
 

In-operando hard X-ray photoelectron 

spectroscopy study on the resistive switching 

physics of HfO2-based RRAM 

 

 
 

 

 Von der Fakultät für Mathematik, Naturwissenschaften und Informatik der 

Brandenburgischen Technischen Universität Cottbus  

zur Erlangung des akademischen Grades  

Doktors der Naturwissenschaften  

(Dr. rer. nat.)  

genehmigte Dissertation  

 

vorgelegt von 

 

 

Master of Science Engineer 

 

Małgorzata Sowińska 

 
 geboren am 02. Juni 1986 in Gostyń (Polen) 

 

 

 

 

 

 

 

 

Gutachter: Prof. Dr. Thomas Schröder  

Gutachter: Dr. Sc. Karol Fröhlich  

Gutachter: Prof. Dr. Lambert Alff 

Tag der mündlichen Prüfung: 20. Mai 2014 



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my Grandparents 

Moim Dziadkom 

 

Maria & Marian Pernak 

Zofia & †Jan Sowińscy





 

ACKNOWLEDGEMENTS 

After the time of intense work, the moment has come to finalize this chapter of 

life. Moreover, it is the time to recognize the support from many people I have 

received. 

At the beginning, I would like to sincerely thank my supervisor Prof. Dr. Thomas 

Schröder for the opportunity to undertake research in the RRAM group at IHP. 

For his valuable time, support and for sharing with me his experience and 

knowledge I sincerely thank him. 

I would like to thank my tutor Dr. Thomas Bertaud for supervising me during 

writing this PhD Thesis, his valuable comments and suggestions. 

Then, I would like to thank Dipl.-Ing. (FH) Damian Walczyk and Dr. Christian 

Walczyk for fruitful scientific discussions, their support and the assistance in the 

realization of the in-operando HAXPES setup. 

I would like to acknowledge the Deutsche Forschungsgemeinschaft (DFG) under 

project number SCHR1123/7-1 for financial support. 

My deepest gratitude goes to Dr. Dawid Kot, Dr. Pauline Calka, Heike Silz, Frank 

Popiela, Dr. Ioan Costina, Dr. Mindaugas Lukosius, Dr. Grzegorz Łupina, 

Mohamed Elkhouly and Denys Martynenko for the help during preparation of the 

in-operando HAXPES samples and setup, and to Dr. Sebastian Thiess, Dr. Andrei 

Gloskovskii, Heiko Schulz-Ritter and Frank Okrent from DESY for the help 

offered during beamtimes at P09 in Hamburg.  

I am also very indebted to Dr. Markus Andreas Schubert for STEM - EDX 

measurements; Dr. Peter Zaumseil and Dr. Lidia Łupina (Tarnawska) for the 

XRD and XRR results; Dr. Ioan Costina for ToF-SIMS measurements; Dr. Jordi 



 2 ACKNOWLEDGEMENTS 

Sune and Dr. Xavier Cartoixa for first-principle calculations; Dr. Jarosław 

Dąbowski for the simulation of the Ti on HfO2 growth model; and to Hans-Jürgen 

Thieme and Dr. Marvin Zöllner for the assistance and support during the 

experiments carried out at the MBE laboratory. 

I would like to thank Kamil Kędzierski, Dr. Maciej Bazarnik and Dr. Slavo 

Nemšák for the scientific support. 

Many thanks also to Dr. Adam Szyszka, Dr. Wojciech Koczorowski, Dr. Christian 

Reich, Tomasz Grzela, Dr. Oliver Skibitzki, Dr. Gunther Lippert, Dr. Christian 

Wenger, Dr. Canan Baristiran Kaynak, Udo Kaletta, Dr. Olaf Seifert, Dr. Gang 

Niu, Karol Furman and Yvonne Heier for their personal and scientific support, 

friendly atmosphere, and for being always open to listen and to help. 

Especially thanks to Maria, Marcin, Kinga and Natalia Brzozowscy for creating a 

family atmosphere away from home; Many thanks to Katarzyna and Krzysztof 

Siut, Tatiana and Raiko Pevgonen, Lidia, Philipp and Tadeusz Zessin-Jurek, Lidia 

and Grzegorz Łupina, Justyna and Dawid Kot, Grzegorz Kozłowski, Adam 

Szyszka, Damian and Christian Walczyk and Ursula Pischel for making that time 

also fruitful in social events. 

W tym miejscu pragnę także szczerze podziękować mojej Rodzinie, a w 

szczególności Moim Drogim Dziadkom, Rodzicom oraz Bratu, którzy byli dla 

mnie wsparciem w tym ważnym, a zarazem trudnym dla mnie czasie.  

Dziękuję również Patrykowi za to, że zawsze trwał przy mnie w tych lepszych i w 

tych gorszych chwilach, oraz że wierzył we mnie, kiedy ja przestawałam już 

wierzyć i motywował mnie do dalszej walki, kiedy już brakowało mi sił. 

    

ii 



 

ABSTRACT 

  

Current memory technologies, such as DRAM, SRAM, and NAND Flash, which 

are approaching very difficult issues related to the continuous scaling to and 

beyond the 16 nm generation, has led research over the past two decades to the 

discovery of several new memory technologies. In recent years, new emerging 

nonvolatile memories (NVMs), such as phase-change random access memory 

(PCRAM), ferroelectric random access memory (FRAM), magnetic random 

access memory (MRAM), and resistive random access memory (RRAM), have 

been intensively studied. Among these candidates, RRAM is a very promising and 

worldwide studied candidate for alternative NVM and a high potential successor 

for Flash in terms of energy consumption (write current in the μA range compared 

to mA) and simplicity of process integration.  

A fully CMOS compatible TiN/Ti/HfO2/TiN RRAM module was successfully 

integrated with a select transistor (1T1R memory) in IHP’s technology. 

Nonetheless, reliability and insufficient understanding of the resistive switching 

mechanism are the two main issues limiting this memory technology development 

for e.g. wireless sensor network (WSN) applications. The still unclear atomic-

scale mechanism of HfO2-based resistive switches and the identification of the 

material changes within the insulator must be addressed to suggest a knowledge-

based improvement of device performance. In this frame, the Ti/HfO2 interface is 

thoroughly investigated in this Thesis by complementary materials science 

techniques.  

First, the investigation of the as-deposited Ti/HfO2/TiN cells revealed that: (1) the 

Ti layer scavenges oxygen atoms stronger from amorphous (a-HfO2) than from 

monoclinic (m-HfO2) HfO2 films; (2) not only oxygen vacancies but also other 

impurities in the atomic vapor deposited (AVD) a-HfO2 film, such like nitrogen 
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and carbon (probably resulting from the used AVD precursor chemistry) are 

present in the HfO2 insulator. 

Next, the electrical characterization of Ti/AVD a-HfO2/TiN cells (with voltage 

applied to the Ti top electrode while TiN bottom electrode was grounded) 

revealed a clockwise bipolar resistive switching behavior after an electroforming 

process at positive voltage polarity. Besides, the chemical and electronic changes 

observed by hard X-ray photoelectron spectroscopy (HAXPES), indicate the 

creation of n-type dopants in the a-HfO2 film during the electroforming process, 

probably related to the formation of positively charged oxygen vacancies in a-

HfO2 by the electrochemically induced Ti/a-HfO2 interface oxidation.  

In order to directly compare electrical with electronic and chemical changes of 

one and the same RRAM cell, an in-operando HAXPES technique was 

developed. These unique studies have revealed the following characteristics of the 

Ti/AVD a-HfO2/TiN cells: (1) the as-deposited cells are able to switch at low 

electrical power; (2) However, this resistive switching is not stable and an 

electroforming process with a slightly increased power is required to stabilize the 

switching event; (3) Electrical changes correlated with HAXPES results and 

literature indicate that (i) the forming/set electrical power defines the oxygen 

vacancies concentration in the a-HfO2 and thus the stability of the resistive 

switching properties and (ii) the stable resistive switching can be described by a 

push-pull model of oxygen vacancies migration under the influence of an 

electrical field; (4) Besides, carbon segregation at the Ti/a-HfO2 interface – while 

increasing the electrical power or cycling the device – shows that the defects 

physics is not limited only to oxygen vacancies; other defects may thus contribute 

under electrical stress to the resistive switching phenomenon and need to be 

included in theoretical models to correctly describe the switching characteristics.        

Finally, according to the presented HAXPES results, the Ti/AVD a-HfO2/TiN 

RRAM cells are classified to the valence change mechanism. The resistive 

switching mechanism is attributed to the creation and rupture of oxygen 

vacancies-based conducting filaments and the Ti/HfO2 interface oxidation is of 

iv 
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central importance for the defect balance of the RRAM cell. Most importantly, a 

reduction of carbon content in the AVD-deposited HfO2 improved the reliability 

of these memory cells. 
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ZUSAMMENFASSUNG  

Aktuelle Speichertechnologien, wie z. B. DRAM, SRAM und NAND-Flash, die 

aufgrund der Skalierung jenseits der 16 nm Generation an Grenzen stossen, haben 

in den letzten zwei Jahrzehnten zur Forschung und Entwicklung neuer 

Speichertechnologien geführt. In den letzten Jahren wurden nicht-flüchtige 

Speicher (sogenannte „nonvolatile memories“, NVM), wie Phasenänderungs- 

(PCRAM), ferroelektrische (FRAM), magnetische (MRAM) und resistiv-

schaltende Direktzugriffsspeicher (RRAM), intensiv studiert. Unter diesen 

Kandidaten ist RRAM ein sehr vielversprechendes und weltweit studiertes 

Konzept für alternative NVM und eine bessere potenzielle Option als der NAND-

Flash hinsichtliche der Energiedissipation (Schreib- und Lesestrom im uA Bereich 

im Vergleich zu mA) und der Prozessintegration. 

Am IHP wurde erfolgreich ein CMOS-kompatibles TiN/Ti/HfO2/TiN RRAM 

Modul mit einem Auswahltransistor (1T1R-Speicher) integriert. 

Dennoch sind die Zuverlässigkeit und das noch nicht vollständige Verständnis des 

Widerstandsschaltmechanismus Hauptgründe für die limitierte RRAM 

Speichertechnologie-entwicklungen für zum Beispiel drahtlose Sensorknoten 

(sogenannte „wireless sensor nodes“ (WSN)). Die noch unklaren atomaren 

Mechanismen der HfO2-basierten Widerstandsspeicher und die 

physikalisch/chemischen Änderungen im Isolator müssen identifiziert werden, um 

eine wesentliche Verbesserung der Leistungsparameter zu erzielen. In dieser 

Arbeit wurde deshalb die Ti/HfO2 Grenzfläche durch komplementäre, 

materialwissenschaftliche Techniken untersucht.  

Zunächst zeigte die Untersuchung an abgeschiedenen Ti/HfO2/TiN Zellen, dass: 

(1) die Ti-Schicht Sauerstoffatome aus amorphem HfO2 (a-HfO2) stärker bindet 

als aus monoklinen HfO2 Filmen. (2) nicht nur Sauerstoff-Fehlstellen, sondern 

auch Verunreinigungen wie Stickstoff und Kohlenstoff, die aus der chemischen 
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Atomdampfabscheidung (atomic vapor deposition, AVD) resultieren, wurden 

mittels EDX in den HfO2- Filmen detektiert.  

Als nächstes ergab die elektrische Charakterisierung von Ti/AVD a-HfO2/TiN 

Zellen (Spannung wurden an die obere Ti Elektrode appliziert, während die untere 

TiN Elektrode geerdet wurde) bipolares Widerstandsschalten nach einer 

Elektroformierung mit positiver Polarität. Außerdem deuten die in den Spektren 

mittels harter Röntgenphotoelektronenspektroskopie (HAXPES) beobachteten 

chemischen und elektronischen Änderungen, im Vergleich mit der Literatur, die 

Bildung einer n-Typ Dotierung im HfO2 Film nach der Elektroformierung an, 

höchst wahrscheinlich aufgrund der Bildung von positiv geladenen Sauerstoff-

Fehlstellen an der electrochemisch oxidierten Ti/a-HfO2 Grenzfläche.  

Um direkt die elektrischen mit den elektronischen und chemischen 

Veränderungen von ein und derselben RRAM Zelle zu vergleichen, wurde eine 

in-operando HAXPES Technik entwickelt. Diese einzigartigen Studien haben die 

folgenden Charakteristika der Ti/AVD a-HfO2/TiN Zellen ergeben: (1) die so 

abgeschiedenen Zellen können bei relativ niedrigen elektrischen Strömen 

geschaltet werden. (2) Jedoch ist dieses Widerstandsschalten nicht stabil und eine 

Elektroformierung mit einer erhöhten Leistung ist erforderlich. (3) Die 

Korrelation der elektrischen Daten mit den HAXPES Spektren zeigt, dass (i) die 

elektrische Leistung die Sauerstoff-Fehlstellen Konzentration im a-HfO2 Film 

definiert und damit die Stabilität des Widerstandsschaltens bestimmt, dass (ii) das 

stabile Widerstandsschalten durch ein Push-Pull-Modell beschrieben werden 

kann, in dem Sauerstoff-Fehlstellen unter dem Einfluss eines elektrischen Feldes 

migrieren. (4) Die Kohlenstoffsegregation an der Ti/a-HfO2 Grenzfläche mit 

erhöhter elektrischer Leistung bei der Elektroformierung oder durch mehrfaches 

Schalten zeigt, dass die Defektphysik nicht nur auf Sauerstoff-Fehlstellen limitiert 

ist, sondern auch weitere Defekte zum resistiven Schalten beitragen können und 

somit die Schaltcharakteristika beeinflussen können. 

Schließlich können die Ti/AVD a-HfO2/TiN Zellen im Rahmmen eines 

Valenzwechselmechanismus klassifiziert werden. Das Widerstandsschalten kann 

viii 
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hierbei als Bildung und Unterbrechen von Sauerstoff-Fehlstellen-Filamenten 

verstanden werden und die Ti/HfO2 Grenzfläche spielt eine zentrale Rolle für die 

Defektphysik der HfO2 Filme. Ferner wurde gefunden, dass die Verringerung der 

Kohlenstoffkonzentration in den HfO2 Filmen die Zuverlässigkeit der 

Speicherzellen wesentlich verbessern kann. 
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  Chapter 1

1. INTRODUCTION  

1.1 More Moore versus More than Moore approach 

In 1965, Gordon E. Moore predicted that the number of transistors on a chip will 

double every 18 months.
(1)

 This historical trend has become known as Moore’s 

Law. In order to increase the performance of integrated circuits and control the 

main technological requirements and needs the International Technology 

Roadmap for Semiconductors (ITRS) was created.
(2)

 The nowadays 

microelectronic industry following ITRS requirements combines both digital and 

 

Figure 1.1: The combined need for digital and non-digital functionalities in an 

integrated system is translated as a dual trend in the ITRS: miniaturization of the 

digital functions ("More Moore") and functional diversification ("More than 

Moore").
 (2)
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non-digital functionalities in one product by miniaturization of the digital 

functions (More Moore approach) and functional diversification (More than 

Moore approach). As shown in Figure 1.1, from the physical point of view, the 

More Moore approach will have to finally reach the miniaturization limits at the 

atomic scale. The migration of non-digital functionalities into the More than 

Moore approach from the system on board level into the system on chip (SoC) or 

into the system in package (SiP) gives the opportunity for the emergence of new 

technologies and applications for either daily life or niche markets, i.e. consumer 

electronics, high-end or mobile computing, sensor and medical devices.
 (3)

 For 

example, RF CMOS applications are used in Bluetooth, GPS and Wi-Fi. LED 

lights are powered by high voltage drivers. CMOS image sensors are found in 

most digital cameras. MEMS applications are used in actuators, ink jet printers or 

sensors. Wireless sensor networks (WSNs) are used in telemedicine, security 

technology, etc. All these applications add value to the memory and computing 

devices that are made by the traditional Moore's Law technology. 

1.2 Wireless sensor networks 

An increase in ageing population and a decline in physical activities make the 

health care cost rising. Therefore, to control these costs while still providing the 

quality health service expected by patients, a paradigm shift in the health care 

landscape is needed. It is anticipated that in future the health care system will 

replace the doctor-/hospital-centric treatment by continuous patient-centric health 

monitoring performed at home. This is envisioned to be done by implantable or 

wearable wireless sensor devices which monitor patients’ vital signs, e.g. brain 

activities, heart beats and communicates them to a hospital to be viewed by the 

doctor or nurses. For this purpose are invented inconspicuous, possibly robust and 

easy to use bracelets that will continuously measure and transmit vital data to a 

telemedicine service center (Figure 1.2(a) and Figure 1.2(b)). It is prognosis that 

the number of WSN for health and lifestyle monitoring will exceed 160 Million in 



 3 INTRODUCTION 

2017.
 (6)

 Therefore, it can be deduced that in the nearest future, the wireless 

monitoring of the results with the help of WSNs will play a central role in the 

technological world.  

Under WSN is understood a technology with a defined number of sensor nodes 

that communicate with each other. In general, WSN can include thousands of 

autonomous and self-organized sensor nodes that combine sensing, data 

processing and wireless networking. By constantly growing needs, not only in the 

field of telemedicine, but also in the industrial automation (industrial 4.0), 

automotive industry, security and environmental technology, grows also the 

challenge of designing always smaller, more powerful and particularly energy 

efficient sensor nodes. The existing industrial solutions for wireless sensor nodes 

suffer from limited battery lifetime and functionality.
 (7) - (9)

 To guarantee low 

power dissipation, new software modules as well as innovative and energy-

efficient hardware components such as microcontroller, radio modules and non-

volatile memory must be integrated. Since sensor nodes are to be self-sufficient 

because of its purpose, especially a solution for minimizing the use of energy 

must be found. A large amount of energy is dissipated by the receiver, which must 

 

Figure 1.2: (a) A typical wireless sensor network.
 (4)

 (b) Example of wireless sensor 

networks for telemedicine for the electronic transmission of diagnostic images and 

medical, patient-related documents.
 (5)
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be powered all the time (Figure 1.3(a) and Figure 1.3(b)). Approaches such as 

duty-cycling, which activates the receiver only at intervals, do not provide a 

required latency and asynchrony, which requires an event-driven system. 

Therefore, to reduce the energy dissipation and increase the lifetime of wireless 

sensor nodes, the development of the nanoelectronic memory for the computing 

subsystem (microcontroller unit (MCU) - Figure 1.3(a)) that will be as close as 

possible to the universal memory concept is needed. With this concept, it would 

be possible to dramatically reduce the power dissipation as a function of time, 

especially in the inactive mode (stand by) of the sensor node (see Figure 1.3(b)). 

Furthermore, the computing subsystem of a MCU integrates a processor core with 

program and data memory. The program uses Flash memories, while data are 

stored at the SRAM and EEPROM memories. With the universal memory 

concept, the advantages of the established memories could be combined: the non-

volatility of Flash, the speed of SRAM and the cost benefits and density of 

DRAM.  

There are several potential candidates which could be used as a universal memory. 

The new technology is based on a phase-change random access memory 

(PCRAM), magnetoresistive random access memory (MRAM), ferroelectric 

random access memory (FRAM) and resistive random access memory (RRAM).  

 

Figure 1.3: (a) Hardware architecture of a sensor node. 
(5)

 (b) Power dissipation as a 

function of time for typical sensor nodes. 
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In particular, main advantages of these technologies are the low operating 

voltages, fast read/write times, good scalability and low production costs. 

Another feature of these emerging concepts is the integration into the back-end-

of-line (BEOL) part of the CMOS process without the need of high-temperature 

processes, as classical cell concepts used in today’s front-end-of-line (FEOL) 

integration. Of all these new memory concepts, the RRAM technology in 

comparison to Flash (Table 1.1) represents a very promising approach in terms of 

energy dissipation, scalability, write/read and use of CMOS-compatible materials. 

In addition, an access time < 40 ns, a number of cycles > 10
10

 with write energy 

per cell of < 10
-11

 J/bit make RRAM technology a competitive candidate in the 

universal memory concept for the energy efficient WSNs. 

1.3 RRAM at IHP 

Among many different materials showing the resistive switching phenomenon, 

IHP has selected the TiN/Ti/HfO2/TiN layers composition for RRAM 

applications.
 (11) - (14)

 This RRAM system was pioneered by researches from the 

ITRI group from Taiwan.
 (15)

 From the view point of material choice, HfO2 is 

compatible with the standard BEOL (Bi)CMOS processing of IHP and different 

tool suppliers offer CVD-based equipment, contrarily to many other material 

systems, such as perovskite-type oxides.
 (16), (17)

 Besides, it shows also high 

scalability and good memory performance.
 (14), (18), (19) 

 Even if the exact role of the 

Table 1.1: RRAM vs. Flash technology. Adapted from Ref. (10). 
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Ti layer is not yet fully understood,
 (11)

 its insertion between the TiN top electrode 

and the HfO2 film 
(15), (20)

 improves the memory performance in comparison to the 

TiN/HfO2/TiN stacks.
(13), (14), (21), (22)

 This stack composition together with a select 

transistor (so-called 1T1R memory) were already integrated at IHP into 4 kbit 

RRAM test modules.
 (14)

 Such architecture is characterized by much less 

demanding requirements for the lithographic steps employed in the cell 

fabrication.  

Although the integration into a complex (Bi)CMOS clean room environment has 

been demonstrated, there are still many challenges remaining for these devices. 

Both the reliability and insufficient understanding of the resistive switching 

mechanism are the main issues limiting the RRAM technology development, as 

pointed out by ITRS.
(20)

 The still unclear atomic-scale mechanism of HfO2-based 

resistive switches and the identification of the material changes within the 

insulator must be addressed to suggest a knowledge-based improvement of device 

performance. In this frame, the Ti/HfO2 interface is thoroughly investigated in this 

PhD Thesis. 

1.4 Aim of the Thesis 

The goal of this Thesis is to develop an in-operando hard X-ray photoelectron 

spectroscopy (HAXPES) technique as a key diagnostic for transfer basic materials 

research insights to redox-based resistive switching memory (ReRAM) 

prototyping development in the field of WSN applications. It is in the special 

focus to identify and understand the material changes within the HfO2 film and/or 

at the Ti/HfO2 interface to improve the performance of the TiN/Ti/HfO2/TiN 

ReRAMs. 
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1.5 Organization of the Thesis 

In Chapter 2 is given an introduction to the RRAM topic. Then in Chapter 3, 

firstly the photoelectron spectroscopy, as the main technique used during these 

studies, is briefly reviewed. Next, the preparation of the samples, realization of the 

in-operando HAXPES setup and finally the conducted studies are presented. 

Chapter 4 consists of the main part of this Thesis. In Section 4.1 are presented 

the results of the as-deposited Ti/HfO2 interface investigation. Section 4.2 

contains the ex-situ HAXPES characterization of the as-deposited versus 

electroformed Ti/HfO2/TiN cells. In-operando HAXPES results of the applied 

electrical power impact on the electronic and chemical changes in the 

Ti/HfO2/TiN cells during the DC sweep voltage cycling are presented in Section 

4.3. The proposed resistive switching model in the Ti/HfO2/TiN ReRAM cells and 

the role of the HfO2 impurities on the resistive switching properties are given in  

Section 4.4. Chapter 5 closes this Thesis with the summary, conclusions and the 

outlook. 



 

 



 

 

  Chapter 2

2. RESISTIVE RANDOM ACCESS MEMORIES 

2.1 Basic definitions 

The resistive random access memory, also called resistance change random access 

memory, is typically built as a sandwich structure: the insulating layer I is placed 

between two metal electrodes M. Many dielectrics have been found to show the 

resistive switching phenomenon while sandwiched between metal electrodes. The 

most prominent are: Al2O3,
 (8), (23)

 Cu2O,
 (24), (25)

 HfO2,
 (21), (26) - (30)

 NiO,
 (31) - (39)

 

SiO2, 
(40), (41)

 TiO2,
 (42), (43)

 and Ta2O5.
 (44), (45)

 In some instances the same metal is 

used for both contacts and in other cases two metals are different with one being 

an active participant and the other being an ohmic contact. The application of 

current or voltage to the as-deposited MIM device produces a significant change 

of its electronic conductivity.
 (46)

 

An initial and irreversible process called forming/electroforming is often 

required before the as-deposited MIM cell can be electrically switched between at 

least two different resistance states. An electroforming process typically requires 

somewhat larger voltages and/or currents and longer times than the subsequent 

resistive switching. This process is attributed to the non-destructive soft 

breakdown of the dielectric. 
(47) - (51)

 Often, it turns an initially insulating state of 

the MIM cell into the state of a much lower resistance. The electroformed MIM 

cell can be set either to a low resistance (ON) state – logic 1, or reset back into the 

high resistance (OFF) state – logic 0, depending on the forming conditions. It may 

also happen that in some cases the electroforming process turns an initially 
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conducting MIM cell into a higher resistance state which allows for subsequent 

resistive switching.
 (52)

 In a first approximation, the forming voltage is 

proportional to the thickness of the insulating layer.
 (53), (54)

 Thus, it indicates that 

the electric field in the insulating layer controls the rate limiting step of the 

electroforming.
 (52)

 The reset process is sometimes called an erase operation. In 

some devices more than two stable resistive states have been found, which could 

be used for multiplying the number of bits per cell.
 (10)

 The modification of the 

metal/insulator interface resistance
(55)

 or the alteration of the bulk insulator 

resistance
(56)

 by defects or trapped carriers, or the formation of extended defects 

that bridge the electrode materials under an electric field
 (57) - (61)

 were considered 

as possible mechanisms responsible for the origin of the resistive switching 

behavior in MIM structures. It was shown that these mechanisms sensitively 

depend on the conducting electrode materials.
(11), (55) 

However, the resistive 

switching mechanisms are often classified into a broader class. Depending on the 

current-voltage (I-V) characteristics, the resistive switching can be classified into 

the unipolar and bipolar modes (Figure 2.1).
(62)

 Another classification is 

proposed depending on the conducting path, the interface or filamentary type 

resistive switching (Figure 2.2). In particular, the same insulator may show a 

completely different resistive switching behavior depending on the metal 

electrodes and the electrical power used during resistive switching. Both resistive 

switching classifications are explained in detail in the next paragraph. 

2.2 Unipolar vs. bipolar resistive switching 

In the unipolar mode (Figure 2.1(a)) the resistive switching procedure does not 

depend on the voltage polarity. After an electroforming process, a MIM cell being 

in an ON-state is reset to an OFF-state by applying a reset/erase voltage. During 

the set process to an ON-state, the current is limited by the current compliance 

and the set/write voltage is higher than the reset voltage.
 (63)

 The reset current is 

typically higher than the compliance limit set during the set operation. 
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In the bipolar mode (Figure 2.1(b)) the set to an ON-state occurs at one voltage 

polarity and the reset to an OFF-state on the reversed voltage polarity.
 (62), (63)

 In 

order to show bipolar switching behavior the MIM system needs to have some 

asymmetry. It can be for example a dedicated voltage polarity used during the 

forming process or different materials used for top and bottom electrodes. The 

bipolar mode has often a gradual character. In most cases, the resistance change of 

a device proceeds rather continuously while in the unipolar mode an abrupt jump 

between two resistive states is observed. Such a gradual bipolar switching 

operation is promising for multilevel resistive switching memory applications in 

which a single memory cell can store several bits of information.
 (10)

 Additionally, 

the bipolar resistive switching is divided into clockwise and counter clockwise 

types. In the clockwise switching the set operation occurs at a negative voltage 

polarity and reset at positive voltage polarity. In the counter clockwise it is 

opposite (Vset > 0, Vreset < 0).     

  

 

Figure 2.1: Schematic of the basic operation schemes of resistive switching memory 

cells. In unipolar switching, a single voltage polarity for set/write and reset/erase is 

applied (a). Bipolar resistive switching shows resistive switching depending on the 

polarity of the applied voltage (b). Adapted from Ref. (63) and Ref. (64). 
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2.4 Interface vs. filamentary type resistive switching 

Depending on the location of the switching event, the resistive switching can be 

classified into the interface or filamentary type. Typically, in case of an interface 

type (Figure 2.2(a)), the resistive switching takes place at the interface between 

the metal electrode and the oxide 
(55)

, and the ON-state resistance is proportional 

to the electrode size.
(55), (65) 

For this type of devices, the resistance change is 

attributed to the field-induced change of the tunnel barrier or a Schottky barrier at 

the metal/insulator interface homogeneously over the entire electrode.
 (52)

 In the 

filamentary type (Figure 2.2(b)), the resistive switching is based on the creation 

and rupture of locally distributed conducting filaments. Their creation is 

determined by the electric field, while the subsequent switching takes place at a 

local spot along this filament, either at the metal/insulator interface or in the 

interior of the insulator. Thus, in the first approximation the switching voltage is 

independent on the insulator film thickness. Results obtained from calculations or 

simulations of the I-V characteristics indicates that the current compliance set 

 

Figure 2.2: Interface (a) and filamentary (b) type resistive switching model adapted 

from Ref. (55) and Ref. (63). 
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during the forming/set process controls the size (thus the resistance) of the 

conductive filament(s). 

In some instances, both the interface and filamentary type resistive switching have 

been observed in the same sample.
(66)

 Indeed, the single filament type switching 

and the homogeneous interface type switching may be seen as two extremes of the 

same mechanisms. A spotty nature, showing limited areas of the interface type 

switching, or the multifilament type switching are in between of these two types. 

2.5 Physical phenomena of resistive switching 

RRAM is a very broad classification of memory technologies that includes five 

specific memory mechanisms (Figure 2.3). Each is defined by the specific 

physical mechanism responsible for their ability to switch resistance states 

between a high resistance and a low resistance. They are classified by their 

dominant physical operating mechanism. In general, the resistive switching can be 

driven by thermal, chemical or electronic mechanisms. The five RRAM 

 

Figure 2.3: Classification of the RRAMs. Adapted from Ref. (67). 
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technologies are: phase change memories (PCM), electrostatic/electronic effect 

memories (EEM), thermal chemical memories (TCM), electrochemical 

metallization (ECM) and valence change memories (VCM).
 (58), (63)

  

PCM exploit the unique behavior of chalcogenide glass (e.g. Ge2Sb2Te5 (GST)). 

The phase change memory mechanism in chalcogenide glass involves electric-

field-induced crystalline filament growth.
(68)

 The crystalline and amorphous states 

of chalcogenide glass have dramatically different electrical resistivity. The 

amorphous high resistance state represents a binary 0, while the crystalline low 

resistance state represents a binary 1. When GST is heated to a high temperature 

(over 600 °C) its chalcogenide crystallinity is lost. Once cooled, it is frozen into 

an amorphous glass-like state and its electrical resistance is high. By heating the 

chalcogenide to a temperature above its crystallization point, but below the 

melting point, it will transform into a crystalline state with a much lower 

resistance. A careful material state control allows it to be thus transformed into 

one of four distinct states: an amorphous, a crystalline and two intermediate. Each 

of them has different electrical properties that allow a single cell to represent two 

bits, and thus doubling the memory density.
 (69)

 EEM is another broad category of 

RRAMs, involving three different electronic effects causing resistance switching 

mechanisms: (1) charge injection and trapping, (2) Mott insulator-metal transition, 

and (3) ferroelectric polarization reversal. A charge-trapping switching model is 

often suggested based on two observations: (1) I-V characteristics dominated by 

trap-controlled space charge-limited-conduction (SCLC) and (2) hysteresis in 

rectifying I-V characteristics of a Schottky-like junction. There are two 

mechanisms related to the basic concepts of charge trapping. First, as charge is 

injected into the insulator the device remains in the high resistance state until all 

traps in the insulator layer are filled – so called trap filled limit. At this point, the 

current increases exponentially and the device enters the low resistance state. 

Charge carriers injected and trapped in a MIM cell can either modify interface 

properties between the metal electrodes and the insulator or they can modify the 

band structure in the bulk insulator. Both mechanisms can alter the carrier 
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transport property and cause resistance change. Second, by the release of the 

trapped charges may recover the material to the initial states. Retention of charge 

trapped in these states, either at the interfaces or in the bulk insulator, depends on 

the release time of the trapped charge. The reversible bipolar resistive switching in 

rectifying I-V hysteresis can be explained by the change of the width and/or height 

of a Schottky-like barrier induced by trapped charge carriers in the interface 

states. Before a sample shows a stable switching a forming process is required, 

which may be related to the generation of oxygen-defect-induced states at the 

metal/oxide interface. In the Mott insulator-metal or Mott-Hubbard transition a 

charge injection into some transition metal compounds induces a transition from a 

strongly electron correlated insulator into a weakly electron correlated metal. The 

band gap in a Mott insulator exists between bands of like character while the band 

gap in charge transfer insulators exists between anion and cation states. The last 

electronic effect causing resistive switching in EEM is based on ferroelectric 

polarization reversal. The polarization of the ferroelectric insulator layer can 

modify its energy band structure. The changed band structure will impact the 

charge carrier transport properties and thereby cause bi-stable resistance. If the 

polarization vector of the ferroelectric insulator is parallel (antiparallel) to the 

electric field the depletion layer of an injecting contact will become thinner 

(thicker) and the Schottky emission from the injecting contact may become field 

assisted, both of which will lower (increase) the resistance of a MIM structure. 

TCM, ECM and VCM are often combined into the term redox-induced resistive 

RAM - ReRAM.
 (67), (70)

 These three types of memories are loosely connected by 

the fact that they share reduction/oxidation (redox) electrochemistry as an 

important component of their physical mechanism of the resistance switching. 

The redox electrochemical mechanisms can occur either at the metal/insulator 

contact interfaces, in the bulk insulator layer and/or along the conducting 

filaments in the insulator layer. The distinction between the TCM and the 

nanoionic ECM and VCM lies in whether the ion drift/diffusion and the redox 

electrochemistry mechanisms in the oxide layer are caused by (1) a thermal 
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gradient diffusion mechanism (TCM) or by (2) an electrostatic drift field (ECM 

and VCM). In many cases both mechanisms are present and it is just a matter of 

which is dominant. If the thermal gradient mechanism is dominant, the resistance 

switching is unipolar (TCM). Conversely, the resistance switching is bipolar, if 

the applied electric field drives the charged species (ECM and VCM). A more 

detailed description of the ReRAM mechanism is given in the next subsection. 

2.6 Redox-related resistive switching 

Common processes in ReRAMs  

The operation conditions and the type of a ReRAM cell determine the relative 

current distribution and the specific electrochemical reactions at the interface. 

Metal electrodes in the ReRAM may carry only electronic current while the 

insulator layer may carry electronic and ionic currents. The ionic current may 

consist of anions and cations moving in an insulator layer in a direction 

determined by the applied electric field, and in addition can be, at least partially, 

blocked at the metal/insulator interface. The electrochemical reactions, oxidation 

at the anode and the reduction at the cathode are induced by the ionic partial 

current in the insulator layer. Additionally, the cations may stem from the anode 

metal. In the interior of the insulator layer and/or close to the metal electrode 

contact typically a Joule heating will occur. Moreover, at the interface may take 

place also ad-atom diffusion. An accumulation of mobile ions at one electrode and 

their depletion near the other, leads to so-called concentration polarization, which 

can be compensated (expect in the space charge regions) by local redox reactions. 

In a consequence of concentration polarization, space charges and phase 

transformations may occur. Furthermore, Joule heating and the electrochemical 

interface reaction may also induce a phase transformation. 

Due to the ReRAM nature, only one of the states (OFF, ON, or any intermediate 

state), can be thermodynamically stable and the other state(s) must be metastable. 
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The reason for that is due to the fact that there may be only one arrangement of 

atoms and ions which has the lowest free energy under the given external 

parameters. Moreover, in the ReRAM both states may be metastable.
 (52)

 

Thermochemical memory 

TCM show unipolar resistive switching behavior because the thermochemical 

process dominates over the electrochemical process. To the TCM belong all metal 

oxides which show a high resistance in the most oxidized state and much lower 

resistance in reduced oxidation states (e.g. Al2O3, CoO, CuO, NiO, SiO2, TiOx, 

ZrOx). The proposed resistive switching mechanism is shown in Figure 2.4. The 

initial electroforming process creates a conducting filament in the cell. During this 

process due to a thermoelectric breakdown a sudden current increase in the I-V 

characteristic is observed. Typically, a current compliance is used during the 

forming/set procedure to control the resistance of the filament in the ON-state, 

 
Figure 2.4: Proposed TCM resistive switching mechanism.

 (52)
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and is released in the subsequent reset cycle and the current overshoot ruptures 

and partially dissolves the conducting filament. The set voltage is lower than the 

electroforming voltage because conducting filament is not completely dissolved 

but only interrupted during the reset process. The applied voltage and the 

corresponding high current during the reset operation result in Joule heating and a 

significant temperature increase. This leads to dissolution of the conducting 

filament by thermally-activated processes. Because current compliance is not used 

during the reset process, the reset current level is higher than the set. There are 

two processes conceivable for the rupture of the conducting filament: (1) the 

reduction of the free surface energy and (2) a thermally-activated re-oxidation of 

the conducting filament. The linear (ohmic) I-V relationship in the ON-state is 

consistent with the conduction of the metal-rich conducting filament created 

during the forming/set procedure. An exponential or superlinear I-V characteristic 

in the OFF-state can be explained by the semiconductive behavior attributed 

either to a thermally assisted Pool-Frenkel conduction or to a Schottky emission at 

the metal/oxide interface due to a high density of defect states deep in the band.  

Electrochemical Metallization Memory 

ECM are also called conductive bridge random access memories (CBRAM) or 

programmable metallization cells (PMC). The ECM cell consist of an ion 

conducting insulator layer (either solid electrolyte containing host cations, e.g. 

Ag2S, Cu2S, or an insulator, e.g. GeS, SiO2 or WO3, typically doped with cations) 

sandwiched between an electrochemically active metal electrode (Ag, Cu) and 

electrochemically inert counter electrode (Au, Ir, Pt, W).
(64)

 The basic principle of 

ECM operation is shown schematically in Figure 2.5. The as-deposited ECM cell 

is in the OFF-state. To set this cell into the ON-state a positive voltage is applied 

to the active electrode (here Ag). During the set process Ag is oxidized to Ag
+
 

ions which drift toward the counter Pt electrode. There, an electrochemical 

reduction and electro-crystallization of Ag
+
 on the surface of the Pt electrode 

occurs. Due to this process an Ag filament grows from the Pt towards Ag 
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electrode until an electrical contact is established which defines the ON-state. 

Extended defects in the insulator layer are considered to facilitate the filament 

formation and be regarded as prerequisites for ECM operation. The growth of the 

conducting filament (its diameter) is controlled by the set current compliance for 

the operation. The ON-state resistance is determined by the physical nature of the 

filament and its contact at the active electrode. Both the filament thickness 

increase from few nanometers into relative thick components and a tunnel gap 

change into a galvanic contact at the active electrode will decrease the ON-state 

resistance. To reset the device back to the OFF-state an opposite voltage is applied 

which leads to a dissolution of the conducting filament. In principle, the reset 

mechanism will depend on the ON-state established during the set process before.  

  

 

Figure 2.5: Proposed ECM resistive switching mechanism.
 (52)
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Valence change memory 

The valence change memory effect occurs in a wide range of metal oxides. The 

VCM cell consists of an active electrode (AE), a mixed ionic-electronic 

conducting layer (MIEC) and an ohmic counter electrode (OE). For VCM many 

variants are known. The resistive switching origin in VCM is typically based on 

the migration of anions. In Figure 2.6 is shown a proposed filamentary-type 

resistive switching mechanism for VCM composed with the n-type metal oxide. 

In the OFF-state there exists a filament composed of n-conducting oxygen 

vacancies (called plug) and a potential barrier in the front of the AE (called disc). 

By applying a negative voltage to the AE (left electrode on Figure 2.6), while the 

OE is grounded, positively charged oxygen vacancies are attracted from the plug 

into a disc region. As a result, a significant decrease of the barrier height and 

width due to the local reduction process occurs and the cell is set into the ON-

state. To reset again the cell into the OFF-state, an application of a reversed 

voltage polarity to AE is required. During this process a local re-oxidation occurs 

and the oxygen vacancies are repelled out of this active interface. The Pt/ZrOx/Zr 

 

Figure 2.6: Proposed VCM resistive switching mechanism.
 (52)
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VCM cell, presented in Figure 2.6, has shown a clockwise bipolar resistive 

switching. There are three typical ways proposed by Waser how to arrive at 

VCM systems.
 (52)

 (1) As AE, a metal with a low oxygen affinity (Ir, Pt, TiN) is 

used, and for OE, a metal with a low work function and a high oxygen affinity 

(Ti, Zr, Hf) is used. (2) In case, if for the OE a high work function/low oxygen 

affinity metal is used, then an electroforming is essential in order to introduce an 

ohmic behavior. (3) For the oxide, there are three different options: either (i) 

homogenous oxide film or (ii) homogeneous bilayer system consisting of an 

oxygen deficient n-type layer deposited on the OE and the same but fully oxidized 

few-nanometer thick oxide processed on the AE side, or (iii) heterogeneous 

bilayer system, where the second fully oxidized oxide layer is made from another 

oxide having a larger formation energy and/or a larger band gap than the 

nonstoichiometric first oxide. The location of the conductive path may vary as a 

function of the oxide morphology. In case of crystalline oxides, the local 

nanoionic redox process typically takes place at extended defects, while in case of 

amorphous and nanocrystalline oxides, the location of conducting filament may 

form anywhere in the cell. The filament’s lateral size is determined by the 

electroforming process and influences the parameters of set and reset processes. 

Both processes show a strong nonlinear switching kinetics. The motion of the ions 

will be not strictly perpendicular to the electrode plain because of the (main) 

thermally assisted switching kinetics, but it will have lateral components as well. 

If the lateral effect dominates and takes place in the inner part of the cell, the 

VCM mode may be changed to the TCM mode controlled by the magnitude of the 

current compliance. 

According to the results of this PhD Thesis and available literature, the Ti/a-

HfO2/TiN ReRAM cells are based on a VCM switching mechanism, as discussed 

in detail in the following, in the results part in Chapter 4.   

 

  



 



 

  Chapter 3

3. EXPERIMENTAL BACKGROUND 

3.1 Photoelectron spectroscopy 

In the following sections, basic knowledge about X-ray and hard X-ray 

photoelectron spectroscopy, as the two leading techniques used in this Thesis, will 

be briefly described. The quantum mechanical formalism of the photoemission 

process and the other used techniques are briefly summarized in Appendices A 

and B.  

3.1.1 Historical background 

X-ray photoelectron spectroscopy (XPS) has its origin in the photoelectric effect 

which was first explained by Einstein in 1905 (Nobel Prize in 1921). Throughout 

the 1950s and 1960s, Kai Siegbahn and his co-workers developed this effect into 

one of the most powerful tools for studying the composition and electronic 

structure of surfaces. In 1981, for one aspect of the XPS development, he received 

the Nobel Prize in physics.
(71)

  

Photoelectric effect 

When a surface is irradiated by a photon source, three events may occur (see 

Figure 3.1): (1) the photon can pass through with no interaction, (2) the photon 

can partially loose its energy by a scattering with an atomic orbital electron – so 

called inelastic scattering (e.g. Compton effect for high energy electrons), and (3) 

the photon can be absorbed and transfer its total energy to the atomic orbital 

electron leading to an electron emission from that atom – photoelectric effect. 
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The photoemission process (10
-16 

s needed from excitation to emission) will only 

occur if the energy of the exciting photon (h) is higher than the binding energy 

(BE) of the irradiated electron.  

3.1.2 Instrumentation  

The typical XPS instrumentation (Figure 3.2) consists of a vacuum system, an X-

ray source, an electron energy analyzer and data system. The sample to 

measure is placed in the ultrahigh vacuum chamber via load-lock or preparation 

chamber and then irradiated with photons in the X-ray range. X-rays are created 

usually by impinging a high-energy (~10 keV) electron beam onto an anode 

(typically Mg or Al). During this time, core holes are created in the atoms of the 

anode material, by the emitted photoelectrons. Fluorescence X-rays are thus 

emitted and typically Mg or Al K radiation with h = 1253.6 eV or 1486.6 eV is 

used by XPS. During the measurement, anodes are usually cooled with water 

because most of the incident electron energy is converted into heat. The 

photoelectrons which have a sufficient energy to escape from the irradiated 

sample into the vacuum chamber are then separated and counted by the energy 

dispersive analyzer. When this X-ray flux is illuminating a sample, the 

spectrometer operation and data acquisition are controlled by the computer 

programs. The collected data are analyzed by software tools. 

Figure 3.1: Photon interaction with an oxygen atom: (1) no interaction, (2) 

Compton effect, (3) photoelectric effect. 
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3.1.3 Binding energy 

The energy which is measured by the XPS analyzer is the kinetic energy (KE) of 

the ejected photoelectron. The binding energy (BE) of this photoelectron is 

calculated afterwards. In order to accurately calculate the binding energy of the 

photoelectron ejected from the conducting sample, one should place it in electrical 

contact with the XPS spectrometer. As shown in Figure 3.3, it puts the Fermi level 

(EF) of the sample and the spectrometer at the same energy level. After that, the 

BE of the ejected photoelectron is referenced to EF and equal to: 

              (3.1) 

where    is the energy of the irradiating photons (called also the excitation 

energy), KE is the measured kinetic energy of the ejected photoelectron, and    is 

the work function of the spectrometer.  

Figure 3.2: Schematic view of the XPS instrumentation.
(72)
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   can be calibrated by placing a clean Au standard in the spectrometer and 

adjusting the instrumental settings such that the known binding energy values for 

Au (e.g. EF = 0 or 4f7/2 = 84 eV) are obtained. Then, the linearity of the binding 

energy scale is calibrated by adjusting the energy difference between two widely 

spaced lines of the sample to their known values. Once the spectrometer energy 

scale has been calibrated, and the spectrometer is maintained in an ultrahigh 

vacuum (UHV) environment, it is assumed to remain constant. The instrument 

calibration procedure is given in ISO Standard 15472:2001, and more details can 

be found elsewhere.
 (74) - (77)

 

Binding energy shift 

Because the binding energy in the photoelectron spectrum is usually measured 

with respect to the Fermi level, the binding energy value depends thus not only on 

 

Figure 3.3: Energy level diagram with a schematic view of the photoemission 

process of the electrically conducting sample placed in electrical contact with the 

spectrometer. Adapted from Ref. (72) and Ref. (73). 
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the chemical state of the element in the compound (chemical shift) but also on the 

Fermi level position. Therefore, any change of the EF position with respect to the 

band edges (so called band bending) will lead to a shift of the entire 

photoelectron spectrum relative to this reference level (see Figure 3.4).
 (78)

 Band 

bending in a semiconductor or semiconducting oxide (whose depth depends on 

the doping and is usually on the order of several tens to some thousands of Å) 

may be caused by a variety of processes. For example, the existence of surface 

states in the band gap, adsorption of foreign material on the surface or change of a 

doping concentration at the interface will lead to the formation of a depletion or 

accumulation layer. Because the photoelectrons escape depth is very small (up to 

3 nm), the photoelectron spectrum will thus represent only the electronic level 

binding energies in the outermost depletion region. For example, an effect of a 

doping type on the EF position, and thus on the BE in the XPS spectrum, has been 

presented for silicon by Lebedinskii et al.
 (79)

 Here, the binding energy of Si 2p 

core level electrons was taken for highly doped n
++

- and p
++

-Si samples. As can be  

 

Figure 3.4: Schematic diagram of a photoelectron spectrum recorded from a 

semiconductor under conditions of band banding (left) and flat bands.
 (78)
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seen in Figure 3.5, the Si 2p peaks appeared to have two distinct positions, 

separated by about the band gap of Silicon (~1 eV). Therefore, when n-type 

dopants are created inside the sample, XPS peaks shift towards larger binding 

energy, and when p-type dopants are created, a shift towards smaller binding 

energy is detected by XPS. 

Koopmans’ Theorem 

The Hartree-Fock energy for N electrons in an atom is given by the equation: 

   ∑  
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(3.2) 

where ∑   
 
    is a core Hamiltonian,     is a Coulomb energy,     is an exchange 

integrals and     is a potential. 

After removing an electron from the k orbital, by the photoemission process, the 

Hartree-Fock energy for N-1 remained electrons in atom is now equal to: 
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(3.3) 

The energy difference between Eq. 3.2 and Eq. 3.3 is the electron energy in orbital 

k, also called the orbital energy (  ): 

       
     ∑(       )

 

   

     
(3.4) 

 

Figure 3.5: Effect of Si doping on the measured in XPS BE position: left - schematic 

energy diagram; right - Si 2p line recorded for n
++

- and p
++

-Si.
 (79)
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Koopmans’ Theorem states that the BE of the emitted photoelectron from a k level 

is equal to the energy difference between the (N-1)-electron final state and the N-

electron initial state, so that the BE is the negative orbital energy     of the 

ejected photoelectron:  

       
             (3.5) 

This theory assumes thus that the other electrons remain “frozen” during the 

photoemission process.  

Relaxation effects 

In fact, other electrons in the sample, in the presence of a hole, relax to minimize 

the total electronic energy. The associated relaxation energy (δ relax > 0) 

decreases the measured binding energy of the ejected photoelectron. Relax can 

either the electrons on the atom containing the core hole, so called atomic 

relaxation, or electrons on surrounding atoms, so called extra-atomic relaxation. 

Koopmans’ Theorem negates also the relativistic (     ) and correlation (      ) 

effects, which change the BE value. Thus, the measured BE value in the XPS in 

case relaxation occurs and Koopmans’ Theorem is not valid, is given by: 

                              (3.6) 

3.1.4 Measurement sensitivity 

Sampling depth 

Electrons excited with X-rays can travel only short distances through the solid due 

to their strong inelastic scattering with atoms. As shown in Figure 3.6, 

photoelectrons ejected from atoms very near the surface escape unscattered and 

contribute to the XPS peaks. Electrons originating from deeper regions partially 

lose their energy due to inelastic collisions with other electrons. Inelastically 

scattered electrons, which have still enough energy to escape from the sample, 

contribute only to the so called background (BG) signal (at lower KE than the 
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XPS peak). The initial intensity (I0) of the electrons flux emitted at a depth d 

below the surface is attenuated according to the Lambert-Beer law. As shown in 

Figure 3.7, the intensity (Id) of the electron flux, as it reaches the surface without 

being scattered, exponentially decreases with depth accordingly to Eq. 3.7:  

      
          (3.7)  

where α is the electron take-off angle related to the electron analyzer acceptance 

direction and the surface (see Figure 3.8) and d/sinα is thus the effective distance 

travelled through the solid at that angle. The quantity λ is the average distance that 

an electron with a given energy can travel through this type of material without 

inelastic collisions and is called the inelastic mean free path (IMFP).  

The electron probability to escape at α = 90  from a depth d is shown in Figure 

3.7. As can be seen, about 63% of the signal in the X-ray photoelectron spectrum 

will emanate from a depth of less than λ, 86% from a depth of less than 2λ, and  

 

 

Figure 3.6: Kinetic energy distribution (i.e. electron spectrum) obtained due to the 

inelastic scattering process in the sample irradiated with X-rays. 
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95% from a depth of less than 3λ. The depth from which 95% of all 

photoelectrons are emitted by the time they reach the surface is thus called the 

information depth (ID) of the XPS experiment: 

However, the vertical depth sampled decreases by a factor of sinα if the take-off 

angle α < 90   

Inelastic mean free path 

The IMFP determines quantitatively how surface sensitive the measurement is. 

The actual values of the IMFP of electrons in a matter are a function of their 

energy and the atomic density, composition and structure of the material being 

analyzed. The λ values (in Å) can be calculated from the TPP-2M formula
(80)

 for 

inorganic materials with a band gap    (in eV):  

          (3.8) 

             (3.9) 

Figure 3.7: Photoelectron probability to escape from a depth d in normal emission 

geometry. 
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where    is the photoelectron energy (in eV),    is the bulk plasmon energy (in 

eV),    is the number of valence electrons per atom (for elemental solid) or 

molecule (for compounds),   is the density of the material (in gcm
-3

) and   is the 

material atomic or molecular weight.  

Photoelectron spectroscopy can uniquely measure the electronic structure of a 

solid, but owing to the generally limiting electron mean free path, the technique is 

extremely surface sensitive, probing only the first few atomic layers of a structure. 

In conventional XPS, the values are typically between 1 and 3.5 nm. Thus, 

accordingly to Eq. 3.8, the maximum depth which can be investigated by the XPS 

technique is less than 10 nm. 

3.1.5 Depth profiling methods 

The XPS information depth dependence on the IMFP and the take of angle  

gives an opportunity for a non-destructive investigation of the chemical 

composition of subsequent layers as a function of a depth.  

 The principle of the ID dependence with  is used in angle-resolved 

XPS. In this method, the excitation energy is fixed and  is changed 

(Figure 3.8). The smaller the value of is, the smaller ID becomes.   

 KE: As shown in Figure 3.9, the IMFP of the photoelectron depends on its 

kinetic energy. The higher the photoelectron KE is, the bigger  is and 

consequently the ID value is increased.  

  
  

   [   (   )  (    )  (      )]
   

(3.10a) 

              (  
    

 )
 
 
             

(3.10b) 

              (3.10c) 

              (3.10d) 

              (3.10e) 

  (    )     
       , (3.10f) 
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Figure 3.8: Principle of angle-resolved XPS. 

Figure 3.9: Inelastic mean free path values with respect to the kinetic energy of 

electron. Adapted from Ref. (81). 
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The sample depth composition can be also investigated by XPS in a destructive 

way. The destructive depth profiles are generated by an ion etching (typically 

accelerated monoatomic Ar
+ 

or Cs
+ 

ions to an energy between 0.5-5 keV) of the 

surface. At regular time intervals the bottom of the etching crater is analyzed by 

XPS. However, the monoatomic ion beams can reduce the accuracy of the 

analysis due to inducing an accumulation of atoms at the bottom of the crater. 

Although the measurement accuracy can be improved by means of rotating the 

sample during the sputtering time, the destructive approach always runs the risk to 

create artifacts. For example, preferential sputtering effects result in erroneous 

stoichiometry. It is thus clear that materials phenomena, being based on the 

defects physics, are in general not accessible by sputter XPS approaches.  

Hard X-ray photoelectron spectroscopy 

Resistive switching in oxides is closely related to the defect physics in the 

insulator and calls thus for the use of an innovative, non-destructive XPS 

technique called hard X-ray photoelectron spectroscopy (HAXPES). The 

HAXPES is a new variant of the well-established photoemission technique, which 

extends its range to much higher photoelectron energies up to 15 keV. According 

to the universal curve shown in Figure 3.9, excitation of the sample with hard X-

rays increases the  values by about 10 times in comparison to the excitation by 

standard X-ray sources in the laboratory with about 1.5 keV of energy. For this 

reason, not only the direct non-destructive access to the intrinsic bulk electronic 

structure of solids is facilitated, but also the extended non-destructive depth 

profiling of thin films and the study of buried interfaces (not possible by 

conventional photoemission) are accessible. Another advantage of the HAXPES 

technique is that due to its bulk-sensitivity the samples coming from the air can be 

in principle directly measured without any previous surface preparation (e.g. 

sputtering). In other words, surface contaminations have a smaller contribution to 

the total HAXPES signal. HAXPES is attracting increased scientific attention 

worldwide, mainly as a result of the availability of brilliant medium energy X-ray 
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beam lines at a number of synchrotrons. Currently, there exist six synchrotrons in 

the world offering HAXPES measurements, i.e. two in Asia: SPring8 (Hyōgo 

Prefecture, Japan) and Photon Factory PF (Tsukuba, Japan), three in Europe: 

DESY (Hamburg, Germany) BESSY (Berlin, Germany), and ESRF (Grenoble, 

France), and one in America: NSLS (Berkeley, USA). The intense activities at 

currently established synchrotrons push forward the technique and increase 

numerous examples of its power. In the view of increasing number of HAXPES 

applications from basic science to industrial research, new synchrotrons offering 

HAXPES end stations are under construction, e.g. Diamond (Oxfordshire, UK), 

CLS (Saskatoon, Canada) or Soleil (Saint-Aubin, France).  

Furthermore, HAXPES needs to be based at synchrotrons, and is not a laboratory 

technique, because the ionization cross section of the photoelectric effect strongly 

decreases with increasing excitation energy (  
 

(  ) 
) and thus the number of 

photoelectrons collected by the photoelectron energy analyzer. Therefore, in order 

to obtain high resolution and intensive signals in photoemission spectra, high flux 

and brilliance of photon beams is necessary. Both are currently only offered at 

modern 3
rd

 generation synchrotrons. 

3.1.6 Data interpretation 

The most basic photoemission spectra analysis provides qualitative and 

quantitative information on all the elements (expect H and He) whose 

concentration in the sample surface area is above 0.1 atomic %. Firstly, a wide 

scan or survey scan spectrum, often covering a range of several hundreds of eV, is 

taken. Next, the spectrum is calibrated (e.g. to the 84 eV of Au 4f7/2 or to the 285 

eV of C 1s (C-C) peak position) for sample charging compensation. After 

calibration, the BG is subtracted and then the spectra can be analyzed. Much more 

details can be extracted from high-resolution spectra of each of the photoelectron 

features found in the wide scan spectrum. A typical XPS spectrum is shown in 

Figure 3.10.  
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The x-axis is generally labeled binding energy given in eV; however it can also 

be plotted as a function of kinetic energy. According to Eq. 3.1, there is an 

inverse, linear relationship between BE and KE. The y-axis can either be given in 

number of counts or counts per second (cps), both plotted in linear or 

logarithmic scale.  

Background 

To the XPS BG signal contribute these electrons which suffer energy losses, but 

still have sufficient energy to escape over the work function of the surface. The 

inelastically scattered BG intensity with increasing binding energy depends on the 

composition and structure of the sample as well as on the analyzed photoemission 

peak. The BG in photoemission spectra is non-trivial in nature. A variety of BG 

algorithms are used to model it. The most often used basic linear, Shirley and 

universal cross-section Tougaard BGs are shown in Figure 3.10. None of these 

BG algorithms are correct and therefore represent a source for uncertainty when 

computing the XPS peak area. Selection of one BG type over another is 

essentially chosen according to the least wrong rather than the most right. The 

linear BG is often used for fitting polymers and other materials with large band-

gaps because they tend to have a relatively small step in the background over the 

 

Figure 3.10: Three types of the often used background in the XPS: Linear, Shirley 

and Tougaard. 
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energy range covered by the peaks. Depending on the position of the chosen end 

points the peak area can significantly change. In the Shirley BG the BG intensity 

at any given binding energy position is proportional to the intensity of the total 

peak area above the BG in the lower binding energy peak range.
(82)

 The general 

formulation of a Tougaard BG is based on the existence of an energy loss cross 

section F(x) representing the probability that an electron at energy offset x 

undergoes a loss event and therefore appears as a contribution to the 

background.
(83)

 Despite the fact that the Tougaard BG is the most accurate, if 

there are numerous peaks overlapping, it suffers from complications. Therefore, 

due to the easiest use of the Shirley BG, it is most widely used.  

Signals in the photoemission spectra 

In a typical XPS spectrum seven features can be distinguished. (1) Sharp core-

level peaks - due to photoelectrons created within the first few atomic layers 

(elastically scattered), (2) multiplet splitting - occurs when unfilled shells contain 

unpaired electrons, (3) background - due to electrons emitted from deeper areas 

in the solid which are inelastically scattered (reduced KE), (4) satellites (shake-up 

and shake-off) - due to a change in Columbic potential as the photoejected 

electron passes through the valence band, (5) plasmons - created by collective 

excitations of the valence band electrons, (6) Auger peaks - produced by x-rays 

and (7) valence bands. 

After a proper binding energy calibration and BG subtraction, the XPS peaks can 

be readily identified from their positions using tabulated binding energy values. In 

XPS, the core-levels use the nomenclature nlj where n is the principal quantum 

number (n ≥ 1), l is the orbital quantum number (0 ≤ l ≤ n – 1) and j = l + s 

(where s is the spin angular momentum number and can be ±½). Except the s level 

(l = 0), all other orbital levels give thus rise to a doublet with the two possible 

states having different binding energies. This is known as spin-orbit (l-s) 

splitting.
(84)

 The energy difference of l-s splitting can be found in a variety of  
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subshell j Area ratio 

s  
 ⁄  - 

p  
 ⁄ ,   ⁄  1:2 

d  
 ⁄ ,   ⁄  2:3 

f  
 ⁄ ,   ⁄  3:4 

   

databases, e.g. in Ref. (85) and in Ref. (86). These values will be needed when 

fitting the spectra. In general, the trend for separation is p > d > f. Besides, the 

energy difference for l-s splitting increases with atomic number of the element, 

i.e. it is easier to observe for heavy than for light elements. Moreover, based on 

the degeneracy (or multiplicity) of each spin state, 2j + 1, the peaks will also have 

specific area ratios, as shown in Table 3.1 Next, when a core electron is removed 

by photoionization, satellite signals in the XPS spectrum may be observed. In case 

of shake-up satellite, the outgoing electron interacts with a valence electron and 

excites it (shakes it up) to a higher energy level. As a consequence the energy of a 

core electron is reduced and a satellite structure appears at a few eV higher 

binding energy than the original core level position. These shake-up peaks have 

discrete energies. The lost energy is equivalent to a specific quantized energy 

transition (i.e. π → π* transition). If the valence electron is ejected from the ion 

completely (to the continuum), the shake-off satellites appear, seen as a 

broadening of the core level peak or contribution to the inelastic background in 

the XPS spectrum. The shake-off satellites can have a wide range of possible 

energies in the XPS spectrum, always with higher binding energy than the 

photoemission peak. In some photoemission spectra also the plasmon loss peaks 

(discrete energy losses) can appear when the photoelectron excites collective 

oscillations in the conduction band (free-electron gas). This feature is specific to 

clean metallic-like surfaces. Besides, when the excited ion relaxes Auger electrons 

Table 3.1: Spin-orbit splitting j values and peak area ratios. 
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are emitted. In detail, electron from a higher lying energy level fill the inner shell 

vacancy with the simultaneous emission of an Auger electron. Auger peaks can be 

distinguished by changing the excitation energy. In detail, the kinetic energy of 

photoemission peaks shifts by the difference of the two excitation energies, while 

the kinetic energy of all Auger lines remains the same. The energy of an emitted 

Auger electron (       ) referenced to the vacuum level will be equal to the 

emitted photoelectron binding energy (  ) minus the binding energy of the 

electron that fills the vacancy in the core (    ), minus the binding energy (in the 

presence of the core hole) of the level from where the Auger electron is emitted 

(    ) minus the work function of spectrometer (  ):   
              

         The last feature in the photoemission spectrum is a valence band 

region (VB) typically observed between 0 and 20 eV due to photoemission of 

valence (outer shell) electrons. An interpretation of this region is often complex, 

and was discussed for example in Ref. (87).  

Further features that are only observed in the XPS spectra taken with non-

monochromatized X-ray sources are called X-ray satellites. These sources excite 

the sample with more than one X-ray line. The low-intensity X-ray lines produce 

additional low-intensity photoemission peaks with higher KE than the primary 

photoemission peak. These features can be suppressed by using X-ray 

monochromators before illuminating the sample. 

Chemical shifts 

The observed binding energy variations in the XPS spectra are called the binding 

energy shifts or the chemical shifts. Binding energy can vary with the type of 

atom and the addition of other atoms bonded to this atom. The measured binding 

energy by photoemission spectroscopy is thus associated with covalent or ionic 

bonds between atoms. As presented in Eq. 3.6, both initial and final state effects 

have an impact on the observed binding energy value. 
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 Initial state effects 

The binding energy of electrons in the initial state of an atom can be changed by 

the formation of chemical bonds with other atoms. To a first approximation, XPS 

peaks from orbitals involved in the binding energy process undergo the biggest 

chemical shift. As the formal oxidation state of an element increases, the binding 

energy of the emitted photoelectrons from that element increases. For example, 

since oxygen is more electronegative than carbon, it will draw electrons away 

from carbon. As the number of oxygen atoms bonded to carbon increases the 

carbon becomes more and more positively charged and the observed C 1s binding 

energy increases in a sequence of C-C < C-O < C=O < O-C=O < O-(C=O)-O. 

Because final state effects have a minor magnitude for different oxidation states, it 

is assumed that the initial state effects are responsible for the observed binding 

energy shifts: 

          (3.11) 

In other words, according to Koopmans´ Theorem, the measured change in 

binding energy reflects the change of the measured orbital energy, due to chemical 

oxidation. However, the relationship between the formal oxidation state and     

may be altered by final state effects (see below). Furthermore, the changes in the 

density and the distribution of electrons of an atom resulting from changes in its 

chemical environment contribute to    . Thus, it is best to correlate     with 

the charge on the atom. The observed binding energy can be calculated using for 

example the charge potential model relating it to a reference energy BE
0 

which is 

considered to
 
be the BE for the neutral atom, the charge qi on atom i, and the 

charge qj on the surrounding atoms j at distances rij, as follows:
  

           ∑(
  

   
)

   

  (3.12) 

with the constant z. The last term of Eq. 3.12 due to its similarity to the lattice 

potential of a crystal,     ∑        is often called the Madelung potential. It is 
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then apparent that the binding energy will increase if the positive charge on the 

atom will increase by formation of chemical bonds. 

 Final state effects 

In the photoemission process a photon of energy h  ejects an electron from a 

sample surface. In contrast to the initial state, the final state can be viewed as one 

where one electron has been removed, or a positive potential has been added to 

the sample atom. However, in samples with many electrons the change can be 

complex, and therefore the photoemission process is a complicated many-body 

process. The interaction of the remaining photoionized system with the potential 

created by the core hole will for example affect the charge contained in the 

valence band. If one assumes that the valence band consist of discrete energy 

levels, these levels can be excited by the core-hole potential and be observed as 

satellites at higher binding energy in the core-level spectrum. Figure 3.11 shows 

the schematic spectra of both the system of no electron-electron interaction (V = 

0) and for electron-electron interaction (V ≠ 0). As can be seen, the center of 

gravity is the same in both cases, and is equal to Koopmans’ binding energy 

(   ), which is the binding energy of the non-interacting electrons. In the 

spectrum of the interacting electrons, besides the main line, now additional lines 

(satellites) with higher binding energy (  ), appear. In a metal, the excitation 

possibilities in the valence electron sea are either electron-hole pairs, whose 

 

Figure 3.11: Schematic diagram of a photoemission spectrum with no electron-

electron interaction (V = 0) and with electron-electron interaction (V ≠ 0).
 (88)
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creation probability diverges towards infinity for electron-hole energy going to 0 

(      ). Besides, electron-hole pair creation gives rise to an asymmetric 

photoelectron line shape. Even collective oscillations of the system of electrons 

relative to the system of positive lattice ions, so called plasmon peaks, can 

become excited after the photoemission process.    

The final state effects, such as relaxation, multiplet splitting, multielectron 

excitations and core-level satellites give rise to energetic shifts, splitting of the 

peaks or the appearance of satellite peaks in the photoemission spectra. A 

quantum mechanical description of the complex photoemission process is given in 

Appendix A. 
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3.2 Preparation of samples 

In this section, the preparation of samples by two different deposition techniques 

will be presented. It should be noted that the Ti/HfO2 thin films were always 

deposited on the TiN/Si(001) substrates. A polycrystalline TiN bottom electrode 

was deposited on 8 inch hydrofluoric (HF)-treated single crystal p-Si(100) (15 

Ωcm resistivity) wafer in the MSBA 580-TESW metallization chamber by a 

plasma assisted direct current magnetron sputtering of a titanium metal in the 

presence of a N2/Ar gas mixture at RT.  

3.2.1 Molecular beam epitaxy system 

A part of the samples was prepared with the Ti/HfO2 films grown by molecular 

beam epitaxy in the oxide chamber of the DCA 600 MBA system at IHP (Figure 

3.12).  

The molecular beam epitaxy (MBE) technique offers the growth of high quality 

epitaxial films with monolayer control. Any possible contaminations of such 

prepared films are avoided because the deposition is maintained under UHV 

conditions. The evaporation of the source material (purity better than 99.99%) can 

be carried out by means of either electron evaporation using electron beam (e-

gun) or by thermal heating from a Knudsen cell (K-cell). The substrate material is 

protected against unwanted contamination thanks to a main cover shutter until the 

operating conditions of the material to be evaporated are reached. The 

homogeneity of the depositing film is increased by the rotation of the sample 

placed in the molecular beam of the evaporated material.    

In the evaporation process by e-gun, a target anode material is held at a positive 

potential relative to the filament and bombarded with an electron beam emitted by 

a hot filament under high vacuum. To avoid chemical interactions between the hot 

filament and the target material, the filament is kept out of sight. A magnetic field 

directs the electron beam from the filament to the target and the electron beam is 

scanned over the target material to achieve a homogeneous heating. From the 
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heated region of the target, the material is sublimated and thus transferred onto the 

substrate in form of a molecular or atomic flux.  

An evaporation rate from K-cell is stabilized by heating of the source material for 

few minutes with a closed cover shutter. An abrupt start and deposition form a K-

cell is possible by means of a cover shutter stop of the material. Thickness control 

in MBE is achieved by optical filters so that the evaporation power is set to stable 

flux conditions. 

Substrate introduction into MBE system 

First, the 2   2 cm
2
 in lateral size TiN/Si(001) substrates were introduced into the 

MBE load-lock chamber, which was subsequently pumped to high vacuum (HV)  

conditions (10
-6

 mbar). Once the HV was established, the absorbed contaminants 

 

Figure 3.12: Photo of the molecular beam epitaxy DCA 600 MBE system at IHP and 

the scheme of the oxide chamber with detailed scheme of the e-beam evaporation 

system. 
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(water, carbon, etc.) on the sample surface were then degased at 200  C for 20 

minutes. Next, samples were transferred to the UHV oxide chamber with a base 

pressure of 3   10
-10

 mbar. The growth of HfO2 on TiN/Si(001) substrates was 

carried out in two different ways, depending on the investigation purpose.  

HfO2 deposition from Hf oxide granulate  

The HfO2 film was deposited for 10 min on the TiN/Si(001) substrate at room 

temperature (RT), from an hafnium oxide granulate evaporated by an e-gun. 

During the deposition, the chamber pressure raised typically to 1   10
-7

 mbar, 

mainly due to oxygen outgassing from the source material. Then, the Ti growth, 

with different deposition times, was performed by thermal heating of Ti from a K-

cell. The deposition and substrate temperatures were 1950  C and 24  C and the Ti 

beam equivalent pressure 3   10
-8

 mbar. During the Ti deposition, the oxide 

chamber was cooled by means of liquid nitrogen. 

HfO2 deposition from Hf metal and 
18

O isotope marked oxygen 

For the deposition of 
18

O oxygen isotope-marked HfO2 film, at the same time, a 

high purity Hf metal was evaporated by an e-gun and an O gas containing the 
18

O 

isotope was filling the MBE oxide chamber. The Hf deposition rate was fixed at 3 

Å/s and the oxygen flow rate was controlled by maintaining the oxide chamber at 

a pressure of 1   10
-5

 mbar. The oxygen flow was also controlled by means of 

mass spectroscopy which monitored changes of the concentration of the 
18

O 

isotope. For 10 min the HfO2 was deposited on the TiN/Si(001) substrate being 

either at RT or at 400  C. It should be noted here that 400  C is the temperature of 

the 4 inch sample holder and the effective temperature of the annealed 2   2 cm
2
 

substrate is lower (~320  C). Next, the Ti layer was deposited on the 

HfO2/TiN/Si(001) substrate at RT from a K-cell at 1695  C for 7.5 h. The inner 

shroud of the oxide chamber was cooled during the Ti growth by means of liquid 

nitrogen. 
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3.2.2 Atomic vapor deposition facility 

The second batch of samples investigated in this Thesis was prepared with the 

Ti/HfO2 thin films deposited at the IHP´s cleanroom facility. The HfO2 films were 

grown by atomic vapor deposition technique (AVD) in the Aixtron Tricent AVD 

oxide module (Figure 3.13). In the AVD process the liquid precursors (MO 

Precursor) are delivered in the microliter range to the vaporizer (TriJet®) in 

discrete pulses. The vaporizer, the walls of the reactor and the showerhead are 

heated to the evaporation temperature. At the same time, the susceptor is heated to 

the precursor decomposition temperature. Subsequently, the carrier gas (Ar or N2) 

transports an evaporated precursor to the reactor unit (AVD
® 

Reactor). The 

precursor vapors are distributed through a showerhead to the heated wafer and 

decomposed, and the growth of the oxide film starts.
 (89) - (91)

 The AVD HfO2 films 

were grown onto the TiN/Si(001) substrates at 320 ˚C using the monomolecular 

liquid tetrakis(ethylmethylamino)hafnium (TEMAHf) Hf[N(MeEt)]4 precursor 

and O2 as oxidant.
 (92)

 In the following step, the Ti top electrode was deposited by 

plasma vapor deposition
(93)

 onto the substrate being at RT.   

Figure 3.13: Schematic picture of the Aixtron Tricent AVD oxide tool at IHP. 
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3.3 Sample characterization 

3.3.1 General information 

XRR: The thicknesses of the Ti/HfO2/TiN layers were determined by X-ray 

reflectivity (XRR) measurements. The XRR studies were performed with the 

Rigaku SmartLab diffractometer (Cu K:  =0.154 nm) operating in parallel 

beam mode and then simulated with the RCRefSim program.
 (94)

  

GIXRD: The crystallinity of the films was investigated by grazing incidence X-

ray diffraction (GIXRD) measurements, with 1° angle of incidence using a Rigaku 

SmartLab diffractometer, equipped with a 9 kW rotating anode emitting Cu Kα 

radiation (λ = 0.154 nm).  

ToF-SIMS: The time of flight secondary ion mass spectrometry (ToF-SIMS) 

depth profiles were performed in order to open the TiN bottom contacts as well as 

to investigate the 
18

O profile across the RRAM stack. The ToF-SIMS 

measurements were done using the ION-TOF spectrometer.  

STEM: The qualitative information about the as-deposited Ti/HfO2/TiN layers, 

surface and interfaces were verified by high angle annular dark field scanning 

transmission microscopy with energy dispersive microscopy measurements. The 

TEM FEI Tecnai Osiris microscope with electron beam energy of 200 keV was 

used.  

I-V: The electrical manipulation of the Ti/HfO2/TiN RRAM cells was performed 

in a DC sweep voltage mode with a Keithley 4200 semiconductor characterization 

system. The signal was applied to the Ti top electrode whereas the TiN bottom 

electrode was grounded.  

XPS + HAXPES: The experimental details about the XPS and HAXPES 

measurements are presented in Subsection 3.3.2.  

In Table 3.2 are summarized the experimental information about the samples 

investigated during this Thesis: the sample name, the used HfO2 deposition 

technique, the lateral dimension (L), the Ti/HfO2/TiN thin films thicknesses (x) 
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and the characterization techniques performed (CT) of the different samples 

presented in each subsection of Chapter 4 are given. 

Table 3.2: Experimental details. 

i) HfO2 was deposited from oxide granulate 
ii) HfO2 was deposited from Hf metal and O gas containing 18O isotope 
* HfO2 was deposited on the substrate being at room temperature  
** HfO2 was deposited on the substrate being at temperature of 400 C  

Chapter Sample Deposited by 
L 

(mm
2
) 

x 

(nm) 

CT 

4.1 

A MBE
i)
 20   20 (0-10)/10/73 XPS 

B MBE
 ii)

 20   20 12/21
*
/73 

XRR, XRD, 

ToF-SIMS, 

HAXPES C MBE
 ii)

 20   20 11/15
**

/73 

D AVD 1   1 10/18/67 

XRR, 

HAADF 

STEM-EDX 

4.2 

D 

AVD 1   1 10/18/67 

HAXPES 

E 
Electrical, 

HAXPES 

4.3 
F 

AVD 
0.7   0.7 10/18/67 Electrical, 

HAXPES G 0.7   0.7 10/14/112 

4.4 
G 

AVD 
0.7   0.7 

10/14/112 
Electrical, 

HAXPES H 0.7   0.5 
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3.3.2 Photoelectron spectroscopy set-ups 

XPS study 

The XPS studies were performed at IHP’s DCA 600 MBE system in order to in-

situ monitor the Ti/HfO2 interface reactions and the Ti growth mode on HfO2 

film. The X-ray radiation from Al Kα line (1486.6 eV) was created by impinging 

an Al anode with an electron beam of 100 W. The emitted photoelectrons were 

collected by the Scienta Phoibos 100 hemispherical energy analyzer (Figure 3.14). 

The angle between the X-rays source and the photoelectron analyzer was fixed at 

45 . The photoelectrons were collected at a take-off angle of 45 . The 

spectrometer operation and data acquisition were controlled by the SPECSLAB 

computer program. 

HAXPES study 

The HAXPES investigations were carried out at the P09 beamline of the Positron-

Electron Tandem Ring Accelerator – PETRA III storage ring – at the Deutsches 

Elektronen-Synchrotron (DESY, Hamburg, Germany). Here, the Ti/HfO2 

 

Figure 3.14: In-situ XPS instrument in the DCA 600 MBA system at IHP.                                           



 50 EXPERIMENTAL BACKGROUND 

interface of the as-deposited and electrically manipulated Ti/HfO2/TiN RRAM 

cells was investigated ex-situ and in-operando. The ex-situ term means that the 

samples were electrically manipulated outside and then investigated inside the 

HAXPES chamber. The in-operando term means that the samples were 

electrically modified and investigated inside the HAXPES chamber thanks to the 

specially developed setup presented hereafter.  

 P09 beamline  

P09 is one of the beamlines of the PETRA III facility at DESY in Hamburg 

(Germany). PETRA III is recently the biggest and most brilliant third generation 

synchrotron source in the hard X-ray regime in the world. It produces electrons 

with energy of 6 GeV with a beam current of 100 mA and an emittance of 1 

nmrad. P09 beamline is designed for experiments requiring small beams, energy 

resolution, variable polarization and high photon flux operated in the hard X-rays 

regime with energies ranging from 2.7 to 50 keV. This beamline consists of three 

experimental hutches (EH). The EH3 hutch is designed for HAXPES experiments 

(Figure 3.15). The HAXPES UHV chamber is placed 94 m from the radiation 

source. The photoelectron energies up to 15 keV are measured using a SPECS 

Phoibos 225HV hemispheric electron analyzer equipped with 2D detection system 

(delay line detector (DLD), CCD camera, and a 4-channel micro-Mott spin 

detector) with designed energy resolution well below 100 meV. Typically, the 

experiments use X-rays directly from the high heat load Si(111) or (311) 

monochromator. Higher resolution can be obtained by using an additional 

channel-cut Si(333)/(555) monochromator. Focusing at the sample position is 

achieved with the same mirrors used for focusing in two leading up EH1 and EH2 

experimental hutches. Cooling of the sample down to -253 C and heating up to 

150 C is allowed by an Omicron 5-axis manipulator equipped with liquid helium 

(LHe). The analyzer can be positioned in an angle of 45  or 90  relative to the 

beam axis by means of air cushions.
 (95)
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 In-operando HAXPES setup 

In order to directly correlate the resistive state of one and the same RRAM cell 

with its electronic and material changes, a special in-operando HAXPES setup, 

shown in Figure 3.16, was prepared. On the contrary to the integrated 

TiN/Ti/HfO2/TiN RRAM devices,
 (30)

 the samples used for the HAXPES studies 

were prepared without the TiN top electrode (HAXPES information depth 

limitation) and with the lateral size of about three orders of magnitude larger  

(beam size requirement). First, an 8 inch wafer with deposited 

Ti/HfO2/TiN/Si(001) films was diced into small pieces (typically 1 × 1 – 0.5 × 0.5 

mm
2
). Then, a 200 × 200 µm

2
 in area TiN bottom electrode contact was prepared 

by ToF-SIMS depth profiling (Appendix B.1). Next, conductive silver paste dots 

were put on the top and bottom electrodes. After that, the samples were heated at 

120 °C for 10 minutes in order to fix the silver glue. Afterwards, the samples were   

 

Figure 3.15: Photo of the HAXPES UHV chamber at P09 beamline at DESY in 

Hamburg (Germany). Adapted from Ref. (95). 
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mounted on a printed circuit board (PCB) by means of the conductive copper tape 

(Cu). Then, both electrodes were connected to the signal and ground copper lines 

by bonding aluminum wires (Figure 3.16(a)). Finally, SMA connectors were 

soldered to achieve external connections (Figure 3.16(b)). During the in-operando 

measurements, such a prepared PCB was placed on the HAXPES sample holder 

(Figure 3.16(b)) and attached to the 5-axis manipulator, inside the HAXPES 

vacuum chamber (Figure 3.16(c)). Next, this assembly was connected with cables 

via vacuum feedthroughs to the Keithley 4200 SCS semiconductor 

characterization system (Figure 3.16(d)).  

In Table 3.3 are summarized the basic information of the XPS and HAXPES 

experimental parameters. In detail, the excitation energy (h), the experimental 

geometry (the angle between the X-rays source and the photoelectron 

analyzer, the photoelectron take-off angle) as well as the information depth 

(ID) calculated accordingly to these parameters for the Ti 2p3/2 photoemission line 

are given. The ID values of electron travelling through the Ti matrix were 

Figure 3.16: In-operando HAXPES setup developed at IHP. 
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calculated accordingly to the Eq. 3.7 to Eq. 3.10, using the following parameters: 

E and   change depending on the experiment,                      
  , 

          , and       . The collected XPS and HAXPES spectra were 

analyzed with CasaXPS software. The spectra were calibrated by means of the Au 

4f7/2 peak position (84 eV) and the Shirley BG was subtracted from each 

photoemission spectrum. 

a) his the excitation energy 

b)   is the angle between X-rays source and the photoelectron analyzer 
c)   is the photoelectron take-off angle 
d) ID is the information depth calculated for Ti 2p1/2 line (454 eV) in Ti metal 

  

Table 3.3: XPS and HAXPES experimental details. 
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  Chapter 4

4. RESULTS AND DISCUSSION 

4.1 As-deposited Ti/HfO2 interface characterization 

In this section, the results of the as-deposited Ti/HfO2 interface study will be 

firstly shown for the MBE- and then for the BEOL-processed samples. 

4.1.1 In-situ study 

Chemical analysis of the Ti/HfO2 interface during the growth process 

The Ti/HfO2 interface chemistry was investigated in-situ by monitoring X-ray 

photoemission peaks at various stages of the Ti growth process on HfO2 at IHP’s 

MBE DCA 600 system. Figure 4.1 contains Hf 4d (a) and Ti 2p (b) XPS core 

levels of Sample A, measured after 10 s, 20 s and 240 s of the Ti deposition time. 

The decreasing substrate signal (Figure 4.1(a)) and the increasing overlayer signal 

(Figure 4.1(b)) confirm the successive Ti growth on HfO2 by MBE. The 

decomposition of the Ti 2p spectra in Figure 4.1(b) was performed using 

Gaussian-Lorentzian and Doniach-Sunjic functions for the oxide and metallic 

components, respectively. A clear evolution of the Ti bonding chemistry versus 

deposition time is visible. In the initial stage of growth (10 s) Ti appears only in 

oxide form. Namely, Ti
2+

 (TiO) and Ti
4+

 (TiO2) states are visible. However, while 

increasing the deposition time, a metallic Ti (Ti
0
) starts to form (20 s) and slightly 

shifts towards lower binding energy indicating a further growth of metallic Ti, 

while the buried Ti layer has an enhanced chemical reactivity with oxygen.  
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Determination of the Ti growth mode on HfO2 substrate 

The attenuation of the substrate signal in the XPS spectra can be used to 

determine the overlayer growth mode. Three main thin film growth modes are 

briefly reviewed in Appendix C. In this Thesis, the growth mode of Ti on the 

HfO2 film was determined based on the analysis of the progressively attenuated 

Hf 4d5/2 photoemission line (BE = 214 eV). Following the approach proposed by 

Silar,
 (96)

 the best fit of the experimental points with the theory (Figure 4.2(a)) was 

obtained for the Volmer-Weber (or 3D) growth with the assumption that the Ti 

volume increases linearly with the deposition time. In the 3D growth, the substrate 

intensity I0 is attenuated to the intensity Id with increasing thickness of the average 

island height d (in nm):  

      (   )    
          (4.1) 

Here,   is the HfO2 surface coverage by the Ti islands (  = 0 - uncovered film,   

= 1- fully covered film); λ is the IMFP of the Hf 4d5/2 photoelectrons through Ti (λ 

= 2.6 nm), and   is the photoelectrons take-off angle (  = 45 ).  

 

Figure 4.1: Hf 4d (a) and Ti 2p (b) XPS core-level spectra of Sample A taken after 

10 s, 20 s and 240 s of the Ti growth on the HfO2 substrate. 
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Results of this fitting procedure, shown in Figure 4.2, indicate that the full 

coalescence of the Ti islands take place after about 35 s (Figure 4.2(b)). After that, 

the HfO2 surface is fully covered and the Ti islands height is about 3 Å (Figure 

4.2(c)). Both, the time needed to fully cover the HfO2 film and the average islands 

height after this time indicate that up to 35 s of deposition, there was not sufficient 

 

Figure 4.2: (a) Attenuation curve of the Hf 4d XPS line (b) HfO2 surface coverage by 

the Ti islands and (c) average Ti islands height as a function of the Ti deposition 

time. 
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Ti material to fully cover the HfO2 film with the selected Ti deposition 

parameters. After that, Ti grows layer by layer.  

4.1.2 Ex-situ study 

Oxygen is present in the HfO2 film and also at low concentration in the MBE 

chamber (10
-9

 mbar); therefore to investigate the origin of the Ti oxidation, the 

HfO2 film was prepared with 
18

O isotope and complementary ex-situ ToF-SIMS 

and HAXPES studies were performed. Moreover, an impact of the HfO2 

deposition temperature (crystallinity) on the O diffusion into the Ti layer was also 

studied.  

Chemical reaction of Ti with HfO2 deposited at room temperature  

First, the crystalline properties of Sample B prepared with HfO2 deposited at RT 

were verified by GIXRD study (Figure 4.3). In this spectrum, there are three 

broad peaks which can be attributed to HfO2. The one at 30° corresponds to a 

bunch of reflections from the monoclinic HfO2 lattice: (011) or (110) at 24.5°, (-

111) at 28.5°, and (111) at 31.5°. Because these peaks are very broad they overlap 

and form a single component, indicating the formation of an amorphous hafnium 

 

Figure 4.3: GIXRD measurement of the Sample B taken with 1° angle of incidence. 
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oxide containing only small crystallites in the monoclinic phase. The other two 

peaks located at the angles of 50° and 55° correspond also to the bunch of 

reflections of the HfO2 monoclinic phase. These reflections are so close to each 

other that they cannot be well resolved for poorly crystalline, mostly amorphous 

thin films. Thus, in the first approximation the RT deposited HfO2 is considered 

amorphous. 

Next, the chemical reactions of Ti with amorphous HfO2 (a-HfO2) were verified 

by a ToF-SIMS study. As can be seen in Figure 4.4, the ToF-SIMS depth profile 

of the 
18

O2 isotope performed across Sample B presents gradual oxygen diffusion 

from the HfO2 film toward the Ti film and creation of a thick Ti/HfO2 interface 

layer. The constant concentration between around 200 s and 400 s can be seen as a 

strong diffusion of the 
18

O2 isotope from the HfO2 into the Ti layer to a depth of 

up to several nanometers. The constant 
18

O2 concentration between 500 s and 

more indicates also a successive uniform deposition of the HfO2 film from the Hf 

metal and the atomic 
18

O2 gas by MBE. 

Then, the impact of oxygen diffusion on Ti oxidation states was studied non-

destructively by HAXPES. The photon beam energy h and the photoelectron 

take-off angle  were chosen so that the signal in the Ti 2p HAXPES spectra    

 

Figure 4.4:  ToF-SIMS depth profile of the 
18

O isotope and 
180

Hf
18

O2 across the Ti 

and HfO2 films of Sample B. 
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(sinhad originated mainly from the region slightly above (Figure 4.5(a)) and 

from (Figure 4.5(b)) the Ti/HfO2 interface area. Both Ti 2p spectra were modeled  

with 5 spin-orbit splitting components attributed to the different Ti oxidation 

states. The components located at 454.1, 455.2, 456.3, 457.4 and 459.2 eV were 

assigned to the Ti
0
, Ti

1+
, Ti

2+
, Ti

3+
 and Ti

4+ 
states.

 (97), (98)
 Each Ti 2p orbital 

doublet peak was fitted with an area ratio of 1:2 and a spin-orbit splitting of 6.17 

eV for Ti
0
– Ti

3+
, and 5.80 eV for Ti

4+
. A Doniach-Sunjic line shape was used to 

model the Ti
0
 oxidation state and Gaussian-Lorentzian line shapes to model the 

 

Figure 4.5: Ti 2p HAXPES spectra of Sample B taken with excitation energy of 8 

keV and take-off angle   of (a) 40  and (b) 83 . 
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Ti
1+

 – Ti
4+ 

oxidation states. Modeled spectra indicate that the Ti layer at the 

interface with a-HfO2 film is fully oxidized, whereas a small metallic contribution 

appears while going away from this interface. It is noted that this metallic Ti
0 

component is very small in intensity in Figure 4.5(a) but this interpretation of 

HAXPES data is supported by ToF-SIMS. Both ToF-SIMS and HAXPES data 

thus point to an enhanced chemical activity of the Ti/a-HfO2 interface, as 

suggested by the in-situ XPS study shown in Figure 4.1. 

Chemical reaction of Ti with HfO2 deposited at 400 C  

Next, the impact of the substrate temperature during the HfO2 film deposition on 

the oxygen diffusion into the Ti layer was investigated. The GIXRD results of 

Sample C (Figure 4.6) have revealed that the HfO2 film fully crystallizes in the 

monoclinic phase while the substrate holder temperature is kept constant at 400 

 C during the deposition. In comparison to the spectra shown in Figure 4.3, the 

peaks corresponding to the monoclinic lattice reflections (011)/(110) at 24.5°, (-

111) at 28.5°, and (111) at 31.5° are now well resolved. It can be concluded that 

the HfO2 film deposited on the substrate at 400  C is monoclinic. 

The Ti interaction with monoclinic HfO2 (m-HfO2) was then verified by the ToF-

 

Figure 4.6: GIXRD measurement of Sample C taken with 1° angle of incidence. 
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SIMS study. Firstly, the 
18

O2 isotope ToF-SIMS depth profile of Sample C 

(Figure 4.7) shows the uniformity of the HfO2 layer deposited at MBE. Besides, in 

comparison to the results presented in Figure 4.4 there is no pronounced 

accumulation of the 
18

O2 at the Ti/m-HfO2 interface. Only a very slight gradual 

decrease of the 
18

O2 signal, from the bottom towards the top part of the HfO2 film 

(from about 700 s to 400 s), is observed. Moreover, the oxygen signal presents an 

abrupt drop by going from the HfO2 film towards the Ti film (from about 400 s to 

200 s) indicating that oxygen diffusion is limited to the first metallic interface 

layers only. 

Next, the impact of oxygen diffusion on Ti oxidation states was studied non-

destructively by HAXPES. The Ti 2p HAXPES spectra taken at value of α at 40  

(Figure 4.8(a)) and 83  (Figure 4.8(b))at 8 keV excitation energy were fitted with 

the same parameters as the spectra in Figure 4.5. Five different Ti oxidation states 

were distinguished in both spectra. However, on contrary to the sample with a-

HfO2, besides components attributed to the Ti oxide forms, also a strong metallic 

Ti peak (Ti
0
) is visible. This result confirms the lower Ti oxidation at the interface 

with a monoclinic than with an amorphous HfO2, as deduced from ToF-SIMS 

data. 

 

Figure 4.7: ToF-SIMS depth profile of the 
18

O2
 
isotope and 

180
Hf

18
O2 across the Ti 

and HfO2 films of Sample C. 
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4.1.3 Oxygen vacancy formation energy in HfO2 

The experimental results indicate that the HfO2 morphology substantially controls 

the Ti/HfO2 interface chemical reactivity. Thus, in order to obtain a microscopic 

insight into the experimental results, with courtesy from Jordi Suñe and José 

Cartoixa (both at university of Barcelona), first-principle calculations of charged 

oxygen vacancy formation energies in the m-HfO2 and a-HfO2 phase were 

performed using the SIESTA package.
 (99)

 

 

Figure 4.8: Ti 2p HAXPES spectra of Sample C taken with excitation energy of 8 

keV and at  of (a) 40  and (b) 83 . 
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This code implements the Density Functional Theory (DFT) in its Generalized 

Gradient Approximation (GGA), using the parametrization for the exchange-

correlation energy by Perdew-Burke-Ernzerhof.
 (100)

 The used norm-conserving 

pseudopotentials for the core electrons and a single-ζ plus polarization (SZP) basis 

set for the valence electrons give a good compromise between the accuracy — the 

obtained lattice parameters for m-HfO2 – Figure 4.9(a) – are 5.149, 5.185, and 

5.296 Å (5.117, 5.175, and 5.291 Å experimentally
 (101), (102)

) — and the 

computational cost. The a-HfO2 structure, containing 201 atoms [cf. Figure 

4.9(b)], has been generated by a melt/quench cycle with the GULP molecular 

dynamics program,
 (103), (104)

 followed by a structural relaxation with SIESTA until 

the force on each atom was less than 0.04 eV/Å.  

The formation energies of (charged) vacancies,       
   

, are computed as 

differences in the total energies between the configuration with the oxygen 

removed and going to the molecular phase (reference chemical potential), with the 

electrons going to (coming from) the Fermi level, and the pristine state:  

 

Figure 4.9: Ball-and-stick plots of the simulated (a) monoclinic (primitive cell) and 

(b) amorphous HfO2. 

      
                     

 

 
     (       )  (4.2) 
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where      is the energy of the system with a vacancy with charge q,           is 

the energy of the system without the vacancy,    is the energy of molecular 

oxygen and    is the position of the Fermi level with respect to the top of the 

valence band,     . Spurious contributions to the total energy in systems with a 

net charge arising from the use of periodic boundary conditions are removed by 

the Makov-Payne
 (105)

 procedure, which have been properly accounted for the use 

of non-cubic cells and possibly anisotropic/tensor dielectric constants, as 

described in Ref. (106). 

Table 4.1 shows the oxygen vacancy formation energies for different charge states 

(Eq. 4.2), for the threefold coordinated O in m-HfO2 and the three different 

oxygen positions in the a-HfO2 structure. In accordance with previous 

calculations,
 (107)

 the vacancy is slightly less costly to create in the amorphous 

case, which is to be expected given the metastability of the amorphous structure. 

Also in accordance with previous theoretical results,
 (108)

 the +2 charge state 

vacancy is strongly favored at low Fermi levels. 

Moreover, results shown in Table 4.1 indicate that in amorphous structures the 

formation of charged vacancies is energetically favored with respect to both (1) its 

crystalline counterpart, and (2) its neutral equivalent, in agreement with the 

experimental results. In some cases the charge vacancy formation energy is 

negative, implying a thermodynamically favored process. When looking at the 

intermediate steps for the structural relaxation, it is observed that, in some cases 

for charged vacancies, heavy restructuration took place after removal of the 

Table 4.1: Oxygen vacancy formation energies, with the Fermi level at the top of the 

valence band, for the threefold oxygen in monoclinic HfO2 and oxygen at three 

different positions (at random) in an amorphous HfO2 host. 

O Vacancy formation energy (eV) 

Vacancy charge m-HfO2 O(1) a-HfO2 O(2) a-HfO2 O(3) a-HfO2 

0 7.94 7.26 7.48 6.61 

+1 5.92 7.25 1.69 -0.63 

+2 4.04 -2.74 2.45 3.91 
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oxygen atom. It is believed that this observation can be responsible for the 

dramatic decrease in formation energies for those cases (i.e. the final state has a 

much reduced total energy due to the large atomic rearrangement). 

4.1.4 Off-line characterization  

Now, the results collected for the BEOL-processed Sample D will be presented. 

The as-deposited Ti/HfO2/TiN stack was characterized by X-ray reflectivity 

(XRR) and scanning transmission electron microscopy (STEM) with energy-

dispersive X-ray spectroscopy (EDX). Results of both experiments are shown in 

Figure 4.10. The left panel presents a high angle annular dark field (HAADF) 

STEM image with marked thicknesses of the layers extracted from the XRR 

measurement (data not shown). Thanks to the HAADF STEM image contrast 

dependence on the atomic number (Z-contrast), one can easily distinguish 

 

Figure 4.10: High angle annular dark field STEM with EDX image of the as-

deposited Sample D. Thicknesses of all layers, given on the left, were determined by 

XRR. 
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between the individual layers of Sample D. Clearly, the Ti, HfO2 and TiN layers, 

as well as the Ti surface oxidation and the interface layers between the HfO2 film 

and both electrodes, are visible.  

Next, more detailed element distribution within Sample D was extracted from the 

EDX maps. In Figure 4.10 on the right side from the HAADF STEM panel there 

are shown the Ti, O, Hf and N EDX maps. If one compares all these maps, can 

notice that the HfO2 film is homogenous and there is no Hf diffusion inside the Ti 

or TiN layers. Besides, these results indicate the presence of some Ti and N atoms 

inside the HfO2 layer. Both can be an artifact effect due to the destructive nature 

of this technique. However, N as well as other impurities, such like C or H atoms 

may originate in the HfO2 film from the deposition technique due to the used 

organic precursor.
 (91), (92)

 Moreover, the Ti layer seems to contain a significant 

concentration of O, mostly at the top and bottom part of the layer and less of N 

atoms. Thus, the O concentration is increased at each interface of Sample D.  

Therefore, although the combined STEM-EDX study is a destructive technique, it 

allows to deduce the same conclusions as from the non-destructive studies 

performed on the MBE-processed samples. Namely, the presence of a TiOx 

surface oxidation layer and the interface layer between a-HfO2 and the Ti top 

electrode.  

4.1.5 Summary and conclusions 

The Ti/HfO2 interface chemistry was investigated by advanced materials science 

characterization studies. The in-situ XPS monitoring of the Ti growth on an 

amorphous HfO2 substrate at the MBE facility have revealed the formation of Ti 

oxides in the initial state of growth. A good agreement between experimental and 

fitting results has indicated that the Ti deposition at HfO2 by MBE corresponds to 

the Volmer-Weber growth mode. In detail, Ti atoms are initially bounded to the 

HfO2 substrate, and Ti oxide islands nucleate and expand three dimensionally in 

all directions. Next, the islands become more and more metallic, coalesce and 
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form a closed layer after about 35 s of deposition and then follow a 2D growth 

(layer by layer) mode.  

In the next step, the origin of the Ti oxidation was investigated by combined 

GIXRD, ToF-SIMS and HAXPES studies. Additionally, the impact of the HfO2 

crystalline structure on the Ti oxidation degree was verified. For this purpose, the 

HfO2 films were prepared with 
18

O isotope atoms. The RT deposited HfO2 film 

was X-ray amorphous containing only minor monoclinic nanocrystallites, while 

the deposited HfO2 film at 400  C was monoclinic. Both the 
18

O2 ToF-SIMS 

depth profiles and the Ti 2p HAXPES spectra have revealed that for both samples 

the as-deposited Ti layer is oxidized at the interface by the 
18

O2 coming from the 

HfO2 film. Moreover, a much more pronounced Ti oxidation was found in case of 

Ti deposited on the amorphous than on the monoclinic HfO2 film.  

Next, the first-principle calculations of the charged oxygen vacancy formation 

energies in the monoclinic and amorphous phase of HfO2 were performed. The 

lower formation energy was found to form stable oxygen vacancies in case of the 

amorphous than in case of the monoclinic HfO2 films and thus confirms the 

experimentally observed enhanced Ti oxidation activity with respect to a-HfO2 

films. 

Finally, the as-deposited Ti/HfO2/TiN stack processed under BEOL conditions 

was characterized by XRR and EDX. As in case of MBE-processed samples, a 

thick (around 1.3 nm) TiOx interface layer between Ti and a-HfO2 has been found. 

Moreover, EDX maps indicated the presence of impurities (C, N) in HfO2, 

characteristic for samples processed under BEOL conditions. 

In conclusion, the in-situ and ex-situ studies of the Ti/HfO2/TiN stacks processed 

at MBE give the same result as the off-line characterization studies of the BEOL-

AVD processed samples. Namely, the presence of a TiOx interface layer between 

the Ti and HfO2 films. Moreover, it is found that the HfO2 crystalline structure 

impacts its chemical reactivity with Ti and thus the oxygen vacancy concentration 

inside the HfO2 film. Besides, not only oxygen vacancies but also other defects, 

such like C or N impurities may change the HfO2 insulating properties. Therefore, 
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the control of the parameters used during the sample preparation turns out as 

important approach to engineer the reactivity of the Ti/HfO2 interface in order to 

create the initial amount of defects for reproducible and reliable resistive 

switching performance.  
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4.2 Ex-situ electroforming study of Ti/HfO2/TiN cells  

The resistive switching properties of the BEOL-processed Ti/a-HfO2/TiN samples 

were further investigated in details. In this section the as-deposited and the 

electroformed sample were investigated ex-situ by HAXPES. Ex-situ term means 

that the MIM stack was electroformed outside the HAXPES chamber.  

4.2.1 Electrical characterization 

I-V characteristic of the initial electroforming process of Sample E is presented 

in Figure 4.11(a). This process was performed under ambient conditions by 

applying a positive direct current (DC) sweep voltage across the stack from 0 V to 

15 V, with a current compliance (CC) set at 10 mA. In the result of this 

electroforming, the initial resistance of Sample E has changed by about three 

orders of magnitude. In detail, the resistance ratio between the as-deposited-state 

and the electroformed state of Sample E, read at 0.2 V, was equal to 2   10
3
. The 

subsequently applied DC sweep voltage from -3 V to 6 V with CC = 80 mA 

(Figure 4.11(b)) has revealed that the electroforming process has initiated a 

 

Figure 4.11: (a) I-V characteristic of the initial electroforming process applied to 

the as-deposited Sample E (sweep rate 0.05 V/s). Inset shows a top view of the 

sample with the bottom and top electrode contacts. (b) R-V characteristic of the 

electroformed sample presenting a bipolar resistive switching. 
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clockwise bipolar resistive switching behaviour in Sample E. In detail, for the 

switching operation from the ON- to the OFF-state, a positive reset voltage was 

required, whereas a negative voltage was needed to set sample from the OFF- to 

the ON-state. The resistance ratio between the OFF- and the ON-state (ROFF/RON) 

after electroforming, read at 0.2 V, was equal to 3. 

4.2.2 HAXPES characterization 

The electroformed Sample E, prepared from the same wafer as the as-deposited 

Sample D, were then analyzed by HAXPES in order to investigate whether the 

electroforming process have changed also material properties of Sample E.  

Chemical modifications 

The most prominent chemical changes between both samples occurred in the Ti 

photoemission spectra. Figure 4.12 shows the Ti 2s HAXPES spectra of the as-

deposited (top) and the electroformed (bottom) samples collected at the two 

excitation energies of 5.5 keV (left) and 7 keV (right). All these spectra were 

modeled with three components attributed to the metallic titanium (Ti), titanium 

suboxides (TiOx) and titanium dioxide (TiO2) with Gaussian-Lorentzian (for TiOx 

and TiO2) and Doniach-Sunjic (for Ti) line shapes. The full width at half 

maximum of each component and the distance between the components were 

fixed for the fitting. Only the position and the intensity of the peak might thus 

change. The results of the fitted as-deposited Sample D spectra, presented in 

Figure 4.12(a) and 4.12(b), confirm the two qualitative information given by the 

destructive STEM with EDX and the XRR techniques shown in Figure 4.10: (1) 

the titanium surface oxidation - attributed mainly to the existence of the TiO2 

component due to the higher intensity for both excitation energies than TiOx, and 

(2) the existence of the interface layer between the Ti and HfO2 films – 

attributed to the TiOx and the TiO2 increase by the increase of the information 
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depth. Moreover, this result is in agreement with the HAXPES results (Figure 4.8) 

collected for the MBE-processed as-deposited samples. Besides, comparing the 

top with the bottom HAXPES spectra in Figure 4.12, one can see that the 

electroforming process has drastically changed the Ti 2s line shape. A decrease of 

the metallic Ti and an increase of the TiO2 and TiOx peaks after electroforming 

process indicate an enhanced Ti oxidation at the Ti/a-HfO2 interface.  

To highlight these changes, the ratio between the metallic titanium to the total 

titanium oxides intensity (TiOx + TiO2) was calculated, and is further denoted as 

Ti/TiOy. For the as-deposited sample, the Ti/TiOy ratio decreased from 1.5 ± 0.1 

to 0.9 ± 0.1 when the excitation energy increased from 5.5 to 7 keV. The smaller 

Ti/TiOy ratio in case of higher excitation energy (7 keV) demonstrates that the 

Figure 4.12: Ti 2s HAXPES spectra of the as-deposited Sample D (top) and 

electroformed Sample E (bottom) taken with 5.5 keV (left) and 7 keV (right) 

excitation energy. All spectra are normalized and modeled with three components. 

Dash-dotted lines highlight the changes in the peak position between the as-deposited 

and electroformed samples. 
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HAXPES is indeed sensitive to the Ti/HfO2 interface, important for the switching 

mechanism. After electroforming, an enhanced Ti/HfO2 interface oxidation is 

observed, resulting in an even smaller Ti/TiOy ratio of 0.6 ± 0.1 at 7 keV. 

Interestingly, only minor differences in the Ti 2s peak shape were observed for the 

electroformed Sample E spectra recorded at these two photon energies: for both 

cases, the Ti/TiOy ratio is equal to 0.6 ± 0.1. This can indicate a creation of a more 

homogeneous system during the electroforming step with an oxygen migration 

from HfO2 into the Ti layer. In addition, it is also noticed that the simulation of 

the Ti 2p HAXPES spectra (not shown) corroborates the same results presented 

here for the less complex Ti 2s line.  

Due to the higher sensitivity of 7 keV of excitation energy to the important 

Ti/HfO2 interface, the next HAXPES results on the other photoelectron lines will 

be presented only for this energy. 

Electronic modifications 

Besides the chemical changes, also electronic modifications appeared in the 

HAXPES spectra between both samples. The photoelectron peak positions in the 

HAXPES spectra of the electroformed Sample E (marked with vertical dash-

dotted lines in Figure 4.12, Figure 4.13(a) and Figure 4.13(b)) are shifted towards  

 

Figure 4.13: Normalized and smoothed Hf 4d (a) and O 1s (b) HAXPES spectra of 

the as-deposited and electroformed samples recorded at excitation energy of 7 keV. 

Dash-dotted lines highlight the peak positions. 
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Table 4.2: Experimental peak shifts (
 
= BE

electroformed
 - BE

as-deposited
) between the 

electroformed and as-deposited samples, for metallic Ti 2s, Hf 4d5/2 and O 1s lines, 

recorded with excitation energy of 7 keV. 

  Peak  

 Ti 2s Hf 4d5/2 O 1s 

 ± 0.05 (eV) 0.4 0.8 0.7 

 

larger binding energy with respect to the peak positions of the as-deposited 

Sample D. The binding energy difference between both samples (calculated 

for the metallic Ti 2s, Hf 4d5/2 and O 1s photoemission lines, collected at 7 keV of 

excitation energy, is shown in Table 4.2. Since the peak shift values upon the 

electroforming process for Hf 4d (0.8 eV) and O 1s (0.7 eV) are almost the same 

and higher than that for Ti 2s (0.4 eV), it is assumed that the oxygen signal in the 

electroformed sample HAXPES spectra arises mainly from the HfO2 region. 

Moreover, because values for these three components are different, a 

charging of the electroformed sample during the measurement or an interface 

dipole creation can be thus excluded as a reason of these shifts.
 (109)

  

Other chemical modifications  

In order to identify whether the chemical changes occurred also in the Hf 4d and 

O1s HAXPES lines after the electroforming process, the binding energy shifts 

visible in Figure 4.13(a) and 4.13(b) were corrected and overlapped peaks are 

shown in Figure 4.14(a) and Figure 4.14(b). It can be seen, that no clear peak 

shape change is visible in the Hf 4d HAXPES line (Figure 4.14(a)). However, a 

small change appears in the O 1s HAXPES spectra, highlighted in the inset of 

Figure 4.14(b). A small subpeak located there around 532.5 eV decreases going 

from the as-deposited to the electroformed sample. This subpeak can be attributed 

to the more covalently bonded, probably defect-related oxygen entities in the 

HfO2 film. It was previously reported that such species are termed “non-lattice 



 75 RESULTS AND DISCUSSION 

oxygen”
 (110)

, and are prone to move in the oxide layer with lower activation 

energy during the electroforming.
 (111)

 Hence, they can leave oxygen vacancies in 

the oxide layer behind.  

4.2.3 Proposed electroforming model 

Possible chemical (top) and electronic (bottom) modifications between the as-

deposited (left) and electroformed (right) Ti/HfO2/TiN samples are proposed in 

Figure 4.15.  

In general, the binding energy in HAXPES spectra is referenced to the Fermi level 

(EF). Any change of dopants concentration in the film changes the barrier height 

(b) and thus the calculated binding energy in the HAXPES spectra. In order to 

explain the observed peak shifts in the HAXPES spectra between the as-deposited 

Sample D and electroformed Sample E the band diagrams are drawn in Figure 

4.15 at equilibrium
 (112) 

(i.e. Fermi levels of both samples are equal). Knowing the 

higher work function of the TiN bottom electrode (TiN 
= 4.7 eV)

 (12)
 compared to 

the Ti top electrode (Ti 
= 4.2 eV)

 (113)
, and that the barrier height for the top 

 

Figure 4.14: Normalized and smoothed Hf 4d (a) and O 1s (b) HAXPES spectra of 

the as-deposited and electroformed samples recorded at excitation energy of 7 keV. 

The peak shift is removed. Inset in Fig. 4.14(b) shows the region corresponding to 

the covalently bonded, probably defect-related oxygen entities in the HfO2 film. 
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injection is lower than the barrier height for the bottom injection
 (114)

, the band 

diagram of the as-deposited sample is drawn with a downward band bending 

towards the Ti top electrode.
 (112)

 The calculated binding energy in the HAXPES 

spectra of the electroformed sample – here exemplified for valence band (VB) 

maximum photoelectrons by the energy difference between EF and the VB 

maximum – will be larger than the binding energy of the as-deposited sample only 

 

Figure 4.15:  Proposed chemical (top) and electronic (bottom) modifications of the 

Ti/HfO2 interface between the as-prepared (left) and electroformed (right) samples. 

An increase of the n-type oxygen vacancy defects at the Ti/HfO2 interface during 

the electroforming process increases the downward band bending, thereby 

increasing the sample conductivity. (b - barrier height,  - work function, BE – 

binding energy, Eg – band gap, CB – conduction band, VB – valence band, χ – 

electron affinity). 
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in case when the b of the HfO2 at the interface with Ti will be reduced. In other 

words, this situation occurs when the downward band bending at the Ti/HfO2 

interface will be increased, confirming at the same time a higher conductivity of 

the electroformed sample. This condition will be only fulfilled when there is an 

increase of the n-type defects concentration at the Ti/HfO2 interface in the HfO2 

film.  

An increase of the Ti oxidation suggests that oxygen vacancies are created inside 

the HfO2 film during the electroforming process. Indeed, the oxygen vacancies in 

the HfO2 films are known as stable n-type defects.
 (46), (115) 

Their formation was 

also predicted by theory.
 (108), (113)

 Moreover, the n-type doped complex perovskite 

dielectric-based RRAMs
 (45), (55), (116), (117) 

present the same clockwise bipolar 

resistive switching as the electroformed Sample E (Figure 4.11(b)).  

Therefore, assuming that there is an increase of the n-type oxygen vacancies at the 

Ti/HfO2 interface by a Ti interface oxidation during the electroforming, the 

downward band bending (present already in case of the as-deposited sample) is 

further increased in the energy band diagram of the electroformed sample. 

Furthermore, this assumption is also supported by the observed peaks shifts 

towards higher binding energy in the HAXPES spectra
(79), (118)

 of the 

electroformed sample. 

4.2.4 Summary and conclusions  

The electroforming process performed under ambient conditions on the 1   1 

mm
2 

as-deposited Ti/a-HfO2/TiN stack has changed its resistance by three orders 

of magnitude. The subsequently applied DC sweep voltage has revealed a 

clockwise bipolar resistive switching behavior in this sample. Next, the as-

deposited and the electroformed samples were investigated by HAXPES. This 

non-destructive studies performed at the 3
rd

 generation synchrotron in 

Hamburg
(95)

 have underlined chemical and electronic changes at the Ti/HfO2 

interface between both samples. A detailed analysis has shown an increase of the 
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Ti oxide components and an increase of the binding energy values in the 

HAXPES spectra collected for the electroformed sample, in comparison to the as-

deposited sample spectra.  

It can be concluded that a positive voltage applied to the as-deposited Ti/a-

HfO2/TiN stack during the electroforming process results in an oxygen migration 

from the HfO2 film towards the Ti top electrode. The Ti oxidation at the Ti/a-HfO2 

interface is thus enhanced and the interface layer, present already in the as-

deposited stack, broadened. In consequence, the removed oxygen atoms from the 

HfO2 layer leave oxygen vacancies behind, which act as n-type dopants. In 

consequence of the n-type dopants density increases, the barrier height at the top 

interface decreases and calculated binding energies in the electroformed sample 

HAXPES spectra thus increased.  
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4.3 In-operando electroforming of Ti/HfO2/TiN 

In order to investigate one and the same sample without having it to expose to 

ambient conditions (thereby avoiding possible chemical modifications) and 

suffering from data interpretation ambiguities (e.g. thickness inhomogeneity of 

two samples) the Ti/a-HfO2/TiN samples were investigated by in-operando 

HAXPES. In this chapter, the impact of the current compliance and DC sweep 

voltage parameters on the resistive switching behavior and the material changes in 

the Ti/a-HfO2/TiN cells will be presented. 

4.3.1 Electroforming at low electrical power 

Electrical characterization 

The low-power dissipation RRAMs are of major application interest for eNVMs, 

e.g. for WSN applications. Therefore, the first in-operando HAXPES studies were 

focused on the electroforming of the Ti/a-HfO2/TiN cell with the smallest possible 

current compliance and DC sweep voltage parameters. During searching for the 

parameters which electroform Sample F, the current compliance and DC sweep 

voltage were gradually increased. When the current compliance was increased to 

 

Figure 4.16: I-V characteristic of Sample F showing resistive switching at low power 

conditions. 



 80 RESULTS AND DISCUSSION 

0.4 mA and the voltage was swept between -1.3 V and +1.3 V, the first reset and 

set processes were visible in the I-V characteristic. The corresponding clockwise 

(Vreset > 0 and Vset < 0) bipolar resistive switching characteristic is shown in 

Figure 4.16. It should be noted that no initial electroforming process was 

necessary to establish the resistive switching behaviour in Sample F. The 

ROFF/RON ratio, read at 0.1 V, was equal to 10. However, subsequently applied DC 

sweep voltage parameters with same current compliance values have revealed an 

unstable resistive switching behaviour of Sample F. Namely, it was not always 

possible to set or reset this sample again. 

HAXPES characterization 

The collected Ti 2p and Hf 4d HAXPES spectra of the as-deposited-, and the first 

OFF- and ON-states of Sample F are shown in Figure 4.17. All spectra presented 

here were recorded with 7 keV of excitation energy at an electron take-off angle 

of 80°, thus at the most Ti/HfO2 interface-sensitive take-off angle used during 

these investigations. In both regions, there are no significant differences between 

spectra collected for the three investigated resistive states of Sample F. The same 

observation can be found in the HAXPES spectra collected for the same resistive 

 

Figure 4.17: Ti 2p (a) and Hf 4d (b) HAXPES spectra of Sample F in the as-

deposited-, ON- and OFF-states, recorded at excitation energy of 7 keV and an 

electron take-off angle of 80°. 
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states of Sample F at the two other, less sensitive to the Ti/HfO2 interface, take-off 

angles (for α = 45° and 65° HAXPES results are not shown). These results are 

opposite to the HAXPES peak shifts and to the increase of the Ti top electrode 

oxidation observed in the HAXPES spectra collected for the as-deposited Sample 

D and the electroformed under ambient conditions (with higher current 

compliance and sweep voltage parameters) Sample E.  

It can be thus concluded that for low electrical power applied to the Ti/a-

HfO2/TiN cell, forming-free resistive switching behaviour is observed. However, 

it is unstable and materials changes - which might occur at the Ti/HfO2 interface 

region - are below the HAXPES detection sensitivity. 

4.3.2 Electroforming with increasing electrical power 

Next, the impact of the higher current compliance and DC sweep voltage 

parameters used during the Ti/HfO2/TiN cell operation on its resistive switching 

behaviour and materials changes was investigated by in-operando HAXPES. 

Electrical characterization 

For this purpose, Sample G was electrically stressed by increasing step by step the 

current compliance and DC sweep voltage values. The first clockwise bipolar 

resistive switching characteristic, presented in Figure 4.18(a), appeared when the 

current compliance was increased to 6 mA and the voltage was swept between -

2.4 V and + 2.7 V. However, as in the case of Sample F, this resistive switching 

phenomenon was unstable and the current compliance and DC sweep voltage had 

to be further increased. When the current compliance was equal to 20 mA and the 

voltage was swept between -3.5 V and 3.5 V, the step-like current increases 

around 1.9 V, 2.1 V and 2.3 V were observed in the I-V characteristic (Figure 

4.18(b)). In order to reset the device to the OFF- state, the current compliance had 

to be further increased to 30 mA, while the same sweep voltage was applied. As 

shown in Figure 4.18(c), the reset process occurred at a positive voltage polarity. 
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After that, Sample G showed a stable clockwise bipolar resistive switching with a 

ROFF/RON ratio, read at 0.1 V, equal to 11.  

 

Figure 4.18: I-V characteristics showing resistive switching behavior of Sample G at 

increasing current compliance (6 mA (a), 20 mA (b) and 30 mA (c)) and DC sweep 

voltage parameters. 
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HAXPES characterization 

Figure 4.19 shows the Ti 2p HAXPES spectra recorded for the as-deposited- and 

three ON-states (CC = 6, 20 and 30 mA) of Sample G. First, by fitting the theory 

to the as-deposited-state spectrum, 5 doublet components, attributed to the 

different Ti oxidation states (0 to +4), were used. Next, the same parameters and 

full width at half maxima (FWHM ± 0.1 eV) were used to fit the three remaining 

spectra. Only the peak positions and their intensity could thus change. The results 

of this fitting allowed to calculate the metallic Ti (Ti
0
) to the sum of Ti oxides 

 

Figure 4.19: Ti 2p HAXPES spectra of Sample G in different resistive states: as-

deposited-, and three ON-states (CC = 6, 20 and 30 mA) taken at 8 keV of excitation 

energy at normal emission geometry. Spectra are fitted with five doublet 

components attributed to the different oxidation states of Ti (Ti
0
 – Ti

4+
). The dots 

correspond to the experimental points and the lines to the result of the fitting. Inset 

presents the metallic Ti (Ti
0
) to the total Ti oxides (Ti

1+
-Ti

4+
) ratio (Ti/TiOy). 
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(Ti
1+

 – Ti
4+

) ratio – Ti/TiOy. The calculated values are summarized in a table 

shown in the inset of Figure 4.19. A clear monotonous decrease of the Ti/TiOy 

ratio from 0.60 (as-deposited-state) to 0.52 (ON-state 30 mA) is observed. This 

result indicates that by increasing the current compliance and DC sweep voltage 

values during the forming/set process, a Ti/HfO2 interface oxidation occurs and is 

oxidized and in consequence the oxygen vacancies concentration in HfO2 

increases. In consequence, the b at the top interface decreases and the calculated 

binding energy of the peaks in the HAXPES spectra increases. It is noted that 

insulator towards metal transition as a function of increasing oxygen vacancies 

concentration in HfO2-x thin films has been studied in detail by Hildebrandt et al.
 

(119)
. 

An increased oxygen vacancies concentration in the HfO2 film at the interface 

with Ti should also increase the calculated binding energy of hafnium 

photoemission lines in HAXPES spectra. The oxygen vacancy concentration in 

the different resistive states of Sample G was thus verified by checking the 

binding energy of HfO2 in the O 1s and Hf 4f regions. Figure 4.20(a) shows the O 

1s photoemission line recorded for the as-deposited-state and three ON-states of 

Sample G. All spectra were fitted with three Gaussian-Lorentzian line shape 

components attributed to the Ti oxides (O-Ti, 530.9 eV), hafnium oxides (O-Hf, 

531.8 eV) and carbon oxides (O-C, 532.6 eV). The binding energy of the hafnium 

oxide component (O-Hf), marked in Figure 4.20(a) by the white-dashed line, 

increases when the current compliance increases. The binding energy values and 

the calculated peak shifts of both components are shown in Figure 4.20(b). As can 

be seen, both photoemission lines shift in the same direction, however with 

different values. Thus, the observed binding energy increase allows to conclude 

that an increased positive space charge region at the Ti/HfO2 interface related to 

the oxygen vacancies is created, accordingly with the increase of the applied 

electrical power to Sample G. 
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Besides, the HAXPES data indicate that the applied electrical power to Sample G 

does not only affect the Ti 2p, Hf 4f and O 1s photoemission lines but also the C 

1s, as observed in the part of the survey scan spectra presented in Figure 4.21(a). 

After the survey scan spectra normalization to the Hf 4d peak intensity, it is 

 

Figure 4.20: (a) O 1s HAXPES spectra of Sample G in different resistive states: as-

deposited-, and three ON-states (CC = 6, 20 and 30 mA) collected at 8 keV 

excitation energy at normal emission geometry. All spectra are fitted with three 

components attributed to the Ti oxides (O-Ti, 530.9 eV), hafnium oxides (O-Hf, 

531.8 eV) and carbon oxides (O-C, 532.6 eV) features. The white dashed lines mark 

the O-Hf binding energy. (b) Binding energy of hafnium oxide peaks in the O 1s 

(blue triangles) and the Hf 4f7/2 (red cirles) regions. The values indicate peak shifts 

compared to the as-deposited-state peak position. 



 86 RESULTS AND DISCUSSION 

clearly observed that the C 1s peak intensity increases with the increase of the 

electrical stress applied to the sample. Initially, for the lower current compliance 

and DC sweep voltage parameters this ratio does not change significantly. 

However, after sample is electroformed and shows a stable resistive switching 

behavior, the C 1s to the Hf 4d intensity ratio (IC/IHf shown in Figure 4.21(a)) 

increases from 0.4 (as-deposited-state) to 0.6 (ON-state 30 mA). The C 1s spectra  

 of the as-deposited- and the ON-state CC = 30 mA of Sample G (Figure 4.21(b)) 

are fitted by four components assigned to the -C-C (285.5 eV), -C-O (286.5 eV), 

>C=O (287.5 eV) and O-COO (289.7 eV) chemical bonds. This fitting allows to 

detect the chemical changes within the carbon: (1) the concentration and (2) the 

chemical environment of carbon located at the Ti/HfO2 interface change. A 

significant increase of carbon oxide species (here mainly >C=O) after setting the 

 

Figure 4.21: (a) Survey spectra of Sample G normalized to the Hf 4d peak intensity 

for the different resistive states: as-deposited, and three ON-states (CC = 6, 20 and 

30 mA) recorded at 8 keV of excitation energy at normal emission geometry. The C 

1s to Hf 4d peak intensity ratios (IC/IHf) are indicated. (b) C 1s HAXPES spectra of 

Sample G in the as-deposited- and ON-state 30 mA. Both spectra are fitted with four 

components attributed to the -C-C (285.5 eV), -C-O (286.5 eV), >C=O (287.5 eV) 

and O-COO (289.7 eV) chemical bonds. 
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sample to the ON-state CC = 30 mA is visible. This result indicates that carbon 

impurities inside the AVD HfO2 film may accumulate at the Ti/HfO2 interface 

during the resistive switching and become oxidized. As this might alter the 

oxygen vacancy balance at the Ti/HfO2 interface, the experimental findings will 

be investigated in more detail. 

4.3.3 Discussion 

The in-operando HAXPES study allows to correlate the forming/set 

characteristics of various current compliance and DC sweep voltage parameters 

with the materials modifications of the Ti/HfO2/TiN RRAM cells. When the low 

current compliance and voltage parameters are used to operate the RRAM cell 

(Sample F and first cycle of Sample G), the forming-free resistive switching 

phenomenon is unstable. The absence of changes in the HAXPES spectra of 

Sample F indicates that – if at all – only subtle modifications may have occurred 

in the stack, however below the detection limit of the HAXPES technique and not 

sufficient to stabilize the resistive switching phenomenon. On the other hand, 

using higher current compliance and DC sweep voltage parameters during the 

forming/set operation of Sample G, the small material changes start to be detected 

in the HAXPES spectra. The monotonic decrease of Ti/TiOy and increasing 

binding energy of hafnium oxide components in the HAXPES spectra are 

observed and can be attributed to the increase of the positive oxygen vacancy-

related space charge at the Ti/HfO2 interface region by an electrically driven 

Ti/HfO2 interface oxidation. A stable resistive switching is obtained only after the 

stepwise current (on positive voltage polarity) occurs in the I-V characteristic, as 

shown in Figure 4.18(b). It is supposed that this phenomenon is related to the 

electroforming process rather than to a change of the switching polarity 

mentioned in Ref. (120), because the subsequent resistive switching is again 

clockwise as before. Moreover, sudden increases of the current in I-V curves are 

attributed to the growth of multiple, parallel conductive filaments between the top 

and bottom electrodes when a sufficient amount of oxygen vacancies is created 
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inside the oxide, supporting the hypothesis of the electroforming process.
 (121) - (123)

 

Besides, Xue et al.,
 (124)

 have predicted that in the highly deficient hafnia the 

presence of tetragonal semimetallic Hf2O3 structures can serve as a basic 

explanation of the low resistive state of HfO2--based RRAMs. Experimentally, a 

metal-insulator transition as a function of oxygen vacancy concentration in the 

HfO2-x thin films has been also observed.
 (119)

 Furthermore, the first principle 

calculations
 (125)

 have also shown that a critical amount of oxygen vacancies have 

to be created inside the a-HfO2 film to stabilize the resistive switching 

phenomenon. In more details, if the number of oxygen vacancies
 
in the conductive 

filaments is too low, the transport may be in the trap-assisted regime and be 

dominated by the weakest link between vacancies. As the conductive filament 

lateral size is increased by the addition of more oxygen vacancies, the transport 

gap is reduced and sizable conductivity obtained.  

Thus, it can be concluded that before the real electroforming occurs (i.e. for 

Sample F and Sample G with CC = 6 mA) the number of oxygen vacancies is too 

low and the conductive filaments are too weak to maintain a stable resistive 

switching. As the current compliance and DC sweep voltage parameters are 

increasing, the oxygen vacancies
 
concentration in the HfO2 also increases and 

expands the conductive filaments lateral size. When the amount of oxygen 

vacancies in such filaments is sufficient, the resistive switching is stabilized and 

the ON-state current can be controlled by the current compliance and/or DC 

sweep voltage parameters. 

4.3.4 Summary and conclusions 

In summary, the impact of various current compliance and DC sweep voltage 

parameters on the forming/set process of the Ti/a-HfO2/TiN cells was investigated 

by correlating the material science aspects of the Ti/a-HfO2 interface with 

electrical measurements using in-operando HAXPES. Stable resistive switching 

in amorphous AVD HfO2-based RRAMs was only possible after that the sample 
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was electroformed by using higher current compliance and DC sweep voltage 

parameters. HAXPES data have shown the slight increases of the Ti oxidation and 

the C concentration at the Ti/a-HfO2 interface, and the binding energy, with the 

increasing electrical power applied to the cell.  

Both the electrical and HAXPES results correlated with literature indicate that the 

value of the applied electrical power during the forming/set operation to the 

RRAM cell defines the oxygen vacancies concentration in the oxide and thus the 

resistive switching properties.
 (126) - (129)

 Besides, the defect physics in the AVD a-

HfO2-based RRAMs seems to be not only limited to the oxygen vacancies, but 

other impurities, such as C, may contribute under electrical stress to the resistive 

switching behavior and thus influence the switching characteristics.  

In conclusion, it seems that the materials modification in the RRAM cells must 

overcome a certain threshold (i.e. critical concentration of oxygen vacancies in 

HfO2) to stabilize the resistive switching phenomenon.  
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4.4 In-operando switching of Ti/HfO2/TiN cells  

In this chapter, the in-operando HAXPES results of the as-deposited- and the 7
th

 

ON- and OFF-state of DC sweep cycled Sample G will be presented. 

Additionally, the segregation of C impurities at the Ti/a-HfO2 interface, while DC 

sweep voltage cycling of Sample H, was investigated by means of in-operando 

HAXPES. 

4.4.1 Electrical characterization 

In Figure 4.22(a) the I-V characteristics of the 7 DC sweep voltage cycles are 

shown, performed on the electroformed (at positive voltage polarity) Sample G. 

The ROFF/RON ratio, read at 0.1 V, after the 7
th

 resistive switching cycle is equal to 

7. The conduction mechanism of Sample G in the ON- and OFF-state can be 

determined from the double logarithmic I-V characteristic (Figure 4.22(b)). As can 

be seen, there is a linear relationship between current and voltage in the ON-state. 

The slope coefficient of the curve related to the ON-state is equal to 1 on both 

voltage polarities. This result indicates that the conduction mechanism in the ON-

state can be attributed to ohmic conduction.
 (121)

 Thus, Sample G being in the ON-

state behaves as a metallic conductor. However, when this sample is reset to the 

OFF-state a nonlinear current versus voltage relationship is observed, suggesting a 

non-ohmic conduction mechanism. In the higher voltage range of the OFF-state, 

the curve can be approximately fitted with a straight line, which slope coefficient 

is equal to 1.7 (on a positive voltage polarity) and to 1.6 (on a negative voltage 

polarity), while in the lower voltage range the I-V slope coefficient is equal to 1. 

The non-ohmic conduction mechanism in the OFF-state can probably be related to 

a trap-unfilled space charge limited current, for which the slope coefficient in a 

double logarithmic I-V plot is equal to 2.
 (121)
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4.4.2 HAXPES characterization 

The chemical and electronic modifications that occur in Sample G between the as-

deposited and the 7
th

 OFF- and ON-states are analyzed by HAXPES spectra. 

Chemical modifications 

The most visible chemical changes between these three resistive states of Sample 

G were found again in the Ti photoemission lines. Figure 4.23 shows fitted (with  

 

Figure 4.22: (a) I-V characteristics showing the resistive switching behavior of 

Sample G in a DC sweep mode. After 7 cycles the ROFF/RON ratio, read at 0.1 V, is 

equal to 7. The inset shows the current levels for both ON- and OFF-states before 

and after the HAXPES experiments. (b) I-V characteristic of the 7
th

 cycle presented 

in a double logarithmic plot with marked slope coefficient in OFF- and ON-states. 
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same parameters as in the previous sections) Ti 2p HAXPES spectra of the as-

deposited- (a), OFF- (b) and ON-states (c). The individual Ti oxidation states 

intensities in the Ti 2p photoemission line,  for each investigated resistance state 

of Sample G was derived from the fitting results and is shown in Table 4.3. The 

results of this fitting allowed to calculate the Ti/TiOy ratio. The increase of the Ti 

oxidation from the as-deposited- (0.60 ± 0.03) to the OFF- (0.52 ± 0.03) and ON-

 

Figure 4.23: Ti 2p HAXPES spectra of Sample G in the as-deposited- (a), OFF- (b), 

and ON-states (c), recorded at excitation energy of 8 keV. A Shirley background and 

5 components attributed to titanium oxidation states between 0 and +4 are shown. 
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state (0.53 ± 0.03) is consistent with the previously observed relation between the 

as-deposited and electroformed samples. Namely, the interface between Ti and 

HfO2 becomes more oxidized under electrical manipulation by an oxygen 

migration from the HfO2 towards Ti film. Despite the fact that the overall Ti/TiOy 

ratio for the ON- and OFF-states does not significantly differ, a clear 

redistribution of intensity between the different Ti oxidation states is detected. 

Whereas only minor or no changes are observed for the Ti
0
, Ti

2+
 and Ti

4+ 

components between the ON- and OFF-states, a clear intensity redistribution is 

observed for the Ti
1+

/Ti
3+

 redox system. Indeed, the increase of the Ti
1+

 intensity 

at the expense of the Ti
3+

 intensity, when passing from the OFF- to the ON-state, 

indicates a decrease of the oxidation state of the Ti in the interface layer. The set 

process at a negative voltage polarity can be thus interpreted either by attracting 

oxygen vacancies to the Ti/HfO2 interface or repelling oxygen anions from it, 

both reducing the metallic Ti content in the top electrode film. In turn, the reset 

process of the device to the OFF-state by a positive voltage can be related to the 

attraction of oxygen anions (or to the repulsion of oxygen vacancies from the top 

electrode to the bulk HfO2) causing enhanced Ti oxidation. This behavior, 

independent of considering oxygen anions or oxygen vacancies, suggests that the 

TiOx interface layer plays the role of an oxygen reservoir in exchange with the 

HfO2- film during the resistive switching process.
 (57), (120)

  

 Ti  ± 0.2 (%) Ti
0
 Ti

1+
 Ti

2+
 Ti

3+
 Ti

4+
 

As-deposited 37.3 9.9 10.8 7.1 34.8 

OFF 34.3 9.9 12.8 5.9 37.1 

ON 34.5 10.8 12.8 4.9 36.9 

Table 4.3: Percentage intensity  Ti of the different oxidation states in the Ti 2p core 

level for the as-deposited-, OFF- and ON-states. The grey cells show the main 

differences between the OFF- and ON-states. 
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BE ± 0.03 (eV) Ti 2p3/2 (Ti
0
) Hf 4f7/2 O 1s

BE
OFF

 0.15 0.07 0.14

BE
ON

 0.27 0.18 0.23 

 

Electronic modifications 

Now the electronic changes detected in the HAXPES spectra of the three 

resistance states of Sample G will be presented. Figure 4.24(a) shows the Hf 4f 

doublet (including also the O 2s line) and Figure 4.24(b) the intensive O 1s line 

(including less intensive Hf 4s peak). As shown in the insets, the Hf 4f7/2 and O 1s 

lines shift towards higher binding energy in the order of BE
as-deposited

 < BE
OFF

 < 

BE
ON

. The binding energy shifts values are summarized in Table 4.4. As proposed 

by other groups
(79), (115), (118)

 and in the Section 3.2, these peak shifts towards 

higher binding energy can be attributed to the increase of the n-type dopants 

concentration in the HfO2 film, which can be further related to the oxygen 

Table 4.4: Experimental peak shifts (BE
OFF/ON

 = BE
OFF/ON

 - BE
as-deposited

) between 

the OFF- or ON-states and the as-deposited-state, for metallic Ti 2p3/2 (Ti
0
), Hf 4f7/2 

and O 1s lines. 

 

Figure 4.24: Normalized and smoothed HAXPES spectra of (a) the Hf 4f doublet 

and the O 2s line and (b) of the O 1s and Hf 4s lines recorded at excitation energy of 

8 keV from the sample in the as-deposited-, OFF- and ON-states. The shifts of the 

Hf 4f7/2 and O 1s main peaks are highlighted in the insets. 
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vacancies. Thus the observed different peak shifts in the HAXPES spectra 

between the ON- and OFF-state can be attributed to the different oxygen 

vacancies concentrations at the Ti/HfO2 interface.  

4.4.3 Proposed resistive switching model 

Comparing electrical data with the observed chemical and electronic 

modifications in the HAXPES spectra, the possible scenario of the resistive 

switching origin in the Ti/a-HfO2/TiN cell is proposed in Figure 4.25. In the as-

 

Figure 4.25: Schematic of proposed chemical (top) and electronic (bottom) 

modifications between the as-deposited- (a), OFF- (b) and ON- (c) states of the 

resistive switching in the Ti/HfO2/TiN-based system. The different concentrations of 

oxygen vacancies (VO
··
) at the Ti/HfO2 interface in the OFF- and ON-states give rise 

to the band bending. The used symbols are defined as: b – the conduction band 

offset, m – the metal work function, BE – the binding energy, Eg – the gap energy, 

EF – the Fermi level, CB – the conduction band, VB – the valence band, χ – the 

electron affinity. 
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deposited-state (a), the MIM stack already presents a TiOx interface layer between 

the Ti and HfO2 films and a downward band bending towards the top electrode in 

the energy band diagram, due to the difference in the Ti and TiN metal work 

functions.
 (12), (114)

 The electroforming step leads to a further oxidation of the as-

deposited Ti/HfO2 interface by enhancing the TiOx layer. It is supposed that 

during this process oxygen vacancies are formed in HfO2, and a downward band 

bending at the Ti/HfO2 interface increases, lowering at the same time the barrier 

height and increasing thus the conduction.
 (130)

 The OFF- and ON-states arise from 

different concentrations of oxygen vacancies, [VO
··
], at the Ti/HfO2 interface: 

[VO
··
]

as-deposited
 < [VO

··
]

OFF
 < [VO

··
]

ON
. This raising concentration of oxygen 

vacancies induces a higher bending of the conduction and valence bands and a 

decrease of the barrier height at the top electrode interface, as sketched.
 (112)

 A 

push-pull model can describe the migration of oxygen vacancies at the top 

interface.
 (131)

 A positive voltage applied to the top electrode (reset process) repels 

positively charged vacancies from the interface and in effect, the band bending is 

reduced and the device is set to the OFF-state (Figure 4.25(b)). At the reversed 

polarity (set process), oxygen vacancies are attracted which increases the band 

bending and brings the device to the ON-state (Figure 4.25(c)). This is in 

agreement with the picture that the TiOx interlayer plays the role of an oxygen 

reservoir, according to the higher oxidation state of the Ti in the OFF-state than in 

the ON-state, as also previously reported for Ta-based devices.
(57), (132)

 

4.4.4 Carbon behavior during cycling 

In order to investigate the C impurities behavior during the resistive switching 

cycling, Sample H was cycled 120 times by means of in-operando HAXPES. The 

relevant I-V characteristics presenting the 1
st
, 10

th
, 20

th
 and 120

th
 cycle are shown 

in Figure 4.26(a). In Figure 4.26(b) is shown an endurance plot reporting at 0.2 V 

the current levels for the ON- and OFF-states. As can be seen, while the ON-state 

current level is quasi constant the OFF-state current level is going towards the 

ON-state over the cycling. As the final effect of this cycling, the device presents a 
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reset failure (120
th

 cycle in Figure 4.26 (a)), i.e. it cannot be reset to the OFF-state.  

The relevant HAXPES survey scan spectra normalized to the Hf 4d peak intensity 

are shown in Figure 4.26(c). A clear increase of the C peak intensity over the 

cycles is observed. The calculated IC/IHf ratio in Figure 4.26(c) indicates that the 

cycling increases the C concentration at the Ti/HfO2 interface. In particular, the 

IC/IHf ratio increases by a factor of two from 0.51 for the as-deposited-state to 0.99 

for the 120
th 

ON-state. These results suggest that the resistive switching may be 

not only based on oxygen vacancies migration but also C impurities might 

participate to the switching mechanism and should thus be taken into account.  

The exact role of C impurities in the resistive switching phenomena is not yet 

clear but three different scenarios can be envisioned. Firstly, ab-initio calculations 

indicate that the isolated, non-reacted C impurities behave electronically very 

similar to the oxygen vacancies in HfO2.
 (133)

 This means that a chain of C 

 

Figure 4.26: (a) I-V characteristics showing the 1
st
, 10

th
, 20

th
 and 120

th
 resistive 

switching cycle of Sample H. (b) Current levels read at 0.2 V for ON- and OFF-

states. (c) Normalized survey scan spectra recorded at 8 keV excitation energy, for 

the as-deposited-, OFF- and ON-states of Sample C (IC/IHf ratio is indicated). 
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impurities is capable of regular transport. Moreover, the creation of conductive C 

filament(s), in addition to oxygen vacancies-based filaments, might be then 

possible and will thus certainly impact the resistive switching properties. 

Secondly, C can form defect complexes with oxygen vacancies.
 (134) - (136)

 In 

consequence, increased C segregation to the metal/oxide interface
 (137), (138)

 can 

thus critically influence the oxygen vacancies
 
balance in the HfO2 film. Thirdly, 

another possibility of influencing the oxygen vacancies
 
concentration in the HfO2 

film by C impurities is given by C oxidation in the HfO2 film.  

4.4.5 Summary and conclusions 

A stable resistive switching phenomenon in the Ti/a-HfO2/TiN cell was 

investigated by means of in-operando HAXPES. The collected HAXPES spectra 

have indicated an increase of the overall titanium oxidation in the ON- and OFF-

state of Sample G. The detected differences in the HAXPES spectra of both states 

correspond to a redistribution of the different Ti oxidation states. In particular, the 

data indicate that a redox reaction between the HfO2 and the Ti films (via the Ti
1+

 

and Ti
3+

 oxidation states) is at the very heart of this oxygen reservoir role of the 

TiOx interface. Moreover, the higher peak shift for the ON- than for the OFF-state 

can be attributed to the higher oxygen vacancies concentration at the Ti/HfO2 

interface in the ON-state. Besides, the detailed analyses of the electrical data 

indicate that the ON-state behaves as a metallic conductor whereas the conduction 

in the OFF-state is rather non-ohmic and can be attributed to the conduction of the 

trap-unfilled space charges. Moreover, the in-operando HAXPES cycling 

experiment shows that the endurance of a stable resistive switching as well as the 

resistive switching phenomenon itself may be affected by other HfO2 defects, 

such like C impurities present in that film due to the deposition process. In 

particular, an increasing C segregation at the Ti/HfO2 interface is observed over 

the increasing number of cycles.  

Therefore, despite the fact that the resistive switching origin in the HfO2-based 

RRAMs is already well accepted and attributed to the creation and rupture of 
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conducting oxygen vacancies filaments the in-operando results indicate that other 

HfO2 impurities may be also involved. This finding is of particular relevance to 

improve the reliability (endurance, retention, etc.) of RRAM devices.  

   



 



 

  Chapter 5

5. SUMMARY AND OUTLOOK 

5.1 Summary  

Non-volatile memory devices are currently key elements for many different 

system applications in Si-based CMOS technologies, including high-end and 

mobile computing, consumer electronics, and various sensor and medical health 

care devices. They can be used e.g. in digital cameras, solid state disks, 

smartphones, computers, e-books, tablets or WSNs. Even though the Flash 

memory represents today the leading non-volatile memory technology it is 

approaching physical limits. To achieve higher scalability but also better 

performance, density and speed than Flash, as well as to address low power 

consumption, low thermal budget and compatibility with flexible substrates and 

embedded systems, new emerging non-volatile memory concepts are of 

importance. Among them, ReRAM is a major candidate to replace nowadays 

Flash in future. 

Whereas a fully CMOS compatible TiN/Ti/HfO2/TiN ReRAM stack, whose 

potential is currently evaluated, has been successfully integrated with a select 

transistor (1T1R memory) by IHP, the reliability and insufficient understanding 

of the resistive switching mechanism have been the two main issues limiting the 

ReRAM technology development for e.g. WSN applications.  

With this respect, to improve the performance of the TiN/Ti/HfO2/TiN ReRAM 

cells, an innovative in-operando HAXPES setup has been established to non- 

destructively investigate the material changes within the HfO2 film and/or at the 
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Figure 5.1: Overview of three most important results of this Thesis (a) Ti oxidation 

degree dependence on HfO2 film crystallinity. (b) Proposed chemical and electronic 

changes of Ti/HfO2/TiN ReRAM based on in-operando HAXPES results. (c) Carbon 

accumulation at Ti/HfO2 interface during switching of Ti/HfO2/TiN ReRAM cells.  
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Ti/HfO2 interface (in conjunction with complementary material science 

characterization techniques and theoretical calculations). It is noted, that the 

defect-based switching physics in ReRAM provides a challenge for today’s 

laboratory based materials science techniques so that the innovative non-

destructive HAXPES technique with high energy resolution and sensitivity at 3
rd

 

generation synchrotron sources was applied in this Thesis. 

The summary of the main results obtained in this Thesis and an overview of three 

main achievements, shown in Figure 5.1, are presented hereafter. 

5.1.1 As-deposited Ti/HfO2 interface 

At the beginning, the as-deposited Ti/HfO2 interface was investigated by means of 

different techniques. First, the growth of Ti on HfO2 was monitored in-situ at 

IHP´s MBE system. This is because in-situ studies are not possible under typical 

IHP´s BEOL processing of the Ti/HfO2/TIN ReRAM cells in the AVD chamber. 

The in-situ XPS results indicate that during the MBE process Ti atoms are 

initially poorly bonded to the HfO2 substrate, and thus Ti oxides islands nucleate 

and expand three dimensionally in all directions. In a further process, the Ti 

islands become more and more metallic and after certain time they coalesce and 

grow further as a metallic film (layer by layer). These results allow to conclude 

that there is an oxidation process of the Ti film at the interface with HfO2, and 

thus the creation of the Ti//TiOx/HfO2-δ interface layer in the as-deposited 

stack.  

Next, ToF-SIMS studies performed on samples prepared with 
18

O isotope-marked 

HfO2 confirmed the Ti layer’s chemical reactivity with the oxygen coming from 

the HfO2 film. Moreover, GIXRD and HAXPES studies have revealed a higher 

degree of Ti oxidation in case of Ti films deposited on amorphous than on 

monoclinic HfO2 films (Figure 5.1(a)). This experimental result was then 

confirmed by first principle calculations, namely, a lower formation energy was 

found for the formation of oxygen vacancies in amorphous than in monoclinic 
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HfO2 films. Experiment and theory confirm thus an enhanced Ti oxidation activity 

with amorphous HfO2 films.  

Finally, off-line characterization of BEOL-processed Ti/AVD a-HfO2/TiN 

samples confirmed the same results, as observed for the MBE-processed model 

samples. In detail, the presence of the TiOx interface layer between the as-

deposited Ti and a-HfO2 layers was detected in particular by STEM-EDX studies. 

Besides, the EDX characterization revealed the presence of impurities in the 

HfO2 film (e.g. N, C etc.), probably resulting from the used AVD precursor 

chemistry.  

5.1.2 Ex-situ study of electroformed Ti/a-HfO2/TiN cells 

In the next step, the BEOL-processed Ti/AVD a-HfO2/TiN samples were 

investigated in terms of their resistive switching properties. First, the positive DC 

sweep voltage applied to the as-deposited Ti/AVD a-HfO2/TiN stack during the 

electroforming process changed its resistance by about three orders of magnitude. 

The subsequent DC sweep voltage cycle showed a clockwise bipolar resistive 

switching behavior of the positively electroformed Ti/AVD a-HfO2/TiN stack. 

Next, ex-situ HAXPES study performed on both samples (as-deposited and 

electroformed) revealed significant chemical and electronic differences. Namely, 

in comparison to the as-deposited sample, HAXPES detected an increase of (1) 

the Ti/a-HfO2 interface oxidation and (2) of the binding energy in the 

electroformed sample. Both changes, compared with the literature, indicate the 

creation of n-type dopants in the a-HfO2 film during the electroforming 

process, probably related to the formation of positively charged oxygen 

vacancies in a-HfO2 by the electrochemical Ti/a-HfO2 interface oxidation 

(Figure 5.1(b)).  
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5.1.3 Impact of electrical power on changes in Ti/a-HfO2/TiN cells 

Next, the impact of various current compliance and DC sweep voltage parameters 

on the Ti/AVD a-HfO2/TiN ReRAM cells was investigated by means of in-

operando HAXPES. These studies evaluated the possibility of a forming-free 

resistive switching in the Ti/AVD a-HfO2/TiN samples while using low 

electrical power. However, this resistive switching was unstable and a stable 

switching was observed only after the sample was firstly electroformed at a 

positive voltage polarity using higher electrical power.  

By correlating the materials science aspects of the Ti/a-HfO2 interface with 

electrical measurements and literature, it can be concluded that the value of the 

applied electrical power to the Ti/AVD a-HfO2/TiN cells during the 

forming/set operation defines the oxygen vacancies concentration in the a-

HfO2 and thus the stability of the resistive switching properties. It means that 

the higher the electrical power parameters, the more oxygen vacancies are formed 

in the a-HfO2 film by the electrically driven Ti/a-HfO2 interface oxidation. A 

critical oxygen vacancy concentration needs thus to be formed to achieve stable 

switching characteristics. 

Besides, the defect physics in the Ti/AVD a-HfO2/TiN ReRAM seems to not 

be limited to oxygen vacancies, as other impurities, such as carbon, may 

contribute under electrical stress to the resistive switching and thus influence 

the switching characteristics. Namely, with increasing electrical power 

parameters, an increasing segregation of carbon at the Ti/a-HfO2 interface was 

observed in the HAXPES spectra. This result could be attributed to an electrically 

driven carbon segregation mechanism at this interface. 

5.1.4 Stable resistive switching in Ti/a-HfO2/TiN cells  

Finally, by means of in-operando HAXPES technique, the differences between 

the as-deposited-, and the stable ON- and OFF-states were investigated. As in 

previous studies, the HAXPES results of the electrically changed states showed, 
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in comparison to the as-deposited-state, an increase of the Ti oxidation and an 

increase of the binding energies of peaks related to Hf oxides. Next, the main 

difference between the OFF- and ON-states is that there is a different Ti oxides 

redistribution in the Ti 2p HAXPES spectra. The observed redox reactions 

between the a-HfO2 and the Ti films via the Ti
1+

 and Ti
3+

 oxidation states is, 

according to these results, at the very heart of the Ti/a-HfO2 interface layer 

role as an oxygen exchange reservoir for the resistive switching (Figure 

5.1(b)). Its role is then confirmed by observed higher photoemission peak shift in 

the ON- than in the OFF-state HAXPES spectra. As stated previously, the higher 

peak shift can be attributed to a space charge region created by the higher oxygen 

vacancies concentration at the Ti/a-HfO2 interface. Moreover, the simulation of 

the I-V characteristics of both states revealed that the ON-state behaves as 

metallic conductor whereas the OFF-state conduction can be attributed to 

trap-unfilled space charge limited current. Besides, the in-operando HAXPES 

cycling experiment showed that the endurance of a stable resistive switching as 

well as the resistive switching phenomenon itself may be affected by other HfO2 

defects, such like C impurities present in the film due to the AVD deposition 

process. In particular, an increasing C segregation at the Ti/a-HfO2 interface is 

observed over the increasing number of switching cycles (Figure 5.1(c)).   
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5.2 Conclusions 

5.2.1 Resistive switching origin in Ti/a-HfO2/TiN ReRAM cells 

Results of the studies presented in this PhD Thesis indicate that the resistive 

switching phenomenon in the Ti/AVD a-HfO2/TiN ReRAM cells can be related to 

the oxygen vacancies migration under the influence of an electrical field. The as-

deposited, amorphous HfO2 film contains already a certain amount of oxygen 

vacancies due to the oxygen scavenging by a chemically reactive Ti electrode. 

This fact leads further to the possibility of a forming-free resistive switching. 

However, it is not stable and thus indicates that the initial oxygen vacancies 

concentration in HfO2 is not sufficient to stabilize the resistive switching event. 

Therefore, an electroforming step is thus required to stabilize it. However, the in-

operando HAXPES results indicate that the resistive switching in the Ti/AVD a-

HfO2/TiN ReRAM cells is not limited to oxygen vacancies. An observed increase 

of the C 1s signal in HAXPES spectra while increasing the applied electrical 

power to the RRAM cell or while cycling the device indeed showed that the 

carbon impurity role in the resistive switching cannot be ignored. Therefore, other 

impurities present in the as-deposited a-HfO2 films, highlighted in this Thesis by 

carbon, may contribute under electrical stress to the resistive switching 

phenomenon and thus influence the switching characteristics (e.g. reliability, etc.).       

5.2.2 Improved Ti/a-HfO2/TiN RRAM cells performance 

In order to verify the last finding of this Thesis – the carbon impact on the 

resistive switching behavior of Ti/HfO2/TiN ReRAM – the HfO2 films were 

deposited by AVD at different temperatures, in order to reduce the carbon content 

in these films. As can be seen in Figure 5.2, showing the 
12

C ToF-SIMS depth 

profile, the carbon content was reduced from around 8 at.% to 3.3 at.% while 

increasing the deposition temperature from standard 320 °C to 450 °C. It is noted  
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that this temperature is the maximum value to keep the RRAM process BEOL 

compatible. Next, two integrated 1T1R devices, one with the HfO2 film deposited 

at 320  C and one at 450 °C, were prepared in order to perform pulse-induced 

resistive switching endurance measurements. During the measurements, for both 

samples, the gate-source voltage (VGS) was equal to 3 V for the set and reset 

processes, the pulse lengths and amplitudes were set to 100 ns and 3 V (for set) or 

-2.5 V (for reset), on the drain side. Figure 5.3 shows the endurance plots of 0.6 × 

0.6 μm² integrated TiN/Ti/HfO2/TiN cells with HfO2 deposited at (a) 320  C and 

 

Figure 5.2: 
12

C ToF-SIMS depth profiles performed across the HfO2 film deposited 

at 320 °C, 400 °C and 450 °C. 

 

Figure 5.3: Endurance plot of 1T1R integrated Ti/HfO2/TiN ReRAM cells with HfO2 

film deposited at (a) 320  C and (b) 450  C. 
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(b) 450  C. As can be seen, a stable pulse-induced endurance with > 10
6
 cycles 

was observed for HfO2 deposited at 450 °C while for the 320 °C deposited HfO2 

film, the resistance window closed after around 10
2
 cycles. Thus, this result points 

to the possibility to improve the performance of the TiN/Ti/HfO2/TiN ReRAM 

cells by a reduction of the carbon content in the dielectric layer. This is a very 

promising result for the development of reliable future ReRAM technologies for 

WSNs applications. 

5.2.3 Limitations of HAXPES 

The resistive switching origin in the Ti/AVD a-HfO2/TiN cells, attributed by 

HAXPES investigations to an electrochemically active Ti/HfO2 interface in 

combination with a push-pull mechanism of oxygen vacancy migration under 

electrical bias, classifies this ReRAM system to the valence change memories.  

Polarity characteristics of the switching phenomenon 

The VCM mechanism, proposed in Figure 2.6 for n-conducting oxide, is in line 

with the push-pull model of oxygen vacancies proposed in this Thesis. In detail, 

this mechanism also attributes the location of the switching event for the 

clockwise resistive switching polarity at the top Ti/HfO2 interface while 

grounding bottom electrode and applying signal to the Ti top electrode (see Figure 

5.4(a)).  

However, if in accordance with literature models,
 (52)

 one assumes TiN as an 

active electrode, at which the switching takes place (a metal with a low oxygen 

affinity) and Ti as an ohmic electrode (a metal with a low work function and a 

high oxygen affinity), then this widely accepted switching model does not 

describe the resistive switching behavior in the model Ti/AVD a-HfO2/TiN 

samples. To this assumption, the resistive switching should present a counter 

clockwise behavior while applying the signal to the Ti top electrode and 

grounding the TiN bottom electrode and the switching event should thus occur at 

the bottom HfO2/TiN interface. Such counter clockwise character (Figure 5.4(b)) 
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is indeed observed for IHP’s integrated TiN/Ti/HfO2/TiN devices
 (14)

 and in other 

integrated HfO2-based VCM systems
 (27), (139)

. Therefore, it can  

be assumed that in case of the integrated HfO2-based ReRAM devices, the Ti 

layer acts as an ohmic electrode and TiN layer as an active electrode and the 

resistive switching can be explained according to the model shown in Figure 2.6.  

A possible explanation, why for one and the same ReRAM system opposite 

polarity for the switching characteristics may be observed, might be based on the 

initial oxygen vacancies gradient profile across the oxide film.
 (52), (62)

 In the model 

proposed in Ref. (62) for a symmetric Pt/TiO2-x/Pt ReRAM system, if an oxygen 

deficient n-type layer is located at the bottom electrode and the fully oxidized  

 

Figure 5.4: Schematic representation of resistive switching polarity (bottom) and 

indication of switching interface (top) in Ti/HfO2/TiN model HAXPES system (a) 

and in integrated TiN/Ti/HfO2/TiN devices (b). 
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Figure 5.5: Schematic representation of clockwise (a) and counter clockwise (b) 

resistance switching in titanium oxide films with oxygen vacancy gradient for 

symmetric Pt top and bottom electrodes.
 (62)
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stoichiometric oxide on the top electrode side then the oxygen vacancy 

concentration in the deficient oxide is higher compared to the near stoichiometric 

part. Next, if the doping level of oxygen vacancies at the bottom electrode 

interface is high enough, then an ohmic contact is formed and the switching 

process occurs only at the rectifying interface between the stoichiometric oxide 

part of the bilayer and the electrode, as shown in Figure 5.5(a).
 (62)

 Application of 

a negative voltage to the top electrode attracts the oxygen vacancies into the near 

stoichiometric oxide layer and toward the top interface and the sample is set to the 

ON-state. Then, a positive voltage applied to the top electrode repels oxygen 

vacancies from the top interface and resets the sample to the OFF-state. It should 

be noted, that under bias voltage the oxygen vacancy concentration and 

distribution will also change at the bottom electrode interface. However, this 

change is not significant enough to change the ohmic behavior. Upon reversing 

the fabrication sequence (fully oxidized oxide at the bottom electrode and the non-

stoichiometric oxide at the top electrode) the polarity for reset and set processes 

are reversed, as shown in Figure 5.5(b). According to this model, the rectification 

and the switching polarities are thus determined by the initial distribution of the 

oxygen vacancies in the dielectric layer. 

The reason why the resistive switching polarity is opposite for integrated HfO2 

ReRAM and HAXPES HfO2-based ReRAM model system is not yet clear. 

Intuitively, the following differences can be stated:  

 (1) Sample size: integrated devices are at least three orders of magnitude 

smaller than the model samples used in this Thesis;  

 (2) Layer thickness: a 150 nm TiN top layer is used in the integrated 

devices in order to protect the Ti layer against unwanted oxidation.  

 (3) Applied power: as a consequence of (1) and (2), the applied power 

parameters to switch HAXPES model system substantially differ with 

respect to integrated devices. 



 113 SUMMARY AND OUTLOOK 

Unfortunately, due to the limited sample size and the TiN top electrode thickness, 

it is not possible to directly apply HAXPES to fully integrated device but model 

systems need to be addressed.   

Interface versus filamentary switching 

The HAXPES technique cannot distinguish between filamentary and interface 

type resistive switching, due to too low lateral resolution. However, HAXPES 

results clearly confirm literature reports that oxygen vacancies – probably in 

filament shape – are decisive for HfO2–based ReRAMs. This oxygen vacancies-

based filamentary type resistive switching – instead of an interface model – is 

further supported by the observed conductive filament(s) resistance dependence 

on the DC sweep voltage range
 (126)

 and/or current compliance used during the 

forming/set operation.
 (127) - (129), (140), (141)

 

In consequence, in-operando materials science techniques which are non-

destructive and provide high energy as well as spatial resolution plus highest 

sensitivity are highly needed in order to unveil the defect-related physics of 

ReRAM systems.  
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5.3 Outlook 

Certain ambiguities between presented here results and the proposed resistive 

switching models, as well as a need for further improvement of the ReRAM cells 

performance, motivate further work in order to arrive at application-relevant, 

reliable ReRAMs for WSNs.  

Even though the performance of the integrated TiN/Ti/AVD a-HfO2/TiN ReRAM 

cells could be improved thanks to the reduction of carbon content in the HfO2 

film, further theoretical and experimental studies have still to be done in order to 

understand the full complexity of the switching phenomena in these memory 

cells:  

 Materials science: In order to achieve ReRAMs with excellent 

performance and low energy dissipation for WSN applications, materials 

science by (1) in-operando HAXPES on endurance as well as bottom 

HfO2/TiN interface science are in preparation; (2) in-operando micro 

extended X-ray absorption fine structure (-EXAFS) study with high 

lateral resolution, which allow to directly investigate the resistive 

switching in the complete TiN/Ti/HfO2/TiN stack, are planned in future at 

the European Synchrotron Radiation Facility (ESRF, Grenoble, France).   

 Theory support: Concerning the HAXPES results, theoretical 

calculations are especially required in order to correlate e.g. the observed 

increase of the carbon signal in the HAXPES spectra with (1) an increase 

of sample conduction (while increasing the current compliance) and (2) 

the OFF-state failure (while cycling the device).  

 Process technology: An impact of the HfO2 crystallinity as well as the use 

of different deposition techniques
 (119), (142) - (145)

 (e.g. chlorine-based HfO2 

atomic layer deposition (ALD)) on the ReRAM performance parameters 

need to be evaluated. 
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Finally, it is interesting to give two long-term perspectives for ReRAM research: 

 Radiation hard RRAM modules: given the BEOL integration and the 

non-charge based storage mechanism, embedded RRAM modules offer a 

high potential for radiation hard electronics for space applications.
 (146), (147)

 

 Neuromorphic RRAM networks: the RRAM resistance adjustment to an 

external voltage stimulus is currently discussed in literature as a central 

building block for neuromorphic, self-learning networks.
 (148) - (151)
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APPENDIX A  

Photoemission in quantum mechanical formalism  

A.1 Hamilton operator 

In quantum mechanics, the operator corresponding to the total energy of the 

electronic system is called Hamiltonian. It is usually denoted as H, Ĥ, or Ȟ. 

Hamiltonian is commonly expressed as the sum of operators corresponding to the 

potential  ̂ and kinetic  ̂ energies of a system in the form:  

 ̂   ̂   ̂  (A.1) 

where 

 ̂     (   )  (A.2) 

and 

 ̂  
 ̂ 

  
  

  

  
    

(A.3) 

where m is the mass of the particle, and 

 ̂        (A.4) 

is the momentum operator wherein∇  is the gradient operator and the dot product 

of ∇ with itself is the Laplacian   . In three dimensions using Cartesian 

coordinates the Laplace operator reads 

   
  

   
 
  

   
 
  

   
   

(A.5) 

and ħ is the so called reduced Planck constant and given by: 

  
 

   
   

(A.6) 

http://en.wikipedia.org/wiki/Hermitian_operators
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Momentum_operator
http://en.wikipedia.org/wiki/Del
http://en.wikipedia.org/wiki/Operator_(mathematics)
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Laplacian
http://en.wikipedia.org/wiki/Cartesian_coordinates
http://en.wikipedia.org/wiki/Cartesian_coordinates


 124 APPENDIX A  

Photoemission in quantum mechanical formalism 

where   is the Planck constant.  

Thus, Eq. A.1 can be written in a form: 

 ̂   
  

  
    (   )  

(A.7) 

which allows one to apply the Hamiltonian to systems described by a wave 

function Ψ(r, t).  

A.2 Fermi’s golden rule 

A way to calculate the transition rate (probability of transition per unit time) from 

one energy eigenstate of a quantum system into a continuum of energy 

eigenstates, due to a perturbation is given in quantum mechanics by Fermi's 

golden rule. This rule is valid when the initial state has not been significantly 

depleted by scattering into the final states. If one considers the system to begin in 

an eigenstate, | ⟩, of a given Hamiltonian,  ̂ , and the effect of a (possibly time-

dependent) perturbing Hamiltonian,  ̂ , Fermi’s golden rule describes scattering 

from initial states to the final states. In case  ̂  is oscillating as a function of time 

with an angular frequency ω, the transition is into final states with energies that 

differ by ħω from the energy of the initial state. The one-to-many transition 

probability per unit of time from the state | ⟩ to a set of final states | ⟩ is given, to 

first order in the perturbation, by: 

     
  

 
|⟨ | ̂ | ⟩|

 
   

(A.8) 

where   is the density of final states (number of states per unit of energy) and 

⟨ | ̂ | ⟩ is the matrix element (in bra-ket notation) of the perturbation  ̂  between 

the final and initial states. This transition probability is also called decay 

probability and is related to mean lifetime. 

http://en.wikipedia.org/wiki/Wave_function
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http://en.wikipedia.org/wiki/Eigenstate
http://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Density_of_states
http://en.wikipedia.org/wiki/Bra-ket_notation
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A.3 Photoemission process 

The excitation of electrons from the initial states   with the wave function    to 

the final state   with wave function    by the photon field with the vector 

potential  , results in a production of photocurrent in an XPS experiment. Thus, 

the transition probability   per unit time between  -electron states    (initial) and 

   (final), assuming a small perturbation  , can be calculated by Fermi’s golden 

rule given as: 

  
  

 
|⟨  | |  ⟩|

 
 (        )  

(A.9) 

In the most general form 

  
 

   
(   ̂   ̂   )     

  

    
     

(A.10) 

where   and   are the vector and scalar potentials of the incident light field, and 

 ̂ is given by Eq. A.4. Based on the commutation relationship, the expression  

   ̂   ̂        ̂    (   )  (A.11) 

Next, for the gauge where    , the assumption that            (this is 

true for free space where the vector potential A is written as a plane wave: 

 (   )     
         ), and neglecting the     term (which represents two 

photon processes) one retains: 

  
 

  
   ̂  (A.12) 

Now, assuming that the wavelength is large compared to the atomic distances,   

can be taken as a constant      and if the Hamiltonian of the electron (e.g. in 

the solid in the absence of the electromagnetic field) is given by Eq. A.13: 

 ̂  
 ̂ 

  
   ( )  

(A.13) 

and the commutation relationships lead to the following equivalence:  

⟨  |   ̂|  ⟩  ⟨  |    |  ⟩  ⟨  |   |  ⟩  (A.14) 

For a discussion of the transition matrix element certain assumptions have to be 

made. In the simplest approximation, a one electron view for the initial and final 
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state wave function is taken. In the final state one has, in addition, one free 

electron with kinetic energy     . Assuming that the system under consideration 

has   electrons,   is the quantum number of the excited electron, the initial state 

wave function   ( ) can be written as a product of the the orbital    from which 

the electron is excited and wave function of the remaining electrons     
 (   ): 

  ( )           
 (   ), (A.15) 

where   is the operator that antisymmetrizes the wave function properly and 

  stands for remaining. The final state is written then as a product of the wave 

function of the photoemitted electron        and that of the remaining (   ) 

electrons     
 (   ): 

  ( )              
 (   )  (A.16) 

so that the transition matrix element in Eq. A.1 is obtained as: 

⟨  | |  ⟩  ⟨       | |    ⟩⟨    
 (   )|    

 (   )⟩. (A.17) 

As can be seen, the matrix element is simply a product consisting of a one-

electron matrix element and an (   )-electron overlap integral. Evaluating the 

overlap integral, one can assume that in the first assumption, the remaining 

orbitals are the same in the final and initial state. This means that     
 (   )  

    
 (   ), which renders the overlap integral unity, and the transition matrix 

element is just the one-electron matrix element. This assumption states that the 

photoelectron spectroscopy experiment measures the negative Hartree-Fock 

orbital energy of the orbital  , i.e. 

          (A.18) 

called also Koopmans’ binding energy. 

However, as one can intuitively realize, the system after ejection of the electron 

from orbital   will try to minimize its energy (relaxation) by readjusting its 

remaining     charges, showing that this approximation cannot always be 

exact. Therefore, a better approximation is in such cases to assume that the final 

state with     electrons has   excited states with the wave function     
 (   ) 
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and energy   (   ). For a convenience   is used as the number of states and 

the running index. By summing over all possible excited final states the transition 

matrix element is calculated yielding: 

⟨  | |  ⟩  ⟨       | |    ⟩∑  
 

  (A.19) 

where  

   ⟨    
 (   )|    

 (   )⟩  (A.20) 

The probability that the removal of an electron from orbital    on the  -electron 

ground state leaves the system in the excited states s of the    -electron system 

is equal to |  |
 . For strongly correlated systems many of these    values are non-

zero. This means that in terms of the photoelectron spectrum for    k one has the 

main line and for the other non-zero    additional satellite lines. This is the case 

when final states are observed and Koopmans’ Theorem is not valid. On the other 

hand, for weak correlated system one has 

    
 (   )      

 (   ), for    . (A.21) 

Therefore, it means that |  |
    for      and |  |

    for    , i.e. one has 

only one peak in the photoelectron spectrum. 

Finally, the detected photocurrent in the XPS experiment can be calculated from 

Fermi’s golden rule given by Eq. A.9 together with Eq. A.19 as follows: 

  ∑|⟨       | |    ⟩|
 

     

∑|  |
 

 

   (         (   )    ( )    )  

(A.22) 

where   ( ) is the ground state energy of the  -electron system. XPS spectra 

thus consist of lines created by photoionizing the various orbitals k, and each line 

can be accompanied by satellites according to the number of excited states s 

created in the photoexcitation of that particular orbital k.  

More details about photoemission spectroscopy in quantum mechanical formalism 

can be found in Refs. (88), (152) and (153). 

  



 



 

APPENDIX B  

Other characterization techniques 

B.1 Time of flight secondary ion mass spectrometry 

Time of flight secondary ion mass spectrometry (ToF-SIMS) depth profiling was 

used in this Thesis to open contacts to the TiN bottom electrode in the 

Ti/HfO2/TiN RRAM cells as well as to verify the oxygen diffusion from the HfO2 

into the Ti film in the same RRAM stack composition. The principle of a ToF-

SIMS experiment is shown in Figure B.1.  

The depth profiles were made by sputtering over a certain raster area under an 

incident angle of 45  the sample either with an oxygen (O) or cesium (Cs) sputter 

gun. Negatively polarized cesium ions (Cs
-
) with a sputter energy of 0.5 keV were 

used to investigate the oxygen diffusion from HfO2 into Ti film from the area of 

300   300 μm
2
. Positively polarized oxygen ions (O

+
) with a sputter energy of 1 

 

Figure B.1: The principle of ToF-SIMS experiment. 
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keV opened 200   200 μm
2 

in size
 
bottom contacts in the Ti/HfO2/TiN RRAM 

cells. Data was acquired from 100   100 μm
2
 and 50   50 μm

2
 sample area 

coaxially centered with the sputter crater by pulsing the sample surface (in both 

experiments) with positively polarized bismuth ions (Bi
+
) with an energy of 25 

keV. Finally, secondary ions having different masses were ejected from the 

sample surface and travelled to the detector. The time of flight (tf) of ions having 

the same kinetic energy due to a given potential for acceleration was measured 

and subsequently converted to their mass (m), based on the Eq. B.1: 

  
     

 

  
    

(B.1) 

where U is the potential drop, L is the flight distance from the sample to the 

detector and   is an ion charge. The different masses can be thus identified. The 

typical ToF-SIMS spectrum plots the intensity in terms of counts per second as a 

function of mass.   

More details about ToF-SIMS technique can be found in Ref. (154). 

B.2 Scanning transmission electron microscopy  

A high angle annular dark field (HAADF) scanning transmission electron 

microcopy (STEM) with energy dispersive X-ray spectroscopy (EDX) was used 

to characterize the as-deposited Ti/HfO2/TiN stack. Although the combined 

HAADF STEM-EDX study is a destructive technique, it allows deducing 

information about the sample morphology, surface and interfaces, and to 

determine the film thicknesses down to nanometer resolution.  

As the sample is irradiated by electrons, several phenomena may occur: emission 

of back-scattered electrons, secondary electrons, Auger electrons, X-rays and 

transmission of elastically and inelastically scattered electrons. In STEM the 

transmitted electrons are measured. The transmission decreases when the sample 

thickness increases therefore, the sample thickness has to be limited to several 

tens of nm. In HAADF-STEM, a high energy electron beam (20-300 keV) is 
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focused into a narrow spot on an ultrathin specimen of 200 nm or less, so that the 

accelerated beam of electrons passes through the sample. This electron beam 

interacts with the TEM lamella and high-angle scattered electrons are detected by 

an angular dark-field detector. The HAADF image contrast is proportional to the 

atomic number (Z-contrast image), as well as to the sample thickness. For 

homogeneous sample preparation, in particular the Z-contrast allows that the 

significant signals can be distinguished.  

During the same experiment, an electron beam removes inner shell electrons, so a 

higher energy electrons fill the holes emitting at the same time X-rays of specific 

energies related to each element. This so-called characteristic X-ray fluorescence 

radiation can be detected by the EDX detector and give information about the 

element distribution within the sample, benefiting from the high resolution of the 

TEM technique.  

More details about STEM in contribution with EDX can be found in Ref. (155) 

B.3 Grazing incidence X-ray diffraction 

The crystallographic structure of the sample can be revealed by the nondestructive 

X-ray diffraction (XRD) technique. In the XRD experiment a monochromatic X-

ray beam is focused on the sample at an incident angle θ with respect to the lattice 

 

Figure B.2: Diagram of Bragg’s law. 
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plain. Diffraction from a given lattice plane of the sample is observed only when:  

where λ - X‐ray wavelength, d - distance between lattice planes, θ - angle of 

incidence with lattice plane - Bragg angle, n – integer, is satisfied by varying 

either λ or θ. Eq. B.2 shows the essence of Bragg’s law schematically shown in 

Figure B.2. The diffracted X-rays are then detected, processed and counted. In the 

typical XRD spectrum the intensity of the diffraction signal is usually plotted 

against the diffraction angle 2θ (in °). The observed features in a diffractogram are 

called Bragg or diffraction peaks, lines or reflections. To determine what phases 

are present in the sample, experimental XRD data is compared to reference 

patterns. Each phase has a unique diffraction pattern. Crystalline materials 

produce a sharp diffraction peaks whereas for amorphous materials these peaks 

become more and more broadened.  

Using conventional θ/2θ scanning methods, an XRD measurement of thin films 

generally produces an intense signal from the substrate and a week signal from the 

film. One way to increase the signal from the film itself and suppress the intense 

signal from the substrate is to perform a 2θ scan with a fixed grazing angle of 

incidence, known as GIXRD technique. The fixed incident angle is generally 

chosen to be slightly above the critical angle for total reflection from the film 

material. 

More details about X-ray diffraction technique can be found in Ref. (156) 

B.4 X-ray reflectivity 

X-ray reflectivity (XRR) techniques rely on standard symmetric θ-2θ geometry, 

but much smaller 2θ angles in comparison to XRD are used.  The typical range of 

θ for this measurement is between 0  and 5 . For incident angles θ below a critical 

angle θc (for most materials θc < 0.3 ), total external reflection occurs. Above θc 

the X-ray beam penetrates inside the film and reflects at the top and the bottom 

           (B.2) 
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surfaces of the film giving rise to interference oscillations, so called Kiessing 

fringes. The thicker the film, the shorter the period of this oscillation is. The 

thicknesses of the layers and multilayers are determined with high precision, but 

surface roughness could limit accuracy. The amplitude of the Kiessing oscillation 

and the θc for total reflection provide information about the film density. The 

amplitude of the oscillations depends on the difference between densities of the 

film and its substrate. The larger this difference, the higher the amplitude of the 

oscillation is. In order to obtain all information about the film structure (e.g. film 

thickness, roughness, electron density), the XRR curve is fitted with a theoretical 

curve calculated based on a layer structure model.
 (94)

  

More details about X-ray reflectivity technique can be found in Ref. (157).  



 

 

  



 

APPENDIX C  

Thin film growth mode 

Thin film nucleation and growth can be described in principle by the three general 

mechanisms: Frank van der Merwe, Volmer-Weber, and Stranski-Kastranov 

(Figure C.1). The growth mode is globally dictated by the energy balances 

(depicted under each schematic) between the film-substrate interfacial energy 

(Eint), the energy of the substrate free surface (Esub), and the energy of the film 

free surface (Efilm). In a broad sense, the presence of a Frank van der Merwe 

suggests a strong film-substrate interaction. In this mode before the next layer 

starts to grow the previous layer is fully closed. The Frank van der Merwe growth 

is called also the 2D layer by layer growth. In the Volmer-Weber growth, there is 

a weak interaction between film and substrate. In consequence, the adatoms 

condense on the substrate surface and form individual nuclei that grow in form of 

3D islands and eventually coalesce. The Stranski-Krastanov growth mode is a 3D 

growth on an initial 2D overlayer of the film. Thus, the initial stages of growth 

follow the Frank van der Merwe mode for the first few monolayers, after which 

islands nucleate. The film-substrate interaction in Stranski-Kastranov mode 

decreases rapidly as the film thickness increases.  

 

Figure C.1: Thin film growth modes. 
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Thin film growth mode 

A well suited technique to study in-situ the growth mode of thin films is XPS. The 

attenuation of the photoelectron peak intensity originating from the substrate is 

dependent on the morphology of the overlayer and can be derived from the 

approach proposed by Silar.
 (96)

 As film growth proceeds, the data can be fitted to 

one of several decay functions, which uniquely describe each growth mode. 

Because in Frank van der Merwe growth, the film grows as a dense overlayer, the 

photoelectrons originating from the substrate attenuate accordingly to: 

  
  
            

(C.1) 

In practice, I0 is the initial intensity of the photoelectron originating from the 

substrate (prior to the growth), Id is the intensity of the attenuated photoelectron 

across the overlayer with thickness d, and λ is the IMFP as determined from Eq. 

3.10. 

The Volmer-Weber growth attenuates the substrate photoelectron intensity as: 

  
  
 (   )              

(C.2) 

where   is the area fraction of the islands’ coverage over the substrate. As   

increases from zero to   = 1, the film coalesces.  

In the Stranski-Krastanov growth mode the substrate photoelectron intensity 

attenuation combines attenuation due to the initial 2D monolayer(s) (exponential 

attenuation – here    – but weighted by the (1 -  ) term) growth and the 

attenuation due to the 3D islands growth with a total thickness d and coverage  . 

The corresponding substrate signal intensity attenuation in XPS is thus given by: 

  
  
 (   )                       

(C.3) 

where a is the thickness of one monolayer and b is the number of complete 

monolayers. 
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List of symbols 

| ⟩ - initial eigenstate 

| ⟩ - final eigenstate 

[VO
··
] - concentration of oxygen vacancies 

 - photoelectron take-off angle 

a - thickness of one monolayer  

 - vector potential of incident light field 

Ag - silver 

Ag
+
 - ionized silver 

Ag2S - silver sulfide 

Al - aluminum 

Al2O3 - aluminum trioxide 

Au - gold 

Ar - argon 

b - number of complete monolayers 

 - angle between X-rays source and photoelectron analyzer 

BE - binding energy 

    - Koopmans’ binding energy 

 - electron affinity 

C - carbon or operator that antisymmetrizes wave function 

CoO - cobalt oxide 

Cu - copper 

Cu2O - copper oxide 
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List of symbols 

Cu2S - copper(I) sulfide 

Cs
+
 - ionized cesium 

  - perturbation or change 

D - dimension 

d - depth, distance between lattice plains or average island height 

      
   

 - formation energies of (charged) vacancies 

       - correlation energy 

      - relativistic energy 

        - relaxation energy 

    - electron-hole energy 

Efilm - energy of film free surface 

Eint - film-substrate interfacial energy 

   - orbital energy 

     - kinetic energy 

EF - Fermi level or Fermi energy  

   - band gap 

   - bulk plasmon energy 

          - energy of the system without the vacancy 

Esub - energy of substrate free surface 

     - top valence band energy 

eV - electron volt 

     - energy of system with vacancy with charge 

   - scalar potential of incident light field 

 - work function 

b - barrier height 

   - energy of flooding electrons 

m   - metal work function 

   - work function of spectrometer 
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List of symbols 

f - final state 

GeS - germanium sulfide 

Ge2Sb2Te5 - germanium-antimony-tellurium (GST) 

ħ - reduced Planck constant 

 ̂ - Hamiltonian operator 

 ̂  - perturbing Hamiltonian 

  - Planck constant

H - Hamiltonian or hydrogen 

He - helium 

Hf - hafnium 

HF - hydrofluoric 

HfO2 - hafnium dioxide 

   - excitation energy 

i - initial state 

I - current 

I0 - initial intensity or substrate intensity 

Id - intensity at depth d 

ID - information depth 

Ir - iridium 

 Ti - intensity of different oxidation states in Ti 2p core level 

    - Coulomb potential 

 ̂ - operator of kinetic energy  

k - orbital 

K - exchange integrals 

KE - kinetic energy 

∇ - gradient operator 

l - orbital quantum number 

L - lateral dimension or distance from sample to detector 

LHe - liquid helium 

http://en.wikipedia.org/wiki/Del
http://en.wikipedia.org/wiki/Operator_(mathematics)
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List of symbols 

λ - inelastic mean free path or X‐ray wavelength 

m - mass of particle 

M - atomic or molecular weight 

Mg - magnesium 

   - position of Fermi level with respect to top of valence band 

    - energy of molecular oxygen 

n - principal quantum number or integer  

N - nitrogen or number of electrons in atom 

NV - number of valence electrons per atom 

NiO - nickel oxide 

ω - angular frequency  

O - oxygen 

 ̂ - momentum operator 

Pt - platinum 

q - charge 

 - density of material or density of final states 

r - distance between charges 

R - resistance or constant 

 - surface coverage 

s - spin angular momentum number 

SiO2 - silicon dioxide 

θ - incident angle  

T - transition probability 

Ta2O5 - tantalum pentoxide 

θc - critical angle 

tf - time of flight 

Ti - titanium 

TiN - titanium nitride 

TiO2 - titanium dioxide 

http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Momentum_operator
http://en.wikipedia.org/wiki/Density_of_states


 141  

TiOx - titanium suboxide 

U - potential drop 

 ̂ - operator of potential energy 

V - voltage or potential 

VGS - gate-source voltage 

VO
··
 - oxygen vacancy 

Vreset - reset voltage 

Vset - set voltage 

W - tungsten 

WO3 - tungsten oxide 

x - thin film thickness 

 - wave function 

z - constant 

Z - atomic number 

Zr - zirconium 

ZrOx - zirconium suboxide 
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List of abbreviations 

a-HfO2 - amorphous hafnium dioxide 

AE - active electrode 

AVD - atomic vapor deposition 

BE - binding energy 

BEOL - back-end of line 

BG - background 

CB - conduction band 

CBRAM - conductive bridge random access memories  

CC - current compliance 

CCD - charge-coupled device 

CMOS - complementary metal–oxide–semiconductor 

cps - count per second 

CT - characterization techniques 

DC - direct current 

DESY - Deutsches Elektronen-Synchrotron 

DFT - density functional theory 

DLD - delay line detector 

DRAM - dynamic random-access memory 

e-gun - electron beam 

ECM - electrochemical metallization 

EDX - energy-dispersive X-ray spectroscopy 

EEM - electrostatic/electronic effect memories 

EEPROM - electrically erasable programmable read-only memory 

EH - experimental hutch 
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List of abbreviations 

ESCA - electron spectroscopy for chemical analysis 

FEOL - front-end-of-line 

FRAM - ferroelectric random access  

GGA - generalized gradient approximation 

GIXRD - grazing incidence x-ray diffraction 

GPS - global positioning system 

HAADF - high angle annular dark field 

HAXPES - hard X-ray photoelectron spectroscopy 

HV - high vacuum 

I - insulator layer 

ID - information depth 

IHP - Leibniz Institute for High-Performance Microelectronics  

IMFP - inelastic mean free path 

ITRS - international technology roadmap for semiconductors 

K-cell - Knudsen cell 

KE - kinetic energy 

LED - light-emitting diode 

LHe - liquid helium 

M - metal 

m-HfO2 - monoclinic hafnium dioxide 

MBE - molecular beam epitaxy 

MCU - microcontroller unit 

MEMS - micro-electro-mechanical systems 

MIEC - mixed ionic-electronic conducting layer 

MIM - metal-oxide-metal 

MRAM - magnetoresistive random access memory  

OE - ohmic electrode 

OFF - high resistance 

ON - low resistance 
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List of abbreviations 

PA-MBE - plasma assisted molecular beam epitaxy 

PCB - printed circuit board 

PCM - phase change memories 

PETRA - Positron-Electron Tandem Ring Accelerator 

PMC - programmable metallization cells  

ReRAM - redox-based resistive switching memory 

RF - radio frequency 

RRAM - resistance change random access memory 

RT - room temperature 

SCLC - space charge-limited-conduction 

SiP - system in package 

SoC - system on chip 

SRAM - static random-access memory  

STEM - scanning transmission electron microscopy 

SZP - single-ζ plus polarization 

TCM - thermal chemical memories 

TEMAHf - tetrakis(ethylmethylamino)hafnium 

ToF-SIMS - time of flight secondary ion mass spectroscopy 

UHV - ultrahigh vacuum 

VB - valence band 

VCM - valence change memories  

WSN - wireless sensor network 

XPS - X-ray photoelectron spectroscopy 

XRR - X-ray reflectivity 
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