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ABSTRACT      
     In this work Adaptive Polynomial Tabulation (APT) is presented. It is a 
new approach to solve the initial value chemical rate equation system. In 
this approach zeroeth, first and second order polynomials are used in real-
time to approximate the solution of the initial value chemical rate equation 
system. The sizes of the local regions encountered for the different orders of 
polynomial approximation are calculated in real-time. To improve accuracy 
the chemical state space is partitioned into hypercubes. During calculations 
the hypercubes accessed by the reactive mixture are divided into adaptive 
hypercubes depending on the accuracy of the local solution. Mixture initial 
conditions are stored in the adaptive hypercubes. Around each stored initial 
condition two concentric ellipsoids of accuracy (EOA) are defined. These 
include the ISAT and identical EOAs. The time evolution of mixture initial 
conditions which encounter an identical and ISAT EOA are approximated 
by zeroth and first order polynomials respectively. With a certain number of 
stored initial conditions within an adaptive hypercube, its second order 
polynomial coefficients are constructed from the stored initial conditions. 
The time evolution of additional mixture initial conditions that encounter 
this adaptive hypercube are approximated with second order polynomials. 
The APT model is simplified by the replacement of the entire set of species 
mass fractions with a progress variable based on the enthalpy of formation 
evaluated at 298 K.  APT has 3 degrees of freedom which include the 
progress variable, total enthalpy and pressure. The APT model was tested 
with a zero dimensional Stochastic Reactor Model (SRM) for HCCI engine 
combustion. A skeletal n-heptane/toluene mechanism with 148 chemical 
species and 1281 reactions was used.  In the tests, the HCCI engine 
simulations using APT were in very good agreement with the model 
calculations using the ODE solver. The cool flame and main ignition events 
were accurately captured. The major and minor species were also accurately 
captured by APT. In SRM-HCCI calculations without cyclic variations, a 
computational speed up factor greater than 1000 was obtained when APT 
was used for all the operating points considered without significant loss in 
accuracy. For the SRM-HCCI engine calculations with cyclic variations, 
APT demonstrated a computational speed up exceeding 12 without 
significant loss in accuracy.  
 
 
Keywords: ISAT, PRISM, APT and SRM 
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Chapter 1   Introduction 

                1.1   Brief Background 
 
          Energy from fossil fuels contributes at least 87 % of the global energy 

demands. This percentage is likely to increase in the near future because of 

increasing industrialization of  China and India. Although significant efforts 

have been put to develop alternative forms of energy such as hydrogen fuel 

cells, wind energy, bio-fuels, and solar energy, there are several challenges 

limiting their successful and sustainable implementation. For example 

hydrogen fuel cells offer zero emission hazards but they pose serious 

transportation risks. Bio-fuels will take a reasonable chunk of global food 

supply and wind energy sources are powered by energy and they require 

large areas of land. Our transportation system is powered by engines fueled 

by light and heavy hydrocarbons. The performances of these engines  (SI, 

CI and HCCI) are far from optimum due to the complexity of combustion. 

Experimental testing and numerical simulations have been used extensively 

to study and understand engine combustion. Experimental testing methods 

include Laser Induced Fluorescence, Laser Induced Incandescence, Particle 

Image  Velocity and Laser Doppler Anemometry. These methods have been 

used in studying hotspots and engine knock in SI  engines, auto-ignition 

processes in HCCI engines, soot and NOx formation in Diesel (CI) engines. 

They require sophisticated and expensive equipment set up. Numerical 

combustion involves the coupling of computational fluid dynamics and 

computational chemical kinetics. This offers a method for validating 
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experimental measurements and can provide results in situations where 

experimental measurements are prohibitive. 

          It is computationally expensive to incorporate the detailed chemistry 

of complex fuels (such as n-decane) into three dimensional computational 

fluid dynamics codes. This is because such mechanisms are large in size, 

and may contain hundred chemical species and several thousands of 

elementary reactions. The chemical species in the mechanism usually span a 

broad range of timescales. In engine environments, the temperature/species 

mass fractions local inhomogeneities have to be considered. 

          Several approaches have been used to simplify complex mechanisms 

and/or reduce the computational cost in solving the chemical rate equation 

system. These include convention reduction methods (QSSA [1], RCCE [2], 

chemical lumping [3]); dimension reduction methods (ILDM [4], CSP [5], 

ICE-PIC [6]) and storage/retrieval methods (ISAT [7], PRISM [8], neural 

networks [9], transient  flamelet libraries [10]). Some of these methods can 

be used together. 

          The contribution of this work is based on a special class of 

storage/retrieval methods named solution mapping. Solution mapping 

involves approximation of the solution of the chemical ODE system in real 

time with simple algebraic polynomial expressions which are 

computationally cheaper to evaluate. PRISM and ISAT belong to this class. 

In simulating turbulent flames, PRISM and ISAT demonstrated significant 

computational speed up without significant loss in accuracy. These methods 
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have scarcely been use for mechanisms with more than 50 chemical species.  

Particularly, PRISM has only been tested with hydrogen mechanism (9 

species and 38 elementary reactions). As mentioned in [8] the memory 

requirements for PRISM is overwhelming, some local region coefficients 

were stored in an external disc file. However, ISAT Ellipsoids of Accuracy 

are smaller than the hypercubes in PRISM, therefore ISAT require more 

memory and searching time than PRISM. Memory requirements for ISAT 

and PRISM will be prohibitively large for larger chemical mechanisms.  

          In this work, first order (ISAT) and second order (PRISM) 

polynomial approximations to the solution of the chemical ODE system are 

combined into a single computer code named Adaptive Polynomial 

Tabulation [11]. It is anticipated that with 200 ISAT Ellipsoids of Accuracy 

in a PRISM (adaptive) hypercube, there will be a factor of 50 reductions in 

memory requirements for APT as compared to ISAT. In APT the entire set 

of species mass fractions is replaced by a monotonic reaction progress 

variable. This reduces sharply its memory requirements, enhancing its 

application to chemical mechanisms with hundreds of chemical species and 

thousands of elementary reactions. This merit of APT will be demonstrated 

in this thesis. Current real-time tabulated chemistry methods yielded 

success for flame calculations, but for engine applications during the 

expansion stroke the total enthalpy decreases because of volume work and 

heat loses. Therefore, there will be no initial conditions for the table entries 

during the engine expansion phase. In this work, with the improvement 
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associated with APT an attempt is made to resolve this problem.  APT is 

tested in an engine environment providing the first opportunity to use real 

time second degree polynomials as a surrogate chemical ODE solver for 

engine calculations. 

 

                1.2   Problem to be solved 
 

          In this work, the successes and limitations of two solution mapping 

methods (In Situ Adaptive Tabulation-ISAT [7] and Piecewise Reusable 

Implementation of Solution Mapping-PRISM [8]) were considered and new 

method was built around them. This new approach possesses the best 

features of these two methods and an algorithm to cater for their limitations. 

ISAT uses first order polynomial expressions in real-time as approximations 

to the ODE solution. It possesses adaptive control of tabulation errors. 

Memory requirements increase quadratically with the number of species in 

the mechanism and the binary tree search for a nearest neighbour does not 

always give the nearest neighbour. In using this method with a perfectly 

stirred reactor (PSR) model [7], a computational gain factor 1000 was 

obtained. 

          PRISM approximates the ODE solution with second order 

polynomial expressions for each (hypercube) local region of the chemical 

composition space. Second order polynomial coefficients are constructed by 

calling the ODE integration solver at carefully selected initial conditions 

within the hypercube based on central composite design [12]. Polynomial 
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coefficients for each hypercube are calculated when the mixture initial 

conditions enters it for the first time. PRISM lacks adaptive control of 

tabulation errors and some coefficients are constructed but rarely used. The 

memory requirement for this method is high. The frequently used 

hypercube coefficients are stored in main memory while less frequently 

used ones are stored in an external disc file. The cost constructing second 

order polynomial is about 250 times that of one ODE integration call. 

          Adaptive Polynomial Tabulation (APT) combines ideas in PRISM 

and ISAT. It uses zeroeth, first and second order polynomials in real-time as 

approximation to the ODE solution. In APT the entire set of chemical 

species mass fractions is replaced by a progress variable, thereby drastically 

reducing the size of its storage/retrieval table. Adaptive local regions for 

different polynomial approximations are calculated on the fly from the 

mapping gradients. Contrary to PRISM, only stored initial conditions are 

used for the construction of second degree polynomial coefficients (the 

computational cost of constructing one second order polynomial in APT is 

far cheaper than one ODE integration call). If an initial condition encounters 

an ISAT Ellipsoid of Accuracy (EOA) of a stored initial condition, its ODE 

solution is approximated by either a zeroeth order or a first order 

polynomial. Initial conditions are stored outside the ISAT EOA of stored 

initial conditions. This tendency and the growth of the ISAT EOA enhance 

the spread of initial conditions within a PRISM hypercube and the accuracy 

of second order polynomial coefficients. Therefore, as initial conditions are 
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stored in a PRISM hypercube, APT gets zeroeth order/first order 

polynomials reuse improving its overall computational efficiency. The 

problem encountered in PRISM with second degree polynomial coefficients 

with limited or no reuse is completed avoided by APT. Before second order 

polynomials are constructed for a given PRISM hypercube enough zeroeth 

and first order polynomial reuses should have been recorded,  second order 

polynomial coefficients  are constructed only for PRISM hypercubes with 

Np stored initial conditions. In APT, second order polynomial coefficients 

are constructed only as needed, and not because the reaction trajectory 

passes through the PRISM hypercube as implemented in the original 

PRISM formulation [8].   

 

                1.3   Solution approach 
 
           In APT, the chemical composition space is divided at the pre-

processing into equally-sized hypercubes.  APT computes with direct 

integration the ODE solution for the first initial condition that enters a given 

hypercube. The mapping gradient for this initial condition is also calculated. 

It is calculated by using 3 extra ODE integration calculations at small 

perturbations of the progress variable, total enthalpy and total pressure.  The 

mapping gradient is used to compute the ISAT EOA and the PRISM 

hypercube size. As the calculation proceeds, initial conditions are stored in 

the PRISM hypercube, outside the ISAT EOA of previously stored initial 

conditions ensuring the spread of initial conditions within the PRISM 
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hypercube. Although this spread of initial conditions cannot be compared to 

that of central composite design, but at least it gives a level of spread of 

initial conditions on its own right. As more initial conditions encounter this 

PRISM hypercube, those that fall within the ISAT EOA of a stored initial 

condition are approximated with either zeroeth order or first order 

polynomials. When the number of stored initial conditions for a given 

hypercube equals Np, the stored initial condition information is used to 

construct second order polynomials for the PRISM hypercube. This 

approach is computationally cheaper approach than that used in the original 

PRISM formulation [8]. Initial conditions that encounter this PRISM 

hypercube will have their ODE solution approximated by second order 

polynomial coefficients. Therefore, APT provides zeroeth, first and second 

order polynomials in real-time as solution to chemical ODE system. 

           In order to test APT, a PDF-based testing tool was used because it is 

one of the accurate models that can capture turbulent-chemistry interaction 

in an engine environment. However, it is computationally expensive 

incorporate PDFs with 3 dimensional CFD code. As a first step in APT 

model development, the Stochastic Reactor Model that has been developed 

recently [13-16] was used instead of a full three dimensional CFD. The 

SRM involves similar processes such as turbulent mixing, pressure 

variation, chemical reaction, time marching and convective heat transfer as 

the complete CFD problem, but with a reduced computational cost. In this 
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thesis the SRM tests were limited to 100 computational particles, because 

reduced computational demands favors model development. 

          HCCI engines are known to be kinetically controlled; therefore their 

ignition timing will be sensitive to errors introduced by Adaptive 

Polynomial Tabulation. Recently, n-heptane/toluene blends were introduced 

as realistic reference fuels for HCCI engines with special low temperature 

combustion characteristics [17-18]. Mauss and co-workers recently 

developed skeleton kinetic models for this blend which was reduced with 

the help of linear lumping and species removal [3, 19-20]. The resulting 

skeletal mechanism contains 148 species and 1281 elementary reactions and 

it was used to simulate the sensitive HCCI experiments in reference [17]. 

For multi-cycle engine simulations with and without cyclic variations 

computational speed up exceeding 12 and 1000 were obtained respectively 

[11]. Finally, a reduced library APT model was proposed. In this case at 

most 15 initial conditions are stored per time step for the first 5 engine 

cycles for multi-cycle simulations with cyclic variations. After the fifth 

cycle, initial conditions are added if the cumulative number of stored initial 

conditions is less than 15 for each time step. The benefits of these 

simplifications are spread of initial conditions within each local region and 

a reduced size APT library. This version of APT was tested with the n-

heptane/toluene fueled stochastic reactor model for HCCI engines. A 

computational speed up of 16 was obtained without significant loss in 

accuracy. 
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  1.4   Summary of the work 
              

           This work pivots around the development of a new solution mapping 

method (APT) and its application to Stochastic Reactor Models for internal 

combustion engines [11]. In Chapter 2, solution mapping methods are 

described. In particular, PRISM and ISAT are explained. APT and the 

testing tool – SRM for HCCI engines are also described in Chapter 2. In 

Chapter 3, the calculations and results are presented for the test of APT with 

n-heptane/toluene fueled Stochastic Reactor Model for HCCI engines.  

Results for multi-cycle simulations with and without cyclic variations are 

also presented.  The details of the accuracy of APT, tabulation errors 

associated with APT, local polynomial reuse, and computational speed up 

are discussed. The conclusion is presented in Chapter 4. 
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Chapter 2   Solution Mapping Methods and Their 

Applications 

 

          A special class of storage/retrieval methods known as solution 

mapping is introduced in this chapter.  This model simplification targets the 

solution of the chemical rate equation system. Solution mapping removes 

the stiffness of the system and evaluates algebraic polynomials in real-time 

as approximations to the time demanding ODE solutions. These methods 

can be used in combination with other reduction methods. Examples include 

ISAT [7], PRISM [8] and APT [11]. 

 

2.1   In Situ Adaptive Tabulation (ISAT) 
      

          In this method, the solution of the initial value chemical rate equation 

system is approximated by first order polynomial expressions. These 

polynomials are constructed in real-time from the stored initial conditions in 

a look-up table.  The chemical rate equations system is given by Equation 

(2.1). 

S( )
t

∂φ = φ
∂

 
 

0 0(t )φ = φ  (2.1) 

 

 

The chemical ODE system is composed of several elementary reactions 

whose rate constants may vary by many orders of magnitude. The chemical 

source term is nonlinear. An Ordinary Differential Equation (ODE) solver is 
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used to solve Equation (2.1) numerically. It is computationally expensive to 

use the ODE solver for combustion simulations of practical interest. ISAT 

is one of the methods used as an alternative to this problem.  In the ISAT 

procedure, for each initial condition
0

φ , the sensitivity with respect to the 

initial condition or mapping gradient )0Α(φ  is calculated using the following 

formula: 

 

dA
JA

dt
=  

 

0A I=  (2.2) 

 

Where J is the Jacobian matrix and I is the Identity matrix. The Jacobian 

matrix is given by: 

S
J

∂=
∂φ

 
(2.3) 

 

          In some codes, Equations (2.1) and (2.2) are solved simultaneously.  

The ODE solution at 0φ  after time interval ∆t is out
0φ . If there are no stored 

records in the look-up table, then the ODE solver is called to compute out

0φ

and )0Α(φ . The mapping gradient is used to calculate the semi-principal 

axes 1

0δφ  of an ellipsoid centred atout

0φ . This ellipsoid is known as the 

Ellipsoid of Accuracy (EOA). 
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Figure 2.1: A sketch of the ISAT Ellipsoid of Accuracy (EOA) about the 

initial condition 0φ .  

 

          The length of the semi-principal axesδφ1
0   of the ellipsoid of accuracy 

can be calculated from the following formula: 

 

1 out
0 0 0A( )φ δφ = εφ  (2.4) 

 

Suppose the ODE solution at an additional initial condition 1φ  is required 

from the ISAT method. If 1φ  is within the EOA of 0φ , then, the ODE 

solution at 1φ , is approximated by first order polynomials using Equation 

(2.5). This is referred to as retrieval.  

 

out out
1 0 0 1 0A( )( )φ = φ + φ φ − φ  (2.5) 
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           If 1φ is outside the EOA of0φ , the ODE solution at 1φ  and the mapping 

gradient )1Α(φ are computed by direct integration using the ODE solver. 

The error ξ  in the first order polynomial approximation is calculated. If  

≤ξ ε , then the new query initial condition 1φ is not stored and the EOA of 

0φ   is increased in size. The new EOA will contain the old EOA and the 

query initial condition 1φ . This is known as growth. It is shown in Figure 

2.2. 

 

Figure 2.2: A sketch that shows the growth of an Ellipsoid of Accuracy 

(EOA). The new EOA contains the original EOA and the query initial 

condition 1φ . 

  

          If ξ > ε , then the first leaf becomes a node. A cutting plane is 

constructed between the stored initial condition 0φ   and the query initial 

condition 1φ . The cutting plane is defined by a vector v and a scalarγ , which 

are given by Equation (2.6) and Equation (2.7) respectively. 
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1 0v = φ − φ  (2.6) 

  

T 1 0( )
v

2

φ + φγ =  
(2.7) 

  

The query initial condition1φ , its ODE solution out
1φ and its mapping gradient 

are stored as a new record in the look-up table. This is known as addition. 

For any additional query initial conditionφ , if Tv φ γ≤ , then φ  lies closer to 

0φ  and if  Tv φ > γ , then φ lies closer to 1φ . Before growth, addition or 

retrieval can be accomplished, the ISAT procedure determines the closest 

stored initial condition to the query initial condition. This is performed with 

the binary search tree algorithm. The search starts from the top node, using 

its cutting vector v and cutting scalarγ . In this method the searching time 

for the closest stored record to a given initial condition is directly 

proportional to 2Log n, where n is the number of records in the look-up 

table.  

 

2.2   Piece-wise Reusable Implementation of Solution 

Mapping (PRISM) 

 

          In this method, the solution of the initial value chemical rate equation 

system is approximated locally with second order polynomials. The 

chemical rate equation system is given by Equation (2.1). The PRISM 

method presents a computationally cheaper alternative to the direct 
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numerical integration of Equation (2.1). It partitions the space of state 

variables a priori into block-shaped structures or hypercubes as shown in 

Figure 2.4. The state space spans all possible chemical species mass 

fractions, total enthalpy, and pressure. The hypercubes in PRISM are 

equally sized.  Each hypercube possesses a unique integer index. The ODE 

solver receives an initial condition 0φ  evolves it over a time interval ∆t to 

give a new set of species mass fractions .out

0φ  

          Memory for each hypercube is created only when the reactive mixture 

enters it for the first time. During calculations, if a mixture initial condition 

0φ encounters a hypercube for which the second order polynomial 

coefficients have not been constructed, the PRISM algorithm samples this 

hypercube, creates memory for the hypercube and constructs its second 

order polynomial coefficients. It also evaluates the polynomials at the initial 

condition 0φ to give a new set of species mass fractions.out

0φ  The coefficients 

are constructed from a generated set of initial conditions using central 

composite design [12].  In this design, 2 2 1k′ + +k p-  initial conditions are 

used to construct the second order polynomials. There are 2 ′k p- initial 

conditions at the edges of the hypercube from the fractional factorial design, 

2k (star) initial conditions located outside each of the faces of the hypercube 

and 1 (centre) initial condition at the centre of the hypercube. This is shown 

in Figure 2.5. The star initial conditions serve for smoothing of the second 

order polynomials and the centre initial condition is used for checking the 

curvature of the second order polynomials. Central composite design gives 
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a diagonal covariance matrix. The 2 2 1k′ + +k p-  initial condition and their 

ODE solutions are used to construct 
( )1k +

 
 
1+ +

2 s
kk n  polynomial 

coefficients using linear least squares. 

 

 

 

Figure 2.4: Temporal progress of a 2-dimensional reaction trajectory. 
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Figure 2.5: A sketch of the generated initial conditions used to construct 
second order polynomials. The circles denote the edge initial conditions. 
The stars denote the star initial conditions and the black circle at the centre 
of the hypercube indicates the centre initial condition. This is a two 
dimensional sketch of a hypercube. 
 

 

          The polynomial coefficients computed for each hypercube are stored 

either in the memory or in a disc file. Suppose the ODE solution at an 

additional initial condition 1φ  is required, a tree search is performed to 

determine the index of the hypercube that contains1φ . If second order 

polynomial coefficients for this hypercube have been constructed, then they 

are retrieved and evaluated at 1φ using Equation (2.8).   

s s s

s

s s

n 2 n 2 n 2
out
1,i i,0 i, j 1, j i,n 3 i, jk 1, j 1,k

j 1 j k j

i,(n 3)(n 3)

a a a t a

a t t cross terms

+ + +

+
= ≤

+ +

φ = + φ + ∆ + φ φ +

∆ ∆ +

∑ ∑∑
 

        (2.8) 
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If this hypercube does not possess polynomial coefficients, then the 

polynomial coefficients are constructed as mentioned previously. 

 

2.3   Adaptive Polynomial Tabulation 

          APT was developed from ISAT [7] and PRISM [8]. ISAT and 

PRISM approximate the solution of the chemical rate equation system in 

real time with first order and second order polynomials respectively. The 

memory requirement for these methods is high. Due to high memory 

requirements, PRISM has been limited to simulations involving small 

chemical mechanisms such as that of Hydrogen. It was used to simulate 

Hydrogen turbulent flame employing a chemical mechanism with 9 

chemical species and 38 elementary reactions [8]. PRISM’s hypercubes are 

of the same size (non-adaptive), therefore their polynomial coefficients may 

become inaccurate when the reacting mixture is progressing through regions 

in the chemical composition space where the state variables are changing 

fast. Hypercube coefficients in PRISM are constructed using extra ODE 

integration calculations at carefully selected points within the hypercube 

through central composite design [12]. The extra ODE integration cost must 

be recouped first before PRISM can record computational speed-up. In 

ISAT, the Ellipsoids of Accuracy drawn around each stored initial condition 

is adaptive, the size of the EOAs are calculated at runtime from the 

mapping gradients. ISAT uses binary search trees to determine the closest 

record to a given initial condition. Binary tree searches are fast and their 
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search duration is directly proportional to 2Log n . Although for large values 

n searching times might not be small. ISAT Ellipsoids of Accuracy are 

smaller than PRISM hypercubes, therefore the ISAT method requires more 

memory and longer searching time than the PRISM method. Now 

combining ISAT and PRISM in one computer code (APT) and if 200 initial 

conditions are stored in a PRISM hypercube, it is expected that memory 

requirements for  the storage/retrieval table will decrease by a factor 50. 

The entire set of species mass fractions is replaced by a monotonic progress 

variable. A progress variable based on the enthalpy of formation evaluated 

at 298 K was successfully used to generate transient flamelet libraries in a 

Diesel combustion application [10]. In this thesis, this progress variable was 

adopted and it is defined as: 

 

298 298

298 298

H (t) H (0)
c(t)

H (t ) H (0)∞

−=
−

 
(2.9) 

 

This approach drastically reduces the memory size of APT’s 

storage/retrieval table. APT provides zeroeth, first and second order 

polynomials as solutions to the chemical ODE equation system. With these 

changes APT can be used to simulate the combustion of higher hydrocarbon 

fuels. To accommodate situations where pressure is transient, such as in 

engines, the mapping gradient is calculated by employing small 

perturbations in the axes of progress variable, total enthalpy and pressure.  

Therefore, each mapping gradient calculation involves 3 extra ODE 
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integration calculations. During calculations initial conditions are stored in 

the PRISM hypercube. They are stored outside the ISAT EOAs of stored 

initial conditions. The ODE solutions for those initial conditions that 

encounter EOAs of stored initial conditions are approximated by zeroeth or 

first order polynomials. The problem encountered in the original PRISM 

formulation where some hypercube coefficients were constructed with few 

or no reuse is completed avoided in APT. When the reacting mixture passes 

through a hypercube, zeroeth order and first order polynomial reuse are first 

recorded boosting APT’s computational speed up before the algorithm 

decides on constructing second order polynomials. In APT initial conditions 

for each PRISM hypercube are stored outside the ISAT EOAs enhancing 

their spread within the PRISM hypercube. This also improves the accuracy 

of its second order polynomial coefficients. In the pre-processing stage of 

calculations, the space spanned by progress variable, total enthalpy and 

pressure is divided into block-shaped structures or hypercubes of the same 

size as shown in Figure 2.6. Logarithmic scale was chosen for the axes of 

progress variable and pressure and a linear one for total enthalpy. Each 

hypercube is assigned a unique index. Their boundaries were carefully 

assigned. Accessing each hypercube’s stored data is facilitated by its integer 

index. For example, for an initial condition 0φ , the index of the hypercube 

that contains 0φ is easily determined using linear search tree function. 
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Figure 2.6: A two dimensional representation of the chemical composition 
space with the hypercubes and a query initial condition 0φ . 

 

          During calculations each hypercube may be divided into several 

PRISM hypercubes, when an initial condition 0φ enters a given hypercube 

for the first time, its ODE solution is computed by direct integration.  The 

mapping gradient is calculated by calling the ODE solver 3 times. From the 

mapping gradient, the size of the ISAT EOA is calculated using Equation 

(2.4). Two additional EOAs namely identical EOA and PRISM EOA are 

calculated from the ISAT EOA. They are calculated using the following 

formulae: 

0 1
0 0 0,δφ = β δφ  (2.10) 

  

2 1
0 2 0,δφ = β δφ  (2.11) 
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In this thesis, 1/1000 and 120 was used as values for 0β  and 2β  

respectively. Therefore the PRISM EOA is a multiple of the smallest ISAT 

EOA while identical EOA is a fraction of the ISAT EOA. The PRISM EOA 

encompasses a PRISM hypercube as shown in Figure 2.7. Since it is the 

first initial condition that encountered this hypercube, the size for first 

PRISM hypercube is initialized with the hypercube size. The current 

PRISM hypercube size is updated depending on the number of division it 

performs. That is, as long as the product of 2β  and ISAT EOA size is less 

than the current PRISM hypercube size, it is divided into two equal halves 

and new leaves are added to the binary tree that organizes its data. This is 

represented in Figure 2.8. This process continues until product of 2β  and 

ISAT EOA size becomes greater than the current PRISM hypercube size. 

After this process, this initial condition-slope data is stored in the data 

structure for this PRISM hypercube. If a new initial condition 1φ  enters this 

PRISM hypercube and outside the ISAT EOA of 0φ , the ODE solution for  

1φ will be calculated by ODE integration. Before storing 1φ , the error (ξ ) in 

the first order polynomial approximation to its ODE solution is calculated. 

If  ξ   ≤ ε , then the EOA at 0φ is increased in size to contain 1φ  and 1φ is not 

stored. This is known as growth and it is represented in Figure 2.2. On the 

contrary,  
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if ξ  >ε  then, the ISAT EOA size and the mapping gradient are calculated. 

The current PRISM hypercube size will be divided repeatedly until it 

becomes less than the product of 2β and ISAT EOA size. 

 

Figure 2.7: An initial condition within an adaptive hypercube. The adaptive 
hypercube is fully covered by the PRISM EOA. The adaptive hypercubes 
are used because they are easily accessed by the binary tree functions. 

 
 
Figure 2.8: A two dimensional representation of the chemical composition 
space with the hypercubes, adaptive hypercubes and initial condition 0φ . 
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          After each division, new leaves are added to the binary tree that 

organizes the data for the PRISM hypercube. Each PRISM hypercube has 

its own index or leaf, when it is divided it becomes a node. Each node has a 

cutting axis and a cutting value. For any given initial condition φ that enters 

this hypercube, a binary search tree function is used to determine the leaf or 

hypercube index of the PRISM hypercube that containsφ . 

          Hypercubes are easily accessed through linear search tree, and the 

PRISM hypercube within a hypercube are accessed using a binary search 

tree. Initial conditions within a PRISM hypercube are stored in a manner 

that facilitates easy and faster accessibility. Each initial condition-slope data 

has a leaf associated with it.  If 0φ  is the first initial condition that enters a 

PRISM hypercube then it is assigned a leaf. If 1φ  is the second initial 

condition to be stored in this PRISM hypercube, then, the initial leaf is 

replaced by a node with two daughter leaves. The cutting plane of the node 

that divides 0φ and 1φ is given by: 

 

Tv φ = γ  (2.12) 

 

Expressions for the cutting scalar and cutting vector are shown in Equations 

(2.6) and (2.7).  Suppose a new initial condition 2φ enters this PRISM 

hypercube, if T

2 ≤ν φ γ then, 2φ  lies very close to 0φ . If  2
Tν φ > γ then 2φ  lies 
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close to1φ . In either case a new node can be created with a cutting plane 

defined in terms of 2φ and either 0φ or 1φ . This is how initial conditions are 

stored in the binary tree that organizes the data for the PRISM hypercube. 

          Where the number of stored initial conditions for a given PRISM 

hypercube equals Np, its second order polynomial coefficients are 

constructed. The stored initial conditions and their ODE solutions are used.  

The Np stored initial conditions and ODE solutions are represented in matrix 

B
⌢

and Y
⌢

respectively. Principal Component Analysis [22] is employed to 

transform B
⌢

 into B
⌣

 and every redundancy in B
⌢

 is removed.  A second 

order matrix Bɶ is created from B
⌣

. The product of Bɶ  and Z
⌢

gives the 

following over-determined system of equation: 

 

BZ Y=
⌢ ⌢
ɶ  (2.13) 

 

Pre-multiplying both sides of Equation (2.13) by TBɶ  gives the following 

equation 

 

BZ Y=
⌢

 (2.14) 

 

Equation (2.14) is solved using Lower Upper decomposition algorithm and 

back substitution [22]. 

          Suppose the SRM asks APT for the ODE solution at an initial 

condition qφ . The reduced initial condition rqφ  is derived fromqφ . In order to 
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perform this task, APT starts by determining index of the hypercube that 

contains r
qφ using a linear search tree. Within this hypercube, the index of 

the PRISM (adaptive) hypercube that contains r
qφ is determined using binary 

search tree. APT later verifies whether this PRISM hypercube has second 

order polynomial coefficients. If it has second order polynomial coefficients 

and r
qφ  is within its allowed or α defined section, then, second order 

polynomials are retrieved and evaluated at r
qφ using Equation (2.15). This is 

known as PRISM evaluation. The length of the allowed of a PRISM 

hypercube is the product of  α  and the standard deviation of the stored 

initial conditions. 

 

m m m
out
q,i i,0 i, j q, j i, jk q, j q,k

j 1 j 1 k j

s

a a (t) a (t) (t)

i 1, 2,..., n

′ ′ ′

= = ≥

φ = + φ + φ φ

=

∑ ∑∑
⌢ ⌢ ⌢

 

         (2.15) 

 

PCA [21] was used in the determination of the second order polynomial 

coefficients. PCA eliminates the influence of redundant variables. If there 

are no second order polynomial coefficients, APT checks whether this 

PRISM hypercube has stored initial conditions. A binary search is 

performed to determine the closest stored initial condition r

sφ . The stored 

initial conditions, identical EOA and ISAT EOA for a PRISM hypercube 

are shown in Figure 2.9. APT test whether r
qφ is within the ISAT EOA of r

sφ . 

If this test holds, a new test is performed to verify if r
qφ is within the 
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identical EOA of r

sφ . The query initial condition is taken as the stored initial 

condition if r
qφ is within the identical EOA of r

sφ . This is known as identical 

evaluation. If the previous test was false, the ODE solution at r
qφ  is 

approximated using Equation (2.16). This is known as ISAT evaluation. 

 

out out r r
q s s q sA( )( )φ = φ + φ φ − φ                (2.16) 

 

In case there is no stored initial condition in this PRISM hypercube or rqφ is 

outside the ISAT EOA of r
sφ ,  the ODE solution at r

qφ  is calculation using 

ODE integration.  The error (ξ ) in the first order polynomial approximation 

to the ODE solution atrqφ is calculated if r
qφ is outside the ISAT EOA of r

sφ . 

If ≤ξ ε , then the ISAT EOA at r
sφ  is increased in size to containrqφ . This is 

known as growth. The query initial condition is not stored in this case. If the 

error is greater than the ISAT error tolerance or r
qφ  is the first initial 

condition in the PRISM hypercube, the mapping gradient and ISAT EOA 

size are calculated. The current PRISM hypercube is divided repeatedly into 

two equal halves until it is smaller than the calculated PRISM hypercube 

size. During each division, new leaves are added to the binary tree structure 

that organizes the data for the PRISM hypercube. Finally, if the number of 

stored initial conditions equals Np, then the stored initial conditions and 

their ODE solutions are used to construct second order polynomials for the 



28 
 

PRISM hypercube. The second order polynomial coefficients are stored in 

the data structure for the PRISM hypercube and the ODE solution computed 

by ODE integration is returned to the SRM. This is shown in Figure 2.10. 

 

Figure 2.9: A PRISM hypercube with stored initial conditions is shown. 
Each initial condition is encircled with an identical EOA and an ISAT 
EOA. The PRISM hypercube is divided into two sections; an allowed 
section and disallowed section. 
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Figure 2.10:  An APT flow chart showing the components of the method 

 

2.3.1   Reduced library APT model 
 

          APT uses zeroeth, first and second order polynomials as 

approximations to the ODE solution. The second order polynomials are 

constructed from stored initial conditions rather than selected initial 

conditions determined by central composite design. Central composite 

design [12] was used for the construction of second order polynomial 
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coefficients in the original PRISM formulation [8]. It ensures the spread of 

initial conditions within a hypercube, initial conditions are located mostly at 

the edges and some outside each face. The spread of initial conditions 

increases the accuracy of the polynomials. 

          When APT is called within the stochastic reactor model, a situation 

can occur when all the initial conditions in a PRISM hypercube have the 

same pressure (no spread along the pressure axis). This decreases the 

accuracy of the second order polynomial approximation.  To circumvent for 

this problem, a reduced library APT model was proposed. In this case at 

most 15 initial conditions are stored per time step for each of the first five 

cycles. After the fifth cycle, a new initial condition can be added if the 

cumulative sum of stored initial conditions after the fifth cycle is less than 

15 per time step. This approach has three benefits. Firstly, it gives a reduced 

size APT library. Secondly, it improves the spread of initial conditions 

within the hypercube particularly along the pressure axis and hence 

improvement in the accuracy of the second order polynomial coefficients. 

Thirdly, it avoids the redundant time demanding ODE integration 

calculations for the construction of the mapping gradients. 

          In the next section, the SRM for HCCI engine is described. This is the 

testing tool for APT in this thesis. 
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2.4   Stochastic Reactor Model for HCCI engines. 

 

          HCCI engines inhale a uniform gas mixture in their combustion 

chambers and ignition occurs through compression. These engines are 

considered as future alternatives to Diesel and Spark Ignition engines. Their 

merits include are low soot and NOx emissions and high fuel efficiency at 

part load conditions. HCCI engines mostly operate with lean fuel mixtures 

and self-ignition occurs at the same time at several locations inside the 

combustion chamber. The lean fuel/air mixture burns at a lower temperature 

yielding low heat loss, high fuel economy, less NOx and soot are produced. 

Both High pressure injection and throttling are not required. HCCI engines 

yield better engine performance at lower cost. However, there are 

challenges associated with their successful utilization. The combustion 

process in HCCI engines is hard to control.  Additional problems associated 

with HCCI engine combustion are the large emissions of unburned 

hydrocarbons and carbon monoxide due to the low temperature and lean 

combustion process. They can encounter combustion instability near 

stoichiometric mixtures giving rise to high pressure fluctuations which may 

damage them. 

          In the SRM the gas mixture in the engine cylinder is modeled as a 

single zone stochastic reactor. It considers scalars such as temperature, 

chemical species mass fraction, density, progress variable as random 

variables with a certain probability distribution. The PDF transport 

equations for these scalars are derived using the statistical homogeneity 
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assumption. The progress variable has been included as random variable in 

this thesis. Also quantities such as total mass, volume, mean density and 

pressure are considered as global quantities. The global quantities do not 

vary spatially within the combustion chamber. The chemical species mass 

fractions Yi, temperature T and progress variable c, vary within the 

combustion chamber and these random variables can be expressed as

s1 2 n( ) ( ( ), ( ),..., ( ), ( ), ( ))t Y t Y t Y t T t c t=φ . For variable density flows the SRM is 

represented in terms of the Mass Density Function (MDF). The 

corresponding MDF is represented by
s1 2 n 2( , ,..., ; )F tφ +ϕ ϕ ϕ . The Equation 

(2.17) represents the time evolution of the MDF. 

 

( ) ( )
s

s

j k

i n 1
i n 1

c
j k j k j k

F ( ; t)
Q ( )F ( ; t) U ( )F ( ; t)

t

C 1
( ( ))F ( )F ( )d d ; j k

2

φ
φ + φ

+

φ
φ φϕ ϕ

∂ ϕ ∂ ∂+ ϕ ϕ + ϕ ϕ
∂ ∂ ϕ ∂ ϕ

β
= δ ϕ − ϕ + ϕ ϕ ϕ ϕ ϕ ≠

τ ∫ ∫
0F ( ;0) F ( )φ φϕ = ϕ  

                    

(2.17) 

 

The right hand side of Equation (2.17) gives the effect of mixing on the 

MDF. The mixing is performed with the Curl mixing model. In this model 

the mixing takes place in randomly selected particle pairs. It is relatively 

simple to use and has good performance. The terms iQ denote the change of 

the MDF due to chemical reactions and change in volume. The ODEs for 

species reaction rates and temperature are solved deterministically using a 
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Backward Differentiation Formula (BDF) method of order 5 or Adaptive 

Polynomial Tabulation. 

 

i
i i

M
Q = ω

ρ si 1,2,...,n=  
              (2.18) 
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The third term on the left hand side of Equation (2.17) is the convective 

heat loss term. 

 

g
w

v

h A
U (T T )

mc
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= −  

 

(2.21) 

 

To introduce the fluctuations, the convective heat loss term is replaced by 

the finite difference scheme (Equations (2.22) and (2.23)). 
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The procedure for incorporating the convective heat transfer step follows 

the ideas presented in Ref [14-15]. The formulation is such that the 

stochastic model for convective heat loss in the limit approaches the 

deterministic Woschni correlation.  

          An equi-weighted Monte-Carlo particle method [13-16] with second 

order time splitting algorithm is employed to solve Equation (2.17) 

numerically. This method involves the approximation of the initial MDF by 

an ensemble of stochastic particles and the particles are moved according to 

the evolution of the MDF. Thus, depending on the internal Exhaust Gas 

Recirculation (EGR) mass ratio at Inlet Valve Closure (IVC) and the 

composition of the fresh air-fuel mixture, the SRM calculates the average 

initial mass fraction of the chemical species.  

          All the other stochastic particles in the ensemble are initialized with 

the fresh gas composition and temperature at IVC. In this thesis internal 

EGR was considered, some particles were introduced containing EGR only. 

The time 0t corresponds to the time at IVC and ∆t is the deterministic global 

time step used for the operator splitting. The time marching, convective heat 

loss, mixing and chemical reaction events are performed on the particle 

ensemble. The final time for this loop is at Exhaust Valve Opening (EVO) 

[14-15]. A pressure correction algorithm is included after each time step to 
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equalize the pressure of all the stochastic particles. This is because the 

thermodynamic properties of the particles change after each event causing 

their pressure to change. The pressure correction algorithm is explained in 

[16].  

          In the next chapter the calculations with SRM-HCCI engine model 

are presented for a large chemical mechanism involving more than 100 

chemical species. The chemistry is solved either with APT or the ODE 

integration solver. 
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  Chapter 3   Combustion Engine Calculations 

3.1   N-heptane/toluene fueled SRM-HCCI calculations 

 

          In this section the results obtained from SRM-HCCI engine 

calculations that employed APT to perform its chemical reaction step is 

presented. A n-heptane/toluene mechanism with 148 chemical species and 

1281 elementary reactions was used for the calculations. It was developed 

by Mauss and co-workers [3, 19-20] and validated by Kalghatgi and co-

workers [17, 18] using shock tube experiments. The experiments were 

performed with a single cylinder engine based on SCANIA D12 as 

mentioned in [17]. The fuel injection took place at bottom dead centre with 

a port fuel injection system. Boost pressure was supplied by an external 

compressor and it could reach a maximum of 6 bar. A feedback control 

system ensured that the intake temperature was within 2 oC of its chosen 

temperature. No external EGR was used. 

 

3.1.1   Demonstration of the SRM-HCCI engine model 
 

          In this section the SRM-HCCI engine model is compared with engine 

experiments. These engine experiments were performed for different blends 

of n-heptane and toluene. Four operating points from the work of Kalghatgi 

et al [17-18] were considered. The engine settings are shown in Table 1. 

The cases selected are shown in Tables 2. Case 1 and Case 2 were run under 

the same engine settings but the fuel in Case 1 contains 65% of toluene 
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while that of Case 2 contains 75% of toluene. The experimental 

measurements showed an earlier auto-ignition for Case 1 as compared to 

Case 2. This is because the aromatic hydrocarbon toluene is known to have 

a high octane number and it causes delay to auto-ignition. Case 4 was run 

with a lower inlet temperature and with a relatively high boost pressure. 

This case showed the earliest auto-ignition. 

 
Table 1: Engine geometrical settings 
 

Parameter Value 
Bore 0.127 m 
Stroke  0.154 m 
Rod  0. 255 m 
Displaced Volume 1.95× 10-3 m3 

Compression ratio 16.7 
Inlet Valve Closure -139 crank angle degree 
Exhaust Valve Opening   121 crank angle degree 

 
 
 
Table 2: Fuel and engine operating conditions 
 
Cases n-heptane Toluene Engine 

speed 
(rpm) 

Intake 
temperature 
(oC) 

Intake 
pressure 
(bar) 

Mixture 
Strength 
( λ ) 

1 35 % 65 % 900 120 1.0 3.5 
2 25 % 75 % 900 120 1.0 3.5 
3 25 % 75 % 1200 120 1.0 3.0 
4 32 % 68 % 900 40 2.0 4.0 

 
 
 
 



38 
 

 
Figure 3.1: Pressure histories for Case 1. The experimental measurement is 
represented as a green circle, the ODE integration curve is represented as 
blue line and the APT curve is represented as a dashed red line. 
 
 

 
Figure 3.2: Pressure histories for Case 2. The experimental measurement is 
represented as a green circle, the ODE integration curve is represented as 
blue line and the APT curve is represented as a dashed red line. 
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Figure 3.3: Pressure histories for Case 3. The experimental measurement is 
represented as a green circle, the ODE integration curve is represented as 
blue line and the APT curve is represented as a dashed red line. 
 

 

Figure 3.4: Pressure histories for Case 4. The experimental measurement is 
represented as a green circle, the ODE integration curve is represented as 
blue line and the APT curve is represented as a dashed red line. 
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          As shown in Figures 3.1–3.4, the experimentally measured pressure 

histories are plotted on the same scale with those obtained from SRM-HCCI 

(APT and ODE integration) engine calculations. In each case APT and 

ODE integration accurately captures the experimentally measured pressure 

traces. It shows that these tests are under engine relevant conditions and the 

method can also be applied for more complex engine calculations. In Case 4 

the SRM slightly over-predicts the experiment. This is due to the limitations 

of the Curl mixing model and the zero dimensional engine models used in 

this thesis.  For Case 2 and Case 3 the main excitation event occurred after 

top dead centre and the heat release from the combustion competes with 

heat loss due to the cylinder expansion. Therefore, small changes in the 

ignition temperature can cause local quenching of chemical reactions 

because the chemical reactions rate terms are temperature dependent. Error 

can easily be introduced in the APT predictions because the sensitive 

tendencies of these cases. 
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Figure 3.5: Temperature trajectories for 100 particles illustrating local 
inhomogeneities. SRM used ODE integration to calculate the chemical 
kinetics. 
 

 

Figure 3.6: The variation of standard deviation of temperature with runtime 
in crank angle degrees. SRM used ODE integration to calculate the 
chemical kinetics. 
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          The SRM considers a fairly homogeneous charge at IVC. Only 

particles containing internal EGR introduce the inhomogeneity. During 

calculation, a particle is randomly selected at each instant to perform the 

stochastic ‘jump’ step in temperature with respect to the wall temperature. 

This stochastic step depends on an exponentially distributed waiting time. 

This gives rise to realistic heat losses over a controlled number of particles. 

As shown in Figure 3.5, there is a spread in the ignition timing of about 5 

CAD and some few particles with very large deviations. The variation of 

the standard deviation with runtime in crank angle degrees is shown in 

Figure 3.6. The peak standard deviation is about 210 K and it occurs at 

about 8 CAD during the main excitation of the blend. 

          In the next sections, two types of SRM calculations are presented. In 

one case, The SRM-HCCI engine is run with the same random seed 

(Repeated Single Cycle calculations) for all the cycles and ten engine cycles 

are considered for this case. In the second case, the SRM-HCCI engine is 

run with different random seed (Free Stochastic Cycle calculations).  Thirty 

engine cycles are considered for FSC calculations and they show cyclic 

variations. These appear similar to cyclic variations of real engines. The 

SRM can predict the engines relative sensitivity on cyclic variations. 

However their amplitudes are strongly depending on the numerical accuracy 

of the SRM, that is, the number of particles or the time step size of the 

operator splitting method. 
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3.1.1.1   Demonstration with Repeated Single Cycle calculations  
 

          It is illustrated in this section that using APT HCCI engine auto-

ignition is predicted with the same accuracy as the direct ODE integration. 

These results are obtained for different n-heptane/toluene blends and engine 

operating conditions.  

 
Figure 3.7: Pressure histories for Fuel D OP3 in RSC calculations. The 
mean pressure profiles of the ODE and APT calculations are shown in blue 
line and red dashed line respectively. The green symbol denotes the 
experimental measurements. 
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Figure 3.8: Pressure histories for Fuel D OP3 in RSC calculations. The 10 
individual cycles with chemistry calculated by using ODE integration and 
the APT models are shown in blue lines and red lines respectively. The 
green square symbol denotes experimental measurements 
 
 
 
          In Figures 3.7 and 3.8, the experimental in-cylinder pressure is 

compared to the simulated SRM-HCCI engine model (APT and ODE 

integration) for Case 1. The chemistry is calculated by either ODE 

integration or the APT look up. In Figures 3.7, the mean pressure profile 

calculated using ODE integration is in good agreement with the mean 

pressure obtained using the APT model. In Figures 3.8, the pressure of the 

individual cycles obtained from the ODE integration calculations are in 

good agreement with those obtained from the APT calculations. The 

experimentally measured pressure profile is faithfully captured by the mean 

ODE integration and mean APT pressure curves as well the ODE 

integration and APT pressure profiles of the respective cycles as shown in 



45 
 

Figures 3.7 and 3.8. No cyclic variation is observed as shown in Figure 3.8 

because the SRM is locked. It should be noted that for the first cycle the 

EGR composition is read from an external file and for subsequent cycles it 

is specified as evaluated from the SRM code.  

 
 

3.1.1.2   Demonstration with Free Stochastic Cycle calculations  
 
 

          In Figures 3.9-3.16 the measured and computed in-cylinder pressure 

for the four engine cases are shown. The main ignition event for Case 1 and 

Case 4 occurs before the Top Dead Centre.  Ignition occurs during 

compression and differences in ignition temperature will result in only 

small differences in ignition timing. Therefore these cases are less sensitive 

to cyclic variations. As shown in Figure 3.9 and Figure 3.15 the region 

around the TDC is zoomed in order to emphasize the cyclic variations 

present. In these two cases there is very good agreement between the 

measured pressure and the calculated (APT and ODE integration) pressure 

curves.  This is also shown for the mean pressures for Case 1 and Case 4 in 

Figures 3.10 and 3.16 respectively. In both cases SRM calculations using 

APT and ODE integrations are in very good agreement. The pressure 

profiles for 30 individual cycles for calculations that used APT and ODE 

integration are in very good agreement. However, there is a noticeable 

deviation between these models and experiment near the top dead centre for 

Case 4 as shown in Figures 3.15 and 3.16. This deviation is caused by 
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assumptions in the zero dimensional SRM and limitations of the Curl 

mixing model.  For Cases 2 and 3 as illustrated in Figures 3.11-3.14 the 

main ignition event occurs after the TDC.  In these cases combustion is 

completed late in the expansion stroke. The pressure rise resulting from the 

chemical reactions is competing with the pressure reduction from the 

expanding cylinder volume. Small changes in the ignition temperature will 

result in remarkable changes in ignition timing. Thus these cases are very 

sensitive and show stronger cyclic variations in the engine. This in turn puts 

a high demand on the accuracy of the APT model. As shown in Figures 

3.11 and 3.13, the pressure histories for the 30 individual engine cycles 

demonstrate significant cyclic variations close to the Top Dead Centre. The 

mean pressure profiles for SRM calculations using APT and ODE 

integration are in good agreement as shown in Figures 3.12 and 3.14 for 

Cases 2 and 3 respectively which demonstrates the accuracy of the progress 

variable and APT. 
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Figure 3.9: Pressure histories for Fuel D OP3 (Case 1) for Free Stochastic 
calculations. The 30 individual cycles with the chemistry calculated using 
ODE integration and APT are shown in blue and dashed red lines 
respectively. The green symbol represents the experimental measurements 
 
 
 
 
 

 
 
Figure 3.10: Pressure histories for Fuel D OP3 (Case 1) for Free Stochastic 
calculations. The mean pressure profiles for the SRM calculations using 
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ODE solver and APT models are shown with a blue line and red dashed line 
respectively. The green symbol represents the experimental measurements. 
 

 
Figure 3.11: Pressure histories for Fuel C OP3 (Case 2) for Free Stochastic 
calculations. The 30 individual cycles with the chemistry calculated using 
ODE integration and APT are shown in blue and dashed red lines 
respectively. The green symbol represents the experimental measurements. 
 

 
Figure 3.12: Pressure histories for Fuel C OP3 (Case 1) for Free Stochastic 
calculations. The mean pressure profiles for SRM calculations using the 
ODE integration and APT models are shown with a blue line and red 
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dashed line respectively. The green symbol represents the experimental 
measurements.           

 
Figure 3.13: Pressure histories for Fuel C OP4 (Case 3) in the Free 
Stochastic calculations. The 30 individual cycles with chemistry calculated 
using ODE integration and APT are shown in blue and dashed red lines 
respectively. The green symbol represents the experimental measurements. 
 

 
Figure 3.14: Pressure histories for Fuel C OP4 (Case 3) for Free Stochastic 
calculations. The mean pressure profiles for SRM calculations using ODE 
and APT models are shown with blue and red dashed lines respectively. The 
green symbol represents the experimental measurements. 
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Figure 3.15: Pressure histories for Fuel E OP1 (Case 4) in the Free 
Stochastic calculations. The 30 individual cycles with chemistry calculated 
using ODE integration and APT are shown in blue and dashed red lines 
respectively. The green symbol represents the experimental measurements. 
 

 
Figure 3.16: Pressure histories for Fuel E OP1 (Case 4) for Free Stochastic 
calculations. The mean pressure profiles of the ODE and APT models are 
shown with blue and red dashed lines respectively. The green symbol 
represents the experimental measurements. 
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3.1.2   Comparison of APT with ODE integration (RSC & FSC) 
 

          It will be demonstrated in this section that APT captures HCCI engine 

auto-ignition with the same accuracy as the direct ODE integration as far 

the main chemical species are concerned. 

3.1.2.1   Comparisons for RSC calculations  
 
          The purpose of this section is to establish that the APT model is 

essentially the same as the ODE integration model.  The accuracy of the 

cool flame (formation of formaldehyde) and main ignition (consumption of 

fuel) events as well as the blue flame (consumption of formaldehyde) are 

examined. All the four operating points are considered and their mean heat 

release rate for ten engine cycles are shown in Figures 3.17-3.21.   

          In each case the cool flame, blue flame and the main excitation 

markers are as accurately captured using APT as with ODE integration 

model.  The pronounced blue flame peak for Fuel E OP1 (Figure 3.21) are 

well captured by the ODE integration model and APT look up. The high 

accuracy of APT in capturing the cool flame while using a single progress 

variable (including enthalpy and pressure) at each of the four operating 

points is an important finding.  It demonstrates that the choice of progress 

variable (defined in terms of enthalpy of formation evaluated at 298 K) is a 

good one. It also suggests that there is a low dimensional manifold in the 

composition space for the low- temperature auto-ignition process. It should 
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be pointed out that Intrinsic Low Dimensional Manifold (ILDM) yielded 

limited success for capturing the cool flame [4]. 

 
Figure 3.17:  Calculated mean heat release rate [J/CAD] versus runtime in 
crank angle degree for Fuel D OP3 (Case 1) for RSC calculations. Engine 
calculations using the ODE integration and APT models are represented 
with blue and a red dashed line respectively. 
 

 
Figure 3.18: Calculated mean heat release rate [J/CAD] versus runtime in 
crank angle degree for Fuel C OP3 (Case 2) in the RSC calculations. Engine 
calculations using the ODE integration and APT models are represented 
with blue and a red dashed line respectively. 
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Figure 3.19: Calculated mean heat release rate [J/CAD] versus runtime in 
crank angle degree for Fuel C OP4 (Case 3) in the RSC calculations. Engine 
calculations using the ODE integration and APT models are represented 
with blue and a red dashed line respectively. 
 
 
 

 
Figure 3.20: Calculated mean heat release rate [J/CAD] versus runtime in 
crank angle degree for Fuel E OP1 (Case 4) in the RSC calculations. Engine 
calculations using the ODE integration and APT models are represented 
with blue and a red dashed line respectively. 
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3.1.2.2   Comparisons for FSC calculations 
 

          The Figures 3.22-3.25 show the mean heat release rate [J/CAD] over 

30 cycles for ODE integration and APT computations. In these figures, the 

mean heat release shows the two stage ignition characteristic of these fuels. 

In each case the agreement between the ODE integration and the APT 

models is excellent. In Figures 3.23-3.24, the main heat release peak for 

APT calculations deviates slightly from ODE integration predictions. This 

tendency is negligible in Figure 3.22 and 3.25.  This is because the cases 

with significant cyclic variations (Figures 3.23-3.24) require higher 

accuracy from APT than those with negligible cyclic variations (Figures 

3.22 and 3.25). 

 

Figure 3.22: Calculated histories of the heat release rate for Fuel D OP3 for 
the free stochastic calculations. Engine calculations using the ODE 
integration and APT models are represented with blue and a red dashed line 
respectively. 
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Figure 3.23: Calculated histories of the heat release for Fuel C OP3 (Case 
2) for  Free Stochastic calculations. Engine calculations using the ODE 
integration and APT models are represented with blue and a red dashed line 
respectively. 

 
Figure 3.24: Calculated histories of the heat release rate for Fuel C OP4 
(Case 3) for the free stochastic calculations. Engine calculations using the 
ODE integration and APT models are represented with blue and a red 
dashed line respectively. 
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Figure 3.25: Calculated histories of the heat release for Fuel E OP4 (Case 
4) for the free stochastic calculations. Engine calculations using the ODE 
integration and APT models are represented with blue and a red dashed line 
respectively. 
 

 

3.1.3   Parametric study of APT 
 

          In the previous section it was shown that APT captures the main 

excitation event for the four engine case with the same accuracy as the ODE 

integration model. In this section the influence APT parameters such as 

ISAT error tolerance on the accuracy and local region reuse of APT is 

investigated. For the accuracy tests some typical cool flame (formation of 

formaldehyde), blue flame (consumption of formaldehyde) and main 

excitation (consumption of intermediates to CO2 and H2O) markers in n-

heptane/toluene combustion are considered. 
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3.1.3.1   The influence of ISAT error tolerance on APT 
 

          The influence of ISAT error tolerance on the accuracy of APT is also 

investigated. The sensitive third operating point (Case 3) was considered. In 

Case 3 the main excitation event occurs after the Top Dead Centre.  In this 

case combustion ends late in the expansion phase. The pressure rise from 

the chemical reactions competes with the pressure drop caused by the 

expansion of the cylinder volume. Thus, a small change in the ignition 

temperature can give rise to significant changes in ignition timing. This case 

is very sensitive and it requires a high accuracy of APT. 

          In Figures 3.26-3.27 the ODE integration and APT profiles for 

formaldehyde (CH2O) and the lumped heptyl-ketone (L-C7H15O, L 

represents the word lumped) are shown. The species L-C7H15O and CH2O 

are very good cool flame markers. The spike-shaped curve of L-C7H15O is 

accurately captured by the APT look-up table as shown in Figure 3.16. The 

APT curve with ISAT error tolerance equals 0.002 appears almost on the 

same line with the ODE integration curve despite the small magnitude of L-

C7H15O mass fractions. As the value of ε  is increased from 0.002 to 0.01, 

there are slight deviations of the APT curve from the ODE integration 

predictions. In this case L-C7H15O is produced slightly late with a higher 

peak mass fraction. The ridge-like structure of formaldehyde time history is 

reproduced by APT. Like L-C7H15O, the error in CH2O when APT is used 

increases with the magnitude of the ISAT error tolerance. The production of 

CH2O connotes the cool flame region and its consumption indicates the blue 
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flame region. The ODE integration and APT profiles for L-C7H15O and 

CH2O are in very good agreement.  The APT and ODE integration curves 

for additional important species such as CO, CO2, HO2 and OH are 

illustrated in Figures 3.28-3.31. The species CO2 and OH are produced 

during the main auto-ignition event while HO2 and CO are consumed 

during this phase. APT faithfully captures the ODE integration curves for 

CO, CO2, HO2 and OH. In each species the error in APT increases with the 

ISAT error tolerance. 

 

Figure 3.26: Calculated CH2O mass fractions versus crank angle degree for 
Case 3. The ODE integration model is represented by a line. APT_0.002 
and APT_0.01 represent APT calculations with � equals 0.002 and 0.01 
respectively.  
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Figure 3.27: Calculated L-C7H15O mass fractions versus crank angle degree 
for Case 3. The ODE integration model is represented by a line. APT_0.002 
and APT_0.01 represent APT calculations with � equals 0.002 and 0.01 
respectively.  
 

 

Figure 3.28: Calculated CO mass fractions versus in CAD for Case 3. 
The ODE integration model is represented by a line. APT_0.002 and 
APT_0.01 represent APT calculations with ε  equals 0.002 and 0.01 



60 
 

respectively. 

 
Figure 3.29: Calculated CO2 mass fractions versus in crank angle degree 
for Case 3. The ODE integration model is represented by a line. APT_0.002 
and APT_0.01 represent APT calculations with ε  equals 0.002 and 0.01 
respectively.  

 

Figure 3.30: Calculated OH mass fractions versus crank angle degree for 
Case 3. The ODE integration model is represented by a line. APT_0.002 
and APT_0.01 represent APT calculations with ε  equals 0.002 and 0.01 
respectively.  
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Figure 3.31: Calculated HO2 mass fractions versus crank angle degree for 
Case 3. The ODE integration model is represented by a line. APT_0.002 
and APT_0.01 represent APT calculations with ε  equals 0.002 and 0.01 
respectively.  
 

 

          It has been illustrated that using a single progress variable, one can 

accurately capture the time histories of the major and minor species as well 

as pollutants. APT successfully captures the cool and blue flame and as well 

as the main excitation markers without any loss in accuracy. In this 

approach no assumption was made about the detailed mechanism. Only the 

progress variable was specified.   

 

3.1.3.2   The influence of APT parameters on local region reuse 
 

           The computational speed-up of APT depends on the frequency of the 

different local polynomial (identical, ISAT and PRISM) calls. With this 
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information for a given operating point APT users will be able to decide 

which values of α and ε  suits their application. The APT user should have 

in mind the level of error he/she can tolerate for the benefit of 

computational speed-up.  The third operating point (Case 3) is selected for a 

single a single cycle HCCI engine calculation.  

          The EOA parameter2β  was set to 120. All other APT variables 

remained the same.  For example the number of particles required to 

construct second order polynomials. The parameter α is varied from 1.2 to 

9.2 while ε is varied from 0.002 to 0.012.  The SRM simulates 100 particles 

in each case. In Figure 3.32 for each α, the ratio of ISAT calls increases 

with ε. This is because the larger the value of ε the bigger ISAT EOA, more 

initial conditions will encounter ISAT EOAs. This gives rise to more ISAT 

calls. Although the highest number of ISAT calls were recorded for very 

small values of α.  This is because for very small α means the disallowed 

region of the PRISM hypercube is larger than the allowed region, as such 

more ISAT EOA reuse in the disallowed region. This increases the overall 

frequency of ISAT calls as shown in Figure 3.32  
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Figure 3.32: The variation of ISAT calls with ISAT error tolerance and the 
parameter α for engine Case 3. The magnitude in the ISAT calls axis 
increases with the intensity of the blue color. 
 
          The doom structure in Figure 3.33 shows the ratio of PRISM calls for 

different values α and ε. No PRISM calls are observed for small values of α 

were used (α close to zero), because the allowed section of the PRISM 

hypercube is infinitesimal. As α increases from small values, for each value 

of ε, the number of PRISM calls increases very fast with α. This reaches a 

maximum at about α = 7.0. Beyond this value α = 7.0, the ratio of PRISM 

calls almost flattens out. It could be expected that the highest number of 

PRISM calls is found for the biggest values of α and ε.  
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Figure 3.33: The variation of PRISM calls with ISAT error tolerance and 
the parameter α for engine Case 3. The magnitude in the PRISM calls axis 
increases with the intensity of the blue color. 
 
          The plot ratio of identical calls versus α and ε is shown in Figure 

3.34. The ratio of identical calls does not depend strongly on α. For large ε, 

the size of the ISAT EOA increases as well as the size of the identical EOA. 

Therefore, there are more identical calls for large values of ε. As shown in 

Figure 3.35, the frequency of growth calls decreases as α increases. There 

are also more growth calls for smaller values of the ISAT error tolerance as 

shown in Figure 3.35. Large values of α imply larger allowed section of the 

PRISM hypercube. Second order polynomial approximation reuses are 

more likely for hypercubes with second order polynomial coefficients. 

Small values of ε give small ISAT EOAs, thus more initial condition will 

enter the neighborhood of the ISAT EOAs and the frequency of growth 

calls will increase. 
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Figure 3.34: The variation of identical calls with ISAT error tolerance and 
the parameter α for engine Case 3. The magnitude in the identical calls axis 
increases with the intensity of the blue color. 

 
 

Figure 3.35: The variation of growth calls with ISAT error tolerance and 
the parameter α for engine Case 3. The magnitude in the growth calls axis 
increases with the intensity of the blue color. 
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3.1.4   Control of tabulation errors in APT 
 

          Additional tests were performed with the SRM-HCCI engine to 

analyze the APT tabulation errors. Sources of errors are the approximations 

through first and second order polynomials, and the modeling of the 

combustion process with a single progress variable. The third operating 

point (Case 3) was used for the tests because of its sensitivity to tabulation 

errors. All calculations were performed with 100 particles. In each APT 

polynomial approximation, the direct ODE integration code is invoked also 

to calculate the local error in APT for each time step.  

 

t t t tN
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+ ∆ + ∆′′
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∑  

 

 (3.1)  

 

Where APTφt+Δt   and ODEφt+Δtare the ODE solutions computed with the APT and 

the ODE integration model respectively and N′′  is the number of chemistry 

queries for the given time step. This way the local error in the 

approximation can be calculated, and compared to the given ISAT error 

tolerance, which was set to 0.002 and α  was set to 7.6. It should be noted 

that α is proportional to the size of the allowed section of the PRISM 

hypercube. Errors that are higher than the given ISAT tolerance are caused 

by the usage of a single progress variable. As shown in Figure 3.36, at least 

99.4 % of ISAT calls have errors less than the ISAT error tolerance.  In 

Figure 3.37 it is shown that at least 98.2 % of PRISM calls have errors less 



67 
 

than the ISAT error tolerance. The largest PRISM error is 9 times the ISAT 

error tolerance while the largest ISAT error is 10 times the ISAT error 

tolerance as illustrated in Figures 3.36 and 3.37. 

 

Figure 3.36: Test of local ISAT error control plotted against time in crank 
angle degree: the average error calculated; the worst error made to date; the 
percentage of ISAT calls that causes a tolerance violation, error greater than 
the ISAT error tolerance. The APT parameters used were: ε = 0.002 and α  
= 7.6. 
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Figure 3.37: Test of local PRISM error control plotted against time in crank 
angle degree: the average error calculated; the worst error made to date; the 
percentage of PRISM calls that causes a tolerance violation, error greater 
than the ISAT error tolerance. The APT parameters used were: ε = 0.002 
and α = 7.6. 
 

3.1.5   Computational speed up factor 

3.1.5.1   Speed up factor versus APT parameters 
 

          The computational performance of APT is investigated for Case 2. 

The computational speed-up is investigated for different values of ISAT 

error tolerance (ε ) while α is kept constant (α = 4) for SRM calculations 

with 100 particles. These calculations were performed for only one engine 

cycle. As shown in Figure 3.38, the computational speed up is directly 

proportional to ISAT error tolerance. The speed-up factor curve is close to 

straight line with positive gradient.  When the ISAT error tolerance is larges 

large, it means that size of the ISAT EOA is large. The size of the ISAT 
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EOA is directly proportional to the size of the PRISM and identical EOA. 

Therefore, APT will encounter more local region reuse. This gives rise to 

the computational speed-up.  In these calculations for every initial condition 

stored, 3 extra ODE integration calculations are required for the calculation 

of the mapping gradient. The cost of constructing second order polynomial 

coefficients from real initial conditions is relatively small compared to the 

cost of calculating the mapping gradients (see Table 3). When α is increased 

while ISAT error tolerance is held constant (ε = 0.002), the size of the 

allowed section each PRISM hypercube is increased, thereby increasing the 

frequency of PRISM calls and hence the computational speed up as shown 

in Figure 3.39. 

      
Figure 3.38: The variation of computational speedup with error tolerance ε 

(α = 4)  for the first cycle for  Case 2.  
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Figure 3.39: The variation of computational speedup with α, (ε = 0.002) for 
the first cycle for Case 2. 
 

          In Figures 3.38 and 3.39, when the error tolerance ε and α were 

varied, the computational speed-up did not exceed 2 for calculations with 

100 particles. This is because based on this number of particles the number 

of chemistry calls cannot yield enough APT library reuse.   

Table 3: Cost of various operations (normalized to the cost of one ODE 
solution) in APT 
Operation Normalized Cost 

 

1 ODE solver call 1.0 

1 identical evaluation (plus searching time) 0.00025 

1 ISAT evaluation (plus searching time) 0.00037 

1 PRISM evaluation (plus searching time) 0.0013 

1 PRISM construction 0.021 

1 mapping gradient (ISAT) construction 3.0 
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3.1.5.2   Speed up factor for RSC calculations 
 
          In order to assess the computational performance of APT, the 

chemistry computational time is calculated for 10 engine cycles when 100 

particles are simulated for the four test cases. The time spent in the 

chemistry subroutines is recorded using the intrinsic FORTRAN function 

SYSTEM_CLOCK. In each case, the control calculations using the ODE 

integration are also performed and the calculation time was recorded.  

          In Figures 3.40–3.43, the chemistry computational speed up factor is 

shown for the four different cases. In each of the plots, there is almost no 

computational speed up factor for the first cycle. The computational speed 

up of 2 is obtained for the second cycle and it increased to about 10 for the 

third. After the fifth cycle, the APT computational speed up reaches 3 

orders of magnitude and it continues in this scale right to the tenth engine 

cycle. For example, for Fuel D OP3, the APT and ODE integration 

computational costs for the first cycle are 1840.2 s and 1548.5 s 

respectively. The APT and ODE computational cost for the fifth cycle are 

1.15 s and 1548.5 s. The computational speed up factor for the fifth cycle is 

1346.5. This gives a computational speed up factor is 3 orders of 

magnitude. After the fifth cycle the APT computational time speed up 

factor is maintained to the last engine cycle with very small fluctuations 

introduced by the loading of the computer. The ODE integration 

computational time for all the cycles is about the same with small 

fluctuations introduced by the loading of the computer. 



72 
 

 
 

 
Figure 3.40: Speed up factor for Fuel D OP3 (Case 1) for RSC calculations. 
 

 
Figure 3.41: Speed up factor for Fuel C OP3 (Case 2) for RSC calculations. 
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Figure 3.42: Speed up factor for Fuel C OP4 (Case 3) for RSC calculations. 
 

 
 

Figure 3.43: Speed up factor for Fuel E OP1 (Case 4) for RSC calculations. 
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3.1.5.3   Speed up factor for FSC calculations 
 

          In Figures 3.44-3.47 the computational time for 30 individual engine 

cycles are shown. For the first cycle, the APT computational expenditure is 

about the same as that of the direct ODE integration, therefore no 

computational speed up is recorded. This is because during the first cycle 

the initial APT table is being constructed. This table comprises the mapping 

gradients, initial condition information and second order polynomial 

coefficients for each PRISM hypercube. The ratio of the average cost of 

mapping gradient calculation and one ODE integration call is 3. In this 

simulation the polynomial calls could barely recoup the cost of mapping 

gradient and second degree polynomial construction. In the subsequent 

cycles, the probability of mixture initial conditions to encounter PRISM 

hypercubes, ISAT and identical EOA with similar composition increases. 

Therefore more polynomial reuses are counted and the computational speed 

up factor increases accordingly.  In Figures 3.45-3.46 the APT 

computational speed up factor increased as engine cycles increased in a 

fluctuating pattern. This tendency is because of the strong cyclic variations 

in these test cases which require high accuracy of APT. In Figures 3.44 and 

3.47 the APT computational speed up factor increased as engine cycles 

increased with negligible fluctuations.  This is because these test cases 

possess less cyclic variations. Computational speed ups exceeding 12 were 

obtained. In this work, memory requirement for each operating points was 

not investigated. 
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Figure 3.44: Speed up factor for Fuel D OP3 (Case 1) for FSC calculations. 

 

 
Figure 3.45: Speed up factor for Fuel C OP3 (Case 2) for FSC calculations. 
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Figure 3.46: Speed up factor for Fuel C OP4 (Case 3) for FSC calculations. 

 
Figure 3.47: Speed up factor for Fuel E OP1 (Case 4) for FSC calculations. 
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3.1.6   Reduced library APT model calculations 
  

              3.1.6.1   Nth cycle comparisons 
 
          The reduced library APT model is used in this section to study the 

most important reactions and species present in n-heptane/toluene 

mechanism. A skeletal n-heptane/toluene mechanism that was developed 

using chemistry guided reduction technique was used [19]. The accuracy of 

species that participate in the most sensitive reactions in this mechanism is 

studied. These include O, H, OH, C6H5CH2 and C2H3 and additional 

species. The species O, H and OH participates in the main chain branching 

reactions. The species C6H5CH2 is important for resistance to auto-ignition 

and aromatic species formation respectively. The species C6H5 involved in 

benzene oxidation was also studied [19]. 

          The potential of APT in capturing these sensitive reactions and 

species in multi-cycle HCCI engine simulations is studied. In this case the 

modified algorithm of APT was used with a limited number of ODE 

integration calls per time step. At most 15 stored initial were stored per time 

step for the first five cycles. After the fifth cycles, the cumulative sum of 

initial conditions stored for all the cycles per time should not exceed 15.  

For simplicity the 25th cycle was selected, because it recorded the highest 

computational speed up factor (approximately 16). As shown in Figures 

3.48-3.51, the species (H, OH, O and O2) that participate in the most 

sensitive reactions (having the strongest influence on ignition timing [19]) 

were accurately captured by APT. 
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          The APT profiles for C6H5CH2 and C6H5CH3 and C6H5 are in 

excellent agreement with those of ODE integration as shown in Figures 

3.52-3.54.  The unsaturated radical C2H3 and the species (HCCO, C2H4 and 

C2H2) present in the baseline sub-mechanism are plotted in Figures 3.55-

3.59.  The APT profiles for each of the species were in very good 

agreement with the ODE integration profiles. It shows that the choice of 

progress variable is a good one and using a limited number of stored initial 

conditions per time step improves the efficiency of the algorithm. 

 

 

Figure 3.48: Calculated H mass fractions for the 25th cycle versus runtime 
in crank angle degree for Case 3.  
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Figure 3.49: Calculated O mass fractions for the 25th cycle versus runtime 
in crank angle degree for Case 3.  

 
Figure 3.50: Calculated OH mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3. 
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Figure 3.51: Calculated O2 mass fraction for the 25th cycle versus runtime 
in crank angle degree for Case 3.  

 
Figure 3.52: Calculated C6H5CH2 mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3.  
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Figure 3.53: Calculated C6H5 mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3. The ODE integration model is 
represented by a line and the APT model is denoted by a dashed line. 
 

 
Figure 3.54: Calculated C6H5CH3 mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3. The ODE integration model is 
represented by a line and the APT model is denoted by a dashed line.  
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Figure 3.55: Calculated C2H2 for the 25th cycle versus runtime in crank 
angle degree for Case 3.  

 
Figure 3.56: Calculated C2H4 mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3. 
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Figure 3.57: Calculated HCCO mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3.  

 
Figure 3.58: Calculated C2H3 mass fractions for the 25th cycle versus 
runtime in crank angle degree for Case 3.  
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3.2.6.2   Comparisons for the mean profiles 
 

          In this section, the ODE and APT mean profiles for temperature, heat 

release, and some important species (CH2O, CO and CO2) are compared. 

These mean values have been computed from 30 SRM HCCI engine cycles. 

As shown in Figure 3.59-3.60 the temperature and heat release profiles 

demonstrate two peaks representing the cool flame and the main excitation 

step. The heat release profile has a small elbow between the cool flame and 

the main excitation. This is the blue flame region.  It connotes the 

consumption of CH2O. There are very small deviations between ODE 

integration and APT models for the mean temperature profiles. The mean 

ODE integration heat release falls on the same line as the APT model for 

the cool flame and blue flame regions, but there are slight deviations around 

the main excitation regions. 
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Figure 3.59: Calculated histories of the mean temperature for Case 3. The 
means were calculated from 30 cycles. 

 
Figure 3.60: Calculated histories of the mean heat release rate for Case 3. 
The means were calculated from 30 cycles. 
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Figure 3.61: Calculated histories of the mean CH2O for Case 3. The means 
were calculated from 30 cycles. 
 

 
Figure 3.62: Calculated histories of the mean CO for Case 3. The means 
were calculated from 30 cycles. 
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Figure 3.63: Calculated histories of the mean CO2 for Case 3. The means 
were calculated from 30 cycles. 
 

 

           For the intermediate species (CO and CH2O) these deviations around 

the main excitation region are more visible. For the mean species (CO, CO2 

and CH2O) histories shown in Figures 3.61-3.63, the agreement between 

SRM calculations with ODE integration and APT model is very good. 

 

3.2.6.3   Tabulation errors for the reduced library APT model 
 

          In this section the error associated with APT is presented. For each 

ISAT and PRISM call, the ODE integration solver is called and the local 

error is calculated using the Equation (3.1). The errors in ISAT and PRISM 

approximations for the 2nd, 6th and 25th engine cycles are shown in 

Figures 3.64 and 3.65 respectively. The errors are calculated as the average 
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over all queries to date for the given time step. The violation is calculated as 

the percentage of queries to date for which the local error exceeds the ISAT 

error tolerance for the given time step.  

          The magnitude of the ISAT error increases fairly with runtime in 

crank angle degrees. This is due to the propagation of round up errors. The 

ISAT errors do not always increase as the calculation progresses from one 

cycle to the next. The ISAT error will depend on the degree of deviation of 

the compositions of the new cycle as compared to those stored in the 

library. As shown in Figure 3.64 fewer operator splitting time steps  were 

involved in the calculation of the ISAT errors for Cycles 6 and 25, because 

PRISM reuse dominated in most of the cycles beyond  Cycle 5.  It is shown 

in Figure 3.65 that Cycle 25 with the highest speed up factor has the 

smallest PRISM error. In these three cycles shown, their PRISM errors 

increase with runtime because of accumulation of round up errors.  

          In Figure 3.67, the percentage of ISAT violations decreases with 

runtime in crank angle degree, while that of PRISM (in Figure 3.68) 

increases with runtime in crank angle degree. The sixth cycle displayed the 

least frequency of PRISM calls but it had the highest percentage of 

violations. The violations in PRISM depend strongly on the APT library 

details. If the APT library was constructed with compositions that differ 

greatly from those of the trajectories of Cycle 6, the magnitude of the 

PRISM violations for cycle 6 will be larger. 
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Figure 3.65: Test of local ISAT error control. Plotted against time in crank 
angle degree: the average error calculated; blue diamond represents cycle 2; 
red circle represents cycle 6 and crosses represents cycle 25 (ε = 0.0025 and 

α = 6). 

 

Figure 3.66: Test of local PRISM error control. Plotted against time in 
crank angle degree: the average error calculated; blue diamond represents 
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cycle 2; red circle represents cycle 6 and crosses represents cycle 25 (ε �= 

0.0025 and α = 6). 

 
 

 

Figure 3.67: Plotted against time in crank angle degree: the percentage of 
ISAT calls that causes a tolerance violation; blue diamond represents cycle 
2; red circle represents cycle 6 and crosses represents cycle 25 (ε = 0.0025 

and α = 6). 
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Figure 3.68: Plotted against time in crank angle degree: the percentage of 
ISAT calls that causes a tolerance violation;  diamond represents cycle 2; 
red circle represents cycle 6 and crosses represents cycle 25 (ε = 0.0025 and 

α = 6). 

 

3.1.6.4   Computational speed up with reduced library APT model 
 

          In this section the computational speed up associated with the 

reduced library APT model is presented. As shown in Figure 3.69, a 

computational speed up factor of 16 was obtained for SRM calculations 

with cyclic variations for Case 3. In contrast to the computational speed up 

factor illustrated in Figure 3.46, this modification of APT resulted in 

improvement in the computational speed up greater than a factor of 2.    
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Fig. 3.69: The variation of computational speed up with engine cycle Free 
Stochastic calculations (FSC). FSC 1 represents the calculations with this 
new version of APT. FSC-2 represents the calculations with original APT 
code. RSC represents the Repeated Single Cycle calculations. 

 

          The storage of a limited number of initial conditions per time 

improves the computational gain factor of APT as extra ODE integration 

calculations for mapping gradient construction are avoided.  
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Chapter 4   Conclusion and future outlook 
 

          In this thesis APT has been presented and thoroughly described. It 

parameterizes the solution of the chemical rate equation system with 

zeroeth, first order and second order algebraic expressions. The algebraic 

polynomials are computationally inexpensive to evaluate as compared to 

direct ODE integration. To facilitate the searching of initial conditions, the 

chemical composition space is partitioned into equally size hypercubes. The 

searching and parameterization is performed in terms of only three 

variables. These include: standard enthalpy formation evaluated at 298 K, 

pressure and total enthalpy.  In real time each hypercube is divided into 

adaptive hypercubes. The hypercube and adaptive hypercubes are accessed 

via linear and binary trees. The initial conditions used for the construction 

of second order polynomials are stored in the adaptive hypercubes. Two 

ellipsoids are drawn around each stored initial condition. The inner and 

outer ellipsoids are the regions for zeroeth order and first polynomial 

approximations to the ODE solutions respectively.  

          When used with n-heptane/toluene fueled SRM-HCCI engine 

simuations, APT yielded significant computational speed-up without any 

significant loss in accuracy. For multi-cycle calculations with the same 

random seed, computational speed up exceeding 3000 was obtained for the 

fourth operating point.  Therefore, in this situation APT demonstrated 

higher computational speed up factor than that obtained with ISAT (speed 

up factor of 1000 [7]) and PRISM (speed up factor of 10 [8]).  The cool 



94 
 

flame, blue flame and main excitation events were accurately captured for 

all the four operating points.  A computational speed up factor of 12 was 

obtained for multi-cycle SRM calculations with different random seed. The 

cool flame, blue flame and main excitation events were accurately captured 

for all the four operating points. The second and third operating points 

demonstrated high sensitivity; their ignition events occurred after Top Dead 

Centre and these events were also captured by APT. These cases showed 

larger variations in ignition delay times from one cycle to the next and APT 

successfully captured the cyclic variations without significant loss in 

accuracy. 

          It is demonstrated that number of second degree polynomial reuse 

depends strongly on the size of the allowed section of the adaptive 

hypercubes. The first order polynomial reuse depends strongly on the ISAT 

error tolerance. About 99 % of the first order polynomial reuse has errors 

less than the ISAT error tolerance. The maximum error in the first order 

polynomial approximation is greater than that for second order polynomials. 

         As compared to PRISM, rather than using the entire set of chemical 

species to perform searching and parameterization, APT replaces the entire 

set of (148 chemical species as used in this thesis) with a progress variable. 

Therefore, a drastic reduction in the memory requirement and improved 

computational speed up and faster searching times.  Initial conditions are 

stored only outside the EOA of stored initial conditions. This enhances 

spread of stored initial condition as they enter the PRISM hypercube. The 
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spread of initial conditions is also improved by the growth of the ISAT 

EOA.  The degree of spreading of the stored initial conditions is directly 

proportional to the accuracy of the second order polynomial coefficients. 

However, with this algorithm of using real stored initial conditions it is not 

possible to obtain the degree of spreading of initial conditions provided 

central composite design that was used in the original PRISM formulation. 

          In APT second order polynomials are not created for every hypercube 

when a mixture initial condition enters it for the first time as in PRISM. As 

the reacting trajectory progresses through a PRISM hypercube in APT, 

zeroeth and first order polynomial are used to approximation the ODE 

solutions for initial conditions within an ISAT EOA. This process continues 

and more local region reuses are registered improving the computational 

efficiency of code until enough initial conditions are stored for second order 

polynomial construction. Therefore in APT it is not possible to have a 

PRISM hypercube with limited or no reuse as in PRISM. 

           As compared to the ISAT method, APT is not limited to first order 

polynomial approximations but it performs zeroeth, first and second order 

polynomials as the need arises.  The polynomial construction takes place 

only when the need arises. Searching time is relatively smaller in APT as 

compared to ISAT. APT algorithm circumvents for long binary trees by 

building separate binary trees on the data structure of each hypercube. This 

makes the search for the closest initial condition to a given initial condition 

a simple and local task. 
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          Contrary to APT, PRISM constructs the second order polynomial 

expressions for a given hypercube by calculating the ODE solution via 

direct ODE integration at specified locations in the hypercube determined 

by central composite design. The extra computational cost compromises the 

computational efficiency of PRISM. Each second order polynomial must be 

used at least 250 times before its computational cost is recouped. In APT 

the cost of constructing the second order polynomials is only about 2 % of 

the cost of one ODE integration call. This is because APT uses real initial 

conditions that have been stored from previous calculations. PRISM lacks 

the control of tabulation errors. The sizes of the adaptive hypercubes are 

calculated from the ISAT Ellipsoid of Accuracy in APT. The ISAT EOAs 

are calculated from the mapping gradient. 

          In the SRM model for HCCI engines, the progress variable and total 

enthalpy are considered as random variables whereas pressure is not. All 

particles per time step have the same pressure, therefore there is limited 

spread in the pressure axis. As an attempt to circumvent for this limitation, 

in this thesis a reduced library APT model was developed and tested. At 

each time step at most 15 initial conditions are stored for the first five 

engine cycles. After the fifth engine cycle, initial conditions are added if the 

cumulative number of initial conditions stored after the fifth cycle is less 

than 15 for the given time step. The benefits of this approach include: 

firstly, it gives requires smaller memory and an improved spread of initial 

condition especially in the pressure direction, it gives more accurate second 
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order polynomials and eliminates the redundant ODE integration 

calculations for the construction of the mapping gradients 

          It was shown that with these adjustments, APT is capable of 

capturing the main species that participate in the main reactions (baseline 

chemistry, benzene and toluene) of n-heptane/toluene combustion. In the 

multi-cycle calculations, APT is capable of capturing the cool flame and 

main excitation markers without any significant loss in accuracy. The 

computation gain factor took values between 4 and 16 for the SRM 

calculations using this reduced library APT model. 

          However, despite the improvements of APT presented in this work as 

compared to PRISM and APT, the initial conditions within a PRISM 

hypercube are constrained by the unity of the sum of mass fractions of each 

its initial condition. Not every position in the PRISM hypercube has a 

feasible value for the species mass fractions. Therefore an approximation 

can easily go off the response surface constructed and reaction trajectory. 

The possibility of increasing the accuracy of the second order polynomials 

coefficient by adding a couple of points close each face of the PRISM 

hypercube cannot be accomplished for the same reason. Also to include 

initial conditions from the eight neighboring hypercube outside each of its 

faces might be challenging, because some PRISM hypercubes near edges 

may not have 8 neighbours. For those with 8 nearest neighbors, the 

neighboring hypercubes may not have stored in stored initial conditions. 
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         For each PRISM hypercube the initial condition slope data store 

include: Np initial conditions (3 variables each), Np ODE solutions (ns+1 

variables each), Np sensitivities of the ns chemical species with respect to 

progress variable, total enthalpy and pressure (3ns each), and Np sensitivities 

of progress variable, total enthalpy and pressure with respect to their initial 

conditions (9 variable each). Memory for each PRISM hypercube in APT 

could be optimized if initial condition-slope data is deleted immediately 

after the construction of second order polynomial coefficients.  This 

deletion process has the ability to reduce the PRISM hypercube memory by 

a factor greater than 50. However, in this test with current APT code, 

deletion of this initial condition slope data after construction of second 

order polynomials cannot be accomplished. If deletion was implemented 

with this n-heptane/toluene mechanism, the memory for the APT storage 

table should have reduced by a factor greater than 80. 

         The accuracy of the second order polynomial coefficients can be 

improved by including mapping gradients information when the coefficients 

are constructed. Another benefit to this approach is fewer second order 

polynomial coefficients, thus, reduced memory requirement. This will entail 

the introduction of additional assumptions, that is, the mean of the stored 

initial conditions will be replaced by its closest neighbour.  This will be 

demonstrated in our future work. 

           The test for multi-cycle SRM-HCCI engine calculations were limited 

to 100 computational particles on the premise of reduced computational 
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requirement which favors model development, although real PDF 

applications may involves several thousands of computational particles. 

However, this is the first time that real time second order polynomial 

expressions have been used for representing chemistry in engine 

simulations and it has been implemented for a complex chemical 

mechanism with more 100 chemical species.  

          A mechanism of n-heptane/toluene with 148 species and 1281 

elementary reactions was used in this work. The target is larger 

hydrocarbon mechanisms used in diesel combustion such as n-decane. In 

this case, APT will be combined with a detailed reduction method (QSSA 

[1]) and an elegant dimension reduction tool, Invariant Constrained 

Equilibrium Pre-image Curve (ICE-PIC) method [6]. Initially the 

mechanism will be reduced by QSSA, then, the reduced mechanism will be 

send to the APT/ICE-PIC coupling. This will also be demonstrated in our 

future work. 
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Nomenclature 

 

 
 Symbol Meaning 
aij Second order polynomial coefficients 
ai,jk Second order polynomial coefficients 
A( 0φ ) Mapping gradient  at 0φ at a time t0  

A0 Initial condition of mapping gradient  
′′Α  Cross sectional area 

Bɶ  Second order matrix created from stored initial 
conditions 

B
⌢

 Matrix of stored initial conditions 

B
⌣

 PCA reduced matrix of stored initial conditions 
TBɶ  Transpose of Bɶ  

B  Product of TBɶ and Bɶ  
c Progress variable 

vc  Specific heat capacity at constant 
volume[Joules per Kg per Kelvin] 

Cφ  Proportionality constant 

Fφ  Mass density function 

h Total enthalpy 
h′  Fluctuation in temperature 

gh  Convective heat transfer coefficient 

H298 Enthalpy of formation evaluated at 298 K 
J Jacobian matrix 
I Identity matrix 
k Number of variables in a factorial design 
K Kelvin unit of temperature 
p’ Fractional part of the factorial design 
p Pressure in pascal 
n Number of stored records in an ISAT look up 

table 
Np Number of stored initial conditions required to 

create second order polynomial coefficients 
ns Number of chemical species 

iQ  Change in mass density function due chemical 
reaction and change of volume 

S Chemical source term 
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t Time  in seconds 
Tw Wall temperature 
t∞ Time at the end of combustion 
t0 Time in seconds 
U Convective heat loss term 
V Vector of cutting plane 
Yi Species mass fractions 
Y
⌢

 Matrix of stored ODE solutions 

Y  Product of TBɶ  and Y
⌢

 
vT Transpose of v 
  
  
Greek letters meaning 
ε  ISAT error tolerance 
ξ  Error  

λ  Mixture strength 

cβ  Curl model constant 

1β  Real constant, 

2β  Real constant, 
0

0δφ  identical EOA size 
2

0δφ  PRISM EOA size 

φ  Initial condition at time t 
ϕ  Sample space representation of a random 

variable 
r

qφ  Reduced query initial condition 

φt+Δt
APT  ODE solution from APT at tφ  

φt+Δt
ODE  ODE solution from direct integration at tφ  

qφ  A query initial condition 
r

sφ  Stored initial condition 

γ  Scalar of cutting plane 

0φ  Initial condition at time t0 

1φ  Arbitrary initial condition 

φout
0  ODE Solution of 0φ  after time integration 

1

0δφ  ISAT EOA size 

∆t Time step size in seconds 
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Abbreviations 

 

ALDM Attractive Low Dimensional Manifold 

APT Adaptive Polynomial Tabulation 

BDF Backward Difference Formula 

CAD Crank Angle Degree 

CFD Computational Fluid Dynamics 

CSP Computational Singular Perturbation 

EGR Exhaust Gas Recirculation 

EOA Ellipsoid of Accuracy 

EVO Exhaust Valve opening 

FPI Flame Prolongation of ILDM 

HCCI Homogeneous Charge Compression Ignition 

ICE-PIC Invariant Constraint Equilibrium Edge Pre-image Curve 

ILDM Intrinsic Low Dimensional Manifold 

ISAT In situ Adaptive Tabulation 

IVC Inlet Valve Closure 

LU Lower Upper 

MDF Mass Density Function 

ODE Ordinary Differential Equation 

PaSPFR Partially Stirred Plug Flow Reactor 

PCA Principal Component Analysis 

PDF Probability Density Function 

PFR Plug Flow Reactor 

PSR Perfectly Stirred Reactor 

RCCE Rate-Controlled Constraint Equilibrium 

QSSA Quasi Steady State Approximation 

SI Spark Ignition 

SRM Stochastic Reactor Model 

TDC Top Dead Center 
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