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”What is the point of being alive if you don’t at least try to do something
remarkable?”

John Green, An Abundance of Katherines
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Abstract

Gallium nitride (GaN) is a III-V semiconductor, characterised by direct, wide band

gap of 3.4 eV at RT. As a material of particular interest for opto- and power electronics

applications, it has been thoroughly studied in recent years. Utilisation of GaN ho-

moepitaxy in manufacturing of laser diodes (LDs), light-emitting diodes (LEDs), power

devices, etc. would be beneficial in terms of reducing defect density, thus improving their

lifetime and performance. Yet cost-effective process for providing native GaN substrates

has not been established so far.

The focus of this work is put on development of a new method to grow single crystalline

GaN layers from Ga vapour. Our approach exploits microwave (MW) plasma as a source

of excited nitrogen species, in contrast to classical physical vapour transport (PVT)-based

technique, in which ammonia (NH3) serves as a source of reactive nitrogen. Novelty of

MW plasma enhanced growth of GaN from vapour lies in MW nitrogen plasma formation

in the vicinity of the seed, at moderate pressure (200 – 800 mbar range), and concurrent

physical vapour transport of Ga to the growth zone.

Simulations of the growth setup (HEpiGaN software) and of the MW plasma source

(CST Microwave software) have followed the extensive investigations of material proper-

ties. The growth setup and the MW plasma source, with the resonance cavity being its

crucial part, have been constructed and implemented into the existing growth reactor.

The stability of MW plasma in function of temperature and pressure has been studied

along with its influence on the seed temperature, and thus on the growth conditions.

Furthermore, optical emission spectroscopy (OES) has been utilised for in-situ charac-

terisation of the growth atmosphere. Studies on the interaction of Ga vapour with the

nitrogen discharge were interpreted on the basis of the level structure of lower excited

states of Ga.

Deposition experiments have been conducted, using sapphire seeds, GaN, AlN and

AlGaN templates, while GaN single crystalline layers have been grown on sapphire and
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GaN templates. Characterisation of GaN layers have been done by various methods, i.e.

structure of layers by scanning electron microscopy (SEM), their composition by energy-

dispersive X-ray spectroscopy (EDX) and secondary ion mass spectrometry (SIMS), and

crystal quality by high resolution X-ray diffraction (HRXRD). Results of the character-

isation together with outcome of OES measurements revealed importance of carbon for

the sub-atmospheric MW plasma enhanced growth of GaN from vapour. In addition, this

fact was confirmed by experiments in the setup with reduced carbon content. Possible

routes for GaN synthesis have been discussed, with the most probable being CN-assisted

GaN formation. While CN was detected in the plasma spectra, there was no evidence

for the existence of GaN molecules in vapour phase.
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Kurzfassung

Galliumnitrid (GaN) ist ein III-V-Halbleiter, der durch seine direkte, breite Bandlücke

von 3.4 eV bei Raumtemperatur gekennzeichnet ist. Als Material von besonderem Inter-

esse für Anwendungen in der Opto- und Leistungselektronik, wurde es in den letzten Jah-

ren umfangreich untersucht. Die Verwendung der GaN-Homoepitaxie in der Herstellung

von Laserdioden (LDs), Leuchtdioden (LEDs), Leistungsbauelementen etc. wäre güns-

tig bezüglich der Verringerung die Defektdichte, um ihre Lebensdauer und Leistung zu

verbessern. Ein kostengünstiges Verfahren zur Bereitstellung von GaN-Eigensubstraten

wurde jedoch bisher nicht etabliert.

Der Schwerpunkt dieser Arbeit ist die Entwicklung einer neuen Züchtungsmethode

um einkristalline GaN-Schichten herzustellen. Unsere Vorgehensweise nutzt Mikrowel-

len (MW)-Plasma als Quelle angeregter Stickstoff-Spezies, im Gegensatz zu dem klassi-

schen physikalischen Gasphasentransport (PVT) basierten Verfahren, in dem Ammoniak

(NH3) als Quelle für reaktiven Stickstoff dient. Die Neuheit des MW-Plasmas gestützten

Wachstums von GaN aus Gallium(Ga)-Dampf liegt in der MW-Plasmaerzeugung in der

Nähe des Keims bei mittlerem Druck (200 - 800 mbar) und gleichzeitigen physikalischen

Transport von Ga-Dampf in die Wachstumszone.

Den Simulationen des Aufbaus (HEpiGaN Software) und der MW-Plasmaquelle (CST

Microwave Software) folgten die umfangreichen Untersuchungen der Materialeigenschaf-

ten. Der Aufbau und die MW-Plasmaquelle, die als wesentliche Komponente den Hohl-

raumresonator enthält, wurden konstruiert und in den vorhandenen Wachstumsreak-

tor implementiert. Die Stabilität des MW-Plasmas als Funktion von Temperatur und

Druck wurde zugleich mit ihrem Einfluss auf die Keimtemperatur und damit auf die

Wachstumsbedingungen untersucht. Außerdem wurde die Optische Emissionsspektro-

metrie (OES) zur in-situ Charakterisierung der Wachstums-Atmosphäre verwendet. Die

Wechselwirkung des Ga-Dampfes mit der Stickstoffentladung wurde auf der Basis der

Energieniveau-Struktur der unteren angeregten Ga-Zustände interpretiert.
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Die Abscheidungs-Experimente wurden unter Verwendung von Saphir-Keimsubstraten,

GaN- , AlN- und AlGaN–Templates durchgeführt. Die GaN-Schichten wurden auf Saphir-

Keimsubstraten und auf GaN-Templates gewachsen und mit verschiedenen Methoden

charakterisiert: die Struktur mit der Rasterelektronenmikroskopie (SEM), die Zusammen-

setzung mit der Energiedispersiven Röntgenspektroskopie (EDX) und der Sekundärionen-

Massenspektrometrie (SIMS) und die Kristallqualität mit der hochauflösenden Röntgen-

strukturanalyse (HRXRD). Die Ergebnisse der Charakterisierung zeigten zusammen mit

den Resultaten der OES-Messungen die Bedeutung von Kohlenstoff für das MW-Plasma

gestützte, subatmosphärische Wachstum von GaN aus der Gasphase. Zusätzlich wurden

sie durch die Experimente im Aufbau mit reduziertem Kohlenstoffgehalt bestätigt. Mögli-

che Wege der GaN-Synthese wurden diskutiert, wobei die CN-unterstützte GaN-Bildung

der wahrscheinlichste ist. Während CN in den Plasmaspektren nachgewiesen wurde, gab

es keine Beweise für die Existenz von GaN-Molekülen in der Dampfphase.
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Chapter 1

Introduction

In recent years GaN has slipped unnoticed through the back doors of our houses, being a

key part of many contemporary electronic and optoelectronic devices. Although GaN has

not such a strong position in conventional wisdom as silicon, yet its impact on people’s

life has been increasing (indoor and outdoor LED-based lightning systems, blue LDs in

Blu-ray technology, high-voltage switching devices for power grids, etc.). GaN way from

research laboratories to households is marked by series of technological breakthroughs:

1969 - growth of the first GaN single crystalline layer [1], 1971 - the first GaN LED

[2], the achievement of p-doping in GaN [3], 1995 - the first blue InGaN/GaN double

heterostructure LEDs [4], 1999 - the first commercially available violet InGaN-based LD

[5], 2006 - the first Blu-Ray ROM players released by Samsung (BD-P100) [6] and Sony

(BDP-S1) [7].

GaN properties (see Table 1) have been exploited mainly in solid state lightning and

high power/high frequency electronics. The (Al,Ga,In) N-based materials system covers

the entire visible range, with the direct band gap spanning from 0.69 eV (InN), through

3.4 eV (GaN) to 6.2 eV (AlN) (see Fig. 1.1). GaN based LEDs and LDs take advan-

tage of much brighter emission characteristics than gallium arsenide (GaAs) and gallium

phosphide (GaP). Owing to the wide band gap, high break-down voltage, large critical

electric field, and high thermal conductivity, GaN devices can operate at high voltages

and high switching frequency. Therefore, inverters, RF devices, power supply modules,

and motor drives are at present the major power electronic application fields of GaN.

One of the main limiting factors for GaN technology is absence of well-established and

cost-efficient technique of GaN bulk growth. The initial goal of this research was to study

the possibility of GaN bulk single crystal growth from the vapour phase at moderate

pressure (200 - 800 mbar), exploiting MW nitrogen plasma source implemented in the

1



1. Introduction

Figure 1.1.: Band gap energy in the function of lattice constant. III-nitrides at RT [8]

growth region.

1.1. Properties of GaN

Unique properties of GaN (see Table 1) derive from its crystal structure. GaN has

either meta stable zinc blende (cubic) or thermodynamically stable wurtzite (hexagonal)

crystal structure (Fig. 1.2). This work is focused only on the latter one, though. Wurtzite

lattice constants a and c have relation as c/a =
√

8/3 = 1.633 and internal parameter

u = 3/8 = 0.375, where b = u× c corresponds to the anion-cation bond length.

Each hexagonal unit cell of GaN wurtzite crystal structure (space group P63mc) con-

sists of two interpenetrating hexagonal close-packed (hcp) sublattices. Each of them

is composed of either Ga or N atoms, in tetrahedral nearest-neighbour atomic coordi-

nation. GaN exhibits mixed ionic-covalent bonding, whereas its high ionicity results

in high bond strength of 9.12 eV/molecule. Spontaneous polarization PSP along the

c-axis is induced by an intrinsic asymmetry in the wurtzite structure. Furthermore,

mechanical stress imposed by heteroepitaxial growth of GaN layer generates piezoelec-

tric polarization PPZ . Due to PSP and PPZ , there is a built-in electrostatic field in

2



1.1. Properties of GaN

Table 1.: Properties of wurtzite GaN [9]

Property Value
Lattice constants a = 3.189 Å, c = 5.186 Å
Molar mass 83.73 g mol−1

Density 6.15 g cm−3

Melting point 2225 ℃ at p > 6 GPa [10]
Thermal expansion coefficients αort = αc = 3.17× 10−6K−1

α|| = αa = 5.59× 10−6K−1

Thermal conductivity 1.3 Wcm−1 ℃−1

Specific heat 0.49 Jg−1 ℃−1

Band gap 3.47 eV
Breakdown field 3.3× 106 V cm−1

Dielectric constants 8.9 (static), 5.35 (high frequency)
Refractive index n = 2.29

the [0001] direction, which is not favourable for optoelectronic devices (shift of emission

peak and reduction of emission efficiency). Therefore semi-polar r-plane (1102), planes

(1011), (1012), (1013), (2021), (1122) and non-polar a-plane (1120), and m-plane (1100)

have been used for growth of GaN-based LEDs and LDs.

Figure 1.2.: Ideal wurtzite GaN structure: a and c - lattice constants, b - bond length, α = β =
109.47° - bond angles, b′1, b

′
2, b
′
3 - three types of second nearest neighbour distances.

Adapted from [11]

The present work deals with the development of a novel method to grow GaN single

crystalline layers from vapour, using MW nitrogen plasma at moderate pressure (200 -

3



1. Introduction

800 mbar). Chapter 2 is intended to give an overview of the contemporary GaN technol-

ogy, including relevant bulk growth methods and techniques used in Leibniz Institute for

Crystal Growth in Berlin (IKZ) to synthesize GaN. In Chapter 3 nitrogen plasma along

with optical emission spectroscopy (OES) is described. Chapter 4 is meant to present

techniques that utilize nitrogen plasma for GaN growth. Description of the growth setup

developed in our research group and studies on MW plasma enhanced growth of GaN at

moderate pressure (200 - 800 mbar) are to be found in Chapter 5. It is accompanied by

the outcome of characterisation of grown GaN single crystalline layers and discussion on

plausible growth mechanism.
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Chapter 2

Current status of GaN growth tech-

nology

The following chapter discusses the actual state of the art in the GaN growth technology.

In Section 2.1 focus is put on the relevant GaN bulk growth techniques from solution

(high nitrogen pressure solution growth, flux, ammonothermal) and vapour phase alike

(physical vapour phase based process, sublimation sandwich technique, halide vapour

phase epitaxy). Section 2.2 presents the activities of the author’s group in the field of

GaN synthesis from vapour, introducing the concept of pseudohalide transport of Ga.

Selected materials employed as seeds in the GaN growth are presented in the last Section

2.3, along with the overview of the epitaxial growth modes.

It has been more than forty years, since M.P. Maruska reported in 1969 [1] growth of

first single-crystalline GaN, appropriate for determining its direct energy band gap from

optical and electrical characterisation. Despite long history of research and development

on GaN and undisputable progress made in this area, a manufacturing technology for

GaN bulk crystals has not been established by now. Utsumi et al. [10] showed experi-

mentally that GaN melts congruently at pressures above 6.0 GPa at 2225 ℃. Due to the

extreme melting conditions, bulk GaN from melt is technically unfavourable and could

not have been practically realized so far. Figure 2.1 presents the equilibrium curve for

GaN, obtained by Karpinski et al. in 1984 [12].

In recent years, several different growth methods have been employed, in the search

of the one that could provide GaN bulk single crystals commercially: physical vapour

transport (PVT) [13, 14], halide vapour phase epitaxy (HVPE) [15], high pressure solu-

tion growth (HPSG) [16], Na-flux [17] and ammonothermal method [18, 19]. Currently,
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2. Current status of GaN growth technology

Figure 2.1.: Equilibrium curve for GaN [12]

growth from solutions [17, 18, 19] is under development for native substrates and am-

monothermal growth [18, 19] seems to have a high potential to meet the demand for

“true bulk single crystals”. Due to growth rates of about 100 µm/h HVPE is nowadays a

very well established method to prepare free standing thick GaN layers, to be employed

as substrates. Limited growth time due to ammonium chloride (NH4Cl) formation and

relatively high dislocation density are the main drawbacks of this approach. Plasma-

assisted synthesis of GaN has been subsequently drawing an attention of the scientific

community. Replacing NH3 by nitrogen plasma as a source of reactive nitrogen, presents

numerous advantages, such as: elimination of a dangerous, poisonous gas from the re-

action chamber and lowering of the reaction temperature. Although, plasma enhanced

methods have been successful in thin film GaN growth, they have not become an answer

for a growing demand for GaN substrates so far. Ozawa et al. [20] reported 3 µm GaN

layers on sapphire, grown by solution growth with the assistance of 2.45 GHz microwave

excited nitrogen plasma. Plasma-assisted molecular beam epitaxy (PAMBE) proved its

reliability in terms of GaN and other III-nitrides layers, taking advantage of a remote ni-

trogen radio frequency (RF) plasma source. Recently Novikov and Foxon [21] presented

a novel approach for the growth of GaN layers, combining liquid phase electroepitaxy

6



2.1. Review of relevant bulk growth techniques

system with a PAMBE into plasma-assisted electroepitaxy (PAEE). The latter seems

exotic and limited to very slow growth rates, though.

2.1. Review of relevant bulk growth techniques

2.1.1. Solution growth

HPSG, Na-flux and ammonothermal method constitute group of crystal growth tech-

niques from solution. The basic principle for solution growth methods is the same.

Material to be grown (solute) is dissolved in an appropriate solvent, super-saturation is

induced by thermal gradient, controlled cooling down or solvent evaporation and even-

tually crystals are deposited on the seed.

High Pressure Solution Growth (HPSG)

HPSG is the oldest one among GaN growth methods from solution. It was proposed by

Porowski [22], specifically to grow GaN crystals from supersaturated solution of nitrogen

in molten Ga. Experiments are carried out in the high-pressure-high-temperature cham-

ber, near thermal equilibrium, thus resulting in the lowest dislocation density reported for

GaN bulk. By applying the temperature difference ∆T along the boron nitride crucible,

supersaturation in the growth solution is achieved. Nitrogen dissolved in the hotter part

of the solution is transported by diffusion and convection to its colder part, where crystal

growth takes place. The high pressure solution growth process can be described by the

synthesis solute diffusion (SSD) mechanism, discussed elsewhere [23]. Either pure liquid

Ga or Ga alloyed with 0.2 – 0.5 at% of Mg to reduce the concentration of free electrons is

used. Typical growth conditions are in the range of p = 8 - 10 kbar, T = 1400 – 1500 ℃,

∆T = 40 - 50 ℃, duration of process without an intentional seeding is between 80 -

150 h. Dimensions of the spontaneously nucleated hexagonal platelets (up to 3 cm in

diameter) or needles (length up to 1 cm) are limited by the size of crucible and available

volume of supersaturated solution. The main advantage of HPSG GaN is its extreme

low dislocation density, lower than 100 cm−2 [24]. In multi feed-seed configuration the

7



2. Current status of GaN growth technology

re-growth procedure of HVPE seeds was implemented to obtain crystalographically flat

HPSG GaN substrates of higher structural quality, but with lower purity [25].

Ammonothermal

For the time being, method that provides GaN bulk crystals of the best crystalline

quality is the ammonothermal one. Epi-ready substrates prepared from AMMONO’s

GaN bulk crystals exhibit the 16 arc sec FWHM of X-ray rocking curve, measured for

c-plane orientation (0001), for non-polar m-plane (1010) and semi-polar (2021) as well

[26]. Principle of the ammonothermal method is dissolution of polycrystalline GaN in

supercritical ammonia followed by its recrystallization on native seeds. With a view to

increase solubility of GaN in ammonia, appropriate mineralisers are added to the solution.

There are two different environments used: ammonobasic (Fig. 2.2(a)), developed by

AMMONO S.A. and taking advantage of NH2− ions in the solution (alkali metals or

their amides work as mineralisers: LiNH2, NaNH2, KNH2 or NaNH2+NaI) [26, 27] or

ammonoacidic (Fig. 2.2(b)), introducing NH4+ ions (supplied by halide compounds:

NH4Cl, NH4Br, NH4I) [27, 28, 29].

High-pressure autoclave compromises two main temperature zones T1 and T2, so that

T2 > T1. The near-isothermal conditions in each zone are provided by a baffle installed

in between. The growth configuration (the position of feedstock basket and GaN native

seeds) depends on the applied environment and on the temperature of the solution. In

the ammonobasic solution and in the high temperature ammonoacidic solution [31] GaN

has retrograde solubility, thus its solubility decreases with temperature (Fig. 2.2(a)).

Extreme growth conditions (T in the range 500 – 600 ℃ and p around 0.1 - 0.3 GPa in

case of the ammonobasic method [26]) pose challenges for the selection of appropriate

autoclave materials. The physical properties of the nickel-based superalloy have been a

significant limiting factor for the growth rates (around 2 µm/h) in the ammonothermal

technique. Ehrentraut et al. [32] proposed high-temperature resistant ceramics as an

inner shell, thus allowing for use steel instead of expensive nickel-based superalloy. GaN

single crystals grown under 750 ℃ and 600 MPa in the SCoRA™ reactor have been

8



2.1. Review of relevant bulk growth techniques

(a) (b)

Figure 2.2.: Ammonobasic [30] (a) and ammonoacidic [27] (b) growth setups

demonstrated, with typical growth rates in the range of 10 - 30 µm/h. Mitsubishi Cor-

poration together with its partners developed a corrosion-resistant autoclave SCAAT™,

enabling growth of GaN in acidic environment at high p and T of ∼0.1 GPa and ∼500 ℃,

respectively. Process data disclosed by Mikawa [19] includes the growth rates in the range

of 20 µm/h and FWHM of the x-ray rocking curves on the grown m-plane GaN lower

than 20 arcsec. Currently on the market, there are semi- insulating polar substrates up

to 1.5 inch, n-type polar substrates up to 1 inch, n-type semi-polar (2021) substrates

10 x 10 mm and n-type non-polar (1010) substrates available from AMMONO S.A. [33].

Na-Flux

The first one to report utilisation of Na flux method to grow GaN single crystals was

Yamane et al. [34]. Solvent consisted initially of NaN3 and Ga only, however due to

thermal decomposition of NaN3 at 300 ℃, Na and N2 were obtained during the following

reaction

9



2. Current status of GaN growth technology

2NaN3 → 2Na+ 3N2 (1)

Mixture of NaN3 and Ga was encapsulated in a stainless-steel tube container. By apply-

ing to it the temperature in the range of 600 – 800 ℃ and then cooling it down to room

temperature, GaN crystals of 0.5 mm size were grown in 24 h process.

Figure 2.3.: Na flux growth setup [35]

Figure 2.3 depicts a typical Na flux growth system of GaN used at present times. Worthy

to notice are two separate sources of Na and N2 in contrary to single one in form of NaN3

used in [34] and crucible made of boron nitride (BN).

As shown in Figure 2.4, Na catalyses the reaction between N2 and Ga in the Na-

Ga melt by the following mechanism [36]: electrons released by Na are received by N2

molecule, weaken its bonding and lead to dissociation of N2 into negatively charged N

atoms (N∗−). Finally, the only elements in mixture that can form a nitride are Ga atoms.

Studies of Mori group (Osaka, Japan) revealed that adding carbon to Ga-Na melt

can improve the growth rate by one order of magnitude, up to about 20 µm/h. The

unfavourable growth of polycrystalline GaN, which tends to dominate at higher nitrogen

pressure, is suppressed [37]. It was shown that addition of Ca to Ga-Na melt improves

transparency of the grown GaN crystals [35], while both Ca and Li increase the solubility

10



2.1. Review of relevant bulk growth techniques

Figure 2.4.: The reaction between N2 and Ga, catalyst action of Na [36]

of nitrogen in the Ga-Na solution [17]. Recently 3 inch diameter GaN crystals on HVPE

GaN substrate were reported [17]. After polishing it to the thickness of 750 µm, opti-

cal absorption coefficient was estimated to be 0.27 cm−1, whereas incorporated oxygen

concentration was measured by SIMS to be at 3 x 1016 cm−3. Growth on small seeds

resulted in pyramidal GaN bulk crystals of size of 15 - 20 mm. Simplicity of Na flux

growth system is prevailed by a moderate growth rate of around 20 µm/h and solvent

contamination. Li-based flux method has lead to hexagonal GaN platelets with a size of

1 - 4 mm [38].

2.1.2. Vapour phase growth

Physical Vapour Transport (PVT)

One of the oldest approaches to the vapour phase growth of GaN is defined by the

following reaction:

Ga(v) +NH3(g)→ GaN(s) + 3/2H2(g) (2)

11



2. Current status of GaN growth technology

Liquid Ga in the source is heated up to 1400 ℃, while growth takes place at temperatures

up to 1200 ℃, within sub-atmospheric (200 – 800 mbar) or atmospheric pressure under

N2 atmosphere. Applicability of this method to grow polycrystalline GaN was presented

already by Johnson et al. in 1932 [39]. Over the following years, several researchers

succeeded in a single crystal GaN growth by improving the above described technique.

It has been limited to low growth rates, though [40]. In case of unseeded growth, the size

of crystals did not exceed few mm [41, 42]. When instead of liquid Ga pre-synthesized

GaN powder is used, one speaks about incongruent sublimation of GaN [13]. GaN

powder is usually heated (1100 – 1200 ℃) either in an NH3 flow [43] or under NH3

atmosphere [44]. In spite of high growth rates of around 0.5 mm/h [42], the limitation

remains the need for continuous supply of pre-synthesized GaN powder. Stability of

GaN powder is the essential issue, reported for instance by Schoonmaker et al. [45]. Due

to an incongruent sublimation, excess of Ga remains in the crucible and autocatalytic

enhances the incongruent sublimation. As a result, after few hours there is only Ga left

in the crucible [46].

Sublimation Sandwich Method (SSM)

Wetzel [47], Fischer [48] and Vodakov [49] reported a modified PVT technique for GaN

growth, denoted as sublimation sandwich method (SSM). The main concept of SSM is

to place the substrate in front of the Ga source, within the distance of few millimetres.

Such a small gap resulted in the increased mass transport of Ga vapour, thus in the high

growth rates up to 1 mm/h [49]. On the other hand it limits dimensions of the grown

crystal. Ammonia gas flow served as a source of reactive nitrogen, while supersaturation

was achieved by temperature gradient applied between the source and the substrate.

Single crystalline GaN layers on 6H-SiC with FWHM value of 420 arcsec, grown at

1240 ℃ were reported [48]. Kurai et al. [50] presented 30 - 70 µm thick GaN layers

grown on sapphire.
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2.1. Review of relevant bulk growth techniques

Halide Vapour Phase Epitaxy (HVPE)

Halide vapour phase epitaxy (HVPE) wins outright with other methods, when it comes

to the growth rate of GaN. Values up to 300 µm/h were reported [15], approximately

15 times higher than those for Na-flux technique and 10 times higher than for HT am-

monothermal method. However, high crystal quality is limited to lower values of about

100 µm/h. On the other hand, NH4Cl by-product formation, high dislocation density

due to heteroepitaxial growth and large gas consumption are among main drawbacks of

HVPE [27, 51]. It was the HVPE method, which allowed in 1969 for growth of first,

single-crystalline GaN on sapphire [1]. Since then, HVPE has grown into the signifi-

cant, yet substitute and temporary technique for GaN bulk growth and GaN substrate

preparation. Nowadays several groups all around the world work on development and

improvement of HVPE for manufacture of high-quality GaN templates. Growth of GaN

on Si [52, 53] or combination of HVPE with other growth techniques [54], for instance

ammonothermal one, might partially satisfy the increasing demand for the low defect

density GaN substrates at a moderate price. Recently a novel approach to produce free-

standing GaN on Si substrate using HVPE has been reported by Samsung Electronics

Co., Ltd. [55]. By applying high-temperature in-situ removal of Si substrate (etched by

HCl at about 1000 ℃), fabrication of the high crystal quality (EPD < 1 x 106 cm−2)

free-standing GaN over 8 inches in diameter is said to be profitable from economical and

technological point of view.

Figure 2.5.: HVPE growth setup [27]
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2. Current status of GaN growth technology

Scheme of the horizontal HVPE setup is depicted in Figure 2.5. It typically consists

of quartz reactor (nowadays the vertical configuration is preferred), heated by multi-

zone furnace or radio frequency heater. Separate quartz lines supply halide and hydride

precursors, as well as a carrier gas: N2, H2, He, Ar or their mixtures. In the low-

temperature zone (800 - 900 ℃) halides are formed by flowing high purity HCl gas over

a boat with liquid Ga

2Ga+ 2HCl→ 2GaCl +H2 (3)

Subsequently, the vapour phase, including the chloride precursor GaCl and the hydride

precursor NH3, is transported by a carrier gas to the deposition zone. Usual temperature

of the substrate for GaN growth is at about 1050 ℃ and the reaction proceeds in the

following way

GaCl +NH3 → GaN +HCl +H2 (4)

In order to minimize parasitic growth, gallium chloride (GaCl) and NH3 should not come

into contact with each other, before reaching the growth region. [27, 51]

Figure 2.6.: GaN bulk crystal grown by HVPE [56]

So far, the best results of HVPE bulk-like growth were reported by groups from Japan

[56] and Germany [15]. They succeeded in preparing ∼6 mm thick GaN boules (see
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2.2. GaN vapour growth in IKZ

Figure 2.6), starting from MOCVD GaN/sapphire template. Such GaN crystals could

be possibly exploited to produce GaN wafers of high quality. However, this intermediate

technology has not reached its maturity and thus can not be used on industrial scale.

Therefore, the typical approach to prepare HVPE GaN free standing substrate is still a

growth of a thick GaN layer on a foreign substrate followed by its separation. By using

this so called wafer-by-wafer technology, GaN substrates up to 6 inches can be prepared

[15, 57].

2.2. GaN vapour growth in IKZ

2.2.1. Physical vapour transport of Ga

Investigations on PVT-based synthesis of GaN were carried out in an inductively heated

reactor (Fig. 2.7).

Figure 2.7.: Scheme of the inductively heated reactor: (1) – position of seed, (2) – quartz
vessel, (3) – seed-holder, (4) – ring shower, (5) – diaphragm, (6) – source crucible,
(7) – graphite susceptor, (8) – graphite isolation felt [58]

Two components necessary in a classical PVT method for GaN growth, elemental Ga
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2. Current status of GaN growth technology

and reactive nitrogen, came from liquid Ga source and gaseous ammonia, respectively.

Experiments without seeds lead to a spontaneous nucleation of millimetre-size GaN crys-

tals, which were found on the seed-holder after 10 h growth with growth rates up to

50 µm/h. Growth on 1 µm MOCVD GaN on (0001) sapphire templates at a moderate

temperature difference (∆T 6 200 K) between the Ga source and the seed resulted in not

completely coalesced 280 µm thick layers, with significant carbon incorporation [46]. In

order to diminish the carbon contamination, graphite crucible, susceptor, diaphragm and

top isolation were covered with pyrolytic boron nitride (pBN) layers. As the outcome,

share of the chemical transport of Ga was decreased and simultaneously the growth rate

dropped from 50 - 60 µm/h to 5 - 10 µm/h [14]. To compensate this effect, increase of

the Ga source temperature was proposed, thus increasing enhancing physical transport

of elemental Ga to the growth region (compare Fig. 2.8).

Figure 2.8.: Vapour pressure of Ga in function of temperature [59]

Temperature of the liquid Ga source was therefore kept above 1400 ℃. Additional

parameter used for control of Ga transport was N2 carrier gas flow (100 - 200 sccm)

from the inlet located in the lower part of the growth reactor, below the Ga crucible.

Typical NH3 flow was within 100 – 400 sccm range and 4 h growth experiments on 1 µm
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2.2. GaN vapour growth in IKZ

MOCVD–GaN on sapphire templates at 1100 ℃ were conducted. The total pressure was

varied between 200 and 800 mbar. Under above described conditions only polycrystalline

GaN was found on the seed (Fig. 2.9).

Figure 2.9.: Polycrystalline GaN layer on the seed [60]

The polycrystalline growth was associated to the high temperature difference (∼300 K)

between the seed and the source, which caused supercritical supercooling of the Ga

vapour resulting in formation of Ga droplets. High temperature differences in PVT

growth of GaN emerge from contradictory temperature prerequisites. As it was already

mentioned, at the Ga source side temperatures around 1400 ℃ are required for pro-

viding sufficient amount of gaseous Ga. At the growth side, temperatures exceeding

1100 ℃ are not favourable, due to enhanced early ammonia pyrolysis, with H2 being

one of its products. This in turn not only limits the nitridation of Ga vapour, but also

can lead to decomposition of GaN template and already grown layer. As it was shown

by R.C. Schoonmaker et al. [45], GaN thermal decomposition of GaN polycrystalline

powder starts at 900 ℃. Degradation of structural and morphological properties of GaN

on sapphire template, heated above 900 ℃, was reported by Choi et al. [61]. Efficient

supply of reactive nitrogen is able to prevent this process and enable growth of GaN

in the metastable region. The lower limitation for the growth temperature originates

from the growth kinetics. Temperature, at which the kinetic rate of arrival at each sur-

face (diffusion and sticking) site is equal to the rate of removal by surface diffusion and

desorption, has been considered as the minimum growth temperature. Dryburgh [62]

calculated it for GaN growth under atmospheric pressure to equal ≈ 900 ℃.

Temperature of the seed is also limited by the use of quartz parts in its vicinity (vessel,

ring shower). The main benefit of NH3 transport by quartz tubes is that it minimizes
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2. Current status of GaN growth technology

pyrolysis of NH3, which starts already at 500 ℃.

2.2.2. Chemical vapour transport of Ga

In the concurrent presence of graphite parts and ammonia in the reactor, chemistry of

GaN growth process is profoundly changed. Pure physical transport of Ga is supported

then by the chemical vapour transport, triggered by the reaction of NH3 with carbon. It

is known that NH3 interacts with carbon at elevated temperatures [63, 64]. Jacobs et al.

[14] proposed hydrogen cyanide (HCN) being the dominant product of this process

C(s) +NH3(g)→ HCN(g) +H2(g) (5)

HCN was later detected by IR spectroscopy in the waste gas and is expected to act

analogously to hydrogen chloride (HCl) in the HVPE [1], forming a volatile gallium

compound (Eq. 6). While in the HVPE Ga is carried by GaCl, pseudohalide vapour

growth relies on the transport of Ga to the deposition region by means of Ga(CN)(g),

being supported by the carrier nitrogen gas.

Ga(l, g) +HCN(g)→ Ga(CN)(g) + 1/2H2(g) (6)

Formation of GaN can proceed via a subsequent reaction of Ga(CN)(g) with NH3,

which is the most favourable path from thermodynamic point of view at temperatures

T > 950 ℃.

Ga(CN)(g) +NH3(g)→ GaN(s) +HCN(g) +H2(g) (7)

In the experiments, utilizing pseudohalide vapour transport of GaCN from 1100 ℃ Ga

melt, single crystalline GaN layers on 2 µm MOCVD–GaN on sapphire templates were

grown (Fig. 2.10). Owing to a small temperature gradient (Tseed = 1050 ℃), Ga su-

percritical supersaturation was not an issue. Other important growth parameters were

as follows: N2 carrier gas flow of 100 sccm, NH3 flow 100 - 400 sccm, growth time tg

18



2.3. Seeds and growth modes

typically 4 h with average growth rates of ∼50 µm/h.

Figure 2.10.: CVT grown single crystalline GaN layer, 160 µm thick with C inclusions [60]

Research on GaN growth by means of controlled cyanotransport is currently in progress

in IKZ [65].

2.3. Seeds and growth modes

Seeds are of the utmost importance for the growth of high quality bulk GaN, thus ho-

moepitaxial growth on GaN seed crystals is very promising. In spite of continuous devel-

opment in the field, it was only recently when AMMONO S.A. introduced 1 inch GaN

substrates on the market. Because of its high price and lack of bigger GaN wafers avail-

able, growth of GaN layers is carried out mostly on foreign substrates. There is a wide

range of materials, employed as substrates for GaN growth, such as sapphire (Al2O3),

Ga2O3, AlN, SiC, GaAs, Si, MgO, ZnO, TiO2, LiAlO2 etc. [66]. This chapter discusses

typical orientations, planes and step-cuts of chosen foreign substrates and templates used

in GaN vapour phase growth techniques in our laboratory that is Al2O3, AlN, Ga2O3

and GaN/Al2O3 templates. Heteropitaxial growth of GaN entails several challenges, due

to materials mismatch in terms of their lattice constants, thermal expansion coefficients,

etc. Therefore, techniques like one- or two-step epitaxial layer overgrowth (1S-ELO,

2S-ELO), low temperature buffer layers, etc. were introduced to reduce the threading

dislocation density of the GaN layers grown on the foreign substrates [27, 50]. They are
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2. Current status of GaN growth technology

not itself a subject of this dissertation, though.

2.3.1. Seeds

Al2O3

Despite the large difference in lattice constant (around 16%) and mismatch with GaN

thermal expansion coefficient (α|| = 5.59 × 10−6/K for GaN and 7.50 × 10−6/K for

sapphire [9, 67]), sapphire has been extensively used for GaN epitaxy. The prevailing

arguments are its relatively low cost and access to 2 inch wafers. On a commonly exploited

c-plane (0001) of sapphire, c-plane oriented GaN films are grown, with a 30° in-plane

rotation. Since GaN has a built-in electrostatic field along the [0001] direction, growth on

r-plane (1102), a-plane (1120), m-plane (1010) have been performed as well, so to obtain

a non- polar a-plane GaN, thus diminishing the negative influence of the electrostatic

field on nitride-based optoelectronic devices. [27, 66] Improved morphology of GaN layers

grown on a off-cut sapphire by both MOVPE and HVPE has been reported [68, 69]. The

0.3° c-plane off-orientation against the a-plane or the m-plane in case of HVPE leads

to the reduction of hillocks [68]. T. Yuasa et al. [70] demonstrated that in case of the

MOVPE, the smoothest surfaces result from the epitaxy on the 0.17° miscut sapphire.

Improvement of the crystal quality of GaN on sapphire is realized by implementing such

pre-treatment processes steps like plasma or NH3 nitridation in HVPE [71], MOVPE

[72] and MBE [73] or low-temperature-grown GaN buffer layer (LT-GaN) [74, 75]. In

our experiments double side epi-ready sapphire from PB-Technik AG has been used for

deposit observation.

β-Ga2O3

Growth of wurtzite GaN on monoclinic (C2/m) β-Ga2O 3 is a challenging task. Never-

theless, the first epitaxial layers of GaN and the blue light-emitting diode, both grown

on (100) β-Ga2O3 by MOVPE, were demonstrated by K. Shimamura et al. [76]. By con-
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trolling the nitridation conditions, GaN films on (100) β-Ga2O3 were grown by means of

radio frequency (RF)-MBE [77]. Kachel et al. [78] reported on thick GaN layer grown

on (100) β-Ga2O3 by the PHVPE, while low-temperature intermediate buffer layer was

formed by an in-situ treatment of epi-ready β-Ga2O3 substrate with NH3.

GaN/Al2O3 template

GaN templates offer a possibility to start growth already on a thin GaN layer deposited

epitaxially on a foreign substrate (mainly sapphire or silicon) by MOVPE or HVPE. In

this way the initial nucleation process is facilitated. Currently there is a wide range of

GaN templates with dislocation density around 1 x 108 cm−2 available on the market,

both on c- plane sapphire (n-type undoped, n-type Si doped, semi-insulating Fe-doped,

p-type Mg doped) and (111) Si (n-type undoped) [79, 80, 81, 82]. Standard commercial

GaN on sapphire templates (from University Ulm, IAF Freiburg and FBH Berlin) were

utilized in our growth experiments.

AlN

AlN is an interesting alternative for GaN templates. High thermal stability of AlN

(up to around 1800 ℃ [83]) allows for the increase of growth temperature. The main

drawbacks are problems with polishing of AlN substrates and lattice mismatch to GaN

that equals 2.5% [84]. The American company HexaTech manufactures single crystalline

AlN wafers, which are mostly used as base for optoelectronic and high-power electronic

devices, though [85]. AlN wafers are produced also in Leibniz Institute for Crystal

Growth in Berlin (IKZ).

2.3.2. Growth modes

There are three main modes distinguished in the area of epitaxy, i.e. Frank-van der

Merwe (FM, layer by layer), Stranski Krastanov (SK) and Volmer-Weber (VW) [86].

The occurrence of a certain epitaxial mode depends on the misfit between substrate and
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epitaxial layer, and the thermodynamic driving force – minimization of the total free

energy G, by changing the surface energy ∆γ.

∆γ = γL + γi − γS (8)

where: γS is the surface free energy of the substrate, γi is the free energy of the interface

and the surface free energy of the layer is denoted as γL. When ∆γ > 0, thus γS < γL+γi,

then VW mode takes place. Formation of three dimensional (3D) islands or clusters is

observed that is typical for GaN growth on sapphire [87]. Because of the large lattice

mismatch and large γi between sapphire and GaN, random nucleation of islands all over

the substrate is expected. Initial 3D mode can be transformed to 2D, thanks to the

growth of LT GaN and subsequent annealing.

In spite of relatively smaller lattice mismatch between GaN and SiC (3.4%), direct

growth of GaN on SiC follows the VW mode as well [88]. In case of ∆γ ≤ 0, hence

γS ≥ γL + γi, FM growth mechanism is observed, which is expected to result in flat

layers of high structural perfection [86]. In heteroepitaxy, after exceeding a certain

critical thickness of the growing film, layer-by-layer growth can switch to VW mode.

This two-step SK mode is treated as an intermediate one between 2D and 3D mode,

following FM mode in the initial phase and then continuing through the VW mode to

release strain that comes from the lattice misfit. While considering the total energy

change ∆γ of thicker layers, an increase in specific free interface distortion energy Ed has

to be taken into account.

For the first few layers: Ed ≈ 0, hence ∆γ ≤ 0 and γS ≥ γL+γi+Ed, whereas for thicker

films Ed > 0, thus ∆γ > 0 and γS < γL + γi + Ed. The controlled SK mode in strained-

layer epitaxy is used to form GaN/ AlN quantum dots [89, 90, 91]. The structural

properties of the epi-layers such as perfection, flatness and interface abruptness depends

directly on the growth mode. Constant efforts of numerous researchers to govern the

GaN growth mode resulted in techniques and approaches like: misorientated substrates

to promote step-flow growth mode [92], AlN buffer layer [93, 3], deposition of LT GaN

nucleation layer [94], thermal annealing of LT layer [95] , etc.

22



Chapter 3

Nitrogen plasma

Plasma is a particle system containing free charged particles that move in random direc-

tions. On the average plasma is macroscopically neutral, albeit locally charged. Quasi-

neutrality of plasma means that total density of electrons and negative ions nearly equals

density of positive ions. Plasmas have been often denoted as the fourth state of matter,

ever since this term was coined by W.Crookes in 1897 [96]. The fact is that they con-

stitute most of the visible matter in our universe. [97] The following chapter discusses

prerequisites for breakdown of gases in the microwave (MW) field and further interac-

tion of plasma with incoming electromagnetic (EM) energy (Section 3.1). Subsequently,

some fundamental classifications of plasma along with its chosen basic parameters are

presented (Section 3.2). In Section 3.3 excited states of nitrogen in nitrogen plasma are

discussed, whereas Section 3.4 is devoted to application of optical emission spectroscopy

(OES) in plasma characterisation. It is intended to show OES assistance in understand-

ing processes taking place during microwave plasma enhanced vapour growth of GaN.

The last Subsection 3.4.1 focuses on molecular spectra and their origin.

3.1. Power absorption in the microwave field

The condition for MW breakdown of gases is given by

Eb = E0√
2

= Ẽ (9)

when the root mean square (rms) value of the microwave electric field Ẽ reaches the

breakdown electric field Eb. The amplitude of the MW radiation is denoted as E0. For
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3. Nitrogen plasma

an unmagnetized plasma, the frequency-independent effective electric field Eeff is defined

as

E2
eff = Ẽ2 υ2

c

ω2 + υ2
c

(10)

where υc is the electron-neutral collision frequency and ω is the angular frequency of the

EM field [98]. It can be shown, that once MW breakdown of gas occurs, plasma can be

sustained by lower electric fields. The power absorption per volume Pabs/V by plasma

in a MW field is given by the equation:

Pabs
V

= ne
e2

meυc

υ2
c

ω2 + υ2
c

E2
b (11)

where ne is the electron density, e and me are the electron charge and the electron mass,

respectively. According to Equation 11, power absorption is the function of υc, having a

single maximum. [99, 100] This single maximum corresponds to the minimum value of

MW breakdown electric field, visible in Fig. 3.1.

Figure 3.1.: Breakdown electric field of air against pressure [101]

The above breakdown electric field Eb curves in the function of pressure are the high

frequency analogies of the Paschen curve for DC discharges. Paschen’s law describes the

breakdown voltage between two electrodes in a gas as a function of pressure p and gap

length d
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3.1. Power absorption in the microwave field

Vb = Cpd

ln( Apd

ln(1 + 1
γ
))

(12)

where Vb is the breakdown voltage in volts, A and C are gas-specific constants of

Townsend’s first ionization coefficient, and γ is a secondary electron emission coefficient

[98]. For the plane parallel geometry, the breakdown electric field equals

Eb = Vb
d

(13)

In case of high frequencies one can show by solving a continuity equation that a break-

down electric field in unmagnetized plasma has the following dependency [98]. At high

gas pressures the critical electric field for breakdown is directly proportional to the neu-

tral gas pressure p

Eb ≈ C1p (14)

where C1 is a constant. Whereas in the collisionless regime of low background pressure

p, the dependency of Eb on p can be written as

Eb ≈
C2

Λdifp
(15)

where C2 is a constant and Λdif is the characteristic diffusion length. [98] High electric

fields (compare Fig. 3.1: Eb = 20 kV/m for air, at around 4 mbar) are required for

reasonable power absorption and therefore plasma ignition, because of a small initial

electron density ne in plasma. As soon as ne increases, and it can be shown that elec-

tron density increases exponentially during MW breakdown, even reduced electric fields

provide high power absorption by plasma [100]. However, interaction between incoming

electromagnetic waves and plasma is limited to a small, outer region of plasma – the

‘skin’. Efficiency of electromagnetic power coupling into plasma depends on the relation

between the frequency of electromagnetic waves ω and the plasma frequency ωpe. The

latter is defined as [99]
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3. Nitrogen plasma

ωpe = ( e
2ne
ε0me

)1/2 (16)

where ε0 represents the permittivity of vacuum, ne is the electron density, e - the charge

of an electron, me - the electron mass. If ω is below the ωpe, then the incoming wave is

damped and partially re-radiated by the electrons in the outer layer of plasma. Although,

owing to the skin effect small penetration of plasma takes place. For a high collision rate,

when υc � ω the skin depth δs is given by [99]

δs = 21/2c(ε0meυc
e2neω

)1/2 (17)

where c is the speed of light. However, if ω is above the ωpe, the incident radiation is

propagated through plasma, practically without attenuation or reflection. One can thus

define the critical electron density nc, above which the incident electromagnetic wave will

be reflected [98]

nc = ω2meε0

e2 (18)

The so-called cut-off density at 2.45 GHz is about 7.45× 1016 electrons/m3.

3.2. Plasma classification

The fundamental classification of the gas discharge plasmas for local thermal equilibrium

(LTE) plasmas and non-local thermal equilibrium (non-LTE) plasmas reflects tempera-

ture of species in plasma. LTE plasmas known also as thermal plasmas are characterised

by equal temperature of electrons (Te) and heavy particles (Tg) Te ≈ Tg, and high

electron density (1021 − 1026 m−3). On the contrary, non-LTE plasmas have lower

density of electrons (< 1019 m−3), which are much hotter than the heavy plasma species,

Te � Tg. Typically, the pressure in the plasma is a decisive factor in this subdivision.

At high pressures, frequent collisions among the plasma species cause efficient energy

transfer between electrons and other particles, thus leading to equal temperatures of all
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3.2. Plasma classification

plasma species. On the other hand, when pressure is low enough (i.e. long collision

free path), collisions occur seldom, and hence the energy transfer from fast electrons to

heavier particles is much smaller. This results in Te being much higher than Tg.

Figure 3.2.: Temperature of plasma against pressure [102]

Dependence of plasma temperature under stationary discharge conditions on pressure is

depicted in Fig.3.2. Translational energy distribution among charged species is described

by temperature Ti. [103, 102, 104, 105]

Non-LTE plasmas are not restricted only to low pressure regimes. Owing to the fact

that thermal equilibrium is obtained after a certain time that means a certain number

of collisions, it is possible to sustain a non-equilibrium discharge at higher pressures

[104]. Distance between the electrodes or the length of the discharge is an additional

factor influencing the hot and cold plasma division. Dielectric barrier discharge and glow

discharge are examples of non-LTE plasmas working under atmospheric pressure. [103]

The degree of ionization x is defined as the ratio of charged carriers n to the total

number of atoms/molecules in plasma (n+ ng)

x = n

n+ ng
(19)

where: n – density of charged particles, ng – neutral particle density. Based on the value

of the degree of ionization, plasmas can be divided into fully ionized plasma (x ≈ 1) and
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partially ionized plasmas (x 6= 1). Even very weakly ionized gases (x = 10−4 – 10−6)

already behave like plasmas. When plasma is in LTE or close to this state, its transition

from a neutral gas to the fully ionized plasma can be illustrated by the Saha equation

[98].

There are two types of electric carrier - neutral collisions that transpire in plasma.

Elastic collisions manifest themselves by the exchange of momentum between interacting

particles without excitation taking place, whereas inelastic collisions result in electron

excitation processes. The mean free path λ is the average distance covered by a relatively

fast-moving particle, such as an electron or ion, between two successive collisions. It

depends on the neutral particle density ng and the collision cross section σc of the specific

interaction [106]

λ = 1
ngσc

(20)

Dividing the mean free path by the charged particle velocity v, the mean time τ between

collisions is determined

τ = 1
ngσcv

(21)

Averaging over all of the Maxwellian velocities of the charged particles, the collision

frequency υc is given by

υc = 1
τ

= ngσcv (22)

Charged particles within plasma interact with each other by means of Coulomb forces.

In consequence, one can speak about charge separation and a Debye sphere is a volume

outside which charges are electrically screened (i.e. ion electric field is damped by mobile

charge carriers in its surroundings). The radius of a Debye sphere is denoted as the Debye

length λD – the length of field screening. When ions are much colder than electrons, then

formula for the Debye length reads [98]

28



3.3. Excited states of nitrogen

λD = (ε0kBTe
e2ne

)1/2 (23)

where: kB – the Boltzmann constant, Te – the temperature of electrons, ne - the electron

density.

3.3. Excited states of nitrogen

Nitrogen plasmas may usually contain several types of reactive species, including atomic

N, excited molecular N2 and nitrogen ions, like N+
2 . Plasma composition depends heav-

ily on its parameters and excitation method, i.e. DC discharges, pulsed DC discharges,

dielectric barrier discharges DBD, RF, ECR, MW discharges, electron beam discharges,

etc. [102]. For instance, ratio of atomic nitrogen to excited molecular nitrogen in-

creases when the power of RF plasma source implemented for MBE growth increases

[107]. Iliopolous et al. [108] investigated concentration of nitrogen atoms and excited

molecular nitrogen in RF plasma versus nitrogen carrier gas flow and the coupled RF

power. The concentration of nitrogen atoms was increasing with the RF power, while

being unaffected by the change of the nitrogen gas flow. Yet, the concentration of excited

molecular nitrogen was increasing with both parameters. Agarwal et al. [109] showed

how composition of RF inductively coupled plasma (ICP) alters with pressure. In the

pressure range below 1.3 mbar, excited nitrogen molecules dominate, while at higher

pressures nitrogen atoms are the prevailing active species. Hughes et al. [110] compares

the output of a RF ICP source and an electron cyclotron resonance (ECR) plasma source

under MBE growth conditions of GaN. It was concluded that ECR plasma was rich in

excited molecular nitrogen of 2nd-positive series and nitrogen molecular ions. The sec-

ond positive system (SPS) of molecular nitrogen is comprised of fully allowed transitions

from the electronic state C3Πu to the lower electronic state B3Πg, in the UV and visible

range of 280 – 545 nm [111] (see also Appendix D). On the contrary the ICP RF source

produced mainly atomic nitrogen and 1st-positive series of excited molecular nitrogen,

resulting in the growth of better quality GaN films. The first positive system (FPS) of
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3. Nitrogen plasma

molecular nitrogen includes transitions from the electronic state B3Πg to the electronic

state A3Σ+
u , emitting light in the approximate region between 500 and 2500 nm [111].

Excited nitrogen species, with energy above the ground-state molecules, allow for the

growth of GaN in the meta-stable growth region [112]. The reaction of Ga with nitrogen

is reversible and it is governed by the competition between the forward reaction leading

to the growth of GaN and the opposite process of GaN decomposition (Eq. 24).

Ga+ 1/2N2 ↔ GaN (24)

The role of the excited nitrogen species is to provide enough energy to form GaN. By

applying sufficiently high rate of active nitrogen species incoming at the growing surface,

it is possible to prevail its decomposition. In this respect, relatively high kinetic barrier

of ∼ 2eV [12] for GaN decomposition is favourable. Considering potential energy of

reactive nitrogen, it is to note that the excited neutral molecular nitrogen, the ionized

molecular nitrogen and the atomic nitrogen present levels of potential energy above the

one necessary to form GaN (Fig. 3.3), since the total energy barrier for GaN synthesis

under typical MBE conditions is around 4 eV (kinetic barrier of ∼ 2eV and Gibbs free

energy of 1.9 eV).

The reverse reaction is limited by the high kinetic barrier, around 200 kJ/mole (2 eV/atom),

catalytically decreased by the action of Ga, though [45, 113]. The change of the Gibbs

free energy of GaN formation depends on the reaction path, on the growth conditions

etc. For instance, Karpinski and Porowski [12] calculated the standard Gibbs free energy

change of the reversible reaction (Eq. 24), based on the experimentally measured equi-

librium temperature and pressure of a solution of N2 in Ga under high nitrogen pressure.

Calculated values were between 0.3 eV and 1.2 eV, depending on the temperature.

3.4. Optical emission spectroscopy

Optical emission spectroscopy (OES) stands for one of the most established approaches

for plasma diagnostics. It was developed in the decline of the 19th century and nowadays
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Figure 3.3.: Energy levels of excited nitrogen and energy barrier for GaN synthesis [112]

it is used to get insight into plasma composition and parameters. OES together with

supplementary absorption spectroscopy are very common techniques, utilised not only

in the fundamental research, but also in plasma processing and technology [114, 115].

In the OES electromagnetic radiation is recorded, spectrally resolved and further inter-

preted, based on universally available databases of spectral lines for elements and bands

for molecules [116, 117, 118]. This is the most straightforward method of plasma charac-

terisation, as only one port is needed for conducting measurements. OES is completely

non-invasive, contrary to a Langmuir probe [119]. This in-situ technique does not come

into contact with plasma and it is not affected by the presence of DC potentials or RF

fields, which is definitely beneficial in the case of inductively heated reactors and mi-

crowave discharges. Additionally, it gives more freedom in the plasma source design.

Spectra recorded by OES, even those with a moderate resolution, can quickly provide

information on the type of species present in the discharge. Their identification is pos-

sible, provided that they emit radiation in the range of the installed detector. When

comparing recorded lines (for atoms) or bands (for molecules and ions) with wavelength

tables, plasma composition can be determined, provided a suitable model is used. Lines

coming from higher orders of diffraction are suppressed by installation of an appropriate
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3. Nitrogen plasma

filter. When characterising nitrogen plasma interaction with Ga vapour, the following is-

sues should be taken into consideration: the rotational and vibrational temperatures, the

gas temperature, presence of GaN molecules in vapour and plasma composition. They

can be resolved by the careful study of emission spectra, allowing for a determination of

plasma parameters. The gas temperature can be obtained twofold, either by the preci-

sion measurement of the line width or by the analysis of rotational lines of a vibrational

band of a diatomic molecule. The first method assumes that the dominant broadening

mechanism is the Doppler broadening and the Balmer line Hα is a preferred choice for

measurement. The latter one is based on the comparison of measured vibrational band of

N2 with simulation of its spectra. Calculated rotational temperature Trot in the excited

state equals Trot in the ground state ergo the gas temperature, if two following conditions

are fulfilled. Firstly, the Franck-Condon principle is valid thereof the rotational quantum

number is conserved during the electronic transitions. Secondly, the rotational levels of

the ground state are populated as a result of heavy particle collisions. [120] Existence of

GaN molecules in vapour has not been confirmed and reported so far, and to the author’s

best knowledge there is no spectroscopic data available. Theoretical investigations by

Ueno et al. [121] predict X3Σ− to be the ground state and (1)3Π the first excited state,

having very close energies. Correct analysis of the recorded molecular spectra is thus

of an utmost importance and the next subsection provides an insight into the basics of

molecular spectroscopy, including notation used in this field.

3.4.1. Molecular spectra

The most commonly observed molecular spectra consist of broad wavelength regions, so

called ‘bands’. The bands usually have at one end a sharp edge, where the intensity falls

rapidly to zero – it is denoted as a band head. At the other end intensity falls off slower.

The bands are said to be degraded to the violet or the red, when this gradual fall off

intensity takes place towards shorter or longer wavelength, respectively. The molecular

bands arise as the result of excitation of the additional degrees of freedom that molecules

exhibit compared to a single atom, namely the vibrational and rotational motion of the
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excited molecule (compare Fig. 3.4). Based on the Born-Oppenheimer approximation

[122], energy components of the excited molecule can be treated separately

E = Eel + Evib(nvib) + Erot(J) + Etrans (25)

where Eel is the electronic energy, Evib(nvib) is the vibrational energy, nvib - vibrational

quantum number, Erot(J) is the rotational energy, J - rotational quantum number, and

Etrans is the translational energy, being so small that usually neglected.

Figure 3.4.: Diatomic molecule - degrees of freedom

The vibrational and rotational features of the spectrum can be considered as separate

contributions superimposed on the overall electronic transition between molecular states.

A useful model for vibrational excitations is the quantum harmonic oscillator (Fig. 3.5),

which has energy levels given by

En = (nvib + 1/2)~ωosc (26)

where nvib is the vibrational quantum number, an integer, and ωosc corresponds to the fun-

damental frequency of the simple harmonic oscillator. Transitions in which ∆nvib = −1

lead to an emission spectrum of equally spaced lines. Vibrational spectra are observed

in the IR region.

The rotational excitations can be approximated by a model of a rigid rotator. In this

case the optical emission is associated with transitions between the quantized energy
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3. Nitrogen plasma

Figure 3.5.: Quantum harmonic oscillator [123]

levels of a rigid rotator. For a diatomic molecule

Erot = ~2J(J + 1)
2I (27)

where ~ – reduced Planck constant, J – the rotational quantum number, I – the moment

of inertia of a diatomic molecule. The energy levels of the rotational states are not

equally spaced. The rotational transitions typically produce spectra in the microwave

region (see Fig. 3.6).

Molecular term symbol for diatomic molecules

A molecular configuration is a specification of the occupied molecular orbitals in a

molecule. For instance, in case of N2, it is denoted as

1σ2
g1σ2

u1Π4
g2σ2

g (28)

where σ and Π are the molecular orbital symmetry labels (shells), denoting the type of

interaction between atomic orbitals. The g/u subscript applies only to molecules with

the centre of symmetry and denotes the symmetry with respect to inversion through
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(a) (b)

Figure 3.6.: Rotational transitions [124]

Figure 3.7.: Electronic, vibrational and rotational transitions [123]

the centre of symmetry (g - symmetric, u – antisymmetric) (Fig. 3.8 a). Depending on

the arrangement of valence electrons, a certain molecular configuration may have several

different states. A molecular term symbol classifies these states, providing information

about the total spin and orbital angular momentum of the molecule. It has a general

form
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3. Nitrogen plasma

2S+1|Λ|+/−g/u (29)

where S is the total spin angular quantum number for the molecule, formed from the

individual electrons’ spin quantum numbers, Λ is the projection of the orbital angu-

lar momentum L along the internuclear axis (for |Λ| = 0, 1, 2, 3 . . . the notations are

Σ,Π,∆,Φ . . . respectively). The +/− superscript applies only to Σ states and denotes the

symmetry with respect to reflection in a plane containing the internuclear axis (Fig. 3.8

b). Ω is the projection of the total angular momentum along the internuclear axis (Fig. 3.8

c).

(a) g/u (b) +/- (c) momentum projection

Figure 3.8.: Meaning of a) subscripts g/u, b) superscripts +/- and c) quantum numbers [125]

The ground state of nitrogen molecule is described by the molecular term 1Σ+
g , because

Λ = 0 therefore a Σ term and since S = 0 (all electrons paired), hence a singlet term.

Nitrogen, electronic states

Curves of the potential energy versus internuclear distance are the usual way of presenting

the energy levels of diatomic molecules. The convention is that the ground state is

denoted as X, the excited states, which have the same multiplicity (2S + 1) as the

ground state, as A,B,C, etc., the excited states of different multiplicity than the ground

state as a,b,c,... etc. However, the only exception to this rule is N2, where A, B, C, ...

designate the excited triplet states and a, b, c, ... the excited singlet states [117]. Curves
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for nitrogen are depicted in Fig. 3.9.

Figure 3.9.: Energy levels of nitrogen, based on [190]
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Chapter 4

Plasma enhanced methods for GaN

growth

In Chapter 4 topic of plasma enhanced methods for GaN growth is discussed. As it is

shown, enhanced reactivity of the NH3 or nitrogen plasma can be successfully employed

for the challenging synthesis of nitrides. Plasma enhanced growth methods using nitrogen

instead of NH3, benefit from higher growth rates. Furthermore, uncontrolled production

of hydrogen from NH3 can be eliminated from the growth process. Due to the thermal

instability of many nitrides, it was mostly cold plasma that has drawn the attention of

the scientific community. Combination of high energy, sufficient to activate the inert N2

molecule and low temperature of plasma gas has been harvested in various techniques

to grow GaN. Sections 4.1 and 4.2 are devoted to plasma-assisted epitaxy of GaN and

plasma enhanced solution growth, respectively. The last part of the chapter concentrates

on dielectric barrier discharge (DBD), implemented by our research group for PVT-based

synthesis of single crystalline GaN.

4.1. Plasma assisted vapour epitaxy

In the vapour phase epitaxy, films are grown from gaseous precursors. In the case of

most contemporary growth techniques of GaN from the vapour phase, precursors for Ga

and active nitrogen need to be used. Typically GaCl (halide vapour precursor for Ga)

and ammonia (hydride precursor for nitrogen) are utilised in halide vapour phase epi-

taxy (HVPE), metalorganic chemical vapour phase epitaxy (MOVPE) takes advantage

of trimethylgallium (TMG) and NH3, molecular beam epitaxy (MBE) employs NH3 as
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4. Plasma enhanced methods for GaN growth

well, whereas flow of Ga vapour comes from the evaporation of liquid Ga in the effu-

sion cell. Selected results of the GaN growth by plasma assisted molecular beam epitaxy

(PAMBE), plasma assisted metalorganic vapour phase epitaxy (PA-MOVPE) and remote

plasma enhanced chemical vapour deposition (RPECVD) are discussed in the following

section. PAMBE is nowadays a well-established method to produce high-quality single

crystalline thin-films [127, 128], AlGaN/GaN heterostructures for high-electron-mobility

transistor (HEMT) devices with a two-dimensional electron gas (2DEG) confined within

the structure [129, 130], light-emitting diodes (LEDs) and nitride-based laser diodes

(LDs) [131, 132]. Within the range of pressures used in MBE (10−5 – 10−6mbar), the

average mean free-path of excited nitrogen is longer than 1 m [118], so that a remote

plasma source (installed much closer than 1 m to the seed) is able to deliver excited nitro-

gen species to the growth zone. Electron cyclotron resonance (ECR) microwave plasma

sources [133] fell into desuetude in the case of PAMBE, replaced by radio frequency (RF)

plasma sources that provide higher quality of GaN films. Supposedly the nitrogen ions

(first negative series) produced by ECR, were responsible for deterioration of the surface

quality, reported for GaN growth by PAMBE [110].

Reflection high-energy electron diffraction (RHEED) system enables a real-time mon-

itoring of crystal growth, which takes place in a carbon- and hydrogen-free environment.

Low growth rate of few µm/h (typically below 3 µm/h) is counterbalanced by the un-

precedented control of atomic layer by layer growth, smooth surfaces and sharp interfaces

[127, 128], and low threading dislocation density (TDD) (104 - 106 cm−2 depending on

substrate quality) of the grown layers.

PA-MOVPE derives from MOVPE, which has become a major technology for growth

of III-V based optoelectronic devices, owing to the progress made in the growth of device-

quality GaN epilayers on sapphire and the two-step growth technique, where a LT buffer

layer was followed by a HT layer growth [134, 135]. MOVPE is normally operated at

moderate pressures from around 10 to 970 mbar. In the epitaxial growth of GaN TMG

and NH3 are used as precursors for Ga atoms and N atoms, respectively [136]. When

employing PA-MOCVD for GaN growth, either NH3 is excited by plasma or NH3 is
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4.1. Plasma assisted vapour epitaxy

Figure 4.1.: Schematic drawing of a typical PAMBE system [132]

replaced by nitrogen plasma that serves as a source of reactive nitrogen. Hassan et

al. [137] reported on low-temperature (200 ℃) grown GaN of mixed amorphous and

microcrystalline structure in NH3/N2 atmosphere on Si (111), using 2.45 GHz ECR

PA-MOCVD system, whereas Lee succeeded in realization of metal-semiconductor-metal

(MSM) photodiodes based on GaN films on Si (111) grown by the same ECR PA-MOCVD

method [138]. ECR-heated plasma spanned the horizontal quartz reactor up to the

substrate heater (see Fig. 4.2).

Ihashi et al. [139] implemented microwave (2.45 GHz) plasma in the MOCVD setup

(Fig. 4.3). NH3 gas was replaced by a mixture (1:1) of nitrogen and hydrogen. GaN

stoichiometric films on fused silica were obtained at a total pressure of 6.5 mbar. Influence

of the substrate position in the plasma on the surface temperature of the substrate was

investigated and reported.

In the early work of Choi et al. [140] the RPECVD method was investigated as an

alternative for MOVPE. Pressure in the reactor equalled 1.3 mbar. Schematic drawing of

the setup is presented in Fig. 4.4. The RF coil, surrounding the plasma tube, was used
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4. Plasma enhanced methods for GaN growth

Figure 4.2.: ECR plasma-assisted MOCVD system [138]

Figure 4.3.: MW plasma enhanced MOCVD setup [139]

to excite either NH3 or N2 diluted with helium (He) and subsequently injected upstream

into the deposition tube. The role of He was to provide energetic electrons and long-

lived metastable atoms. Growth experiments at temperatures in the range 315 – 500 ℃

resulted in thin polycrystalline GaN films (exact thickness not revealed) on sapphire

(0001) and (111) silicon.

Nagata et al. [141] proposed to replace a conventional NH3 source of N with nitrogen

plasma from barrier discharge, succeeding in the growth of single crystalline GaN at the
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Figure 4.4.: RPECVD setup [61]

near atmospheric pressure. The modified MOVPE system is presented in fig. 4.5. Pure

N atmosphere was used, since He discharge is known to produce at atmospheric pressure

undesired corona discharges and glow discharges. Nitrogen plasma was generated locally

at the seed, within a 1 mm thick uniform gap, formed by two parallel electrodes. Alter-

nating pulsed voltages (3-7 kV) were applied to the electrodes at a frequency of 30 kHz.

Process resulted in 300 nm thick GaN film grown on (0001) sapphire at a pressure of

400 mbar [141].

4.2. Plasma assisted solution growth

Ozawa et al. [142, 20] proposed solution growth of GaN with 2.45 GHz MW plasma

assistance at moderate pressure. In this approach atomic nitrogen reacts with Ga on

the surface of the metal, forming Ga-N clusters, which are then transported by thermal

convection flow to the bottom of the crucible. The actual growth of GaN takes place at

the bottom of the crucible. The growth setup is depicted in Fig. 4.6.
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Figure 4.5.: Modified MOCVD setup. Barrier discharge as a source of reactive nitrogen [141]

Figure 4.6.: Schematic drawing of the growth setup [142]

Under pure nitrogen plasma only polycrystalline GaN was synthesized at pressures of

2 - 4 mbar and temperature of 610 – 700 ℃. By using the plasma mixture of nitrogen

and hydrogen (50:50), the crystalline GaN film was grown on the sapphire substrate at

the average rate of 0.6 µm/h. Hydrogen plasma prevented high nucleation density at the

surface of Ga melt by removing Ga oxide, thus allowing for growth of single crystalline

material. H2 may also lower kinetic barrier on the seed by saturation of dangling bonds

[143].

Plasma assisted solution growth method of nitrides is under development in the Leibniz
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Institute for Crystal Growth. Although it is primarily focused on growth of indium nitride

(InN), prerequisites for growth of both aluminium nitride (AlN) and GaN are being taken

into consideration as well. Combining the high-pressure solution growth of GaN [144]

and the industrially ubiquitous steel nitridation by plasma [145], a novel approach to

synthesize AlN, GaN and InN has been proposed. Plasma activated nitrogen should be

dissolved in a molten metal, transported by thermal convection flow and diffusion to the

substrate and finally form III-N compound. The substrate is not in direct contact with

plasma, thus substrate damages by highly energetic plasma species and the unintentional

increase of its temperature are hindered. High flow of the reactive ionised nitrogen and

high temperature gradient in the melt are to be obtained by applying a negative voltage

(so called bias) at the melt surface. Real-time control of the temperature gradient in the

melt and the intensity of the ion current would allow for high growth rates. Inductively

coupled plasma source (ICP) has been implemented into the resistively heated reactor.

Current experiments are conducted with In- melt at Tgrowth of about 700 ℃ within the

pressure range of 0.01 – 1 mbar. [65]

4.3. Physical vapour transport with barrier discharge in

IKZ

Dielectric barrier discharges (DBD), called also silent discharges [146], have been in use

since 1857, when Siemens [147] employed DBD for the generation of ozone from air or

oxygen. Nowadays these types of discharge have many applications additionally to water

treatment, in modern plasma display panels [103], pollution control, the pumping of CO2

lasers, the production of methanol from methane/oxygen, various thin film deposition

processes, etc. [103, 146, 148]. The DBD discharge is generated between two electrodes

with a dielectric layer (made of glass, quartz, ceramic material or polymer) placed in be-

tween. The dielectric barrier limits the discharge current thus avoiding the arc transition

and distributes the micro-discharges over the entire electrode surface area, ensuring the

homogeneous treatment [105]. Dimension of the gas-filled gap between the electrodes is
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usually around 0.2 – 5 mm. A voltage of 1 - 100 kV with the repetition frequency of

50 Hz – 1 MHz is applied to the electrodes, in order to sustain the discharge. DBDs are

typically operated at pressures 0.1 – 1 bar. [146, 148, 99, 104]. Our research group has

designed and employed a DBD device in the PVT growth of GaN crystals. The main goal

of the research was to develop a plasma source capable of long-term stable operation un-

der proposed GaN growth conditions (Tgrowth = 1000 ℃ - 1200 ℃, p = 200 – 800 mbar).

DBD device working in the vicinity of the seed should provide enough energy to activate

nitrogen and concurrently prevent formation of Ga droplets in the vapour. Therefore,

use of the aggressive and thermally unstable NH3 would be no longer necessary. When

designing a DBD, few requirements were taken into the consideration. The 2D symme-

try of an electrode array would provide easy installation of a plasma source inside the

reactor. The dimensions were limited by the maximum size of the seed, which was set to

1 inch, owing to the costs of materials and reactor parts. The distance between the elec-

trodes and the dielectric material should be minimized, to avoid sparks at lower pressure.

The choice of the material system for the plasma source was of an utmost importance.

Tables 4, 5 and 6 in Appendix A display lists of materials, which were under review

for the electrodes and dielectric barrier. Consultations with manufacturers of ceramics

and preliminary experiments with some test-structures (Fig. 4.7) lead to the following

conclusion. Molybdenum (Mo) wire in an aluminium oxide (Al2O3) tube is the most

suitable building element of a DBD device, operated under the growth conditions for

GaN in the PVT method. Mo has a high melting temperature Tm = 2623 ℃, relatively

low sputtering rate of 421 Å/min, it is stable in contact with Al2O3 and presents better

machinability than tungsten (W).

A DBD device applicable for the growth setup is presented in Fig. 4.8. Al2O3 tubes

were securely installed within the Al2O3 ring by means of ceramic glue Aremco Ceram-

abond™ 865 (stable up to 1650 ℃). The Mo wire ends were rounded and welded with

Mo carrier half-rings (one for each voltage polarity).

The source was placed in front of the seed within a distance of 2 mm. The experiment

at Tsource = 1230 ℃, Tseed = 1080 ℃ and p = 400 mbar resulted in a thin textured

46



4.3. Physical vapour transport with barrier discharge in IKZ

Figure 4.7.: a) Coplanar discharge in Si3N4 (Si3N4 becomes conductive at 1400 ℃), b) DBD
with Cu-wires in Al2O3 at RT, c) Test structure after operation at 1100 ℃

Figure 4.8.: DBD source mounted into the growth setup

GaN layer grown on a bare sapphire substrate within 4 h, with a growth rate at the

order of 10 µm/h. Furthermore, strong Ga lines and temperature dependent nitrogen

spectra with excitation in the 3 - 4.2 eV range were revealed in the OES spectra [60].

GaN was confirmed in the deposit by XRD measurements, thus it was shown that the

implemented setup is capable of growth of GaN films. However, DBD assisted PVT

growth of GaN has some inherent limitations. Electrodes are an obstacle in front of

the seed, demanding more effort for homogeneous growth, either in the design of the

DBD itself or by rotation of the seed during the growth. As the T increases, the barrier

ceramics becomes conductive, limiting the maximum growth temperature. The small

distance to the seed limits layer thickness without controlled seed-holder motion. In

order to overcome the above mentioned problems, development of a microwave plasma
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source was initiated. The MW plasma approach seemed more promising for GaN growth,

since it is able to supply more power at higher pressures, which in turn would result in the

increased density of excited nitrogen, but also gas temperature. One goal of the research

described in the dissertation was to learn, how this negative effect of enhancing GaN

decomposition could be compensated by the supply of higher concentration of excited

nitrogen.
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Chapter 5

Experimental - MW plasma enhanced

growth

Starting from the system outline of the main components, MW plasma generation system

and growth setup are described. It follows the improvement of plasma stability, Ga

evaporation, and deposition experiments as optimisation tool and finally, seeded growth

of GaN single crystalline layers. Process stability depends essentially on stability of MW

plasma and is one of the requirements for long-time growth experiments, while continuous

supply of Ga into the growth region is another one. Therefore, the study on Ga vapour in

the growth setup is described. Furthermore, stability and perfection of seeds is stressed

as prerequisite for perfect layer growth. Finally, outcome of the deposition and growth

experiments is discussed and summarized to draw conclusions out of experimental data.

5.1. Outline of the system

This section concentrates on the main element of the system, namely a stainless steel

reactor, giving concurrently a description of the whole system, though.

Experiments were conducted in the computer-controlled system, custom designed for

the plasma enhanced growth of GaN from gas phase. The main components of the system

are: stainless steel reactor, growth setup with RF heating, gas flow and pressure control,

MW plasma generation system, network analyzer (NA) for resonance frequency tuning

and optical emission spectrometer (OES) for plasma characterisation. The system is used

in two different configurations, depending on process stage. Configuration nr 1 is used

for preparation of plasma ignition – the adjustment phase, whereas configuration nr 2
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is used for ignition and during plasma operation. Figure 5.1 presents the layout of the

system in the configuration nr 1 (switch in A position) and configuration nr 2 (switch

in B position). The main components are shown also pictorially in Fig. 5.2, in the real

working environment.

Figure 5.1.: A - configuration nr 1, B - configuration nr 2

The main component of the system constitutes the stainless steel reactor manufactured

by Systec System- und Anlagentechnik GmbH & Co. KG. The remaining elements of

the system are either connected to the reactor or incorporated into it. This water-cooled

chamber is equipped with a vacuum line, containing a backing pump and a diffusion

pump. N2, H2, and Ar are provided by a gas supply line. N2 is additionally purified in

ALPHAGAZ PURIFIER O2-FREE before reaching the reaction chamber. The temper-

ature profile in the source and growth area is established by means of the water-cooled

induction coil, operated at 10 kHz [149]. It is placed in the middle of the reactor (see

Fig. 5.2) and it is vertically movable. The growth setup, surrounded by the induction

coil, is assembled on the quartz support (Fig. 5.2).

The resonance cavity belongs to the growth setup as well as to the MW plasma genera-

tion system itself. The MW generator is located outside the reactor and MW power is

transmitted along a standard R-26 rectangular waveguide line, which is led through a

quartz window into the reactor. A special R-26 part, made of molybdenum, is installed

between two water-cooled flanges, to transfer microwaves into a coaxial line, which ends
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Figure 5.2.: Main system components a) outside the reactor and b) inside the reactor

in the growth setup. This end is connected to the seed-holder and surrounded by the

cylindrical microwave cavity. Optical emission spectrometer (iHR 320 HORIBA Jobin

Yvon) offers in-situ plasma process control. It has an optical access to the growth region

through the front window of the reactor, holes in the isolation felt and in the suscep-

tor. Network analyzer (HP8753C with HP85047A) is used only in the configuration nr 1

(see Fig. 5.1), during mechanical tuning of the resonance cavity, to measure the two-

port S11 parameter. The subsection 5.1.2 discusses the microwave plasma source and

supplementary devices: optical emission spectrometer and network analyzer in details.

5.1.1. Growth setup

This subsection lists all the components of the growth setup and specifies their materials

parameters. Main functions of setup parts are explained. Scheme of the growth setup

is shown in Fig. 5.3, whereas Fig. 5.2 b) depicts growth setup elements in the working
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environment. Furthermore, results of modelling of temperature distribution in the growth

setup, obtained by Virtual Reactor HEpiGaN software, are presented.

The growth setup was arranged to ensure that the following requirements are met:

1. Growth setup allows following growth parameters:

a) temperature of the seed 900 – 1100 ℃

b) temperature of the Ga source 1200 – 1400 ℃

c) total pressure in the reactor 200 – 800 mbar

d) atmosphere of nitrogen,

2. Chosen materials withstand growth process conditions,

3. Growth area is defined by the resonance cavity, built in the growth setup,

4. Seed is mounted inside the resonance cavity,

5. There is a possibility to manually adjust the position of the cavity along the vertical

axis,

6. Microwave nitrogen plasma is ignited inside the cavity and burns in the vicinity of

the seed,

7. Temperature measurement of the Ga source and seed with thermocouple and py-

rometer, respectively,

8. Optical emission spectrometer has an optical access to the growth area,

9. Influence of the setup building materials on the process is minimized.

Taking advantage of the author’s experience in the PVT growth of GaN and of the

knowledge gained by our group in vapour phase growth of SiC [150, 151] and GaN [46],

the growth setup was designed and implemented in the reactor (Fig. 5.3). The growth

setup is placed on the quartz support. Two main segments to be distinguished are: the

Ga source region in the lower section of the growth setup and the growth region in its

52



5.1. Outline of the system

upper one. The Ga source region is kept at temperatures in the range of 1200 – 1400 ℃,

so as to reach the desired Ga vapour pressure in the reactor. Measurements of the Ga

source temperature are done with a thermocouple, type C, suited for measurements in

the range 0 - 2320 ℃. Liquid Ga fills the round crucible, made of sintered graphite

CZ3P20, covered with pyrolytic Boron Nitride (p-BN) layer. The crucible is placed

in the susceptor, which inner diameter is 138 mm and the outer one equals 158 mm.

Grooved channels in its lower part and the opening in its bottom are designed for N2

carrier gas, enhancing transport of Ga vapour into the growth region bordered by the

resonance cavity. The cavity is also the end section of the MW plasma generation system

(see Subsection 5.1.2). Openings in the resonance cavity bottom allow for Ga vapour

supply into the cavity, where the seed is mounted at the top flange (Fig. 5.3). The seed

temperature is set within the range of Tseed = 900 - 1100 ℃. It is measured on the

graphite covered backside of the seed with a pyrometer, IMPAC IP65, which works in

the range of 800 - 2000 ℃.

The most outer component of the growth setup is a graphite isolation felt, composed

of tube, bottom disc and lid, surrounding the other setup parts. A hole in the graphite

tube at the height of the cavity is part of an optical path for OES. By means of a hole

(diameter of 50 mm) in the centre of the top disc, the coaxial waveguide was connected

with the resonance cavity. Six outlets for carrier gas (each of them 14 mm in diameter) are

symmetrically distributed around the centre hole in the insulation lid. Nitrogen carrier

gas enters the growth setup from the bottom, via the inlet located in the very centre

of the base disc of the insulation felt and susceptor. The felt is made of carbon-bonded

carbon fibre (CBCF 15 - 2000), characterised by low thermal conductivity αth [W/m·K].

In nitrogen atmosphere it equals: 0.35 (at 500 ℃), 0.54 (at 1000 ℃) and 1.24 (at 2000 ℃).

Other important parameters are its density ρ = 170 kg/m3 and specific heat capacity

cp = 2100 J/kg·K [152].

The susceptor is made of sintered graphite denoted as CZ3P20 (R6300) with high

emissivity of ε = 0.7. Inductively heated with 10 kHz the penetration depth is about

10 mm. Subsequently energy is transferred by radiation to the growth crucible. By
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Figure 5.3.: Growth setup

stacking of several graphite rings the desired temperature gradient is formed along the

vertical axis of the growth setup. A hole in the susceptor (diameter of 18 mm) serves as

an optical access for OES to the growth region.

An alternative for the above described growth setup is a carbon-free version, without

any graphite element. All the parts have the same dimensions like their carbon-containing

equivalents, though. The outer isolation felt is made of Altraform KVS 184/400 [153],

containing 78% of Al2O3 and 22% of SiO2. Its density equals ρ = 400 kg/m3, whereas

thermal conductivity αth [W/m·K] with 0.19 (at 600 ℃), 0.25 (at 1000 ℃) and 0.33 (at

1400 ℃) is even lower than in case of CBCF 15-2000. Maximum operating tempera-

ture of 1800 ℃ fulfils the requirements for GaN growth. The isolation separating the

Ga source from the growth region, is made of sintered silicon nitride (SSN-Si3N4) with

thermal conductivity of 20 W/m·K (at RT) [154]. The Ga crucible is made of SSN-
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Si3N4 either. A stack of five laser-cut Mo radiation shields serves as a top isolation (Fig.

5.4). The susceptor material is tungsten, with emissivity of ε = 0.07 (at 500 ℃) and

ε = 0.15 (at 1000 ℃). The third version is a growth setup with greatly reduced carbon

content. It comprises the combination of materials from two above described setups,

being more similar to the carbon-free setup, though. The only difference applies to the

outer isolation felt, which instead of Altraform KVS 184/400, is made of CBCF 15-2000.

Such change in arrangement was induced by the fact that during growth experiments

Altraform KVS 184/400 contaminates the reactor with oxygen.

Figure 5.4.: Mo radiation shield

The goal of simulations, done in Hydride Epitaxial GaN Simulator (HEpiGaNSTM),

was to find the proper growth setup configuration and induction coil position, so as to

Tseed would equal 1000 ℃ and simultaneously Tsource would reach 1300 – 1400 ℃.

HEpiGaNSTM belongs to a Virtual Reactor family of two-dimensional (2D) software

tools designed for the simulation of long-term growth of bulk crystals from the vapour

phase. It was primarily designed for modelling of GaN crystal growth by halide vapour

phase epitaxy (HVPE). In this thesis HEpiGaNSTM was exploited for modelling of

temperature distribution in the growth setup. For the global heat transfer inductive

heating, conductive heat transfer in solid materials, where the thermal conductivity

of the materials used in the growth system can be prescribed by the user as a func-
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tion of temperature, and both convective and radiative heat transfer in transparent gas

blocks are considered. Comprehensive description of HEpiGaNSTM can be found on

http://www.str-soft.com.

While temperature of the seed was fixed, the following parameters were optimized:

configuration of graphite susceptor rings, their number and height, the vertical position

of the induction coil and Tsource. The basic growth setup geometry with denoted materials

used for simulations is presented in Fig. 5.5, whereas materials parameters were taken

from the default database of HEpiGaNSTM.

Figure 5.5.: Coil position y = 20 mm

Fig. 5.6 presents the influence of the total height of the upper carbon susceptor on

the temperature field in the growth setup. Coil position is set to 20 mm and pressure to

400 mbar. The upper susceptor contributes in a great extent to the seed temperature.

Without this susceptor, the seed is mostly warmed up by heat convection from the lower

part of the growth setup. Therefore, more energy needs to be transferred into the system

by the induction coil to obtain the desired Tseed = 1000 ℃. It implies an increase of
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Tsource in comparison to the case, when the upper susceptor is installed. In Fig.5.6 a)

Tsource = 1418 ℃, whereas in Fig. 5.6 b) it reaches 1370 ℃. Based on the described

above simulation results, a method to control Tsource by the adjustment of the upper

susceptor configuration was developed. When the seed temperature and the position

of the induction coil are fixed, then Tsource directly depends on the upper susceptor

arrangement. In Fig. 5.6 c) the resulting temperature field is depicted, in the case of

applying the higher upper susceptor configuration (30 mm height).

In Fig. 5.7 the temperature field for two different coil positions is compared. The

graphite susceptor, pN2 and Tseed were the same in both cases.

Figure 5.6.: Height of the upper susceptor: a) 0 mm, Tsource = 1418 ℃, b) 15 mm,
Tsource = 1370 ℃, c) 30 mm, Tsource = 1360 ℃

Fig. 5.7 shows that Tsource decreases from 1175 ℃ to 1070 ℃ with coil position (axial

distance of maximum induction area from the source) increasing from 50 to 100 mm, i.e.

the higher vertical coil position, the lower temperature of the source is. This dependency
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is one of the main disadvantages of the setup heated inductively with only one RF coil.

Two separate induction zones interact with each other, though.

Figure 5.7.: a) Coil position 50 mm, Tsource = 1175 ℃, b) Coil position 100 mm,
Tsource = 1070 ℃

Simulations of the temperature field distribution in the HEpiGaN software facilitated

choice of the initial arrangement of the growth setup. Configuration presented in Fig.

5.6 c) was chosen as the starting point for experiments, with seed temperature of 1000 ℃

and temperature of the source at 1360 ℃. Influence of the burning plasma on the seed

temperature is described in Section 5.2.

5.1.2. MW plasma source

This subsection is focused mainly on the MW plasma source, yet the beginning of the

subsection is intended to give a brief description of the software used for system mod-

elling and network analyzer used for system characterisation. Components of the MW

plasma source and principle of its operation are described. Resonant cavity is marked

out, underlining the choice of appropriate building materials, in terms of their chemi-
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cal stability to high temperature nitrogen plasma. Moreover, results of electromagnetic

modelling of the cavity in CST Microwave Studio software are presented and conditions

for plasma excitation are introduced.

CST Microwave Studior (CST MWS) is software for the 3D EM simulation of high

frequency components. It enables analysis of a wide range of high frequency devices such

as antennas, filters, couplers, planar and multi- layer structures. The following mod-

ules are available within CST MWS, depending on the configuration: Frontend Module,

Transient Solver Module, Transmission Line Matrix Method Solver, Frequency Domain

Solver Module, Eigenmode Solver Module, Integral Equation Solver Module, Multilayer

Solver, Asymptotic Solver Module. CST was used for designing and optimizing the mi-

crowave generation system. Further information on CST MWS software is to be found

on http://www.cst.com/.

A network analyzer (NA) is an instrument that provides RF network measurements.

It characterises the linear behaviour of either active or passive networks, devices or com-

ponents. The HP 8753C model used together with the S-parameter test set HP85047A

allows for measurements either from 3 MHz to 6 GHz or from 300 kHz to 3 GHz in a single

sweep. It provides the capability to measure reflection and transmission characteristics,

including scattering parameters (S-parameters) of two-port devices in either direction

with a single connection. [155, 156] The HP 8753C network analyzer was utilised for

measurements of S11 parameter, belonging to the S-parameters matrix. If we consider

the following two-port network (Fig. 5.8) with a = (a1, a2) as the waves travelling to-

wards the two-port, and b = (b1, b2) as the waves travelling away from the two-port, both

waves are linked by the S-parameters matrix, while the focus was on the S11 parameter.

|b1|2

|b2|2

 =

|S11|2 |S12|2

|S21|2 |S22|2

 ·
|a1|2

|a2|2

 (30)

where:

|a1|2 - power wave travelling towards the two-port gate
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Figure 5.8.: Two-port network

|b1|2 - power wave reflected back from the two-port gate

|S11|2 - power reflected from port1

|S12|2 - power transmitted from port1 to port2

|S21|2 - power transmitted from port2 to port1

|S22|2 - power reflected from port2

The MW plasma source was developed in cooperation with Dr. A. Vodopyanov, from

Institute of Applied Physics in Nizhny Novgorod, Russia. It comprises of remote mag-

netron head, microwave generator, 3-stub tuner, rectangular waveguides, microwave win-

dow, coaxial waveguide, slider and the resonance cavity. The magnetron head 2M266-

M12WJ, delivered by IBF Electronic, produces a 2.45 GHz MW and sends it through

a R-26 waveguide output. The device is water-cooled and equipped with a protection

against reflected MW power [157]. A detector transmits information about the reflected

power to a 3-stub tuner, which minimizes the reflected power by means of three mechan-

ically movable stubs (Fig. 5.16). Control of the 3-stub tuner is realized with HomSoft –

S-TEAM Homer Windows Visualization and Control Software [158], whereas communi-

cation with the MW generator is maintained via CAN Bus and PCAN view application

from PEAK-SYSTEM TECHNIK GMBH. The MW generator is able to operate in con-

tinuous or pulsed mode with maximum power of 3 kW and 4 kW, respectively [157]. The

MW power is transferred in the rectangular waveguide made of aluminium and enters

60



5.1. Outline of the system

the reactor through a 20 mm thick quartz glass MW window, vacuum tight in the reactor

wall. Subsequently, this power is transported inside the reactor by rectangular waveg-

uide, transferred by a home-made R-26 coupler into the coaxial line, which ends in the

resonant cavity, where nitrogen plasma is ignited. Two rectangular water-cooled flanges

cool down the R-26 coupler. Coaxial waveguide consists of two molybdenum tubes and

high-k dielectric tube in between. Alsint 99.7 was chosen to separate inner and outer

conductor electrically, to maintain equal distance between both conductors along the

coax and to prevent plasma formation between them. The physical properties of Alsint

99.7 are listed in the Appendix A, Section A.1. Apart from high volume DC resistivity

at 20 ℃, it has a maximum working temperature of 1700 ℃. On the other hand, its

thermal shock resistance is low.

The cylindrical resonant cavity is the crucial part of the MW plasma source. It defines

not only the place of plasma ignition, but also the growth region. Dimensions and shape

of the cavity were selected to obtain at 2.45 GHz the maximum electric field intensity

just below the seed where the plasma ignition is expected to occur.

Results of modelling done by Dr. A. Vodopyanov, using CST MWS are depicted in

Fig. 5.9.

Figure 5.9.: Electric field distribution in the resonant cavity

The diameter equals 90 mm and the height h is adjustable in the range from 27 mm to

43 mm. Optical access to seed-holder and growth area is possible owing to a pattern of
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holes in the cavity’s wall (Fig. 5.10a)). The hole diameter of d = 2r = 2 mm guarantees

that leakage of MW power from the cavity is not possible. Assuming that conditions for

propagation of MW through the hole in the metal cavity can be approximated by MW

propagation through cylindrical waveguide, one can calculate the lower cut-off frequency

fc of TE ground mode with the following equation

fc = 1.8412
2πr√µε = 1.8412c

2πr (31)

where: c - speed of light, r - radius of the circular cross-section of the waveguide and

1.8412 is the root of the first derivative of a Bessel function. The lower cut-off frequency

for d = 2 mm equals ≈ 87.91 GHz that is much above 2.45 GHz, frequency at which

MW power is transferred into the cavity.

Figure 5.10.: a) cylindrical resonant cavity made of molybdenum foil, b) aluminium resonant
cavity in operation at RT, p = 8 mbar

When choosing material of the cavity, the following requirements were taken into con-

sideration:

1. maximum operation temperature as high as 1500 ℃,

2. resilience to Ga vapour (not alloying with Ga),
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3. resilience to nitridation process by excited nitrogen,

4. high electric conductivity (min. 1 x 106 [Ωm]−1),

5. good machinability,

6. low sputtering coefficient.

Physical data of refractory metals are collected in Tables 5 and 6 in the Appendix A

(Section A.2), and in Figures 5.11 and 5.12.

Figure 5.11.: Vapour pressure of refractory metals [159]

All the materials listed in Table 5 have a melting temperature Tm above the maximum

operation temperature. Due to their resistance to nitrogen, molybdenum (Mo) and

tungsten (W) have the substantial advantage over niobium (Nb), tantalum (Ta) and

titanium (Ti). The evaporation rate of W and its vapour pressure are approximately five

orders of magnitude smaller than in case of Mo. Nevertheless, Mo was the first choice

material for cavity manufacturing. The decisive factor was its resistance to nitrogen

as well as better machinability and weldability. The resonant cavity, made of Mo is

depicted in Fig. 5.10. From the top it is closed by a Mo flange, with an opening for
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Figure 5.12.: Evaporation rates of refractory metals [159]

a coaxial waveguide. Twelve vertical slits in the cavity’s side wall and twelve screws

equally distributed along the flange side wall are used for adjustment of the cavity’s

height. Before the Mo cavity was constructed, cavity made of Ti had been utilised, as

a quick, temporary solution. It was a short-lived cavity, since Ti is not resistant to

nitrogen above 540 ℃, it was nitrided after few experiments and eventually its walls

cracked. The MW plasma source was designed with the intention to ignite nitrogen

plasma in the resonance cavity. Still, a precise adjustment of the system is required

before each experiment. It is carried out in the configuration nr 1, when instead of the

magnetron head and 3-stub tuner, the NA is connected to the waveguide. The NA was

employed to measure the S11 parameter as function of frequency around 2.45 GHz. To

match the cavity with the working frequency of the MW generator, the S11 minimum of

the standing wave was adjusted to 2.45 GHz. View of the network analyzer display while

performing measurements of S11 parameter is depicted in Fig. 5.13.

The resonance peak in Fig. 5.13 is already very close to the optimum position, with its

minimum at 2.4516 GHz, S11 value of -39.5 dB. It means that only 1.06% of power would

be reflected at 2.4516 GHz. The resonance peak with lower intensity at around 2.51 GHz
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Figure 5.13.: S11 parameter vs frequency

is caused by a parasitic standing wave either in the ceramic tube or somewhere inside

the waveguide. Red horizontal arrow shows directions in which resonance peak can be

shifted during the adjustment by changing the height and vertical position of the cavity.

Therefore, cavity top flange and outer tube of the coaxial waveguide are connected via

thread. While moving the cavity along the vertical axis, distances between the seed-

holder and cavity change (see Fig. 5.14).

Figure 5.14.: Distances in the cavity
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The fine position of the resonance peak depends on the distances d1 and d2. When

increasing distance d2, resonance peak is shifted to higher frequencies. The maximum

value of d2 is limited by the distance d1 between the seed-holder and the flange. If

distance d1 is too small, the probability of electrical breakdown between the seed-holder

and the flange gets too high, preventing plasma ignition under the seed-holder. Once

the resonance peak is set at the proper frequency of 2.45 GHz, it needs to remain there

until plasma is ignited in the cavity. This requires the mechanical stability of the mi-

crowave plasma generation system. The set distances d1 and d2 cannot alter during

the following preparation stages: reconfiguration of the system – from configuration nr

1 to configuration nr 2 (detaching NA and connecting magnetron head), closing reactor

door and pumping down the reactor. Demand for mechanical stability resulted in certain

design approaches, which are briefly described below. Mechanical connections between

Mo waveguide, coaxial outer tube and cavity flange have threads, as well as the one

between inner coax tube and the seed-holder. Moreover, counter nut is used to prevent

self loosening of the cavity and its displacement along the vertical axis, whereas cavity

walls are attached to the flange by means of twelve screws (Fig. 5.10a)). Apart from the

position of S11 minimum (resonance peak) within the frequency range, the total pressure

in the reactor is another parameter for plasma ignition. Optimum pressure for plasma

ignition in nitrogen atmosphere was found experimentally, considering the dependence

of breakdown electric field for air vs pressure (Fig. 3.1), which is an analogy to the

Paschen curve for DC discharges (see Section 3.1 for details). In our setup this pressure

for 2.45 GHz MW plasma ignition at room temperature (RT) was experimentally found

to be around 8 mbar, although in Fig. 3.1 minima of theoretical and experimental Eb
curve lay at 2.5 mbar and 4 mbar, respectively. This deviation can arise from the differ-

ence in properties of air and nitrogen, which are described by values of gas constants A

and B, used in the expression for Paschen law (see equation 12).

Appropriate actions for MW plasma excitation are setting the resonance frequency of

the cavity at 2.45 GHz, connecting the magnetron head to the MW plasma excitation

line and closing the reactor door and pumping down. The reactor is each time pumped
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Table 2.: The gas-specific constants A and C of Townsend’s first ionization coefficient.
Valid in the range C/2 ≤ E/p ≤ 3C [98]

Gas A [ion pairs m−1Torr−1] C [V m−1Torr−1]
air 1220 36500
nitrogen 1060 34200

down to ∼5 x 10−5 mbar and then filled up with nitrogen. This procedure is repeated

twice before setting the total pressure to 8 mbar. The output power of magnetron head

is set to 300 W and nitrogen plasma is ignited inside the cavity (see Fig. 5.15), while

the power supply is in continuous operating mode and all the three tuner’s stubs are in

absolute, mechanical zero position, i.e. they do not dive into the waveguide (Fig. 5.16).

Finally, the reactor is filled with nitrogen at a rate of 20 slm to reach the desired pressure

in the 200 - 800 mbar range. Auto tuning operation mode of 3-stub tuner is turned on,

when the total pressure in the reactor reaches 100 mbar. Auto tuning means automatic

matching of generator impedance and impedance of the load. It is based on the indirectly

obtained load reflection coefficient at the load plane (see Fig. 5.16). At lower pressures

wave impedance of the plasma is too small for the auto tuner to detect it. Without load,

auto tuning leads to plasma extinction.

Figure 5.15.: Burning plasma in a Ti test-cavity, at 8 mbar

Stability of microwave plasma and its dependence on temperature is discussed in the

following Section 5.2.
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Figure 5.16.: The cross section of the auto-tuner. Stubs denoted as 1, 2, 3 are at absolute,
mechanical zero position

5.2. Stability of MW plasma

Prerequisite for long time growth experiments is a stable MW plasma operation. Other-

wise, lack of reactive nitrogen in the vicinity of the seed, at growth temperature, leads

to GaN decomposition. It was shown by Choi et al. [61] that at temperatures above

900 ℃ in N2 atmosphere significant decomposition of GaN occurs. Outcome of growth

experiments carried out under non-stable plasma operation is elucidated in Section 5.5.

Stable MW discharge is preceded by plasma ignition inside the resonant cavity. Proposed

GaN crystal growth calls for nitrogen plasma excitation just below the seed-holder and

its sustainment requires an effective MW power coupling into the burning plasma itself

(compare power absorption in a MW field in Section 3.1). The auto tuner can guarantee

minimization of the reflected power, measured at the incident plane, but does not assure

that plasma burns in the right position or as a volume discharge either. Additionally,

visual observation, seed temperature measurement and optical emission spectra are used

to confirm stable plasma operation. In the low temperature range (until 600 ℃) direct

visual observation is possible, whereas above 600 ℃ black body radiation makes it im-

possible to distinguish light emitted by plasma from light emitted by hot elements of the

growth setup. Since operation of the pyrometer starts at 800 ℃ [161], seed temperature

is no useful indicator below this temperature. The most comprehensive tool to confirm

the right position of burning plasma in this setup is OES. It is able to measure plasma
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spectra in the whole heater temperature range, utilised during the growth process. De-

pendence of microwave plasma on the temperature of the cavity and seed-holder turned

out to be crucial in terms of stable plasma operation. This dependency may hinder long

term growth experiments. Since the cavity is made of metal, its dimensions increase with

increasing temperature.

Figure 5.17.: Thermal expansion coefficient for molybdenum and tungsten [162]

In Appendix B, Section B.1 the interpolation formula for the linear thermal expansion

coefficient for Mo within RT – 1500 ℃ range is derived from coefficients given in [162].

αL = 0.075× 10−8[m/mK2]× T [℃] + 5.1× 10−6[m/(mK)] (32)

Change of the cavity diameter D while heating up from RT (D = 90 mm) to 1330 ℃

is calculated using formula 33 in Appendix B, Section B.2 and equals ∆D = 0.656 mm

∆D = D
∫ T2

T1
αL ·∆T (33)

On the other hand, it was experimentally proven that by heating up the cavity to

1330 ℃, resonance frequency is decreased from fr = 2.45 GHz by ∆fr = 0.049 GHz (Fig.

5.18). By comparing those values one can speculate about the reasons of the resonance

frequency alteration. If shift of resonance frequency depends only on the change of the

cavity dimensions, then relative change of the cavity dimensions should equal that of

resonance frequency fr, according to the formula 34.
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∆D
D

= ∆fr
fr

(34)

∆D = D · ∆fr
fr

= 1.8 mm (35)

∆fr = fr ·
∆D
D

= 0.0179 GHz (36)

The above estimations show that such a substantial change of fr as 0.049 GHz is caused

not only by the change of cavity dimensions due to thermal expansion. If it was the case,

then instead of 0.656 mm the change of cavity diameter should be 1.8 mm. But the

elongation of the inner tube of coaxial line with the seed-holder causes additional shift

of fr. As the temperature increases, the distance d2 in Fig. 5.14 between the bottom

of the cavity and the bottom surface of the seed-holder decreases. As a result, fr shifts

to lower values, comparable with adjusting fr by moving the cavity upwards (compare

with cavity tuning, described in Subsection 5.1.2). With the same equations as for the

cavity diameter change the approximate elongation of the inner coaxial Mo tube with

tantalum seed-holder was estimated. It was assumed that the Ta seed-holder has the

same linear thermal expansion coefficient as Mo. Introduced error is negligible, as the

seed-holder thickness of 4 mm is much smaller than the inner coaxial Mo tube length of

225 mm. With the total length LRT = 229 mm one gets ∆L = 1.67 mm. In Appendix B,

Section B.3 estimations of the influence of the axial position of the seed-holder on the fr
of the cavity are presented. Based on experimental results, fr shift per 1 mm shift of the

seed-holder was estimated as ∆fr /1 mm = 0.0092 GHz/mm. The 1.67 mm elongation

of the inner coaxial tube results in a 0.0192 GHz change of the resonance frequency.

Summarizing, 0.0179 GHz shift from the change of cavity diameter, 0.0192 GHz from

elongation of the inner coaxial tube and additional influence of the thermal expansion of

the cavity’s bottom wall and of ceramic Alsint 99.7 tube have to be considered to explain

the measured 0.049 GHz shift.

During cooling down fr shifts back to the initial value. Fig. 5.18 presents the change
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of fr as function of source temperature, which is in this experiment related to the seed

temperature by Tseed ≈ Tsource – 330 ℃. NA measurements were taken in configuration

nr 1, with RF heating on. At Tseed ≈ 1000 ℃ the resonance peak was shifted as men-

tioned above by 0.049 GHz to 2.401 GHz. Such substantial shift causes strong plasma

fluctuations, its displacement to the coaxial line or even its complete extinction.

Figure 5.18.: Resonant frequency of the cavity vs Tsource

Complete plasma extinction is easily noticeable, as magnetron is turned off automati-

cally and an error is reported. Plasma instabilities require other monitoring methods, as

already mentioned in the introduction to this section. The seed is heated up by plasma

and therefore its temperature can be utilised as a monitoring parameter above 800 ℃,

the minimum operation temperature of pyrometer. Fig. 5.19 presents influence of igni-

tion and burning of microwave plasma in the cavity, centrally below the seed. Microwave

power is set to 300 W. In this case the seed temperature, marked with a red line, rises

of about 100 ℃. Fig. 5.20 is complementary to Fig. 5.19. It shows decrease of the

seed temperature, when plasma moved from the cavity to the coax end. Temperature

decrease is much steeper and faster, than in case of turning off the induction heating, as
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presented in Fig. 5.21, which displays temperature curve, measured during the cooling

phase of the process, when plasma was still burning in the cavity. Blue lines in the graphs

represent the seed temperature to be obtained. In Fig. 5.19 it equals 1000 ℃ initially

and then 1050 ℃, in Fig. 5.20 desired temperature was first set to 1000 ℃ and then

950 ℃, whereas in Fig. 5.21 it was set to 950 ℃.

Figure 5.19.: Tseed vs t. Plasma ignited in the cavity

Figure 5.20.: Tseed vs t. Plasma started burning outside the cavity

Figure 5.21.: Tseed vs t. After turning the induction heating off

Considerable impact of plasma instabilities on Tseed is visible in Fig. 5.22. Tseed

was measured during unstable plasma operation inside the cavity. Discharge type was

changing between homogeneous microwave one and arc-like.

Visual observations were possible through a window in the reactor and through holes

in the cavity, graphite heater and felt. The front sapphire window of the reactor provides
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Figure 5.22.: Tseed vs t. Unstable plasma operation

insight into the reactor, whereas additional ILMADUR borosilicate glass I-420 protects

against UV light [163]. Direct observation is the fastest method to assess whether plasma

is ignited in the right position or burns somewhere outside the cavity. Furthermore, it

allows judge the form of plasma. The most favourable one would be homogeneous plasma,

occupying a volume of few cubic centimetres just below the seed-holder, on the way of

Ga vapour, transported by N2 carrier gas from the Ga crucible. On the contrary arcing

definitely should be avoided. This phenomenon can cause etching of the already grown

layer, sputtering of the cavity material and contribute to layer contamination [164, 165].

Dependence on pressure

The dependence of plasma on total reactor pressure ptot in terms of effective temperature

of its electrons Te and gas (atoms and molecules particles) Tg was described in Subsection

3.2. Within the pressure range used in our process (8 mbar – 800 mbar), plasma is

denoted as hot, so that Tg ≈ Te. After successful plasma ignition at around 8 mbar,

pressure is increased to reach a value within 200 – 800 mbar range. The higher ptot in

the reactor, the more MW power is needed to sustain the discharge. Mean free path

of electrons decreases with pressure. Hence electrons have less time to gain energy for

ionization of neutral particles. Operation at higher power levels results in increased

plasma temperature, followed by an increase of the seed temperature.
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5.3. Advantages of nitrogen plasma over ammonia

This section underlines the advantages of utilising nitrogen plasma rather than NH3, as a

source of reactive nitrogen. Discussion is based on observations made during NH3-based

vapour growth of GaN in a classical growth setup (Fig. 2.7) as well as during processes

conducted in the reactor equipped with a plasma-activated nitrogen source (Fig. 5.3).

NH3 readily reacts with molten Ga and carbon. The typical result in systems containing

graphite, is the crust formation on the top of Ga source. If the sublimation process of this

solid GaN layer, heavily contaminated with carbon, is too slow, then blocking mechanism

finally prevails, leading to the growth cessation. On the contrary, nitrogen microwave

plasma, being restricted to the resonance cavity, does not come into contact with molten

Ga. Figures 5.23 a) and b) compare the top surface of molten Ga after 4 h growth experi-

ment, in the classical NH3-based approach and microwave plasma-based one, respectively.

Figure 5.23.: Ga source after 4 h growth experiment with: a) ammonia, b) microwave plasma

In Fig. 5.23 a) the Ga surface is completely covered by crust, containing carbon that

comes from graphite parts of the setup (see Fig. 5.3). It implies that Ga evaporation

was severely reduced (or stopped completely) during the growth, making it impossible

to control physical vapour transport of Ga to the growth region. Surface of Ga in Fig.

5.23 b) is clear and shiny. In this case no crust hindering Ga evaporation was observed.

Reaction of NH3 with liquid Ga may be so violent, that emerging Ga droplets are hurled
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to the seed. Deposited on the seed, they result in growth of polycrystalline GaN (see

[60] and the references therein). Fig. 5.24 depicts Ga droplets in the Ga source, after

NH3-based growth experiment.

Figure 5.24.: Ga droplets in the Ga source

Replacing NH3 with nitrogen plasma facilitates construction of the lower part of the

setup, in the vicinity of the Ga source. There is no further need for use of diaphragm,

whose main task would be to decompose ammonia, before it reaches the Ga source. How-

ever, diaphragm can be useful in terms of achieving laminar flow of nitrogen carrier gas.

In plasma-based setup, the role of nitrogen carrier gas is limited to enhancing transport

of Ga vapour to the growth region. It does not need to counteract NH3 flow towards the

Ga source. When considering growth parameters, additional degree of freedom is gained

over NH3-based process.

Foremost issue related with implementing NH3 in the growth setup, is its instability,

which puts limits to plausible growth parameters and choice of the setup building ma-

terials. Since NH3 is thermally unstable at elevated temperatures, it limits the growth

temperature, as it was described in Subsection 2.2.1. At high temperatures, above 1000 ℃

dominates thermal decomposition of NH3 into N2 and H2. The dissociation of NH3 is

additionally enhanced by Al2O3 and Ga, among other materials. Large surface of Al2O3

catalyses decomposition process, reducing furthermore maximum usable growth temper-
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ature [166]. H2 is one of the products of NH3 dissociation, which in large amounts is

undesirable in a system meant for GaN growth. It enhances etching of GaN surface [167].

Besides, gaseous NH3 is aggressive and causes degradation of parts containing carbon.

In this way, lifetime of graphite parts of the setup is reduced. Reaction of NH3 with

graphite produces HCN molecules, high temperature stable carriers of nitrogen. Conse-

quently, chemical vapour transport (CVT) takes place, as Ga is transported by GaCN

to the seed [14]. Fig. 5.25 a) presents graphite parts attacked by NH3 at temperatures

around 1050 ℃ [14], whereas Fig. 5.25 b) depicts graphite susceptor used in nitrogen

microwave plasma-based, ammonia-free setup.

Figure 5.25.: Graphite susceptor a) attacked by NH3 b) after microwave plasma enhanced ex-
periment

5.4. Study on Ga vapour

The Ga source is located in the lower part of the growth setup (see Fig. 5.3). It is a

graphite crucible covered with p-BN layer and filled with liquid gallium. Evaporation of

Ga is possible owing to energy radiated by the inductively heated susceptor. Therefore,
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Ga is delivered to the growth region as vapour and such transport is known as physical

vapour transport (PVT). Consequently, growth of GaN nitride single crystalline layers

described in this thesis can be denoted as combination of Ga PVT with chemical vapour

deposition (CVD). In this subsection Ga vapour is studied during the “PVT + CVD“

process. The influences of ptot in the reactor on the Ga vaporization, as well as the super-

saturation of Ga vapour are discussed. Finally Ga vapour excitation and its interaction

with MW plasma are discussed.

5.4.1. Ga supply and super-saturation

Ga evaporation rate depends on ptot in the reactor, nitrogen carrier gas flow and on

temperature of Ga source Ts, according to the well-known Arrhenius law

M = Ae−Ev/RT (37)

where: M - rate constant, R - universal gas constant, T - absolute temperature in K, A -

pre-exponential coefficient, and Ev - evaporation energy. The logarithm of the Equation

37 gives a linear function for determination of Ev

ln(M) = ln(A) + −Ev
R

1
T

(38)

Data of vapour pressure of Ga reported by [168, 169] are higher from those published

by Cochran and Foster [170]. The discrepancy is due to formation of Ga2O(v) in the

reaction of Ga with quartz [171]. Harteck [168], Speiser and Johnston [169] employed

the Knudsen method with quartz effusion cell, whereas Cochran and Foster [170] used an

effusion cell made of alumina. Siche et al. [172] reported use of some quartz part inside

the reactor, which could be the reason for difference between the calculated evaporation

energy 284 kJ/mol and the data from literature 270.3 kJ/mol [173]. Detailed study on

Ga evaporation in the inductively heated PVT reactor within sub-atmospheric pressures

was carried out by Fizia [174] and subsequently continued by the author. The Ga loss

was measured by comparing the difference of Ga source weight before and after the
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experiment. Measurements were taken with Faust FA 3100-2iCE balance, its accuracy is

± 10 mg. In the whole series of experiments the evaporation time was constant 4 h. The

evaporation increases with Tsource (Fig. 5.26). Additionally, the expected evaporation

increases with decrease of ptot, because the physical barrier for vaporization of liquid Ga

into the vapour phase is lowered.

Figure 5.26.: Ga loss vs Tsource. Nitrogen carrier gas flow set to 200 sccm [174]

The dependency of the Ga evaporation rate on temperature, carrier gas flow and total

pressure limits the applicable parameters range for growth of GaN from the vapour phase.

It constrains the temperature of the Ga source.

The desired minimum Tsource can be derived from Fig. 5.27, assuming that all the

evaporated Ga is deposited on the seed. For instance, in case of 4 h growth, with a

growth rate of 10 µm/h, substrate diameter of 2 cm and 200 sccm carrier gas flows,

the minimum Tsource equals 1120 ℃, as it was read out from Fig. 5.27 for 65 mg of

evaporated Ga, calculated using the following equation:

∆mGa = MGa

MGa +MN

· π4d
2hρGaN (39)
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Figure 5.27.: Ga loss vs Tsource for p = 200 mbar [172]

with molar masses MGa = 69.72 g/mol, MN = 14.007 g/mol and GaN density at

300 K ρGaN = 6.15 g/cm3.

The control of Ga PVT to the growth region and concurrently control of the Ga

vapour supersaturation in the growth setup is one of the prerequisites to grow GaN

single crystals. Deviation from the thermodynamic equilibrium, either supercooling (the

deviation of temperature ∆T) or supersaturation (the deviation of pressure ∆p) is the

precondition for the formation of a new phase.

The classical theory of nucleation as developed by Gibbs [1928], Volmer [1926, 1939],

Stranski and Kaischew [1934] and, Frenkel [1955] is valid at small or moderate super-

saturation [175]. Vapour phase epitaxy (VPE) with typical values of the relative su-

persaturation between σ∗V PE ≈ 0.5 – 2 [176] falls into this category. In supersaturated

homogeneous systems a new phase appears as a result of the competition between the

thermodynamic driving force ∆µ (the difference in chemical potential by supersatura-
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tion) and the interface free-energy effects that strive to minimize the total crystal surface

area, and leads to a change of the Gibbs free energy upon the creation of a droplet or

nucleus

∆G(r) = ∆GV + ∆GIF = −4πr3

3υl
∆µ+ 4πr2σ (40)

where ∆GV is associated with increasing volume of the new particle, ∆GIF stands for

the expenditure of energy required for increase of the droplet surface, r is radius of the

droplet, υl is the molecular volume of the new liquid phase and σ is the surface energy.

The Equation 40 is plotted in Fig. 5.28. It displays a maximum at the critical radius

r = r*, beyond this the nucleus can further grow. The critical radius r* is given by

r∗ = 2συl
∆µ (41)

and the corresponding critical nucleation energy is

∆G∗ = 16π
3

σ3υ2
l

(∆µ)2 (42)

which is the energy barrier to be overcome for condensation to take place. [27, 175, 176]

Figure 5.28.: Change of the Gibbs free energy vs radius of the droplet [176]

As it is visible from Equations 41 and 42, both the critical radius r∗ and the critical
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nucleation energy ∆G∗ decrease with the increase of the supercooling ∆T (as ∆µ ∼ ∆T).

The nucleation rate J increases with the decrease of the critical nucleation energy ∆G∗

(Equation 43). Consequently higher supercooling results in faster nucleation.

Jr = A exp(−∆G∗/kT ) (43)

where A = f(T) is a system dependent constant. The critical nucleation energy ∆G∗

can be lowered not only by the increase of supercooling, but also by the application of a

substrate. Such heterogeneous nucleation is usually encountered in single crystal growth.

Substrates, reactor walls and impurity particles serve as catalytic agents for the reduc-

tion of nucleation work [176]. The critical nucleation energy ∆G∗ in the heterogeneous

nucleation is described by the following equation

∆G∗het = ∆G∗hom · f(Θ) (44)

where f(Θ) is the function of the wetting angle Θ

f(Θ) = 1/4[(1− cosΘ)2(2 + cosΘ)] (45)

Fig. 5.31 schematically presents the dependency of type of deposit on the degree of the

Ga vapour supersaturation. One can see that the Ga vapour supersaturation limits the

growth window. When the supersaturation is too low, crystallization does not occur. On

the other hand, when the critical degree of supersaturation is exceeded, polycrystalline

material is grown, as depicted in Fig. 5.29, showing a polycrystalline GaN layer grown on

the Al2O3 seed after 5 h growth. The average growth rate was estimated to be 6 µm/h.

Ga supersaturation can also result in the formation of Ga droplets, which prevent

further growth of GaN single crystalline layers. Gallium in excess enhances GaN de-

composition. Schoonmaker et al. [45] showed that Ga can act as catalyst for the GaN

vaporization. It may damage crystal structure, so that nitrogen atoms are able to leave

their positions, diffuse through liquid Ga surface, form nitrogen molecules and evapo-

rate. Therefore, too high amount of Ga can not only deteriorate the GaN seed, but also

81



5. Experimental - MW plasma enhanced growth

Figure 5.29.: Polycrystalline GaN grown on the Al2O3 seed
.

completely block the growth of the GaN layer, enhancing the back reaction. Catalytic

effect of Ga manifests itself in the decrease of high kinetic barrier for the reverse reaction

(around 200 kJ/mole = 2 eV/atom).

Figure 5.30.: Ga droplets on GaN template on Al2O3

Fig. 5.30 shows Ga droplets deposited on the GaN template on Al2O3. In this ex-

periment the temperature difference between Ga source and seed (∆T = 400 ℃) caused

the Ga vapour supersaturation to exceed the upper limit of the growth window (see Fig.
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5.31).

Figure 5.31.: Schematic growth window for sublimation sandwich technique [177]

Appearance of Ga droplets can be also a result of lack of sufficient amount of reactive

nitrogen in the growth region or both conditions appear simultaneously. When not

enough reactive nitrogen is available, Ga vapour in excess condensates on the colder seed

and the seed holder as droplets. Droplet-like formation is due to the large surface tension

(around 709 mJ/m2) [178] and low viscosity of liquid Ga (1.369 mPa s) [179]. Deficiency

of reactive nitrogen, in case of experimental results presented in Fig. 5.30, was caused

by unstable plasma operation. Fig. 5.32 presents Ga droplets on the seed-holder after

the experiment, in which plasma was not burning steadily and directly beneath the seed.

Concurrently, parasitic deposition of amorphous GaN observed in another experiment

was caused rather by unstable plasma operation. Since Ga vapour was present in the

cavity, the exact plasma position and the temperature distribution in the growth region

defined growth location. Deposition of GaN powder was observed either on a part of the

seed-holder or on the top cavity flange. Whenever plasma was burning at the edge of seed-

holder or between the seed-holder and the top flange, GaN was deposited mainly there

(Fig. 5.33). Topic concerning importance of plasma stability was raised and discussed in

details in Section 5.2. Discussion on growth experiments is enclosed in Sections 5.5 and

5.6.
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Figure 5.32.: Ga droplets on the seed-holder because of plasma instability

Figure 5.33.: Parasitic deposition of GaN on the top flange

5.4.2. Plasma excitation of Ga vapour

Application of optical emission spectrometer allowed for the in situ measurements of

Ga – N∗2 system in the vapour phase, in the vicinity of the seed. To the best of author’s

knowledge, it is the first time when such arrangement was reported in case of mod-

erate pressure (200 - 800 mbar) MW plasma enhanced GaN growth from the vapour.
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There have been extensive studies of general properties of MW discharges [98, 180, 181],

processes occurring in MW plasmas [182], their operation under atmospheric pressure

[183, 184], and comparison with RF plasmas in terms of materials processing [185, 186].

Investigations on OES of electron cyclotron resonance (ECR) and RF remote plasma

source itself in MBE reactor and its influence on GaN growth [108, 187] have been car-

ried out as well. So far results of optical emission spectra giving an insight into the

growth region during the high pressure MW plasma enhanced GaN synthesis have not

been revealed, though.

The in situ analysis of the growth region by means of optical emission spectrometry

confirmed presence of Ga vapour under the growth conditions, during the heating and

cooling phase. Figures 5.34 and 5.35 present optical emission spectra recorded at RT,

Tseed = 1000 ℃ and Tsource = 1200 ℃, respectively. During all the three experimental

stages nitrogen plasma was burning in the cavity at a total reactor pressure of 400 mbar.

In Fig. 5.34 lines representing excited Ga atoms are not visible, since Ga partial pressure

at RT is smaller than 1.013 x 10−6 mbar (Fig. 2.8). Bands of second positive system of

N2 with band heads at 297.7 nm, 316 nm, 337.1 nm, 357.7 nm and bands of CN with

band heads at 359 nm, 388.3 nm and 421.6 nm have been observed.

Partial pressure of Ga in relation to temperature was described in details in Subsection

5.4.1. With increasing source temperature, Ga appears in the vapour. The lines at 287.4,

294.4, 403.3 and 417.2 nm, visible in Figure 5.35 can be unambiguously related to Ga

[116]. They are sharp and narrow, which is typical for transitions between electronic

states in atoms. The strongest Ga lines are 417.205 nm and 403.298 nm with the latter

one slightly weaker. The other lines, visible at 294.418 nm, 294.364 nm and 287.42 nm

have relatively lower intensity. All the five mentioned lines belong to the group of so called

“persistent lines of neutral Gallium (Ga I)”, which are observed over a broad range of

experimental conditions. Electron configuration of neutral, gaseous atom of gallium at

ground state [Ar] 3d10 4s2 4p1 is shown in Fig. 5.36 a) and is denoted as 4p 2P1/2 in Fig.

5.36 b).

When a Ga atom absorbs sufficient energy, an electron can jump to the orbital with
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Figure 5.34.: OE spectrum recorded at RT, p = 400 mbar, MW power ≈ 400W, carrier gas
flow = 0.1 slm N2

(a) (b)

Figure 5.35.: OE spectrum recorded at a) Tsource = 1000 ℃ and b) Tsource = 1200 ℃
(p = 400 mbar, MW power ≈ 400 W, carrier gas flow = 0.1 slm N2)

higher energy level. Atom goes then in the excited state, which is unstable and rapidly

followed by the recombination and energy emission. For instance, the line at 403.3 nm

is the result of radiation when a Ga atom comes back to the ground state from the

excited state [Ar] 3d10 4s2 5s (denoted as 5s 2 S1/2 in Fig. 5.36 b)). The wavelength
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(a) (b)

Figure 5.36.: Ga atom: a) electron configuration, b) energy levels

λ′ = 403.3 nm of emission line is related to the difference between energy levels by the

Bohr’s frequency condition (Eq. 46) [188]

∆E = E2 − E1 = hυ = hc/λ′ (46)

where:

E2 – energy of the excited state 5s 2 S1/2 ,

E1 - energy of the ground state 4p 2 P1/2,

υ – frequency of emitted photon,

λ′ – wavelength of the emission line,

h – Planck constant.

The probability of such a transition is defined by the Einstein coefficient for spontaneous

emission Aki and equals 0.485× 108s−1. Data for all the five mentioned persistent lines

of neutral Gallium (Ga I) is collected in Table 3. It includes their wavelengths, corre-

sponding transitions between energy levels, transition probabilities and configurations.

where: Aki – transition probability, J - total angular momentum quantum number
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Table 3.: Persistent lines of Ga [116]

λ [A] Aki(108s−1) Energy levels (cm−1) conf. Terms J
2874.235 1.17 0.000 4s24p 2P ° 1/2

34781.66 4s24d 2D 3/2
2943.636 1.34 826.19 4s24p 2P ° 3/2

34787.85 4s24d 2D 5/2
2944.173 0.261 826.19 4s24p 2P ° 3/2

34781.66 4s24d 2D 3/2
4032.984 0.485 0.000 4s24p 2P ° 1/2

24788.530 4s24d 2S 1/2
4172.042 0.945 826.19 4s24p 2P ° 3/2

24788.530 4s24d 2S 1/2

Interaction of Ga vapour with MW nitrogen plasma at elevated pressures 200 - 800 mbar

does not lead to the extinction of the latter. The results imply rather that Ga vapour

and/or droplets do not severely affect the plasma formation, contrary to small water

droplets, which can extinct the plasma in RT high pressure microwave sources, like in

the case of CYRANNUS sources [189]. However, the influence of Ga on emission pro-

cesses in plasma has been revealed. The observed phenomena and interplay between Ga

and other components of plasma is discussed in the following part of the section.

Apart from sharp Ga lines, broad ‘bands’ of emission frequencies are revealed in the

course of measurements (Figures 5.34 and 5.35). The origin of these more compli-

cated molecular spectra was explained in Subsection 3.4.1. Bands of molecular nitrogen,

cyano-group and NH group have been observed. The recorded bands of molecular ni-

trogen (all of them degraded to the shorter wavelength) with band heads at 297.68 nm,

315.93 nm, 337.13 nm, 357.69 nm belong to the second positive nitrogen system (SPS)

(C3Πu − B3Πg). The second positive nitrogen system occurs in most sources, notably

through pure nitrogen [190]. Data on the bands in the SPS is collected in Appendix D.

In the regions of 358 - 360 nm, 380 - 390 nm and 415 - 420 nm bands constituting the

cyano-group (CN) violet system were observed. The functional CN group sticks together

by a triple bond [191]. The CN violet system is the result of radiative transitions be-
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tween the B2Σ+ (3.32 eV) and X2Σ+ (0 eV) electronic states. Numerous theoretical and

experimental studies on the spectrum of diatomic CN molecule have been carried out.

The CN violet bands have been recorded in most of plasmas (all the types of electrical

discharges, laser induced plasmas, etc.), excited in the atmosphere containing both ni-

trogen and carbon [192, 193]. Comprehensive analysis of the obtained data showed that

the vapour system in the growth region is the Ga – N∗2 - CN one, rather than the pure

Ga – N∗2 only. Mutual interactions between Ga, N∗2 and CN, and dependencies on the

process parameters (T, p, MW power, carrier gas flow) have been observed.

When with increasing source temperature Ga vapour reaches the MW discharge, the

intensity of Ga lines (403.3 nm, 417.2 nm) increases and the intensity of N∗2 and CN

lines decreases. Figures 5.37 a) depicts spectra recorded at RT and 5.37 b) at growth

conditions (p = 200 mbar, MW power ≈ 600 W, N2 carrier gas flow 0.1 slm).

(a) (b)

Figure 5.37.: OE spectrum recorded at a) RT, b) Tsource = 1200 ℃, Tseed = 1000 ℃

At RT recorded relative intensity of the band heads of excited molecular nitrogen

equalled 3.36 (316 nm), 5.28 (337.2 nm), 2.99 (357.7 nm) and CN band head 3.21

(388.4 nm), whereas at Tseed = 1000 ℃ intensity dropped significantly to the following

levels: 0.30 (316 nm), 0.36 (337.2 nm), 0.31 (357.7 nm) and for CN 0.42 (388.4 nm).

Concurrently strong Ga lines at 403.3 nm and 417.2 nm were unquestionably detected

at the growth temperature of Tseed = 1000 ℃. As soon as Ga appears in the growth

89



5. Experimental - MW plasma enhanced growth

region, intensity of nitrogen lines decreases. The most probable explanation is related

to the fact that energy levels of excited states of Ga atoms are located below the energy

levels of excited states of nitrogen (Fig. 5.36). Excitation threshold of the 403.3 nm and

417.2 nm Ga lines equals 3.07 eV [194]. Excitation thresholds of the nitrogen bands are

significantly higher. The A3Σ+
u state of excited nitrogen molecule has energy of 6.17 eV.

The zero vibrational level of triplet state molecule B3Πg (emitting 1st positive system of

the molecular nitrogen) lies 7.35 eV above the ground state nitrogen molecule, whereas

the zero vibrational level of C3Πu state molecule (emitting 2nd positive system, in the

range of 300 – 360 nm) equals 11.03 eV [111]. Dissociation energy of N2 is also consider-

ably high, with the value of around 9.8 eV [195] that is even higher than Ga ionization

energy of 5.99 eV [116]. When it comes to the CN band at 388.3 nm, its excitation energy

of 3.19 eV [196] is only slightly higher than 3.07 eV, yet much lower than Ga energy level

for emission at 287.4 nm and 294.3 nm (4.31 eV). Under the assumption that discharge

is carbonaceous, the CN violet band at 388.3 nm accompanies the persistent lines of Ga

at 287.4 nm and 294.3 nm.

Experiments in the carbon free setup have been conducted to study Ga - N∗2 interactions

in plasma. The most important parameters were typically set to the following values:

Tsource = 1200 ℃, Tseed = 900 ℃, p = 200 mbar, N2 carrier gas flow 0.1 slm. Tmax for

operation of our isolation material (Altraform KVS 184/400) in vacuum is 1800 ℃. Owing

to the high porosity of the Altraform felt, the reactor’s atmosphere was contaminated

with oxygen during the experiment. Growth experiments in the Ga - N∗2 - O system

resulted in the deposition of amorphous gallium oxide rather than GaN on the seed. It

is known that synthesis of oxides is more favourable than nitrides, since bonding in the

O2 molecule is much weaker (498.3 kJ/mol) than in the N2 molecule (945.3 kJ/mol).

Spectra recorded during the growth in the atmosphere containing oxygen, revealed Ga

lines (287.4 nm, 294.3 nm, 403.3 nm and 417.2 nm) and NH band, with a band head at

336 nm.

The Altraform felt was replaced with a new graphite felt, covered by a dense pyrolytic

carbon layer, and being the only component of the setup that contains carbon. This
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version of the growth system is denoted as the growth setup with greatly reduced carbon

content (see description in Subsection 5.1.1), used for studies of Ga - N∗2 interactions,

without the carbon influence. Figure 5.38 presents the results of the experiment under

the following conditions: p = 200 mbar, MW power ≈ 350 W, N2 carrier gas flow was

turned off to prevent unintentional transport of graphite particles from the bottom of the

reactor, which had been used for the experiments in the graphite environment before.

Figure 5.38.: OE spectrum recorded at Tsource = 1100 ℃, Tflange = 700 ℃ (temp. of the
flange covering the resonance cavity from the top)

Spectra recorded at growth temperature do not contain any visible bands of molecular

nitrogen, being dominated by Ga lines. There are two strong lines at 403.3 nm and

417.2 nm, as well as the whole series of lines lying below 300 nm, with higher excitation

energies (given in brackets), however still below the excitation energy level of the SPS of

nitrogen (10.9 eV). These are lines at 294.4 nm and 287.4 nm (4.31 eV), 271.9 nm and

265.9 nm (4.66 eV), 250 nm and 245 nm (5.06 eV), 241.8 nm and 237.1 nm (5.23 eV) and

233.8 nm (5.4 eV). Bands of NH (336 nm) and CN (388.3 nm) can be resolved as well,

yet their intensity is far lower than of Ga lines. The obtained results are consistent with

the observations reported by Corr et al. [187], who studied the remote plasma chemical
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vapour deposition of GaN. Optical emission spectrum of pure nitrogen plasma near the

substrate did not contain any bands of molecular nitrogen, neither of the SPS or the

FPS. The intensive lines of Ga at 403.3 nm and 417 nm were present, though. Corr et al.

[187] suggested that the excitation of Ga atoms is caused by their collisions with excited

nitrogen from the long-lived N∗(2P ) metastables

N∗(2P ) +Ga = Ga∗(5s2S1/2) +N + ∆E( 0.5eV ) (47)

Ga∗(5s2S1/2) = Ga+ hv(403.3/417 nm) (48)

Finally, the following mechanisms of interaction of Ga vapour with nitrogen plasma, are

proposed. Most of the MW energy is consumed by Ga atoms, while their transitions

from the ground state to the low-lying excited states. This phenomenon is in accor-

dance with the observations made during the interaction of Ga vapour with hydrogen

plasma [197]. Due to inelastic collisions of electrons with Ga, fast electrons quickly lose

their energy. Thus, the number of fast electrons, which could excite nitrogen, decreases

significantly. The immediate result is that lower intensity of N∗(2P ) emission could be

detected (Fig. 5.37) or lines representing emission from N∗(2P ) states are not detectable

at all (Fig. 5.38). Furthermore, Ga atoms are excited in the collisions with the excited

nitrogen species, as described by Corr et al. [187]. Their subsequent transition to the

ground state results in the strong emission in VIS/UV region of spectra.

5.5. Deposition experiments as optimisation tool

The following section is intended to present results of deposition experiments, which

were utilised as input for optimization of the growth setup. Obstacles for the growth

control have been identified and minimized by the implementation of improvements in

the system. Importance of the choice of appropriate materials for the setup is stressed,

as their resistance to the reactor’s atmosphere is crucial for the reproducible crystal
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growth. Influence of high temperature MW plasma on setup components is shown. There

is a number of parameters to handle with during the deposition/growth experiments,

including pressure in the reactor p, temperature of the Ga source Tsource, temperature

of seed Tseed, growth time tgrowth and MW power. Full set of chosen parameters’ values

is provided for each deposition experiment, described in this section.

The first series of deposition experiments was conducted in a preliminary version of the

growth setup. Due to the lack of an optical access to the top of the seed, pyrometer was

not useful in terms of measurements of the seed temperature. Therefore, temperature of

the top flange was measured instead, using a type K thermocouple (measurements range

up to 1350 ℃). It was assumed that the temperature of the seed can be approximated by

the temperature of the flange. Due to the indirect measurements of the seed temperature,

seeds resistant to higher temperature than GaN templates were favoured. Either double

side polished (DSP) sapphire, thermally stable up to 1600 ℃ [198], AlN (700 nm thick)

templates on sapphire, or Al0.28Ga0.72N (20 nm thick, 28 %) on GaN (2 µm thick) on

sapphire were utilised. Decomposition of AlN in vacuum without the presence of active

nitrogen starts at 1400 ℃ [199], implying that AlN templates are stable under our growth

conditions. In few later experiments GaN (2 µm thick) templates on sapphire were

utilised.

Seeds were cut out of 2 in substrates, using a diamond blade. Typical dimensions of

prepared samples were around 10 x 5 mm. DSP sapphire wafers were delivered by PB-

Technik AG (Switzerland) (c- orientation, thickness 400+/-25 µm, epi ready polished),

whereas AlN templates on sapphire came from FBH Berlin. After cutting, sapphire seed

was cleaned in acetone and isopropanol solvents for 10 min each, and subsequently rinsed

in de-ionized water and dried in nitrogen flow. AlN seed was also degreased by acetone

and iso-propanol, and rinsed in de-ionized water. Afterwards the seed was additionally

etched in H2SO4 : H2O2 : H2O (3 : 1 : 1) solution, rinsed in de-ionized water, and finally

dried in nitrogen flow prior to the experiment. Accurate control of the seed temperature

is decisive for GaN growth from the vapour. The deposition experiments with the indirect

control of the seed temperature were only partially successful. Nevertheless, in one of the
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first experiments GaN crystallites of µm size were locally grown on Al2O3 (Fig. 5.39),

showing feasibility of this method for growth of GaN. Parameters of the experiment

(see MP2 in Table 7 in Appendix C) leading to the first growth of GaN material, using

microwave plasma enhanced setup at relatively high pressure (200 - 800 mbar), were

the following: p = 200 mbar, Tsource = 1450 ℃, Tflange = 1100 ℃, N2 carrier gas

flow = 0.2 slm, MW power ≈ 300 W. Ga weight loss was equal to 3.51 g, while the seed

gained 0.02 g.

Figure 5.39.: GaN crystallites

Optical path for pyrometer was established by changing the mounting of the inner

coaxial tube and the ceramic tube. The new supporting system, composed of two ceramic

(Alsint 99.7) pins, was introduced to carry the total weight of the ceramic tube, inner

coaxial tube and the seed-holder. Round graphite tablet, diameter of 8 mm, was placed

on the seed’s backside for temperature measurements by pyrometer. Another drawback

of the preliminary version of the setup was the seed-holder itself. Its cross-section and

bottom view are depicted in Fig. 5.40.

The first version of seed-holder revealed its disadvantages, while operation in the vicin-

ity of burning plasma. Sharp edges of tantalum clamps and of the seed-holder itself led

to the formation of electric arcs in plasma (see Fig. 5.41).

Arc discharges between metal parts of the seed-holder and in a burning plasma, en-
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Figure 5.40.: The first version of seed-holder

(a) (b)

Figure 5.41.: a) arc discharge, b) the operation of arcs as a function of pressure [98]

hanced decomposition of the AlN template. Arcs are characterised by high currents and

high currents density. Within the range of pressures (200 – 800 mbar) used in the de-

scribed experiments, one speaks about thermal arcs (Fig. 5.41 b)). Their high currents,

from 50 to 104 A [98] could easily cause local evaporation/decomposition of AlN, as the

value of current arc multiplied by electric field intensity in thermal arcs exceeds 1 kW

[98].

In Fig. 5.42 a) SEM picture of cutaway of surface of AlN template after 6 h long exper-

iment is presented. The experiment’s conditions were: p = 600 mbar, Tsource = 1345 ℃,

Tflange = 905 ℃, N2 carrier gas = 0.2 slm, N2 background gas 0.1 slm, MW power

≈ 520 W (see also MP4 in Table 7 in Appendix C). Ga weight loss was equal to 0.53 g,

95



5. Experimental - MW plasma enhanced growth

Figure 5.42.: a) locally etched AlN template, b) decomposed GaN template

while seed lost 0.03 g of its weight. Growth was not observed. The AlN template was

locally decomposed due to the high temperature action of high-thermal arcs. Negative

impact of arcs on the GaN template is shown in Fig. 5.42 b), as vertical tunnels have

been etched in the GaN layer. Some areas of the GaN layer have been even completely

removed, revealing the underlying sapphire substrate.

Results of another experiment from the first series of deposition tests suggest undesired

interaction of Ta clamps and the seed. An island containing solidified tantalum was found

on the seed surface. Picture taken with SEM is presented in Fig. 5.43 a), whereas island

elemental composition is depicted in Fig. 5.43 b) (EDX scan).

Since melting temperature of tantalum equals 2996 ℃ [200], it indicates that during

the 4 h growth phase, temperature of tantalum stripe exceeded its melting temperature.

Such high temperature, appearing (even only locally) on the seed, makes growth of GaN

impossible. Local increase of the temperature above 3000 ℃ can result from thermal

arcs or heating by thermal plasma burning at the seed. Darker oval regions visible in

Fig. 5.43 next to the Ta island are Ga droplets, transported from the Ga source and

deposited on the seed. Parameters of the experiment described above were as follows:

p = 200 mbar, Tsource = 1430 ℃, Tflange = 990 ℃, N2 carrier gas ≈ 0.2 slm, MW

power ≈ 550 W (see also MP5 in Table 7 in Appendix C). Ga source weight loss was

equal to 4.33 g, while the seed gained 0.01 g. In order to overcome problems with arc
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(a) (b)

Figure 5.43.: Ta melted during the experiment: a) SEM picture, b) EDX scan

formation in the vicinity of the seed and to improve seed’s mounting system, the new

seed-holder was designed and manufactured.

Figure 5.44.: Seed-holder

Rounded edges should prevent formation of excessive electric field strength and re-

duce the probability of arc discharge. Seed was shifted 1 mm into the seed-holder, so to
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prevent its direct contact with hot plasma and reduce decomposition rate of the grow-

ing GaN layer. Owing to nitridation of the titanium cavity, its mechanical strength

severely decreased, especially on welds. During removal of the cavity from the system,

it was unintentionally tapped. Thereby, the lid was separated from the cavity walls

(Fig. 5.45). Hence, a cavity made of molybdenum was used in the further experiments.

Since molybdenum is much more resistant to nitridation than titanium, emergence of

yellowish/brownish nitride layer on its surface was not visible, even after several experi-

ments.

Figure 5.45.: Titanium cavity after few experiments

Outcome of the continuous efforts to optimize growth parameters and growth procedure

are discussed below. Formation of needle-like GaN structures (Fig. 5.46) was associated

to extremely high supersaturation of Ga vapour (∆T ≈ 400 K), (see MP22 in Table 7

in Appendix C). Needles were grown horizontally, following a certain pattern on the seed

surface. Most of angles between the needles equal 120°, giving an impression of hexagonal

structures built by the needles. In the subsequent experiments level of supersaturation

was decreased. The case, in which growth conditions were not homogeneous over the

whole seed surface, is presented in Fig. 5.46 b) (for growth parameters see MP26 in

Table 7 in Appendix C). Well oriented GaN crystal islands along with the GaN needles,

similar to those visible in Fig. 5.46 a), have been formed.

Further reduction of Ga supersaturation promoted growth of GaN islands only. They

are composed of 5 – 10 µm size GaN crystallites of hexagonal shape, growing in the c
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Figure 5.46.: GaN needless grown on a) Al2O3 and b) GaN template on Al2O3

direction on the AlGaN/GaN template on sapphire c plane seed (Fig. 5.47). Forma-

tion of c-facets is a result of lower growth rate in c-direction than in a- or m-direction.

GaN crystallite grown on the top of c-facet may be a results of supercritical super-

saturation. Parameters of this deposition experiment were as follows: p = 400 mbar,

Tsource = 1300 ℃, Tseed = 865 ℃ (reduced temperature due to problems with plasma

stability at temperatures higher than 900 ℃), MW power ≈ 400 W, N2 carrier gas

flow = 0.1 slm (see also MP30 in Table 7 in Appendix C).

Figure 5.47.: GaN crystallites grown on AlGaN template

Subsequent optimization of the process and improved plasma stability resulted in the
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growth of single crystalline GaN layers, which are studied in the next Section 5.6.

5.6. Growth of GaN single crystalline layers

This section is intended to present the results of MW plasma enhanced growth of GaN

single crystalline layers at sub-atmospheric pressures within the 200 - 800 mbar range. In

Subsection 5.6.1 the most important steps of the experimental procedure are described,

whereas Subsection 5.6.2 is devoted to the characterisation of the grown GaN layers.

Based on the conclusions from previous sections and on the analysis of characterisation,

possible growth scenarios are discussed.

5.6.1. Experimental procedure

For simplicity the experimental procedure was divided into eight stages. Starting from

the cleaning of the seed, through the installation of the growth setup and adjustment of

the cavity, up to the actual growth procedure.

1. Cleaning of the seed.

Before placing in the seed-holder, each seed was cleaned, following the recipe de-

scribed in Section 5.5.

2. Adjustment of the cavity.

Adjustment of the vertical position of the cavity is conducted in the system config-

uration nr 1 (see Subsection 5.1.1). To compensate shift of the resonance frequency

because of the thermal expansion of the growth setup elements (cavity, inner coax

tube and seed-holder), the resonance frequency is set initially to higher values.

Usually it is 2.49 GHz instead of 2.45 GHz.

3. Growth setup installation.

This step comprises placing the Ga source in the crucible, removal of gallium oxide

layer from the top of liquid Ga, and installation of the cavity inside the reactor.
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Each time it was assured that thermocouple is in contact with the Ga crucible and

pyrometer has an optical access to the graphite platelet in the seed-holder.

4. Pumping and purging the reactor with nitrogen.

Pumping down to around 2 × 10−5 mbar and purging with N2 up to 800 mbar.

This procedure is repeated twice.

5. Heating up the system.

The growth setup kept at approx. 60 mbar is gradually heated by the induction

coil, until Tseed reaches the desired value, max. 850 ℃ (in case of GaN template)

or around 1000 ℃ (in case of Al2O3, AlN template).

6. Plasma ignition

When, due to external heating, the resonant freq. has been shifted to approx.

2.45 GHz, the network analyzer is detached and the magnetron is attached to the

reactor (see configuration nr 2 in Subsection 5.1.1). Plasma is ignited with the

lowest possible value of MW power in the CW operation mode of the magnetron,

i.e. 300 W.

7. Growth experiment

Further heating of the setup and increase of the total pressure in the reactor,

followed by the turning on the flow (typically 0.1 slm) of the N2 carrier gas that

defines the beginning of the growth. OES of MW plasma are recorded during

experiment.

8. Post-growth procedure.

It comprises turning off the carrier gas and the inductive heating, cooling down

the setup by convection and turning off plasma, when Ga no longer evaporates and

Tseed comes below the critical decomposition T (800 ℃). Subsequently the reactor

is pumped down and purged with nitrogen.
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5.6.2. Characterisation of GaN layers

Single crystalline GaN layers were grown both on Al2O3 and GaN templates. Morphology

of their surfaces was studied by scanning electron microscopy (SEM), whereas the ele-

mental analysis of the samples was done by energy-dispersive X-ray spectroscopy (EDX).

With the use of secondary ion mass spectrometry (SIMS), trace analysis of C impurities

was conducted. High resolution X-ray diffraction (HRXRD) provided data on the crys-

tallographic structure of the grown films. The results of the characterisation, together

with the optical emission spectra of the growth region are used as a starting point for

the discussion of plausible paths of the GaN synthesis.

Figures 5.48 a) and b) show typical GaN layers after 4 h growth on sapphire a)

Tsource = 1400 ℃, Tseed = 990 ℃, carrier N2 flow = 0.1 slm, p = 400 mbar, MW

power≈ 400W (see MP21 in Table 7 in Appendix C), b) Tsource = 1240 ℃, Tseed = 940 ℃,

carrier N2 flow = 0.1 slm, p = 400 mbar, MW power ≈ 380 W (see MP32 in Table 7 in

Appendix C), and etching of Ga excess in HCl:H2O (1:2). In case of sample a), plasma

was not burning steadily during the whole growth time, and a large amount of Ga ex-

cess was found on the grown interface after the process. Ga is known to catalyse GaN

decomposition in vacuum and a similar behaviour is expected at moderate pressure [45].

The etching action of excess Ga hinders the coalescence of crystallites, and leads to the

formation of small pits on their top surface. It is known that small amount hydrogen,

which was not present in the reactor, improves the morphology of GaN layers [201]. The

crystallites shown in Figure 5.48 b) are smaller, without top surface pits and have been

grown without visible excess of Ga. Tseed was 50 ℃ lower than in case of sample a),

which resulted in faster nucleation (smaller critical radius r*).

In Fig. 5.49 a tilted view of the GaN grown on sapphire is presented. Layer is composed

of pyramidal structures, which are typical for growth of GaN on sapphire [202]. The 3D

growth mode is preferred, resulting in several islands, rather than a flat, coalesced surface.

Predominantly rounded facets suggest growth under high supersaturation of Ga.

EDS maps (Fig. 5.50) confirmed that the obtained crystallites consist of GaN. Alu-
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Figure 5.48.: Sample surfaces of GaN crystallites on sapphire grown with a) Ga excess b) and
without visible Ga excess (SEM image). Both images were taken after etching the
sample in HCl:H2O (1:2)

Figure 5.49.: Single crystalline GaN grown on sapphire

minium and oxygen, most probably coming from the sapphire substrate, were found at a

lower concentration than Ga and N. Plasma was surrounded by the Mo cavity, and did

not come in direct contact with graphite parts. Yet image C of Figure 5.50 shows three

’particles’ (see the three spots on the right hand side of the carbon map), which might

be tiny dust from the surrounding graphite susceptor and isolation felt.
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Figure 5.50.: SE image and EDS maps for gallium, nitrogen, aluminium, oxygen and carbon
(incident electron energy of 5 keV)

The composition of the deposit was independently confirmed by HRXRD measure-

ments (Fig. 5.51). These detected mainly GaN, however sapphire (Al2O3) substrate

(peak not shown) was also found, as the GaN layer was not completely closed. The full

width at half maximum (FWHM) was 0.60 deg (2160 arcsec). This is much more than

the (0002) FWHM range of 80 to 230 arcsec published for 300 µm thick freestanding

HVPE layers [203].

GaN crystallites grown within 4 h on the GaN/sapphire template are depicted in

Fig. 5.52. Due to the difficulties with stable plasma operation, Tseed was limited to

900 ℃ only (see MP46 in Table 7 in Appendix C). This much too low temperature

obstructed the formation of fully consolidated layer. Typical diameter of GaN islands is

around 20 µm and the distance between the neighbour islands does not exceed 10 µm.

EDX measurements revealed Ga and N in the crystals composition, as well as C, like in

the case of GaN grown on sapphire.

In-situ observation of the growth region by the OES supported studies on the growth

model for GaN in this MW plasma enhanced growth method. Two routes of GaN synthe-
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Figure 5.51.: HRXRD rocking curve of GaN (0002), sample on sapphire

Figure 5.52.: GaN on GaN. GaN crystallites grown on GaN template: a) SEM picture, b) EDS
maps. Incident electron energy of 5 keV

sis have been taken under consideration. The first one assumes reaction between excited

Ga and N2 in the vapour phase, while the second one predicts formation of GaN only on

the seed surface and comprises two possible paths (see Fig. 5.53).

Reaction between excited Ga and N2 in the vapour would mean that its product,

GaN molecule, exists in the vapour as well and it is then successfully transported to the

growing interface. To the author’s best knowledge, there are no spectroscopic data for

GaN molecules available and no one has reported on identification of GaN molecule in the

vapour so far. Existing literature is confined to theoretical studies of the spectroscopic
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Figure 5.53.: Routes of GaN synthesis

constants [204] and electronic states of the GaN molecule. Calculations performed by

various research groups [204, 121, 205] are convergent and indicate that the ground state

is 3Σ− and the first excited state is the low lying 3Π, hence the energy separation of these

two states ranges from 0.5 eV [204] to 0.08 eV [121]. Hirako et al. [206] proposed the main

reaction pathway of GaN growth in MOVPE by employing computational fluid dynamics

simulation study. Their model includes formation of GaN molecules in vapour, close to

the substrate. In case of our MW plasma enhanced growth of GaN, GaN species were

not identified in the plasma. Spectra recorded in the range from 200 nm to 1100 nm, at

RT and under growth conditions, did not reveal any bands that could be possibly assign

to GaN molecule. Even if GaN molecules were formed in the vapour, it is highly possible

that high temperature of plasma would immediately cause its decomposition.

In Fig. 5.54 comparison of the measured spectra of N2 with its simulation in Specair

[207] is presented. There is a good agreement between measured spectra of N2 and

its simulation, when both Trot and vibrational temperature (Tvib) were set to 3500 K.

Under the assumption described in Section 3.4, one can thus estimate gas temperature

of plasma at 3500 K. It is well above the threshold temperature (800 ℃) for the thermal

decomposition of both, polycrystalline GaN powder [45] and GaN on Al2O3 template

in the environment without reactive N2 [61]. To reduce thermal load of hot plasma,
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Figure 5.54.: Plasma temperature, MW power ≈ 400 W [197]

experiments under MW pulse mode were carried out. By applying rectangular wave

with peak power value of 400 W, tON = 1 ms and tOFF = 2 ms, the average MW power

was decreased to around 133 W. Even though, experiment in the setup with reduced

carbon content did not result in GaN growth.

Since the existence of GaN molecule in vapour could not be revealed by means of in situ

OES and high plasma temperature prevents the formation of GaN from thermodynamic

point of view, the hypothesis of Ga reacting with N∗2 in the vapour could not be proven.

Two paths of GaN synthesis on the substrate at the growth conditions in our setup

have been considered: direct reaction between Ga atoms and excited N2 or a route

encompassing more intermediate steps, with a CN molecule involved. Neither of both

paths would exclude the other one and in principle combination of these two ways would

be also feasible. In the cavity, plasma burns not directly at the seed, but within the

distance of couple mm (1 - 3 mm). In the model, presuming the reaction of Ga with

excited N2 on the substrate, the excited nitrogen species would need to cover this distance

without coming back to its ground state. In the MW pulse mode operation, the upper

limit of 3 ms for tOFF , still sustaining discharge, was experimentally determined.

However, all the spectra recorded under the growth conditions did not reveal bands of

molecular nitrogen, but in the carbon containing setup the CN bands instead (Fig. 5.55).

It indicates that CN molecule rather than the excited nitrogen itself contributes to the
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GaN synthesis. In Figure 5.55 the spectrum of the growth atmosphere is shown in the

range from 280 – 425 nm. The lines of neutral and ionized molecules, N∗2 and N+
2 , and

atomic nitrogen N could not be detected at the growth temperature.

Figure 5.55.: OE spectrum of nitrogen plasma and Ga vapour under growth conditions
(Ts = 1300 ℃, pN2 = 400 mbar), insert: violet system of CN molecule in higher
resolution. Published in [208]

Reactive nitrogen was indeed present and reacted with carbon from insulation felt and

the susceptor’s graphite (compare with Fig. 5.50). Moreover, the lines at 287.42, 294.4,

403.3 and 417.2 nm can be related to Ga [116]. One spectroscopic line at (285.23 ± 0.15)

nm could not be identified. The wavelength agrees with the most element-sensitive line of

Mg [209], but the positions of other element sensitive lines are overlapped with strong CN

emission. Furthermore, the source of Mg is unknown and the presence of Mg could not be

unambiguously confirmed. CN violet system in the spectra is solid evidence that excited

CN molecules are indeed present in the vapour phase. In order to exclude influence of

Ga on the interactions between carbon and excited nitrogen, studies at RT have been

conducted. The most effective way of CN production is the reaction between C (neutral
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or excited and negatively charged) and N [196]

C +N
k≈10−17
−−−−−→ CN + hυ (49)

C− +N
k≈10−10
−−−−−→ CN + e− (50)

Cai et al. [210] suggested that the degradation of the graphite parts in their AlN

sublimation equipment is the consequence of the following formation C(s) + x/2N2(g)

→ CNx(g). The transport of C in nitrogen plasma has been described/studied by Veprek

[211], showing reaction of carbon with atomic nitrogen (weakly exothermic, ∆H0
298 = -

4 kcal/mole) or molecular nitrogen (strongly endothermic, ∆H0
298 = 109 kcal/mole) as

two possible ways of CN synthesis. Since bands of excited molecular nitrogen have

been unambiguously detected in the cavity at RT, reaction of C with excited molecular

nitrogen is the most likely path of CN production in the MW plasma enhanced growth

of GaN at elevated pressures

2C(s) +N∗2 → 2CN(g) (51)

The most plausible sources of carbon, necessary for the synthesis of CN, are the

graphite parts in the setup, especially the isolation felt. It is made of carbon-bonded car-

bon fibre that tends to crumble when unintentionally scratched. Carbon dust might be

formed each time during the installation of the cavity inside the reactor and the process

preparation phase. It fells down onto the bottom of the susceptor, being later trans-

ported into the cavity by the rapid air flow emerging at the beginning of the pumping

down or/and by the nitrogen carrier gas (its inlet is in the bottom of the crucible). Once

carbon dust appears in the plasma, it stays there until being completely consumed. In

the series of experiments it has been shown that intensity of CN lines increased with the

MW power absorbed in the plasma.

Another aspect is the dependency of plasma composition on the total pressure in the

reactor. With the increase of pressure, more carbon dust is present in the discharge
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(a) (b)

Figure 5.56.: OES recorded at RT, p = 200 mbar, MW power: a) ≈ 280 W b) ≈ 345 W.
Published in [208]

region. It is reflected in recorded spectra by escalating intensity of the CN bands. Con-

currently, the intensity of the SPS of nitrogen has decreased (see Fig. 5.57 and 5.58).

N2 has been consumed to produce CN. The observed phenomenon is in accordance with

the results published by Ellahi and Ahmad [196], who studied formation of CN in N2/He

discharges in graphite hollow cathodes. The glow discharge sputters the inner walls of

the graphite cathode, introducing carbon species into the plasma. Sputtering efficiency

is proportional to the value of the discharge current idis, thus the higher values of idis
result in the increased share of carbon dust in the plasma composition.

In 2010 our research group has identified a chemical transport by means of CN-based

compounds [14] and exploited it to grow a free- standing thick bulk GaN on β-Ga2O3

(100) [78]. In the pseudo-HVPE technique HCN molecules are formed in the reaction

of C with NH3, which is not in use in our process. In the NH3-free environment cyano-

transport would follow the reaction of Ga with cyanide ion (Equation 52), whose forma-

tion is discussed above.

Ga(s) + CN(g)→ Ga(CN)(g) (52)
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(a) (b)

Figure 5.57.: OE spectrum recorded at RT, MW power ≈ 400 W, a) p = 200 mbar b)
p = 400 mbar

Figure 5.58.: OE spectrum recorded at RT, MW power ≈ 400 W, p = 600 mbar

The Ga(CN) molecule would be subsequently decomposed on the seed surface into GaN

and C.

Ga(CN)(g)→ GaN(s) + C(s) (53)

C doping in GaN has been studied by many research groups. It is known, that C can

act as acceptor in GaN (when located on nitrogen sites), compensating n- type residual

doping by Si or O.
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Traces of C have been found in the grown GaN layers, both on the surface by EDS (see

Fig. 5.50 and 5.52) and beneath it by SIMS. Comparison of SIMS measured C content

in GaN layers grown by Na-flux, PHVPE and MW plasma enhanced VPE (MWVPE) is

presented in Fig. 5.59.

Figure 5.59.: C content in GaN layers grown by Na-flux: a [37] and b [212], PHVPE [grown by
our group in IKZ, not published], and MWVPE. Measured by SIMS

Incorporation of C into growing GaN layer increases exponentially with the growth

temperature Tgrowth. This tendency is visible for both PHVPE samples and one Na-flux

sample, denoted as a. GaN layer grown at 930 ℃ by means of MWVPE revealed higher C

content (3× 1019cm−3), than in GaN PHVPE sample grown at 1070 ℃ (1× 1019cm−3),

though. Elevated level of C impurities might be related to local overheat of the seed

surface by sub-atmospheric MW plasma, which would not be revealed by measurements

of Tseed on the seed backside. Energy harvested in the plasma discharge by C containing

species could also allow for enhanced C incorporation. Mori et al. [212] reported recently

on GaN crystals with C content (denoted as b in Fig. 5.59) below SIMS detection limit,

although the starting composition contained around 0.5 mol% of C.
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Chapter 6

Summary and Outlook

Novel, MW plasma enhanced method to synthesize GaN from vapour at moderate pres-

sure (200 - 800 mbar) has been developed. OES has been utilised for the in-situ studies

of the growth atmosphere in the vicinity of the seed. GaN single crystalline layers have

been grown on sapphire and on GaN templates, and characterised by means of SEM,

EDX, HRXRD and SIMS.

A high-pressure plasma source was specifically designed and implemented into an ex-

isting sublimation furnace, allowing for successful, NH3-free synthesis of GaN. Choice

of materials, used for plasma source construction, was preceded by thorough stud-

ies of materials properties. In addition, the proper growth setup configuration and

induction coil position was found by modelling done in HEpiGaN software. Refrac-

tory metals (Mo, Ta), in combination with Alsint 99.7 ceramics proved to be resistant

to Ga vapour and high-temperature nitrogen plasma under typical growth conditions

(Tsource = 1300 − 1400 ℃, Tseed = 900 − 1000 ℃, p = 200 − 800 mbar). The MW

plasma source was developed in cooperation with Dr. A. Vodopyanov from the Institute

of Applied Physics of the Russian Academy of Sciences (IAP RAS) in Nizhny Novgorod,

Russia. Dimensions of the resonant cavity were chosen, so as to obtain the maximum

electric field intensity (at 2.45 GHz) just below the seed-holder. The selection was based

on EM simulations conducted with CST MWS software. Openings in the cavity walls

enabled optical access into the growth region and OES measurements.

In-situ OES studies of the reactor atmosphere revealed that the vapour in the growth

region is composed of Ga, N∗2 and CN, rather than only Ga and N∗2. CN bands, constitut-

ing the CN violet system were observed in the regions of 358 - 360 nm, 380 - 390 nm and

415 - 420 nm. The recorded bands of molecular nitrogen with band heads at 297.68 nm,
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315.93 nm, 337.13 nm, 357.69 nm belong to the second positive nitrogen system (SPS)

(C3Πu − B3Πg). Sharp Ga lines appeared in spectra with increase of Tsource, thus in-

crease of Ga vapour pressure in the reactor. The most prominent Ga lines were recorded

at 403.3 nm and 417.2 nm and belong to the so called persistent lines of Ga. Interaction

of Ga vapour with MW nitrogen plasma in the pressure range of 200 - 800 mbar does not

lead to the extinction of the latter. Nevertheless, influence of Ga on emission processes

in high-temperature plasma has been disclosed. As soon as Ga vapour reaches the MW

discharge, intensity of Ga lines increases, being accompanied by the decrease of CN and

N∗2 bands intensity. This phenomenon has been explained by the fact that energy levels

of Ga excited states (for instance 3.07 eV for 403.3 nm and 417.2 nm lines) are located

below the energy levels of excited nitrogen (6.17 eV for A3Σ+
u state) and CN (3.19 eV for

the band at 388.3 nm). In order to rule out the C impact on Ga - N∗2 interactions, exper-

iments in C-free setup have been carried out. They were not successful, due to lack of

carbon, which would normally reduce residual oxygen present in the reactor. Therefore,

studies in the growth setup with reduced C content have been conducted. Their results

suggest that most of the MW energy is consumed by Ga atoms and the number of fast

electrons able to excite nitrogen decreases significantly. Furthermore, the outcomes are

consistent with observations made by Corr et al. [187], stating that Ga atoms are excited

in the collisions with the excited nitrogen species. Consequently, transition of Ga atoms

to the ground state results in the strong emission in VIS/UV region of spectra.

Experimental procedure for growth of GaN single crystalline layers from vapour by

means of MW plasma enhanced method has been developed. Morphology of GaN film

surface has been studied by SEM. In case of GaN growth on sapphire, typical, pyramidal

structures have been observed. Growth under Ga excess lead to an uncoalesced GaN layer

with small pits on their top surface, as Ga is known to etch GaN. Formation of GaN on

the GaN template was hindered by the unstable plasma operation, thus limiting Tseed

to 900 ℃. Therefore, 3D growth mode prevailed and GaN islands were not completely

consolidated.

Plausible paths for GaN formation in the MW plasma assisted process have been dis-
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cussed. GaN molecules have not been identified in spectra recorded in the 200 - 1100 nm

range. Even if GaN were formed in vapour, they would be immediately decomposed by

high plasma temperature (T ≈ 4000 K). Accordingly, GaN formation on the seed has

been taken under consideration. It has been found out that CN molecule rather than N∗2
contributes to the GaN synthesis. Growth of GaN was observed only in the growth setup

containing C, and consequently C has been found in the grown GaN layers by EDX and

SIMS. Furthermore, none of the OE spectra recorded under the growth conditions dis-

closed bands of N∗2, yet CN violet system. Therefore, it is proposed that GaN formation

in our NH3-free growth system resembles pseudo-HVPE technique. Reaction of Ga and

CN in the vapour produces GaCN, which is further decomposed on the seed surface into

GaN and C.

The presented studies demonstrate the development of a new technique to grow GaN

single crystalline layers from vapour. Its novelty lies in concurrent formation of MW

nitrogen plasma in the vicinity of the seed, at moderate pressure (200 – 800 mbar) and

combined PVT and CVT of Ga to the seed. Furthermore, thermally unstable, aggressive

and poisonous NH3 has been replaced in the system by nitrogen plasma. It has been

demonstrated that this method is able to provide GaN single crystalline layers in the

H2-free environment. On the other hand, it is not favourable for GaN bulk growth and

not competitive with HVPE. Improved control of the CN formation in the growth region

and long-term plasma stability could result in thick GaN layers. Yet, for controlled C

doping of GaN, PHVPE without MW plasma source can be utilised as well. The in situ

OES studies of the growth region proved the absence of GaN molecule in the vapour.
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Appendix A

Material properties

A.1. Ceramics

Table 4.: Ceramics
material data source Tmax [℃] ρ [Ωcm]

RT 500 ℃ 1000 ℃

Al2O3 Createc,
Al300

1650 > 1014 a)2.3× 1010 5× 108

BCE-
ceramics

1650 > 1014 b)1012 107

Friatec,
F99.7

1650 1015 1011 107

Degussit 1950 1014 b)1011 -
MgO - - 1014 a)109 -
MgO [213], p.404 - 1.3× 1015 - (0.2− 1)× 108

AlTi ATI 900 - 1600 1014 - 109

BN BCE,
BN500

c)2400 1014 - 109

BN [213], p.404 - - - 3× 104

BeO [213], p.408 > 2000 > 1017 (1− 5)× 1015 (4− 7)× 1015

Y2O3 [214] 2680 > 1015 1.2× 1010 (5− 10)× 104

ZrC [213], p.404 - - - 1.4× 108

ZrN [213], p.404 - - - d)3.2× 108

TiN [213], p.404 - - - d)3.4× 108

MoSi2 [213], p.404 - - - e)(7.5− 8)× 107

a) at 600 ℃, b) at 400 ℃, c) O2 free, d) at its melting point Tm, e) at 1600 ℃
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A. Material properties

A.2. Refractory metals

Table 5.: Refractory metals [159, 162, 200, 215, 216]
material a)r b)Tm[℃] c)Φ[eV ] d)λ[W/mK] e)σ[1/Ωm] f)Tr[℃]

Mo 421 2620 4.39 140 17.9× 106 900 - 1100
W 340 3420 4.54 164 18× 106 1300 - 1500
Ta 380 2966 4.25 54 8× 106 900 - 1450
Nb 390 2468 4.36 52 7× 106 900 - 1450
Ti 336 1668 4.33 22 2.5× 106 885

a) sputter rate - measured for E = 500 eV Argon ions at 1 mA/cm2, normal ion beam incidence, b) melt-

ing point, c) electron work function, d) thermal conductivity (at 20 ℃), e) electrical conductivity (at

20 ℃), f) recrystallization temperature

Table 6.: Refractory metals [159, 162, 200, 215, 216]
material resistance

towards
molten Ga

resistance
towards
nitrogen

*hardness weldability

cold-
worked

recrystallized

Mo < 300 ℃ resistant 200 − 250 160 − 210 TIG, EBa)

W < 1000 ℃ resistant > 460 360 TIGb), EBa)

Ta < 450 ℃ < 700 ℃ 120 − 220 80 − 125 TIG, EBa),
laser

Nb < 400 ℃ < 300 ℃ 110 − 180 60 − 110 TIG, EBa),
laser

Ti < 400 ℃ < 538 ℃ 180 − 240 140 − 155 TIG

*hardness in diamond pyramide scale HV10 HV30

a) in vacuum, b) in a glove box
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Appendix B

Calculations

B.1. Thermal expansion coefficient of Mo

Interpolation formula for thermal expansion coefficient for molybdenum within RT –

1500 ℃ range.

y = ax+ b

α1(@400 ℃) = 5.4 [m/(mK)]× 10−6

α2(@1200 ℃) = 6 [m/(mK)]× 10−6


6× 10−6 = 1200a+ b

5.4× 10−6 = 400a+ b


a = 0.075× 10−8[m/(mK2)]

b = 5.1× 10−6[m/(mK)]

αL = 0.075× 10−8[m/mK2]× T [℃] + 5.1× 10−6[m/(mK)] (54)

B.2. Change of the cavity diameter

Change of the cavity diameter ∆D due to thermal expansion while heating up from RT

to 1330 ℃


αL = 0.075× 10−8[m/mK2]× T [℃] + 5.1× 10−6[m/(mK)]

αL = 1
D

dD

dT
∆D = D

∫ T 2

T1
αLdT

∆D = D
∫ 1330

30 (0.075× 10−8 × T + 5.1× 10−6)dT = 0.6564 mm

xv



B. Calculations

B.3. Resonance frequency shift - estimations

Estimations of the resonant frequency shift by changing the axial position of the cavity.

- initial position of the cavity → fr = 2.45 GHz

- final position of the cavity → fr = 2.404 GHz

∆fr = 0.046 GHz

- distance traveled by the cavity axially: 4 mm

∆fr per 1 mm = 0.0092 GHz/mm
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Appendix C

Experiments

Table 7.: Experiments described in the thesis - parameters

Exp. p Tseed Tsource
a)N2 MW power tgrowth seed

[mbar] [℃] [℃] [slm] [W] [h]
MP2 200 b)1100 1450 0.2 300 4.5 1)
MP4 600 b)905 1345 0.2 520 6 2)
MP5 200 b)990 1430 0.2 550 4.5 2)
MP11 200 1000 1225 0.1 400 3 3)
MP21 400 990 1400 0.1 430 5 1)
MP22 600 990 1370 0.2 450 5 1)
MP26 600 980 1300 0.2 450 5 3)
MP30 400 865 1300 0.1 400 5 4)
MP32 400 940 1240 0.1 380 5 1)
MP46 200 900 1300 0.1 400 5 3)

a) carrier gas flow, b) Tflange measured with thermocouple,

1) Al2O3, 2) AlN/Al2O3 template, 3) GaN/Al2O3 template, 4) AlGaN/GaN/Al2O3 template
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Appendix D

Second positive system of N2

Table 8.: Second Positive System of N2, in the range of 280 - 450 nm
λ [nm] I (rel.) E [eV] Transition Quantum number

281.4300 100 7.39 - 11.05 B3Πg − C3Πu 1 - 4
281.9800 100 7.39 - 11.05 B3Πg − C3Πu 0 - 3
295.3200 600 7.39 - 11.05 B3Πg − C3Πu 2 - 4
296.2000 600 7.39 - 11.05 B3Πg − C3Πu 1 - 3
297.6800 600 7.39 - 11.05 B3Πg − C3Πu 0 - 2
297.6800 600 7.39 - 11.05 B3Πg − C3Πu 0 - 2
310.4000 300 7.39 - 11.05 B3Πg − C3Πu 3 - 4
311.6700 600 7.39 - 11.05 B3Πg − C3Πu 2 - 3
313.6000 800 7.39 - 11.05 B3Πg − C3Πu 1 - 2
315.9300 900 7.39 - 11.05 B3Πg − C3Πu 0 - 1
326.8100 400 7.39 - 11.05 B3Πg − C3Πu 4 - 4
328.5300 300 7.39 - 11.05 B3Πg − C3Πu 3 - 3
330.9000 200 7.39 - 11.05 B3Πg − C3Πu 2 - 2
333.9000 200 7.39 - 11.05 B3Πg − C3Πu 1 - 1
337.1300 1000 7.39 - 11.05 B3Πg − C3Πu 0 - 0
350.0500 400 7.39 - 11.05 B3Πg − C3Πu 3 - 2
353.6700 800 7.39 - 11.05 B3Πg − C3Πu 2 - 1
357.6900 1000 7.39 - 11.05 B3Πg − C3Πu 1 - 0
364.1700 300 7.39 - 11.05 B3Πg − C3Πu 6 - 4
367.1900 600 7.39 - 11.05 B3Πg − C3Πu 5 - 3
371.0500 800 7.39 - 11.05 B3Πg − C3Πu 4 - 2
375.5400 1000 7.39 - 11.05 B3Πg − C3Πu 3 - 1
380.4900 1000 7.39 - 11.05 B3Πg − C3Πu 2 - 0
385.7900 500 7.39 - 11.05 B3Πg − C3Πu 7 - 4
389.4600 700 7.39 - 11.05 B3Πg − C3Πu 6 - 3
394.3000 800 7.39 - 11.05 B3Πg − C3Πu 5 - 2
399.8400 900 7.39 - 11.05 B3Πg − C3Πu 4 - 1
405.9400 800 7.39 - 11.05 B3Πg − C3Πu 3 - 0
409.4800 400 7.39 - 11.05 B3Πg − C3Πu 8 - 4
414.1800 500 7.39 - 11.05 B3Πg − C3Πu 7 - 3
420.0500 600 7.39 - 11.05 B3Πg − C3Πu 6 - 2
426.9700 500 7.39 - 11.05 B3Πg − C3Πu 5 - 1
434.3600 400 7.39 - 11.05 B3Πg − C3Πu 4 - 0
435.5000 400 7.39 - 11.05 B3Πg − C3Πu 9 - 4
441.6700 300 7.39 - 11.05 B3Πg − C3Πu 8 - 3
449.0200 300 7.39 - 11.05 B3Πg − C3Πu 7 - 2
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