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Abstract

Since Z3, the first automatic, programmable and operational computer, emerged

in 1941, computers have become an unshakable tool in varieties of engineering

researches, studies and applications. In the field of hydroinformatics, there exist

a number of tools focusing on data collection and management, data analysis,

numerical simulations, model coupling, post-processing, etc. in different time

and space scales. However, one crucial process is still missing — filling the gap

between available mass raw data and simulation tools.

In this research work, a general software framework for time series scenario

composition is proposed to improve this issue. The design of this framework is

aimed at facilitating simulation tasks by providing input data sets, e.g. Boundary

Conditions (BCs), generated for user-specified what-if scenarios. These scenarios

are based on the available raw data of different sources, such as field and

laboratory measurements and simulation results. In addition, the framework also

monitors the workflow by keeping track of the related metadata to ensure its

traceability.

This framework is data-driven and semi-automatic. It contains four basic

modules: data pre-processing, event identification, process identification, and

scenario composition. These modules mainly involve Time Series Knowledge

Mining (TSKM), fuzzy logic and Multivariate Adaptive Regression Splines (MARS)

to extract features from the collected data and interconnect themselves. The

extracted features together with other statistical information form the most

fundamental elements, MetaEvents, for scenario composition and further time

series generation. The MetaEvents are extracted through semi-automatic steps

forming Aspects, Primitive Patterns, Successions, and Events from a set of time

series raw data. Furthermore, different state variables are interconnected by

the physical relationships derived from process identification. These MetaEvents

represent the complementary features and consider identified physical rela-

tionships among different state variables from the available time series data of

different sources rather than the isolated ones. The composed scenarios can be
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further converted into a set of time series data as, for example, BCs, to facilitate

numerical simulations.

A software prototype of this framework was designed and implemented on

top of the Java and R software technologies. The prototype together with four

prototype application examples containing mathematical function-generated

data, artificial model-synthetic hydrological data, and measured hydrological

and hydrodynamic data, are used to demonstrate the concept. The results

from the application examples present the capability of reproducing similar

time series patterns from specific scenarios compared to the original ones as

well as the capability of generating artificial time series data from composed

scenarios based on the interest of users, such as numerical modelers. In this

respect, it demonstrates the concept’s capability of answering the impacts from

what-if scenarios together with simulation tools. The semi-automatic concept

of the prototype also prevents from inappropriate black-box applications and

allows the consideration of the knowledge and experiences of domain experts.

Overall, the framework is a valuable and progressive step towards holistic

hydroinformatics systems in reducing the gap between raw data and simulation

tools in an engineering suitable manner.



Zusammenfassung

Seit der erste automatische, programmierbare und betriebsfähige Computer, Z3,

im Jahr 1941 entwickelt wurde, sind Computer ein unverzichtbares Werkzeug

für die vielfältigen Aufgaben in der ingenieurwissenschaftlichen Forschung und

Praxis geworden. Auf dem Gebiet der Hydroinformatik gibt es eine Reihe von

Werkzeugen, die den Fokus u. a. auf Datenerfassung und -management, Daten-

analyse, numerische Simulationen, Modellkoppelung sowie Ergebnisauswertung

in unterschiedlichen Raum- und Zeitskalen legen. Ein wesentlicher Arbeitsschritt

wird jedoch nur unzureichend unterstützt: die Aufbereitung von Rohdaten zur

Spezifikation von Szenarien als Eingabegrößen für Simulationswerkzeuge.

In dieser Forschungsarbeit wird ein generelles Konzept für die ingenieurge-

rechte Erstellung von Zeitreihen zur Szenarienspezifikation vorgeschlagen. Das

Ziel des Konzepts ist die Bereitstellung von Zeitreihen als Eingangsdatensätze,

z. B. Randbedingungen, für Simulationsaufgaben zur Analyse von benutzerspe-

zifizierten Was-Wäre-Wenn-Szenarien. Die Szenarien werden aus verfügbaren

Rohdaten unterschiedlicher Quellen, z. B. Feld- und Labormessungen und Simu-

lationsergebnissen, erstellt. Das Konzept protokolliert zudem den Arbeitsablauf

durch zugehörige Metadaten, um die Nachvollziehbarkeit der Arbeitsschritte

sicherzustellen.

Das Konzept ist datengesteuert und halbautomatisch. Es enthält vier wesent-

liche Module: Datenvorbereitung, Eventidentifizierung, Prozessidentifizierung

und Szenariokomposition. Diese Module verwenden als theoretische Grundlagen

vor allem Time Series Knowledge Mining (TSKM), Fuzzylogik und Multivariate

Adaptive Regression Splines (MARS), um Merkmale verschiedener Zustandsgrö-

ßen aus den gesammelten Daten zu extrahieren und miteinander zu verbinden.

Die gesammelten Merkmale samt anderen statistischen Daten gestalten die

grundsätzlichsten Komponenten, sog. MetaEvents, für die Szenariokomposition

und die weitere Generierung der resultierenden Zeitreihen für die Simulation

der Szenarien. Die MetaEvents werden halbautomatisch mit Hilfe von Aspects,

Primitive Patterns, Successions und Events gebildet. Zusätzlich werden durch
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Prozessidentifizierung funktionale Beziehungen zwischen den verschiedenen

Zustandsvariablen abgeleitet. Die MetaEvents stellen komplementäre Merkmale

dar und berücksichtigen die identifizierten physikalischen Beziehungen zwischen

den verschiedenen Zustandsvariablen aus den verfügbaren Zeitreihendaten

anstatt der traditionellen getrennten Verarbeitung. Die mit den MetaEvents

zusammengestellten/komponierten Szenarien ermöglichen die Generierung von

resultierenden Zeitreihen von Randbedingungen für numerische Simulationen.

Ein Software-Prototyp dieses Konzepts wurde auf Basis von Java- und

R-Software-Technologien entworfen und implementiert. Der Prototyp zusam-

men mit vier Prototyp-Anwendungsbeispielen – ein mathematisch-analytischer

Datensatz, ein künstlicher hydrologischer Datensatz, ein real gemessener

hydrologischer Datensatz und ein hydrodynamischer Datensatz – werden benutzt,

um die Funktionsfähigkeit des Prototyps und die Eigenschaften des Konzepts

zu demonstrieren und nachzuweisen. Die Anwendungsbeispiele weisen nach,

das Zeitreihenmuster aus spezifischen Originalszenarien reproduziert werden

können und zeigen die Fähigkeit auf, für den Anwender, z. B. numerische

Modellierer, Zeitreihen für relevante, interessante Szenarien zu generieren.

In dieser Hinsicht demonstriert es die Fähigkeit, die Auswirkungen von

Was-Wäre-Wenn-Szenarien mit Simulationswerkzeugen effizient vorzubereiten.

Das halbautomatische Konzept des Prototyps verhindert auch eine Black-Box

Anwendung und berücksichtigt Kenntnisse und Erfahrungen der Anwender als

Fachexperten. Damit stellt das Konzept einen wertvollen, innovativen Schritt

zu ganzheitlichen Hydroinformationssystemen dar, um eine ingenieurgerechte,

effiziente Datenaufbereitung von Zeitreihen aus Rohdaten als Eingabedatensätze

für Simulationswerkzeuge bereitzustellen.



摘要

自從全球第一部自動化、可程式化以及可操作性的電腦Z3於西元1994年問世，

電腦在各式各樣的工程研究及應用上，已成為不可或缺的工具。在傳統水資訊

（Hydrdoinformatics）領域中，針對不同的目的，例如：資料收集和管理、資料

分析、數值模擬、模型耦合（Model Coupling）、後處理…等等，以及不同的時間

和空間尺度，已存在許多工具可處理。然而，在嘗試填補介於大量原始資料及眾多

模擬工具間缺口方面，仍然缺乏一關鍵工具。

為了彌平此般闕漏，本研究提出一個通用軟體架構，藉由已收集的時間序列資

料來分析並組成（Compose）時間序列的情境（Scenarios），並藉由提供可自定

的假設情境（What-if Scenarios）來評估在此情境下的影響。此外，亦透過實做此

一架構之原型以及四個例子來評估此一架構。該架構可視為一資料管理／生成的工

具，而非數值模擬的工具。

本軟體架構的設計目標，是讓使用者可基於各種不同來源的原始資料，例如：

實驗室和現地量測、數值模擬結果…等等，而自訂出所需要的假設情境，再將其假

設情境轉換並產生輸入資料，例如：邊界條件（Boundary Conditions, BCs）等，

來進行模擬任務。而決策者可利用在不同假設情境下的結果，來做進一步的評估以

及決策。另外，此架構亦透過相關元數據（Metadata）的記錄，來監控整個模擬

流程以確保其可追溯性（Traceability）。

該架構是一種由資料驅動（Data-driven）的半自動架構，其包含四個基

本模組：資料預處理、事件定義（Event Identification）、程序定義（Process

Identification）以及情境組成。這些模組主要利用時間序列知識探勘（Time Series

Knowledge Mining, TSKM）、模糊邏輯（Fuzzy Logic）以及MARS（Multivariate

Adaptive Regression Splines）來針對已蒐整的資料擷取其特徵，再進一步將其

相互連結。所擷取到的資料特徵，以及其相對應的統計資訊，便成為情境組成及

更進一步生成時間序列的最基本單位：元事件（MetaEvent）。這些元事件是利

用一系列半自動的步驟，透過自原始資料一步步自形成相（Aspects）、基本式

樣（Primitive Patterns）、序列（Successions）以及事件（Events）的過程而導

出。此外，不同狀態變數間的關係亦透過由程序定義模組所導出的物理關係來描

述。元事件本身並非一孤立事件，它不僅僅描述時間序列各事件間時序上相互的關

係，它亦包含不同狀態變數間的關係。該組成的情境可進一步的轉換成時間序列資
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料，例如：邊界條件等，以作為數值模擬的需要。

此通用軟體架構的原型，是以Java和R程式語言為基礎設計以及實做。於本論

文中，利用此原型與四個不同例子，展示本架構的概念。這四例包含了由數學函數

生成的資料、模式合成的資料以及量測的水文、水理資料。此通用軟體架構除了可

單獨使用，亦可與其他水資訊模式整合應用。

結果顯示，此架構原型可藉由情境組成來重製出類似原始時間序列式樣

（Patterns），並且並且針對使用者需要所組成的情境轉換成對應的時間序列輸入

資料，以提供進一步數值模擬上的需求。因此，此架構原型已展示了本研究所提出

的軟體架構，如何與其他水資訊模式併行應用，以解決並評估在自訂假設情境下的

影響及未來的可能性。此外，透過其半自動的手段亦可避免不適當的黑箱（Black

box）結果並且允許考量領域專家的知識經驗。總而言之，該架構在工程面以及在

整合水資訊系統層面上，進一步提供一填補介於大量原始資料及眾多模擬工具之間

缺口的工具。
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Chapter 1
Introduction

In retrospect, the development of human civilizations in the human history

is based on the acquiring of natural resources and the battle with natural

disasters. According to the concept of cause and effect in causality, this has

been a dilemma in the development of human history. Natural resources are

limited and the more resources are endlessly acquired for human purposes,

the higher risk nature will revenge. The problem of water resources is one

example. In terms of the problem of water scarcity, only three percent of

the water body in the world is fresh water, and the rest of the 97% is salt

water. Among this three-percent fresh water, around two-thirds are in the

form of ice, e.g. glaciers, and the rest one-third is made up of groundwater

and surface water. In the end, only about 0.0002% of total water (about 2120

km3) is in rivers and about 0.007% of total water (about 91000 km3) is in

freshwater lakes as fresh surface water for the consumption of the world

population [Gleick, 1993]. In addition to the problem of water scarcity, some

other problems such as water pollution and hydrological disasters, especially

those caused by increasing extreme events, e.g. floods, are also examples of

how human beings strive for the balance between their own development of

civilizations and nature.

Civil engineering, as its name suggests, is a discipline which involves

the development of civilizations by engineering activities. It does not only

contain the design, construction, operation and maintenance of artificial

1
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infrastructures, but also is an art of seeking the balance between human

needs and natural resources. It holds characteristics of both natural science

and engineering. As science it involves the awareness and the understand-

ing of the principles hidden behind problems, e.g. physics, mathematics,

statistics, chemistry, ecology, economics, etc.; as engineering it includes

the consideration and analysis of budget, time, efficiency, optimization

techniques, technology, etc. Independent from which aspect of looking at

civil engineering, its tasks nowadays all greatly involve dealing with a mass

of data, especially by measurements, calculations and computations. Hence,

how to calculate and compute accurately and efficiently has been one of the

most important topics in civil engineering. A revolutionary invention tremen-

dously improved the process of these tasks — the automatic, programmable

and fully operational computer, Z3, was built by Konrad Zuse in Berlin in

1941 [Zuse, 1993]. Since then, the way and the process of dealing with

engineering tasks entered a new era.

1.1 Hydroinformatics

Civil engineering encompasses a wide range of sub-disciplines, such as

structural engineering, transportation engineering, hydraulic engineering,

and so forth. Hydroinformatics is regarded as a sub-discipline of civil engi-

neering which emerges from the field of computational hydraulics [Gautam,

2000] and supports hydro science and engineering together with related

environmental issues by the use of modern Information and Communication

Technology (ICT) [Molkenthin, 2000]. Since the beginning of the 90s, many

experts have tried to define the term “hydroinformatics” [Abbott, 1991,

1994; Molkenthin, 2000; Price et al., 1998], and with the rapid development

of ICT, the definition of the term “hydroinformatics” also evolved with time.

One of the first appearance of the term “hydroinformatics” appeared in

the definition of a hydroinformatics system by M. B. Abbott [Abbott, 1991]

as:

A hydroinformatics system is the bringing together of compu-
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tational hydraulic modelling and information systems, including

knowledge-based systems and artificial intelligence. It is an elec-

tronic knowledge encapsulator that models part of the real world.

Later, another adapted definition of hydroinformatics was given by F.

Molkenthin [Molkenthin, 2000] as:

Hydroinformatics is a basic discipline of hydroengineering. It

supports the sustainable development of the aquatic environment

by the use of computers and nets. In its core hydroinformatics con-

cerns the modelling of information related to hydroengineering as

well as ICT supported distributed project platforms and working

processes in engineering for design, construction, management,

consultation and administration.

While observing the development of the definition of hydroinformatics,

the evolution path of hydroinformatics can be noticed. At the beginning, the

elements of Computer Intelligence (CI) was considered as another important

jigsaw puzzle of hydroinformatics in addition to traditional computational

hydraulics. Afterwards, as the development of ICT continues, especially in

the pervasiveness of the Internet and World Wide Web (WWW), the precision

of digital data collectors, the huge storage capacity, etc., the discipline of

hydroinformatics started to confront the benefits and issues brought by

such improvement — mass data, which also corresponds to the term “Big

Data” in the era of Internet [Snijders et al., 2012]. At this time, it deals

no more equation-solving alone but also other topics, such as data pre-

processing, storage, retrieval, management, etc. The computer itself is no

more mere a number-crunching machine for simulation and analysis but

also a tool which supported hydro science and engineering in the tasks

of collaborative communication, design, construction, management, consul-

tation and administration. Based on these definitions, hydroinformatics is

a continuously evolving discipline based on four basic pillars: engineering

science, mathematics, physics, and ICT [Molkenthin, 2007], as shown in Fig.

1.1.
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Physics

Mathematics

Computer Science

Engineering
Science

Hydroinformatics

Figure 1.1: Evolution of hydroinformatics (after [Molkenthin, 2007])

Therefore, the subjects of hydroinformatics contain the fields of data

acquisition, data analysis, information management, system optimization, CI,

software development, etc., in addition to numerical simulation based on the

development and the level of maturity of these four basic pillars. Here is a

list of aims and scope of the current Journal of Hydroinformatics [IWA Pub-

lishing] which also indicates the areas the community of hydroinformatics is

targeting at:

• Physically-based simulation modeling

• Numerical methods

• Data-driven modelling and management

• Artificial neural networks

• Evolutionary methods

• Cellular automata

• Modeling systems
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• Geographic Information Systems (GISs) and virtual imaging

• Ecology and water quality modeling

• Environmental impact assessment

• Knowledge engineering and management

• Socio-economic framework

• Intelligent decision support, negotiation and management

• Education and training

• Internet-based applications

• Optimization and control

• Risk analysis, fuzzy logic and management of uncertainty

• Tools, environments and languages

Although this list will adapt itself to correspond the development of

hydroinformatics with time, it shows the interdisciplinary coverage of it-

self. Moreover, it also demonstrates that it covers not only the traditional

engineering-oriented computation, but also considers the issues in social

science, such as the impact of water scarcity mentioned at the beginning.

1.2 Motivation

Based on the definition mentioned above, the discipline of hydroinformatics

can be regarded as a amalgamation of ICT and traditional water-related

disciplines such as hydrology, hydraulic engineering, hydrogeology, water

supply, etc., targeting at solving hydro science and engineering problems.

Due to the pressing scientific and engineering demand, there have been

a variety of studies, researches, and software implementations targeting

different interests in the discipline of hydroinformatics. Some mainly fo-

cus on numerical solutions, such as MIKE by Danish Hydraulic Institute
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(DHI) [DHI], ISIS by CH2M HILL [CH2M HILL], Deltares systems by

Deltares [Deltares], Kalypso by Björnsen Consulting Engineers (BCE) and

the Institute of River and Coastal Engineering at Hamburg University of

Technology [BCE], open TELEMAC-MASCARET by a consortium of Artelia,

Bundesanstalt für Wasserbau (BAW), Centre d’Etudes Techniques Maritimes

et Fluviales (CETMEF), Daresbury Laboratory, R&D group of Electricité de

France (EDF), and HR Hallingford [open TELEMAC-MASCARET], HEC-RAS

by US Army Corps of Engineers [HEC-RAS], MODFLOW by United States

Geological Survey (USGS) [MODFLOW], OpenGeoSys by Helmholtz-Zentrum

für Umweltforschung (UFZ) [OpenGeoSys], etc.; some specialize in GISs,

including ArcGIS by Esri [Esri], GRASS GIS by the GRASS Development

Team [GRASS Development Team, 2012], QGIS by the QGIS Development

Team [QGIS Development Team, 2014], SAGA by the SAGA Development

Team [SAGA], etc.; some aim at model coupling, for instance, Open Modeling

Interface (OpenMI) by OpenMI Association [Gregersen et al., 2007], etc.;

some make efforts in geospatial data infrastructure and sharing, such as,

INSPIRE [INSPIRE]; some target at system-wise management of data and

metadata, like WISKI by KISTERS [KISTERS], CUAHSI-HIS by CUAHSI

[CUAHSI], etc.; some address the standardization of data access, for ex-

ample, Geography Markup Language (GML) [Open Geospatial Consortium],

SensorML [Open Geospatial Consortium], WaterML2 [WaterML2]; some

direct towards visualization, like data Processing, Analysis and Visualization

(datPAV) [datPAV] as an example.

Among these outstanding studies, researches and implementations, one

of the key challenges still exists, especially in interdisciplinary research and

engineering projects — filling the gap between available mass raw data

and simulation tools. With the help of the rapid improvement of ICT and

sensor technology, the quantity and complicatedness of acquired data from

field measurements, numerical simulations and laboratory experiments in

different time and space scales also grow with the increase of complexity.

Nevertheless, the storage is no more the major issue among researchers

and engineers. Instead, turning the mass raw data into useful information

for the purposes of problem analysis and simulation tasks becomes a vexing
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problem.

In this PhD research work, a semi-automatic, data-driven based time

series scenario composition framework based on the existing implemen-

tation of Turtle [Molkenthin et al., 2009] and its software prototype are

presented. This framework intends to assist answering the impacts of user-

specified what-if scenarios by generating corresponding Initial Conditions

(ICs), Boundary Conditions (BCs) and Parameter Sets (PSs) as time series

data sets from the collected data, such as field measurements, laboratory

experiments and simulation results of simulation tools. In addition, this

framework also keeps track of the metadata of the data, for instance, the op-

erations which are applied on the data. In this respect, it describes how the

data are processed and guarantees the reproducibility of the entire workflow.

Hence, the framework can be regarded as a data management/generation

tool generating inputs for simulation tools.

1.3 Problem Identification and Objective

Gap between Mass Data and Simulation Inputs

While recalling the workflow of ritual research or engineering activities

regarding simulation tasks, they typically involve five parts in an iterative

manner:

• data acquisition

• pre-processing

• model simulation

• post-processing

• decision making

Although with such a number of contributions in the discipline of hydroin-

formatics as mentioned in Section 1.2, researchers and engineers still

suffer from the lack of information, especially if they want to research
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the impacts from certain what-if scenarios for further decision makings.

Some examples are the National Groundwater Modelling System (NGMS)

[Whiteman et al., 2012] and the Intergovernmental Panel on Climate Change

(IPCC) Data Distribution Center [IPCC], which collect different predefined

scenarios for investigations of groundwater problems using MODFLOW and

climate change issues respectively. Other examples are described in different

studies, as in [Kalyanapu et al., 2012; Nuswantoro et al., 2014], which use

Monte Carlo based approaches to generate reasonable inputs for further

deterministic models to assess flood risk. Under the status of modern ICT,

the capacity of storage can easily reach the unit of terabyte, and researchers

and engineers are frequently buried under large numbers of raw data. It

leads to the core of this research work — turning the mass raw data into

needed input information for simulation tasks.

Proposed Solution

Therefore, a general framework of time series composition [Li and Molken-

thin, 2014; Molkenthin et al., 2014] and its software prototype are presented

here. It targets at facilitating the process of hydro science and engineering

simulation tasks by providing time series data sets as ICs, BCs and PSs based

on user-specified what-if scenarios. Unlike weather generators [Racsko

et al., 1991; Richardson, 1981; Wilks and Wilby, 1999], which are widely used

as downscaling techniques to obtain regional-scale information from the

outputs of Global Climate Models (GCMs), “features” of time series data sets

are extracted as LEGO® bricks with the help of a set of tools and Application

Programming Interfaces (APIs) for possible extensions of techniques in the

prototype. Researchers and engineers can further compose the scenarios of

interest based on the extracted feature bricks and the information of possible

combinations of bricks proposed by the framework. Afterward, these user-

specified scenarios can be converted into time series data sets as inputs,

such as ICs, BCs and PSs for further simulation tasks.

The framework is, in principle, data-driven based and the data are
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nonspatial time series1. In addition, the core of this framework is mainly

based on Time Series Knowledge Mining (TSKM), which is a temporal

reasoning framework proposed by [Mörchen, 2006a,b; Mörchen et al., 2005],

and fuzzy logic. It contains a sequence of manipulations and operations on

data, and users have full control on both the results of feature extraction and

scenario composition. Hence, it is a semi-automatic process and users must

have enough knowledge in the domain of interest to decide the operations in

different steps and further to evaluate the final results. Furthermore, it also

offers an opportunity to uncover and identify unknown physical phenomena

as well as the tracking of every single manipulation and operation applied.

The framework itself can also be regarded as a toolbox for both scientific and

engineering purposes. To achieve this, it is designed to provide proper APIs

for further necessary extensions together with a basic set of algorithms and

tools. In this way, it can also serve as an add-on to other hydroinformatics

tools.

1.4 Research Approaches and Methods

This framework is mainly based on TSKM and fuzzy logic, and the entire

framework consists four modules, as shown in Fig. 1.2, corresponding to the

pre-processing activity as mentioned in Section 1.3:

• data pre-processing

• event identification

• process identification

• scenario composition

The module of data pre-processing can be regarded as a decisive step.

This is because the raw data are usually incomplete and faulty, and the

quality of data is essential for any data-driven based technique [Pyle, 1999;

Witten and Frank, 2005], upon which the framework itself grounds. Without

1The extension to possible spatial data applications will be further discussed in Chapter 8.
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Scenario CompositionScenario Composition

Data Pre-processingData Pre-processing

Process
Identification

Process
Identification

Event
Identification

Event
Identification

Processed Time Series

MetaEvents

Boundary ConditionsBoundary Conditions

Raw Time Series DataRaw Time Series Data

Figure 1.2: Illustration of four modules in the scenario composition frame-
work

proper handling of data pre-processing, it is easily prone to a “Garbage In,

Garbage Out” situation. The purpose of this module is to turn the mass

raw data into necessary time series data sets, and the methods can be

vastly domain- and data-specific, e.g. gaps filling, trends removing, domain

transform, dimension reduction, etc.

The event identification is based on TSKM and transforms the time

series data sets into pieces of human-readable and human-interpretable

information. These pieces of information can be further adapted as features

of the entire time series data sets. The event identification contains a

sequence of steps and methods and users have full control over methods

of choice and results. In addition, expert knowledge and experience can

also be brought into the steps of identifying events if required. Besides, it
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is a semi-automatic manner and users can gain a generalized and human-

understandable descriptive overview of how phenomena develop with the

help of TSKM.

Due to the results derived from event identification being quantitative

and loosely connected, the process identification provides a way to identify

and describe the physical relationships among variables in a stronger

manner. The process identifcation is built upon the Mamdani-type fuzzy

inference system together with Multivariate Adaptive Regression Splines

(MARS) [Friedman, 1991], which serves as a second mapping function to

ensure better descriptions of the phenomena of interest.

The results from both event identification and process identification will

be aggregated and formed as “MetaEvent” for the purpose of scenario

composition. The MetaEvent serves as the most basic unit of information in

time series, which describes the characteristics of each extracted feature, in

scenario composition. Their realizations, MetaEventEntities, can be seen as

LEGO® bricks, as aforesaid, and users can compose the scenarios of interest

by assembling these “bricks”. In the prototype of this framework, it provides

an user interface, which offers users additional information of each Event,

such as duration, expected values, next possible “brick”, etc., to assist users

composing scenarios. Later, these composed scenarios can be converted into

a set of time series data with user-specified properties, e.g. time step (∆t),

for further needs, for example, simulation tasks, additional post-processing,

etc.

The prototype implementation of this framework is based on R [R Core

Team, 2012] and Java platforms [Java], and the data exchange between

these two software environments is through the R package rJava [Urbanek,

2011], which uses Java Native Interface (JNI) [Liang, 1999] as a communica-

tion channel.
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1.5 Thesis Structure

Chapter 2 provides an overview of state of the art of hydroinformatics

systems used in either scientific or professional fields. This overview focuses

on an introduction of different hydroinformatics systems, data management

in hydroinformatics, and time series data mining in hydroinformatics.

Chapter 3 introduces the fundamental background knowledge applied

in the framework. It contains the descriptions of Time Series Knowledge

Representation (TSKR), TSKM, fuzzy logic, MARS and suffix tree.

Chapter 4 elaborates the terminology and theories used in this framework

of scenario composition. It delineates the structure of the framework, how

TSKM is applied in event identification, how fuzzy logic and MARS are

utilized in process identification, and how scenarios can be composed in

scenario composition.

Chapter 5 presents the implementation of the software prototype of this

scenario composition framework. It contains the used software technologies,

the integration with the Hydroinformatics system Turtle, and the Graphical

User Interface (GUI). Finally, it also includes an overview discussion of this

implementation.

Chapter 6 offers several application examples, including synthetic aca-

demic and real-measured application examples. It covers detailed descrip-

tions of these application examples and the results based on the imple-

mented prototype. In this chapter, it shows the possibilities this framework

can achieve.

Chapter 7 discusses the results from chapter 6, and gives an evaluation

based on criteria offered. Recommendations based on the discussions are

also presented here.

Chapter 8 summarizes the conclusions of this research work. In addition,

it also gives an assessment of this framework, showing its capabilities and

possible recommendations, and finally gives an outlook for further studies.

At the end of this thesis, a glossary and a list of acronyms are also affixed,

apart from the bibliography and appendices for the clarification of the terms

mentioned in the context.



Chapter 2
Hydroinformatics Systems

2.1 Definition

One of the first definitions of the term “hydroinformatics system” is defined

in 1991 by M. B. Abbott [Abbott, 1991] as mentioned in Section 1.1:

A hydroinformatics system is the bringing together of computa-

tional hydraulic modelling and information systems, including knowledge-

based systems and artificial intelligence. It is an electronic knowl-

edge encapsulator that models part of the real world.

However, with the evolution of the definition of hydroinformatics, the def-

inition of the term “hydroinformatics system” has also to be adapted. Based

on the definition in Merriam-Webster online dictionary (2013) [“system”], the

definition of a system is defined as:

a regularly interacting or interdependent group of items forming

a unified whole

Hence, a hydroinformatics system, based on this definition and the

definition of the term “hydroinformatics” stated in Section 1.1, is defined

here as:

13
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a set of modularized and firmly integrated Information and Com-

munication Technology (ICT) tools together with the application of

knowledge in mathematics, physics, engineering, etc., targeting

at systematically investigating and solving water-related problems

with a complete concept

2.2 Components and Systems

Components

According to the definition of the term “hydroinformatics system” given

earlier, a hydroinformatics system should contain functionalities such as

pre-/post-processing, data management, data exchange and application pro-

gramming interfaces, simulation, analysis, visualization, network communi-

cation, etc. A basic illustration of components in a hydroinformatics system

based on a general workflow is shown in Fig. 2.1. There, a hydroinformatics

system is decomposed into three different components based on a general

engineering workflow and wrapped by the User Interface (UI):

• Leading Component: Preparations for the core component, such as grid

generator, data editor, data pre-processing, data management, etc.

• Core Component: Processing the data/information from the leading

component to needed information, for instance, numerical analysis,

statistical analysis, machine learning, etc.

• Trailing Component: Representations and summaries of the informa-

tion derived from the core component, for example, visualizer, report

generator, etc.

Fig. 2.1 also indicates where this research work is located: between

the leading and the core components which turn the raw data into needed

information for further simulation tasks. It first extracts features from the

existing time series data and modellers can further compose scenarios of
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User InterfaceUser Interface

LeadingLeading
ComponentComponent

● Data Editing
● Data Management
● Data Pre-processing
● Grid Generation
● … etc.

CoreCore
ComponentComponent

● Numerical Analysis
● Statistical Analysis
● Empirical Analysis
● Machine Learning
● … etc.

TrailingTrailing
ComponentComponent

● Data Post-processing
● Visualization
● Report Generation
● Real Time Control
● … etc.

×

This Research WorkThis Research Work

Information Storage and ManagementInformation Storage and Management

Figure 2.1: Components of a hydroinformatics system and the current
research work’s location

interest and generate corresponding data based on these extracted features,

unlike other methods, such as:

• weather generators [Racsko et al., 1991; Richardson, 1981; Wilks and

Wilby, 1999] downscaling results from Global Climate Models (GCMs)

• Monte Carlo based approaches [Kalyanapu et al., 2012; Nuswantoro

et al., 2014] stochastically generating desired results

• National Groundwater Modelling System (NGMS) [Whiteman et al.,

2012] and Intergovernmental Panel on Climate Change (IPCC) Data

Distribution Center [IPCC] with predefined scenarios

In addition, the current prototype implementation works as a stand-alone

application as well as offers Application Programming Interfaces (APIs) for

further integration with other hydroinformatics tools or systems.

Systems

Several reviews regarding different 2D hydroinformatics systems can be

found in [Néelz and Pender, 2009, 2013]. Here, a comparison of several

well-known scientific or engineering hydroinformatics tools based on the
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dimensions, with or without Graphical User Interface (GUI), major appli-

cation fields, type of engine, etc., with respect to these components can be

seen in Table 2.1. Although FluidEarth [FluidEarth] can not be regarded as a

“system” based on those three components, it offers a software environment

to couple different simulation tools. Thus, the entire coupled tools together

with itself can be regarded as a system. SWIM [Krysanova et al., 1998] and

TELEMAC [open TELEMAC-MASCARET] on the other hand, mainly offer

the core engine component, and the rest has to be supplemented by third

party applications. Some applications, such as HEC-RAS [US Army Corps

of Engineers] and ISIS 1D [CH2M HILL], are restricted mainly for single

purpose and are difficult to be considered as a system. However, if they are

integrated with other series of applications, such as ISIS [CH2M HILL], the

entire application can be regarded as a system.

There are several different criteria to categorize the systems, such as the

simulation method, the theory of analysis, the application field, and so on.

Independent of which criterion is used for the categorization, these systems

usually serve as Decision Support Systems (DSSs) operated by modelers with

the knowledge of their own fields to support further decision makings on

environmental and socioeconomic issues for management and operational

tasks. There are numerous hydroinformatics tools or systems developed for

water-related scientific and engineering environments, as illustrated in Table

2.1. Apart from it, the descriptions for some selected hydroinformatics tools

or systems based on license type (open source/proprietary), application field,

etc./space with different objectives, approaches, etc. are as follows:

• FluidEarth [FluidEarth]: An open source project initialized by HR

Wallingford provides a software environment to couple different simu-

lation tools through the help of OpenMI [Gregersen et al., 2007]. In ad-

dition to a Software Development Kit (SDK) for developers to conform

to the requirements for their simulation tools, it also provides modelers

a GUI tool, pipistrelle, to link different simulation components, set up

a model and execute it in a visual programming fashion. Although it

can not be regarded as a system as mentioned earlier, with the help of
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this software environment, a customized hydroinformatics system can

be formed.

• Kalypso [BCE]: A Java-based open source project developed by

Björnsen Consulting Engineers (BCE) and the Department for River

and Coastal Engineering at Hamburg University of Technology. It

provides modelers a set of modularized tools to investigate surface

water problems towards flooding analysis, and further towards report

generation and risk management. It conforms to several open stan-

dards, such as Open Geospatial Consortium (OCG) standards, OCG Web

Processing Service (WPS) standards, Open Document Format for Office

Applications (ODF) standards, and so forth. It also offers a complete

tool set for pre-processing, simulation, and post-processing.

• MIKE URBAN: It belongs to the MIKE family developed by Danish

Hydraulic Institute (DHI) [DHI], and it targets at urban water problems,

such as sewers, water distribution, and so on. It has its own simulation

models for rainfall-runoff, pipe flow, etc., tools for automatic calibra-

tion, weir control, etc., and integrates with ArcGIS by ESRI [Esri].

• SWAP-GIS [SWAP-GIS]: A complete set of SWAP-GIS was firstly de-

veloped by the Environmental Resources Research Institute at Penn

State University and was originally targeted at a project of potential

groundwater contamination problems from Pennsylvania Department

of Environmental Protection. One of the features is that it provides a

batched operation of analysis of data sets. In the end, the analyzed

results can be viewed visually by a ArcView-based tool and a concise

report can be also generated within the system.

Although the definition of the term “hydroinformatics system” is given

here and several examples are illustrated, the boundaries among different

systems are getting less distinct with the rapid development of ICT, espe-

cially if the systems are targeting at the problem solving and decision making

as complete DSSs in the same discipline as their final goal. The following
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sections will be centered on data management and time series data mining

in the field of hydroinformatics due to the focus of this research work.

2.3 Data Management in Hydroinformatics

Data are qualitative or quantitative descriptions of information and can be

stored in digital or nondigital carriers. In the fields of natural science and

engineering, these data are mostly quantitative because of the need for

quantitative description in physical laws and number crunching. Besides,

they can come from different resources with different temporal and spatial

scales, such as field measurements, computer simulations, laboratory exper-

iments, etc. According to different recording approaches, these data can be

stored in nondigital carriers, such as paper notebooks, analog recorders,

etc., or digital carriers, such as hard disks, Solid-State Drives (SSDs),

Network-Attached Storage (NAS) devices, Redundant Array of Independent

Disks (RAID) devices, etc. Whereas, with the rapid improvement of ICT,

sensor technologies and data measuring devices, e.g. digital data collectors,

remote sensing devices, together with the huge requirement of working with

computers, records are now stored in the digital carriers and historical data

are also converted from analog carriers to digital ones.

Data Problems

In many hydro science and engineering projects, numerous and various data

have been collected for further calculation, e.g. numerical simulation, or

analysis. Furthermore, the data types, scales, duration, and so on, have to

be carefully decided before the collection activities are carried out. These

data usually serve as Initial Conditions (ICs), Boundary Conditions (BCs),

calibration references, validation references, etc., for different purposes. Be-

sides, these data, especially raw data, collected from different measurement

devices, simulation programs, and so forth often suffer from many problems

of:
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• unclear/incomplete information1: This problem contains different as-

pects, such as unrecognizable handwriting, unclear description, etc.

and mainly happens when the data are collected manually without the

help of modern data logging technology. It can be regarded as a result

of the history of data collection technology. In such cases, each record

has to be written by hand on paper. Depending on the circumstances

of how the record is kept, the final data might be undecipherable for

others in need. In addition, the metadata, such as unit, time zone,

etc., might be also missing due to carelessness or ignorance. This also

affects the data maintenance and the further usage of the data.

• errors: Any measurement contains errors and these errors are not

avoidable but can only be controlled. In addition, these errors cause the

measurements to be inaccurate or imprecise. These errors can come

from misreading of values by people or wrong calibration of devices

or inappropriate measuring devices or instability of voltage from low

power batteries, to many other different possible sources.

• data formats: The data format defines how information is stored in a

digital file. Due to impact of the more and more computerized working

environment, the information exchange among different specifications

of data formats becomes a must in our routine work. Moreover, the

exchange of information, e.g. through conversions of data formats,

often goes along with the loss of information. This need indicates the

importance of the standardization of data formats.

• inconsistent description: In addition to the requirement of converting

among heterogeneous file formats as mentioned earlier, extracting

information from the homogeneous file formats can be also an issue.

This is usually because the data are commonly collected from different

authorities and devices. The content of the collected data can have

different formats, such as:

1Information is data together with the semantics derived from data themselves which
describes certain correlations, such as patterns, associations, relationships, etc
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– date and time: The format of date and time is one of the most

common encountered issues while extracting data from a file.

Depending on the standards applied in different countries and

languages, the date “01 May 2001” can be denoted in the form

of “2001-05-01”, “05-01-2001”, “01-05-2001”, etc. Moreover, these

descriptions usually come without proper descriptions of informa-

tion, for instance, the corresponding time zones, summer/winter

time, etc. Without this information, problems, such as records with

the same time but in different time zones, emerge.

– column order and number: Since the data are collected from

different sources, the format of the content may differ. A table

with headers is one of the most common used content formats to

store and display data. It might happen that two files from different

sources storing the same activity have different column orders or

column numbers. This increases the difficulty to automatize the

working process.

– units: A unit is crucial for any measurement. However, different

devices may have different default unit settings and standards for

the same measurement. The conversions in length (mm, cm, m

and km), in temperature (°C and °F), and in time and date (sec.,

min., hr., day, month and year) are common tasks. However, the

conversions between different dates have to be specially taken

into consideration if different time zones are encountered. For

example, the same date values but within different time zones will

cause great impacts on large scale models if they are not correctly

specified. Moreover, some issues, such as accuracy, resolution, etc.

also have to be taken into consideration.

• gaps: Independent of how data are collected, gaps are difficult to avoid,

especially for field measurements. Several different situations might

happen, for instance:

– If the data are collected by manpower, the gaps might happen
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because of the weather conditions or the laziness of collectors;

– If the data collection devices are installed in the open fields,

the devices are highly vulnerable to wild animals and natural

conditions;

– If the data are collected by electronic data loggers, these loggers

stop collecting activities when the electricity goes off;

– Different devices may have different intervals while collecting

data, and these differences have to be harmonized before appli-

cations’ running;

– Different devices have different mechanisms, e.g. event-triggered

mechanisms in tipping bucket rain gauge, regular measurement in

thermometer, etc., for data collection.

In addition, it is inevitable to avoid the loss of information during any

operation on data as mentioned earlier. Hence, it is a challenge in a project

to accurately and efficiently extract necessary information from the collected

data.

One typical example is the interdisciplinary research project “Großhang

— Natural Slope” [Hinkelmann et al.; Molkenthin et al., 2014; Zehe and

Hinkelmann, 2013] which deals with “Coupling of Flow and Deformation

Processes for Modelling the Movement of Natural Slopes”. This project is

divided into 5+1 different sub-projects which deal with their own speciali-

ties, and these sub-projects are listed below:

• Sub-project 1: Hydrology and applied seismics

• Sub-project 2: Subsurface hydraulics

• Sub-project 3: Continuum mechanics

• Sub-project 4: Technical scale experiments

• Sub-project 5: Geophysics

• Central sub-project: Project and information management
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More than five years of data in different space and time scales were

collected. These data come from different field measurements, simulation

results, and laboratory experiments, including soil moisture, discharge, wind

speed, wind direction, snow height, topography, slope deformation, etc. One

key factor to the success of the project was to effectively handle such

heterogeneous data in terms of exchange, retrieval, conversion, etc. among

different sub-projects.

Different Solutions

To resolve the issue of heterogeneous descriptions of data among different

files, the use of metadata can be applied. The term “metadata” means

“data about data”. In a practical sense, the metadata of the data describes

where, when, what, who, why and how the data are recorded and some

standards, such as ISO 19115 [ISO 19115, 2003] for geographic data, which

defines how the geographical information is described. Metadata ensure the

accessibility of the information of the data in the future. The description

of data and their metadata in a file are represented in the format of

Extensible Markup Language (XML). With the help of XML and its schema,

they ensure the interpretability of data. For instance, the project Earth

Observing System (EOS) Clearing House (ECHO) by National Aeronautics

and Space Administration (NASA) now adopts the ISO 19115 standard for

its metadata description [Earthdata Collaboration Environment (ECE)]. In

addition, the INSPIRE directive [INSPIRE], as an European Spatial Data

Infrastructure (SDI), is also devoted to establishing an European Union (EU)-

wide infrastructure for sharing spatial information in support of decision

making across boundaries.

In addition to traditional archives which accumulate physical records,

such as documents, digital information is usually stored either in files or

in databases depending on the requirements. Several software systems are

designed and implemented to manage the stored data. For the file-based data

storage, some solutions, such as Document Management Systems (DMSs),

provide not only the basic file storage, but also other functionalities, such as
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metadata description, versioning, indexing, collaboration, publishing, etc. A

concept of applying one of such systems, WWW-based document manage-

ment system — DCMS [Brüggemann et al., 2001] for flood management

can be seen in [Holz et al., 2006]. There, the DCMS system, with web-

based server components and a front-end, manages the metadata of file-

based media information from different heterogeneous resources over the

Internet. It provides a flexibility to define task-related attributes by semantic

markup language and a rapid means to retrieve, access, exchange, and share

information through XML.

Similarly, Database Management Systems (DBMSs) are usually applied

to manage the information stored in databases. DBMSs provide different

operations to manage the stored data, for instance: creation, update, and

deletion. There exist several general-purpose DBMSs, such as MySQL

[MySQL], SQLite [SQLite], Microsoft SQL Server [Microsoft SQL Server],

Oracle database [Oracle Database], PostgreSQL [PostgreSQL], and so on,

for this purpose. Among these DBMSs, two major categories are:

• Relational Database Management Systems (RDBMSs): MySQL, SQLite,

Microsoft SQL Server, etc.

• Object-Relational Database Management Systems (ORDBMSs): Oracle

database, PostgreSQL, etc.

Comparing to RDBMSs, ORDBMSs offer direct support of objects, classes

and inheritance in their schemas and query languages. For instance, Post-

greSQL supports not only the common data types, such as numeric, string,

date/time, etc., it supports a wider range of data types, including geometric,

network address, JavaScript Object Notation (JSON), etc. The geometric data

types can represent two-dimensional spatial objects and some basic data

types are already available by default, e.g. point, line, box, polygon,

circle, etc. With such supports, ORDBMSs can more efficiently operate

and manage the hydrogeological data in the database.

Several applications are available, such as:

• The marine environmental database, Meeresumwelt-Datenbank

(MUDAB) [MUDAB], storing data of 700 different variables collected
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for the protection of the North Sea and the Baltic Sea uses Oracle

database as its back-end.

• PostGIS [PostGIS], as an extension for PostgreSQL, offers an additional

support for dealing with geographic objects and can be made use of

as a database back-end in many well-known Geographic Information

Systems (GISs), such as GRASS GIS [GRASS Development Team, 2012],

QGIS GIS [QGIS Development Team, 2014], and ArcGIS [Esri].

Data have to be conveyed, either being exchanged among different

software programs for various number-crunching purposes or being de-

livered to human beings as information. Several different standards are

established for the data exchange among different software programs, such

as WaterML2 [WaterML2] defining file exchange format based on Geography

Markup Language (GML) as standards to represent hydrological time series

structures, and Open Modeling Interface (OpenMI) [Gregersen et al., 2007]

providing an interface for run-time data exchange. Unlike the data exchange

among different software programs, the “data exchange” between software

programs and human beings is to deliver the information hidden behind the

data themselves. There are two different types of data representations —

static and dynamic. The media for static data representation are usually

reports, books, maps, static web pages, etc., and these can be generated

by different tools, like a word processor. However, once these documents

are produced, the data which the information derives from are often omitted

and the processes of reproduction and update become laborious. Tools for

literate programming and reproducible research, such as Sweave [Leisch,

2002] and Org-mode [Schulte et al., 2012], can be used to avoid the missing

links to the original data and increase the efficiency of reproduction and

update. Dissimilar to static data representations, the dynamic way provides

additional functionalities to access the original data or their metadata, and

interactive web pages are common media for this purpose. Apart from the

academic applications, as in [Brüggemann and Holz, 2000; Molkenthin,

2000], some operational public services, such as Flusshydrologische Soft-

ware (FLYS) [BfG] and Elektronischer Wasserstraßen-Informationsservice
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(ELWIS) [ELWIS] providing the information of water levels and waterways

of German major rivers, are available online. Besides, several general key

principles and issues regarding interactive graphical representation of data,

like over-plotting, are addressed in [Theus and Urbanek, 2008].

2.4 Time Series Data Mining in Hydroinformat-

ics

As stated in Section 1.2, with the rapid improvement of ICT and the sensor

technology, the quality and the quantity of the collected data, overall are

better and richer comparing to those collected decades ago. Due to these

improvements in data acquisition as well as the data analyzing power, they

encourage scientists and engineers to uncover and solve problems which

were difficult or even impossible before.

Data Mining

Data mining is one of many approaches which utilize the advantage of these

improvements. It refers to the process of searching through and analyzing

large data sets in order to acquire useful or meaningful information out of

them and it is considered as a step of Knowledge Discovery in Databases

(KDD) [Fayyad et al., 1996]. The term KDD was first coined at the first KDD

workshop in 1989, and data mining is a means of KDD to reach its goal —

knowledge discovery [Fayyad et al., 1996].

Till now, three different terms, data, information, and knowledge, have

been brought up. In addition to the definitions of data and information

described in Section 2.3, the term knowledge in the scope of this research

work means something human beings have learned or acquired through

the exposure of data or information, and it can be applied repeatedly in an

empirical or a theoretical fashion.

The coverage of application fields in data mining is large, and it comprises

business, surveillance, medicine, biological engineering, etc. One of the most
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famous data mining examples is that Walmart, an American retailer, found

out the statistically significant positive correlation between the purchases

of beer and the purchases of diapers on male customers while analyzing

customers’ shopping habits. After that, Walmart decided to place diaper

products next to beers, and it led to the significance growth in the sales

of both.

There are many different techniques or approaches in the fields of statis-

tics, Machine Learning (ML), and Artificial Intelligence (AI) used in data

mining, such as clustering, classification, and regression to help “digging

out” information from mass data. Some common information data mining

seeks out includes:

• anomaly

• category

• cluster

• association

• sequential pattern

Besides, some standards regarding data mining in software technology, e.g.

Predictive Model Markup Language (PMML), are established and some soft-

ware applications, e.g. MATLAB® [MATLAB], STATISTICA® [STATISTICA],

IBM SPSS software [SPSS], R [R Core Team, 2012], and Waikato Environ-

ment for Knowledge Analysis (WEKA) [Hall et al., 2009], are available to

assist the activities of data mining.

In the field of hydroinformatics, data collected for data mining are

mostly either time series or spatial variables describing physical behavior,

material properties, and the like. However, the data collected for the usage in

hydroinformatics, especially in the field measurements, comparing to those

in other disciplines, are suffering problems of poor representation of real

world, systematic measurement errors, and the like, for instance [Spate

et al., 2003]:
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• The definition of “daily” varies from variable to variable depending on

criteria. For example, the daily rainfall records are usually collected

from 9 a.m. to 9 a.m., yet the streamflow records are usually collected

at 12 a.m.

• The records measured from rainfall gauges may suffer losses from

evaporation, or even splashing.

• The measurement of flow velocity converted from the weir function

may not be adequate to represent the whole velocity profile at the

measurement point.

These collected data usually serve as ICs, BCs, Parameter Sets (PSs), and

calibration and validation references for simulation purposes, in addition to

the sources for mining purposes. The motives for time series and spatial data

mining in hydroinformatics are usually different because of the properties

of data types, although with the same ultimate objectives — problem

solving and decision making. Looking into several studies in time series and

spatial data mining in the field of hydroinformatics, such as in [ASCE Task

Committee on Application of Artificial Neural Networks in Hydrology, 2000;

Babovic, 2005; Bárdossy and Disse, 1993; Bárdossy and Duckstein, 1995;

Bárdossy et al., 1995; Hall and Minns, 1999; Mennis and Guo, 2009; Miller

and Han, 2009; Nayak et al., 2004], the focus of time series data mining,

in general, is more toward re-representing rules of physical behavior for

prediction purposes instead of the geographic knowledge discovery in spatial

data mining. In addition, it is usually computationally more expensive to mine

spatial data than time series data nowadays due to the richness of spatial

data [Goodchild, 2007; Mennis and Guo, 2009; Miller and Han, 2009].

Time Series Data Mining

Several general studies and discussions on the topic of time series data

mining can be found, for example, in [Antunes and Oliveira, 2001; Mörchen,

2006b; Ratanamahatana et al., 2005], and both types of time series data,
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numeric and symbolic, are discussed. In addition, several major tasks in time

series mining are considered as [Ratanamahatana et al., 2005]:

• indexing

• clustering

• classification

• prediction

• summarization

• anomaly detection

• segmentation

However, in the field of hydroinformatics, the tasks which time series

mining focuses on are mainly prediction-related [ASCE Task Committee

on Application of Artificial Neural Networks in Hydrology, 2000; Babovic,

2005], apart from other types of applications, such as reconstruction of

missing values [Abebe et al., 2000], classification [Hall and Minns, 1999],

etc., and one of the most common applications is to describe the rainfall-

runoff relationship. Several different methods and approaches, independent

of the unit hydrograph theory and statistical models, are proposed, such as

Artificial Neural Network (ANN) [ASCE Task Committee on Application of

Artificial Neural Networks in Hydrology, 2000], Genetic Programming (GP)

[Babovic, 2005], fuzzy logic [Özelkan and Duckstein, 2001], and some other

ML-based methods [Dimitri P. Solomatine, 2008], etc. One big advantage of

these models is that these models require less extensive data comparing to

other deterministic models once they are properly set up [Babovic, 2005]. It

is especially usefully for those areas with less or insufficient data collections.

The major concept and applications of this research work are different

from those major hydroinformatics applications mentioned earlier. Instead of

focusing on representing physical behavior rules, “features” of collected data

are extracted together with the information of their temporal order. With

such information, the user-specified scenarios can be constructed and their



30 CHAPTER 2. HYDROINFORMATICS SYSTEMS

corresponding time series data can then be generated for further simulation

tasks as ICs, BCs and PSs.



Chapter 3
Framework Fundamentals

3.1 Overview

In this chapter, the fundamentals applied in the framework of scenario

composition are presented here. They are utilized in different modules inside

the framework, and are categorized by the usage as:

• Event Identification:

– Time Series Knowledge Representation (TSKR)

– Time Series Knowledge Mining (TSKM)

• Process Identification:

– Fuzzy logic

– Multivariate Adaptive Regression Splines (MARS)

• Scenario Composition:

– Suffix tree

31
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3.2 Time Series Knowledge Representation

(TSKR)

The TSKR is proposed by Mörchen [Mörchen, 2006a,b; Mörchen et al., 2005]

describing the relation between two symbolic time intervals in replace of the

widely adopted Allen’s temporal relations.

A symbolic time interval, which represents an activity during a time

period, is an important format in discovering temporal knowledge. It can

be defined by three components: start time, end time, and symbolic value,

as a triple [Mörchen and Ultsch, 2007]. Among these three components,

the symbolic value is any description which expresses the state of the time

interval. For instance, a rainfall in the range of 10 to 50 mm/hr starting at

7 pm and stopping at 8 pm can be denoted as [7 pm, 8 pm, heavy rain]1.

Furthermore, Allen’s temporal relations, also known as Allen’s relations,

describe the relation between any two time intervals. They are widely used

for unsupervised temporal knowledge mining, such as in [Cohen, 2001;

Höppner, 2001; Kam and Fu, 2000].

Allen’s relations to express time intervals contain 13 relations2: before,

meets, overlaps, starts, during, finishes, and equals [Allen, 1983], yet

Mörchen criticizes Allen’s relations have three severe defects regarding:

robustness, expressivity, and interpretability3 [Mörchen, 2006a,b]. Here are

the explanations:

Robustness: An example given by Mörchen as shown in Fig. 3.1 illustrates

three different patterns of two time intervals A and B, which have

Allen’s relations of overlaps, during and finishes, but are actually very

much alike. This is because Allen’s relations need at least two or more

endpoints and this will cause problems to distinguish the relations of

1Based on the classification in [Met Office, National Meteorological Library and Archive,
2005], the precipitation in the range of 10 to 50 mm/hr is categorized as a heavy rainfall.

2Each relation, except equals, contains a corresponding inverse. For instance, two time
intervals A and B, and A takes place before B. In this case, the relation can be denoted as A
before B and its inverse is B after A. That is the reason why Allen’s relations consist of 13
relations.

3The definitions of these three terms can be seen in the Glossary.
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two time intervals while noise, for instance, from measurements, are

involved. While noise is difficult to avoid during measuring, these tiny

differences caused by noise can lead to totally different Allen’s relations

of two time intervals as shown in Fig. 3.1.

B
A

(a) overlaps

B
A

(b) during

B
A

(c) finishes

Figure 3.1: Unrobustness of Allen’s relations. (after [Mörchen, 2006a])

Expressivity: Another example given by Mörchen as shown in Fig. 3.2

exemplifies the inexpressivity of Allen’s relations. The examples in Fig.

3.2 (a), (b), and (c), present the same overlaps relation yet result in

very different meanings. The Fig. 3.2 (d) furthermore gives an example

of one exact pattern, which can be described by three different rules.

B
A

(a) small

B
A

(b) medium

B
A

(c) large

(A overlaps B) contains C
(A before C) overlaps B
A overlaps (B contains C)(d) multiple relations

B
A C

Figure 3.2: Inexpressivity of Allen’s relations. (after [Mörchen, 2006a])

Interpretability: According to the example given in [Höppner, 2001], the

patterns described by Allen’s relations with all intervals require addi-

tional pairwise relations. Besides, the number of potential candidates
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of rules increases exponentially with the number of the patterns.

These cause that the relations of patterns, which reason the targeting

process, described by Allen’s relations are lengthy and not easy to be

interpreted. This also hinders the process of temporal reasoning.

Due to these disadvantages in robustness, expressivity, and interpretabil-

ity as mentioned above, Mörchen proposed another hierarchical language

for temporal pattern discovery — TSKR [Mörchen, 2006a,b; Mörchen et al.,

2005]. TSKR is based on a hierarchical rule language — Unification-based

Temporal Grammar (UTG), proposed by [Ultsch, 2004] especially for the

description of patterns in multivariate time series.

Unlike Allen’s relations which define relations of random two time inter-

vals strictly based on the starting and ending time stamps, UTG introduces

the relation of more or less simultaneousness which can be regarded as an

approximated version of equals in Allen’s relations [Mörchen, 2006b]. With

the introduction of more or less simultaneousness in UTG by considering

thresholds in comparing time intervals, it solves the problem of unrobustness

in Allen’s relations. Moreover, with the concept of hierarchy, it creates

shorter and more abstract patterns which lead to earlier pruning and

details on demand [Mörchen, 2006b]. In this manner, UTG also resolves

the interpretability problems of Allen’s relations. However, not all patterns

described by UTG can be expressly described as by Allen’s according to

[Mörchen, 2006b]. One example given by [Mörchen, 2006b] is as shown in

Fig. 3.3. There, an example pattern of Allen’s overlaps relation with long

prefix (l1) and suffix (l3) is presented, and, unfortunately, it can be described

by neither more or less simultaneous relation nor the concept of hierarchy

in UTG. To be able to describe it using UTG, l1 and l3 must be much shorter

than l2, and this limits UTG’s expressivity.

To overcome the drawbacks of Allen’s relations and UTG, TSKR is

proposed as a solution and will be introduced later in this section. In

summary, the basic comparison of Allen’s relations, UTG and TSKR is

described in Table 3.1. There, it shows that Allen’s relations have drawbacks

in robustness and interpretability, and UTG has difficulties in expressivity
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B
A

l1 l2 l3

Figure 3.3: Inexpressivity of UTG. (after [Mörchen, 2006b])

as mentioned earlier. Furthermore, TSKR has much higher expressivity and

much more robustness compared to Allen’s relations and UTG without their

drawbacks.

Table 3.1: Comparison of Allen, UTG, and TSKR for time interval representa-
tion (after [Mörchen, 2006b])

Comparison Allen UTG TSKR

Robustness - + ++
Expressivity + - ++
Interpretability - + +

Instead of 13 relations in Allen’s relations, TSKR uses duration, coinci-

dence, and partial order to describe the temporal relations of intervals, and

consists of three types of components:

Tones: A Tone is the most basic component in TSKR, which describes a

specific property or state within a certain time interval of a time series

data. It represents the concept of duration, and is defined as a triple,

[s,e,α] with [s,e] ∈ T, s ≤ e, and α ∈ Σ, where s, e and α represent start

time, end time, and symbolic value respectively [Mörchen, 2006a]. For

instance, a rainfall log time series can be described as a sequential

combination of descriptive rainfall information, such as heavy (> 10

mm/hr and ≤ 50 mm/hr), moderate (> 2 mm/hr and ≤ 10 mm/hr) and

slight (≤ 2 mm/hr) according to [Met Office, National Meteorological

Library and Archive, 2005]. Fig. 3.4 shows how Tones are derived from

time series data. In Fig. 3.4, a set of time series data is grouped into

three groups, and each group represents a Tone with the definition
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above — start time, end time, and symbolic value. In the example

of Fig.3.4, these groups are labeled as Heavy, Moderate, and Slight

as depicted. After the derivation, the Tones contain no information

regarding the value of each time series point but only the information

of Tones as shown in the last step in Fig. 3.4.
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Figure 3.4: Derivation of Tones from time series data

Chords: A Chord represents coincidence, and it consists of distinct Tones

occurring simultaneously within a certain time interval. Based on this

definition, the size of a Chord, k, means the number of Tones it consists

of and the Chord is denoted as k-Chord. The steps of the derivation

of 3-Chords from three sets of time series data is shown in Fig. 3.5.

Three sets of time series data, as shown in Fig. 3.5, are grouped into

two groups, three groups and three groups respectively, to determine

Tones, as the same process shown in Fig. 3.4. After Tones are derived,

Chords are discovered through simultaneity among Tones. It groups,

in general, the involved Tones based on the longest common length of

interval. In the end, six different 3-Chords are derived in this example

as shown in the last step of Fig. 3.5. Also, what is inside the dashed

circle in Fig. 3.6 demonstrates how the first 3-Chord in the last step is

composed. Another schematic example of the composition of a 3-Chord

in hydrology can also be seen in Fig. 3.6 which will be discussed shortly.

A trivial Chord, 1-Chord, is a special case which is simply a copy of a

Tone [Mörchen, 2006b]. If two Chords, ci and c j , where ci contains the

descriptions of subsets (Tones) from c j , ci is the sub-Chord of c j and

c j is the super-Chord of ci , denoted as ci ⊂ c j . Sub-Chords generally

have longer duration compared to super-Chords because they are less

restricted. Besides, larger Chords, which consist of more Tones, are
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Figure 3.5: Derivation of Chords from time series data

normally more interesting because they are more specific [Mörchen,

2006a]. An example in hydrology can be a 3-Chord, as shown in Fig.

3.6, labeled as aridity, which consists of 3 Tones which are labeled

separately as high air temperature, low precipitation, and low soil

moisture as the aforementioned example of Event. In other words,

these three simultaneous hydrological facts describe the phenomenon

of aridity. Inside the Chord aridity exists another 2-Chord, named

drying, which describes the process of getting dried. In this case, the

Chord aridity is the super-Chord of the Chord drying, and the Chord

drying is the sub-Chord of the Chord aridity.

Air temperature is high

Precipitation is low

Soil moisture is low

A
rid

ity

D
rying

Super-Chord Sub-Chord

Figure 3.6: Representation of a Chord, a super-Chord and a sub-Chord

Phrases: A Phrase represents the concept of partial order and is con-

structed by a sequence of Chords without overlaps. Fig. 3.7 shows,
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in general, how a Phrase is derived from available Tones. Three Tones

A, B, and C are first used to derive three Chords — 2-Chord AB, 3-

Chord ABC, and 2-Chord BC. Since overlapping Chords are not allowed

in Phrases, these several two Chords, 2-Chord AB and 2-Chord BC,

have to be “truncated” in order to form a Phrase. A Phrase indicates

the process of events and also helps to identify how a phenomenon

develops, e.g. how a drought happens.

A

B

C

Tones

AB ABC BC

AB → ABC → BC
Phrase

ABC

BC

AB
maximal
Chords

AB

Figure 3.7: Derivation of a Phrase (after [Mörchen, 2006b])

These aforementioned components in TSKR form the basic foundation of

TSKM. Further descriptions of how these components are derived and how

knowledge is discovered will be illustrated in the coming Section 3.3.

3.3 Time Series Knowledge Mining (TSKM)

TSKM is a framework proposed by [Mörchen, 2006a,b; Mörchen et al.,

2005], aiming to find and describe the temporal relations of multiple time

series data sets for the purpose of temporal reasoning. The rules to describe
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these relations derived by TSKM are based on the definition of TSKR as

mentioned in Section 3.2. The entire workflow of TSKM contains five steps

— pre-processing, finding Aspects, finding Tones, finding Chords, and finding

Phrases, as shown in Fig. 3.8.

Duration Coincidence Partial Order

1.
Pre-Processing

2.
Find Aspects

3.
Find Tones

4.
Find Chords

5.
Find Phrases

Figure 3.8: Pprocesses of the framework TSKM (after [Mörchen, 2006b])

Unlike Tones, Chords, and Phrases which are already defined in TSKR,

Aspects have to be defined here. An Aspect is a group of time series data sets

sharing similar semantics. The semantic here does not mean only physical

property, such as rainfall, soil moisture, etc. Even with the same physical

property, two different time series data sets can have different semantics.

For example, two rainfall stations are separated by a hill and the rainfall

time series data sets may have two different patterns. In this way, these two

rainfall time series data sets can be seen as two Aspects.

The relations of TSKR, duration, coincidence, and partial order, are

corresponding to the steps of finding Tones, finding Chords, and finding

Phrases, as depicted in Fig. 3.8. Besides, as a rule of thumb in knowledge

discovery, it is always recommended and sometimes necessary to have

iterations between steps in order to acquire justifiable knowledge [Mörchen,

2006b]. These iterations are depicted as dashed lines in Fig. 3.8. This also

implies that the entire process is not an one-way process but iterations of

alternating between former and latter steps. The results of these iterations

are usually difficult to be justified only by some indexes of algorithms and

also have to be determined with the help of expert’s knowledge. Due to

this reason, the process of TSKM usually involves manual interactions. In

this way, to achieve the final objective — temporal reasoning from existing
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available data, the entire process is considered as a semi-automatic process

instead of a full automatic one.

The following are the descriptions of each step in TSKM:

Pre-Processing: Data pre-processing is a crucial step not only in TSKM

framework but also in data mining. Collected time series data are often

incomplete, noisy, inconsistent, and so on, in many applications and

projects, such as [Hinkelmann et al.; Molkenthin et al., 2014; Zehe

and Hinkelmann, 2013]. For instances, due to all kinds of happenings

occurred during data collection, the data can contain missing values,

biased values, outliers, etc. as described in Section 2.3. In addition,

different facilities and tools for data collection also have different

design and specifications, and these also cause the inconsistency of

the collected data. Furthermore, some issues of different scales in time

and space, transformations to proper domain, enhancement for further

analysis process, etc. also have to be taken into account. A proper data

pre-processing helps not only to facilitate subsequent analyses, but also

to give an overview of what kind of a problem to deal with. Some

hydroinformatics tools, such as MIKE [DHI], also have some built-in

functionalities for data pre-processing.

However, the techniques for data pre-processing are domain- and

problem-specific. One typical example can be the missing values due

to the malfunction of a collecting device. In this way, these values

can be replaced by mean values, interpolation values, representative

values compared to historical data, or special flags depending on the

type of data, problem, etc. The techniques for data pre-processing can

include digital filters for noise removal [Smith, 1997] , interpolation

functions for gap filling, box plots and Grubbs’ Test [Grubbs, 1969] for

outlier detection, Principal Component Analysis (PCA) [Jolliffe, 2002],

Independent Component Analysis (ICA) [Hyvärinen, 1999], and Self-

Organizing Map (SOM) [Kantola, 2012] for feature extraction and

further dimension reduction, and Fourier transformation and Hilbert-

Huang Transform (HHT) [Huang and Wu, 2008] for domain transfor-
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mation etc.

Finding Aspects: An Aspect is a group of time series data sets sharing

similar semantics. In other words, this step is actually a continuation

of pre-processing or a subset of pre-processing, and it tries to reduce

the dimension of input data sets to be analyzed. For instance, d time

series data sets (d -dimensional inputs) can be reduced into k different

semantic blocks (k Aspects), and these k Aspects are the subset of

original d -dimensional inputs. To achieve this reduction, PCA can be

used for highly correlated variables and ICA can be used to reveal

independent influences [Mörchen, 2006b]. The results of grouping, i.e.

Aspects, should be consistent with the domain knowledge, which the

problem of interest belongs to. In an extreme case, one Aspect per time

series set can be used [Mörchen et al., 2005]. Additionally, [Mörchen,

2006b; Ratanamahatana et al., 2005] also strongly recommend per-

forming normalization, e.g. by means of mean and standard deviation,

to avoid unwanted biases happening during further analyses.

Finding Tones: The process of finding Tones is a process of converting

each Aspect into a sequence of symbolic Tones with their maximum

occurrences. Through this process, the numeric data types of time

series data are converted into human-readable and meaningful descrip-

tions. For example, the intensity of rainfall can be categorized into

heavy, moderate, and slight as mentioned earlier according to [Met

Office, National Meteorological Library and Archive, 2005]. Based on

this category, a collected rainfall time series data can be converted

into a series combination of descriptions, e.g. [slight, moderate, slight,

moderate, heavy, moderate, . . . ], depending on the content of the data.

Except with the help of expert’s knowledge, the methods of clustering,

segmentation, rule generation, etc. are also available to find Tones

depending on the problem of interest. Nevertheless, these methods

should be carefully applied to obtain meaningful bins which can be

approved by experts. In [Mörchen, 2006b], the algorithm PERSIST

[Mörchen and Ultsch, 2005] is recommended and is applied in skating
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data sets. In [Gronz et al., 2008], the algorithm PERSIST is found well-

performed in soil moisture data sets however not suitable for other hy-

drological data sets, e.g. precipitation. The Emergent Self-Organizing

Map (ESOM) with U-Matrix [Ultsch, 2003] is used for the data sets

of sleep related breathing disorders [Ultsch, 1999] and skating data

sets [Mörchen et al., 2005]. In [Moskovitch et al., 2007], the algorithm

PERSIST is compared with a human expert and Symbolic Aggregate ap-

proXimation (SAX) [Lin et al., 2003], an algorithm based on Piecewise

Aggregate Approximation (PAA) [Keogh and Pazzani, 2000] featuring in

dimension reduction and indexing with lower bounding measurement,

in finding proper bins. The algorithm PERSIST receives a comment

that it is not suitable for domains like medicine due to its assumption

of uniform sampling of time series data. However, it is claimed to

outperform other methods, like k-means clustering, Hidden Markov

Model (HMM), Gaussian Mixture Model (GMM), etc. in [Mörchen and

Ultsch, 2005]. On the basis of these studies, the methods to find Tones

are also problem-dependent and the results have to be further validated

by experts. In addition, more investments are also needed to decide

which techniques are suitable for different types of hydro science and

engineering data.

Additionally, the discovered Tone patterns may be interrupted by noisy

data, which lead to breaking down a long-interval Tone into several

Tones with different intervals. To prevent this issue, it is also recom-

mended to filter out the small interval gaps caused by noises through

proper filters [Mörchen et al., 2005], e.g. filtering by proper relative

interval ratio and maximum interval value of a gap.

Finding Chords: As mentioned in Section 3.2, chords represent the con-

cept of coincidence, and the process of finding Chords is to consider all

Aspects concurrently and to mine the simultaneous occurrences among

Tones. In this manner, the inputs are the multiple sequences of Tones,

and the number of these sequences is based on the step of “Finding

Aspects”. The output is a single sequence of labeled intervals — Chords.
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To find Chords, a linear depth-first approach based on the algorithm

for Closed Association Rule Mining (CHARM) [Zaki and Hsiao, 2002]

is proposed in [Mörchen, 2006a,b] because the similarity of a Chord

and an itemset in association rules mining. In addition, similar to the

concept of more or less simultaneous relation in UTG as mentioned

in Section 3.2, some Chords might be similar and can be seen as an

equivalent to each other. In order to take this into account, the concept

of margin-closeness is also introduced into the algorithm. A Chord ci

can be viewed as a margin-closed Chord when no super-Chord having

almost the same support exists, and the definition is:

supδ(c j )

supδ(ci )
< 1−α, ci ⊂∀c j (3.1)

In this definition, α is a threshold to determine margin-closeness and

the default value of α is set to be 0.1, which means 10% of differences

among intervals of Chords can be accepted. supδ() represents the

support of a Chord. The support of a Chord, as shown in Fig. 3.9, is the

interval of all maximum occurrences with at least minimum length δ,

which depends on the study of interest. With the introduction of supδ()

as well as α, it determines the degree of the concept of more or less

simultaneous relation in UTG. In addition, the minimum size of the

Chord is set at least to be two according to the algorithm.

supδ(ci)

δ

Figure 3.9: Representation of the support of the Chord ci

Finding Phrases: A Phrase represents the concept of a partial order as

mentioned in Section 3.2, and Finding Phrases is the last step towards

temporal reasoning according to the framework of TSKM. Before this
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step, all time series data have been converted into series of temporal

intervals. In order to find Phrases, these series of temporal intervals,

Chords, are taken as inputs and the outputs are a set of Phrases repre-

senting temporal developments of phenomena described by TSKR.

The concept of finding Phrases actually contains two phases. The first

phase is to find sequences and many techniques in sequence mining are

available since the outputs, Phrases, have similarity to itemsets. The

second phase is similar to the concept of pruning, which tries to find

generalized sequences by grouping similar ones because sequences are

often overlapping. In [Mörchen, 2006b], the combination of CLOsed

Sequential PAtterN mining (CloSpan) [Yan et al., 2003] and modified

CHARM algorithm is proposed to find proper Phrases inside the TSKM

framework. However, similar to finding Chords, other available tech-

niques exist for this purpose, especially those for sequence mining,

due to the property of the inputs [Mörchen et al., 2005]. For instance,

the suffix trie [Vilo, 1998] is used for moderate-sized data sets and the

mining techniques from [Yang et al., 2002] are proposed for large-sized

data sets in [Mörchen et al., 2005]. A suffix tree is one of the most

common ways to describe the order of the series, and algorithms of

creating suffix trees are widely applied in fields, such as string mining,

gene mining, and so on. An advantage of using suffix trie is that the

results can be easily queried, e.g. the frequency, to find interesting

patterns [Mörchen et al., 2005]. In [Mörchen and Ultsch, 2004], the

algorithm Sequitur [Nevill-Manning and Witten, 1997] is applied, and

several unsupervised techniques for temporal rules mining are com-

pared, e.g. suffix trie [Vilo, 1998], association rules [Das et al., 1998],

Multi-Stream Dependency Detection (MSDD) [Oates et al., 1997], etc.,

in [Mörchen, 2006b].

TSKM has been applied in different disciplines, especially in temporal

reasoning — mining knowledge from temporal data, using the representation

of TSKR. Some of these applications are related to sport medicine with skat-

ing data [Mörchen, 2006a,b; Mörchen et al., 2005], artificial intelligence with
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video data for visual recognition [Mörchen, 2006b], software engineering for

software specification discovery [Lo and Khoo, 2008], medicine [Moskovitch

et al., 2007], and hydrology [Gronz et al., 2008].

3.4 Fuzzy Logic

Since the logic was introduced by the Greek philosopher and polymath

Aristotle in 300 BC, it has been the fundamental principle of mathematics,

and the later influenced Boolean logic, developed by [Boole, 1854], is the

basic of modern computer science. These two are the groundwork of modern

science and engineering, and hydroinformatics is no exception. However, as

Albert Einstein addressed in his lecture in 1921 in Berlin [Einstein et al.,

1922], it reveals a room of vagueness in the traditional concept of bivalence

developed since Aristotle’s time:

So far as the laws of mathematics refer to reality, they are not

certain. And so far as they are certain, they do not refer to reality.

Fuzzy logic is based on the fuzzy set theory introduced by [Zadeh, 1965].

Unlike conventional set theory, which any item either belongs, or does not

belong, to a set of items without ambiguity, fuzzy set theory introduces

the concept of degrees of truth. Based on the classification given in [Met

Office, National Meteorological Library and Archive, 2005], four different

intensities of rainfall, violent, heavy, moderate, and slight, are defined

separately as greater than 50 mm/h, 10 to 50 mm/h, 2 to 10 mm/hr, and less

than 2 mm/hr. Suppose two measured rainfall intensity records are given,

47.6 mm/hr and 6.8 mm/hr, and they will be classified as heavy rain and

moderate rain respectively based on the classification given above, as shown

in Fig. 3.10a. Based on the conventional set theory, there is no ambiguity to

allocate the record of 47.6 mm/hr to the category of heavy rain even though

it almost reaches its upper boundary. On the other hand, the membership

function (µ) is introduced into the fuzzy set theory, which maps the degrees of

truth into the interval [0,1]. In this case, the record of 47.6 mm/hr is assigned
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to the value of µ= 0.95, which denotes fairly heavy rain, and the record of 6.8

mm/hr is given the value of µ = 0.1, which represents the slightly moderate

rain as shown in Fig. 3.10b. In other words, with the help of membership

function, this provides the capability to describe the ambiguity caused by

the more-or-less truth.
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Figure 3.10: Illustration of different set theories

As mentioned earlier, fuzzy logic is capable of dealing with uncertainties.

However, unlike stochastic uncertainty, which is caused by the occurrence

of the event itself, what fuzzy logic deals with is the so-called lexical

uncertainty, which depends on the definition of the event itself. These kinds

of uncertainties are subjective and the nature of the human languages. Like

the previous example, the record of 47.6 mm/hr event may be assigned to

the value of µ = 0.2 of violent rain depending on the choice of membership

function.

In addition to the capability of dealing with uncertainties, fuzzy logic is

also able to embody the contributions of human logic. Thus, the knowledge

and the experience of experts can be considered as well. On the whole, fuzzy

logic is able to work with linguistic variables, tolerate imprecise data, and to

implement human logic into scientific or engineering solutions.

In the field of hydroinformatics, many applications also apply fuzzy logic

theories. In addition to the applications mentioned above, there are also

other applications, such as water demand forecasting [Bárdossy and Duck-

stein, 1995], groundwater infiltration process description [Bárdossy and



3.4. FUZZY LOGIC 47

Disse, 1993; Bárdossy and Duckstein, 1995], habitat modeling [Lange et al.,

2013], reconstruction missing precipitation events [Abebe et al., 2000],

classification of atmospheric circulation patterns [Bárdossy and Duckstein,

1995; Bárdossy et al., 1995], classification of hydrologically homogeneous

gauged regions [Hall and Minns, 1999], reservoir operation rules derivation

[Shrestha et al., 1996], rainfall-runoff simulation [Özelkan and Duckstein,

2001], hybrid deterministic fuzzy rule based model for nitrate transportation

[Shrestha et al., 2007], hybrid neuro-fuzzy model for hydrological time series

simulation [Nayak et al., 2004], and the like.

In order to better delineate fuzzy logic, several definitions have to be

clarified:

Fuzzy Sets: The term “fuzzy set” is the core concept fuzzy logic theories

built upon, and has been brought up several times earlier without a

clear definition. Based on the description by Lofti A. Zadeh himself, the

definition of fuzzy set is [Zadeh, 1965]:

Let X be a space of points (objects), with a generic element of

X denoted by x. Thus X = {x}.

A fuzzy set (class) A in X is characterized by a membership

(characteristic) function f A(x) which associates with each

point in X a real number in the interval [0,1], with the values

of f A(x) at x representing the “grade of membership” of x in

A. Thus, the nearer the value of f A(x) to unity, the higher the

grade of membership of x in A.

Based on this definition, the definition of a fuzzy set can be written as:

A = (x,µA(x)), x ∈ X ,µA(x) ∈ [0,1] (3.2)

where A is the fuzzy subset of X , and µA is the membership function

of A, which describes to which degree x belongs to A, and the value of

membership function is limited in the interval [0,1].

Membership Functions: The membership function, as mentioned earlier,
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represents the degree of membership of x in A. There is no other special

condition a membership function must fulfill, except the value of it must

inside the interval [0,1]. Thus, a special membership function is:

µA(x) =
{

1 x ∈ A

0 x ∉ A
(3.3)

It is a step function which describes the conventional set in the way of

fuzzy logic. In this manner, the conventional set can be regarded as the

subset of the fuzzy set.

Other than this special membership function, here are several common

membership functions [Gautam, 2000; IEC 1131, 1997]:

• Triangular Membership Function

The triangular membership function, as shown in Fig. 3.11a, is

given by:

µA(x) =


0 x ≤ a

x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c

0 c ≤ x

(3.4)

which contains three parameters, a, b, and c. The parameter b

is the peak and the other two parameters, a and c, are the base

points of the triangle.

• Trapezoidal Membership Function

The trapezoidal membership function, as shown in Fig. 3.11b, is

given by:

µA(x) =



0 x ≤ a
x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d

0 d ≤ x

(3.5)

which contains four parameters, a, b, c and d . The parameter b

and c are two upper points of the trapezoid and the parameters a
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Figure 3.11: Illustration of different membership functions

and d are the two bases of the trapezoid. Besides, the trapezoidal

membership function can be regarded as the extension of the

triangular membership function. In the case when b equals to

c, the trapezoidal membership function is actually the triangular

membership function.
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• Gaussian Membership Function

The Gaussian membership function, as shown in Fig. 3.11c, is

given by:

µA(x) = e
−(x−c)2

2σ2 (3.6)

which contains two parameters, c and σ. The parameter c deter-

mines the center of the function in the x-axis and the parameter σ

is the standard deviation by definition which describes the span of

the function.

• Sigmoidal Membership Function

The sigmoidal membership function with the “S” shape, as shown

in Fig. 3.11d, is given by:

µA(x) = 1

1+e−a(x−c)
(3.7)

which contains two parameters, a and c. The parameter c is

the center of the function in the x-axis, and the parameter a

determines the direction of the function and the steepness of the

“S” shape.

• Generalized Bell-Shaped Membership Function

The generalized bell-shaped membership function, as shown in

Fig. 3.11e, is given by:

µA(x) = 1

1+ ∣∣ x−c
a

∣∣2b
(3.8)

which contains three parameters, a, b and c. The parameter a

decides the “width” of the function, the parameter b determines

the steepness of the curve at both sides, and the parameter c is

where the center of the function locates.

• Miscellaneous Membership Functions

There are some other type of membership functions, such as the

spline-based membership function, the piece-wise linear member-

ship function, singleton membership function, etc. The combina-
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tion of the functions mentioned earlier also servers the purpose as

a membership function, as long as it satisfies the only criterion —

the value of µA must be inside the interval [0,1].

Fuzzy Rules: Fuzzy rules are a set of linguistic rules, which serves as the

“brain” of the fuzzy logic system. The set of rules helps the system

to draw inferences based on the descriptions of rules. The illustration

of the composition of rules and the process of inference is shown in

Fig. 3.12. The rules are in the form of IF-THEN statements, and they

describe which action is performed under which condition. The process

of inference contains three steps [IEC 1131, 1997]:

• Aggregation: This step is to aggregate all the conditions through

logic operators, AND, OR and NOT, and it determines the overall

degree of accomplishment.

• Activation: This step decides the action based on the overall IF

condition with consideration of the weighting factor of each rule.

• Accumulation: This step is to derive the overall result by combin-

ing the action result of each rule.

...

Aggregation Activation

A
ccum

ulation

OP : operators (AND, OR, NOT)
COND

i j : condition
ACT

i : action

OPCOND
21IF THEN ACT

2
COND

22
COND

23OP OP ... [w
2
]

OPCOND
11IF THEN ACT

1
COND

12
COND

13OP OP ... [w
1
]

OPCOND
31IF THEN ACT

3
COND

32
COND

33OP OP ... [w
3
]

OPCOND
i1IF THEN ACT

i
COND

i2
COND

i3OP OP ... [w
i
]

w
i : weighting factor

Figure 3.12: Illustration of fuzzy rules

The acquisition of fuzzy rules is a delicate part of applying fuzzy

logic. In general, these rules can be acquired by expert knowledge,
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derived from existing data, or the combination of the previous

two approaches. Several different approaches were suggested or

applied to extract these rules from existing data, such as clustering

method [Chiu, 1994; Yager and Filev, 1994] and TSKM [Gronz

et al., 2008]. Besides, optimization techniques can also be applied

to adjust the weighting factors of rules or membership functions,

and one of the examples is Adaptive Neuro Fuzzy Inference System

(ANFIS) [Jang, 1993] which uses Artificial Neural Network (ANN)

as a means of optimization.

Fuzzy Operations: Fuzzy operations express the “logic” of fuzzy logic, and

they are also essential to the fuzzy logic reasoning. Like conventional

set theory, some rules, such as the de Morgan’s law4, associativity,

commutativity, and distributivity, also apply to fuzzy set theory. As

mentioned earlier in fuzzy rules, these operations can be categorized

into [IEC 1131, 1997]:

• Aggregation: In this section, the common operations are intersec-

tion, union and complement, and their operators are denoted as

AND, OR and NOT respectively. In order to fulfill de Morgan’s law,

these operators should appear paired-wise and their mathematical

definitions are shown in Table 3.2.

Table 3.2: Definitions of operations in aggregation

Intersection (AND) Union (OR) Complement (NOT)

Min(µA(x),µB (x)) Max(µA(x),µB (x)) 1−µ(x)
µA(x)µB (x) µA(x)+µB (x)−µA(x)µB (x) 1−µ(x)

Max(0,µA(x)+µB (x)−1) Min(1,µA(x)+µB (x)) 1−µ(x)

4De Morgan’s law:
(A∪B)

′ = A
′ ∩B

′

(A∩B)
′ = A

′ ∪B
′

where A and B are any two subsets of set X , ∪ represents union operator (OR ), ∩ represents
intersection operator (AND ), and ′ represents negation (NOT ).
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• Activation: The common operations to convert IF-THEN results

are product and minimum, and the mathematical definitions are

described in Table 3.3.

Table 3.3: Definitions of operations in activation

Product Minimum

µA(x)µB (x) Min(µA(x),µB (x))

• Accumulation: In order to combine the result of each rule into one

single result, the ordinary operations are maximum, bounded sum

and normalized sum, and the definitions in mathematics are shown

in Table 3.4.

Table 3.4: Definitions of operations in accumulation

Maximum Bounded Sum Normalized Sum

Max(µA(x),µB (x)) Min(1,µA(x)+µB (x)) µA(x)+µB (x)
Max(1,µA(x)+µB (x))

Fuzzy Inference System: Fuzzy inference is to formulate the mapping

between a given input and an output using fuzzy logic with linguistic

rules. The system which applies fuzzy inference to map between a set

of inputs and a set of outputs is called Fuzzy Inference System (FIS).

Fig. 3.13 shows the process of a FIS, which contains:

• Fuzzification: The process of fuzzification turns real values into

degrees of the membership function for linguistic terms of fuzzy

sets. For instance, a temperature of 15◦C can be represented by

50% of Cold (µCold = 0.5) together with 50% of Warm (µWarm = 0.5),

as shown in Fig. 3.14.

• Fuzzy Inference: As mentioned in the section of Fuzzy Rules, fuzzy

inference uses linguistic variables to construct rules for reasoning,
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Figure 3.13: Fuzzy inference system process
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Figure 3.14: Illustration of fuzzification

and serves as the “brain” of the fuzzy system. An example of how

fuzzy inference describing rules based on the IF-THEN statement

is as follows:
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IF

precipitation is HIGH AND discharge is HIGH

THEN

reservoir water level is HIGH

The description above illustrates a general example how the water

level of a reservoir is influenced by precipitation and discharge.

Although the definitions of HIGH in all physical variables are not

defined here, this description can be cognitively comprehended.

The definitions of these descriptions of different physical variables

have to be done in the process of defining fuzzy sets and can be

problem-specific.

• Defuzzification: Defuzzification is a process of converting the

accumulated fuzzy result (as shown in Fig. 3.12) into a specific

value. In other words, the accumulated linguistic consequence

is normally interpreted into a single real value. Several methods

exist to defuzzify this accumulated membership function, such as

Center of Area (CoA), Center of Gravity (CoG), Middle of Maximum

(MoM), Last of Maximum (LoM), First of Maximum (FoM), Fuzzy

Mean (FM), etc. [IEC 1131, 1997; Leekwijck and Kerre, 1999].

Some of these common methods are described in the form of a

formula to find the defuzzified value x ′:

– Center of Area (CoA): CoA represents the center of area

method, and it finds the value x ′ which divides the area under

the membership function evenly. Therefore, it has to satisfy:

w x ′

Min
µ(x)d x =

w Max

x ′ µ(x)d x (3.9)

where Min and Max are the lower and upper boundaries for

defuzzification. An illustration of CoA is shown in Fig. 3.15.

– Center of Gravity (CoG): CoG is the center of gravity method

which calculates where the center of gravity is located. The
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formula can be written as:

x ′ =
r Max
Min xµ(x)d x
r Max
Min µ(x)d x

(3.10)

where Min and Max are the lower and upper boundaries for

defuzzification. However, one special case is that the member-

ship function is singleton, this CoG turns into Center of Gravity

for Singleton (CoGS) and the integral form becomes discrete

as:

x ′ =
∑N

i=1 xiµi∑N
i=1µi

(3.11)

where N is the number of singletons. An illustration is shown

in Fig. 3.15.

– Last of Maximum (LoM): LoM seeks the location where

the nearest maximum membership function value locates, as

shown in Fig. 3.15.

– Middle of Maximum (MoM): Like LoM, MoM attempts to find

where the middle of the maximum membership function value

is, as shown in Fig. 3.15.

– First of Maximum (FoM): Similar to LoM and MoM described

above, FoM finds the farthest point of which the maximum

membership function stands, as shown in Fig. 3.15.

There are two types of FISs: Mamdani-type [Mamdani and Assilian, 1975]

and Sugeno-type [Sugeno, 1985]. The Mamdani-type FIS is the most common

one seen as discussed so far. The main difference between these two types

of FISs lies in the output membership function. Different from the Mamdani-

type FIS, the output membership function in Sugeno-type FIS is either linear

or constant, and sometimes is known as singleton. Hence, the CoGS is used

as the defuzzification method.
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Figure 3.15: Illustration of defuzzification

3.5 Multivariate Adaptive Regression Splines

(MARS)

In the module of process identification (see Fig. 4.1), an additional/optional

step is introduced at the end of the process identification — regression.

Although fuzzy rules can be derived from events that are the outputs in the

module of event identification, many factors still affect the results of process

identification, and one crucial factor is the completeness of these rules [Bár-

dossy and Duckstein, 1995]. Moreover, there are also many parameters and

choices introduced during this semi-automatic event identification process

including subjective ones, such as expert knowledge, and objective ones,

such as limitations of algorithms. Due to these uncertainties, the derived

relationships among variables may not be sufficient enough to precisely

describe themselves. Instead, only trends among different variables are

captured. Hence, a mathematical mapping is proposed to resolve this issue —

Multivariate Adaptive Regression Splines (MARS), and several applications

and discussions of using MARS in the field of hydroinformatics can be found

in [Coulibaly and Baldwin, 2005; Herrera et al., 2010; Sharda et al., 2008].
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Figure 3.16: Illustration of hinge functions

MARS is a type of nonparametric regression and can be regarded as a

linear combination of multiple basis functions. Compared to other regression

techniques, such as linear regression, nonlinear regression, regression trees,

etc., MARS does not require any a priori assumption, and the general form

is written as:

f̂ (x) =β0 +
M∑

j=1
β j H j (x) (3.12)

where β j represents a constant coefficient for the corresponding basis

function, H j (x), as mentioned earlier. The j is the index of basis function

and the number M is the total number of basis functions which formulate

this nonparametric regression model. The basis function H j is made up of

the product of hinge functions as:

H j (x) =
N∏

i=1
hi j (x) (3.13)

where i is the index of hinge function, hi j (x), and the number N is the total

number of hinge functions which construct the basis function. The form of

the hinge function is written as (see Fig. 3.16):

hi j (x) ≡ (x − ci j )+ =
{

x − ci j x > ci j

0 otherwise
(3.14)
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or

hi j (x) ≡ (ci j −x)+ =
{

ci j −x ci j > x

0 otherwise
(3.15)

where ci j is any arbitrary constant representing the knot of the basis

functions, and the + sign means that only the positive results are considered.

These two hinge functions are considered as a pair and are directly derived

from data. In this way, MARS describes the nonlinearity of the problem of

interest through the concept of piecewiseness.

The process of constructing MARS models involves two phases:

Forward Phase: In this phase, the algorithm greedily searches and adds

pairs of hinge functions which lead to the maximum reduction of

the Residual Sum of Squares (RSS) until the termination criteria are

reached. The termination criteria can be either the change of the RSS

small enough or the maximum number of pairs reached.

Backward Phase: Like many algorithms in Machine Learning (ML), espe-

cially the nonparametric ones, the derived model from the forward

phase is probable that the model is overfitting due to its adaptivity

to data. To avoid overfitting, pruning the number of hinge functions

is used to reach the generalization of the model. In this phase, hinge

functions are dropped one by one until the best model is reached. The

criterion to choose the best model in the algorithm of MARS is the

Generalized Cross Validation (GCV):

GCV=
∑N

i=1

(
yi − f̂ (xi )

)2(
1− r+cK

N

)2 (3.16)

where N is the number of observations, c is the penalty, which is in the

range 2 < c < 3, r is the number of independent basis functions, and K

is the number of knots [Hastie et al., 2009].
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3.6 Suffix Tree

Suffix tree is a type of data structure in computer science. As its name

suggests, this data structure is tree-like and is able to provide the suffix

based on a given string and it is widely used in string operations. The

structure of suffix tree is shown in Fig. 3.17 with a given string “mississippi”

as an example. A special character, e.g. “$”, denoting the end of the string is

attached to the given string. The edges of the suffix tree structure are labeled

with substrings of the given string, and the nodes denote the beginning, the

end, and the string split of the data structure. Three types of nodes exist in

the structure:

• Root node: There is only one root node in the entire structure and it is

the beginning of the data structure.

• Leaf nodes: Leaf nodes stand for the end of suffix and usually come

together with the special termination symbol. In the schematic example

Fig. 3.17, they appear in the colored circle.

• Internal nodes: The rest of nodes, which are neither root nor leaf nodes,

are called internal nodes. These nodes create the branches of the tree

structure and separate the given string into substrings.

With this given example (see Fig. 3.17), the string “mississippi” is

restructured into the combination of different nodes and edges, and the

suffix(es) can be easily identified by a given string. In this example, two

suffixes, “i” and “pi”, are identified if the given string is “p” which is the

rightmost branch in Fig. 3.17. In other words, once “p” is identified in the

data structure, the following strings, “i” and “pi”, can be easily found and

the sequences of these strings can also be known. Another example, which

is the extreme case, is that the string “mississippi” itself is its own suffix

shown at the leftmost branch in Fig. 3.17. With the help of the suffix tree,

a long string can be compressed and its suffixes can be easily identified,

which is especially useful for some applications, such as the Human Genome

Project [Collins et al., 2003].
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Figure 3.17: Schematic representation of the suffix tree data structure

Constructing a suffix tree for a given string usually takes computational

memory space and time depending on the implementation. The basic algo-

rithm requires O(n2) to O(n3) memory space and Central Processing Unit

(CPU) time, where n is the length of the given string. Several improved

algorithms provide better ways to reduce the resources needed. For exam-

ple, a real-time online algorithm for constructing suffix trees proposed by

[Ukkonen, 1995], known as Ukkonen’s algorithm, reduces the dimension

to O(nlogn) on average by starting with an empty tree containing the first

character and updating this tree structure with the help of the suffix pointer5

till it is completed.

Several application fields using suffix trees are as follows:

• String search

• DNA or protein patterns identification

• Data compression

5The suffix tree pointer indicates where to break the substring and insert a new edge with
a corresponding substring in the tree data structure.
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and an application using suffix tree mining hydrological periodic pattern can

be found in [Zhu et al., 2012].



Chapter 4
Framework Concepts

4.1 Problem Analysis

A general workflow of research or professional projects/applications in the

field of hydroinformatics dealing with real data can be divided into three

parts as shown in Fig. 2.1. These three parts represent the concepts of:

• Preparation: A preparation of everything for the purpose of simulation,

including system setup, data collection, data pre-processing, etc.,

which is included in the leading component in the hydroinformatics

system as shown in Fig. 2.1.

• Simulation: As shown in the core component in Fig. 2.1, this part

serves as an engine of the problem-solving for the targeting problems.

Depending on the type of the problems, it can be related to numerical

analysis, statistical analysis, optimization, etc.

• Finalization: During simulation, the results, usually in the form of

numbers, are generated. In this part, shown in the trailing component

in Fig. 2.1, tools of different purposes, e.g. visualization tools, are

usually applied to summarize the simulation results into more expres-

sive representations, such as graphs, tables, etc. In this way, together

with the help of experts’ experience, conclusions, solutions, further

proposals can be drawn.

63
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Based on the workflow, several problems still exist, especially in the

projects dealing with multi-disciplinary fields, even if the tools for these

three parts are well-selected and appropriate for such projects. Concerning

the objective of this research work, these problems are:

• Scenario Sparseness: Suppose the simulation tools are able to well-

represent the targeting problem and the tasks in both preparation and

finalization are satisfactory. The investigation of the same problem with

different what-if scenarios often troubles modelers. The reason is that

the data sets for these scenarios are often not existing. Without these

corresponding data sets, the impacts of such scenarios are difficult to

determine.

• Mass Data: In the projects/applications dealing with real data, the data

are usually collected in a great amount. With the current technology,

it is usually not an issue to collect and store these data. Instead,

how to parse the data efficiently and to extract necessary information

without being buried in the nowhere of mass data are usually the major

concerns.

• Workflow Monitoring: In the process of workflow, the major attention

usually focuses on the operations of each step, the techniques applied,

the parameters used, the simulation results, etc. However, little atten-

tion is paid to the process of workflow. The negligence of the process of

workflow often leads to the difficulties of reproducing results, tracing

mistakes, and so on.

To resolve these problems, a framework [Li and Molkenthin, 2014;

Molkenthin et al., 2014] is proposed in this research work which locates

in between the leading component and the core component as shown in

Fig. 2.1. This framework is targeting at parsing the data from the lead-

ing component and further analyzing them in order to extract necessary

information. This information represents the most basic unit describing

the characteristics of the collected data. This unit is named MetaEvent as

mentioned in Section 1.4. With these pieces of extracted information, they
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can serve as the foundation of scenario composition. Once the scenarios are

composed, they can be further converted into corresponding time series data

for the simulation tasks in the core component. Apart from the capability for

scenario composition, this framework also serves as a concept of information

extraction from mass data. Besides, the framework also keeps track of every

operation applied in the process as metadata for the purpose of workflow

monitoring.

4.2 Concept Overview

As described earlier, the framework provides a way of generating time

series data as inputs for simulation tools based on users’ interests and

available data. These inputs can be used for studying impacts under different

scenarios of interest. In addition, the framework also monitors and stores the

records of each operation applied. To describe the concept of this framework,

it can be basically divided into four parts:

1. breaking time series data into representative blocks, and each block

manifesting a specific characteristic of phenomenon

2. providing each block with meaningful information

3. describing relationships among time series variables

4. supporting users composing scenarios of interest

Fig. 4.1 extending from Fig. 1.2 in Section 1.4 delineates steps in each

module and also the procedure of the framework. The solid lines with arrows

describe how data flow and the dashed lines with arrows are optional steps

where users have to examine how good the results are and take necessary

actions, e.g. following the solid or dashed line.

The necessary background knowledge for the framework is already de-

scribed in Chapter 3, which contains Time Series Knowledge Representation

(TSKR), Time Series Knowledge Mining (TSKM), fuzzy logic and Multivariate

Adaptive Regression Splines (MARS). The workflow can be divided into
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Figure 4.1: General framework concept of the scenario composition

four different modules and following the solid arrows, the workflow can be

divided according to the modules into:

• Data Pre-processing: Here, the raw data are processed depending

on the requirements, type of problems, etc. After these preliminary

processing procedures, such as outliers removing, gaps filling, trends

eliminating, etc., these processed data are then organized, depending

on the data format, into required time series.

• Event Identification: The acquired time series are further transmitted

for the purpose of event identification. As shown in Fig. 4.1, it includes

different steps to achieve different intermediate results: Aspects, Prim-

itive Patterns, Successions, Events, and Sequences. The terminology

used in each intermediate result corresponds to the terminology used
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in TSKM for better understanding of engineers, which is explained

further in Section 4.3. Each solid arrow represents the sequence flow

in event identification and each dashed arrow indicates an “optional”

path. This means the process in event identification is not strict

sequential and each intermediate result has to be checked for its

validity. Once the results do not satisfy the requirements, the process

has to be restarted one step, or even more steps back, due to the

concept of TSKM. The final two colored intermediate results, Events

and Sequences, serve as inputs for scenario composition, and Events

also serve as inputs for process identification.

• Process Identification: The derived Events from event identification are

passed as inputs for process identification as shown in Fig. 4.1. Like

the workflow in event identification, solid and dashed arrows repre-

sent the general and optional paths in process identification together

with different intermediate results/steps: Fuzzification, Fuzzy Rules,

Defuzzification, Regression, and Relationship between Events. The first

three illustrate the general process in a fuzzy inference system. In

addition, an optional step, as shown in rounded rectangle in Fig. 4.1,

Regression, is added in process identification to provide an additional

optimization to improve results when information is not sufficient. At

the end, the results of Relationship between Events, denoted in the

colored rectangle, describing relationships among different physical

state variables are derived and further transferred as inputs for sce-

nario composition to build MetaEvents.

• Scenario Composition: To compose scenarios of interest, three different

inputs are required:

– Events and Sequences from event identification

– Relationship between Events from process identification

With these, MetaEvents can be built with Events as the core along

with Sequences, Relationship between Events and other statistics as

metadata. Once MetaEvents are built, they serve as the basic elements
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for scenario composition. Once the scenarios of interest are composed,

they can be further converted into corresponding time series for further

tasks.

From the description above, it can be seen that the entire workflow

of this framework is not an automatic process which generates results as

natural consequences when necessary inputs are provided. Instead, it is a

semi-automatic process which requires manual interventions on each step

to determine which next action is required, as denoted in dashed arrows and

the rounded rectangle. Apart from these manual interventions, the rest is

automatically achieved. On the other hand, the workflow of this framework

provides opportunities to improve the results with the consideration of

external information, such as experts’ knowledge, if needed. The following

sections will bring out how the background knowledge mentioned in Chapter

3 is applied in the concepts.

4.3 Event Identification

The event identification in the framework is to identify Events, which

describe representative features in a certain time interval among the entire

time series data set. For instance, a hydrological data set, which contains

the information of air temperature, soil moisture and precipitation, can be

identified an Event as aridity when the air temperature is high, the soil

moisture is low and the precipitation is low if the dry season occurs.

The event identification is adapted to the needs of hydroinformatics sys-

tems, and based on the concept of TSKR and TSKM proposed by [Mörchen,

2006b; Mörchen et al., 2005]. TSKM is a method designed for temporal

reasoning with the representation of TSKR, and especially to overcome

the shortcomings of Allen’s temporal relations [Allen, 1983] for temporal

knowledge mining.

However, the intention of the event identification is to identify so-called

Events among the entire time series data sets which represent features

of hydrological/hydrodynamical facts, as mentioned at the beginning of
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this section, and TSKR and TSKM are adapted here to serve this purpose

instead of temporal reasoning. The Events derived from TSKM are described

linguistically and these human-readable descriptions provide users a great

advantage while composing scenarios due to the transparency of the mean-

ing. Besides, in order to prove and to demonstrate the framework concept,

a prototype which carries out its idea was designed and implemented.

Within the implementation of the prototype, only the necessities of TSKM

which are useful to the framework, are adopted in the prototype instead

of implementing every element of TSKM. The more detailed description

regarding the implementation of the scenario composition framework will be

further discussed in Chapter 5. Comparing the general framework concept

of scenario composition (Fig. 4.1) with the framework of TSKM (Fig. 3.8), the

part of pre-processing in TSKM is moved to the data pre-processing module

in the framework of scenario composition, and the rest parts of the TSKM

belong to the module of event identification in the framework of scenario

composition. In this event identification, Aspects are the Aspects in TSKM,

Primitive Patterns and Successions are the Tones in TSKM, Events are the

Chords in TSKM, and Sequences are the Phrases in TSKM, as organized in

Table 4.1.

Table 4.1: The mapping of the terms used in this framework onto the ones of
TSKM

TSKM The Framework

Aspect Aspect
Tone Primitive Pattern + Succession

Chord Event
Phrase Sequence

The terminology used in this framework of scenario composition, as

mentioned earlier, is based on [Mörchen et al., 2005] and is the prede-

cessor of the terminology used in TSKM. The main reason of using this

terminology instead of the terminology in TSKM inside this framework of
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scenario composition is its comprehensibility for engineers, hydrologists,

etc. In addition, the Sequences in the framework of scenario composition

are implemented differently from the Phrases in TSKM and serve different

purposes. Unlike the Phrases in TSKM to reason temporal phenomena in the

study of interest, the Sequences in the framework of scenario composition

provide additional information of temporal relationships of Events to support

users’ composition of scenarios. Moreover, the concept of a MetaEvent which

aggregates the information of each corresponding Event (Chord), such as

statistics, is used as the basic unit for scenario composition. These will be

further explained in Section 4.5.

Due to the characteristic of the nonlinear process of TSKM, the process of

event identification in the framework of scenario composition is also nonlin-

ear. The derived Events (Chords) will further append additional information

to create MetaEvents as basic elements for scenario composition. However,

the information they represent is the linguistic description of either itself or

the relationship between themselves. This information is good for temporal

reasoning, yet it does not accord with the purpose of this study — providing

information for further computational simulations. Hence, these linguistic

descriptions of themselves have to be converted into numbers and one

approach is to use temporal average values among the intervals to represent

the states of themselves. As for the conversion of the linguistic relationship

between themselves, the module of process identification is introduced into

the scenario composition framework for any necessary need.

4.4 Process Identification

The characteristics of the results of event identification, Events, are, as

mentioned in Section 4.3, quantitative and loosely connected and contain

mainly temporal-averaged information. Such information is readable and

comprehensible for users and is useful for composing scenarios. However,

it would be better to have a way to strongly and physically describe the

relationship between variables, such as the function in mathematics f : X →
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Y . This function does not only provide additional information to the system,

but also facilitates the investigation of the problem. In addition, it may be able

to uncover and identify unknown physical phenomena with the help of Data-

Driven Modeling (DDM) approaches, especially for large, multidisciplinary

and complex problems.

In this framework concept of scenario composition, the approach of fuzzy

logic is chosen for the process identification. There are several reasons for

this choice, and they are mainly:

• The results of event identification are formed and described by “crisp”

linguistic variables, which correspond to fuzzy variables.

• The derived Events from event identification, which are Chords in

TSKM, can also be considered as fuzzy rules in fuzzy logic [Gronz and

Casper, 2008; Gronz et al., 2008].

• Comparing to some black-box approaches in DDM, the rules, which

describe the system behavior, are more explicit and more interpretable.

In this way, this plain description of the system behavior also affords

users to better understand the system and probably to identify un-

known phenomena.

In addition, here the Mamdani-type Fuzzy Inference System (FIS) is

chosen for the purpose of process identification instead of the Sugeno-type

one. Besides the fitting of the structure of Chords into fuzzy rules, Mamdani-

type fuzzy inference system also offers better interpretation as mentioned

in [Gorzałczany, 2002]. The rules, which describe the physical phenomena,

are derived from the events in the event identification module. In addition,

expert knowledge and rules of thumb can also be added into the set of

rules if needed. Furthermore, a mechanism of optimization on membership

functions or weighting factors of rules to ensure the reliability of the

derived parameters inside fuzzy rules is also introduced in the framework, if

necessary.

However, there still exist many situations which cause the unreliability of

the derived rules, such as the parameters introduced in the semi-automatic
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event identification process. To resolve this issue for a better description of

this system behavior, the technique of MARS [Friedman, 1991] is added in

this module as a second mapping function.

The regression technique MARS is selected to act as an optional fine-

tuning of the results of FIS a step earlier. Although there is no regression

technique best-fitted for all situations, the main two reasons why MARS is

chosen in this framework are:

• Applicability: Unlike some other regression techniques, such as sta-

tistical regressions, applying the nonparametric MARS does not need

any assumption beforehand as mentioned earlier. This feature fits in

the need of the framework, since the characteristics of the results of

FIS are unknown in advance. Hence, no statistical hypothesis testing is

needed.

• Interpretability: The representation of MARS model consists of the

linear combination of basis functions, and it is easier to interpret

comparing to other techniques, such as Artificial Neural Network

(ANN).

In this section, the concepts and reasons of how and why two different

approaches, fuzzy logic and MARS, are applied in the module of process

identification in the framework, are described. Mamdani-type FIS bridges

the crisp linguistic results of event identification by providing meaningful

descriptions among variables. MARS, on the other hand, fine-tunes the

results from the FIS to ensure better descriptions among variables. The

results of this process identification serve as additional information to

supplement the results of the event identification.

4.5 Scenario Composition

The aim of scenario composition is to provide a manner to compose synthetic

scenarios of interest and, then, to generate time series data based on these

user-defined scenarios. The generated time series data can be later used
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for different tasks, such as Boundary Conditions (BCs) inputs for different

simulation tools to investigate the impacts under these scenarios. Moreover,

the scenario composition module together with other modules can also be

integrated with other hydroinformatics systems towards a holistic modeling

approach.

To achieve the objectives mentioned above, two major elements have

to be offered in scenario composition for composing and generating the

corresponding time series data:

• information

• interface

The information comes from the results of previous modules. These

results will be aggregated and delivered to form the most elementary

element, MetaEvent, of scenario composition. As previously stated in Section

1.4, the role of a MetaEvent in scenario composition is as a LEGO® brick

— the most basic entity that a scenario can be built upon. A MetaEvent

is composed of one corresponding Event from event identification along

with some additional information, such as statistics for each time series

which makes up this Event. Hence, a MetaEvent can be considered as its

corresponding Event with related metadata.

At this stage, a number of MetaEvents are available for users to compose

their scenarios of interest, and the number of MetaEvents depends on the

choices of methods, parameters, personal decisions, etc. in previous steps.

With these MetaEvents at hand, users need a “guide” to know what the

MetaEvents represent and how they can be used, and metadata suffice these

demands. For instance, the statistics of a MetaEvent provide information,

such as frequency, maximum duration, minimum duration, average value,

etc., of each time series based on the collected data for the request of

what, and the suffix tree data structure offers the information of the

next coming MetaEvents to answer the demand of how. Here, there is no

restriction on the composition of scenarios; instead, it provides a “guide”

with supplementary information. On the other hand, the “guide” provides
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semantics of MetaEvents illustrating the corresponding natural events, and

helps users to compose a reasonable scenario of interest based on the

collected data instead of any random, arbitrary one.

The interface to compose scenarios can be arbitrary as long as it serves

the purpose. The interface should, a least, offer some basic functionalities,

such as:

• reviewing the composed scenario

• displaying necessary information of metadata

• generating corresponding time series data

In addition, the generated time series data can be further processed, for

instance, by downscaling for higher temporal resolution requirements, if

necessary. In the prototype design and implementation, a simple Graphical

User Interface (GUI), illustrated further in Section 5.6, is created to provide

these basic functionalities.



Chapter 5
Framework Prototype Design and

Implementation

5.1 Implementation Environment Options

In this chapter, the prototype design and implementation of the framework

is introduced. However, at least four aspects have to be taken into consider-

ation beforehand:

Operating Systems (OSs): An OS, in general, is a set of software programs

which bridge users and hardware. From the users’ side, it provides a

user interface, either a Graphical User Interface (GUI) or a Text-based

User Interface (TUI), for users to have access to or control over hard-

ware devices without explicit knowledge of how tasks are performed.

From the side of hardware, the OS takes care of every single command

given by users which involves information exchange among software

programs themselves and between software and hardware, such as

controlling inputs and outputs, memory management, accessing disks,

etc.

Current OSs can be categorized into three major groups:

• Microsoft Windows OSs: The family of Microsoft Windows is a

proprietary OS developed by Microsoft Corporation. It currently

75
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dominates the market of the world’s personal computers and the

number of the share is 91.82% in February, 2013 according to [Net

Applications].

• Unix-like OSs: The development of Unix-like OSs can date back

to the project of developing the Multiplexed Information and

Computing Service (Multics) for the GE-645 mainframe under

the collaboration between Massachusetts Institute of Technology

(MIT), General Electric (GE) and AT&T Bell Laboratories in 1964

[Multics; Stuart, 2008]. Due to the original design targeting at

the mainframe, the Unix-like OSs have some features, such as

multitasking, multi-user, etc., by nature. A variety of OSs belong

to Unix-like OSs, like the BSD family (FreeBSD, NetBSD, Sun

OS, Mac OS X, iOS, etc.), Minix, Linux, Solaris, HP/UX, Google

Chromium OS, WebOS, Android, Firefox OS, Sailfish, etc., and

they are all compatible with the Single UNIX Specification (SUS)

standard, including Portable Operating System Interface (POSIX).

• Other OSs: Apart from the above two categories, some OSs still

exist, which do not belong to neither of them. They are usually

more platform-specific or for embedded systems, such as Palm OS,

BeOS, Mac OS, OS/2, z/OS, etc.

The choice of an OS also depends on the type of hardware plat-

forms, which will also be discussed later. For instance, some OSs are

targeting at mobile/handheld devices, such as iOS, WebOS, Android,

Firefox OS, Sailfish, Palm OS, etc. They are usually more lightweight

and use web technologies, e.g. HyperText Markup Language (HTML)

and JavaScript, for the development of the applications. Although

traditional Personal Computers (PCs), such as desktops and laptops,

still have their places in the consumer market, the current trend is

going to the direction of mobile/handheld devices in combination with

servers, e.g. cloud technologies. According to the report in Oct. 2013

from Gartner [Gartner Inc.], the shipments of smartphones and tablets

are expected to grow 3.7% and 53.4% in year 2013 respectively, but
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the shipments of traditional PCs are expected to drop 11.2% in year

2013. From the trend observed above, the OSs designed for such

mobile/handheld devices start to play a more important role in the

consumer market.

Programming Languages: A programming language is an artificial lan-

guage which humans communicate with machines and instruct ma-

chines what to do. To categorize different programming languages,

there are many aspects, such as the level, the purpose, the paradigm,

etc. In the following, there are some definitions and categories regard-

ing programming languages:

• High-level and low-level programming languages: The difference

between high-level and low-level programming languages lies in

the abstraction from the computer’s instruction set. A high-level

programming language uses language patterns closer to natural

languages with semantics and it is more understandable by hu-

mans. Besides, it is also independent of the architecture of hard-

ware. Instead, a low-level programming language is hardware-

specific and the written codes can be executed directly by the

machine. In other words, to execute the codes written in high-

level programming languages, a “translation”, e.g. interpreting,

compiling, etc., to low-level programming languages is necessary.

Here are some examples of high-level and low-level programming

languages:

– High-level programming languages: C, C++, Java, Fortran, R,

MATLAB, Python, etc.

– Low-level programming languages: machine languages and as-

sembly languages with different assemblers, e.g. GNU Assem-

bler (GAS) for multiple platforms, Microsoft Macro Assembler

(MASM) for Microsoft Windows and MS-DOS, etc.

• General-purpose and domain-specific programming languages: As

their names stand, the major difference between the General-
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Purpose Language (GPL) and the Domain-Specific Language (DSL)

is the purpose they are designed for. A GPL is designed for dealing

with all types of problems; a DSL, on the contrary, is intended to

solve problems inside specific domains. Here are some examples

of programming languages belonging to GPL and DSL:

– General-purpose programming languages: C, C++, Java, For-

tran, Lisp, Python, etc.

– Domain-specific programming languages: MATLAB, Octave, R,

SAS, Mathematica, Structured Query Language (SQL), Object

Query Language (OQL), etc.

• Compiled and scripting programming languages: One way to dis-

tinguish between compiled and scripting programming languages

is the scriptability. Scripting programming languages reduce the

traditional edit-compile-link-run process of compiled programming

languages and they are interpreted line by line instead of pre-

compiled in advance. Hence, they gain the advantage of flexibility

and convenience over compiled programming languages, but less

performance compared to their counterparts. In the following,

there are some compiled and scripting programming languages:

– Compiled programming languages: C, Java, C++, Pascal, For-

tran, Visual Basic, etc.

– Scripting programming languages: Python, Ruby, Perl, PHP, R,

Octave, MATLAB, JavaScript, etc.

• Procedural, functional, and object-oriented programming lan-

guages: The terms of “procedural”, “functional”, and “object-

oriented” describe three different programming paradigms among

other paradigms and a programming paradigm defines how a

program abstracts and describes problems. Procedural program-

ming defines the sequence of steps computers have to perform.

In procedural programming, a procedure is usually known as a

subroutine or a function and can be called at anytime needed.

Functional programming, on the other hand, sees the computation
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as the evaluation of mathematical functions and is based on

lambda calculus. Unlike procedural programming, which changes

the state during the execution, functional programming avoids

using mutable data. As for Object-Oriented Programming (OOP),

it focuses on mapping the real world into the digital one, and each

item in the real world can be represented by an object, which

encapsulates all necessary information, e.g. the state and the

behavior, describing itself. Since a type of programming paradigms

is only a way to describe problems, most of the programming

languages support multi-paradigm design. For example, C++ and

lisp can be procedural, functional, or object-oriented; Java also

supports multi-paradigm design, and can be either procedural or

object-oriented.

A brief summary of programming languages mentioned above is shown

in Table 5.1. Looking back into the history of hydroinformatics, the

programming languages traditionally used for the implementation of

these tools were mainly high-level, compiled and procedural languages,

such as Fortran in the core parts of HEC-RAS [HEC-RAS], TELEMAC-

MASCARET [open TELEMAC-MASCARET], MIKE family [DHI], etc.

The main reason can be attributed to the history of Information and

Communication Technology (ICT), for instance, the motive of the in-

vention of computers, the performance of hardware, etc. However, due

to the development of programming languages and the improvement of

hardware, modern programming languages offer more versatility and

convenience in design and implementation without suffering the per-

formance issue in most descent-sized projects. Particularly, scripting

languages offer more flexible and nimble supports, such as metapro-

gramming, in design and implementation. These do not only help the

implementation in new projects but also facilitate the extension of

existing projects. For example, ArcGIS [Esri] supports both Python and

R scripting languages if external requirements are needed.

Hardware Platforms: A hardware platform is a physical carrier which
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accepts commands from users through input devices, performs com-

putational tasks, and displays results with the help of output devices.

As mentioned earlier, the choice of OSs also depends on the choice

of hardware platforms. In addition, this choice also further affects the

choice of the design and the implementation, such as programming

languages, technologies, etc. Here, the types of hardware platforms are

generally grouped depending on their physical sizes and computational

performance. The groups are mainframe computers, supercomputers,

workstations, personal computers, mobile devices, and others.

• Mainframe computers: Mainframe computers usually refer to the

“big” computers located in a cabinet and are accessed through

terminals by multiple users at the same time. Compared to normal

commercial computers, they are more powerful, more reliable,

more secure, having better input and output capacity, and taking

more care in the compatibility with order software, etc. Mainframe

computers are usually used to undertake the tasks, such as bulk

data processing, which ordinary computers are less appropriate

for. In addition, mainframe computers are usually running on

platform specific OSs, such as z/OS, and Unix-like OSs (72% of

z/OS and 28% of Unix-like OSs running for IBM System z1 in Dec.

2008 [Wikipedia, the free encyclopedia]).

• Supercomputers: Compared to mainframe computers which focus

more on stability, supercomputers center more on the performance

and deal with the tasks which computational speed is of great

importance, such as high performance computing. Due to the

high performance in calculation, they are widely used in scientific

or engineering fields, especially for large scale problems, such

as weather forecasting. Besides, Unix-like OSs are usually their

OSs of choice (98% of the market share among the top 500

supercomputers in Nov. 2012 [TOP500]).

1IBM System z is a family name of IBM’s mainframes and this series is chosen by nearly
95% of Fortune 1000 companies as their mainframes [Computer & Communications Industry
Association, 2008].
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• Workstations: A workstation can be regarded as a high-end per-

sonal computer and is usually equipped with faster Central Pro-

cessing Unit (CPU), larger capacity of Random-Access Memory

(RAM), and better and bigger graphic display when compared to a

standard PC. Moreover, the quality of hardware in workstations is

usually more reliable than the one in personal computers. Thus, a

workstation is usually used for the tasks which require a relative

amount of computing power and a higher resolution display,

such as the applications in Geographic Information System (GIS),

Computer-Aided Design (CAD), Computer-Aided Manufacturing

(CAM), numerical simulations, Graphics Processing Unit (GPU),

3D and Virtual Reality (VR) visualization. In addition, a workstation

is also sometimes used as a mini server. As for OSs deployed in

workstations, they depend on the purposes of the workstations,

and Microsoft Windows and Unix-like OSs are usually the choices.

• Personal computers: Compared to the computers mentioned

above, PCs are less powerful, more affordable, and designed for

use by an individual user at a time. Depending on the size and the

performance, PCs can be desktops, laptops, netbooks, etc., and

most of them are running with Microsoft Windows as OSs (91.82%

of global market share in Feb. 2013 [Net Applications]).

• Mobile devices: Mobile devices are smaller computing devices

compared to normal standard-sized laptops, and target mainly

at portability and mobility. They are also equipped with suffi-

cient computing power for everyday tasks, such as documents

editing/viewing, Internet browsing, etc. These devices include

Personal Digital Assistant (PDA), smartphones, tablets, etc., and

are mainly running with Unix-like OSs (81.53% of global market

share in Feb. 2013 [Net Applications]), such as Android, iOS, etc.

• Others: Some other hardware platforms still exist, such as em-

bedded systems, Single-Board Computers (SBCs), etc. They are

mostly designed less powerful compared to PCs, e.g. with a less
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powerful CPU, slower memory, smaller capacity of storage, etc.,

and are usually cheaper than PCs. They generally serve to per-

form specific tasks with limited functionalities, such as, Network-

Attached Storages (NASs), private web servers, ticket vending

machines, etc., or act as experimental prototypes, for instance,

the Raspberry Pi. The OSs running on these kinds of platforms

are usually either platform-specific or Unix-like-based. These types

of hardware platforms are outside the scope of discussion in this

research work.

Yet, the boundaries among such categories are getting obscurer due

to the rapid development of ICT. A current high-end mobile device

can be more powerful than a descent 10-year-old laptop. A powerful

NAS can not only serve as a file server, but also, for instance, as a

personal cloud service, a private web server, a media streaming service,

etc. In addition, the current trend is in the direction towards mobile

computing, and it can be observed from the report of Gartner [Gartner

Inc.], as pointed out earlier.

Networks: The invention of the network can trace back to the development

of the Advanced Research Projects Agency Network (ARPANET) in the

1960s. Afterwards, with the standardization of the Internet protocol

suite, TCP/IP, defining layers and protocols of how different computers

exchange information through networks in the 1980s, it became the

cornerstone of today’s network. Later, the Internet and World Wide Web

(WWW) started to develop and blossom after the first web server was

set up by Tim Berners-Lee and others at the European Organization for

Nuclear Research (CERN) in the beginning of 1990s.

The network can be generally categorized into two types depending on

the scope computers connect to each other:

• Local area network: The scope of a Local Area Network (LAN)

is usually limited to a specific range, such as offices, schools,

universities, etc., and the communication standards are defined in
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the IEEE 802 family. For instance, the current two most common

standards for connecting computers are:

– Ethernet for the wired environment with a speed from 10

Mbit/s to 100 Gbit/s

– Wi-Fi for the wireless environment with a speed from 1Mbit/s

to 6.75 Gbit/s

They are defined in IEEE 802.3 and IEEE 802.11 respectively.

• Wide area network: In contrast to the LAN, the scope of the Wide

Area Network (WAN) is broader, and Internet can be regarded as

a type of WAN connecting different LANs in the world through the

TCP/IP protocol suite as mentioned earlier.

Apart from these standards of the IEEE 802 family, there exist some

other different standards, such as Universal Mobile Telecommunica-

tions System (UMTS) and Long-Term Evolution (LTE), which provide

protocols for different mobile devices to communicate in the network.

There are many services which can run over networks, such as WWW,

e-mail, file sharing, Instant Messaging (IM), Voice over Internet Proto-

col (VoIP), etc. To enable these services, the application layer of TCP/IP

defines different protocols for them. Here are some major protocols for

different common services:

• WWW: Hypertext Transfer Protocol (HTTP), Hypertext Transfer

Protocol Secure (HTTPS)

• File sharing: File Transfer Protocol (FTP), Server Message Block

(SMB)

• E-mail: Simple Mail Transfer Protocol (SMTP), Post Office Protocol

(POP), Internet Message Access Protocol (IMAP)

• Instant messaging: Extensible Messaging and Presence Protocol

(XMPP), Session Initiation Protocol for Instant Messaging and

Presence Leveraging Extensions (SIMPLE)

• VoIP: H.323, Session Initiation Protocol (SIP)
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• Security over the Internet: Transport Layer Security (TLS), Secure

Sockets Layer (SSL), Secure Shell (SSH)

The abovementioned four options — OSs, programming languages, hard-

ware platforms, and networks, will determine how the prototype is designed

and implemented. In the following section, the criteria and the decisions for

the design and implementation of the framework prototype will be discussed.

5.2 Prototype Implementation Criteria and En-

vironments

As discussed in Section 5.1, the boundaries among the choices of OSs,

programming languages, and hardware platforms, are becoming less clear

due to the rapid development of technology. For instance, programming lan-

guages can support multi-paradigm designs, and some personal computers

have almost equal computational performance as workstations. Hence, the

choices of implementation environments are most of the time neutral and

based on personal preferences as well as the current working environment.

However, some criteria still affect the choice of how the prototype is imple-

mented. In this research work, the criteria for the prototype implementation

environments are based on:

• the current working environments, including the OSs, the working

programming languages, and the hardware platforms

• the support of adequate resources, such as documents, libraries, etc.

for programming languages

• the simplicity of the working environments in terms of software and

hardware technology

In addition to the implementation environments, some principles of the

prototype design philosophy are:
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• the idea of “a bird in the hand is worth two in the bush”, which

emphasizes the realization of the basic concept of the framework

instead of a complete software product

• the priority of applicability and transparency coming before that of

performance

• the possibility for further extensions

• the adaption with other software technologies

According to the criteria above, the prototype is implemented under such

environments and conditions:

• on Linux OS

• in Java and R programming languages

• on a single PC-based computer with an AMD Athlon 64 x2 4800+ CPU

and 4 GB RAM

• without network connection, but offering opportunities for further

extensions, such as, cloud computing through TCP/IP protocol with the

number crunching service on the server, etc.

• the information exchange mostly through well-structured plain text file

format

The chosen environments for the prototype implementation come from

several circumstances:

• the current working environments: Linux OS, Java programming lan-

guage, and the single PC-based computer

• the support of adequate resources, such as documents, libraries, etc.,

for data processing: R programming language

• the simplicity of the developing environments: no network connection
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However, Java and R are two different programming languages with

different design philosophies and programming environments. In order

to exchange information between these two programming environments,

additional settings, such as, environment parameters, are necessary. The

following is the brief introduction of these two programming languages and

how they are applied in the prototype implementation:

Java programming language: Java is a general-purpose programming

language under GPL and targeting mainly at the object-oriented

paradigm. It was originally developed by James Gosling, Mike Sheridan,

and Patrick Naughton at Sun Microsystems in 1991 [Byous, 1998].

One of its features is “write once, run anywhere”, which is done by

compiling Java codes into bytecodes running on top of the Java Virtual

Machine (JVM). JVM provides an abstract layer between Java applica-

tions and the latent platform, and interprets the compiled bytecodes. In

this manner, the applications written in Java are platform independent.

Therefore, the choice of OS and hardware platform becomes trivial to

consider. In addition, Java has a wide range of support in all kinds of

application fields due to its maturity.

In the prototype implementation, the Java programming language is

applied in the implementation of the event identification, the process

identification, and the scenario composition. The developing activities

are carried out in the Eclipse Integrated Development Environment

(IDE) [Eclipse Foundation] based on Java 5, and several major applied

external libraries include:

• Apache Commons FileUpload [Apache Software Foundation: Com-

mons FileUpload]

• Apache Commons Math [Apache Software Foundation: Commons

Math]

• Apache POI [Apache Software Foundation: POI]

• Apache Tomcat [Apache Software Foundation: Tomcat]

• Guava [Google Guava]
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• JFreeChart [JFree.org]

• jFuzzyLogic [Cingolani and Alcala-Fdez, 2012]

• Joda-Time [Joda.org]

• Java/R Interface (JRI) [RForge.net]

• Suffix Tree Implementation [Havsiyevych]

• Turtle [Molkenthin et al., 2009]

R programming language: Unlike Java, R is a domain-specific script-

ing language and particularly focusing on procedural and functional

paradigms with a certain support of OOP paradigm. R was created

by Ross Ihaka and Robert Gentleman in 1993 [Ihaka and Gentleman,

1996]. Besides being a computer programming language, R also offers

a Read-Eval-Print Loop (REPL) software environment for interactive

operations. In addition, R is mainly designed for statistical computing

and visualization, which is different from Java being a generalized

programming language, and is popular among statisticians and data

miners with the support of abundant packages. Moreover, being a free

software environment under GPL, it can also run on different OSs.

The parts of the prototype implementation using R is under the Emacs

text editor together with the package Emacs Speaks Statistics (ESS)

[ESS]. Several major R packages used in the prototype implementation,

apart from other optional ones which depend on the types of the

problems, involve:

• ggplot2 [Wickham, 2009]

• gridExtra [Auguie, 2012]

• mclust [Fraley and Raftery, 2007]

• reshape [Wickham, 2007]

• rJava [Urbanek, 2011]

• scales [Wickham, 2012]

• zoo [Zeileis and Grothendieck, 2005]
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The implementation of the prototype is carried out in either a single

programming language or in mixed programming languages (Java and R):

• Data Pre-processing: R

• Event Identification: Java and R

• Process Identification: Java

• Scenario Composition: Java

The choice of being implemented in a single programming language or

in mixed programming languages depends on the requirements of each

module, and the implementation tries to take advantages from both sides

if mixed-language programming style is adopted.

Since the implementations of different modules are accomplished in

different languages depending on the feature of the language itself and the

requirements of the module, the information exchange between different

modules has to be decided. As mentioned earlier in the principles of the

prototype design philosophy, transparency comes before the performance.

Therefore, the exchange of information among different steps and modules

is carried out through files in this implementation prototype. These files are

mainly in the form of plain text files, for instance, spreadsheet-like format

for time series data, and detailed formats will be illustrated in the later

descriptions of different modules. However, a part of information exchange

is done through the binary file format, which is about the complete results

of the Event Identification. This is because of the complex hierarchy of the

data structure and it does not help the transparency of the process. Although

information communication through files is not computationally efficient and

may not be favorable to some situations, it provides a pause to review the

results and further has an opportunity to ensure the quality of the results

before stepping to the next step. Furthermore, the framework itself is a semi-

automatic process, where the results of each step are of great consequence

to the subsequent steps, and a mechanism to assure the quality of results is

necessary.
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The prototype is implemented, as previously stated, in two heterogeneous

programming languages — Java and R. In order to exchange information

between Java and R environments at runtime, especially for the module

implemented in both programming languages, Java Native Interface (JNI)

comes to the rescue. JNI, as its name stands, is a programming interface

which enables Java codes running on JVM to communicate with native

applications implemented in other programming languages than Java. The

schematic illustration of the concept of JNI is shown in Fig. 5.1. There, two

applications, a Java-based and a non-Java based, are exchanging information

through the help of JNI. First, the Java data inputs are converted to non-Java

data inputs, being the native data structure of the non-Java environment,

through JNI. Second, the calculated results in the non-Java environment,

non-Java data outputs, are converted back to Java data outputs over JNI. In

the prototype, the calculated statistical or data mining results performed

in the R environment can be passed to the Java environment for further

operations, and the choice of algorithms or the arguments needed for the

calculation in the R environment can be assigned directly in the Java code.

J
N
I

J
N
I

Java code
Non-Java code

(e.g. R)
 

Java data outputs

Java data inputs

Non-Java data inputs

Non-Java data outputs

Figure 5.1: Schematic concept of the JNI

To connect both R and Java platforms, several approaches exist, such as:

• SJava package [Temple Lang and Chambers, 2013]: A contribution

from the Omegahat project [Omegahat] using JNI to communicate

between R and Java environments.
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• rJava package [Urbanek, 2011]: Like the SJava package, it also

exchanges information between R and Java through JNI. Unlike the

SJava package supported by a third-party project, the rJava package

is maintained by the R project directly and can be found in the official

package repository, Comprehensive R Archive Network (CRAN). In

addition to being widely deployed by different projects, it can be

easily extended to a client-server model by using the RServe package

described below. This is because both rJava and RServe packages

share identical methods in exchanging information from outside the

JVM environment. This becomes an advantage in the implementation

because the extension of the application can be achieved without much

effort.

• RServe package [Urbanek, 2012]: Unlike the previous two packages

that must exchange information locally, this package communicates

information through TCP/IP protocol. Therefore, a client-server model

can be deployed and users can run the calculation in the cloud.

In this implementation, the package rJava is chosen simply because of:

• its number of available applications which implies an available amount

of documentation

• the simplification of the prototype implementation within a single PC

• the extensibility of future growth to online services, for instance, cloud

computing

In addition, several environmental parameters have to be set up to

be able to execute it. In the current implementation environment, these

environmental parameters are as follows:

R_HOME=/usr/lib64/R

R_SHARE_DIR=/usr/share/R

R_INCLUDE_DIR=/usr/include/R

R_DOC_DIR=/usr/share/doc/R

LD_LIBRARY_PATH=/usr/lib:/usr/lib64/R/lib:/usr/lib64/R/bin
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Besides, the JVM argument java.library.path has to be set to where the

libjri.so (for Unix-like OS) or the libjri.dll (for Windows OS) locates.

5.3 Data Pre-processing Design and Implemen-

tation

As stated in Section 3.3, the tasks of data pre-processing are problem-

and domain-specific. Hence, rather than implementing a limited number

of methods for it, it is more appropriate to have a thorough solution for

this purpose. In addition, one principle of the prototype design philosohpy

is to realize the basic concept of the framework as mentioned in Section

5.2. For these reasons, the full-featured R software environment is adopted

in the prototype, instead of “reinventing the wheel”. Besides, the R REPL

environment and the preferred editing environment, Emacs and the ESS

package, are used as interfaces for operations. The main reason is that the R

software environment has already supported a wide variety of features, from

basic data handling to advanced time series analysis.

The entire R software environment offers a wide range of tools for data

manipulation and analysis. Apart from what has been mentioned in Section

5.2 for general implementation in this prototype, there exist some other

packages specific for data pre-processing depending on type of problems,

such as:

• missing data handling: R standard packages (e.g. base, stats, etc.), R

package mitools [Lumley, 2012], etc.

• seasonal decomposition: R standard packages (e.g. stats), etc.

• Autoregressive-Moving-Average (ARMA) model: R standard packages

(e.g. stats), etc.

• Principal Component Analysis (PCA): R standard packages (e.g.

stats), etc.
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• Support Vector Machine (SVM): R package kernlab [Karatzoglou

et al., 2004], R package e1071 [Meyer et al., 2012], etc.

• Self-Organizing Map (SOM): R package som [Yan, 2010], R package

kohnen [Wehrens and Buydens, 2007], etc.

The R software environment provides a general environment to read from

and write to different data sources, from plain text to binary files and even

to different Relational Database Management Systems (RDBMSs), such as

Comma-Separated Values (CSV) file format, Microsoft Excel Spreadsheet

(XLS) file format, MySQL, Oracle database, etc. However, importing from

and exporting to the CSV file format is the most common approach also used

here, and the file format looks like:

Date, Rainfall (mm), Temperature (Celsius), Discharge (m^3/s)

1974-05-18, 2.1, 19.0, 0.0

1974-05-19, 0.0, 19.3, 0.0

1974-05-20, 0.0, 17.5, 0.0

1974-05-21, 0.0, 18.9, 0.0

1974-05-22, 0.0, 20.1, 0.0

1974-05-23, 0.0, 19.5, 0.0

1974-05-24, 28.5, 20.0, 0.1

1974-05-25, 18.1, 19.7, 0.7

In the example above, it contains some basic information describing data,

which are the date, the type of data, and the unit of data. The reasons why

the CSV file format is adopted here are mainly its versatility to be read

by different software applications, including plotting applications, and the

readability by human beings. In this manner, it is easier to have an overview

of the raw data. After an adequate pre-processing, the input data sets

are grouped into a pack of distinct Aspects which have different semantic

representations, contain variant characteristics, etc., and these Aspects are

saved into a CSV file with the same format described above for the following

steps.



94 CHAPTER 5. FRAMEWORK PROTOTYPE DESIGN AND IMP.

5.4 Event Identification Design and Implemen-

tation

As mentioned in previous chapters, the purpose of event identification is to

identify the so-called Event, which is made up of the coincidence of several

time states, representing a certain feature of the phenomenon of interest.

Although the event identification is mainly based on Time Series Knowledge

Mining (TSKM), the framework of TSKM is not completely implemented in

this prototype. This is mainly because the purpose of this module of event

identification is to extract features of time series sets, as the concept of

itemsets, instead of the temporal reasoning as TSKM does. However, the two

basic elements, Tone and Chord, corresponding to the naming convention in

Time Series Knowledge Representation (TSKR) as described in Section 3.2,

are taken out from the TSKM and redesigned in an OOP way in Java as shown

in both Fig. 5.2 and Fig. 5.3 respectively.

Figure 5.2: Design of the class Tone in the event identification

The design of class Tone (see Fig. 5.2) describes the concept of Tones in

TSKR, as mentioned in Section 3.2. A Tone comprises three components: the

start time, the end time, and the symbolic value, as described in Section

3.2. As shown in Fig. 5.2, it contains attributes defining the start time

(startTime), the end time (endTime), and the symbolic value (label) to

fulfill the definition of a Tone. In addition, it adds additional information

(aspect) to specify which time series it belongs to, and that is the Aspect

according to TSKM.

As described in Section 3.2, a Chord represents coincidence, and it is

built by one Tone of each Aspect. Fig. 5.3 illustrates the basic design of
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Figure 5.3: Design of the class Chord in the event identification

the Chord defined in TSKR. Since a Chord is made of Tones, it contains the

information of Tones which belong to it (tones) together with the start time

(startTime) and the end time (endTime) of itself. To derive a list of Chords

from a set of Aspects, the static method miningChords(aspects:List,

param:MiningParam), which will be described below, is utilized.

Apart from these attributes, it also has some methods, such as:

• doFiltering(chords:List,index:int[]): It is a static method,

which filters out the Chords with the same pattern. In addition, once

the index is given, the Chords will be removed if the Tone with given

index is empty. This is useful in generating fuzzy rules in process

identification discussed in Section 5.5.

• miningChords(aspects:List,param:MiningParam): It is a static
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method, which mines Chords based on the modified Closed Association

Rule Mining (CHARM) algorithm according to TSKM, and the parame-

ters for mining are defined in the inner class MiningParam.

• getRule(): It is an instance method describing the composition of the

Chord.

• isOverlap(other:Chord): It is an instance method, which deter-

mines if two Chords are overlapping.

• isSubChord(other:Chord): It is an instance method checking if the

Chord is the sub-Chord of the other one.

However, the flexibility of providing arbitrary semantic descriptions by

users for each Tone and Chord are not implemented here. Instead, these

descriptions are defined by the given name of the Aspect and the results

of the algorithm with a fixed and consistent format throughout the entire

workflow.

In addition, in order to facilitate setting parameters for the mining

algorithm, the builder pattern2 is adopted here. As seen in Fig. 5.3, the inner

class MiningParam is used to provide parameters for the mining algorithm.

With this design, users can assign parameters for the mining algorithm with

ease. An example of assigning mining parameters is given as:

2The builder pattern is one of the design patterns in software engineering. The
design patterns are optimized and reusable solutions for the problems of software design
encountered in the daily basis and are often employed in OOP.
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/*

* variables:

* data : a set of Aspects composed of Tones to

* be mined

* miningResult: a list of mined Chords

*/

private static final long MIN = 60000L; // 1 min = 60000 ms

miningResult = Chord.miningChords(data, new MiningParam()

.alpha(0.0)

.minChordSize(3)

.minDuration(30*MIN));

where the mining parameter alpha3 is set to 0.0, the minimum size of a

Chord is set to 3, the minimum duration is set to 30 minutes. As for the rest

unmodified parameters remain the same with default settings.

As for the approach of finding Tones, the design of the architecture is as

shown in Fig. 5.4. There, four classes are shown, which are class AbsBinGen,

class AbsRBin, class EM, and class RKMeans. class AbsBinGen and class

AbsRBin are abstract classes, and class EM and class RKMeans are concrete

classes which implement different algorithms for finding Tones. The class

AbsBinGen defines the basic method needed for finding Tones. The class

AbsRBin defines an abstract method which describes how to utilize the R

environment to implement algorithms. Finally, two inherited classes, class

EM and class RKMeans, implement specified algorithms, the Expectation

Maximization (EM) clustering algorithm in the R package mclust [Fraley

and Raftery, 2007] and the k-means clustering algorithm, respectively, and

those abstract methods. With this design, the approach of finding Tones can

be further extended to other R-based algorithms, Java-based algorithms or

other algorithms on different computing platforms if required.

Since these Java classes use the algorithms implemented in the R environ-

ment, there exists a way to exchange information between the JVM and the R

environments. As described in Section 5.2, the rJava package is adopted in

3alpha is the α in Eq. 3.1 which is the threshold determining margin-closeness
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EM

+ doClustering(re : Rengine) : void
+ getSizeOfClusters() : int[]

RKMeans

- iterMax : int
- nstart : int
- centers : int[]

+ doClustering(re : Rengine) : void
+ getSizeOfClusters() : int[]

<<enumeration>>
Algorithm

FORGY
HARTIGAN_WONG
LLOYD
MACQUEEN

AbsBinGen

+ toSerialTones(timeStamp : long[], aspect : String) : List
+ getSizeOfClusters() : int[]
+ getCluster() : int[]
+ getBoundaryList() : double[]
+ setBins() : void

- data : double[]
- bins : int[]

AbsRBin

+ doClustering(re : Rengine) : void

Figure 5.4: Design of finding Tones in the event identification

this implementation. Fig. 5.5 illustrates how R codes communicate with Java

codes with the help of the rJava package. The rJava package contains two

components, rJava and JRI. The component rJava allows to do operations in

JVM from R, such as accessing fields of Java objects. JRI, on the contrary,

allows R code to run in JVM as a single thread. With the help of both

components, information can be exchanged bidirectionally.

RRJVMJVM

Java ProgramJava Program

JNIJNI
JRIJRI

rJavarJava
C APIC API

Figure 5.5: Interface layers of the R package rJava (after [Urbanek, 2009])
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Here, an example of code snippet using the EM algorithm demonstrating

how methods in R are applied in the Java environment is shown below:

/*

* variables:

* aspect: an array of time series data points

* emAlg : an object of the class EM

* re : an object of the class Rengine

*/

EM emAlg = new EM(aspect);

emAlg.doClustering(re);

emAlg.getCluster();

where the R scripts for finding Tones are wrapped in the method

doClustering(re:Rengine), and the class Rengine is a class defined in

JRI. The method getCluster() will further return an array of integers

indicating the cluster number which each time series data point belongs to.

: Rengine: Rengine: EM: EM : REXP: REXP R

doClustering()

assign()

eval()

getCluster()

asIntArray()

R Objects

Results

Java

Figure 5.6: Example of information exchange between R and Java

The example above involves the information exchange between R and

Java through the help of the rJava as mentioned earlier. To further illustrate
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how information is exchanged between R and Java, it is shown in Fig. 5.6,

which reflects the code snippet above. In Fig. 5.6, an object of class EM

is trying to perform the task of finding Tones. In order to accomplish the

method doClustering(re:Rengine), an object of the class Rengine is

created to assign and to evaluate the statements given to R. Finally, an object

of the class REXP is created to retrieve computed R objects back to the JVM

and these R objects are also converted to Java primitive data types for further

usage, for instance, the method getCluster().

All performed actions will be recorded as a part of the workflow monitor-

ing mentioned in Section 4.1. In the current implementation of the prototype,

the actions above are logged in the plain text file format as:

This file is created on Wed Jan 29 18:05:09 CET

[...]

Date/Time : Wed Jan 29 18:10:51 CET 2014

Action : Clustering

Function : Mclust in the package mclust ver. 4.2

R version 3.0.2 (2013-09-25)

Algorithm: Model-Based

Parameter: default

please check the package manual for more

detailed information

In this log file, some basic information, such as date/time, algorithm, method,

package version, etc., is recorded.

5.5 Process Identification Design and Imple-

mentation

The idea of process identification, as discussed in previous chapters, is to

formulate the relationships among physical state variables with the help of
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Mamdani-type Fuzzy Inference System (FIS) as well as Multivariate Adaptive

Regression Splines (MARS).

In the first part of the process identification, the open source fuzzy logic

library “jFuzzyLogic” [Cingolani and Alcala-Fdez, 2012] is adopted as the

engine of the Mamdani-type FIS. In order to carry out this part using fuzzy

logic, an input file containing information, such as variables, membership

functions, fuzzy rules, etc., has to be generated. The format of the file is in

the form of the Fuzzy Control Language (FCL) specification [IEC 1131, 1997]

and the jFuzzyLogic library also implements it. An example of the file format

containing the settings of:

• three input variables of var1, var2 and var3

• one output variable of var4

• membership functions defined by points

• aggregation defined by Min(µA(x),µB (x))

• activation defined by Min(µA(x),µB (x))

• accumulation defined by Max(µA(x),µB (x))

• defuzzification with the Center of Gravity (CoG) method

is shown as follows:

FUNCTION_BLOCK function

// define input variables and their types

VAR_INPUT

var1 : REAL;

var2 : REAL;

var3 : REAL;

END_VAR

// define output variables and their types

VAR_OUTPUT
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var4 : REAL;

END_VAR

// fuzzification of input variable ’var1’

FUZZIFY var1

TERM var1_desc1 := (0,1) (1.0,0);

TERM var1_desc2 := (0,0) (1.0,1) (2.00,0);

TERM var1_desc3 := (1.0,0) (2.0,1);

END_FUZZIFY

// fuzzification input variable ’var2’

FUZZIFY var2

TERM var2_desc1 := (0.03,1) (1.06,0);

TERM var2_desc2 := (0.03,0) (1.06,1) (2.00,0);

TERM var2_desc3 := (1.06,0) (2.00,1);

END_FUZZIFY

// fuzzification input variable ’var3’

...

// defuzzification of output variable ’var4’

DEFUZZIFY var4

TERM var4_desc1 := (0.07,1) (1.355,0);

TERM var4_desc2 := (0.07,0) (1.355, 1) (3.41,0);

TERM var4_desc3 := (1.355,0) (3.41,1);

// use COG for defuzzification

METHOD : COG;

// default value set to ’0’

DEFAULT := 0;

END_DEFUZZIFY

RULEBLOCK rule

AND : MIN; // ’minimum’ for aggregation

ACT : MIN; // ’minimum’ for activation
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ACCU : MAX; // ’maximum’ for accumulation

RULE 1 : IF var1 IS var1_desc2 AND var2 IS var2_desc3

THEN var4 IS var4_desc2;

...

END_RULEBLOCK

END_FUNCTION_BLOCK

Some parameters are already known beforehand, such as input and out-

put variables, and some can be defined by users, like the aggrega-

tion and defuzzification methods. However, the generation of rules is

an intractable task. Here, the rules can be generated by the method

doFiltering(chords:List,index:int[]) in the class Chord as de-

scribed in Section 5.4, in addition to rules of thumb or experts’ experience.

With proper arguments given, different sets of rules can be generated and

converted to meet the users’ requirements.

What is more, this library also provides the funtionality of optimization of

membership functions and weighting factors of rules. There are also several

optimization algorithms available, like gradient method, to fit the needs of

the problem.

As for the second part of the process identification, the R package earth

[Milborrow, 2011] is chosen for the task of carrying out the regression

technique MARS in the environment of REPL. As for the data exchange, it is

simply done through plain text file format as mentioned in Section 5.2. The

file format is a simple CSV file format as described in Section 5.3. In this

way, the results from the Mamdani-type FIS can be inspected publicly, and

then it can be decided if the further process is necessary.
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5.6 Scenario Composition Design and Imple-

mentation

In this section, the design and the implementation of the scenario compo-

sition are introduced. Unlike the modules mentioned in the previous two

sections, event identification and process identification, which are based on

the framework or the theory, the module of scenario composition uses the

results from the aforementioned modules to compose scenarios of interest.

In addition to compose scenarios of interest, the scenario composition also

supports users to generate time series data sets based on these user-created

scenarios. In this sense, scenario composition has to at least provide two

capabilities of:

• providing intuitive and sufficient information for users to choose from

• supporting users to compose scenarios of interest with descent inter-

faces/tools

In order to suffice these two criteria, two parts of scenario composition

are introduced as follows:

MetaEvent: A MetaEvent, as its name represents, is the composition of an

Event, which is denoted as Chord in TSKM, and the metadata of its

own. Besides, a MetaEvent is an aggregation of different Events with

the same patterns, which means Events sharing the same composition

of Tones will be regarded as one MetaEvent. In this case, a MetaEvent

contains no more specific duration information but the information of a

maximum and a minimum duration among all Events. Also, the naming

in the design of scenario composition, as shown in Fig. 5.7, starts to

deviate from that in TSKM for the reasons of:

• a clearer representation in the context of the framework

• an implication of departing from the main concept of TSKM
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MetaEventEntity

- values : double[]
- metaEvent : MetaEvent

+ showEventEntityInfo() : String

MetaEvent

- name : String
- maxValue : List
- meanValue : List
- minValue : List
- std : List
- maxDuration : long
- minDuration : long
- frequency : String

+ showMetaEventInfo() : String

1 0..*

Figure 5.7: Class MetaEvent and class MetaEventEntity in the scenario
composition

As shown in Fig. 5.7, a MetaEvent contains not only the basic informa-

tion of an Event, but also other information derived from the existing

time series data set. In the current implementation, the metadata

contain the information of:

• the maximum value of each existing Aspect object

• the minimum value of each existing Aspect object

• the mean value of each existing Aspect object

• the maximum duration of the Event object

• the minimum duration of the Event object

• the frequency of the Event object

and they can be extended if necessary.

Apart from the MetaEvent, the concept of MetaEventEntity is also

introduced in this design as shown in Fig. 5.7. With respect to the

MetaEventEntity, it can be regarded as the realization of a MetaEvent

— the real entity represents the corresponding MetaEvent in creating

scenarios. Therefore, it contains the information of the corresponding

MetaEvent and the value of each existing Aspect as shown in Fig. 5.7.

In addition to the MetaEvent and the MetaEventEntity, there exists

another design which facilitates the scenario composition — Sequence,

as shown in Fig. 5.8. The class Sequence does not play an explicit role
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in the scenario composition, but it provides necessary information, the

sequence of Chords, while composing scenarios as requested in the

first criterion. The class Sequence can be regarded as a wrapper of the

algorithm generating the suffix tree data structure discussed in Section

3.6. As shown in Fig. 5.8, it contains some basic methods, such as:

• findNextEvent(val:Chord): It is an instance method which

finds the next MetaEvent(s) of a given Chord/MetaEvent.

• ifEnds(val:Chord): It is an instance method which checks if

the given Chord/MetaEvent is the last one in the suffix tree data

structure.

Sequence

- END_CHAR : int
- SPACE_CHAR : int
- hashMap : BiMap
- invHashMap : BiMap
- sequence : SuffixTree
- rootNode : Node

+ findNextEvent(val : Chord) : List
+ ifContains(val : Chord) : boolean
+ ifEnds(val : Chord) : boolean

Figure 5.8: Class Sequence in the scenario composition

On the road to implementation, a Java package implementing Ukko-

nen’s suffix tree algorithm by [Havsiyevych] is utilized to support the

creation of a suffix tree based on a list of MetaEvents. The list of

MetaEvents is derived from the event identification once the Events

(Chords) are determined together with the original time series data

sets as shown in Fig. 4.1. Depending on the parameters chosen in the

process of mining Chords, the derived Chords can overlap in time in

order to describe different possible phenomena as shown in Fig. 3.7.

Since the idea of scenario composition is to find the most fundamental

elements which work as LEGO® bricks first, and then use them to

compose scenarios with other supplementary information. Therefore,

the temporal overlapping in Chords is not allowed and Chords have to
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be “chopped” to come to a list of nonoverlapping Events, which is the

Phrase in TSKR as shown in Fig. 3.7.

In the implementation of this prototype, the criteria to break temporal

overlapping Chords into individual Events are mainly based on the

maximum size of the Chord. As Fig. 3.7 shows, three Chords, 2-Chord

AB, 3-Chord ABC, and 2-Chord BC, overlap temporally. Due to the

characteristics of Chords, the duration of 3-Chord is less than that of 2-

Chord. In this case, the entire 3-Chord will be preserved and turned into

an Event, and the rest of the other overlapping parts will be converted

to the corresponding Events. Finally, these Events in addition to the

original time series data sets will be merged to create MetaEvents. The

naming of each individual MetaEvent is assigned automatically with a

predefined rule instead of determined by users, and all the metadata

are stored as fields in each MetaEvent object.

After a list of nonoverlapping MetaEvents is generated, it can be viewed

as an analogy to a string, and each MetaEvent is like a character.

None the less, the data structure of the suffix tree is targeting at

strings/characters. Due to this reason, the mapping between each

MetaEvent and a character has to be set up first as illustrated in Fig.

5.8. Since the native character encoding in Java is UTF-16, it offers

enough character candidates to map onto available MetaEvents.

Once the data structure of the suffix tree based on MetaEvents is

constructed, it offers a foundation:

• to provide information regarding each available MetaEvent for

users to choose from

• to create corresponding MetaEventEntities to compose scenarios

of interest

GUI: The design and implementation of a GUI is to suffice for the second

criterion mentioned earlier — supporting the composition of scenarios

of interest. The design of the GUI, which is currently desktop-oriented

and considers future extensions, comprises:
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• components:

– two tabbed panes for scenario composition and time series

generation

– two panels for each pane displaying the composed scenario or

generated time series graphically and logging the operations

• operations:

– scenario composition pane:

* setting general properties, such as start time, end time,

time difference ∆t , etc.

* composing events

* generating time series data based on the composed sce-

nario

* exporting the composed scenario

– time series generation pane:

* changing how time series data are represented

* showing information of selected point

* exporting generated time series

A simple GUI, based on the design above, was implemented to assist

in composing scenarios of interest and further generating the desired

time series data as shown in Fig. 5.9 and Fig. 5.10 respectively.

Fig. 5.9 shows a simple GUI to help users composing scenarios of

interest. It contains three windows:

• the scenario composition window

• the scenario property window

• the event editing window

The scenario composition window displays the information of the

composed scenario once it is updated. A horizontal bar plot exists in the

center of the window and its bottom side is the time axis indicating the

start time and the end time of each MetaEvent and the entire scenario.
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Scenario Composition Window

Event Editing Window

Scenario Property Window

Figure 5.9: Windows of event composition in the scenario composition

Inside the bar plot, each rectangle represents a MetaEventEntity and

different colors mean different MetaEvents. Once the cursor is hovered

on top of a rectangle, the metadata of this MetaEventEntity will show

up as shown in Fig. 5.9. In addition, the scroll pane at the bottom shows

the messages of the operations.

In order to compose scenarios for the purpose of generating discrete

time series data, several parameters have to be given, such as the time

where the scenario begins, the time where the scenario ends, the time

difference ∆t , and the period. These parameters can be assigned in the

scenario property window (Fig. 5.9).

The event editing window (Fig. 5.9) is a three-panel window assisting

users to compose scenarios. The upper panel contains a spreadsheet-

like table which defines the starting time and the end time of each
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Time Series Generation WindowSelected Point Information Window

Chart Property Window

Figure 5.10: Windows of time series generation in the scenario composition

MetaEventEntity chosen from the list of MetaEvents in the drop-down

menu and the available MetaEvents can be found inside the drop-down

menu. As soon as the starting time and the end time are given, the

duration of the MetaEventEntity will be calculated automatically. Once

the MetaEvent is selected in the upper panel, the lower-left panel will

display the possible following MetaEvent or MetaEvents based on the

generated suffix tree data structure. The lower-right panel shows the

metadata of the selected MetaEvent once it is picked up in the lower-

left panel. In addition, the composed scenario can be exported from the

File menu to a CSV file, and the file format is as:

MetaEvent,Start Time,End Time

Event21,1980-03-01 00:00:00,1980-04-01 00:00:00

Event22,1980-04-01 00:00:00,1980-04-02 00:00:00

Event23,1980-04-02 00:00:00,1980-04-04 00:00:00

Event28,1980-04-04 00:00:00,1980-04-05 00:00:00



5.6. SCENARIO COMPOSITION DESIGN AND IMPLEMENTATION 111

When the composition of a scenario is complete, time series data sets

can be generated through the button “Gen. T-S” in the scenario com-

position window shown in Fig. 5.9. The operation of generating time

series data sets is based on the settings given in the scenario property

window (Fig. 5.9). If there is a gap between two MetaEventEntities, the

values of the generated time series data sets in the range of the gap are

filled by linear interpolated values derived from the collected data as

the background values. The generated time series data sets will appear

in the time series generation window as shown in Fig. 5.10.

In a nutshell, to compose the scenario of interest and to generate

the time series data based on the scenario, the following steps are

performed:

1. Read the binary file containing information of Events generated

from event identification.

2. Define parameters for the scenario, such as time span, time

difference, and the period in the scenario property window.

3. Compose the scenario of interest with the given information in the

event editing window.

4. Generate the time series data through the button “Gen. T-S” in the

scenario composition window.

The time series generation window has the same layout as that of the

scenario composition window in Fig. 5.9, and the only difference is that

the middle panel shows the corresponding time series data sets instead

of the bar plot of the scenario. This time series plot supports some

basic functions to view the results, for example, zooming in, zooming

out, showing selected time series data sets only, etc. In addition, the

generated time series data sets can be exported to three different basic

file formats in this prototype implementation:

• Portable Network Graphics (PNG) for raster images

• Portable Document Format (PDF) for vector images
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• Comma-Separated Values (CSV) for raw data

Other file formats, such as XLS, WaterML2 [WaterML2], etc., can be

added in the future if necessary.

Apart from the time series generation window, there are two other

windows:

• the chart property window

• the selected point information window

The chart property window is to change the display style of the chart,

e.g. highlighting discrete values by displaying points. The selected

point information window shows the value of the selected point on

the time series generation window. In addition to show the value of

a selected point, the value can also be changed by the users. Once the

value is updated, the change will be displayed right away on the time

series generation window.

In addition, four application examples will be used to demonstrate

how the prototype illustrates the concept, capabilities, etc., of the

framework with different data sets in Chapter 6.

5.7 Hydroinformatics Systems Integration

As mentioned in Section 1.3, the objective of this work is mainly to assist

simulation tasks with synthetic time series data sets based on collected his-

torical information as inputs, such as Boundary Conditions (BCs). Therefore,

an integration with available hydroinformatics systems is necessary, and a

schematic illustration of the integration with hydroinfomratics systems is

shown in Fig. 5.11.

As illustrated in Fig. 5.11, this framework plays as a role of a piece of

jigsaw puzzles in simulation tasks. The external inputs can be from field

measurements, laboratory experiments, or other simulation models. Based

on the users’ needs and experience, this framework can generate different
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Scenario CompositionScenario Composition
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Figure 5.11: Schematic illustration of the integration with hydroinformatics
systems

time series data sets based on the user-specified scenarios for further

simulation tasks. The methods of integration with other hydroinformatics

systems can be carried out through:

• file exchange, either through well-structured plain text files, such as

CSV, WaterML2 [WaterML2], etc., or binary files if the specification is

known or the tool is available, e.g. .dfs0 time series data format for

MIKE [DHI], as illustrated in this prototype

• Java Application Programming Interface (API) with other Java-based

tools, such as Kalypso [BCE], Turtle [Molkenthin et al., 2009]

• Internet-based protocals, such as XML-RPC [XML-RPC.com] or Simple

Object Access Protocol (SOAP) [W3C – World Wide Web Consortium] ex-

changing information through HTTP, if the server-client architecture,

e.g. through RServe package [Urbanek, 2012] as mentioned in Section

5.2, is set up

A simple example can be considered as a hydroinformatics system receiving

external inputs through file exchange, e.g. CSV, or Database Management
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Systems (DBMSs), e.g. MySQL, and communicating with other system

components through Java API assuming the system is Java-based. In this

scenario, these external inputs have to be pre-processed, e.g. outliers

detection, gap filling, scaling, etc., before applying them and this can

be performed in the data pre-processing module in this framework once

the data are loaded into the system. Afterwards, users can compose the

scenarios of their interests and further generate the required time series

data for further simulation tasks. Once these required time series data are

generated, they are stored as objects inside the system. Through the help

of API, the system components can access these data completely and can

even extract the necessary parts of the data or manipulate the data based on

their requirements. Once these data are applied for simulation tasks, further

decisions can be made based on the investigation of the simulation results.



Chapter 6
Concept and Prototype Applications

6.1 Preliminary Remarks

In this chapter, two types of categorical applications, concept and prototype

applications, are presented. The concept application illustrates which type of

applications the framework is targeting at. However, due to the implemen-

tation of the prototype, it is difficult to demonstrate and further to judge

the concept of this framework only with the prototype. Instead, artificial

or smaller data sets are adopted in the prototype applications detailing the

workflow, the capabilities, etc., of the framework.

The prototype applications contain four different application examples

detailing how the framework works, inspecting its feasibility for scenario

composition, and further demonstrating how the framework works together

with other simulation tools. The first application example is an artificial

data set generated by four different mathematical equations for the purpose

of testing different functions/modules in the framework prototype. In the

second application example, an artificial data set from the R package

hydromad [Andrews and Guillaume, 2012] is considered. This data set is

generated and used to test the empirical hydrological modeling framework

in the package itself. In the third application example, a hydrological data

set measured at Ernies Catchment, Western Australia is adopted and used

to demonstrate the capability of scenario composition. In the end, the data

115
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set describing the 1997 Oder Flood in the area of German-Polish border are

chosen to illustrate how the framework works with other simulation tools in

the fourth application example.

In these applications, the main focuses lie on event identification, pro-

cess identification, and scenario composition. The discussion of data pre-

processing is not the main focus of this chapter and also less described be-

cause it is very domain- and problem-specific as mentioned earlier. Besides,

the data sets used in the chapter are mostly complete and validated.

6.2 Concept Application

As the motivation and the objective mentioned in Section 1.2 and Section 1.3,

applications or projects dealing with the complexity and an abundance of

data are ideal to demonstrate the concept of this framework, and one typical

example is the Großhang project [Hinkelmann et al.; Molkenthin et al., 2014;

Zehe and Hinkelmann, 2013]. This project deals with the complexity of

different time and space scales and different physical state variables of years

of daily records.

The interdisciplinary research project “Großhang — Natural Slope”

[Hinkelmann et al.; Molkenthin et al., 2014; Zehe and Hinkelmann, 2013],

as briefly indicated in Section 2.3, is targeting at investigating and under-

standing the movement of large hillslopes until failure and further simulating

this phenomenon, and the study area is situated at Ebnit, Austria. This

phenomenon covers complicated interactions among different processes in

rainfall, runoff, infiltration, subsurface hydraulics, soil deformation, etc., and

no suitable simulation tool was available to model the interacting processes.

In the period of this project, varieties of data in different temporal and spatial

scales, such as rainfall, discharge, soil moisture, seismic events, etc., were

collected, and the project is divided into 5+1 sub-projects:

• Sub-project 1 “Hydrology and Applied Seismics” identifying the struc-

tures, parameters, and processes of the hillslope hydrology and the

slope deformation of the study area
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• Sub-project 2 “Subsurface Hydraulics” developing and simulating the

air-water two-phase subsurface flow in the macroporous soils and the

rainfall-runoff

• Sub-project 3 “Continuum Mechanics” formulating a continuum me-

chanical model for the coupled flow and deformation processes in the

unsaturated soils

• Sub-project 4 “Technical Scale Experiments” exploring the infiltration

and the soil deformation processes, identifying parameters, and verify-

ing models by laboratory-based experiments

• Sub-project 5 “Geophysics” investigating the slope movements with

different approaches, such as (nano-)seismic monitoring techniques,

direct-current resistivity measurements, etc., and the soil moisture

dynamics with electromagnetic induction

• Central Sub-project “Project and Information Management” managing

and integrating information from all sub-projects

Although such projects show the need and are suitable for this framework

concept, several details have to be further examined and implemented, for

instance, the algorithms to determine Tones, Chords, etc., before being

applied in such complex projects. The current design and implementation

of the prototype, as discussed in Chapter 5, offers the software framework

for further extensions, such as algorithms, functionalities, etc., with basic

and general methods to perform tasks needed in the framework. Due to the

reason that these methods are not implemented and optimized specifically

for a specific project, a more well-designed and appropriate data set is

needed. Therefore, to demonstrate the concept of this framework, artificial

or smaller data sets are adopted in the prototype as examples in the coming

sections. Although the implemented methods are not optimized for any

specific problem as mentioned earlier, these demonstrations still exhibit the

workflow of the framework, the expected results, the capabilities, etc. with

artificial or smaller data sets.
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6.3 Academic Test Case

In this academic test case, an one-year artificial daily time series data from

1970-01-01 to 1970-12-31 are generated by four mathematical functions with

x from 1 to 365:

f 1 = si n(π/90 · x)+1 (6.1)

f 2 = [1+exp(−10/365 · (x −1)+4)]−2 (6.2)

f 3 = 2[1−4/364(x−1)] (6.3)

f 4 = 0.5× f 1+exp f 2+ log f 3 (6.4)

where f 1 is a sine function representing a periodic phenomena in nature;

f 2 is a sigmoid function describing a natural process with a slow start, then

a rapid acceleration during the process, and a slowdown till saturation; f 3

is an exponentially decreasing function indicating a degrading development;

f 4 is a random nonlinear combination of previous three functions, f 1, f 2, and

f 3, defining an arbitrary cause-effect relevance. These functions are shown

in Fig. 6.1, and the basic statistical information is shown in Table 6.1.

Table 6.1: Description of the data set in the academic test case

no. mean sd median min max range

f 1 365 1.00 0.70 1.03 0.00 2.00 2.00
f 2 365 1.19 0.76 1.46 0.04 1.99 1.96
f 3 365 0.68 0.51 0.50 0.12 2.00 1.88
f 4 365 4.42 2.15 4.54 1.82 7.04 5.21

The purpose of this test case focuses mainly on the event identification

and the process identification, while the scenario composition is neglected

in this test case simply because it has no definite physical meaning.

Based on the definition of Aspect, each series can be viewed as an Aspect

and directly used in the framework. For the purpose of simplification and

demonstration, each Aspect is divided into three categories, denoted as bins,
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Figure 6.1: Original data set in the academic test case

by the method of the k-means clustering algorithm with k = 3 and the results

(Tones) are displayed in Fig. 6.2. These bins are as follows:
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• f 1

– 0.00 ≤ x < 0.61

– 0.61 ≤ x < 1.39

– 1.39 ≤ x ≤ 2.01

• f 2

– 0.04 ≤ x < 0.65

– 0.65 ≤ x < 1.47

– 1.47 ≤ x ≤ 2.00

• f 3

– 0.12 ≤ x < 0.58

– 0.58 ≤ x < 1.22

– 1.22 ≤ x ≤ 2.01

• f 4

– 1.82 ≤ x < 3.28

– 3.28 ≤ x < 5.49

– 5.49 ≤ x ≤ 7.05

where x represents any dependent value in the functions, f 1, f 2, f 3, and f 4.

The Fig. 6.2 illustrates how different time series are categorized and

how Events are formed. As shown in the previous results, every function

is categorized into three different categories (bins) simply representing the

basic common sense of classifying a value as high, median, or low. In Fig.

6.2, three different colors represent these three different bins of different

function. For example, the horizontal fine dashed rectangle appearing on

top of the f 3 function plot depicts the category 1.22 ≤ x ≤ 2.01 of the function

f 3.

Once the Tones are decided, the next step is to find Chords which

represent the concept of coincidence by the modified Closed Association
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Figure 6.2: Derived Tones in the academic test case

Rule Mining (CHARM) algorithm. This concept of a Chord is also rep-

resented in Fig. 6.2. There, the vertical coarse dashed rectangle span-
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ning across all four plots forms the concept of Event, which can fur-

ther become the MetaEvent Event6 shown in Table 6.2 if more informa-

tion is added. Here, the process of finding Tones is carried out by the

static method miningChords(aspects:List, param:MiningParam) in

the class Chord, as mentioned in Section 5.4 with the default settings except

setting the minimum size of Chords to four to avoid overlaps in the derived

Chords and these derived Chords can be further used to form MetaEvents.

Finally, the total number of 12 MetaEvents are generated as shown in Table

6.2. Each MetaEvent in Table 6.2 contains statistics derived from the existing

data set:

• the frequency (Feq.) of each MetaEvent

• the maximum and minimum duration of each MetaEvent

• the rule of each variable

• the maximum, mean (µ), standard deviation (σ), and minimum values

of each variable

Table 6.2: List of 12 generated MetaEvents based on the data set in academic
test case

Event1

Feq. Max. Duration Min. Duration

03% (11/365) 1.500 Week(s) 1.500 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.61, 1.39) 1.375 1.207±0.113 1.035

f2::[0.04, 0.65) 0.047 0.041±0.004 0.036

f3::[1.22, 2.01] 2.000 1.926±0.049 1.853

f4::[1.82, 3.28) 2.003 1.930±0.049 1.855
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Event2

Feq. Max. Duration Min. Duration

15% (54/365) 7.714 Week(s) 7.714 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[1.39, 2.01] 2.000 1.836±0.166 1.407

f2::[0.04, 0.65) 0.191 0.105±0.042 0.048

f3::[1.22, 2.01] 1.839 1.514±0.181 1.228

f4::[1.82, 3.28) 2.278 2.207±0.073 2.018

Event3

Feq. Max. Duration Min. Duration

04% (13/365) 1.857 Week(s) 1.857 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[1.39, 2.01] 1.743 1.583±0.110 1.407

f2::[0.04, 0.65) 0.262 0.228±0.022 0.196

f3::[0.58, 1.22) 1.219 1.165±0.035 1.113

f4::[1.82, 3.28) 2.174 2.114±0.041 2.050

Event4

Feq. Max. Duration Min. Duration

06% (23/365) 3.286 Week(s) 3.286 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.61, 1.39) 1.375 1.000±0.233 0.625

f2::[0.04, 0.65) 0.442 0.350±0.053 0.269

f3::[0.58, 1.22) 1.104 1.017±0.053 0.934

f4::[1.82, 3.28) 2.039 1.927±0.063 1.839

Event5

Feq. Max. Duration Min. Duration

05% (19/365) 2.714 Week(s) 2.714 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.00, 0.61) 0.593 0.343±0.145 0.134

f2::[0.04, 0.65) 0.646 0.545±0.061 0.451

f3::[0.58, 1.22) 0.927 0.866±0.037 0.808

f4::[1.82, 3.28) 1.883 1.837±0.019 1.821
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Event6

Feq. Max. Duration Min. Duration

11% (41/365) 5.857 Week(s) 5.857 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.00, 0.61) 0.384 0.103±0.110 0.000

f2::[0.65, 1.47) 1.189 0.920±0.161 0.658

f3::[0.58, 1.22) 0.802 0.691±0.063 0.591

f4::[1.82, 3.28) 3.249 2.431±0.414 1.894

Event7

Feq. Max. Duration Min. Duration

04% (16/365) 2.286 Week(s) 2.286 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.61, 1.39) 1.139 0.880±0.164 0.625

f2::[0.65, 1.47) 1.467 1.382±0.056 1.293

f3::[0.12, 0.58) 0.556 0.526±0.019 0.496

f4::[3.28, 5.49) 4.604 4.150±0.287 3.700

Event8

Feq. Max. Duration Min. Duration

02% (7/365) 7.000 Day(s) 7.000 Day(s)

Rules Max. Value µ±σ Min. Value

f1::[0.61, 1.39) 1.375 1.275±0.072 1.174

f2::[1.47, 2.00] 1.539 1.509±0.022 1.478

f3::[0.12, 0.58) 0.492 0.481±0.008 0.470

f4::[3.28, 5.49) 5.020 4.843±0.128 4.664

Event9

Feq. Max. Duration Min. Duration

02% (8/365) 1.143 Week(s) 1.143 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[1.39, 2.01] 1.616 1.513±0.073 1.407

f2::[1.47, 2.00] 1.612 1.581±0.022 1.549

f3::[0.12, 0.58) 0.467 0.455±0.008 0.443

f4::[3.28, 5.49) 5.467 5.275±0.136 5.078
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Event10

Feq. Max. Duration Min. Duration

16% (59/365) 8.429 Week(s) 8.429 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[1.39, 2.01] 2.000 1.824±0.164 1.407

f2::[1.47, 2.00] 1.909 1.794±0.085 1.621

f3::[0.12, 0.58) 0.439 0.355±0.046 0.282

f4::[5.49, 7.05] 6.907 6.491±0.427 5.520

Event11

Feq. Max. Duration Min. Duration

11% (40/365) 3.286 Week(s) 3.286 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.61, 1.39) 1.375 0.956±0.214 0.625

f2::[1.47, 2.00] 1.995 1.958±0.032 1.911

f3::[0.12, 0.58) 0.280 0.205±0.064 0.125

f4::[5.49, 7.05] 7.035 6.859±0.080 6.719

Event12

Feq. Max. Duration Min. Duration

18% (67/365) 9.571 Week(s) 9.571 Week(s)

Rules Max. Value µ±σ Min. Value

f1::[0.00, 0.61) 0.593 0.213±0.186 0.000

f2::[1.47, 2.00] 1.992 1.977±0.012 1.952

f3::[0.12, 0.58) 0.235 0.185±0.027 0.142

f4::[5.49, 7.05] 6.779 6.593±0.077 6.506

In Table 6.2, the rules of variables are denoted by the mathematical

interval notations as follows:

• [a,b) = {a ≤ x < b,∀x ∈R}

• [a,b] = {a ≤ x ≤ b,∀x ∈R}

Besides, this list also contains information of frequency, maximum and

minimum duration of each MetaEvent. The frequency is decided by the

occurrences of historical data which fit into the type of MetaEvent. The

default value assigned to each MetaEvent, as stated earlier in Section 4.5, is

the averaged property of the affiliated MetaEvent. The comparison between
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default values and original data is shown in Fig. 6.3, and at least three

observations are recognized:
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Figure 6.3: Comparing original data set with the matched MetaEvent default
values (academic test case)
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• Obvious stepwise patterns are perceived due to the default values com-

ing from the averaged occurrences in each corresponding MetaEvent.

• The default values are not able to match extreme numbers for the same

earlier reason.

• A gap starting from 1970-06-11 to 1970-06-17 in each time series is

emphasized with a dashed column in Fig. 6.3. The reason why the

gap exists in each time series is that the MetaEvents which match

the values in the gap are considered less significant and dropped by

the algorithm. While investigating this gap in Fig. 6.3, it can be noticed

that these MetaEvents locate in the range where several Tones interact

and have relatively short duration to the degree of few days compared

to the duration of some weeks in Table 6.2. Of course, since the entire

process is semi-automatic, these dropped MetaEvents can be revived

by tuning parameters in the mining algorithm.

Although Table 6.2 is not able to represent the results of the derived suffix

tree, it offers an overview of the features of the MetaEvents. Furthermore,

a test of the process identification is carried out. Due to the fact that f 4

is the function of f 1, f 2, and f 3, as defined earlier, the f 4 can be viewed

as the target function to approach. Under this concept, a file containing 22

rules in the format for the process identification, as described in Section

5.5, was generated based on the existing MetaEvents derived from the

event identification mentioned earlier. Within this file, the default settings of

methods and parameters, such as triangular membership functions derived

from the range of the bins of each function, Center of Gravity (CoG) for de-

fuzzification, etc., were prepared for the process identification. The derived

results (Sim. f4) compared with the values of original mathematical function

(Orig. f4) are shown in Fig. 6.4. The Root-Mean-Square Error (RMSE) is

equivalent to 0.114 and is able to represent the original mathematical

function well.
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6.4 HydroTestData Data Set

Similar to the purpose of the academic test case earlier, an artificial hydro-

logical data set from the R package hydromad [Andrews and Guillaume,

2012] is adopted here to test the event identification and process identifi-

cation. This data set is used to test the hydrological modeling framework in

the package hydromad, and contains three different physical state variables

as shown in Fig. 6.5: rainfall (mm/day), temperature (°C), and streamflow

(mm/day).

The package hydromad offers a spatially-lumped and empirical approach

to simulate hydrological processes, such as the rainfall-runoff process. The

approach contains two steps:

1. It generates effective rainfall by a soil moisture accounting model with

inputs, such as rainfall, temperature, etc.

2. The effective rainfall from the previous step will be used in a routing

model, which is available for different options inside the package

hydromad, to generate streamflow.

As shown in Fig. 6.5, these data are for the duration of a three-month

period with the time step of three hours (∆t = 3 hr). The rainfall data have

a value of either 0 mm/day or 6 mm/day, except one record has the value of

24 mm/day. The temperature data are in the form of a sine function. Among

these temperature data, the lowest value is 0 °C and the highest value is
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Figure 6.5: Original HydroTestData data set from the R package hydromad
[Andrews and Guillaume, 2012]

30 °C. The streamflow data are generated from the hydrological model in

the package hydromad. These data sets contain no missing value, and the

general statistics are shown in Table 6.3.

Table 6.3: Description of the HydroTestData data set

no. mean sd median min max range

Rainfall 721 0.27 1.47 0.00 0.00 24.00 24.00
Temperature 721 15.00 10.61 15.00 0.00 30.00 30.00
Streamflow 721 0.17 0.17 0.11 0.00 0.97 0.97

Since there are no missing values in the data set and each physical

variable has only one series, each series can be viewed as an Aspect
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according to the definition of the Aspect and can be used in the framework

directly, leading to the same situation as in the academic test case.
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Figure 6.6: Derived Tones from the HydroTestData data set

Also, for the same reason to simplify the problem for the demonstration,

each Aspect is divided into three categories, by the method of k-means

clustering algorithm with k = 3. The results of the Tones for each Aspect

are shown in Fig. 6.6, and the bins are as follows:

• Rainfall (mm/day)

– 0.00 ≤ x < 3.00
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– 3.00 ≤ x < 15.00

– 15.00 ≤ x ≤ 24.01

• Temperature (°C)

– 0.00 ≤ x < 9.26

– 9.26 ≤ x < 20.98

– 20.98 ≤ x ≤ 30.01

• Streamflow (mm/day)

– 0.00 ≤ x < 0.15

– 0.15 ≤ x < 0.38

– 0.38 ≤ x ≤ 0.98

where x represents any physical state variable used here.

To derive MetaEvents based on the derived Tones, the default parame-

ters, except setting the minimum size of Chords to three, are used in the

modified CHARM algorithm implemented in the framework. In addition to

the exisiting data set, a list of MetaEvents can be derived as shown in Table

6.4, and it contains 15 MetaEvents based on the conditions given above.

In the description of the rules, the symbols, P, T, and Q, represent rainfall,

temperature, and streamflow respectively.

Table 6.4: List of 15 generated MetaEvents based on the HydroTestData data
set

Event1

Feq. Max. Duration Min. Duration

16% (114/721) 2.500 Day(s) 1.062 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[9.26, 20.98) 20.861 15.315±3.677 9.381

Q::[0.00, 0.15) 0.150 0.077±0.040 0.000
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Event2

Feq. Max. Duration Min. Duration

01% (8/721) 3.000 Hour(s) 1.437 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[9.26, 20.98) 17.347 13.468±3.410 9.624

Q::[0.15, 0.38) 0.285 0.232±0.054 0.152

Event3

Feq. Max. Duration Min. Duration

08% (61/721) 1.081 Day(s) 21.195 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[9.26, 20.98) 20.861 15.108±2.866 9.381

Q::[0.15, 0.38) 0.379 0.242±0.065 0.155

Event4

Feq. Max. Duration Min. Duration

32% (228/721) 2.875 Day(s) 1.125 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[20.98, 30.01] 30.000 27.205±2.618 21.101

Q::[0.00, 0.15) 0.149 0.031±0.036 0.001

Event5

Feq. Max. Duration Min. Duration

01% (10/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[20.98, 30.01] 29.815 26.857±3.075 21.810

Q::[0.00, 0.15) 0.113 0.049±0.044 0.007

Event6

Feq. Max. Duration Min. Duration

10% (70/721) 21.231 Hour(s) 5.679 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 9.26) 9.139 2.828±2.656 0.037

Q::[0.38, 0.98] 0.598 0.483±0.064 0.380
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Event7

Feq. Max. Duration Min. Duration

15% (106/721) 1.162 Day(s) 1.162 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 9.26) 8.661 3.629±3.104 0.057

Q::[0.15, 0.38) 0.376 0.248±0.065 0.152

Event8

Feq. Max. Duration Min. Duration

12% (84/721) 1.331 Day(s) 1.331 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 9.26) 9.139 3.168±2.581 0.000

Q::[0.00, 0.15) 0.150 0.102±0.027 0.052

Event9

Feq. Max. Duration Min. Duration

01% (4/721) 2.092 Hour(s) 2.092 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[0.00, 9.26) 5.560 4.977±0.674 4.393

Q::[0.15, 0.38) 0.360 0.357±0.004 0.354

Event10

Feq. Max. Duration Min. Duration

01% (6/721) 3.000 Hour(s) 54.494 min.

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[0.00, 9.26) 1.635 0.884±0.727 0.021

Q::[0.38, 0.98] 0.427 0.415±0.010 0.407

Event11

Feq. Max. Duration Min. Duration

00% (2/721) 5.017 Hour(s) 5.017 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[9.26, 20.98) 11.626 11.626±0.000 11.626

Q::[0.38, 0.98] 0.389 0.389±0.000 0.389
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Event12

Feq. Max. Duration Min. Duration

00% (1/721) 3.415 Hour(s) 3.415 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[15.00, 24.01] 24.000 24.000±0.000 24.000

T::[20.98, 30.01] 26.657 26.657±0.000 26.657

Q::[0.38, 0.98] 0.643 0.643±0.000 0.643

Event13

Feq. Max. Duration Min. Duration

02% (12/721) 1.548 Day(s) 1.548 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[20.98, 30.01] 26.491 25.495±0.673 24.440

Q::[0.38, 0.98] 0.970 0.711±0.201 0.408

Event14

Feq. Max. Duration Min. Duration

02% (14/721) 1.070 Day(s) 1.070 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[20.98, 30.01] 24.235 22.634±1.143 21.101

Q::[0.15, 0.38) 0.367 0.233±0.066 0.151

Event15

Feq. Max. Duration Min. Duration

00% (1/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[20.98, 30.01] 21.810 21.810±0.000 21.810

Q::[0.15, 0.38) 0.214 0.214±0.000 0.214

As stated earlier, this list is not able to represent the results of the derived

suffix tree. However, it offers an overview of the features of MetaEvents. For

instance, Event12 plays relative unimportant role due to only one occurrence

in the history. The components of Event12 are:

• rainfall is high (15.00 mm/day ≤ x < 24.01 mm/day)

• temperature is high (20.98 °C ≤ x ≤ 30.01 °C)
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• streamflow is high (0.38 mm/day ≤ x ≤ 0.98 mm/day)

which is the occurrence at 3:00 AM, 2nd March, 2000. Due to the effect

of hysteresis in the rainfall-runoff process, the response should occur after-

wards. In searching of the results of the derived suffix tree, the MetaEvent

coming after Event12 is Event13 which has components:

• rainfall is low (0.00 mm/day ≤ x < 3.00 mm/day)

• temperature is high (20.98 °C ≤ x ≤ 30.01 °C)

• streamflow is high (0.38 mm/day ≤ x ≤ 0.98 mm/day)

with duration of 1.548 days in accordance with the development in the data

set of HydroTestData.

The default values given to each MetaEvent in comparison with the

original data set are shown in Fig. 6.7. An obvious stepwise pattern is

noticed, especially in the temperature plot, due to the reason that these

values are derived from the averaged occurrences in each corresponding

MetaEvent as mentioned earlier. Also, due to the same reason, the default

values are not able to match extreme numbers. These values can be later

changed with the help of the Graphical User Interface (GUI) mentioned in

Section 5.6, if necessary.

The same action is taken for the process identification here. Assuming

streamflow is the effect of both rainfall and temperature, there are 15 rules

derived including some default settings, e.g. triangular membership func-

tions, CoG for defuzzification, etc., for the purpose of process identification,

and the results in comparison with the streamflow data are shown in Fig.

6.8. The results shown in Fig. 6.8 are only showing the process identification

in this case which catches the major trend, however, without adequate

accuracy (RMSE = 0.137 mm/day).

In this application example, another test with an increased number of

categories was carried out to investigate the impacts on the results. In this

further test, all parameters, settings, and algorithms are exactly the same

as the previous one except the number of categories of the temperature
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Figure 6.7: Comparing original data set with the matched MetaEvent default
values (HydroTestData)

and streamflow data. The number of categories of the temperature and

streamflow data is increased to five, and the number of categories of the

rainfall data is kept the same at three, due to the reason that the data

contain only three different values and can not be further categorized. The

categorized results are as:

• Rainfall (mm/day)

– 0.00 ≤ x < 3.00

– 3.00 ≤ x < 15.00
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Figure 6.8: Results of the process identification in the data set HydroTest-
Data

– 15.00 ≤ x ≤ 24.01

• Temperature (°C)

– 0.00 ≤ x < 5.26

– 5.26 ≤ x < 12.27

– 12.27 ≤ x < 19.26

– 19.26 ≤ x < 25.51

– 25.51 ≤ x ≤ 30.01

• Streamflow (mm/day)

– 0.00 ≤ x < 0.08

– 0.08 ≤ x < 0.19

– 0.19 ≤ x < 0.33

– 0.33 ≤ x < 0.51

– 0.51 ≤ x ≤ 0.98

The plots of these results can be also seen in Fig. A.1 in the Appendix

A. With the same settings as the previous one, 29 MetaEvents were derived

and are described in Table A.1 in the Appendix A.

In order to illustrate the impacts of the number of categories, the

comparison of the plots, which compare the original data set with the
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(b) Comparison between the original
data set with the matched MetaEvent
default values (refined case)

Figure 6.9: The impacts of the number of categories on the MetaEvent
default values (HydroTestData)

matched MetaEvent default values of these two test cases, are shown in

Fig. 6.9. Where shows two plots of comparing the original data set with the

matched MetaEvent default values of these two tests. Similar to the concept

of discretization, the default MetaEvent values are closer to the original ones

as shown in Fig. 6.9.
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Figure 6.10: The impacts of the number of categories on the process
identification (HydroTestData)

Another comparison of these two tests on the process identification
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is shown in Fig. 6.10. With the same settings as the previous ones, the

calculated RMSE in this test leads to 0.135 mm/day with the derived 29 rules,

and this value does not differ much from the previous one (0.137 mm/day),

which catches the trend, however, without adequate accuracy.

Several reasons to explain the results of the process identification can be

concluded as:

• Although the data set contains three different physical state variables,

the temperature variable plays no importance in the rainfall-runoff

relationship.

• The nature of this prototype is not capable of handling the hysteresis

effect, since the relationship is built upon the “current” event.

• In the first test, 15 rules are derived but three among them have no

impact after optimization; in the second one, five out of 29 rules also

show no impact after optimization. These numbers do include other

trivial rules yet. In this sense, the number of real effective rules is only

a few and can not describe the physical phenomena apart from the

reasons above. Although it is possible to further increase the number

of rules by increasing the number of categories, it also increases

the complexity of the scenario composition. Therefore, it will cause

a dilemma between the usability and precision. In this situation, the

process identification can be replaced by other methods specifically

describing the required relationship, such as Artificial Neural Networks

(ANNs), boosting, empirical functions or even physically-based models.

A more generalized discussion will be addressed in Chapter 7.

6.5 BinghamTrib Data Set

In this application example, the BinghamTrib data set from the R package

hydromad [Andrews and Guillaume, 2012] is used to proceed the same

process mentioned earlier. This data set also contains three different phys-

ical state variables: rainfall (mm/day), temperature (°C), and streamflow
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(mm/day). Among them, rainfall and streamflow data are collected for the

Bingham River Trib at Ernies Catchment (2.68 km2) by the Department

of Water, Water Information Provision section, Perth, Western Australia.

Temperature data are collected by the Bureau of Meteorology, Australia.

This data set contains daily records from 1974-05-18 to 2008-11-02, and the

collecting gauge and stations are located at the following positions based

on the World Geodetic System (WGS) standard (WGS 84) [Andrews and

Guillaume, 2012]:

• (-33.2921, 116.4451) for the rain gauge station

• (-33.2939, 116.4449) for the stream gauge

• (-33.57, 115.82) for the meteorological station of 63 m height

as shown in the Fig. 6.11.

7.5 0 7.5 15 22.5 30 km

Raining Gauge Station
Stream Gauge Station
Meteorology Station

Legend

Figure 6.11: Study area and gauging stations of the BinghamTrib data set

The time series plots for the data set are shown in Fig. 6.12 and the

summary of the data set is described in Table 6.5. As shown in Fig. 6.12 and

Table 6.5, the rainfall data have a mean value of 1.97 mm/day, a maximum
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value of 142.60 mm/day, a minimum value of 0.00 mm/day and 154 missing

records; the temperature data have a mean value of 23.27 °C, a maximum

value of 34.30 °C, and a minimum value of 15.50 °C without missing records;

the streamflow data have a mean value of 0.02 mm/day, a maximum value of

4.81 mm/day, and a minimum value of 0.00 mm/day without missing records.
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Figure 6.12: Original BinghamTrib data set from the R package hydromad
[Andrews and Guillaume, 2012]

Table 6.5: Description of the BinghamTrib data set

no. mean sd median min max range

Rainfall 12434 1.97 5.53 0.00 0.00 142.60 142.60
Temperature 12588 23.27 5.19 22.40 15.50 34.30 18.80
Streamflow 12588 0.02 0.13 0.00 0.00 4.81 4.81
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Before performing the event identification, a simple data pre-processing

is carried out to deal with the missing records which appear in the rainfall

data. These gaps lie in the intervals of 1979-02-06 – 1979-02-20, 1979-10-30 –

1980-01-10, 1980-04-20 – 1980-05-30, 1980-07-08 – 1980-07-10, 1980-08-19

– 1980-09-03, and 1981-01-14 – 1981-01-19. By inspecting the history and the

neighboring values next to these gaps, these missing records are replaced

by the value of zero because most historical records and most neighboring

values are also low values.

For the same reasons as in the previous application examples, these three

physical time series are viewed as three individual Aspects. Furthermore,

different categories are decided in the purpose of properly and evenly

representing different properties of Aspects by giving different k values in

the k-means clustering algorithm, and the results are shown as follows:

• Rainfall (mm/day)

– 0.00 ≤ x < 3.85

– 3.85 ≤ x < 12.55

– 12.55 ≤ x < 26.30

– 26.30 ≤ x < 103.10

– 103.10 ≤ x ≤ 142.61

• Temperature (°C)

– 15.50 ≤ x < 18.35

– 18.35 ≤ x < 21.35

– 21.35 ≤ x < 25.15

– 25.15 ≤ x < 28.95

– 28.95 ≤ x ≤ 34.31

• Streamflow (mm/day)

– 0.00 ≤ x < 0.34
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– 0.34 ≤ x < 2.01

– 2.01 ≤ x ≤ 4.82

where x represents any physical state variable used here, and the results are

shown in Fig. 6.13.

0

50

100

1980 1990 2000 2010

Date

R
ai

nf
al

l (
m

m
da

y) Bins

[0.00, 3.85)

[103.10, 142.61]

[12.55, 26.30)

[26.30, 103.10)

[3.85, 12.55)

15

20

25

30

35

1980 1990 2000 2010

Date

T
em

pe
ra

tu
re

 (°
 C

) Bins

[15.50, 18.35)

[18.35, 21.35)

[21.35, 25.15)

[25.15, 28.95)

[28.95, 34.31]

0

1

2

3

4

5

1980 1990 2000 2010

Date

S
tr

ea
m

flo
w

 (m
m

da
y)

Bins

[0.00, 0.34)

[0.34, 2.01)

[2.01, 4.82]

Figure 6.13: Derived Tones from the BinghamTrib data set

The MetaEvent are derived based on these Tones with the same set-

tings as used in the previous application examples. In total, there are 42

MetaEvents. An extraction of these MetaEvents is shown in Table 6.6 and the

complete list is found in Table A.2 in the Appendix A. The symbols, P, T, and
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Q, in the list represent rainfall, temperature, and streamflow accordingly. In

this case, the number of MetaEvents increases due to the more complicated

data distribution as well as more Tones involved in the process.

Table 6.6: Extraction of the generated MetaEvents based on the BinghamTrib
data set

Event1

Feq. Max. Duration Min. Duration

17% (2157/12588) 5.985 Week(s) 5.135 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.443±0.854 0.000

T::[18.35, 21.35) 21.300 19.626±0.871 18.400

Q::[0.00, 0.34) 0.320 0.013±0.036 0.000

...

Event3

Feq. Max. Duration Min. Duration

01% (115/12588) 3.018 Day(s) 1.745 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 25.800 17.364±3.510 12.600

T::[18.35, 21.35) 21.300 19.489±0.872 18.400

Q::[0.00, 0.34) 0.310 0.035±0.075 0.000

Event4

Feq. Max. Duration Min. Duration

02% (305/12588) 4.266 Day(s) 17.795 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.171±2.475 3.900

T::[18.35, 21.35) 21.300 19.491±0.837 18.400

Q::[0.00, 0.34) 0.330 0.033±0.066 0.000

...
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Event16

Feq. Max. Duration Min. Duration

00% (0/12588) 17.130 Hour(s) 17.130 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[15.50, 18.35) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

...

Event20

Feq. Max. Duration Min. Duration

16% (2022/12588) 8.633 Week(s) 4.398 Week(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.156±0.532 0.000

T::[25.15, 28.95) 28.900 27.218±1.058 25.200

Q::[0.00, 0.34) 0.331 0.000±0.010 0.000

Event21

Feq. Max. Duration Min. Duration

20% (2579/12588) 12.962 Week(s) 8.509 Week(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.094±0.406 0.000

T::[28.95, 34.31] 34.300 30.732±1.183 29.000

Q::[0.00, 0.34) 0.039 0.000±0.001 0.000

Event22

Feq. Max. Duration Min. Duration

00% (23/12588) 1.485 Day(s) 1.485 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 23.800 17.452±3.272 12.600

T::[25.15, 28.95) 28.900 27.028±1.196 25.200

Q::[0.00, 0.34) 0.222 0.010±0.046 0.000



146 CHAPTER 6. CONCEPT AND PROTOTYPE APPLICATIONS

Event23

Feq. Max. Duration Min. Duration

01% (76/12588) 2.485 Day(s) 22.796 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.334±2.527 3.900

T::[25.15, 28.95) 28.600 26.918±1.016 25.200

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

...

Event28

Feq. Max. Duration Min. Duration

00% (8/12588) 1.533 Day(s) 1.533 Day(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 78.000 42.188±16.730 27.400

T::[25.15, 28.95) 28.600 26.963±1.345 25.300

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

...

Event32

Feq. Max. Duration Min. Duration

00% (0/12588) 6.382 Hour(s) 6.382 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) NaN NaN ± NaN NaN

T::[25.15, 28.95) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

...

Event35

Feq. Max. Duration Min. Duration

00% (0/12588) 13.764 Hour(s) 13.764 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[25.15, 28.95) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

...
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Event42

Feq. Max. Duration Min. Duration

00% (0/12588) 3.988 Hour(s) 3.988 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[21.35, 25.15) NaN NaN ± NaN NaN

Q::[0.34, 2.01) NaN NaN ± NaN NaN

0

50

100

1980 1990 2000 2010
Date

R
ai

nf
al

l (
m

m
/d

ay
)

Orig. P Matched P

15

20

25

30

35

1980 1990 2000 2010
Date

Te
m

pe
ra

tu
re

 (
°C

)

Orig. T Matched T

0

1

2

3

4

5

1980 1990 2000 2010
Date

S
tr

ea
m

flo
w

 (
m

m
/d

ay
)

Orig. Q Matched Q

BinghamTrib
 Comp. between Orig. and Matched Data Set 

Figure 6.14: Comparing original data set with the matched MetaEvent
default values (BinghamTrib)
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While reviewing Table 6.6, there are MetaEvents, e.g. Event16, con-

taining no information of statistics and these types of information are

expressed by the representation of Not A Number (NaN). These MetaEvents

generally have a duration of a smaller period, the unit of hours in this case,

compared to the majority of MetaEvents in Table A.2. No record in history

is found to match these MetaEvents. Apart from this, this list of generated

MetaEvents also contains all the properties mentioned earlier. In Fig. 6.14,

the comparison between the default assigned values of MetaEvents and

the original data are shown. In this case, the original data set are better

represented since more MetaEvents are generated, hence less stepwise is

displayed.

Similarly, an operation of process identification is carried out in this

application example. In this case, the assumption that streamflow is the

effect of both rainfall and temperature is still valid. The same default

settings used in previous example applications together with 42 generated

fuzzy rules are applied. Under this condition, the comparison between the

generated results in the process identification and the original streamflow

data is shown in Fig. 6.15. The accuracy (RMSE = 0.130 mm/day) in this

case is still not considered sufficient and the possible reasons are the same

as discussed earlier.
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Figure 6.15: Results of the process identification in the BinghamTrib data
set

Unlike as in the previous application examples, a demonstration of the

scenario composition is given here. Since the composition of scenarios can



6.5. BINGHAMTRIB DATA SET 149

be done arbitrarily, here a scenario of a three-month period (March to May) is

composed. Before composing a scenario, a basic investigation of the history

is carried out to have an overview of MetaEvents composition within each

month which is not availabe in the Table A.2 nor in the GUI. According

to the historical data, the list of MetaEvents within each month in the

lexicographical order is as follows:

• March: Event20, Event21, Event22, Event23, Event26, Event27,

Event28, Event41

• April: Event1, Event3, Event4, Event18, Event19, Event20, Event21,

Event22, Event23, Event24, Event28, Event31

• May: Event1, Event2, Event3, Event4, Event18, Event19, Event24,

Event31

In the process of scenario composition, not only the information in Table

A.2 and the results of the suffix tree are referred to, but additional results

of a regular expression query of history are also applied as supplementary

information. The reason why another additional query is also applied in

this application example is due to the limitation of the implementation

dealing with overlapping Chords in the scenario composition mentioned in

Section 5.6. It depends on the complexity of the Tones composition in each

Aspect. Some orderings might be neglected due to the “chopping” process

implemented in the scenario composition. In this case, an additional query

provides more detailed information if needed.

Based on the information provided from different sources mentioned

above, an example of a three-month scenario composition, from 1st March

to 30th May, is composed as shown in Table 6.7 with information of the

MetaEvent, the start time, the end time, and the duration. In this example,

an attempt to keep the decreasing trend in temperature similar to history is

addressed. Besides, some additional rainfall events are deliberately inserted

following the suggestion of the MetaEvent sequence from the system and

query results. Under this circumstances, a generated time series based on
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Table 6.7: Composition of the three-month scenario

MetaEvent Start Time End Time Duration (Day)

Event21 03-01 04-01 31
Event22 04-01 04-02 1
Event23 04-02 04-04 2
Event28 04-04 04-05 1
Event22 04-05 04-06 1
Event20 04-06 05-06 30
Event1 05-06 05-20 14
Event3 05-20 05-22 2
Event4 05-22 05-25 3
Event1 05-25 05-30 5
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(b) Generated three-month (March to
May) time series based on Table 6.7

Figure 6.16: Time series plots of the original data set extraction and the
composed scenario

the default values in each MetaEvent is shown in Fig. 6.16b and a three-

month temporal extraction, from 2007-03-01 to 2007-05-30, is shown in Fig.
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6.16a as a reference. Although the appropriateness of the composed scenario

has to be further examined by the domain experts, the generated time series

plot does represent a reasonable physical response of the rainfall-runoff

effect, and further modifications can be made to improve the generated time

series.

6.6 Oder River Data

The purpose of this application example is to demonstrate how the frame-

work can be used with other simulation tools. For this reason, the focus of

this application example lies in generating time series data of a specific user-

defined scenario from the framework, and applying these generated data

as boundary conditions in the selected simulation tool. The data set chosen

for this example is a part of the data which describe the 1997 Oder Flood.

This flood occurred in July 1997 and was caused by two successive extreme

rainfall events. According to [Landesumweltamt Brandenburg (LUA), 1997],

these two extreme events occurred during two time periods: from 1997-

07-03 to 1997-07-09 and from 1997-07-18 to 1997-07-22. During the first

extreme rainfall event, the highest precipitation was measured at the station

in Lysá hora, Czech Republic with the value of 586 mm. This flood caused

great damages in Poland, Germany, and the Czech Republic. Apart from

[Landesumweltamt Brandenburg (LUA), 1997], there are several studies and

discussions referring to this flood event, such as [European Communities,

1999; Grünewald, 1998; Kundzewicz, 2007; Kundzewicz et al., 1999; Plate,

2002].

The study area of this example is the part of this Oder river, starting

from the town of Eisenhüttenstadt to the city of Frankfurt (Oder), on the

border between Germany and Poland, as shown in Fig. 6.17. The distance

of this river section is about 30 km long and it covers an area of around

85 km2. During this flood event, a dam breach occurred and further caused

the flooding in the area of the Ziltendorf lowlands.

For the purpose of demonstration, this flood event is simplified into only
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Figure 6.17: Study area and boundary condition locations for the Oder river
data

considering the flow condition of the river from the town of Eisenhüttenstadt

to the city of Frankfurt (Oder) without the dam breach. Hence, the Mike 11

is chosen as the 1-D simulation tool, which works with the framework, for

this demonstration. The time series data collected for this example contain:

• discharge data (m3/s) at daily intervals from 1996-01-11 to 1997-11-01

at Eisenhüttenstadt

• water level data (m) at 15-minute intervals from 1996-11-01 to 1997-

11-02 at Eisenhüttenstadt

• water level (m) at 15-minute intervals from 1996-11-01 to 1997-11-02

at Frankfurt (Oder)

where the daily discharge data at Eisenhüttenstadt were processed by

the Wasser- und Schifffahrtsamt Eberswalde with its own rating curve. In
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addition, the cross section data at 2500 m intervals for the simulation task

were derived from the 25 m × 25 m bathymetry data also provided by

Wasser- und Schifffahrtsamt Eberswalde.

500

1000

1500

2000

2500

1996−01 1996−07 1997−01 1997−07
Date

D
is

ch
ar

ge
 (m

3
s)

Eisenhüttenstadt

28

29

30

31

32

1996−01 1996−07 1997−01 1997−07
Date

W
at

er
 L

ev
el

 (
m

)

Eisenhüttenstadt

20

21

22

23

24

1996−01 1996−07 1997−01 1997−07
Date

W
at

er
 L

ev
el

 (
m

)

Frankfurt (Oder)

Figure 6.18: Measured time series data at Eisenhüttenstadt and Frankfurt
(Oder)

The time series plots for each data set are shown in Fig. 6.18, and a basic

statistical summary is described in Table 6.8. From Fig. 6.18 and Table 6.8,

two major structural differences can be observed: time span and resolution.

The discharge data set at Eisenhüttenstadt has longer time span than the

water level data sets measured at Eisenhüttenstadt and Frankfurt (Oder).

In addition, the resolution of the discharge data set at Eisenhüttenstadt
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is coarser than the water level data set at either Eisenhüttenstadt or

Frankfurt (Oder). Apart from these, the discharge data at Eisenhüttenstadt

have a mean value of 397.05 m3/s, maximum value of 2490.00 m3/s, and

a minimum value of 162.00 m3/s without missing records; the water level

data at Eisenhüttenstadt have a mean value of 28.57 m, a maximum value of

32.32 m, and a minimum value of 27.44 m without missing records; the water

level data at Frankfurt (Oder) have a mean value of 20.37 m, a maximum

value of 24.10 m, and a minimum value of 19.32 m without missing records.

Moreover, the peaks happened in July, 1997 also indicate the event of the

1997 Oder Flood. Also, it has to be kept in mind that these data were

measured during the flood event. Hence, the water level at Frankfurt (Oder)

after the flood event may not be well-simulated without considering the dam

breach between Eisenhüttenstadt and Frankfurt (Oder).

Table 6.8: Description of the Oder River data

no. mean sd median min max range

Q at Eia 661 397.05 348.55 301.00 162.00 2490.00 2328.00
H at Eib 35136 28.57 0.96 28.29 27.44 32.32 4.88
H at Frc 35136 20.37 0.92 20.14 19.32 24.10 4.78

a Discharge at Eisenhüttenstadt b Water level at Eisenhüttenstadt
c Water level at Frankfurt (Oder)

Before carrying out this application example, these data have to be

processed to resolve the issues mentioned earlier: time span and resolution.

Firstly, these time series data sets were truncated to fit the time span from

1996-11-01 12:00:00 to 1997-11-01 12:00:00. In this case, they all now have

the same time span. Then, the daily discharge data at Eisenhüttenstadt were

interpolated into the ones at 15-minute intervals by the spline function in

R with default settings and methods. Since only two boundary conditions are

needed for the one-dimensional shallow water equation, only two time series

data sets, the discharge at Eisenhüttenstadt as upstream boundary condition

and the water level at Frankfurt (Oder) as downstream boundary condition,
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are chosen for categorization. Like previous application examples, the k-

means clustering algorithm with default system settings is chosen for the

task. As shown in the following list, the discharge at Eisenhüttenstadt was

categorized into five categories and the water level at Frankfurt (Oder) was

categorized into three categories. The reason behind these categorizations

is mainly to have a more categories for the abrupt increase in the discharge

at Eisenhüttenstadt and the odd number fits the convention how engineers

categorize properties. The categorized results are as follows:

• Discharge at Eisenhüttenstadt (m3/s)

– 173.54 ≤ x < 295.52

– 295.52 ≤ x < 588.60

– 588.60 ≤ x < 1207.85

– 1207.85 ≤ x < 1917.07

– 1917.07 ≤ x ≤ 2490.01

• Water level at Frankfurt (Oder) (m)

– 19.32 ≤ x < 20.24

– 20.24 ≤ x < 21.96

– 21.96 ≤ x ≤ 24.11

where the variable x represents any physical state variable here, and

these categorization results are shown in Fig. 6.19. Unlike the water level

time series at Frankfurt (Oder) with three bins indicating high, median,

and low, the discharge time series at Eisenhüttenstadt were categorized

into five bins. The main reason is to differentiate the differences during

the normal flow condition. In addition, only two data sets are involved in

this categorization. Hence, the number of the derived MetaEvents is less

compared to those in the previous application examples due to the finite

combination, and the derived nine MetaEvents are shown in Table 6.9.

The symbols, Q_Ei and H_Fr, used in the description of the rules denote

the discharge at Eisenhüttenstadt and the water level at Frankfurt (Oder)
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Figure 6.19: Derived tones from Oder river data

accordingly. While reviewing Table 6.9, it can be noticed that no NaN can

be found when compared to the results in the application example of the

BinghamTrib data set. The reason is that the minimum duration of these

MetaEvents is about 8.25 hours and the interval of the data set is 15 minutes.

For this reason, inside the interval of each MetaEvent, there must be at least

one record for the purpose of statistical description in Table 6.9.

Table 6.9: List of 9 generated MetaEvents based on the Oder river data

Event1

Feq. Max. Duration Min. Duration

22% (7864/35041) 3.164 Week(s) 1.660 Week(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[295.52, 588.60) 588.177 391.104±51.326 308.231

H_Fr::[20.24, 21.96) 21.370 20.489±0.199 20.240
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Event2

Feq. Max. Duration Min. Duration

19% (6579/35041) 1.980 Week(s) 8.250 Hour(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[295.52, 588.60) 404.946 311.448±13.359 295.533

H_Fr::[19.32, 20.24) 20.230 20.121±0.060 19.820

Event3

Feq. Max. Duration Min. Duration

40% (14069/35041) 5.607 Week(s) 2.637 Day(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[173.54, 295.52) 295.507 247.268±32.935 180.006

H_Fr::[19.32, 20.24) 20.230 19.827±0.203 19.320

Event4

Feq. Max. Duration Min. Duration

09% (3137/35041) 4.469 Week(s) 4.469 Week(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[173.54, 295.52) 215.353 186.649±10.929 173.545

H_Fr::[20.24, 21.96) 20.580 20.415±0.106 20.240

Event5

Feq. Max. Duration Min. Duration

03% (932/35041) 5.219 Day(s) 4.552 Day(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[588.60, 1207.85) 1203.170 740.848±95.157 589.030

H_Fr::[20.24, 21.96) 21.950 21.481±0.243 20.860

Event6

Feq. Max. Duration Min. Duration

00% (46/35041) 11.737 Hour(s) 11.737 Hour(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[1207.85, 1917.07) 1570.484 1397.636±108.051 1211.647

H_Fr::[20.24, 21.96) 21.940 21.737±0.107 21.590

Event7

Feq. Max. Duration Min. Duration

01% (503/35041) 4.375 Day(s) 20.495 Hour(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[1207.85, 1917.07) 1916.527 1612.250±213.989 1208.606

H_Fr::[21.96, 24.11] 23.650 23.135±0.364 21.960
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Event8

Feq. Max. Duration Min. Duration

04% (1530/35041) 2.277 Week(s) 2.277 Week(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[1917.07, 2490.01] 2490.000 2239.400±148.566 1917.607

H_Fr::[21.96, 24.11] 24.100 23.723±0.235 23.150

Event9

Feq. Max. Duration Min. Duration

01% (381/35041) 3.906 Day(s) 3.906 Day(s)

Rules Max. Value µ±σ Min. Value

Q_Ei::[588.60, 1207.85) 1207.090 1020.706±91.616 870.710

H_Fr::[21.96, 24.11] 22.690 22.281±0.210 21.960

To demonstrate the usage of the framework together with a simulation

tool, a calibrated and validated 1-D Mike 11 model has to be prepared in

advance. For the purpose of simplicity and demonstration, the dam breach

is neglected in this demonstration, and only one branch starting from

Eisenhüttenstadt to Frankfurt (Oder) in the study area was simulated as

described earlier. Moreover, the derived Manning’s roughness coefficient

is about 0.030. In order to show the framework’s capability of creating

any user-specified scenario, a one-year scenario of two successive peaks,

starting from 1996-11-01 12:00:00 to 1997-11-01 12:00:00, compared to the

existing one-peak event (Fig. 6.18) was designed and composed based on

Table 6.10. Moreover, two time series sets of 15-minute intervals serving

as upstream and downstream boundary conditions were generated and are

shown in Fig. 6.20. Here, no additional modification, such as artificially

setting up specific values, curve smoothing, etc., was carried out in terms

of the time series generation. Therefore, a stepwise pattern can be observed

in Fig. 6.20, which can also be observed in previous application examples

mentioned earlier. While observing these two boundary conditions in Fig.

6.20, the positive correlation between the upstream discharge and the

downstream water level can be observed — upstream high flow discharge

causes downstream high water level. This is because both involved time

series data sets are holistically taken into consideration during the derivation

of MetaEvents.
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Figure 6.20: Generated two-peak time series based on Table 6.10

Table 6.10: Composition of the two-peak scenario

MetaEvent Start Time End Time

Event1 1996-11-01 12:00:00 1996-11-13 03:00:00

Event2 1996-11-13 03:00:00 1996-11-13 11:00:00

Event1 1996-11-13 11:00:00 1996-11-16 04:00:00

Event2 1996-11-16 04:00:00 1996-11-16 17:00:00

Event1 1996-11-16 17:00:00 1996-11-17 03:00:00

Event2 1996-11-17 03:00:00 1996-11-17 10:00:00

Event1 1996-11-17 10:00:00 1996-11-29 04:00:00

Event2 1996-11-29 04:00:00 1996-12-13 00:00:00

Event3 1996-12-13 00:00:00 1996-12-15 15:00:00

Event2 1996-12-15 15:00:00 1996-12-23 19:00:00

Event3 1996-12-23 19:00:00 1996-12-30 14:00:00

Event4 1996-12-30 14:00:00 1997-01-30 21:00:00
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Event3 1997-01-30 21:00:00 1997-01-31 20:00:00

Event4 1997-01-31 20:00:00 1997-02-01 23:00:00

Event3 1997-02-01 23:00:00 1997-02-16 12:00:00

Event2 1997-02-16 12:00:00 1997-02-18 05:00:00

Event1 1997-02-18 05:00:00 1997-03-12 09:00:00

Event2 1997-03-12 09:00:00 1997-03-15 05:00:00

Event1 1997-03-15 05:00:00 1997-03-18 21:00:00

Event2 1997-03-18 21:00:00 1997-03-25 11:00:00

Event3 1997-03-25 11:00:00 1997-04-10 14:00:00

Event2 1997-04-10 14:00:00 1997-04-13 20:00:00

Event3 1997-04-13 20:00:00 1997-04-18 17:00:00

Event2 1997-04-18 17:00:00 1997-04-25 16:00:00

Event1 1997-04-25 16:00:00 1997-04-26 12:00:00

Event2 1997-04-26 12:00:00 1997-04-28 15:00:00

Event3 1997-04-28 15:00:00 1997-05-01 08:00:00

Event2 1997-05-01 08:00:00 1997-05-09 05:00:00

Event1 1997-05-09 05:00:00 1997-05-14 05:00:00

Event5 1997-05-14 05:00:00 1997-05-16 18:00:00

Event6 1997-05-16 18:00:00 1997-05-21 03:00:00

Event7 1997-05-21 03:00:00 1997-06-07 21:00:00

Event9 1997-06-07 21:00:00 1997-06-15 18:00:00

Event5 1997-06-15 18:00:00 1997-06-28 18:00:00

Event1 1997-06-28 18:00:00 1997-07-09 18:00:00

Event2 1997-07-09 18:00:00 1997-07-10 21:00:00

Event1 1997-07-10 21:00:00 1997-07-12 12:00:00

Event5 1997-07-12 12:00:00 1997-07-17 01:00:00

Event6 1997-07-17 01:00:00 1997-07-17 12:00:00

Event7 1997-07-17 12:00:00 1997-07-18 09:00:00

Event8 1997-07-18 09:00:00 1997-08-03 08:00:00

Event7 1997-08-03 08:00:00 1997-08-07 17:00:00

Event9 1997-08-07 17:00:00 1997-08-11 16:00:00

Event5 1997-08-11 16:00:00 1997-08-16 20:00:00

Event1 1997-08-16 20:00:00 1997-08-30 20:00:00
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Event2 1997-08-30 20:00:00 1997-09-01 06:00:00

Event1 1997-09-01 06:00:00 1997-09-17 16:00:00

Event2 1997-09-17 16:00:00 1997-09-23 05:00:00

Event3 1997-09-23 05:00:00 1997-11-01 12:00:00

These generated time series data, shown in Fig. 6.20, served as boundary

conditions for the simulation task conducted by Mike 11. With the predefined

parameters, such as Manning’s roughness coefficient, cross section data,

etc., a simulation was carried out and the plots of 15-minute intervals of the

simulated water level at Eisenhüttenstadt and the discharge at Frankfurt

(Oder) are shown in Fig. 6.21 and Fig. 6.22 respectively. The simulated

results in Fig. 6.21 and Fig. 6.22 also appear in a stepwise pattern, and this

is caused by the default characteristics of the boundary conditions generated

from the framework.
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Figure 6.22: Simulated discharge at Frankfurt (Oder)
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As mentioned at the beginning of this section, the focus of this application

example is to demonstrate how this framework can be used with other

simulation tools. As the results presented in this section, the prototype

demonstrates the capability of the framework. Further discussions regarding

the evaluation of this prototype for future improvements will be addressed

in the coming Chapter 7.



Chapter 7
Framework Prototype Evaluation

7.1 General Statement

This framework, as already mentioned in Section 1.3, is aiming to assist

simulation tasks mainly in hydro science and engineering disciplines with

the support of the information from user-composed scenarios. This informa-

tion contains synthetic time series data sets generated from user-specified

scenarios as inputs, such as, Boundary Conditions (BCs), for simulation

tasks. This framework is formed by four modules, data pre-processing, event

identification, process identification and scenario composition, as shown in

Fig. 1.2. Each module is based on a different concept and has a different

objective.

Hence, the following discussion on the framework evaluation will be

module-based and on the basis of the results of the application examples

carried out from the prototype of this framework described in Chapter 6.

In the following discussion, three modules, event identification, process

identification, and scenario composition, will be evaluated mainly on the

concepts, implementation, limitations, and the results of the application

examples in addition to possible suggestions for improvement. Although the

module of data pre-processing plays an important role in the framework, it

is left out in the following discussion because it has less to do with the main

concepts of the framework described in Chapter 4.
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7.2 Evaluation on Event Identification

The purpose of event identification is to identify Events from gathered

time series data, and these Events together with historical data can form

MetaEvents for scenario composition. In this sense, the results of event

identification, Events, represent groups of the facts and features in the study

case. The concept of event identification is based on the framework of Time

Series Knowledge Mining (TSKM).

Before evaluating event identification, criteria have to be defined first.

However, it would be difficult to quantify results since this module is based

on the framework of TSKM, which is designed for temporal reasoning, as

stated in [Moskovitch et al., 2007]:

Evaluating knowledge discovered from a mining process is chal-

lenging since it is hard to estimate the quality of the discovered

knowledge in quantitative terms, such as accuracy in classifica-

tion.

In addition, one key process in TSKM is to find Tones, and finding

Tones requires methods grouping similar objects together, such as clus-

tering analysis. Although some criteria exist, e.g. Davies–Bouldin index,

Fowlkes–Mallows index, etc., which evaluate the performance of algorithms,

or methods, such as comparing with known artificial data [Mörchen and

Ultsch, 2005], the results still have to be “validated” by experts. For instance,

the proposed algorithm PERSIST in the framework of TSKM [Mörchen,

2006b; Mörchen and Ultsch, 2005] can only produce reasonable results for

soil moisture data in the application example described in [Gronz et al.,

2008].

Moreover, a relative diverse data set or a data set with multiple different

Aspects is more appropriate for the framework of TSKM. Yet, the data sets

in the application examples in Chapter 6 are not very diverse, and this also

restricts the evaluation of event identification.

Apart from the above objective restraints, the current implementation of

the prototype also does not implement the filtering mechanism in the process
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of finding Tones as described in the framework of TSKM [Mörchen, 2006b;

Mörchen et al., 2005]. This filtering mechanism is used to remove short

Tones in each Aspect, and these short Tones may come from noise and do not

represent a state well. This is especially important for temporal reasoning to

focus on main features to gain the overall understanding of the process of

interest. However, this might also cause uncertainties to identify short-term

extreme events in natural environment, such as a short-term thundershower,

and further affects the possibilities in composing scenarios. This is still an

open question.

With the properties of TSKM itself and under the current implementation

of the prototype, the module of event identification shows the capability to

determine different features based on the users’ choice of algorithms, group-

ing numbers, etc., within a flexible, modularized software implementation as

shown in Chapter 6. Further discussions regarding, for instance, the possible

improvements, will be discussed in Chapter 8.

7.3 Evaluation on Process Identification

As also mentioned in Section 4.4, the purpose of process identification is

to describe the relationship among different physical variables. However,

the results in Chapter 6, except the academic test case, are not considered

competent compared to other data-driven based approaches as listed in

Section 4.4. Some possible reasons are mentioned in Chapter 6, such as:

• improper composition of input and output variables

• no hysteresis considered

• insufficient number of effective rules

Although it is possible to adjust the steps in the module of event iden-

tification to gain sufficient number of rules and study further possibilities

to consider hysteresis, one core limitation for the process identification

still exists — the composition of input and output variables. This limitation

is derived from the different concepts between event identification and
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process identification. For process identification, a process to determine

the correlation among variables is required that focuses on building the

descriptions of the relationships. Event identification, on the other hand,

also contains a process to reduce dimensions of variables, but it considers

more on how to extract features of phenomena. Due to this basic difference,

the base of the rule sets derived from the event and process identifications

will differ. In this sense, the rules derived from event identification can be

regarded as “global” rules which consider overall phenomena as one system

and it is a top-down approach. The rules derived from process identification

can be viewed as “local” rules which describe the relationships among

physical variables themselves and it is a bottom-up approach.

Under the current development of the prototype, the rules for process

identification are acquired from the event identification. Under this condi-

tion, the rules for process identification may not be suitable and include less

relevant variables, as the cases in Chapter 6 including temperature variable

in the rainfall-runoff analysis.

To improve the results of the process identification, it can be redesigned

to be an independent module which focuses on the process identification only

and the results can be later merged into the framework. With this design,

the framework will be more flexible and the inputs will be independent of

the outputs from event identification. In this case, this module will be more

specialized in the description of the process based on the collected data

directly. Furthermore, the choices of process identification methods can have

more options, such as Artificial Neural Networks (ANNs), Genetic Algorithms

(GAs), empirical functions, or physically-based models, etc., apart from fuzzy

logic.

Although the results of the process identification are not considered

feasible, the current research work is mainly focusing on the investigation

and development of the scenario composition framework and the module of

process identification can be replaced by other approaches without much

effort within this framework.
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7.4 Evaluation on Scenario Composition

Scenario composition aggregates information from previous modules and

provides a Graphical User Interface (GUI) to assist users’ composition of

scenarios and to realize results by generating corresponding time series

data sets. Examples can be seen in both Fig. 6.16b and Fig. 6.20. Also, these

generated time series data can be further applied in simulation models as

BCs for the investigation of the impacts under certain pre-defined scenarios

as the application example illustrated in Section 6.6.

Since users have all kinds of possibilities to compose any scenario of

interest and the current prototype implementation has no constraints on sce-

nario composition, any time series data set can be generated, even an absurd

one. To avoid any abuse of scenario composition, sufficient information has to

be given to users while composing scenarios. At the current stage, the basic

statistical information for each physical variable in every MetaEvent and

the results of the suffix-tree indicating the order of MetaEvents are given.

However, more information is still required for scenario composition. In the

examples given in Section 6.5 and Section 6.6, a top-down approach is taken

to compose a three-month and one-year scenarios individually. Besides, an

overview of data composition in these certain periods is also necessary.

Several suggestions can be proposed to provide the additional information

in the current prototype, such as:

• a user-specified time window to display the historical data and the

composition of existing MetaEvents

• a way to group MetaEvents into subgroups based on their properties,

such as time, period, data range, etc., to reduce the complexity of

composition by screening out unnecessary MetaEvents

Besides, the provided information does not contain when MetaEvents

appear in the Event Editing Window (shown in Fig. 5.9), and that is the

reason why regular expression comes in for help while composing scenarios

as described in Section 6.5. In addition, due to the properties of Chords
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derived from the TSKM which might overlap with each other in the direction

of the time axis, the current internal mechanism which breaks down the

overlapping parts in the scenario composition module may also cause some

orderings in the history not disclosed in the data structure of the suffix tree.

Apart from previous discussions, some other recommendations and sug-

gestions are worth trying to facilitate the scenario composition and time

series generation, such as:

• other possible techniques in finding phrases in the framework of TSKM,

e.g. modified Closed Association Rule Mining (CHARM), to compare

with the contribution of the current suffix tree version

• feedback from process identification to optimize the generation of time

series data

• downscaling techniques applied on the generated time series data to

satisfy more detailed requirements if necessary, e.g. applications of

Global Climate Model (GCM)

7.5 Summary

In this chapter, major modules in the framework of time series composition

are evaluated, and the foundation of the evaluations is mainly based on

the implemented prototype. Although the evaluations are not quantified and

the results still have room for improvement, the prototype does serve the

purpose of proving the concept and achieving the objectives of the time

series composition framework stated in Section 1.3.

In addition, with the background knowledge used behind the framework,

e.g. TSKM, the results are suggested to be evaluated by regional or domain

experts as a part of a semi-automatic process in the framework instead of

being judged by certain fixed indexes. Further suggestions to improve the

current prototype will be then discussed in the coming Chapter 8.



Chapter 8
Conclusions

8.1 Summary

This research work was carried out to design a general framework of

scenario composition within hydroinformatics systems. A software prototype

was also implemented to demonstrate and validate the concept of the design.

This framework can be used to compose scenarios of interest and these user-

specified scenarios can be further converted into a set of time series data as

inputs, e.g. Boundary Conditions (BCs), to support simulation tasks in the

disciplines of hydro science and engineering.

The concept of this framework is based on the fundamental needs in

answering the impacts of what-if scenarios and to take advantage of the

collected time series raw data. What the framework does, in general, is to

fill the gap between the available mass time series data and the simulation

tools by providing input data sets generated from these what-if scenarios

with the help of modern software technology, as stated in Chapter 1. The

operational process of the framework is semi-automatic which means the

process is usually iterative due to different types of data sets, algorithms,

etc., and the results are supposed to be reviewed and confirmed by domain

experts to ensure the feasibility of the generated time series data set.

The concept of the framework can be divided into four modules, as

described in Chapter 4:

169
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• data pre-processing

• event identification

• process identification

• scenario composition

These modules are aiming to break the time series data of different sources

representing different hydrological or hydrodynamic processes into repre-

sentative blocks, Events, to present specific characteristics of phenomena.

Further, these Events will be extended with additional information, e.g.

statistics, describing themselves, and the relationships among state vari-

ables inside each Event are also described. This turns each Event into a

MetaEvent which forms a basic element for the scenario composition. At

the end, scenarios of interest can be composed by users with the help

of information offered from the system, and sets of time series data can

be generated from these specified scenarios for further investigations of

problems.

Since the framework contains four modules and each module performs

differently, there are different possible theories, methods and techniques,

etc., to achieve the desired objective. The background knowledge used for

these modules, except data pre-processing, is described in Chapter 3 and

contains:

• Time Series Knowledge Representation (TSKR) and Time Series Knowl-

edge Mining (TSKM)

• fuzzy logic and Multivariate Adaptive Regression Splines (MARS)

• suffix tree

The prototype is aimed to demonstrate the capability and usability of the

framework concept. Due to this reason, neither specialized nor problem-

specific but general-purpose algorithms and functions were implemented.

The implementation of the prototype of the framework was carried out within

the scope of available software technology and under varied considerations
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and criteria, as discussed in Chapter 5. In the end, the prototype implemen-

tation was carried out:

• on Linux Operating System (OS)

• in Java and R programming languages

• on single Personal Computer (PC) based computer

In addition to the implementation of the core functionalities of the

framework, a simple Graphical User Interface (GUI) is also provided as a

tool for normal users in the hydroinformatics system to assist the compo-

sition of scenarios of interest and the generation of time series data. This

implementation can be used as a stand-alone application or be integrated

into different hydroinformatics systems as illustrated in Section 5.7.

Moreover, four application examples to demonstrate the framework

concept and an evaluation on the framework based on these examples,

designs and implementations are discussed in Chapter 6 and Chapter 7

respectively. The time series data used for application examples contain from

mathematical function-generated ones to measured hydrological and hydro-

dynamic ones. The results of these four application examples demonstrate

the capability and future possibilities of this framework. It is achieved by

reproducing similar time series patterns from specific scenarios compared

to the original ones together with providing simulation tools with time series

data as BCs generated from the scenarios of interest. With these results,

the objective of this framework, filling the gap between available raw data

and simulation tools, is considered being accomplished. Besides, compared

to other approaches, such as weather generators, this framework offers

a different approach, which composes scenarios semi-automatically from

the collected time series raw data of different sources, e.g. measurements,

simulation results, etc., to assist in answering the impacts under what-if

scenarios.
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8.2 Outlook

From the results and evaluations described in Chapter 6 and Chapter

7, at least two different aspects can be viewed as directions for further

investigations, and these two aspects are:

Concept: Although the prototype is able to prove the framework’s concept,

several facets are still worth investigating to improve the framework’s

applicability in real tasks, and they are:

• Data: Even though different application examples, as described

in Chapter 6, are used to inspect and demonstrate how the

framework works based on the current prototype implementation,

the contents of data used are limited from three to four variables

and some variables are too monotonic. Since the framework is

targeting at filling the gap between available mass data and the

simulation tools in real application projects, more diverse data

sets, which contain more variables and different data features,

such as the research project “Großhang — Natural Slope” [Hinkel-

mann et al.; Molkenthin et al., 2014; Zehe and Hinkelmann, 2013]

as mentioned earlier, are needed for further investigation. More-

over, the point-source-based time series outputs can be further

extended to spatial ones by broadening the concept of temporal

patterns to the concept of spatial patterns. In addition, the scalar

quantity can be also expanded to the vector one to open up more

application fields.

• Relationships: The application examples in Chapter 6 and the dis-

cussion in Section 7.3 show that the current design and implemen-

tation still have room for improvement in describing relationships

among different variables due to some reasons, e.g. insufficient

number of effective rules. Although describing the relationships

among different variables is not the major focus in the current

implementation, this functionality can be further improved by

the methods or approaches suggested in Section 7.3, such as
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replacing the method of the process identification module with

other problem-specific options. Later, these relationships can be

further investigated to optimize generated results.

• Algorithms: Since the current implementation is general-purpose,

the functionalities in the prototype are not chosen or designed

for any specific data type or problem. As described in Chapter

3, different possibilities exist in the choice of algorithms. In addi-

tion, different types of physical variables may also need different

algorithms during the steps inside the framework. In order to

improve the applicability, different algorithms have to be further

implemented and tested on different types of variables based on

their characteristics, e.g. temperature, soil moisture, rainfall, etc.,

to find suitable algorithms for specific variable types.

• Guidelines: In the current prototype implementation, it offers

an interface to compose scenarios and a top-down approach of

composing scenarios is also described in Section 6.5 and Section

6.6. A general guideline for the purpose of scenario composition is

required for practical applications. Besides, more detailed guide-

lines depending on the type of, e.g. applications, are also needed.

These guidelines should not only describe steps of how scenarios

are composed but also suggest which algorithm is a better choice

under which condition. With such guidelines, users can have better

control over the creation of scenarios. Besides, the generated

results are suggested to be examined by local or domain experts.

It can be an improvement of the framework to offer some possible

indexes to judge the quality of the results.

Information and Process Handling: In terms of information and process

handling, it is targeted at providing more precise information and

a more convenient environment for users to efficiently compose and

generate required time series data of their needs. To achieve these,

two facets can be considered:
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• More precise information: As discussed in Chapter 7, more pre-

cise information, e.g. subgroups of MetaEvents depending on the

seasons, is required while composing scenarios even with the in-

formation provided by the default GUI settings. That is the reason

why the regular expression was used in the application example in

Section 6.5. To improve the quality of the provided information, the

information can be provided strategically based on the guidelines

of the scenario composition. For instance, if the composition is a

top-down process, at least, a way to reduce the number of available

MetaEvents and a basic query functionality to extract matched

MetaEvents are necessary. Apart from this, a possibility for users

to add proper descriptions to MetaEvents can be added instead of

the original pre-defined strings. Since MetaEvents work as LEGO®

bricks while composing user-specified scenarios, it will be of great

help with properer and more meaningful semantics.

• Integrated environment: The current prototype implementation

takes in the information from other modules in the form of seri-

alized or unserialized files and provides two major windows for

scenario composition and time series generation as shown in Fig.

5.9 and Fig. 5.10. In this way, users have to generate these files

separately, and this procedure can be improved by integrating

other functionalities into the current implementation as a whole

system and exchanging information through open standards. For

example, a domain-specific Read-Eval-Print Loop (REPL) envi-

ronment designed and implemented by scripting languages of a

homogeneous computing environment, such as Groovy [Groovy],

Clojure [Clojure], etc., can be adapted for pre-processing and the

tasks of other modules to improve the overall workflow. Moreover,

WaterML2 [WaterML2] can be applied for the information ex-

change among different modules. In addition, some functionalities,

such as investigating available time series data by interactive

windows, some basic downscaling operations, etc., can also be

extended to facilitate scenario composition and further time series
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generation.

In general, a concept [Li and Molkenthin, 2014; Molkenthin et al., 2014]

is proposed in this research work to fill the gap of available mass time

series data and simulation tools by providing a semi-automatic approach.

It provides a step forward and a valuable tool to holistic hydroinformatics

sytesms, e.g. Integrated Water Resources Management (IWRM), and the

challenge of the human society.
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Figure A.1: Derived Tones from the HydroTestData data set with the settings
of more categories
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Table A.1: List of 29 generated MetaEvents based on the HydroTestData data
set with the settings of more categories

Event1

Feq. Max. Duration Min. Duration

05% (37/721) 1.603 Day(s) 1.062 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[12.27, 19.26) 19.135 16.978±1.008 15.000

Q::[0.00, 0.08) 0.077 0.036±0.026 0.000

Event2

Feq. Max. Duration Min. Duration

00% (2/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[12.27, 19.26) 17.347 16.566±1.104 15.785

Q::[0.08, 0.19) 0.189 0.170±0.026 0.152

Event3

Feq. Max. Duration Min. Duration

05% (37/721) 20.243 Hour(s) 15.008 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[12.27, 19.26) 18.882 15.214±2.141 12.395

Q::[0.19, 0.33) 0.326 0.244±0.036 0.191

Event4

Feq. Max. Duration Min. Duration

04% (31/721) 1.070 Day(s) 5.802 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[12.27, 19.26) 19.135 14.892±2.218 12.395

Q::[0.08, 0.19) 0.184 0.135±0.030 0.085
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Event5

Feq. Max. Duration Min. Duration

07% (49/721) 1.159 Day(s) 20.506 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[19.26, 25.51) 25.037 21.866±1.986 19.386

Q::[0.08, 0.19) 0.177 0.126±0.025 0.082

Event6

Feq. Max. Duration Min. Duration

06% (41/721) 2.125 Day(s) 1.146 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[19.26, 25.51) 25.420 22.988±1.510 19.386

Q::[0.00, 0.08) 0.080 0.042±0.023 0.008

Event7

Feq. Max. Duration Min. Duration

00% (3/721) 2.780 Hour(s) 2.780 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[19.26, 25.51) 23.170 22.716±0.785 21.810

Q::[0.08, 0.19) 0.113 0.109±0.004 0.106

Event8

Feq. Max. Duration Min. Duration

23% (168/721) 2.875 Day(s) 1.500 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[25.51, 30.01] 30.000 28.563±1.294 25.607

Q::[0.00, 0.08) 0.062 0.017±0.018 0.001

Event9

Feq. Max. Duration Min. Duration

01% (7/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[25.51, 30.01] 29.815 28.632±1.315 26.657

Q::[0.00, 0.08) 0.046 0.024±0.020 0.007
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Event10

Feq. Max. Duration Min. Duration

00% (0/721) 34.511 min. 34.511 min.

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) NaN N aN ±N aN NaN

T::[19.26, 25.51) NaN N aN ±N aN NaN

Q::[0.00, 0.08) NaN N aN ±N aN NaN

Event11

Feq. Max. Duration Min. Duration

00% (2/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[12.27, 19.26) 17.347 16.566±1.104 15.785

Q::[0.19, 0.33) 0.197 0.197±0.000 0.197

Event12

Feq. Max. Duration Min. Duration

05% (36/721) 1.071 Day(s) 7.125 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[5.26, 12.27) 12.138 8.250±2.020 5.560

Q::[0.08, 0.19) 0.185 0.126±0.033 0.083

Event13

Feq. Max. Duration Min. Duration

04% (26/721) 21.872 Hour(s) 21.872 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[5.26, 12.27) 11.626 9.885±2.025 5.358

Q::[0.00, 0.08) 0.079 0.061±0.015 0.036

Event14

Feq. Max. Duration Min. Duration

03% (20/721) 16.896 Hour(s) 1.003 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[5.26, 12.27) 8.190 7.730±0.332 7.274

Q::[0.19, 0.33) 0.311 0.254±0.038 0.203
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Event15

Feq. Max. Duration Min. Duration

01% (4/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[5.26, 12.27) 11.118 10.371±0.862 9.624

Q::[0.19, 0.33) 0.285 0.281±0.004 0.277

Event16

Feq. Max. Duration Min. Duration

04% (32/721) 20.953 Hour(s) 13.935 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[5.26, 12.27) 12.138 8.521±2.217 5.765

Q::[0.33, 0.51) 0.497 0.399±0.050 0.334

Event17

Feq. Max. Duration Min. Duration

02% (16/721) 10.738 Hour(s) 10.738 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 5.26) 5.159 2.911±2.070 0.009

Q::[0.00, 0.08) 0.078 0.067±0.009 0.052

Event18

Feq. Max. Duration Min. Duration

06% (40/721) 21.400 Hour(s) 1.262 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 5.26) 4.210 1.943±1.547 0.146

Q::[0.33, 0.51) 0.504 0.427±0.053 0.339

Event19

Feq. Max. Duration Min. Duration

01% (8/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[0.00, 5.26) 4.393 1.761±1.737 0.021

Q::[0.33, 0.51) 0.427 0.399±0.029 0.354
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Event20

Feq. Max. Duration Min. Duration

06% (44/721) 16.330 Hour(s) 16.330 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 5.26) 3.679 1.683±1.380 0.112

Q::[0.19, 0.33) 0.325 0.254±0.043 0.191

Event21

Feq. Max. Duration Min. Duration

09% (66/721) 1.071 Day(s) 1.071 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 5.26) 5.159 1.834±1.668 0.000

Q::[0.08, 0.19) 0.188 0.126±0.032 0.081

Event22

Feq. Max. Duration Min. Duration

03% (24/721) 12.497 Hour(s) 10.524 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[0.00, 5.26) 2.142 0.932±0.797 0.037

Q::[0.51, 0.98] 0.598 0.556±0.022 0.522

Event23

Feq. Max. Duration Min. Duration

00% (2/721) 3.000 Hour(s) 3.000 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[5.26, 12.27) 5.560 5.560±0.000 5.560

Q::[0.33, 0.51) 0.360 0.360±0.000 0.360

Event24

Feq. Max. Duration Min. Duration

00% (1/721) 3.750 Hour(s) 3.750 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[15.00, 24.01] 24.000 24.000±0.000 24.000

T::[25.51, 30.01] 26.657 26.657±0.000 26.657

Q::[0.51, 0.98] 0.643 0.643±0.000 0.643
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Event25

Feq. Max. Duration Min. Duration

01% (6/721) 18.375 Hour(s) 18.375 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[25.51, 30.01] 26.491 26.054±0.331 25.607

Q::[0.51, 0.98] 0.970 0.884±0.080 0.756

Event26

Feq. Max. Duration Min. Duration

00% (3/721) 9.983 Hour(s) 9.983 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[19.26, 25.51) 25.420 25.229±0.191 25.037

Q::[0.51, 0.98] 0.685 0.621±0.063 0.558

Event27

Feq. Max. Duration Min. Duration

01% (5/721) 12.706 Hour(s) 12.706 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[19.26, 25.51) 24.841 24.437±0.322 24.027

Q::[0.33, 0.51) 0.503 0.412±0.068 0.331

Event28

Feq. Max. Duration Min. Duration

01% (10/721) 16.220 Hour(s) 16.220 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.00) 0.000 0.000±0.000 0.000

T::[19.26, 25.51) 23.817 22.242±1.252 20.619

Q::[0.19, 0.33) 0.298 0.234±0.032 0.195

Event29

Feq. Max. Duration Min. Duration

00% (1/721) 2.465 Hour(s) 2.465 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.00, 15.00) 6.000 6.000±0.000 6.000

T::[19.26, 25.51) 21.810 21.810±0.000 21.810

Q::[0.19, 0.33) 0.214 0.214±0.000 0.214
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Table A.2: List of 42 generated MetaEvents based on the BinghamTrib data
set

Event1

Feq. Max. Duration Min. Duration

17% (2157/12588) 5.985 Week(s) 5.135 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.443±0.854 0.000

T::[18.35, 21.35) 21.300 19.626±0.871 18.400

Q::[0.00, 0.34) 0.320 0.013±0.036 0.000

Event2

Feq. Max. Duration Min. Duration

00% (33/12588) 2.325 Day(s) 1.076 Day(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 69.500 35.721±9.281 26.700

T::[18.35, 21.35) 21.200 19.785±0.938 18.400

Q::[0.00, 0.34) 0.305 0.011±0.053 0.000

Event3

Feq. Max. Duration Min. Duration

01% (115/12588) 3.018 Day(s) 1.745 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 25.800 17.364±3.510 12.600

T::[18.35, 21.35) 21.300 19.489±0.872 18.400

Q::[0.00, 0.34) 0.310 0.035±0.075 0.000

Event4

Feq. Max. Duration Min. Duration

02% (305/12588) 4.266 Day(s) 17.795 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.171±2.475 3.900

T::[18.35, 21.35) 21.300 19.491±0.837 18.400

Q::[0.00, 0.34) 0.330 0.033±0.066 0.000
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Event5

Feq. Max. Duration Min. Duration

00% (55/12588) 2.153 Day(s) 15.333 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 49.700 32.387±5.240 26.400

T::[15.50, 18.35) 18.300 17.358±0.627 15.700

Q::[0.00, 0.34) 0.199 0.010±0.039 0.000

Event6

Feq. Max. Duration Min. Duration

17% (2098/12588) 3.629 Week(s) 23.584 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.598±0.948 0.000

T::[15.50, 18.35) 18.300 17.168±0.668 15.500

Q::[0.00, 0.34) 0.321 0.014±0.045 0.000

Event7

Feq. Max. Duration Min. Duration

04% (459/12588) 4.483 Day(s) 1.565 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.535±2.427 3.900

T::[15.50, 18.35) 18.300 17.085±0.699 15.500

Q::[0.00, 0.34) 0.330 0.016±0.052 0.000

Event8

Feq. Max. Duration Min. Duration

02% (234/12588) 4.306 Day(s) 1.076 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 26.200 17.903±3.765 12.600

T::[15.50, 18.35) 18.300 17.107±0.708 15.500

Q::[0.00, 0.34) 0.336 0.018±0.062 0.000

Event9

Feq. Max. Duration Min. Duration

00% (7/12588) 1.214 Day(s) 16.134 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 45.900 34.771±8.518 27.000

T::[15.50, 18.35) 18.100 16.600±0.985 15.700

Q::[0.34, 2.01) 1.764 0.780±0.443 0.502
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Event10

Feq. Max. Duration Min. Duration

00% (30/12588) 1.889 Day(s) 1.359 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.400 7.500±3.055 3.900

T::[15.50, 18.35) 18.200 16.903±0.893 15.700

Q::[0.34, 2.01) 1.757 0.662±0.356 0.341

Event11

Feq. Max. Duration Min. Duration

00% (59/12588) 4.142 Day(s) 2.172 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.700 0.937±1.112 0.000

T::[15.50, 18.35) 18.200 17.044±0.757 15.700

Q::[0.34, 2.01) 1.693 0.638±0.341 0.341

Event12

Feq. Max. Duration Min. Duration

00% (24/12588) 2.566 Day(s) 20.702 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 23.800 17.575±3.260 13.300

T::[15.50, 18.35) 18.200 16.900±0.740 15.700

Q::[0.34, 2.01) 1.473 0.735±0.272 0.352

Event13

Feq. Max. Duration Min. Duration

00% (3/12588) 1.178 Day(s) 11.440 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 44.000 35.067±8.491 27.100

T::[15.50, 18.35) 15.900 15.900±0.000 15.900

Q::[2.01, 4.82] 4.814 3.229±1.374 2.369

Event14

Feq. Max. Duration Min. Duration

00% (5/12588) 22.685 Hour(s) 22.685 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 10.100 7.460±2.185 4.300

T::[15.50, 18.35) 17.600 16.920±0.931 15.900

Q::[2.01, 4.82] 3.651 2.813±0.688 2.222
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Event15

Feq. Max. Duration Min. Duration

00% (1/12588) 1.416 Day(s) 4.314 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 21.700 21.700±0.000 21.700

T::[15.50, 18.35) 17.600 17.600±0.000 17.600

Q::[2.01, 4.82] 4.334 4.334±0.000 4.334

Event16

Feq. Max. Duration Min. Duration

00% (0/12588) 17.130 Hour(s) 17.130 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[15.50, 18.35) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

Event17

Feq. Max. Duration Min. Duration

00% (13/12588) 1.214 Day(s) 7.094 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 24.700 16.977±3.603 12.800

T::[18.35, 21.35) 20.800 19.431±0.693 18.600

Q::[0.34, 2.01) 1.792 0.676±0.439 0.356

Event18

Feq. Max. Duration Min. Duration

16% (1972/12588) 5.881 Week(s) 2.245 Week(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.268±0.656 0.000

T::[21.35, 25.15) 25.100 23.216±1.158 21.400

Q::[0.00, 0.34) 0.258 0.003±0.016 0.000

Event19

Feq. Max. Duration Min. Duration

00% (46/12588) 2.292 Day(s) 2.292 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 25.600 17.293±3.705 12.600

T::[21.35, 25.15) 25.100 22.980±1.080 21.400

Q::[0.00, 0.34) 0.298 0.022±0.068 0.000
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Event20

Feq. Max. Duration Min. Duration

16% (2022/12588) 8.633 Week(s) 4.398 Week(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.156±0.532 0.000

T::[25.15, 28.95) 28.900 27.218±1.058 25.200

Q::[0.00, 0.34) 0.331 0.000±0.010 0.000

Event21

Feq. Max. Duration Min. Duration

20% (2579/12588) 12.962 Week(s) 8.509 Week(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 3.800 0.094±0.406 0.000

T::[28.95, 34.31] 34.300 30.732±1.183 29.000

Q::[0.00, 0.34) 0.039 0.000±0.001 0.000

Event22

Feq. Max. Duration Min. Duration

00% (23/12588) 1.485 Day(s) 1.485 Day(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 23.800 17.452±3.272 12.600

T::[25.15, 28.95) 28.900 27.028±1.196 25.200

Q::[0.00, 0.34) 0.222 0.010±0.046 0.000

Event23

Feq. Max. Duration Min. Duration

01% (76/12588) 2.485 Day(s) 22.796 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.334±2.527 3.900

T::[25.15, 28.95) 28.600 26.918±1.016 25.200

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

Event24

Feq. Max. Duration Min. Duration

01% (157/12588) 2.928 Day(s) 1.083 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.500 7.260±2.439 3.900

T::[21.35, 25.15) 25.100 22.968±1.104 21.400

Q::[0.00, 0.34) 0.303 0.015±0.045 0.000
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Event25

Feq. Max. Duration Min. Duration

00% (5/12588) 1.646 Day(s) 1.646 Day(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 58.900 38.340±12.643 28.000

T::[28.95, 34.31] 31.000 30.140±0.594 29.500

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

Event26

Feq. Max. Duration Min. Duration

00% (19/12588) 2.381 Day(s) 7.925 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 26.200 19.211±3.779 13.100

T::[28.95, 34.31] 32.500 30.395±0.878 29.100

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

Event27

Feq. Max. Duration Min. Duration

00% (43/12588) 3.016 Day(s) 1.791 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.200 6.977±2.482 4.100

T::[28.95, 34.31] 32.700 30.308±1.052 29.000

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

Event28

Feq. Max. Duration Min. Duration

00% (8/12588) 1.533 Day(s) 1.533 Day(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 78.000 42.188±16.730 27.400

T::[25.15, 28.95) 28.600 26.963±1.345 25.300

Q::[0.00, 0.34) 0.000 0.000±0.000 0.000

Event29

Feq. Max. Duration Min. Duration

00% (1/12588) 9.995 Hour(s) 9.995 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 30.100 30.100±0.000 30.100

T::[21.35, 25.15) 21.500 21.500±0.000 21.500

Q::[0.34, 2.01) 0.424 0.424±0.000 0.424
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Event30

Feq. Max. Duration Min. Duration

00% (1/12588) 1.185 Day(s) 1.185 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 12.400 12.400±0.000 12.400

T::[21.35, 25.15) 22.200 22.200±0.000 22.200

Q::[0.34, 2.01) 0.612 0.612±0.000 0.612

Event31

Feq. Max. Duration Min. Duration

00% (13/12588) 1.294 Day(s) 1.046 Day(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 59.200 37.223±8.964 29.000

T::[21.35, 25.15) 24.436 23.198±1.035 21.700

Q::[0.00, 0.34) 0.276 0.022±0.076 0.000

Event32

Feq. Max. Duration Min. Duration

00% (0/12588) 6.382 Hour(s) 6.382 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) NaN NaN ± NaN NaN

T::[25.15, 28.95) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

Event33

Feq. Max. Duration Min. Duration

00% (1/12588) 22.175 Hour(s) 22.175 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[103.10, 142.61] 142.600 142.600±0.000 142.600

T::[25.15, 28.95) 28.000 28.000±0.000 28.000

Q::[2.01, 4.82] 2.758 2.758±0.000 2.758

Event34

Feq. Max. Duration Min. Duration

00% (1/12588) 22.044 Hour(s) 22.044 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[12.55, 26.30) 16.200 16.200±0.000 16.200

T::[25.15, 28.95) 28.000 28.000±0.000 28.000

Q::[2.01, 4.82] 4.797 4.797±0.000 4.797
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Event35

Feq. Max. Duration Min. Duration

00% (0/12588) 13.764 Hour(s) 13.764 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[25.15, 28.95) NaN NaN ± NaN NaN

Q::[2.01, 4.82] NaN NaN ± NaN NaN

Event36

Feq. Max. Duration Min. Duration

00% (4/12588) 4.130 Day(s) 4.130 Day(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 0.400 0.100±0.200 0.000

T::[25.15, 28.95) 28.000 28.000±0.000 28.000

Q::[0.34, 2.01) 1.329 0.806±0.388 0.442

Event37

Feq. Max. Duration Min. Duration

00% (9/12588) 4.472 Day(s) 3.429 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) 2.500 1.033±1.119 0.000

T::[18.35, 21.35) 19.600 19.600±0.000 19.600

Q::[0.34, 2.01) 1.043 0.644±0.240 0.429

Event38

Feq. Max. Duration Min. Duration

00% (1/12588) 19.467 Hour(s) 19.467 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 27.200 27.200±0.000 27.200

T::[18.35, 21.35) 19.800 19.800±0.000 19.800

Q::[0.34, 2.01) 0.355 0.355±0.000 0.355

Event39

Feq. Max. Duration Min. Duration

00% (1/12588) 13.670 Hour(s) 13.670 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[26.30, 103.10) 43.100 43.100±0.000 43.100

T::[18.35, 21.35) 19.600 19.600±0.000 19.600

Q::[2.01, 4.82] 2.288 2.288±0.000 2.288
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Event40

Feq. Max. Duration Min. Duration

00% (7/12588) 1.039 Day(s) 1.039 Day(s)

Rules Max. Value µ±σ Min. Value

P::[3.85, 12.55) 10.300 7.129±2.198 4.900

T::[18.35, 21.35) 20.800 19.729±0.655 19.000

Q::[0.34, 2.01) 1.610 0.603±0.450 0.343

Event41

Feq. Max. Duration Min. Duration

00% (1/12588) 1.187 Day(s) 1.187 Day(s)

Rules Max. Value µ±σ Min. Value

P::[103.10, 142.61] 128.200 128.200±0.000 128.200

T::[28.95, 34.31] 29.300 29.300±0.000 29.300

Q::[0.00, 0.34) 0.004 0.004±0.000 0.004

Event42

Feq. Max. Duration Min. Duration

00% (0/12588) 3.988 Hour(s) 3.988 Hour(s)

Rules Max. Value µ±σ Min. Value

P::[0.00, 3.85) NaN NaN ± NaN NaN

T::[21.35, 25.15) NaN NaN ± NaN NaN

Q::[0.34, 2.01) NaN NaN ± NaN NaN
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Glossary

Aspect

In TSKR, an Aspect is a group of time series data sets sharing similar

semantics.

Chord

In TSKR, a Chord represents the coincidence of Tones.

coincidence

In TSKR, the term "coincidence" is used to describe the temporal

overlapping time period of Tones or Chords.

data

Data are qualitative or quantitative descriptions of information or facts

and can be stored in digital or nondigital carriers.

duration

In TSKR, the term "duration" is used to describe how long the three

components in TSKR, Tone, Chord, and Phrase, last.

Event

In the framework of time series scenario composition, an Event is the

same to a Chord in TSKM which represents the coincidence of Tones
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but with different semantic meaning describing a certain feature of a

scenario.

expressivity

In TSKR, it is one of three major criticisms on Allen’s relations that the

same relations in Allen’s relations may have very different manifesta-

tions.

information

Information is data together with the semantics derived from data

themselves which describes certain correlations, such as patterns,

associations, relationships, etc.

interpretability

In TSKR, it is one of three major criticisms on Allen’s relations which

indicates that the relations described by Allen’s relations are ambigu-

ous and difficult to comprehend due to additional information needed

and the complexity of description caused by it.

knowledge

Knowledge is something human beings have learned or acquired

through exposure of data or information, and it can be applied repeat-

edly in an empirical or a theoretical manner.

MetaEvent

In the framework of time series scenario composition, a MetaEvent is

combination of an Event and its metadata based on the history, e.g.

min. and Max. values, describing the characteristics of the extracted

features, and it serves as the most basic unit of a measurement for

scenario composition.
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MetaEventEntity

In the framework of the time series scenario composition, a MetaEven-

tEntity is a realization of the MetaEvent it belongs to. It serves as the

basic element for composing scenarios.

partial order

In TSKR, the term "partial order" describes the ordering of Chords with

binary relation inside a phrase by analogy with the one in the order

theory.

Phrase

In TSKR, a Phrase represents the concept of partial order of nonover-

lapping Chords which describes how a phenomenon develops.

robustness

In TSKR, one of three major criticisms that Allen’s relations suffer is the

lack of robustness. This is because they need at least two endpoints to

determine relations. While taking into account of measurement errors

at the boundaries, it is difficult to determine relations of intervals.

semi-automatic

A semi-automatic process in the context of this research means that

users have rights to and usually have to take part in the steps inside

the process. This involvement may contain a judging of the outputs

from one step which are the inputs of another step, and users have the

right to decide if these outputs can be sent to the next step as inputs.

If not, the step may be repeated again until the acceptable results are

derived. This process causes nonlinear workflow inside the process.

support of a Chord

The support of a Chord used in TSKR is a property of a Chord which

describes the longest common interval of all Tones in a Chord.
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Tone

In TSKR, a Tone describes a specific property or state of an Aspect

within a given time duration.



Acronyms

A

AI Artificial Intelligence

ANFIS Adaptive Neuro Fuzzy Inference System

ANN Artificial Neural Network

API Application Programming Interface

ARMA Autoregressive-Moving-Average

ARPANET Advanced Research Projects Agency Network

B

BAW Bundesanstalt für Wasserbau

BC Boundary Condition

BCE Björnsen Consulting Engineers

C

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CERN European Organization for Nuclear Research

CETMEF Centre d’Etudes Techniques Maritimes et Fluviales

CHARM Closed Association Rule Mining

CI Computer Intelligence

CloSpan CLOsed Sequential PAtterN mining

CoA Center of Area
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CoG Center of Gravity

CoGS Center of Gravity for Singleton

CPU Central Processing Unit

CRAN Comprehensive R Archive Network

CSV Comma-Separated Values

D

datPAV data Processing, Analysis and Visualization

DBMS Database Management System

DDM Data-Driven Modeling

DHI Danish Hydraulic Institute

DMS Document Management System

DSL Domain-Specific Language

DSS Decision Support System

E

ECHO Earth Observing System (EOS) Clearing House

EDF Electricité de France

ELWIS Elektronischer Wasserstraßen-Informationsservice

EM Expectation Maximization

EOS Earth Observing System

ESOM Emergent Self-Organizing Map

ESS Emacs Speaks Statistics

EU European Union

F

FCL Fuzzy Control Language

FIS Fuzzy Inference System

FLYS Flusshydrologische Software

FM Fuzzy Mean

FoM First of Maximum

FTP File Transfer Protocol
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G

GA Genetic Algorithm

GAS GNU Assembler

GCM Global Climate Model

GCV Generalized Cross Validation

GE General Electric

GIS Geographic Information System

GML Geography Markup Language

GMM Gaussian Mixture Model

GP Genetic Programming

GPL General-Purpose Language

GPU Graphics Processing Unit

GUI Graphical User Interface

H

HHT Hilbert-Huang Transform

HMM Hidden Markov Model

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I

IC Initial Condition

ICA Independent Component Analysis

ICT Information and Communication Technology

IDE Integrated Development Environment

IM Instant Messaging

IMAP Internet Message Access Protocol

IPCC Intergovernmental Panel on Climate Change

IWRM Integrated Water Resources Management

J
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JNI Java Native Interface

JRI Java/R Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

K

KDD Knowledge Discovery in Databases

L

LAN Local Area Network

LoM Last of Maximum

LTE Long-Term Evolution

M

MARS Multivariate Adaptive Regression Splines

MASM Microsoft Macro Assembler

MIT Massachusetts Institute of Technology

ML Machine Learning

MoM Middle of Maximum

MSDD Multi-Stream Dependency Detection

MUDAB Meeresumwelt-Datenbank

Multics Multiplexed Information and Computing Service

N

NaN Not A Number

NAS Network-Attached Storage

NASA National Aeronautics and Space Administration

NGMS National Groundwater Modelling System

O

OCG Open Geospatial Consortium

ODF Open Document Format for Office Applications

OOP Object-Oriented Programming
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OpenMI Open Modeling Interface

OQL Object Query Language

ORDBMS Object-Relational Database Management System

OS Operating System

P

PAA Piecewise Aggregate Approximation

PC Personal Computer

PCA Principal Component Analysis

PDA Personal Digital Assistant

PDF Portable Document Format

PMML Predictive Model Markup Language

PNG Portable Network Graphics

POP Post Office Protocol

POSIX Portable Operating System Interface

PS Parameter Set

R

RAID Redundant Array of Independent Disks

RAM Random-Access Memory

RDBMS Relational Database Management System

REPL Read-Eval-Print Loop

RMSE Root-Mean-Square Error

RSS Residual Sum of Squares

S

SAX Symbolic Aggregate approXimation

SBC Single-Board Computer

SDI Spatial Data Infrastructure

SDK Software Development Kit

SIMPLE Session Initiation Protocol for Instant Messaging and Presence

Leveraging Extensions

SIP Session Initiation Protocol
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SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SOM Self-Organizing Map

SQL Structured Query Language

SSD Solid-State Drive

SSH Secure Shell

SSL Secure Sockets Layer

SUS Single UNIX Specification

SVM Support Vector Machine

T

TLS Transport Layer Security

TSKM Time Series Knowledge Mining

TSKR Time Series Knowledge Representation

TUI Text-based User Interface

U

UFZ Helmholtz-Zentrum für Umweltforschung

UI User Interface

UMTS Universal Mobile Telecommunications System

USGS United States Geological Survey

UTG Unification-based Temporal Grammar

V

VoIP Voice over Internet Protocol

VR Virtual Reality

W

WAN Wide Area Network

WEKA Waikato Environment for Knowledge Analysis

WGS World Geodetic System

WPS Web Processing Service
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WWW World Wide Web

X

XLS Microsoft Excel Spreadsheet

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol



228 Acronyms


