logistics Quarterly, 3(1-2):59–66, 1956.

[Sno88] R. Snodgrass. A Relational Approach to Monitoring Complex Sys-
tems. ACM Trans. Comput. Syst., 6:157–195, 1988.

[Spa89] K. A. Spackman. Signal Detection Theory: Valuable Tools for Eval-
uating Inductive Learning. In Proceedings of the Sixth International
Workshop on Machine Learning, pages 160–163. Morgan Kaufmann
Publishers Inc., 1989.

[SS94] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating
Systems. McGraw-Hill, Inc., 1994.

[SS13] V. Singh and D. Singh. Survey on Pattern Optimization for Novel
Class in MCM for Stream Data Classification. Int. Journal of Engi-
neering Sciences and Research Technology, 2:2767–2771, 2013.

[Ste09] A. Steland. Basiswissen Statistik. Springer, 2009.

[Str13] StreamBase Systems. StreamBase, 2013. 20.03.2013. Available from:
http://www.streambase.com/.

[SWSST00] B. Schölkopf, R. Williamson, A. Smola, and J. Shawe-Taylor. SV
Estimation of a Distribution’s Support. In Proceedings of Neural In-
formation Processing Systems, NIPS’99, pages 582–588. MIT Press,
2000.

[SWYS11] J. Shi, J. Wan, H. Yan, and H. Suo. A Survey of Cyber-Physical
Systems. In International Conference on Wireless Communications
and Signal Processing (WCSP), pages 1–6, 2011.

[Tan14] S. C. Tan. Fast Anomaly Detection for Stream-
ing Data, 2014. 27.03.2014. Available from:
https://sites.google.com/site/analyticsofthings/

recent-work-fast-anomaly-detection-for-streaming-data.

147

[Tax01] D. M. J. Tax. One-Class Classification: Concept-learning in the Ab-
sence of Counter-Examples. PhD thesis, TU Delft, 2001. Available
from: http://homepage.tudelft.nl/n9d04/thesis.pdf.

[Tax12] D. M. J. Tax. DDTools, the Data Description Toolbox for Matlab,
May 2012. version 1.9.1. Available from: http://prlab.tudelft.

nl/david-tax/dd_tools.html.

[TD99a] D. M. J. Tax and R. P. W. Duin. Data Domain Description using Sup-
port Vectors. In European Symposium on Artificial Neural Networks,
pages 251–256, 1999.

[TD99b] D. M. J. Tax and R. P. W. Duin. Support Vector Domain Description.
Pattern Recognition Letters, 20(11-13):1191–1199, 1999.

[TD02] D. M. J. Tax and R. P. W. Duin. Using Two-class Classifiers for
Multiclass Classification. In Pattern Recognition, 2002. Proceedings.
16th International Conference on, volume 2, pages 124–127, 2002.

[TD04] D. M. J. Tax and R. P. W. Duin. Support Vector Data Description.
Mach. Learn., 54:45–66, 2004.

[TGP08] Y. Tan, S. Goddard, and L. C. Pérez. A Prototype Architecture for
Cyber-Physical Systems. ACM SIGBED Review, 5:26:1–26:2, 2008.

[TLM+11] H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, and
C. Zaniolo. SMM: a Data Stream Management System for Knowledge
Discovery. In Proceedings of the 27th International Conference on
Data Engineering (ICDE), pages 757–768. IEEE Computer Society,
2011.

[TSK05] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

[TTL11] S. C. Tan, K. M. Ting, and T. F. Liu. Fast Anomaly Detection for
Streaming Data. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI), volume 2, pages
1511–1516. AAAI Press, 2011.

[TY95] J. J. P. Tsai and S. J. H. Yang. Monitoring and Debugging of Dis-
tributed Real-Time Systems. IEEE Computer Society Press, 1995.

[Vap95] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1995.

[Vap98] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

148

[Wat86] D. A. Waterman. A Guide to Expert Systems. Addison-Wesley, 1986.

[WDR06] E. Wu, Y. Diao, and S. Rizvi. High-Performance Complex Event
Processing over Streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pages 407–418.
ACM, 2006.

[WFH11] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. Elsevier, 2011.

[WG68] M. B. Wilk and R. Gnanadesikan. Probability Plotting Methods for
the Analysis of Data. Biometrika, 55(1):1–17, 1968.

[WHF11] S. Weigert, M. Hiltunen, and C. Fetzer. Mining Large Distributed
Log-Data in Near Real-Time. In Managing Large-Scale Systems via
the Analysis of System Logs and the Application of Machine Learning
Techniques (SLAML/SOSP), pages 5:1–5:8. ACM, 2011.

[Wol02] F. Wolf. Behavioral Intervals in Embedded Software: Timing and
Power Analysis of Embedded Real-Time Software Processes. Kluwer
Academic Publishers, 2002.

[WR08] B. Wolf and M. Rosjat. A Dynamic OSGi-Based Data Stream System.
In Proceedings of the 5th Middleware Doctoral Symposium (MDS),
pages 31–36. ACM, 2008.

[WYH05] H. Wang, P. S. Yu, and J. Han. Mining Data Streams. In O. Mai-
mon and L. Rokach, editors, Data Mining and Knowledge Discovery
Handbook, pages 777–792. Springer, 2005.

[XLZ+08] Z. Xu, X. Liu, G. Zhang, W. He, G. Dai, and W. Shu. A Certificate-
less Signature Scheme for Mobile Wireless Cyber-Physical Systems.
In 28th International Conference on Distributed Computing Systems
Workshops (ICDCS), pages 489–494. IEEE Computer Society, 2008.

[YD98] A. Ypma and R. P. W. Duin. Support Objects for Domain Approx-
imation. In ICANN 98, Perspectives in Neural Computing, pages
719–724. Springer, 1998.

[Zad73] L. A. Zadeh. Outline of a New Approach to the Analysis of Com-
plex Systems and Decision Processes. Systems, Man and Cybernetics,
IEEE Transactions on, SMC-3(1):28–44, 1973.

149

B List of Publications

1. [NNP+11] E. Noack, T. Noack, V. Patel, I. Schmitt, M. Richters, J. Stam-
minger, and S. Sievi. Failure Management for Cost-Effective and Efficient
Spacecraft Operation. In Proceedings of the 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS). IEEE Computer Society, 2011

2. [Noa11a] T. Noack. Echtzeitüberwachung und Langzeitanalyse mittels einge-
betteter Systeme. In Proceedings of the 23nd GI-Workshop on Foundations of
Databases, 2011

3. [Noa11b] T. Noack. Real-Time Monitoring and Long-Term Analysis by Means
of Embedded Systems. In Proceedings of the CAiSE Doctoral Consortium,
2011

4. [NS12a] T. Noack and I. Schmitt. A Cyclic Process Model for Monitoring
Mobile Cyber-Physical Systems. Technical Report 04/12, Brandenburg Uni-
versity of Technology Cottbus, Institute of Computer Science, 2012. Available
from: http://www-docs.tu-cottbus.de/dbis-informatik/public/paper/

TechRep_PP_Noack_Final.pdf

5. [NS12b] T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems
by Means of a Knowledge Discovery Cycle - A Case Study. In Workshop on
Knowledge Discovery, Data Mining, and Machine Learning (KDML), 2012

6. [NLS+12] E. Noack, A. Luedtke, I. Schmitt, T. Noack, E. Schaumlöffel,
E. Hauke, J. Stamminger, and E. Frisk. The Columbus Module as a Tech-
nology Demonstrator for Innovative Failure Management. In German Air and
Space Travel Congress, Deutscher Luft- und Raumfahrtkongress, 2012

7. [NS13] T. Noack and I. Schmitt. Monitoring Mobile Cyber-Physical Systems
by Means of a Knowledge Discovery Cycle. In Seventh IEEE International
Conference on Research Challenges in Information Science (RCIS), 2013

8. [NSS13a] T. Noack, I. Schmitt, and S. Saretz. OVA-based Multi-Class Classifi-
cation for Data Stream Anomaly Detection. Technical Report 01/13, Branden-
burg University of Technology Cottbus, Institute of Computer Science, 2013.
Available from: http://opus.kobv.de/btu/volltexte/2013/2818/

9. [NSS13b] T. Noack, I. Schmitt, and S. Sievi. Knowledge Discovery Cycle for
OPS-SAT. Technical report, ESA/ESOC OPS-SAT Open Day, 2013

10. [NNS+13] T. Noack, E. Noack, I. Schmitt, S. Sievi, and S. Mirzakhyl. A
Discussion on ISS Columbus Data Streams. In ECML/PKDD Workshop on
Real-World Challenges for Data Stream Mining (RealStream), 2013

151

11. [KvB+14] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and J. Stefanowski.
Open Challenges for Data Stream Mining Research. ACM SIGKDD Explo-
rations Newsletter – Special Issue on Big Data, 16(1):1–10, 2014

152

C Acronyms

AUC area under an ROC curve

CEP complex event processing

CFA cabin fan

CHX condensate heat exchanger

CPS cyber-physical system

DAHP database-active human-passive

DBMS database management system

DSMS data stream management system

DWH data warehouse

ECA event-condition-action

EPL event processing language

ETL extract, transform, and load

FN false negative

FP false positive

FPR false positive rate

HADP human-active database-passive

HST half-space trees

HT Hoeffding trees

IFP information flow processing

IRFA inter module ventilation return fan assembly

ISFA inter module ventilation supply fan assembly

ISS International Space Station

153

JSON JavaScript object notation

KDC knowledge discovery cycle

KDD knowledge discovery in databases

KDDS knowledge discovery from data streams

LOS loss of signal

MAPE-K monitor, analyse, plan, execute, and knowledge

MCC multi-class classification

MCPS mobile cyber-physical system

MINAS multi-class learning algorithm for data streams

MOA massive online analysis

NN nearest neighbor

OAO one-against-one

OAR one-against-rest

OCC one-class classification

OLINDDA online novelty and drift detection algorithm

RBF radial basis function

ROC receiver operating characteristics

SDW streaming data warehouse

SVDD support vector domain description

SVM support vector machine

TN true negative

TP true positive

154

TPR true positive rate

XML extensible markup language

155

D Glossary

abnormal system states
Complementary to normal system states where it is assumed that an MCPS
works incorrectly during operation.

actuator
A system component which influences the system environment.

anomaly
A pattern in data which deviates from normal behavior.

anomaly detection
A research area which aims to find data subsets or single data elements from
a set of data which do not conform to expected behavior.

attribute
At least one measurable property or a combination of several measurable prop-
erties of a system or a system component.

attribute value
A specific measurement which relates to an attribute.

bathtub curve
A graph which subdivides the operational phase of MCPSs into three further
phases.

centroid
The arithmetic mean of a data set.

class
A logical grouping of data.

classification
A technique to assign data into a set of distinct classes.

cluster
A homogeneous group of data.

clustering
A technique to break a large heterogeneous set of data into a small number of
homogeneous groups or clusters.

157

complex event processing
The deduction of complex events from fundamental or underlying events in a
data stream context.

condition monitoring
A monitoring type used to monitor the conditions or system sates of MCPSs.

continuous monitoring
A monitoring characteristic while a permanently installed monitoring system
is used.

cyber-physical system
A very complex cybernetic system.

cybernetics
A conjunction of physical processes, computation, and communication.

data
A set of attribute values which describe a system (or a system component)
within a particular time frame.

data mining
The application of specific algorithms for extracting patterns from data.

data persistence
The ability of data to outlive the operational phase and possibly the overall
life-time of an MCPS.

data stream
A potentially infinite sequence of data items.

data stream mining
The application of data mining and machine learning algorithms directly onto
data streams.

data stream processing
A research area which addresses the machining of data streams.

data transience
The opposite of data persistence.

data warehouse
A subject-oriented, integrated, nonvolatile, and time-variant collection of data.

database management system
A software used to manage databases.

158

design phase
The conceptional engineering of an MCPS.

detector chain
A consecutive arrangement of dichotomous class detectors.

dichotomous class detector
A distinct and optimized class detector for each class providing two mutually
exclusive decisions.

dispatch and commissioning phase
The shipment of an MCPS to the application environment and its activation.

embedded system
A mechatronic system which is embedded into a product, processes informa-
tion, and interacts with the product and the product environment by means
of sensors and actuators.

error
A term which describes a system state where the system does not work as
expected.

event
An incident that has occurred within a particular system or domain.

expert system
A computer system which aims to combine human expertise with artificial
expertise.

external information system
A stationary part of an MCPS.

failure
A situation where the intended functioning of the system or subsystem cannot
be guaranteed any longer.

fault
The root cause of an error.

global monitoring
A monitoring characteristic while the entire system is monitored.

gradual change
Long-term changes of the system behavior.

159

heterogeneous multi-class anomaly detection
A set of classifiers which addresses a multi-class anomaly detection problem.

homogeneous multi-class anomaly detection
A single anomaly detection algorithm which addresses a multi-class anomaly
detection problem.

human expert
A person who, because of training and experience, is able to do things the rest
of us cannot.

knowledge discovery cycle
An abstract process cycle for monitoring MCPSs.

knowledge discovery from data streams
A process of identifying valid, novel, and potentially useful patterns from
streaming data.

knowledge discovery in databases
A process of identifying valid, novel, and potentially useful patterns in persis-
tently stored data.

known system states
System states that represent knowledge about an MCPS.

labeled data
Data that provide class labels which in turn indicate the membership to classes.

limit monitoring
A monitoring type which uses one-dimensional functions as thresholds.

local monitoring
A monitoring characteristic while only a few system components are moni-
tored.

mechatronic system
A system which comprises mechanic, electronic, and software domains.

medoid
A center m of a ball where m ∈ X tr.

mobile cyber-physical system
A location-independent CPS.

160

model-based monitoring
A monitoring type based on a static and preliminary model of the target
system.

monitoring
A continuous task of recognizing specific event occurrences in the behavior of
MCPSs and the identification of underlying faults during operation.

multivariate data
Data which refer to more than one attribute.

normal system states
System states that can be interpreted as a correct service of an MCPS or a
target system during operation.

normal wear phase
A phase of an MCPS during operation while the failure rate is proportionally
low.

offline monitoring
Amonitoring characteristic while a monitoring system is applied semi-automatically
and asynchronously from a target system.

offline subcycle
A part of the KDC which references offline monitoring.

one-class classification
A specific classification type used to assign data into two distinct classes.

online monitoring
A monitoring characteristic while a monitoring system is applied automatically
and synchronously with a target system.

online subcycle
A part of the KDC which references online monitoring.

operational phase
The runtime of an MCPS until its deactivation.

performance
The ability of an anomaly detection algorithm to detect anomalies in the con-
text of a given data set.

periodic monitoring
A monitoring characteristic when data is only collected at specific times.

161

physical environment
A system environment subject to physical conditions.

real-time system
A system which works under timing constraints while the correctness of the
computational results is time-depended.

reliability
The continuity of correct service and probability of default.

round trip
A complete cyclic pass through the KDC.

safety-critical system
A system which is subject to the consequences of failure.

sensor
A system component which collects information about the system environ-
ment.

smart sensor
A sensor which integrates the gathering of information with additional signal
processing functions.

storage-aware stream model
The storage-aware stream model extends the commonly known stream model
by the ability of storing incoming data streams entirely.

streaming data warehouse
A DWH which is used to store massive amounts of streaming data into a
persistent repository.

sudden change
Immediate change of the system behavior.

system
A compound structure of objects which cohere due to interaction or interde-
pendency.

system component
A subpart of a system.

system environment
Immediate surroundings of a system.

162

system states
A general term which aggregates the conditions of an MCPS in order to ab-
stractly describe the system and its components under consideration of relevant
and well-defined attributes within a specific time period.

target system
An MCPS which have to be monitored.

test phase
The implementation of the conceptional design and subsequent tests of an
MCPS.

time-efficiency

The time that an anomaly detection algorithm requires to process a single data
item.

univariate data

Data which exclusively refer to one attribute.

unknown system states

System states that represent the unawareness about an MCPS.

unlabeled data

Data that do not provide class labels.

wear in phase

A phase of an MCPS during operation characterized by a relatively high failure
rate.

wearout phase

A phase of an MCPS during operation characterized by a gradually increasing
failure rate.

window

A construct of data stream query languages applied to language operators to
restrict the scope of continuous queries.

163

E Notation

A An attribute.

a An attribute value a ∈ R.

α A Lagrangian multiplier.

b A minimal bounding hypersphere.

C An SVDD regularization parameter.

c Centroid of a hypersphere.

X A data set.

E An error.

ǫ A really small positive number ǫ ∈ R>0.

f A filter function.

g A function to estimate the local density of a state
vector.

h The number of known classes h = |Ω|.

i A control variable i ∈ N.

j A control variable j ∈ N.

K A kernel function.

k A number of balls k ∈ N.

l A control variable l ∈ N.

m Medoid of a hypersphere.

µ The expected value.

N The set of natural numbers.

N The multivariate Gaussian distribution.

n The number of attributes (dimensions) n ∈ N.

Ω A set of known classes.

ΩC The complement of known classes (anomaly class).

ω A specific known class.

p A probability of occurrence referring to a class.

Φ Mapping into a higher dimensional feature space.

165

π The ratio of the circumference of a circle to its
diameter.

Q Quantile of a density function.

R The set of real numbers.

r Radius of a hypersphere.

ρ A permutation.

S The corresponding vector space.

Σ The covariance matrix.

σ The width of the RBF in the SVDD.

sτ A state vector with index τ .

T Time as a function.

t The processing time of an anomaly detector t ∈ R.

t̃ The relative processing time of a class detector t̃ ∈
R.

τ Time as an index τ ∈ N.

θ A threshold θ ∈ R.

u An eigenvector.

V The volume of a hypersphere.

x̄ The arithmetic mean.

ζ A constant.

z A support vector.

166

F List of Figures

1 A sketch of an MCPS (based on [NS13]) 2

2 General bathtub curve (based on [Sil05]) 3

3 Distinction between gradual and sudden change 5

4 ISS Columbus failure management system (based on [NBW+10, NS13]) 8

5 ISS Columbus air loop (based on [NBW+10]) 9

6 Gradual and sudden change (based on [NBW+10, Noa11b, NS13]) . 11

7 Combining KDD and KDDS for monitoring MCPSs (based on [GO10]) 14

8 The KDD process model (based on [FPSS96]) 22

9 OAR versus OAO (based on [TD02]) 25

10 Reference architecture of a DSMS (based on [GO10]) 27

11 Reference architecture of an IFP engine (based on [CM12]) 28

12 Reference architecture of an SDW (based on [GO10]) 29

13 The MOA data stream classification cycle (based on [BHKP11]) . . 32

14 An abstract structure of an expert system (based on [Wat86]) 33

15 The MAPE-K reference model (based on [IBM03]) 34

16 Monitoring objectives (based on [SLM10]) 39

17 Requirements for monitoring MCPSs (based on [NS13]) 43

18 The Knowledge Discovery Cycle [NS13] 45

19 Processing steps of the KDC (based on [NS13]) 56

20 The KDC with associated concepts (based on [NS13]) 59

21 A set of system states (based on [NS12b]) 65

22 A multi-class anomaly detection problem (based on [CBK09]) 66

23 MCC (i.) versus OCC (ii.) anomaly detection (based on [CBK09]) . 68

24 IRFA training data . 71

25 Detector chain (based on [NSS13a]) 74

26 Filter function based on hyperspheres 80

27 Filter example with three hyperspheres 82

28 Quantile-quantile plot . 85

29 Gaussian distribution . 86

30 K-centers method with k = 3 . 89

31 K-centers with different values of k 90

32 Sketch of the NN one-class classifier 92

33 SVDD with RBF, σ = 0.04 and C = 0.6 95

34 The confusion matrix (based on [Faw06]) 100

35 The experimental setup . 103

36 An example of the data set Xfailure 109

37 Data set Xart 1 . 111

38 Data set Xart 2 . 112

167

39 ROC curves . 118
40 Summary of the average processing time per data item in milliseconds 119
41 The case study . 125

168

G List of Tables

1 Relation between learning methods and data mining types 24
2 Differences between DBMSs and IFP engines (based on [GO10]) . . 26
3 Differences between DWHs and SDWs (based on [GO10]) 30
4 Monitoring types associated to variants and phases of the bathtub curve 38

5 Relation between key challenges and characteristics 48
6 Comparison of the key challenges with existing approaches and the

KDC . 62

7 Summary of selected one-class classifiers 96

8 Comparison of selected anomaly detection approaches 107
9 Summary of data set Xirfa . 108
10 Summary of data set Xfailure . 108
11 Summary of data set Xfull . 110
12 Summary of data set Xshuttle . 110
13 Summary of data set Xart 1 . 111
14 Summary of data set Xart 2 . 112
15 Summary of one-class classifiers . 114
16 Summary of the anomaly detection performances Xirfa 114
17 Summary of the anomaly detection performances Xfailure 114
18 Summary of the anomaly detection performances Xfull 115
19 Summary of the anomaly detection performances Xshuttle 115
20 Summary of the anomaly detection performances Xart 1 116
21 Summary of the anomaly detection performances Xart 2 116
22 Summary of the average processing time per data item in milliseconds 119

169

H List of Listings

5.1 Implementation of the presented anomaly detection algorithm 105
5.2 Extended implementation (including the filter function) 106
5.3 Translation of a Gaussian one-class classifier into EPL [NS12b] . . . 122
5.4 Translation of a SVDD one-class classifier into EPL [NS12b] 122
5.5 Application of a user-defined function 122

171

I Acknowledgements

First of all, I would like to thank my doctoral adviser Prof. Ingo Schmitt for the
patient guidance. I greatly admire his commitment and devotion for reading my
manuscripts meticulously. This always helped me to improve my writings and realize
my ideas. Further on, I would like to thank the representative of the IGS ZUSYS
class (dependable hardware and software systems) Prof. H. T. Vierhaus for the
endeavor to provide a fruitful cooperation within the PhD class. I would also like to
thank Dr. Georg Krempl and Dr. Martin Strehler for improvement suggestions.

Furthermore, I would like to thank my brother Enrico Noack, who is a system engi-
neer of EADS Astrium Space Transportation, for provisioning and preparing the ISS
Columbus air loop data. His expert knowledge has been central for understanding
important issues and associations. Along with this, his encouragement and vision
have laid the foundation of the cooperation between the Brandenburg University of
Technology and EADS Astrium Space Transportation. In addition, I would like to
thank Sonja Sievi, another employee of EADS Astrium Space Transportation, for
participating in the OPS-SAT project.

I would also like to thank the members of the chair of database and information
systems. The secretary S. Schneider and the administrator E. Schwaar helped a lot
to reduce the administrative burden. Marcel Zierenberg, Alexander Schulze, David
Zellhöfer, Sebastian Lehrack, Sascha Saretz, and Dr. Adrian Giurca were always
available for discussion. Many thanks go to my students for preparing their diploma
or master’s theses in my field of research.

In addition, I would like to thank my parents for their financial support during my
studies. Many thanks go to my brother Andy Noack for his assistance and many
productive conversations during my studies. I would have never gone this far without
him.

Finally, I would like to thank my large circle of friends for listening my lengthly
monologues. Many thanks go to my long-standing friend and fellow student Markus
Ulbricht – we have successfully mastered a lot together. I would also like to express
my gratitude to my Skat group and my old school friend Christoph for the chess
evenings. Last but not least, I would like to thank my friends from Blankenfelde –
I can always count on them.

This work was supported by the Brandenburg Ministry of Science, Research, and
Culture as part of the International Graduate School (IGS) at Brandenburg Univer-
sity of Technology.

173

