
Enabling Functional Tests of

Asynchronous Circuits Using a

Test Processor Solution

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus-Senftenberg

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Steffen Zeidler

geboren am 29. August 1980 in Potsdam

Gutachter: Prof. Dr.-Ing. Rolf Kraemer

Gutachter: Prof. Dr.-Ing. Heinrich Theodor Vierhaus

Gutachter: A.o. Univ.-Prof. Dr. Andreas Steininger

Tag der mündlichen Prüfung: 12. Dezember 2013

"The road to success is always

under construction."

— Anonymous

To my sweet, little daughter

Contents

Contents i

Abstract vii

Zusammenfassung viii

1 Introduction 1
1.1 Motivation . 1

1.2 Contribution to the State-of-the-Art 2

1.3 Publications Related to this Work . 5

1.4 Overview of the Work . 5

2 Basics of Asynchronous Circuits and Their Testing 7
2.1 Asynchronous Circuits . 7

2.1.1 Concept and History . 7

2.1.2 Synchronous versus Asynchronous Designs 9

2.1.3 Asynchronous Handshake Protocols 11

2.1.4 Asynchronous Channels . 16

2.1.5 Classification Based on Delay Models 16

2.1.6 Elementary Components . 17

2.1.7 Design Issues of Asynchronous Circuits 19

2.1.8 Modelling and Design of Asynchronous Circuits 23

2.1.9 Typical Architectures of Asynchronous Circuits 27

2.2 Testing of Asynchronous Circuits . 35

2.2.1 Fault Models . 35

2.2.2 Standard Test Methods . 37

3 The Challenge of Functional Tests of Asynchronous Designs 43

i

ii Contents

3.1 Discussion of the Problem . 43

3.2 Alternative Solutions . 45

3.2.1 Assuming Worst-Case Behavior 45

3.2.2 Utilization of Scan . 46

3.2.3 Utilization of Built-In Self-Test 47

3.2.4 Utilization of Memories and FIFOs 48

3.2.5 Eliminating Non-deterministic Behavior 49

4 Concept for Functional Tests of Asynchronous Circuits 51
4.1 Model of the Device-Under-Test . 51

4.2 Test Processor Concept . 52

4.2.1 Implementation Schemes . 54

4.2.2 Definition of Interfaces . 56

4.2.3 Role of the Processor Core . 58

4.3 Workflow . 59

4.3.1 Embedding the DUT into the Test Processor Infrastructure . . . 59

4.3.2 Generation of Tests . 61

4.4 Summary of the Concept . 73

5 Test Processor Implementation 75
5.1 Design Decisions . 75

5.2 Hardware Implementation . 78

5.2.1 Global Architecture of NoTePAD 78

5.2.2 Design of the Data Ports . 80

5.2.3 Design of the Handshake Ports 89

5.2.4 Design of the Port Switch . 93

5.2.5 Architecture of the Memory Access Controller 96

5.2.6 Architecture of the Sequencer 99

5.3 Instruction Set . 103

5.4 Tools Related to the Processor . 108

6 Test Program Generation 109
6.1 The Channel Simulation Package . 109

6.1.1 Preconsiderations . 110

6.1.2 Test Processor and Package Setup 111

6.1.3 Procedures for Accessing the Transfer Protocol 112

6.1.4 Model of the Handshake Protocol Type 113

6.1.5 Channel Resources . 114

Contents iii

6.1.6 Signal Resources . 117

6.1.7 Miscellaneous Functions . 120

6.1.8 Implementation of the Sequence Generation Algorithm 120

6.2 Mapping of a Transfer Protocol to a Processor Program 130

6.2.1 Preconsiderations Regarding the Program Generation 130

6.2.2 Mapping to NoTePAD Instructions 134

6.2.3 Compiler for Generating Test Programs from Transfer Protocols 145

7 Evaluation of the Concept 147
7.1 Application of the Framework to an Asynchronous Device 147

7.1.1 The Device-Under-Test . 148

7.1.2 Demonstrator . 150

7.1.3 Test Program Generation . 151

7.1.4 Test Results and Further Optimizations of the Generated Program 156

7.2 Evaluation of the Processor Implementation 159

7.2.1 Hardware Requirements of the FPGA Implementation 159

7.2.2 Test Execution Properties . 161

7.3 A Test Scenario . 165

8 Conclusions 167
8.1 Summary of the Work . 167

8.2 Summary of the Achievements . 169

8.3 Impact of the Solution . 169

8.4 Limitations of the Approach . 170

8.5 Outlook on Future Activities . 170

A Handshake Protocol Implementations 173

B Protocol Converters 177

C Tools 179
C.1 Transfer Protocol Compiler . 179

C.2 Memory Map Converter . 181

D Demonstrator 183

List of Figures 195

List of Tables 198

Listings 200

Bibliography 201

Acknowledgements

First of all, I would like to thank all my colleagues from IHP, who supported me in

writing this thesis. Especially, I would like to acknowledge my colleague and friend

Christoph Wolf, who always was open for my questions no matter what these were

about. Christoph, you helped me with fruitful discussions and enabled me to write this

thesis, although my tasks piled on your desk. It was a pleasure to work and to learn from

you. Thank you for the great time and everything.

Many, many thanks go also to Miloš Krstić, who helped me with every single hint

concerning how to write a PhD thesis. Miloš, without your expertise this work would

never have been finished, not to mention the great responds I got. Thank you.

I also have to thank Marcus Ehrig for carefully proofreading this work. The thesis

would be much more clumsy at certain places without your critical eye. I also enjoyed

the discussions with you, Marcus. You also helped me a lot with your knowledge about

FPGA-designs.

I would also like to express my gratitude to Eckhard Grass. Thank you Eckhard for

improving my English.

My special thanks go to Prof. Rolf Kraemer, who gave me the chance to write the

thesis and who was very patient with me. Even after repeated postponement, he did not

lose the confidence that I will finally finish the thesis. Thank you, Rolf.

Of course, I also would like to thank Prof. Andreas Steininger and Prof. Vierhaus

for spending their time to review the thesis.

Last but not least, I would like to thank my family for encouraging me all the time.

My thanks are especially dedicated to my girlfriend Juliane. Without her support, es-

pecially in the very last phase of the writing, the thesis would not have been finished in

time. Thanks to my little daughter Lena-Sophie. So often, she made me smile when I

was discouraged. Of course, I would like to thank my parents for their support, e.g., by

taking care of Lena when Juliane and I were not able to do that. Thanks, Mutz und Paps.

Abstract

During the last years, the asynchronous design style has been rediscovered as a potential

solution to upcoming design issues in deep-submicron technologies. However, besides

the lack of commercial tools supporting this design style, one major challenge is the test

of asynchronous designs. Especially their event-driven behavior leads to problems dur-

ing test. Basically, the timing of asynchronous circuits is determined by gate and wire

delays that are sensitive to variations of environmental parameters (process, voltage and

temperature). This leads to uncertainties in the timing of the responses. Consequently,

standard commercial test systems cannot be used, because such systems read the re-

sponses at specific cycles and, therefore, could reject fault-free devices.

Furthermore, available hardware testers are, in principle, not designed to react to

signal events from the design-under-test as it is necessary to establish asynchronous

communication via handshake signalling. As a result, even simple functional tests that

only apply stimuli and read the responses of the design-under-test cannot be realized

without preparatory measures.

This work addresses these issues and proposes a concept to enable functional tests

of asynchronous designs. The concept is based on a special test processor that pro-

vides generic interfaces used to establish asynchronous handshake communication with

a device-under-test. By this, elastic functional tests can be realized that overcome the

static timing of conventional tests and emulate the real operating environment of the

design. Apart from the generic test processor architecture, an essential part of the con-

cept deals with the establishment of the processor as a stand alone or embedded test

equipment. A workflow is provided that describes how the device-under-test can be

embedded into the test processor environment for performing the tests. Besides the in-

terconnection between the asynchronous design and the test processor, this especially

includes the generation of programs that realize the functional tests of the design. A

methodology is introduced that generates the desired programs for the processor from a

standard functional simulation of the design-under-test.

Based on the generic concept, a framework including both a test processor imple-

mentation and the realization of the program generation is delivered. In order to evaluate

the entire concept, this framework has been applied to functionally test an asynchronous

arithmetic-logic-unit. In combination with additional experiments, conducted to deter-

mine the required resources, it has been shown that the introduced concept is a suitable

approach to test asynchronous designs.

Zusammenfassung

Aufgrund von Problemen bei der Integration komplexer Systeme in nano-skalierten

Technologien zeichnet sich in den letzten Jahren der Trend zum asynchronen Entwurf

integrierter Schaltungen ab. Allerdings wird dieser Paradigmenwechsel neben dem Man-

gel an Entwurfswerkzeugen insbesondere durch Probleme beim Testen gehemmt. Diese

Probleme ergeben sich aus der Ereignis-getriebenen Funktionsweise von asynchronen

Schaltungen, deren Zeitverhalten durch Leitungs- und Gatterverzögerungen bestimmt

wird. Da diese Verzögerungen von Umgebungsparametern wie Temperatur und Ver-

sorgungsspannung, aber auch von Prozessvariationen abhängen, führt dies zu Unbest-

immtheit im Antwortverhalten eines asynchronen Prüflings. Da jedoch kommerzielle

Testsysteme die Ausgaben eines Prüflings zu festgelegten Zeitpunkten erwarten, kann

diese Unbestimmtheit dazu führen, dass ein asynchroner Prüfling als fehlerhaft deklar-

iert wird, obwohl dieser richtige Ausgaben – allerdings zu unerwarteten Zeitpunkten –

liefert.

Hinzukommt, dass kommerzielle Hardwaretester nicht dazu konzipiert sind, auf vom

Prüfling erzeugte Signalereignisse zu reagieren. Diese Fähigkeit ist jedoch Grundvo-

raussetzung für die Kommunikation mit einem asynchronen Prüfling mittels so genann-

ter Handshake-Verfahren. Als Folge können selbst einfache Funktionaltests, die die reale

Umgebung des Prüflings emulieren sollen, mit Standardtestern nicht durchgeführt wer-

den.

Diese Arbeit greift diese Problematik auf und liefert ein Konzept, das Funktionaltests

für asynchrone Schaltungen ermöglicht. Dieses Konzept beruht auf einem speziellen

Testprozessor, welcher generische Schnittstellen zur asynchronen Handshake-basierten

Kommunikation mit dem Prüfling bereitstellt. Dadurch werden elastische Tests er-

möglicht, die das statische Zeitverhalten konventioneller Tests vermeiden und folglich

die reale Betriebsumgebung eines asynchronen Designs emulieren können. Neben der

generischen Architektur des Testprozessors umfasst das Konzept auch eine Beschrei-

bung, wie der Prozessor als Testwerkzeug etabliert werden kann. Zum einen muss dazu

der Prüfling in die Testprozessorumgebung eingebettet werden. Dazu muss insbesondere

eine Verbindung zwischen den Schnittstellen des Prüflings und des Prozessors hergestellt

werden. Zum anderen werden für die Realisierung der durchzuführenden Funktional-

tests Programme für den Testprozessor benötigt. Zu diesem Zweck wird eine Methodik

vorgestellt, die aus einer Standardfunktionalsimulation ein entsprechendes Testprozes-

sorprogramm generiert.

Aufbauend auf dem generischen Konzept wird ein Framework beschrieben, das

eine Implementierung des Prozessors sowie der Programmgenerierung beinhaltet. Zur

Evaluierung des Konzepts wurde dieses Framework für den Funktionaltest eines asyn-

chronen Designs angewendet. Zusammen mit weiteren Experimenten, die die benötigten

Ressourcen bestimmen, konnte dadurch erfolgreich gezeigt werden, dass das Konzept

ein geeignetes Verfahren für den Funktionaltest asynchroner Schaltungen darstellt.

Acronyms

ABMM Asynchronous Burst Mode Ma-

chine.

ACL Asynchronous Control Logic.

ADL Architecture Description Language.

ALU Arithmetical Logical Unit.

ATE Automated Test Environment/E-

quipment.

BIST Built-In Self-Test.

BNF Bacus-Nauer-Form.

BRAM Block RAM.

CAD Computer-Aided-Design.

CSP Communicating Sequential Pro-

cesses.

DfT Design-for-Testability.

DI Delay Insensitive.

DP Data Port.

DUT Device Under Test.

EDA Electronic Design Automation.

EMI Electro-Magnetic Interference.

ETE External Test Equipment.

FIFO First-In First-Out.

FPGA Field Programmable Gate Array.

FSM Final State Machine.

GALS Globally-Asynchronous Locally-

Synchronous.

GCD Greatest Common Divisor.

HDL Hardware Description Language.

HP Handshake Port.

IC Integrated Circuit.

IOB Input/Output Buffer.

IP Intellectual Property.

ITRS International Technology Roadmap

for Semiconductors.

LFSR Linear-Feedback Shift-Register.

LISA Language for Instruction Set Archi-

tectures.

LUT Lookup Table.

xi

MAA Memory Access Arbiter.

MAC Memory Access Controller.

MISR Multi-Input Signature-Register.

MTBF Mean Time Between Failure.

MUTEX Mutual Exclusion.

NBTI Negative Bias Temperature Insta-

bility.

NoC Network on Chip.

NoTePAD Novel Test Processor for

Asynchronous Devices.

PVT Process, Voltage and Temperature.

QDI Quasi Delay Insensitive.

RAM Random Access Memory.

RISC Reduced Instruction Set Computer.

ROM Read Only Memory.

RTL Register Transfer Level.

SB Synchronous Block.

SDF Standard Delay Format.

SI Speed Independent.

SoC System-on-Chip.

ST Self-Timed.

STG Signal Transition Graph.

TAP Test Adapter Port.

TP Test Processor.

TPG Test Pattern Generator.

TRA Test Response Analyzer.

UUT Unit Under Test.

VCD Value Change Dump.

VHDL Very High Speed Integrated Cir-

cuit Hardware Description Lan-

guage.

VLSI Very Large Scale Integration.

"To make an apple pie from scratch,

you must first invent the universe."

— Carl Sagan

Chapter 1

Introduction

1.1 Motivation

For the last decades, the design of Integrated Circuits (ICs) has benefitted from the as-

sumption that systems process their data in discrete time steps. This synchronous design

paradigm has drastically eased the design flow of ICs as it simplifies the handling of crit-

ical hazards and signal races by the introduction of the clock period. Accordingly, CAD

tools as well as test methods have been especially optimized to the synchronous design

world. As a consequence of the ease of the design methodology and the availability of

tools, designers still prefer the utilization of the synchronous design methodology in or-

der to create complex digital systems. However, the ongoing shrink of feature sizes has

several influences on the design of digital systems. With today’s nano-scale technologies

the circuits are more susceptible to process, voltage and temperature (PVT) variations.

Therefore, the designs reach the limits of the physical capabilities of ICs. Furthermore,

gate and wire delays are getting the order of the clock period resulting in challenges to

meet the timing closure of the design. Thus, the clock distribution in complex synchro-

nous systems becomes a critical point. Furthermore, the clock tree itself consumes a

large amount of the total power of a synchronous design. In order to solve this, power

management techniques and methods to partition a design into multiple clock domains

are applied to ensure efficient operation. But this again leads to even more complex

design processes.

To this end, alternative ways of designing digital systems have to be explored. At this

point, the utilization of the asynchronous design methodology seems to be a promising

solution to tackle the upcoming challenges. This paradigm is a priori able to compensate

delays in the communication, offers modularity and has advantages in security aspects.

1

2 Chapter 1. Introduction

Especially, the aspect of modularity is of interest with respect to the design of complex

systems. The International Technology Roadmap for Semiconductors (ITRS) expects

an increased utilization of the asynchronous design paradigms in future ICs in order to

counteract problems with the clock distribution [ITRS 2012]. The general concept of

these systems is to avoid the use of a global clock signal. Instead, the data is exchanged

by means of some convention, i.e., a protocol, organizing the communication between a

sender and a receiver. Hence, an asynchronous circuit is considered to be a composition

of modules, each having interfaces for sending and receiving data. The protocol used

to organize the communication depends on the architecture and the demands of the ap-

plication. The most widely used family of asynchronous circuits utilizes asynchronous

handshake signaling for the communication between modules.

However, since the synchronous paradigm dominates the IC design world and al-

though lots of research has been carried out in the field of asynchronous system design

and test, there are still two issues that hinder the utilization of this promising design

methodology. First, there is a lack of commercial tools supporting the asynchronous

design flow, and second, there still exist various problems with respect to testing. Even

the simplest test in the synchronous design world, i.e., functional test, is an issue for

asynchronous devices. This leads to the classical chicken-egg problem. Without having

tools and test methods the asynchronous design paradigm will not be applied and vice

versa.

In general, testing is an essential part of the semiconductor life cycle. Typically, the

costs of testing an IC is approximately 50% of the total cost of a chip. Apart from well

established test methods mainly applied in production test, further test strategies are re-

quired for debugging during the prototype phase of a design. In this context, functional

tests of the developed design play a major role. However, functional tests of asynchro-

nous designs are still a major issue, since the event-driven behavior of such circuits leads

to problems with existing hardware testers. This work addresses this issue and provides

an approach to perform functional tests of asynchronous designs.

1.2 Contribution to the State-of-the-Art

Currently, there is a general belief that asynchronous circuits are very difficult to test.

This actually still applies to some extent, although numerous publications address the

test of asynchronous circuits. One big issue is the execution of functional tests. These

tests are frequently applied during system prototyping. Furthermore, functional test-

ing regains more and more importance in System-on-Chip (SoC) design. Often these

systems comprise Intellectual Property (IP) cores whose internal structure is unknown

1.2. Contribution to the State-of-the-Art 3

and must not be changed to prevent violations of IP rights. Thus, commonly applied

Design-for-Testability (DfT) techniques, such as scan test, cannot be applied. Therefore,

performing functional tests is often the only possibility to validate such components.

The problem with functional tests of asynchronous designs arises from the event-

driven behavior. Usually, asynchronous designs utilize bidirectional transfer protocols,

e.g., based on completion indication, to organize the data exchange with their environ-

ment. This has some implications to the test of such designs. The utilized test system has

to react to signal events generated by the device under test (DUT). However, today’s big

iron test systems, such as the Advantest V93000 [Advantest 2013], are strictly oriented

towards synchronous designs that provide their responses at specific clock cycles. These

testers are not designed to react to events from the DUT. Thus, a handshake-based data

exchange cannot be realized.

In order to cope with this issue, one may think about the application of alternative test

techniques also for functional tests. One possible solution is to utilize scan test. Such an

approach was, e.g., proposed in [Gürkaynak 2002] to individually test the synchronous

blocks and their interfaces in a globally-asynchronous locally-synchronous (GALS) sys-

tem. Although this technique was especially designed for GALS systems, it can also be

adapted to fully asynchronous systems. Nevertheless, the scan technique has one major

drawback that is even more critical when performing complex functional tests. In order

to perform one single test iteration, the stimuli and the responses have to be scanned

in and out serially. This enormously reduces the throughput during test and, therefore,

makes the emulation of real operating conditions impossible.

Another technique suitable for functional tests of asynchronous circuits is Built-In

Self-Test (BIST). The advantage of BIST, intended for simple functional tests, is that

it is not intrusive. Thus, it does not require any change to the internal structure of the

DUT as it is required for scan. Therefore, it enables black box testing and is very suit-

able for integration into asynchronous high-performance circuits as, e.g., applied for

the RAPPID asynchronous instruction length decoder [Roncken 2000]. Furthermore, in

order to cover various test scenarios, the components of a BIST can be hierarchically

organized. Such a technique has been successfully applied in a GALS baseband pro-

cessor for the WLAN standard IEEE 802.11a [Krstić 2005a]. Unfortunately, BIST also

has some drawbacks with respect to functional tests. A major one is related to the weak

diagnostic capability of the approach, since often only pass/fail information or a signa-

ture gained from the compression of the captured responses is delivered. Furthermore,

the pattern generators are typically realized by pseudo-random number generators, such

as Linear-Feedback Shift-Registers (LFSRs). Although these components can be im-

plemented such that they are configurable, the generated sequence of patterns remains

4 Chapter 1. Introduction

static. Complex sequences of non-random patterns are also hard to implement. Indeed,

a BIST can be extended with patterns from a built-in memory, but this considerably

increases the hardware overhead and complexity of the test logic.

A further approach to realize functional tests could be the utilization of buffers such

as asynchronous FIFOs as, e.g., proposed in [Wolf 2011]. These buffers could be added

to the interfaces of the DUT in order to compensate the variations of the timing. How-

ever, the integration of FIFOs into the DUT could result in considerable hardware over-

head. Therefore, as proposed in [Wolf 2011], these FIFOs could also be implemented by

a Field Programmable Gate Array (FPGA) that is part of the test equipment. Then, input

buffers are filled and output buffers are flushed by the test equipment in bursts under

consideration of the worst case timing of the DUT. This solution is very effective and

simple to implement for pipeline architectures. But, since there is no control at the level

of single tokens, this solution might not be feasible for complex devices having multiple

interfaces with complicated relationships between the data transfers.

Therefore, a new test approach is required that provides similar capabilities with

respect to functional tests as a standard tester while offering mechanisms to enable asyn-

chronous communication. Thus, the scheme needs to have the following capabilities:

â Elastic test capability — Obviously, due to the afore mentioned issues with asyn-

chronous circuits, the provided solution needs to resolve the static timing behavior

of traditional test systems. Instead of aligning the data change to clock cycles, an

event-driven behavior is required in order to realize handshake based data trans-

fers.

â Configurability — In order to provide a generic solution capable of testing differ-

ent devices, the desired scheme should provide a programmable pin configuration

as common hardware testers do. Furthermore, in order to test various types of

asynchronous devices, different handshake protocols have to be supported.

â Flexibility with respect to changes of patterns — In order to perform various test

scenarios it is required to change the test patterns. Therefore, the solution has to

provide mechanisms to exchange the patterns during a testflow.

â Full controllability of the dataflow — To support complex test scenarios, it might

be necessary to have the full control of the data exchanges with the DUT. There-

fore, the aimed test approach has to be equipped with mechanisms to specify at

which interface data shall be exchanged.

1.3. Publications Related to this Work 5

â High-performance — Although handshake interface circuits are designed to toler-

ate timing variations in the execution of transfers, the test approach has to provide

high data rates in order to emulate the real operating environment of the DUT.

Based on the identified requirements, this work proposes a methodology for per-

forming elastic functional tests which are fully event-driven. The core of the concept is

a test processor solution which is equipped with special ports supporting various types of

handshake protocols. With the help of these ports, asynchronous communication chan-

nels can be established between the DUT and the desired test processor. These channels

are intended to apply and receive patterns with an elastic timing behavior. Besides the

processor, a methodology is required to generate programs implementing the targeted

functional tests. Therefore, a workflow is proposed describing all necessary steps to

gain an elastic test from a standard logic simulation.

1.3 Publications Related to this Work

In the context of this work three papers have been published on national and interna-

tional conferences. In [Zeidler 2011] the general concept of the targeted test processor

and a first implementation is proposed. The provided solution describes a simple 16-bit

Reduced Instruction Set Computer (RISC) processor equipped with special handshake

ports that are combined with data ports to enable asynchronous communication. The

association of the ports with asynchronous channels is described in software. Therefore,

this approach is very flexible, but performance degradations have to be accepted. Due to

several limitations of this initial test processor design, an extended 32-bit processor has

been proposed in [Zeidler 2012a]. This implementation has been improved with respect

to data transmission rates by combining several required steps into single processor in-

structions. Finally, in [Zeidler 2012b] a flow is proposed to generate a test program from

a logic simulation. Consequently, these publications cover all aspects of the solution

provided in this work. However, this work draws the entire picture of the approach by

combining and complementing these aspects with further improvements of the concept.

1.4 Overview of the Work

Chapter 2 introduces the principles of asynchronous circuit design and its main charac-

teristics. This includes the principle of asynchronous handshake signalling, the classifi-

cation of asynchronous circuits based on timing models, issues in the design of asynchro-

nous circuits and typical circuit architectures. Afterwards, the basics of testing asynchro-

6 Chapter 1. Introduction

nous designs are presented. Thereto, several techniques, which potentially can be used

for functional tests, are introduced. This chapter builds the foundation for understanding

the issues related to the test of these designs.

Chapter 3 starts with the detailed discussion of the problem of performing functional

tests of asynchronous designs. It describes why conventional testers cannot be used in

this context. Based on this, possible solutions are discussed. This includes previous

works dealing with functional tests of asynchronous designs as well as further ideas that

are basically applicable. These approaches are analyzed with respect to their pros and

cons. This finally explains the demand for a novel functional test scheme for asynchro-

nous designs.

The general concept of such a scheme is introduced in Chapter 4. This chapter

proposes a generic Test Processor (TP) architecture adapted to the requirements of asyn-

chronous devices. This processor provides interfaces for asynchronous channels which

are the base for the communication with the DUT during functional tests. For this test

processor, programs are required that realize the desired tests. To this end, a methodol-

ogy is presented that generates a program from a standard functional simulation of the

DUT. The crux of the idea is the generation of a transfer protocol during simulation

which describes the interactions between the TP and the DUT. Afterwards, this protocol

needs to be translated to a processor specific program.

An implementation of the test processor concept is presented in Chapter 5. The

provided solution, called NoTePAD (Novel Test Processor for Asynchronous Devices),

is a special processor which is highly optimized for applying stimuli and receiving re-

sponses.

Chapter 6 discusses the realization of the methodology for generating test programs.

It is shown how the transfer protocol is generated from a logic simulation. After that,

the translation of the protocol to a program for the NoTePAD architecture is delivered.

The evaluation of the entire concept is illustrated in Chapter 7. Here, the entire

framework is applied to an asynchronous arithmetical logical unit (ALU). The selected

DUT was combined with the TP to form a demonstrator design which was integrated into

an FPGA. Afterwards, the application of the flow generating the program is discussed.

The gained test program was simulated and compared with the initial functional simu-

lation of the DUT. Additionally, the chapter illustrates further properties of the solution,

such as the hardware requirements and test time.

Finally, Chapter 8 concludes the work by summarizing the achievements and the

major limitations. Based on this, an outlook about further enhancements and other future

activities in the context of this work is given.

"Not everything that can be

counted counts, and not everything

that counts can be counted."

— Albert Einstein

Chapter 2

Basics of Asynchronous Circuits

and Their Testing

2.1 Asynchronous Circuits

This section gives an overview about the main target circuits, i.e., asynchronous hand-

shake circuits. Therefore, the main characteristics, advantages and disadvantages of such

systems are presented.

2.1.1 Concept and History

The concept of the asynchronous design methodology goes back to the automaton theory

in the 1950’s and 60’s. At that time D.E. Muller was a pioneer on the design of asyn-

chronous circuits. He invented one of the most important components for asynchronous

circuits — the C-element, i.e., a logical gate with hysteresis. Furthermore, he proposed

a pipeline architecture that is the backbone of almost all asynchronous circuits. As a

result of his work the Illiac II was developed at the University of Illinois in 1962 which

was the first fully asynchronous processor. As opposed to a synchronous implementa-

tion, this processor did not require a global clock signal for the coordination of the data

exchange between its components. Instead, such an asynchronous circuit implementa-

tion utilizes local control signals triggering the sequential (storage) elements to update

their states. C.L. Seitz described this way of system timing as self-timed [Seitz 1980]. In

general, self-timed circuits are composed of modules that are connected via bundles of

wires, so called channels. Thereby, a sender provides data that is read from the channel

7

8 Chapter 2. Basics of Asynchronous Circuits and Their Testing

by a receiver. To coordinate the data exchange between these modules, the channels

utilize the concept of indication. This means that data is exchanged when indicated

rather than at repetitive points in time. This principle was employed by I.E. Suther-

land in [Sutherland 1989]. He presented an asynchronous pipeline architecture called

Micropipelines composed of modules strictly separated into data and control logic.

Based on Sutherland’s Micropipeline architecture the Amulet asynchronous ARM

processor series was developed at the University of Manchester. The implementation

of the ARM6 compatible Amulet1 [Furber 1994b, Woods 1997] was a feasibility study

to demonstrate that complex systems can be implemented using the asynchronous de-

sign methodology. Furthermore, this study was intended to illustrate that asynchronous

implementations can keep up with their synchronous counterparts with the goal to en-

courage the industry to use the asynchronous design methodology. Subsequent imple-

mentations, the Amulet2e [Furber 1997, Furber 1999] and the Amulet3i [Furber 1998,

Furber 2000, Garside 2000], extended the capabilities of the Amulet1 and made the

processor compatible with the ARM7 and ARM9 instruction sets, respectively. Fur-

thermore, in the time of the millennium change, the company Fulcrum Microsystems

presented a couple of ultra-high performance asynchronous crossbar switches. The

one presented in [Lines 2004] reached a cross-section bandwidth of 780 Gbit/s. The

company was taken over by Intel which now produces high-speed ethernet switches

based on the technology of Fulcrum. Latest projects include microcontrollers, e.g.,

TAM16 [Tiempo 2008], HT-80C51 [Solutions 2004], multi-core processor implementa-

tions, e.g., SEAforth 40C18 [IntellaSys 2008], and cryptoprocessor cores, e.g., Tiempo

DES/3DES, Tiempo AES, and Tiempo RSA/ECC [Tiempo 2013].

In parallel to the evolution of fully asynchronous designs the paradigm of GALS sys-

tems was introduced by the PhD thesis [Chapiro 1984] of D.M. Chapiro in 1984. These

circuits are a tradeoff between the synchronous and the asynchronous design styles. Sys-

tems that follow this concept are composed of separated synchronous modules operat-

ing at potentially independent clock speeds. The modules, referred to as synchronous

blocks (SBs), are interconnected via asynchronous channels. Over the years, several

techniques have been proposed to implement the communication between the separate

synchronous blocks. Basically three major approaches are established [Krstić 2007]:

synchronizer-based interconnects, channels based on asynchronous FIFOs, and the pau-

sible clock scheme presented by K.Y. Yun and P.R. Donoghue in [Yun 1996]. The GALS

design methodology has been applied in various chip designs [Lines 2004, Fan 2010,

Krstić 2011, Plana 2011].

2.1. Asynchronous Circuits 9

2.1.2 Synchronous versus Asynchronous Designs

Most traditional industrial designs are synchronous and there are some good reasons for

that. The assumption that computation is done in time slots and the according data is

transmitted at repetitive points in time eases the generation of digital designs and has led

to the fast evolution of semiconductor devices for the last decades.

However, the growing complexity makes the design and development of VLSI cir-

cuits more difficult and designers have to face several challenges. Especially the distri-

bution of a global clock signal becomes a rising problem. To ensure the clock signal to

simultaneously arrive at all sequential elements, the clock tree has to be balanced very

precisely. This becomes the critical point in the design of complex synchronous systems

and results in increased design time and additional circuit complexity.

Another aspect, which is strictly coupled with a complex clock tree, is the power con-

sumption. The sequential elements of synchronous circuits are continuously triggered

to store data even when this data does not change. Thus, a huge amount of energy is

wasted by useless switching of the clock tree buffers. In complex synchronous designs,

up to 50% of the total power consumption is dissipated by the clock tree. Indeed, clock

gates can be introduced at different granularity levels in order to avoid switching activity

of inactive parts. For example, one can think about disabling entire functional blocks.

More fine granular clock gating methods are also possible [Bhutada 2007]. However,

this complicates the design of a synchronous system even more.

A promising solution to such upcoming challenges in designing complex VLSI cir-

cuits in nano-scaled technologies might be the asynchronous design methodology. Un-

like synchronous systems, asynchronous circuits do not presume that all signals are sam-

pled at the same time. The concept of exchanging data only when indicated omits the

overhead for distributing a clock signal. This leads to modules that are enabled only

when data is available. Consequently, transistor switches are minimized resulting in a

potentially reduced power consumption. Therefore, asynchronous designs are suitable

for low power systems. Furthermore, due to asynchronous switching activities of the

transistors the electromagnetic interference (EMI) is reduced. In synchronous designs

the simultaneous switching of transistors causes considerable EMI. This may have neg-

ative impacts on other components and could cause system malfunctions. Moreover,

aging effects like Negative Bias Temperature Instability (NBTI) permanently affect cir-

cuits by changing the threshold voltages of transistors. This increases signal delays

which may cause a synchronous circuit to malfunction. Asynchronous circuits are more

robust to such effects due to their self-timed properties.

Apart from the commonly known properties, e.g., summarized in [Sparsø 2001],

10 Chapter 2. Basics of Asynchronous Circuits and Their Testing

some more beneficial characteristics have been identified during the recent years. In

summary, these characteristics include the following aspects:

â Robustness to changes of the environment (supply voltage, temperature)

Changes of external parameters (temperature, voltage) of an asynchro-

nous system affect the timing, but not the correct execution of the op-

eration [Fang 2005].

â Robustness to process variations

In nano-scaled technologies, large process variations can critically af-

fect the threshold voltages of the transistors which leads to increased

propagation delay of the logic cells [Cortadella 2010]. This delay gets

the order of up to 40% of the clock period of synchronous circuits. Due

to their self-timed properties, asynchronous circuits are more robust to

such effects.

â Deep subthreshold design

Today’s mobile wireless application demand ultra-low power systems.

It has been shown that even systems can be realized that operate with

subthreshold voltages of approximately 150 mV [Wang 2006]. With

the application of the asynchronous design style, it is expected that the

supply voltages can be further decreased while the circuit still operates

robustly.

â Low power dissipation

Asynchronous circuit modules consume power only if it is necessary,

i.e., when valid data is applied to the inputs of the module. That min-

imizes transistor switchings and results in lower power consumption

[Furber 1994a, Furber 1997, Nielson 1997].

â Operation at maximum speed

The operation speed of asynchronous modules is determined by their

gate and wire delays, but not by the worst-case latency of the entire sys-

tem. Therefore, the modules work at their maximum operation speed

for their specific inputs. In total, this is close to the average timing.

2.1. Asynchronous Circuits 11

â Reduced electromagnetic radiation

In synchronous circuits the most amount of electromagnetic noise is in-

duced by simultaneous switching of cells triggered by the global clock

signal. This is avoided in asynchronous circuits due to the asynchro-

nous update of the state of the individual modules.

â Possibility of modular designs

Due to the data exchange based on the concept of indication, the mod-

ules of an asynchronous system can be developed independently. This

also implies high reusability of the modules.

2.1.3 Asynchronous Handshake Protocols

Typically, asynchronous circuits utilize a convention, i.e., a protocol, that coordinates

the flow of the data transmission. The most widely used type of such conventions is the

class of handshake protocols. Although the concrete implementation may vary, the basic

principle behind these protocols is the same. The initiator of a transfer issues a request

event to start the data transmission. Afterwards, the responder indicates the receipt of

the data by generating an acknowledgment event. The convention defines which of these

protocol events is generated by the sender and which is generated by the receiver. Due

to this bidirectional nature, these event-driven data transmission conventions are called

handshake protocols, also known as handshake signalling.

Figure 2.1 shows the general schematic of this approach. The sender and the re-

ceiver are connected via asynchronous communication channels comprising control and

data signals. As shown in the figure, the asynchronous modules themselves consist of

asynchronous control logic (ACL), sequential elements (i.e., registers) and optionally

Sender Receiver

R
eg

is
te

r

R
eg

is
te

r

ACL ACL

CL CL

req

ack

data

en1 en2

Figure 2.1: Asynchronous handshake circuits

12 Chapter 2. Basics of Asynchronous Circuits and Their Testing

some computational elements implemented by combinational logic that is depicted by

the clouds left to the registers. The control logic generates local clock or register enable

signals triggering the respective storage elements of the module to store their currently

applied input. Depending on the protocol, the request signal is either issued by the sender

or by the receiver. The same applies to the acknowledgment signal. For this reason, the

handshake control signals in Figure 2.1 are not directed as opposed to the data signals.

As commonly known, handshake protocols can be categorized with respect to three

main criteria (see e.g., [Sparsø 2001]): the number of phases, the data encoding and the

initiator of the handshake.

Number of Phases This characteristic is related to the number of phases required for

the completion of a handshake. Two major types need to be distinguished: 2-phase and

4-phase protocols. These types have different properties regarding their power and time

consumption as well as the meaning of signal levels and transitions.

In case of 4-phase protocols, the protocol events are encoded within the levels of

the handshake signals as shown in Figure 2.2. Therefore, 4-phase handshake protocols

are said to be level-based. Such protocols are simple to implement. Typically, a request

event is issued by setting the respective wire to logical-1. However, also inverted logic

might be possible. Accordingly, the responder induces the end of the transfer by setting

the acknowledgment signal to logical-1. Finally, the handshake signals have to be set to

their initial values starting with the request signal. This is called to be the return-to-zero

phase of a 4-phase protocol. Furthermore, one has to consider the time window when

the data is valid. In this context, one can distinguish between the early, the late and the

broad data validity schemes which are illustrated in Figure 2.3.

In comparison to that, transition-based 2-phase handshake protocols encode the

protocol events into signal transitions. Instead of interpreting the logic level values

of signals, these transition signalling protocols assign meanings to the edges of the

ack

req

4-Phase transfer 1

Phase 1 Phase 2 Phase 3 Phase 4

transfer 2

Phase 1 Phase 2 Phase 3 Phase 4

2-Phase transfer 1

Phase 1 Phase 2

transfer 2

Phase 1 Phase 2

transfer 3

Phase 1 Phase 2

transfer 4

Phase 1 Phase 2

Figure 2.2: Asynchronous handshake protocols

2.1. Asynchronous Circuits 13

req

early

late

ack

broad

valid data

valid data

valid data

Figure 2.3: Data validity schemes

control signals. Thus, any transition, either rising or falling, has the same meaning

[Sutherland 1989]. As a result, 2-phase protocols have no return-to-zero phase. They

are more power and time efficient, because the required number of signal switches is

reduced to the minimum. However, the implementation of the controllers and/or reg-

isters of such circuits was very complex, until the introduction of the MOUSETRAP

handshake controller [Singh 2007].

Data Encoding Another criterion considers the encoding of the data. A handshake-

protocol with one wire per data bit is called single-rail protocol. To coordinate the data

transmission, channels that utilize these protocols have explicit request and acknowl-

edgment signals. In this type of protocols, the handshake signal, which is driven by

the sender, has to be delayed by the propagation time of the data from the sender to

the receiver. This so-called matched delay ensures that the data has settled before the

protocol event is recognized by the receiver. Due to this strict relationship between the

data and the corresponding handshake signal, single-rail handshake protocols are also

called bundled-data protocols. Figure 2.4 illustrates such a bundled-data protocol with

a matched delay on the request line.

As opposed to single-rail protocols, dual-rail handshake protocols use two wires

Sender Receiver

req
matched delay

ack

data

n

Figure 2.4: Bundled data protocol

14 Chapter 2. Basics of Asynchronous Circuits and Their Testing

d f dt

NULL 0 0
valid-0 1 0
valid-1 0 1
invalid 1 1

(a) Dual-rail encoding

Sender Receiver

ack

data

2n

(b) Schematic

Figure 2.5: Dual-rail handshake protocol

(d f dt) to encode a data bit. As given in Table 2.5a, a valid logic-1 is encoded with

(d f dt) = (01) and a valid logic-0 with (d f dt) = (10). If both wires are set to logical-0

then no data is present. This corresponds to the so called null-value. The last case, if both

signals are logical-1, is a forbidden and invalid value. As shown in Figure 2.5b, dual-

rail asynchronous channels have 2 × n wires for n data bits to transmit, but no explicit

handshake signal from the sender to the receiver. Instead, the respective protocol event is

encoded within the data lines. It is issued when all data bits are valid. Implementations of

these protocols comprise dedicated circuitry used for completion detection. For a single

data bit, this can be achieved by a two input OR-gate whose inputs are connected to d f

and dt. For more than one data bit the output of these OR-gates have to be synchronized

using a special cell, i.e., the C-element as shown in Figure 2.6.

Besides these two commonly used encodings, there are also protocols with more

complex data encodings, e.g., m-of-n-codes. Such protocols encode the data within n

bits and depending on the implementation, a valid codeword has m logic-1s or logic-0s,

either. If a valid codeword is detected the respective protocol event is issued. Obviously,

dual-rail protocols are special forms of n-of-m protocols, where n = 2 and m = 1.

Initiator and Responder of a Protocol The last criterion concerns the initiator of

the handshake. Protocols in which the sender initiates the transmission are called push-

protocols. In such protocols the sender is the active party and issues the request. The

receipt of the data is then acknowledged by the receiver that is the passive, responding

party of the protocol. Figure 2.7a illustrates a channel using the push convention. The

initiator is indicated by the dot. The opposite is called pull-protocol. There, the receiver

is the active party and initiates the data transfer by issuing the request. This is shown in

Figure 2.7b.

Solution Space of Asynchronous Handshake Protocols Several specific proto-

col implementations have been proposed in the past each having different properties.

2.1. Asynchronous Circuits 15

C

C

C

d0t

d0 f

d′0t

d′0 f

C

C

d1t

d1 f

d′1t

d′1 f

C

C

d2t

d2 f

d′2t

d′2 f

C

C

d3t

d3 f

d′3t

d′3 f

ackin

ackout

Figure 2.6: 4-bit dual-rail register with completion detection

Sender Receiver

req

ack
data

(a) Push

Sender Receiver

req

ack
data

(b) Pull

Figure 2.7: Push vs. pull protocols

16 Chapter 2. Basics of Asynchronous Circuits and Their Testing

Finally, as defined in [Sparsø 2001], most common protocol implementations are com-

binations of the afore mentioned criteria. Therefore, the solution space of these protocols

can be described by the cross product shown in Equation 2.1.

Σ = {2-phase, 4-phase} × {single-rail, dual-rail, m-of-n-code, . . . } × {push, pull} (2.1)

2.1.4 Asynchronous Channels

Based on the defined protocols and the requirements for implementing communication

channels, an abstract model for asynchronous channels can be defined. This model

includes the minimal set of resources to cover the most common types of asynchronous

communication channels and the protocol information required for coordinating the data

transmission. As previously identified, an asynchronous channel is a bunch of wires

including a set of control signals and a set of data signals. Typically, each of these sets

comprise at least one signal. However, it is also possible that the set of data signals is

empty. This is the case for control channels used for synchronization purposes only.

Thus, an asynchronous channel can be defined in the following way:

Definition 1. Let H ⊆ {req, ack} be a non-empty set of control signals that coordinate

the data transfer, where req designates the request or data valid signal provided by

the initiator and ack designates the acknowledgment signal delivered by the responder.

Corresponding to that, let v0 : H → {0, 1} be a function that maps the control signals

to digital values representing the initial values of the handshake signals. Furthermore,

let p ∈ Σ (see Equation 2.1) be the protocol type that describes the flow of interaction

between a sender and a receiver. Finally, let D be a set of data signals. Using these

components an asynchronous channel is a quadruple C = (H,D, p, v0).

2.1.5 Classification Based on Delay Models

As summarized in [Sparsø 2001], asynchronous circuits can also be classified depending

on assumptions concerning their gate and wire delays. Thereby, the assumptions define

preconditions under which the asynchronous circuit is supposed to work correctly. Four

types can be distinguished: self-timed (ST), speed independent (SI), quasi delay insen-

sitive (QDI) and delay insensitive (DI) circuits.

An asynchronous circuit which works correctly with arbitrary positive bounded gate

and wire delays is said to be delay insensitive. In consideration of the classical example

shown in Figure 2.8, this means that all delays δA, δB, δC , δ1, δ2 and δ3 can be arbitrary,

but the circuit works correctly. Such circuits are robust to any variations of environmen-

tal parameters not exceeding threshold values.

2.1. Asynchronous Circuits 17

A
δA

B
δB

C
δC

δ1

δ2

δ3

Figure 2.8: Circuit fragment with delays in logical gates and wires [Sparsø 2001]

In QDI circuits, the delays of gates and wires are positive, as well. The difference to

DI circuits is that some forks of the circuit are assumed to be isochronic, i.e., the delays

of the fork branches are assumed to be equal. For the given example, this means that δ2

is equal to δ3.

SI circuits consider only gate delays as being positive bounded. Delays in wires

are assumed to be zero, i.e., δ1 = δ2 = δ3 = 0. However, the delays of wires can be

lumped into the gates, because the gate delays are arbitrary. This means that all forks are

assumed to be isochronic.

The class of ST circuits has more elaborate timing assumptions under which they

work correctly. For example, an asynchronous circuit using a bundled-data protocol is

self-timed, since the delay on the request line has to match the delay of the respective

data signals.

2.1.6 Elementary Components

Typically, asynchronous circuits comprise special non-standard logic components. The

following subsections introduce the most important cells, and shows their functionality

and structure.

2.1.6.1 Muller C-element

The C-element, invented by D.E. Muller, is one of these basic logic components. It

is used to synchronize the logical values of its inputs. Therefore, it sets the output to

the value of the inputs if these have the same value. Otherwise, the output remains at its

current value. As shown in Figure 2.9, there are several ways to implement this function-

ality. One of the three common transistor-level implementations is shown in 2.9b. This

implementation was introduced by A.J. Martin [Martin 1989]. It uses two cross-coupled

inverters forming a latch to store the current output value. In this implementation a weak

18 Chapter 2. Basics of Asynchronous Circuits and Their Testing

C
a

b c

(a) symbol

a

b
c

weak feedback

(b) dynamic transistor implementa-
tion

a

b c

(c) full gate implementation

R

S
Q

a

b
c

(d) latch implementation

Figure 2.9: The Muller C-element

inverter is used as a keeper. This ensures that the pull-up and the pull-down logic net-

works can overwrite the value stored in the latch. Besides this one, there are also other

transistor-level implementations. An overview about these implementations and their

characteristics is given in [Shams 1996]. Furthermore, the C-element can also be real-

ized such that some inputs influence only the output value on either a rising or falling

transition. These C-elements are said to be asymmetric.

However, the utilization of a transistor-level versions of the C-element requires that

the cell is included in a cell library. If the cell is not available, one can implement

the C-element using logical gates, as shown in Figure 2.9c, or using a combination of

logical gates and a latch or a flip-flop as shown in Figure 2.9d. However, these versions

have to be carefully integrated in order to prevent glitches due to critical signal races.

Moreover, such implementations require more cell area and consume more power than

transistor-level implementations.

2.1.6.2 MUTEX element

Mutual exclusion (MUTEX) elements are used to realize arbitration logic [Seitz 1980].

This is, e.g., necessary for resolving possible conflicts when accessing a shared resource.

From the functionality point of view, the MUTEX forwards the first activity at one of its

two inputs to the corresponding output and inhibits the propagation of activities on the

other signal as long as the first signal was not deactivated. Figure 2.10a illustrates this

behavior.

2.1. Asynchronous Circuits 19

R1

R2

G1

G2

(a) Behavior

GND

R1

R2

G2

G1

(b) Gate implementation

Figure 2.10: The MUTEX-element

As shown in Figure 2.10b, these elements are typically realized using a reset-set-

latch structure. In order to suppress metastability of the outputs, the MUTEX-element

comprises a metastability filter connected with the outputs of the latch. Usually, incom-

ing signal transitions do not occur at the same time. Therefore, the latch has enough

time to stabilize. However, if both input signals change from logical-0 to logical-1 in a

time window shorter than the settling time of the latch, then the entire latch goes into a

metastable state. As shown in [Anderson 1991], the time window ∆M of this metastable

state cannot be determined.

2.1.7 Design Issues of Asynchronous Circuits

2.1.7.1 Race Conditions and Hazards

Race conditions are effects which may influence the output of an integrated circuit due

to the sequence and/or timing of uncontrollable signal transitions. As a result of a race

condition a circuit may produce incorrect signal transitions at its outputs. These tran-

sitions are called hazards. As an example, consider the multiplexer implemented with

logical gates as shown in Figure 2.11a. According to this, Figure 2.11b illustrates the

a

b

s o

as

bs’
s’

(a) A multiplexer

s

s’

as

bs’

o Hazard

(b) Timing diagram

Figure 2.11: Hazard effect

20 Chapter 2. Basics of Asynchronous Circuits and Their Testing

timing diagram of the multiplexer assuming both signals a and b to be logical-1 while

the control signal s switches from logical-1 to logical-0. For now, assume that the dashed

gate is not present. Due to the delay of the inverter, the output signal bs′ of the lower

AND-gate rises later than the falling edge of the upper signal as reaches the OR-gate.

This causes a short logical-0 pulse, i.e., a hazard, on the output o.

Such an effect can cause an asynchronous circuit to malfunction, since these circuits

are potentially sensitive to every signal transition. To prevent such behavior, asynchro-

nous circuits (or at least their components that are exposed to race conditions) can be

equipped with redundant logic. In this particular example, an additional AND-gate can

be introduced causing the output to be stable. Obviously, this logical gate is redundant

from the logical point of view, but it inhibits the hazards.

2.1.7.2 Metastability

Metastability occurs in sequential elements, such as flip-flops, when at least two inputs

change in a specific time window causing internal feedback signals to compete with

each other where each of the transitions of one of the internal signals results in a change

of the other one [Chaney 1973]. This is, for example, the case when setup and hold

times of a flip-flop are violated. In this case the quasi-simultaneous change of the input

and the clock signal causes internal nodes of the flip-flop to oscillate for a potentially

unbounded amount of time. Theoretically, this metastable state can persist indefinitely.

However, due to external parameters (temperature, induced noise, different wire delay)

one of the competing signals dominate the other and the sequential cell settles in a stable

state [Couranz 1975]. Such conditions can be found in almost all sequential elements

having internal (combinational) feedbacks. The ability to leave a metastable state at a

time t is defined by the probability

P(stable4t) = 1 − e−
t
τ (2.2)

where τ is the settling time of the sequential element. Both the size of the critical time

window, in which the sequential cell becomes metastable, and the settling time of the

cell can be determined by simulations and experiments.

Unfortunately, until now no method exist to fully avoid metastability. This is a prob-

lem for synchronous circuits that has an asynchronous input. If such a signal switches

in the critical time window, then this transition may cause metastability of a sequential

cell. Therefore, metastability is basically a problem of synchronous designs, where an

asynchronous signal has to be migrated into the clock domain of a synchronous read-

ing block. Asynchronous circuits prevent a priori the effects of metastability due to

2.1. Asynchronous Circuits 21

their special design. One way to hide the metastability of a cell is the introduction

of a metastability filter as applied in the MUTEX-element. A further simple counter-

measure, which significantly reduces the probability of the system to malfunction, is

to resynchronize asynchronous inputs into the clock domain of the reader of the signal

[McCluskey 1986]. This can be achieved by the utilization of so-called synchronizers,

which consist of consecutively connected flip-flops or latches triggered by the reader’s

clock signal. Thus, an asynchronous signal may violate the setup and hold time of the

first flip-flop. However, a second flip-flop, as it is used in the two-flop synchronizer

shown in Figure 2.12, considerably reduces the probability that the output of the syn-

chronizer is metastable, too. In order to further reduce the Mean Time Between Failure

(MTBF), the sequential cells of the synchronizers are specially adapted, such that the

settling time τ is as small as possible [Semiat 2003, Zhou 2006, Zhang 2010].

Several implementations of such synchronizers have been proposed, each having

different properties regarding synchronization latency, area overhead, metastability fil-

tration and MTBF [Dike 1999, Kinniment 2002]. A comprehensive overview of the

most common synchronizers and their pitfalls is presented in [Ginosar 2003]. Although

synchronizers are very effective, their integration results in performance loss, since ad-

ditional clock cycles are required to pass the signals through the extra register stages.

2.1.7.3 Non-determinism

In asynchronous circuits, one typical cell, which is exposed to metastability, is the MU-

TEX-element. Since the result of a metastable state is sensitive to external factors, such

MUTEX-elements behave unpredictably. Thus, a MUTEX-element may arbitrarily se-

lect one of its inputs and forward the activity to the corresponding output rather than the

other one. Furthermore, due to the lack of a global clock signal, the behavior of an asyn-

chronous circuit is influenced by PVT variations. This strengthens the unpredictability

of the circuit. As a result, the next state of an asynchronous circuit is not only determined

by its current inputs and its state. This is known as non-determinism. However, one can

distinguish between two types of non-determinism in such a system.

QD QD
async_in sync_out

clk

Figure 2.12: A two-flop synchronizer

22 Chapter 2. Basics of Asynchronous Circuits and Their Testing

On the one hand, an asynchronous circuit might be functionally non-deterministic.

This might be the result of arbitration logic controlling the access to a shared resource.

Eventually, the order of the responses of the shared resource becomes unpredictable.

From an external point of view, the responses of one output channel may occur in a

different order. To summarize this more formally:

Definition 2 (Functional determinism and non-determinism). A circuit is called to be

functionally deterministic if the sequences of values of all output signals are well defined.

Correspondingly, a circuit is called to be functionally non-deterministic if the sequence

of values of at least one output signal cannot exactly be determined.

On the other hand, non-determinism may only affect the timing of a circuit. Basi-

cally, due to the lack of the global clock signal, the timing of an asynchronous circuit is

determined by the delays of gates and wires. These delays are susceptible to PVT vari-

ations. Although the timing variations of the gates and wires are proportionally small,

their accumulated value might be large enough to affect the overall timing with respect

to an external timing resource (e.g., system or tester clock). Thus, the overall system

becomes timing non-deterministic. To conclude this:

Definition 3 (Timing non-determinism). A circuit is called to be timing non-deterministic

if the point in time of at least one output signal cannot exactly be determined.

2.1.7.4 Deadlocks

Apart from the afore mentioned difficulties, the design of asynchronous systems is an

exhausting task, since the event-driven data exchange is more complex. This is due to

the fact that the modules are triggered by events generated by the environment or by

other modules. A tricky situation happens when a set of processes (modules of an asyn-

chronous system) wait for an event of a process that is also in this set. Then, these

processes are blocked and may not evince further activity. This situation is called dead-

lock [Tanenbaum 2007]. The cause of a deadlock can be versatile. The most prominent

causes are design errors resulting from unconsidered behavior of a system. But also

faults may lead to a deadlock of a system. Furthermore, deadlocks can be the result of

unexpected interaction of a system with its environment. This in turn might be caused by

non-deterministic behavior of a system. With respect to this work consider the following

example:

Suppose a functionally non-deterministic DUT shall be tested with a test system ex-

pecting full deterministic behavior of the DUT. Obviously, this is an unfortunate situa-

tion, but assume that the test engineer did not know about the non-deterministic behavior.

2.1. Asynchronous Circuits 23

The DUT has one input channel and delivers a response on one of its output channels o1

and o2, either. Furthermore, assume that the DUT has an arbiter controlling which of the

channels shall deliver the response. Suppose that the test system is only able to listen to

one channel at a time. Now, consider the case that the tester expects a response at o1,

but due to the non-deterministic behavior, the response is delivered at o2. Since the test

system will not apply further stimuli unless it had received a response, the entire system

is in a deadlock.

Such conceptual errors and the resulting deadlock situations should be identified in

an early stage of the system design. Therefore, formal validation techniques can be ap-

plied to check for system deadlocks. However, current techniques are not able to handle

large designs. As a result, designs have to be manually validated using extensive simu-

lations or by decomposing the system in subsystems that can be automatically validated.

2.1.8 Modelling and Design of Asynchronous Circuits

A couple of modelling and design techniques have been proposed over the years. This

section introduces the most important approaches.

2.1.8.1 Modelling Asynchronous Circuits

Asynchronous circuits are typically modelled using graphs that express the causal rela-

tions of the circuit activities. As well as in the synchronous world, often graph-based

description of finite state machines (FSMs) are used to model asynchronous circuits.

Moreover, there are also other types of graphs that offer mechanisms to describe concur-

rency of the activities of an asynchronous circuit. The most important ones are Petri-Nets

and Signal Transition Graphs (STGs). Figure 2.13 illustrates an example circuit which

is modelled using an asynchronous FSM, a Petri-Net and an STG.

Asynchronous finite state machines are a mathematical model of a class of au-

tomatons. These automatons can be described by graphs that have a set S of nodes,

called states, and a set of edges. The graph describes two functions: the state transition

function δ and the output function µ. The state transition function δ : S × I → S defines

the next state of the FSM depending on the currently applied input of an input alphabet I

and the current state of the circuit. The output function specifies the output of the FSM.

With respect to this, one has to distinguish between two types of state machines: Mealy

and Moore-FSMs. In a Mealy-FSM, the output function is defined as µ : S × I → O. It

maps the current state and inputs to an element of the output alphabet O. To illustrate

this, the edges are labelled with the applied input and the corresponding output. This

24 Chapter 2. Basics of Asynchronous Circuits and Their Testing

s0
a = 1

s1
a = 1

s2
a = 1

s3
a = 0

s3
a = 0

b+ c+

c+ b+

b−

c−

(a) FSM

a+

b+ c+

a−

b−

c−

(b) Petri-Net

a+

b+ c+

a−

b−

c−

(c) STG

Figure 2.13: Graph-based descriptions of an asynchronous circuit

is different in a Moore-FSM. There, the output of the FSM is determined only by its

current state, i.e., µ is defined as µ : S → O. Therefore, the nodes of the graph include

the specification of the output in this state.

Petri-Nets were invented by C.A. Petri in the 1960’s. These nets are directed graphs

with two disjoint sets of nodes – the set T of transitions and the set P of places – con-

nected with a set E of edges. The edges have weights defined by a function W : E → N.

Each edge e ∈ E, which starts from a transition node, ends in a place node, and vice

versa. Correspondingly, a transition has input and output places, whereas a place has

input and output transitions. In its basic version, each place can be filled with an arbi-

trary number of tokens. A marking of a Petri-Net is a specific occupancy of places with

tokens. Starting from a specific marking m, a transition t transfers a Petri-Net to a differ-

ent marking m′, such that each edge ei ∈ E ending in t consumes W(ei) tokens from the

respective input place. Furthermore, the transition causes each edge e j ∈ E starting from

t to produce W(e j) tokens at the respective output place. The transformation caused by

the transition t is called firing of t and is denoted by m
t
→ m′. The places in combination

with tokens and the weights of the edges are the preconditions for the transitions to fire.

The transitions and places of a Petri-Net can be interpreted at different levels of ab-

stractions. In the context of modelling circuits, the transitions typically designate signal

switches and a marking of a Petri-Net can be seen as the state of a circuit. However, at

higher level of abstraction, transitions might also be interpreted as data transfers between

modules depicted by the places. In this case, the tokens designate the data exchanged

between the modules.

2.1. Asynchronous Circuits 25

Signal Transition Graphs are a special variation of Petri-Nets. These graphs are

free-choice Petri-Nets that interpret the transitions as rising and falling edges of the

signals of a circuit. Rising edges, also called positive transitions (0 → 1), of a signal s

are denoted by s+. Falling edges, i.e., negative transitions (1→ 0), are indicated with s−.

The free-choice property means that for every two transitions t1 and t2, which share the

same place p, p is the only input place for both t1 and t2. STGs are typically simplified,

such that they do not contain places with only one output transition. The edges, which

would lead to such a place p, are directly connected with the output transition reachable

from p. The only exception is the set of places which are required to define the initial

marking of the STG.

2.1.8.2 Design Approaches

Various modelling languages and tools have been developed for the design of asyn-

chronous circuits. One of the first approaches was the language CSP (Communicating

Sequential Processes) proposed by C.A.R Hoare [Hoare 1978]. It was developed for the

description of concurrent processes at a high level of abstraction. By this, it overcame

limitations of existing languages with respect to synchronization and communication

of parallel execution units. CSP is a member of a large class of languages to describe

concurrent systems. Other prominent examples are Tangram/Haste [van Berkel 1991,

van Berkel 1993], Tast [Dinh Duc 2002], Balsa [Edwards 2000, Edwards 2002], and

Tiempo ACC [Zhou 2011, Tiempo 2012], which are intended specifically for the design

of asynchronous VLSI circuits.

Tangram was developed during a research project of the Philips Laboratories in the

1990’s. The developments ended up in a spin-off company, called Handshake Solutions.

After that, the language was renamed to Haste. The language is very similar to Pascal.

However, it is extended by constructs to express concurrency and communication as

well as hardware-specific constructs. The EDA environment of Tangram/Haste provides

a tool chain, called TiDE, that covers the entire frontend design flow for handshake

circuits.

Tast is another CSP like language. It was developed at the TIMA Laboratory in

the period around the millennium. The respective CAD tools comprise a compiler that

allows the generation of several outputs including behavioral VHDL models for simula-

tion, and gate level models according to the Micropipeline and QDI styles.

A very similar language is Balsa which was developed at the University of Manch-

ester. Similar to Tangram/Haste, the design environment of Balsa comprises the lan-

guage itself and respective tools to synthesize and simulate handshake circuits. Both,

26 Chapter 2. Basics of Asynchronous Circuits and Their Testing

Tangram/Haste and Balsa originally use a control-driven design style for the synthe-

sized circuits. This means that an explicit control network coordinates the circuit activi-

ties. The modules of such a circuit have at least one control channel, which is driven by

the control network. Typically, this control network is slower than the data is processed.

This leads to performance limitations compared to data-driven architectures which omit

the control network. Instead, the activities of a data-driven circuit are directly coordi-

nated by the data tokens propagating through the circuit. With the PhD thesis of S.M.

Taylor [Taylor 2007], such a data-driven approach has been integrated into the Balsa

framework. Therefore, the language has been extended by further constructs. A simi-

lar data-driven approach has been introduced with the alternative description language

Biscotti [Jin 2009].

As opposed to the afore mentioned approaches, Tiempo ACC (Asynchronous Circuit

Compiler) is a tool to generate asynchronous circuits from a model written in a standard

hardware description language. The input of ACC is a SystemVerilog model which is

synthesized into a gate-level netlist in Verilog format.

Another class of tools addresses the design of asynchronous self-timed controllers.

Important examples are Petrify [Cortadella 1996], 3D [Yun 1992a, Yun 1994], and Min-

imalist [Fuhrer 1999]. These tools typically utilize STGs for modelling the circuits.

With respect to this, a fundamental work was presented in PhD thesis of by T.-A.

Chu [Chu 1987]. He proposed a technique for synthesizing VLSI circuits from graph-

theoretic specifications.

Petrify was developed by a group of researchers around J. Cortadella in the late

1990’s. It is used to synthesize asynchronous FSMs from STGs. A key issue of the tool

is the creation of hazard-free input-output mode circuits. Similar tools are 3D and Min-

imalist. However, unlike Petrify, these tools are used to generate Asynchronous Burst

Mode Machines (ABMMs) from FSM specifications. Such ABMMs are introduced later

in Section 2.1.9.2.

Finally, other techniques are based on the transformation of a synchronous to an

asynchronous circuit [Cortadella 2004, Branover 2004, Jährig 2004]. These desynchro-

nization techniques replace the clock tree of a synchronous circuit by an asynchronous

handshake network. In order to automate this process, respective tools were developed

that analyze the synchronous circuit with respect to communicating modules. By this, a

graph is created that is the base for the generation of the respective bundled-data circuit.

2.1. Asynchronous Circuits 27

2.1.9 Typical Architectures of Asynchronous Circuits

Several architectures of asynchronous circuits have been proposed in the past. These

can be divided into two groups: data path and control path architectures. Apart from

fully asynchronous circuits, another system architecture has become popular during the

last 20 years: GALS systems. These systems utilize asynchronous design paradigms

in order to establish different clock domains. This promising system architecture often

uses asynchronous handshaking. Therefore, it is worth to introduce it together with the

most important fully asynchronous circuit architectures.

2.1.9.1 Asynchronous Data Path Architectures

Several data path architectures have been proposed for the design of complex asynchro-

nous systems. These architectures are basically composed of individual asynchronously

communicating modules. Each of these modules consists of a register bank, control

logic coordinating the update of the registers, and optional combinational logic. The

most important architectures are described in the continuation.

Muller-Pipeline The first regular asynchronous circuit architecture was the Muller

pipeline invented by D.E. Muller. As shown in Figure 2.14, this structure uses the 4-

phase single-rail handshake protocol and consists of consecutively connected pipeline

stages. Each stage is composed of a register implemented by latches and simple ACL

comprising one C-element and an inverter.

The advantage of this pipeline is its regular structure. It operates as a ripple-through-

FIFO. The operation of this circuit is the base for most common asynchronous circuits.

Initially, all control signals are logical-0. When the sender issues data on the left port

of the pipeline, the corresponding request is set to logical-1 (req+
in). Then, the output

of the first C-element becomes logical-1 causing the first latch to be transparent such

C C C
req1

ack1

req2

ack2

din dout

ackout

ackin

reqoutreqin

Figure 2.14: 4-phase Muller pipeline

28 Chapter 2. Basics of Asynchronous Circuits and Their Testing

that the data enters the first register stage. Accordingly, req1 and ackin become logical-1

as well, where ack+
in indicates that the data has been received. Then, the sender can set

reqin to logical-0. In parallel, req+
1 indicates that the first stage issues data to the second

stage. This causes the second C-element to set its output to logical-1. Consequently,

the second latch is transparent and the data enters the second stage. In this way, the

data ripples through the entire pipeline. However, in case one stage is full, then its

preceding stage is blocked since the ack between these stages is still logical-1. The data

can be transmitted only if this acknowledgment signal becomes logical-0. This example

perfectly illustrates the self-timed nature of the circuit.

Several different variations of the Muller pipeline have been proposed in the past.

A popular variation is the 4-phase dual-rail pipeline as shown in Figure 2.15. In con-

trast to the single-rail implementation this pipeline architecture is delay-insensitive. The

pipeline registers are implemented via two C-elements per data bit. The OR-gate realizes

the completion detection.

Micropipelines In 1989 I.E. Sutherland presented an asynchronous pipeline architec-

ture that is based on the 2-phase transition signalling protocol. The pipeline uses special

capture-pass storage elements each composed of two parallel latches. Thus, these ele-

ments can store two data bits simultaneously. Thereby, the capture-signal defines which

of the two latches shall store the value currently applied at the data input. The outputs of

the latches are connected to a switch controlled by the pass-signal. This switch selects

the latch to connect with the output of the cell.

Using this kind of latches in combination with its interconnection as shown in Figure

2.16, the pipeline works as follows: The sender on the left port of the pipeline issues data

and performs a signal transition at reqin. This forces the data at the input of the register to

enter the lower latch. In parallel, the transitions ack+
in and req+

1 fire concurrently, which

indicates that the transfer has been completed and that the data can be transferred to the

C

C

C

C

C

C

dint

din f

doutt

dout f

ackin

ackout

Figure 2.15: Dual-rail Muller pipeline

2.1. Asynchronous Circuits 29

C P

P

C

C

reqin req1 req2 req3

ackin ack1 ack2 ack3

din dout

CCCC

ackout

reqout

C P

P

C

C

C P

P

C

C

C P

P

C

C

Figure 2.16: 2-phase Micropipeline

second stage. If, at this point, the sender on the right side issues new data before the first

token has reached the second stage, then the new data token is stored in the upper latch

of the first register stage. When the request transition req+
1 has reached the second stage,

it will force the respective C-element to switch. Thus, req+
2 , ack+

1 and the capture signal

of the second register fire. Thus, the data is stored in the lower latches of the second

register. Due to the firing of ack+
1 the switches of the first register will connect the upper

latches with the output of the register. Hence, the new data token is applied to the inputs

of the second register stage. In this way data tokens are rippling through the pipeline,

such that two consecutive tokens are alternately stored in the upper and the lower latch

of the respective storage elements.

2.1.9.2 Control Path Architectures

Asynchronous control path architectures typically implement control logic required for

the coordination of the activities of asynchronous designs. Simple examples are the

register control logic blocks of the Muller- or Micropipeline. However, these circuit

blocks may also implement quite complex state machines. Asynchronous control path

architectures are often described using traces of causal relations between the transitions

of their input and output signals. Petri-Nets and STGs are the most commonly used

techniques for specifying such traces [Sparsø 2001]. In the following, the basics of

these circuit architectures are outlined.

Asynchronous Finite State Machines As well as synchronous FSMs, asynchro-

nous FSMs are circuits with hysteresis, thus, their outputs depend on the current in-

puts and the state of the circuit. However, unlike synchronous FSMs, shown in Figure

2.17a, asynchronous circuits have combinational feedback loops without sequential cells

[Miller 1965]. Therefore, the change of the circuit state can happen at any time rather

30 Chapter 2. Basics of Asynchronous Circuits and Their Testing

d(i,s) = o

µ(i,s) = s+

s s+

FF

i o

n m

kk

clk

(a) synchronous

d(i,s) = o

µ(i,s) = s+

s s+

i o

n m

kk

(b) asynchronous (fundamental
mode)

d(i,s) = o

µ(i,s) = s+

s s+

n m

k

i o

(c) asynchronous (input-output
mode)

Figure 2.17: Finite state machines

than at repetitive points in time. However, there are often assumptions on the application

of inputs and the generation of outputs of an asynchronous FSM. These assumptions are

based on the fundamental mode or the input-output mode principle, either [Sparsø 2001].

In fundamental mode only one input is allowed to change. Furthermore, the time

between input changes has to be greater than the settling time of the circuit. Therefore,

the restriction on the environment is an absolute minimal time between input signal

changes. This ensures the circuit to stabilize and, therefore, prevents inconsistent states.

As shown in Figure 2.17b, asynchronous fundamental mode FSMs assume delays on the

feedback lines which store the current state.

In input-output mode the environment can change the inputs, although the circuit

has not stabilized after a previous input change. The restrictions on the environment

are causal relations between transitions on the input and output signals. These relations

are typically described using Petri-Nets or STGs. The model of an asynchronous input-

output-mode circuit is shown in Figure 2.17c.

Asynchronous Burst Mode Machines are a class of Huffman circuits and a spe-

cial type of asynchronous finite state machines. They originate from the automaton

theory in the 1950’s and 60’s [Huffman 1955, McCluskey 1963, Unger 1983]. ABMMs

extend the concept of fundamental mode circuits by allowing sequences of input and

output changes. These signal changes are aligned in so-called bursts, i.e., a set of one

or multiple hazard-free signal transitions without any predefined order. The circuit re-

ceives input bursts and produces output bursts without going through any transient state.

However, also these circuits have some restrictions. Input bursts need to be complete

and are applied after a complete output burst. This has some implications to the set

of valid inputs. An input burst cannot be a subset of another input burst. Further-

more, each state can only be accessed with a unique set of input values [Gill 2005].

2.1. Asynchronous Circuits 31

ABMMs are mainly used to implement asynchronous controllers that operate with low

delay [Yun 1992b, Yun 1994, Rutten 1997, Fuhrer 1999]. A technique for the automatic-

synthesis for such asynchronous burst-mode controllers was presented by S.M. Nowick

[Nowick 1995].

2.1.9.3 Globally-Asynchronous Locally-Synchronous Circuits

A tradeoff between the synchronous and the asynchronous design style is provided by

the GALS system paradigm. It was presented in the PhD thesis [Chapiro 1984] of D.M.

Chapiro in 1984. GALS systems benefit from the advantages of both the synchronous

and the asynchronous design methodologies in order to cope with the afore mentioned

issues related to a global clock signal while still maintaining at least parts of the syn-

chronous design flow.

The general idea behind this approach is to decompose a system into several inter-

connected synchronous blocks (SBs). These blocks are triggered by individual clock

signals that basically do not have to correlate to each other. For the communication,

the SBs are interconnected via asynchronous channels that compensate the differences

of the clock signals to ensure safe data transmission. Typically, the SBs are embedded

into asynchronous wrappers that interface the SBs to the asynchronous channels. These

wrappers may provide multiple input and output ports implementing the interface logic

for the channels. Figure 2.18 illustrates such a GALS system with several interconnected

SBs.

Over the years, several GALS system architectures have been proposed. A com-

prehensive overview of the most important architectures is given in [Krstić 2007]. The

main difference between these architectures is the way of interconnecting the SBs, thus,

the realization of the asynchronous channels. Basically, one can think about three tech-

SB

In
p
u

t

O
u
tp

u
tInput

SB

Input

O
u

tp
u
t

SB

Input

O
u

tp
u
t

SB

In
p

u
t

In
p
u

t

InputOutput

O
u
tp

u
t Output

SB

Output

Datain Dataout

Wrapper

Asynch. Channel

Figure 2.18: A GALS system

32 Chapter 2. Basics of Asynchronous Circuits and Their Testing

niques for a safe data transfer. First, the asynchronously arriving signals are migrated

into the clock domain of the block reading these signals. The second technique is to

compensate the differences of the clock signals of the communication partners. The last

possibility is to synchronize the clocks during the data transfer.

As summarized in [Krstić 2007], three main GALS interconnect schemes have been

established based on these theoretical approaches: synchronizer-based GALS systems,

GALS based on FIFO interconnects and GALS using a stoppable or so called pausible

clock. The next sections provide a short overview about these GALS architecture types.

Synchronizer Based Interconnects The application of synchronizers is a well-

known technique of interconnecting modules operating with different clock frequencies.

Synchronizer-based interconnects rely on the concept of migrating asynchronous signals

into the clock domain of the reading block. To this end, synchronizers are integrated onto

the handshake signals of the communication channel as shown in Figure 2.19. The data

signals remain unaffected with this approach.

Synchronizer-based interconnects are very effective with respect to their costs. How-

ever, the synchronizers increase the communication latency. This is the major disadvan-

tage of the approach. For example, in case of using a two-flop synchronizer solution, a

4-phase handshake requires at least six clock cycles to complete instead of four cycles.

Therefore, this approach might not be feasible for high-speed communication channels.

FIFO Based Interconnects With this scheme, the communication partners are con-

nected via asynchronous FIFOs providing an input and an output port with independent

clocks. These FIFOs compensate the differences between the clock phases of the com-

municating parties. Thereby, the compensation capability is closely coupled to the depth

Sending SB Receiving
SB

data

clk1 clk2

req

ack

Figure 2.19: An asynchronous communication channel based on synchronizers

2.1. Asynchronous Circuits 33

Sending SB FIFO
Receiving

SB
data data

clk1 clk2

f ull

write

empty

valid

read

Figure 2.20: A FIFO-based point-to-point communication channel

of the FIFO. Due to the nature of the FIFOs, this scheme can only be applied to point-

to-point communication channels as shown in Figure 2.20.

However, there are also more sophisticated approaches based on the utilization of

FIFOs. Typically, asynchronous Network on Chip (NoC) architectures integrate FIFOs

into routers and network adapters in order to buffer the packets and compensate the dif-

ferent timings of the system components. For example, in [Beigne 2006] an asynchro-

nous NoC based GALS architecture is proposed that uses FIFOs for the synchronization

of the SBs and the NoC.

The major advantage of the FIFO interconnect scheme is its simple implemen-

tation and general applicability to all kinds of interconnections, i.e., asynchronous-

synchronous, synchronous-synchronous, asynchronous-asynchronous connections. Ad-

ditionally, this scheme does not affect the operation of the SBs. On the other hand, the

main disadvantage lies in the significant area overhead required for the FIFO. Further-

more, depending on the realization of the FIFOs, they often introduce additional latency.

Although FIFOs with high throughput and low latency can be realized, as, e.g., shown

in [Chelcea 2000], the performance loss might still be critical for some applications.

Pausible Clocking The concept of GALS based on pausible clocking was proposed

by K.Y. Yun in [Yun 1996]. It has been successfully applied in several GALS systems

[Yun 1999, Muttersbach 2000, Krstić 2005b]. With this interconnect scheme, the SBs

are clocked by local ring oscillators whose clock generation can be stopped during a

data transfer. The general idea is to stop the generation of the local clock signal if

the asynchronous handshake signals arrive in the setup and hold time window of the

reading block. To this end, each SB is embedded into a wrapper comprising the clock

generator as well as input and output ports. The input and output ports implement the

34 Chapter 2. Basics of Asynchronous Circuits and Their Testing

Sending SB

ClockGen1
O

ut
pu

tp
or

t

Receiving
SB

ClockGen2

O
ut

pu
tp

or
t

data data data

handshake signalsenable enable

stopclk1 stopclk2

Figure 2.21: Sender and receiver of a pausible clock communication channel

asynchronous interface logic and are connected to the clock generator. When a protocol

event is generated by one of the communicating partners, then the port, which receives

this event, sends a request to the clock generator to pause the clock. If this request occurs

in the setup and hold time window of the reading interface, then it is rejected until the end

of the window. In this case, the protocol event is recognized one cycle later. If the request

occurs right before the window, then the clock generation is stopped for a short time.

This lets the asynchronous signal settle in the reading interface. Afterwards, the clock

generation is continued. In all other cases, the ring oscillator directly acknowledges the

request from the port. This means that the asynchronous signals can be safely stored.

Figure 2.21 shows the general scheme of the pausible clock approach.

2.2. Testing of Asynchronous Circuits 35

2.2 Testing of Asynchronous Circuits

In parallel to the evolution of design methods, various techniques have been developed

for the test of asynchronous circuits. Before continuing with the discussion about other

works related to the subject of this thesis, the basics of testing are outlined. This in-

cludes basic terms, such as fault models, and techniques that can be applied to test the

functionality of an asynchronous circuit.

2.2.1 Fault Models

Fault models abstract from real physical defects or environmental influences that result

in malfunctions of a circuit. They are applied to simplify the test generation. To be

more precise, a test can only be generated for a specific fault model. The model defines

the characteristics of the covered faults. Fault models can be defined at different levels

of abstraction. One commonly distinguishes between transistor level, logic level, and

system level faults and respective models. Furthermore, fault models can be classified

in certain ways. The most important models in the context of this work are described

below.

2.2.1.1 Functional Faults

Functional faults are defined in conjunction with a functional model of the DUT. Thus,

a functional fault may change the truth table of a component or inhibit an operation

[Abramovici 1990]. Typically, functional faults can be modelled using fault variables.

Using these variables, a system S , which has a functional fault f , can be remodelled to

S f such that it reflects the operation of S in the fault-free case. In the faulty case, S f

shows the effect of f [Menon 1978]. For example, consider a functional fault that affects

the operation of an ALU to perform an addition instead of a subtraction. This can be

modelled in the following way:

c =

a + b if f is present

a − b otherwise.

Unfortunately, this technique requires explicit definition of the faults of interest. Since

the solution space of altering a function of a circuit is unbounded, it is not possible to

automate the process generating a test that fully tests for all possible functional faults

[Abramovici 1990].

36 Chapter 2. Basics of Asynchronous Circuits and Their Testing

2.2.1.2 Structural Faults

Faults defined in conjunction with a structural model, e.g., a gate netlist, are referred to as

structural faults. These faults assume the components of a circuit to be fault-free. Only

the interconnections of the components are affected. Typically, such faults are shorts and

opens that can be modelled at different levels of abstraction [Abramovici 1990].

The stuck-at fault model is a simple model that supposes at least one wire of a circuit

to have a constant value, thus, logical-0 or logical-1 either. It is the most commonly used

fault model in IC testing. One can distinguish between the single and the multiple stuck-

at fault model. Thereby, the complexity of generating a test increases exponentially with

the number of faults assumed to be simultaneously present in the circuit.

A stuck-at fault within the data signals of an asynchronous circuit can directly be

tested using the same test sequence as its synchronous counterpart. However, in asyn-

chronous circuits the effects of stuck-at faults can be even more critical. For example, a

stuck-at fault within the handshake signals can result in a deadlock of the entire circuit

[Martin 1991].

Stuck-opens, shorts and bridging faults are more fine granular fault models. These

fault models are more realistic, since they model real defects of semiconductor devices

at the transistor level. A stuck-open fault assumes a break of a certain wire. Typically,

such faults on unidirectional wires appear as stuck-at faults. Shorts are interconnections

between two wires. One can distinguish between a short of a signal wire with power or

ground, and shorts between two signal wires. Similar to opens, shorts between a signal

wire and power or ground cause the signal to be constant, thus, they appear as stuck-at

faults. Shorts between signal wires are called bridging faults and result in a new function

of the affected lines. Based on the resulting logical function, one distinguishes between

AND and OR bridging faults [Abramovici 1990].

Although these models perfectly reflect defects in ICs, they are often not used. The

reason for this is the complexity of testing such faults, which typically exceeds the limits

in test time and costs. Fortunately, most of these faults are covered by fault models at

a higher level of abstraction, e.g., the stuck-at fault model. Nevertheless, it has been

shown that tests for fault models at logic level are insufficient to detect dynamic faults

and to adequately characterize the function of dynamic logic [Shi 2006]. For this reason,

various publications deal with the detection of transistor level faults in synchronous, e.g.,

[Hawkins 1994], and in asynchronous circuits, e.g., [Roncken 1996, Shi 2006].

2.2. Testing of Asynchronous Circuits 37

Delay faults A further commonly used model is the delay fault model. These faults

affect only the timing of a path but not the logical function. The test for delay fault

is essential for synchronous, but also for asynchronous self-timed circuits. The cor-

rect operation of these circuits depends on specific timing constraints. A delay fault

may violate such a constraint which causes the circuit to malfunction. For this rea-

son, delay faults are often the subject of investigations in testing asynchronous circuits

[Khoche 1994, Hulgaard 1994, Petlin 1995b, Kishinevsky 1997, King 2004]. Typically,

delay faults can be detected by applying a test sequence for a respective stuck-at fault

[Abramovici 1990].

2.2.2 Standard Test Methods

A large variety of techniques have been proposed to test IC. These techniques differ in

their properties. An important property is the fault coverage, which designates the ratio

between detected faults and all possible faults with respect to a specific fault model. This

implies that the set of faults of a model is countable which is typical for structural fault

models. Further properties are the runtime and speed of the test, test time, controllability

and observability, as well as intrusiveness in performance and area of the DUT.

The runtime defines when the test is executed. Basically, one distinguishes between

tests that are executed when the DUT is already integrated into the target system (on-

line), or prior to its integration (off-line tests). The speed of the test determines whether

a test runs at the operation speed (at-speed testing) or not. At-speed testing allows tests

under normal operating conditions of the design. The test time is the time required for

executing the test.

Furthermore, a test technique can be intrusive or non-intrusive to a design. Non-

intrusive means that no measures have to be integrated into the internal structure of a

design to perform the test. In contrast to that, an intrusive approach introduces special

properties, e.g., by adding extra hardware, to a design that enables the test technique

to be applied. This basically results in area overhead, but also the performance can be

affected. Typically, intrusive test approaches are applied to observe and control internal

nodes of a circuit during test.

The procedure of adding intrusive test approaches to a design is called DfT. The

majority of DfT-techniques were developed specifically for application in synchronous

circuits. However, several of these approaches have been adopted for testing asynchro-

nous designs.

The following sections summarize the most important techniques as well as the re-

quirements and adjustments to test asynchronous circuits.

38 Chapter 2. Basics of Asynchronous Circuits and Their Testing

2.2.2.1 Functional Test

A classical non-intrusive technique to determine whether a circuit works correctly is to

perform functional tests. The test patterns of such a test include the stimuli and the ac-

cording responses which are derived from a functional simulation of an ideal model of

the DUT. During a functional test, input stimuli are applied by the Automated Test Envi-

ronment/Equipment (ATE) to the DUT which, in response to that, produces signatures at

its outputs. These signatures are sampled and compared with the golden signatures from

the ideal model. If the signatures are equal, then the design is assumed to be fault-free.

More about functional tests and the issues with respect to asynchronous circuits can be

found later in Chapter 3.

2.2.2.2 Self-Checking Capabilities of Asynchronous Circuits

Asynchronous handshake circuits have the beneficial property to stop their operation

in the presence of a stuck-at-fault within the ACL [Hulgaard 1994]. To illustrate this,

Figure 2.22 shows two control logic blocks of a Micropipeline with a stuck-at-0 fault at

the acknowledgment signal ack2. Initially, the outputs of all C-elements are logical-0.

Now, a full handshake at the left interface shall be performed, i.e., req1 is set to logical-1

which causes the output of the first C-element to be set to logical-1 as well. In response

to req+
2 , the output of the second C-element is also set to logical-1. But due to the stuck-

at-0 fault at ack2, the first C-element will not reset its output when req1 is set to logical-0.

Hence, the circuit is in a deadlock. The same behavior can be shown for any stuck-at

fault on the handshake signals. To detect such deadlocks, an external timer can be used.

If the timer exceeds a defined threshold, the circuit is assumed to be deadlocked. Thus, a

test for all these stuck-at faults can be performed by executing a sequence of handshakes

that activates all control paths of the circuit.

As illustrated by this example, the asynchronous control logic is a critical point. A

fault in this circuitry may corrupt the entire system. Even though it is basically easy to

determine that a fault is present, it might be impossible to infer its location. Furthermore,

C Creq2

ack2

stuck-at-0

req3

ack3

req1

ack1

Figure 2.22: Two ACL units with a stuck-at-0 fault at ack2

2.2. Testing of Asynchronous Circuits 39

besides stuck-at faults on the handshake signals, other faults can corrupt the function-

ality of the handshake logic. For example, dynamic faults may cause glitches under

some circumstances. Such faults are extremely hard to discover. For this reason, special

handshake checkers have been provided in [Shang 2006, Zeidler 2010] that increase the

testability of the handshake logic. These protocol checkers observe the handshake sig-

nals during normal operation in order to detect faults that violate the handshake protocol.

2.2.2.3 Scan-Test

Scan test is a powerful DfT technology which can be used to detect various types of

faults, such as stuck-at faults, delay faults, as well as more realistic faults, such as stuck-

open and bridging faults. The general idea of this technique is to connect the sequential

elements of a device to one or more shift registers, called scan chains. Figure 2.23a

illustrates this. To achieve this, the sequential elements of a design are replaced by their

scannable counterparts. These scan elements (SE) have one additional data input (scan-

in/SI) and one control input (scan-enable/SE). This is shown in the Figures 2.23b and

2.23c, which show scannable versions of a flip-flop and a latch, respectively. The scan-

CL CL

si

soScan chain

P
ri

m
ar

y
in

p
u
ts

P
ri

m
ar

y
o
u

tp
u

ts

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

SE

(a) Design with scan

M
U

X

se set

rst

di

si

q

q=sout

clk

QD

Q
RST

SET

FF

(b) Scannable flip-flop

M
U

X
c
lk

di

si

tc
lk

q

so

se

rst

set

D

G

Q
ML

RST

SET

D

G

Q
SL

RST

SET

(c) Scannable latch

Figure 2.23: Scan technique

40 Chapter 2. Basics of Asynchronous Circuits and Their Testing

input is used to connect the sequential cells to scan chains, whereas the control input

defines whether the cell operates in normal or in scan mode. In normal mode each scan

element memorizes the value applied to their normal data input. Otherwise, the value of

the previous cell in the chain is stored. In this way either all (full-scan) or a subset of

all (partial-scan) sequential cells can be made scannable. A full-scan offers high fault

coverage, but also results in huge hardware overhead. Partial-scan techniques sacrifice

fault coverage and/or test time in order to save hardware costs. In order to perform

one test iteration, stimuli are shifted into the chain. Then, the circuit is switched into

normal operation mode for a defined number of iterations. Finally, the values stored in

the sequential elements are scanned out and compared with the expected signatures.

There are several issues with the integration of the scan technique into asynchronous

designs. One issue is that asynchronous circuits may have combinational feedback loops

without sequential elements as shown in Figure 2.24a (cf. [Abramovici 1990]). This in-

cludes the feedback loops of data signals as well as the ones included in the control logic.

These feedback loops have to be broken by inserting scan elements or by modification of

present sequential cells, such as the C-element [Khoche 1995]. Figure 2.24b illustrates

this. In normal mode these elements are transparent in order to maintain the original

behavior of the circuit [te Beest 2002]. In scan mode, the test patterns are shifted in and

out. In a further test mode, the scan elements drive the values of the feedback loops.

Another issue is related to the clock signal. The scan technique presupposes a com-

mon clock signal at least for all sequential elements of one chain. In a GALS design, this

is manageable by setting constraints which force that each scan chain includes the se-

quential elements of only one synchronous block. In case of fully asynchronous designs,

additional means are required to synchronize the sequential elements in scan mode. One

way is the integration of a test clock signal. However, this results in significant hardware

overhead for the required clock tree. Additionally, a synchronous clock tree imposes

i

…
.
.
.

od(i,s) = o

µ(i,s) = s+

s s+

(a) without scan

i

…
.
.
.

…
.
.
.

od(i,s) = o

µ(i,s) = s+

s s+

SE

SE

(b) with scan

Figure 2.24: Asynchronous sequential circuit with and without scan elements

2.2. Testing of Asynchronous Circuits 41

timing and power considerations that should have been avoided when applying the asyn-

chronous design methodology. Other approaches propose the extension of the handshake

control logic and registers to support scan [Petlin 1995a, Petlin 1995b, te Beest 2002,

Schöber 2001]. In this case, the handshake logic is adapted such that it can also be used

to shift the patterns in and out of the scan chains.

2.2.2.4 Built-In Self-Test

BIST techniques integrate test capabilities directly into the chip. This has the advantage

that tests can be performed at the operation speed of the DUT. Furthermore, it allows

the execution of tests when the DUT is already integrated within the target system. In

general, a BIST consists of a Test Pattern Generator (TPG) and a Test Response Ana-

lyzer (TRA). The TPG generates stimuli for the unit-under-test (UUT), while the TRA

receives the response and either generates a signature for further analysis or directly

compares the response with an expected golden signature.

One can distinguish between structural BIST and functional BIST. Structural BIST

uses structural information of the UUT and is often combined with scan-chains, i.e., the

scan-chains are connected to the TPGs and the TRAs, respectively. Functional BIST

techniques aim at testing the functionality of the UUT. With respect to this work, only

functional BIST are considered in the continuation. To integrate such a functional BIST

into an asynchronous circuit, the TPGs and the TRAs have to be equipped with hand-

shake logic [Alves 1998]. Figure 2.25 shows the general structure of a BIST for hand-

shake based asynchronous circuits.

However, a conventional functional BIST also has some drawbacks, e.g., the lack of

diagnostic capabilities. This is due to the fact that the responses are typically compacted

by the TRA. Depending on its realization the TRA either delivers pass/fail information

or a signature generated from the responses of the UUT. The former option enables

doutdin dtout

TRA

M
U

X

reqin reqout

Asynch.

UUT

M
U

X

ackout

ten

TPG

ackin

reqtest

Figure 2.25: BIST for an asynchronous unit-under-test

42 Chapter 2. Basics of Asynchronous Circuits and Their Testing

a simple evaluation, but totally lacks of diagnostic information. For example, in case

that the test fails, there is no information whether the fault is inside the TRA or the

UUT. This is different for a BIST providing a signature which can be further analyzed.

Nevertheless, even in this case, the diagnostic information from a BIST is typically very

limited.

"You don’t understand anything

unless you understand there are

at least three ways."

— Marvin Minsky

Chapter 3

The Challenge of Functional Tests

of Asynchronous Designs

In this chapter, the issue of functional tests of asynchronous designs is discussed. After

that, a couple of works are presented that address functional tests of asynchronous and

GALS circuits. Furthermore, some ideas are introduced that are basically applicable.

3.1 Discussion of the Problem

Apart from the role in IC prototyping, functional tests regain more and more importance

in complex system design. On the one hand, complex ICs, such as SoCs, often comprise

IP cores bought from external providers. The purchasers usually do not have access to

the internal structure of these cores. Even if that is the case, they are often not allowed to

change the structure for testing purposes. In either case, the only possibility to validate

the IP, is to perform functional tests. This may also apply to high-performance blocks.

The integration of (intrusive) DfT techniques can critically affect the performance of

a block. Non-intrusive functional tests are a possible solution for testing the design

without sacrificing performance.

Although much effort has been spent into test methodologies of asynchronous de-

signs, only a few approaches address directly functional tests of designs that utilize asyn-

chronous design paradigms [Sparsø 2001, Kermani 2001]. With respect to this, there is

one important open issue. In order to perform functional tests, equipment is required

that provides the stimuli and receives the responses of the asynchronous DUT. Thus,

to test asynchronous handshake circuits, the test equipment has to support handshake

43

44 Chapter 3. The Challenge of Functional Tests of Asynchronous Designs

protocols. Although commercial "big iron" hardware testers, e.g., Advantest V93000

[Advantest 2013], are very powerful and provide much freedom with respect to config-

urability, they are conceptually designed for testing synchronous designs. Hence, they

assume that the outputs of the DUT are aligned to a reference clock signal in a certain

way. This imposes problems to the test of event-driven devices, such as asynchronous

circuits.

At this point some clarification is required. With respect to test equipment, one can

distinguish between event-based and cycle-based testers. Event-based test systems, such

as the CertiMax, are basically able to generate edges and strobes at arbitrary points in

time, where typically all pins of the system operate asynchronously, i.e., independently

of the others. The input patterns for such testers are usually event-based as, e.g., the

Value Change Dump (VCD) pattern [IEEE 1364-1995, IEEE 1364-2001]. As opposed

to that, cycle-based testers, such as the V93000, require cyclized patterns, i.e., the drive

edges and strobes are aligned to the tester clock.

However, neither cycle-based nor event-based testers are able to handle the event-

driven behavior of asynchronous handshake circuits. They apply stimuli and expect

responses at deterministic points in time. If a response of a DUT arrives not at the ex-

pected time determined by the pattern, the test is classified as being failed. The problem

is that the responses delivered by an asynchronous DUT may not occur at predictable

points in time due to arbitrating processes and the sensitivity of the timing behavior to

PVT variations.

As a consequence of timing non-determinism, the arrival times of the simulated

and actually measured output responses may vary. An example of such a scenario is

illustrated in Figure 3.1. The figure shows the timing diagram of a data output that is

aligned to a request signal driven by the DUT. The response of the DUT is expected to

occur at the second tester clock cycle. Thus, the tester strobes the response at exactly

this cycle. But, due to the uncertainty of the timing, the DUT actually delivers the output

response one cycle later in the measurement. Thus, the tester samples the previous or an

strobe

req

data

tclk

simulated

measured

Figure 3.1: Timing variations of simulated and measured responses of an asynchronous
device-under-test

3.2. Alternative Solutions 45

intermediate data word. Consequently, the test fails.

Timing non-determinism would not be a problem for testing if hardware testers

would be able to react to signal events generated by the DUT. Apparently, due to their

orientation towards deterministic, synchronous designs, common test systems do not or

only in a limited manner support such reaction capabilities. Thus, a real asynchronous,

handshake-based communication between the tester and the DUT is impossible.

3.2 Alternative Solutions

In order to cope with timing non-determinism of an asynchronous DUT during test,

several approaches are possible. This section gives an overview about the few works and

ideas related to functional testing and handling of non-determinism of asynchronous

circuits.

3.2.1 Assuming Worst-Case Behavior

The simplest approach to treat timing non-determinism is to assume the worst-case be-

havior of the DUT. Thus, for every single response, no matter whether it is a handshake

signal or a data output, one has to adjust the corresponding action (applying new stimuli

or strobing the response) to the latest expected time. If the response does not match the

expected value, the DUT is supposed to be faulty. Such an approach is described by

B.G. Kermani et al. in [Kermani 2001]. The patented method proposes that the DUT

delivers each of its output responses for a long time window. Thereby, the tester ignores

all outputs until the point in time at which the result is expected at the latest. Finally, the

tester samples the result.

Although the general approach seems to be simple, its practical realization imposes

some considerable overhead. For example, the model of the DUT is typically ideal and

does not reflect the worst-case behavior. In this case, the model has to be adapted in order

to generate patterns for tests under worst-case conditions. Furthermore, it is necessary to

mask responses in the generated patterns that occur earlier than expected. This typically

requires an additional post processing of the generated pattern.

A further problem arises from the fact that the DUT never operates at its maximum

speed if the approach is applied to read all output responses. Obviously, it is not possible

to test the best-case performance of a design under worst-case conditions. Therefore, this

technique is often only applied to read the result of a BIST rather than complex output

sequences.

46 Chapter 3. The Challenge of Functional Tests of Asynchronous Designs

3.2.2 Utilization of Scan

A further solution could be the utilization of scan chains. This is especially interesting if

the design already has scan chains for other test purposes. Then, it is obviously possible

to utilize the chains also for functional tests. If the design does not have scan-chains,

e.g., due to possibly imposed performance losses, the utilization of the boundary scan

technique could be an option. This technique adds scan cells only to the inputs and

outputs of the considered UUT. Using such a scan approach, functional patterns are

shifted into the scan chain(s) as usual. Then, the UUT is switched into normal operation

mode and finally, the resulting responses are scanned out.

An example of a scan-based approach for performing functional tests was proposed

for GALS systems in [Gürkaynak 2002]. The purpose of the scheme is to test the in-

dividual SBs and their interconnections. Therefore, scan chains are integrated into the

input and output ports of the wrappers as shown in Figure 3.2. Moreover, each wrapper

is extended by a so-called Test Extension Element (TEE) that controls the wrapper and

its scan chains in test mode. These TEEs are controlled by a Centralized Test Controller

(CTC) that coordinates the test activities of all blocks. Therefore, the CTC sends in-

structions and patterns to the TEEs which, in turn, send the test responses of the SBs to

the CTC. Accordingly, the CTC also provides an interface to the tester that is used to up-

and download the patterns. To prevent synchronization issues, all TEEs and the CTC are

GALS Wrapper GALS Wrapper

Pausible Clock

Generator

Test Extension Element

In-Port
Out-

Port

Test Extension Element

In-Port
Out-

Port

si
n

so
u

t

te
n

p
ck

_
ri

,
p

c
k_

a
i

p
ck

_
ri

,
p

c
k_

a
i

Pausible Clock

Generator

si
n

so
u

t

te
n

p
ck

_
ri

,
p

c
k_

a
i

p
ck

_
ri

,
p

c
k_

a
i

te
n

te
n

pen

ta

pen

ta

pen

ta

pen

ta

Centralized

Test

Controller

si
n

so
u

t

so
u

t

si
n

test_instr

SB

S
ca

n

ch
ai

n

S
ca

n

ch
ai

n

S
ca

n

ch
ai

n

S
ca

n

ch
ai

n

si
n

so
u

t

si
n

so
u

t

ten

tin

tout

req

ack

req

ack

req

ack

tck

SB

Figure 3.2: GALS system architecture with scan [Gürkaynak 2002]

3.2. Alternative Solutions 47

triggered by a common global clock signal provided by the tester.

In principle, this concept can also be adapted to fully asynchronous designs. To

keep the overhead low, one can identify relevant sequential elements of the design which

should be equipped with scan capabilities, e.g., the registers at the inputs and outputs of a

block. However, apart from the issues mentioned in Section 2.2.2.3, the entire approach

has one major drawback. The shift process requires considerable time which inhibits

tests with high data rates. Moreover, if the tester is used to compare the expected and the

captured response signatures, then one has to adjust the patterns to the worst-case timing

as well.

In summary, it is generally possible to utilize scan for functional tests. But there are

several issues with respect to test time, required overhead, and performance evaluations

of the DUT.

3.2.3 Utilization of Built-In Self-Test

Functional BIST is a common technique to evaluate the functionality of asynchronous

circuits [Petlin 1997, Roncken 2000, Krstić 2005a]. Its major advantage is that it enables

at-speed testing under real operation conditions of the UUT. Also it is not intrusive to the

internal structure of the UUT, since only multiplexing logic is required to integrate the

BIST components. Thus, BIST is basically a suitable technique to perform functional

tests.

An example of a BIST for evaluating the functional correctness was presented by

M. Krstić and E. Grass in [Krstić 2005a]. This technique was integrated into a GALS

baseband processor. The transmitter and receiver part of the processor are divided into

several SBs interconnected with asynchronous channels. The BIST was used to test both,

the asynchronous channels and the SBs. To this end, the TPGs and TRAs are organized

such that they can be combined in several ways to perform a variety of different tests

of individual subsystems. Similar to the scan approach, a centralized test controller

coordinates the TPGs and TRAs and provides an interface for the tester. Local and

global tests can be performed by activating particular TPGs and TRAs. Furthermore,

the transmitter and the receiver are connected together, such that stimuli at the input of

the transmitter can propagate through the entire GALS architecture to the outputs of the

receiver. By this, global tests can be performed that check the functionality of the entire

design.

The major drawback of a BIST approach is its limited diagnostic information. A

functional test using a commercial tester delivers cycle-accurate pass/fail information of

each output bit provided by the DUT. This information is needed especially in system

48 Chapter 3. The Challenge of Functional Tests of Asynchronous Designs

prototyping to debug the system. As afore mentioned, a BIST only provides pass/fail

information or a signature generated from the responses. Hence, it is often not possible

to determine in which state of a test a malfunction occurred. Furthermore, as for the

other mentioned approaches, it is also necessary to assume the worst-case timing when

reading the result of the BIST. But in comparison to the other approaches, this has to be

done only once per test rather than for each data exchange.

A further drawback is related to the stimuli generated by the TPGs. Typically, TPGs

are realized by pseudo-random number generators, such as LFSRs. These components

are simple to implement and require only little hardware resources. However, complex

sequences of non-random patterns are hard to implement. Therefore, a memory block,

e.g., a Read Only Memory (ROM), storing the stimuli can be integrated and combined

with LFSRs in order to realize special pattern sequences. But the integration of a mem-

ory only for test purposes might be too expensive with respect to hardware overhead.

3.2.4 Utilization of Memories and FIFOs

A cognate approach is the utilization of external memories that store and buffer the

patterns during test. This prevents the integration of memories into the DUT. Only an

interface has to be provided which is already available in many designs. Such a scheme

was described in [Sparsø 2001]. They used an external ROM to store a program testing

the functionality of a fully asynchronous microcontroller of a smartcard. This program

computed a signature which was written to another memory and analyzed after the test.

However, this approach imposes the DUT to have memory controllers and respective

interfaces which might not be desired in all cases.

A similar approach is based on the utilization of FIFOs in order to interface the DUT

with the tester. By this, the timing uncertainties are compensated by the FIFOs. To

realize this scheme, an FPGA can be used that is mounted on the load board of the test

equipment. This FPGA implements the interface logic between the DUT and the FIFOs

as well as the interface between the FIFOs and the tester. Thus, the test equipment is

adapted to the interfaces of the DUT rather than the other way round. Accordingly, no

further means have to be integrated into the DUT to perform the functional test. Figure

3.3 shows such a scheme. Depending on the handshake protocol, the types of the FIFOs

have to be carefully selected. In the shown example, the channels operate according to

a push-protocol. Therefore, a so-called fall-through FIFO is used for the input channel.

This ensures that the data is already present at the output interface of the FIFO when

the request is issued. In comparison to that, standard FIFOs are sufficient for output

channels. During test execution, the input buffers are filled and the output buffers are

3.2. Alternative Solutions 49

DUT

Automatic Test Equipment

Fall-

Through

FIFO

empty

emptyfull

rd_en

datain

wr_en

req

datain

run

dataout

rd_en = ack

Standard

FIFO

req = wr_en

ack

full

dataout

Figure 3.3: Integration of FIFOs to compensate timing non-determinism

emptied in bursts by the tester. Thus, under consideration of the average timing of the

DUT, it should be possible to periodically fill and empty the FIFO buffers in bursts

comprising half of the words fitting into the buffers.

The benefit of this scheme is its simple implementation. However, the FIFOs and the

interface logic need to be adapted for every DUT. Furthermore, this test infrastructure

does not allow a precise control of the data exchange. The data applied via the FIFOs

are directly fed to DUT and vice versa.

3.2.5 Eliminating Non-deterministic Behavior

Another solution that directly addresses the problem of non-determinism of GALS sys-

tems with respect to test was proposed by M.W. Heath and I.G. Harris in [Heath 2003,

Heath 2005]. Their approach, called synchro-tokens, introduces additional logic to the

asynchronous wrapper surrounding the synchronous blocks. This logic implements

nodes of a token ring integrated for each communication channel between two SBs.

These nodes are equipped with two counters. One counter stores the number of local

clock cycles in which a token is expected to arrive. The second counter stores the num-

ber of cycles in which the access to the input or output of the channel is granted. This

allows multiple data words to be transmitted for each token exchange. If one of the two

counters reaches zero, then the token ring node stops the local clock generation. Conse-

quently, the data is exchanged at deterministic cycles of the local clocks which results in

an overall deterministic behavior of the system.

Figure 3.4 shows the entire GALS architecture of this approach. The SBs are con-

nected with each other via self-timed FIFOs. Furthermore, additional wires carry the

token exchanged between the communicating SBs. One of these wires comprises an

inverter to realize transition signalling between token ring nodes. For test purposes, an

50 Chapter 3. The Challenge of Functional Tests of Asynchronous Designs

GALS WrapperGALS Wrapper

Pausible Clock

Generator

NodeNode

SB
Self-

timed

FIFO

F
IF

O
In

te
rf

ac
e req

ack

req

ack

wr

full
emtpy

clk_en

F
IF

O
In

te
rf

ac
ereq

ack

tok_out

tok_in

tok_in

tok_out

clk

F
if

o
_
en

F
if

o
_
en

Pausible Clock

Generator

NodeNode

SB

F
IF

O
In

te
rf

ac
e req

ack

wr

full
emtpy

clk_en

F
IF

O
In

te
rf

ac
e

clk

F
if

o
_
en

F
if

o
_
en

tok_in

tok_out

tok_in

tok_out

Figure 3.4: Synchro-Tokens GALS architecture [Heath 2004]

additional SB (not shown in the figure) is introduced that is connected to all SBs via

separated token rings. By this, the block is able to coordinate the activity phases of the

individual SBs. Furthermore, this block has a test access port (TAP) to setup the node

counters and to provide access to internal nodes (e.g., via scan) during test.

However, this architecture is only applicable to GALS designs, since the number of

asynchronous communication channels is strongly limited. An adaption of this scheme

to fully asynchronous designs is unfeasible, not only by the fact that a pausible clock is

required, but also due to the complexity of the additional hardware required for every

channel. Additionally, the DUT has to be switched into a test mode to suppress the non-

deterministic behavior. This hides the real behavior of the circuit and makes performance

evaluations of the DUT difficult.

"If you have built castles in the air,

your work need not be lost; that is

where they should be. Now put the

foundations under them."

— Henry David Thoreau

Chapter 4

Concept for Functional Tests of

Asynchronous Circuits

This chapter introduces a concept for realizing functional tests of handshake circuits.

The concept introduces an asynchronous abstraction layer that abstracts from single sig-

nal transitions of conventional tests. By this, test stimuli are applied to the DUT and

its output responses are received via performing data transfers based on asynchronous

communication channels. The abstraction layer is represented by a test processor that

provides a generic interface to establish asynchronous communication channels. Be-

sides the generic test processor architecture, a procedure is proposed that describes the

generation of programs for the processor. These programs are derived from behavioral

simulations of the DUT and implement the desired functional tests.

4.1 Model of the Device-Under-Test

Prior to the definition of the concept, assumptions have to be made that help to abstract

from the actual realization of asynchronous designs. This is the prerequisite for provid-

ing a generic approach that is applicable to a large variety of asynchronous designs.

One basic assumption is related to the behavior of the considered asynchronous de-

vice. Functionally non-deterministic circuits are not addressed in this work. To test

such circuits, a magic predictor would be required that foretells non-deterministic out-

puts. Such a predictor cannot be implemented by any deterministic finite state machine.

Therefore, this work covers only the test of asynchronous circuits whose output se-

51

52 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

Async.

DUT

Environment

.
.
.

.
.
.

Figure 4.1: Abstract model of the DUT

quences are well-defined. Only the timing of the responses is allowed to vary. For

this kind of circuits, the interaction with the environment is governed by events of com-

munication protocols.

According to this, the patterns have to be exchanged via unidirectional asynchronous

handshake channels that are structured as described in Section 2.1.4. Thus, stimuli are

applied via the input channels of the DUT and responses are received via the output

channels as shown in Figure 4.1. However, there is one exception to this assumption, i.e.,

special control signals. Sequential circuits typically have at least one of such signals: the

reset signal. This also applies to asynchronous circuits. Therefore, the TP has to provide

an interface such that those control signals can be realized.

4.2 Test Processor Concept

As discussed in Section 3.1 conventional hardware testers are not able to handle the

non-deterministic timing behavior of an asynchronous DUT. Consequently, different

test equipment is required that applies stimuli to the targeted non-deterministic DUT

and receives its output responses in an elastic manner. Since it is assumed that data

is exchanged via asynchronous channels, this equipment needs to provide handshake

channel interfaces that are

â able to react to protocol events from the DUT and

â configurable to support various types of handshake protocols.

Additionally, the equipment should be programmable for the sake of flexibility. This

leads to the demand of a special test processor that supports handshake signalling in

4.2. Test Processor Concept 53

a programmable manner. As a direct consequence, a common test system is not re-

quired for performing the functional tests. Instead, a standard PC can be used to supply

the patterns, and to receive and process the final test results delivered by the processor.

However, the provided TP is designed only for functional tests. A common tester is,

therefore, beneficial to complement the test, e.g., by performing parametric measure-

ments, such as continuity-, leakage-, and operating current tests. In this case, the TP

should be connected with the tester. Therefore, in the continuation of the work any kind

of equipment connected to the TP for controlling and monitoring purposes is here and

after referred to as external test equipment (ETE).

The utilization of a TP component for extending the available tester hardware is not

a new concept. Several publications proposed TP solutions to implement programmable

LFSRs [Ali 1996, Ali 2002, Kabir 2009]. In [Darus 1997] a low-cost TP was intro-

duced to realize multiple polynomial LFSRs with programmable seeds that also supports

scan chain testing. In [Altaf-Ul-Amin 1999] the design of a prototype TP is proposed

that can be used for functional tests of digital ICs. Therefore, the processor is able to

generate pseudo-random followed by deterministic test vectors. In the other direction

the processor receives output responses of the DUT and provides means to compress

them. In [Galke 2002] C. Galke et al. have presented a low-cost TP used to enable self-

tests of system-on-chips (SoCs). The provided test processor has a RISC architecture

and is equipped with special registers to realize configurable LFSRs and Multi-Input

Signature-Registers (MISRs) for compaction, decompaction and filtering of patterns. In

[Frost 2007] this concept was further extended by enabling the adaption of the TP to the

demands of the SoC test. Also, mechanisms are presented to test logic blocks and bus

structures using the TP.

However, all the afore mentioned TP solutions are intended for testing synchronous

designs. Thus, the novelty of the concept provided in this work is the support of asyn-

chronous handshake signalling. In particular, the novel test processor is equipped with

configurable handshake interfaces in order to support a large variety of asynchronous

circuits. Finally, as shown in Figure 4.2, the generic processor architecture is divided

into three main components: a memory, the test processor core and a port component

that provides the handshake interfaces. The TP core executes the program describing the

configuration of the processor and the interactions with the DUT. The memory stores

the program, the stimuli for the DUT as well as the responses and/or fault signatures

captured during test execution. Furthermore, the TP provides a synchronous interface to

the ETE. Using this interface, the ETE can control and monitor the TP, upload the test

program and the related patterns, and receive the test results. Furthermore, the ETE has

to be informed by the TP after test execution that the results can be downloaded. Thus,

54 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

TP

Tester-

link

Power & Ground

Asynch.

handshake

channels

E
T

E
TP

Core

P
o
rt

co
m

p
o
n
en

t

Program/data memory

A
sy

n
c.

D
U

T

Figure 4.2: Concept of the test processor for asynchronous devices

a synchronization mechanism is required.

4.2.1 Implementation Schemes

In consideration of the general processor architecture, several implementation schemes

can be identified. These schemes describe the locations where the individual components

shall be physically placed. In general, one can implement the components of the TP

inside or outside of the chip to be tested. Inside means that the components are placed

within the DUT or added as test structure on the wafer. The latter aspect could be applied

to test several devices within the same die using only one test processor. Alternatively,

the TP can be fully integrated into the test equipment.

Apparently, there are three different implementation schemes of the concept:

â The simplest solution from the tester point of view is the complete integration of

the TP into the DUT as given in Figure 4.3a. Such an approach was, e.g., applied

in [Galke 2002, Frost 2007]. The major advantage of this scheme is that internal

signals of the design can be accessed which leads to improved debugging capabil-

ities. However, the overhead of integrating the processor into the DUT might be

too large and, therefore, unsuitable for some designs. Nevertheless, the insertion

of the TP into the design can be feasible under consideration of the possibility

to perform self-tests when the design is already integrated into the target system.

Furthermore, the processor can also be used for other tasks in the design, e.g.,

power management.

â As shown in Figure 4.3b, the second possibility is to fully place the processor

outside of the chip. One can think about a stand-alone test system consisting of

4.2. Test Processor Concept 55

Load Board

DUT

Async.

DUT

TP MEM

ETE

(a) on-chip

DUTTP DUT
Async.

DUT

DUTMEM
Load Board

ETE

(b) off-chip

DUT
TP

Core DUT
T

P
P

o
rts

DUTMEM
Load Board

Async.

DUT

ETE

(c) mixed

Figure 4.3: Implementation schemes

the TP and an interface board for the DUT. The integration of the TP into the

load board of the tester equipment is also possible. This is a common way to

complement the ATE with further capabilities, e.g., for realizing high-speed tests

as it was done in [Keezer 2005, Majid 2010]. The benefit of this approach is that

it does not impose any additional hardware overhead to the DUT. However, there

is no possibility for the processor to access internal signals of the DUT.

â The last scheme combines both preceding approaches to a mixed implementation

as presented in Figure 4.3c. Thereby, some components are placed outside of

the chip while the DUT has to provide special capabilities. An example for such

an architecture was proposed in [Majid 2005]. In this approach, the DUT has to

provide BIST facilities, while the additional external test equipment receives the

results of the BIST. In the context of the proposed test processor, one possible so-

lution is to place the port component inside of the DUT. This enables the access to

internal signals while keeping the overhead for this at a minimum. Nevertheless, a

high-bandwidth interface between the port component and the TP core is required

to feed the port components with data.

In practice, the selection of the implementation scheme depends on the device and

the demands onto the test. However, the memory is the biggest issue for the on-chip

implementation. If the DUT has a memory, then it should be possible to connect this

56 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

memory with the TP. Otherwise, the memory could be placed outside of the chip. For

example, one can integrate the memory into the load board of the tester equipment. A

more detailed list of the issues that affect the decision about the implementation scheme

is given later in Section 4.3.1.

4.2.2 Definition of Interfaces

The most important aspect of the test processor is related to its interfaces. On the one

hand, the processor has to provide a generic interface for the DUT. This interface has to

comprise configurable ports in order to realize arbitrary asynchronous channels. On the

other hand, the processor has to be connected with the ETE via a fixed and well-defined

interface.

4.2.2.1 Interface to the DUT

In order to implement the abstract model of asynchronous channels described in Section

4.1, the TP needs the following types of ports:

â a set Ω = {ω0, . . . , ωl−1} of data ports (DPs) for realizing the set of data signals D,

â a set Φ = {φ0, . . . , φm−1} of handshake ports (HPs) for realizing the handshake

control signals H.

To transmit data in both directions from the TP to the DUT and vice versa, the data ports

could be separated into inputs and outputs. However, to retain maximum flexibility,

these ports shall support both input and output data transfers. Therefore, each port needs

to comprise a set of inputs and an equal number of outputs. If the off-chip scheme is used

for the implementation of the TP, one input and one output of a DP can be combined to

a bidirectional pin of the TP chip. In this case, each port has to provide one additional

signal defining the direction of the port. This signal can then be used to control the

according I/O pad tristate buffers connected to the data inputs and outputs of the DP.

To implement the handshake ports, exactly one input hi and one output ho are

required. These signals need to be connected with the respective handshake signals

H ⊆ {req, ack} of the DUT according to the protocol type p ∈ S C and the direction of

the channel. For example, to interface a bundled-data input push channel of the DUT,

the output ho needs to be connected with the request signal, and the input hi has to

be connected with the acknowledgment signal of the channel interface of the DUT. In

contrast to that, the input hi has to be connected with the request signal, and ho has

to be connected with the acknowledgment signal, in order to establish an output push

4.2. Test Processor Concept 57

channel of the DUT. Consequently, one can define a bijective mapping fHP from the

handshake signals of a channel C to the handshake control signals hi and ho as given in

the following equations:

fHP(req) =

hi C is an output push or an input pull channel of the DUT

ho C is an output pull or an input push channel of the DUT
(4.1)

fHP(ack) =

ho C is an output push or an input pull channel of the DUT

hi C is an output pull or an input push channel of the DUT
(4.2)

Correspondingly, let f −1
HP be the inverse function of fHP.

In order to fully cover the components of the abstract channel model, the handshake

ports also have to store the protocol information p and the initial values defined by the

function v0 (see Section 2.1.4). According to the defined mapping, the initial values

v0(req) and v0(ack) of the handshake signals are associated with the signals of the ports.

Thus, the initial value of hi is v0(f −1
HP(hi)) and the initial value of ho is v0(f −1

HP(ho)).

Finally, an abstract asynchronous channel C = (H,D, p, v0) can be mapped to resources

of the TP by combining one HP ωi ∈ Ω with a set of DPs Πi ⊆ Φ. Therefore, let k be

the number of pins (inputs or outputs) provided by each DP. Then, the set Π has to be

selected such that |D| ≤ k · |Π|.

Besides the channel interfaces, an asynchronous device may also have a few special

in- and/or outputs that are not aligned to handshake events. As mentioned before, a

prominent example is the reset signal, but also other control and/or configuration signals

might be required, e.g., special statically programmable configuration signals. To fully

embed the DUT into the TP environment, the TP has to provide interfaces for such

control signal. These ports could be implemented by the data ports of the TP, but this

actually depends on the implementation of the processor.

4.2.2.2 Interface to the ETE

The interface to the external test equipment has to fulfill two tasks. On the one hand, the

test data has to be exchanged. Thus, the program and the patterns have to be uploaded

to the TP. In the opposite direction the test results including the responses and/or fault

signatures have to be downloaded for further evaluation. Therefore, the following ports

are required:

â The input ext_mem_req indicates a read or write access request to the memory of

the test processor from the external equipment.

58 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

â The input ext_addr is used for the specification of the memory address where

data shall be stored or read from.

â The input ext_din is the port for uploading test program data from the ETE to

the TP.

â Finally, the output ext_dout is used to download test results and other informa-

tion from the TP to the ETE.

One the other hand, the TP has to be controlled and monitored by the ETE. With

respect to this, the TP has to be initialized and it should also be possible to restart the

test program. Furthermore, the TP and the ETE have to be synchronized in specific

situations, e.g., prior to the download of the test results. A handshake mechanism is

a proper scheme to realize this synchronization. To this end, the TP has to provide a

completion indication signal and an acknowledgment input signal. The indication signal

is the only one that the ETE has to observe. Therefore, the ETE can poll this signal

continuously. If the ETE does not provide this, one can again assume the worst-case

timing.

In summary, the required ports are:

â The input rst is used to reset the TP to its initial state.

â The input rst_pc is used to reset the program counter only. Other previously

defined configurations are retained.

â The output halt indicates whether the TP is in halt state. This signal is part of the

synchronization mechanism between the TP and ETE.

â The input enable is used to force the TP to continue with the program execution

once it is in halt state. Thus, it is the second signal required for the synchroniza-

tion.

â The output fault is a global fault indication signal. It indicates whether a fault

has occurred during test. This output is optional.

4.2.3 Role of the Processor Core

An essential part of the concept is the processor core. This core is basically a micro-

controller capable of executing programs that describe the configuration of the ports and

coordinate the flow of the test. The latter aspect especially includes the control and ob-

servation of the dataflow. The observation includes especially the detection of deadlocks

4.3. Workflow 59

during test which could, e.g., be caused by a defect. To detect such deadlocks, a timeout

mechanism can applied that comprises a simple counter. This counter is decremented

every cycle of an external clock source as long as a data transfer is incomplete. If the

operation is finished, then the counter is reset. If this counter reaches zero while the

transfer was not completed, then the processor core shall indicate a deadlock. For such

cases, mechanisms to handle the unexpected behavior have to be provided. For exam-

ple, a special program routine could be called that collects further information about the

cause of the deadlock and that delivers this data to the ETE.

To execute programs, the processor core fetches and executes instructions from the

memory and loads and stores patterns during test. Obviously, the core has to interface

the memory storing the program and the respective test data. As a consequence of this,

the core is also responsible for the coordination of the data exchange between the port

component and the memory. It reads the stimuli from the memory and distributes them

to the according data ports. In the other direction, the core forwards the sampled re-

sponses/fault signatures from the data ports and writes them to the memory.

The realization of this core depends on the implementation scheme of the entire

processor. For example, consider the case that the DUT is a complex SoC comprising a

microprocessor and some asynchronous components. In this case, it might be beneficial

to extend the existing microprocessor to support the desired test functionalities. On

the other hand, if the off-chip approach shall be applied, then an application specific

processor can be used.

4.3 Workflow

Besides the test processor infrastructure itself, a procedure has to be defined that de-

scribes how the processor is integrated into a test flow in order to efficiently benefit from

that infrastructure. On the one hand, this flow includes the embedding of the DUT into

the test processor environment. On the other hand, test programs have to be generated

that are executed by the TP and that describe the test of the DUT. The following sections

describe the general approaches to tackle these issues.

4.3.1 Embedding the DUT into the Test Processor Infrastructure

The very first activity of the workflow is the analysis of the existing test infrastructure,

the DUT as well as the demands of the test. Several questions have to be answered in

order to decide about the way of implementation of the test processor. For this, one has

to clarify the following aspects:

60 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

â Is there more than one asynchronous design to test? Testing various different

designs favors the realization of the off-chip approach while the test of a single

design most likely justifies the integration of the TP into the DUT.

â Shall self-tests be performed? Self-tests are obviously only possible with an on-

chip implementation of the TP.

â Shall internal signals of the design be accessed? If internal channels need to be

accessed either the on-chip or the combined approach has to be selected.

â What are the maximum allowed costs? Obviously, the integration of the TP into

the DUT increases the costs of silicon area which have to be traded against the

costs of an off-chip implementation.

â Does the DUT already contain a processor? An existing processor can be adapted

such that it provides facilities to test other components. This decreases the costs

of an on-chip implementation of the TP.

These questions need to be contemplate during the implementation phase of the DUT,

since they affect the implementation scheme and, therefore, possibly the design of the

DUT. Based on the answers to these questions, the implementation scheme has to be

selected. In case of the on-chip or the mixed approach, it has to be further clarified

how many asynchronous channels are needed, and which handshake protocol types have

to be supported by the TP. As a result, the on-chip test processor can be adapted to

exactly match the demands of the test. If the off-chip approach is selected, then the test

processor should be implemented in a generic way in order to support a large variety

of asynchronous designs. Thereafter, the TP and/or the DUT have to be adapted to the

requirements identified. Finally, one will end up with the final TP and DUT designs.

The next essential activity is the interconnection of the test processor with the DUT.

Thus, one has to define a configuration comprising a mapping of the ports of the TP to the

ports of the DUT. This configuration is here and after referred to as pin configuration.

Obviously, this mapping is a prerequisite for the physical interconnection of the TP

and the DUT. Furthermore, it is required for the generation of the test program. To

create this configuration, the handshake and data ports have to be grouped together to

form asynchronous channels in the way described in Section 2.1.4. In order to automate

this mapping, one can consider one channel of the DUT after the other and combine

one handshake port with a set of data ports. After defining the pin configuration, the

TP and the DUT can be physically interconnected. This activity strictly depends on

the implementation scheme. For example, if the TP is implemented off-chip using an

4.3. Workflow 61

used byused by

generates

generates

used by

Analysis of

infrastructure and

test demands

Selection of the

implementation

scheme

Mapping of DUT

pins to TP pins

Test generation
Physical

interconnection

Pin configuration

Test execution

Test program

Figure 4.4: Integration of the test processor into the test flow

FPGA, which is mounted onto the load board, the pin configuration can be used to

create a constraint file including pinning information for the FPGA. In case of the on-

chip implementation, the pins of the DUT and the TP can be connected directly. Finally,

the last task concerns the generation of the programs implementing the functional tests.

This generation process is a comprehensive task which is discussed in the next section.

In conclusion, Figure 4.4 outlines the steps to embed the DUT into the TP environment.

4.3.2 Generation of Tests

Obviously, the generation of a functional test for the DUT, which is embedded within the

TP environment, is a matter of creating a program for the test processor. As mentioned,

62 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

this program consists of the sequence of actions which describes the flow for testing

the DUT, and the corresponding data, i.e., the test patterns and other data required for

the program execution. Thereby, the actions comprise the configuration of the TP, the

test, and the upload of the test results to the ETE. During the configuration phase of

the program, the ports of the TP have to be configured, for example, with respect to the

desired handshake protocol. After that phase, the TP can run the test and execute the

sequence of data transfers. Finally, the test results are uploaded. These results comprise

the fault signatures and/or the captured responses from the DUT, and further information

about the status of the test, e.g., if a deadlock was detected.

A straightforward way to create such a program is to write it manually. For exam-

ple, one can think about writing an assembler program for the test processor core that is

afterwards translated to binary machine code. However, the manual creation of such a

program is very complicated and error-prone and, therefore, undesirable. A more sophis-

ticated approach could be the utilization of a high-level language, such as C. Obviously,

this requires a compiler and an additional library, which includes functions to access

the special capabilities of the test processor. Nevertheless, writing a program manually

is always prone to mistakes. For this reason, an approach should be sought, which en-

ables an at least semi-automatic generation of programs for the TP. Such an approach is

proposed in the following sections.

4.3.2.1 Test Program Generation Flow

The usual way of generating functional test patterns for a design is to perform logical

simulations of an ideal model. To this end, a test bench has to be created that emulates

the environment of the DUT. This test bench applies the input stimuli and typically

evaluates the output responses. In order to generate the desired test patterns, the logic

simulator is set up to record the interactions of the DUT with its virtual environment.

Thus, the input stimuli and output responses are written to respective test pattern files

during the simulation. Obviously, the major point of interest of this approach is that the

simulator does the entire work. It computes the output sequences and creates the pattern

files.

This highly automated approach lead to the idea of generating the program for the

TP from the simulation of the asynchronous DUT. However, an essential issue is that

the simulators typically generate patterns which exhibit a static timing. To dissolve

this static timing, one has to extract the dataflow which is based on channel transfers

rather than signal changes. For this, one can think about a post processing step after the

generation of a standard pattern file. To accomplish this, one would need the pin config-

4.3. Workflow 63

uration and the information about the association of the pins with the channels. Using

this configuration in combination with the information about the handshake protocols

used, it might be possible to extract the desired channel transfers from a standard pat-

tern. Nevertheless, it is probably very difficult to extract relations between the transfers.

For example, it is difficult to find out whether two consecutively occurring transfers have

to be executed sequentially or in parallel.

A more sophisticated approach is to let the simulator directly create a special pattern

file that describes the dataflow between the DUT and its environment. The base for

this approach is the creation of a model for asynchronous channels and corresponding

functions to perform data transfers. These functions, which are here and after referred

to as transfer procedures, are used to apply stimuli and to read the responses of the

DUT. The model and the functions have to be defined in a language that is supported by

common logic simulators, for example VHDL, Verilog, SystemVerilog or SystemC. In

order to increase the (re)usability, this model should be described in a separate module

(e.g., a package) such that it can be used for different test projects. This module is here

and after referred to as channel simulation package. To utilize the provided functionality,

the test bench for the DUT has to import this package. Afterwards, the test bench has

to declare instances of the provided channel model and perform the transfers using the

corresponding transfer procedures.

Such an approach has been described in [Sparsø 2001], for example. Therein, a

VHDL-package is described that provides models for asynchronous bundled-data push

channels. As opposed to this implementation, the model proposed here shall be more

general to cover more protocols. Therefore, the channel model additionally includes

the protocol information. Corresponding to this information, the transfer procedures

execute the appropriate handshake-based data transfers. As these procedures take care

of the value assignments and the reactions to transitions of the involved signals, the

details of the protocol implementation are completely hidden. The most important crux

of the approach, however, is that these procedures write a description of the executed

transfer into a file, i.e, the desired pattern file which is here and after referred to as

transfer protocol.

To illustrate this better, consider the following. To perform the simulation, a test

bench has to be created that declares the channels used for the interaction. Furthermore,

the test bench opens the transfer protocol prior to any data transfer with the DUT. Now,

to apply stimuli to the DUT, a transfer procedure send() applies the data to the DUT and

performs the handshake corresponding to the protocol of the channel. Simultaneously,

the method writes the information about the transfer into the transfer protocol. This

description includes the involved channel, the direction and the transmitted data. In

64 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

response to that, the simulator computes the output responses of the ideal model of the

DUT. To receive the response from an output channel, a receive() procedure has to be

used. Accordingly, this transfer procedure also writes the description of the transfer into

the transfer protocol. In this case, the description comprises the golden output signature

computed by the simulator. Thus, after executing the complete logic simulation of the

test bench the transfer protocol contains all channel transfers between the DUT and its

environment.

Based on this transfer protocol, the program for the TP can be generated via a map-

ping from the transactions to respective instructions of the TP. This mapping can be

implemented by a software tool that takes as input the transfer protocol and generates

the program, for example in assembler code. Afterwards, the generated code can be

translated to the desired binary program for the TP by utilizing the tool suite of the

processor (assembler, linker). This binary program is downloaded to the TP via the re-

spective interface to the ETE prior to the test execution. To this end, the binary program

might be further translated into a format that the ETE can process. Thus, if the ETE is

a standard tester, then it is beneficial to translate the binary code into a standard pattern

format. Consequently, the program can be downloaded to the TP during the runtime of

the testflow executed by the tester.

The resulting flow for the generation of the test program is shown in Figure 4.5.

4.3.2.2 Algorithm for Generating the Transfer Protocol

The major issue of the generation of the transfer protocol is the description of the trans-

fers between the TP and the DUT. With respect to this, the question raises how asyn-

chronous and potentially concurrent transfers are sequentialized such that they can be

written into a file. Additionally, the generated sequence has to be relaxed from static

timing, since the non-deterministic timing behavior of the DUT could affect the order of

transfers observed during test compared to the order observed during simulation. List-

ing 4.1 shows two concurrent processes written in VHDL to illustrate this issue. Assume

that, according to their names, one process writes to the input port and the other reads

from the output port of an asynchronous FIFO. After writing one data token into the

FIFO basically one of two events may happen next: either another word is written into

the FIFO or the first data word is read from the output port. Obviously, the sequence

of transfers written to the transfer protocol depends on the timing of the ideal model of

the FIFO, whereas the measured sequence depends on the timing of the circuitry imple-

menting the FIFO. Consequently, these sequences may differ.

In order to solve this issue, one needs to consider the possible causal relations of

4.3. Workflow 65

Channel model &

transfer functions

Tool for translating the

transfer protocol to

assembler code

Logic

simulation

Test bench

creation

Transfer Protocol

based on

Program

generation

Simulation model

(test bench)

generates

Assembling &

linking

Final TP-program

in assembler format

used by

used by

used by

generates

generates

Binary code of

TP-program

used by

used by

Assembler & linker
used by

Translation to

pattern file
used by

Tool for translating

binary code to std.

pattern format

used by

generates

Figure 4.5: Flow for generating the test processor program

Listing 4.1: Two concurrent processes
1 ...

sending : process
begin

...
for i in 0 to 100 loop

6 send(input_channel , i);
end loop;

end process;

receiving : process
11 begin

...
loop

recv(output_channel);
end loop;

16 end process;
...

66 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

the transfers. In [Seitz 1980] C.L. Seitz described two possible relations between the

occurrences of signal transitions in a self-timed system. In the context of this work,

channel transfer are considered here rather than signal transitions. The first relation

between two transfers ti and t j is ti ≤ t j which means ti occurs before t j or, the other way

round, t j occurs after ti. The second relation is ti ‖ t j meaning ti is concurrent and not

ordered with t j. Thereby, the relation ≤ is a partial ordering on the set of occurrences of

channel transfers. This relation is reflexive (ti ≤ ti), antisymmetric (ti ≤ t j ∧ t j ≤ ti ⇒

ti = t j), and transitive (ti ≤ t j ∧ t j ≤ tk ⇒ ti ≤ tk). As further described by C.L. Seitz,

the notion of simultaneity has no meaning and is disallowed due to the antisymmetric

property of the relation ≤. It is additionally important to note that these relations describe

causalities in the occurrences of transitions.

According to these relations, the transfer protocol needs to support mechanisms to

express concurrency and sequences as it is also possible in common description lan-

guages for asynchronous circuits, such as Balsa and Tangram/Haste. Based on these

two relations, a test can be defined as a sequence G1,G2,G3 . . . of groups of concurrent

transfers Gi, i ∈ N, such that all transfers t ∈ Gi happen before the transfers in Gi+1.

One can compare these concurrent transfer groups with simultaneous value changes in

standard pattern formats, such as the VCD format. But in contrast to that, the transfers

of such a group are not required to fire simultaneously. Instead, they can fire at arbitrary

moments in time and in any order.

To generate this sequence of concurrent transfer groups during logic simulation, one

has to define the dividing lines between the groups. Therefore, it is assumed that any

two transfers ti, t j can potentially be concurrent as long as they do not access the same

resource. In case of the considered test processor scenario, such a resource is a channel.

Accordingly, when a transfer t j is encountered that accesses a channel which already

has been accessed by a different transfer ti, then t j obviously occurs after ti. Due to the

transitivity of the sequence relation ≤, all transfers that fire after t j also fire after ti. Note

that simultaneous transfers are basically not allowed. However, in theory a transfer tk
that is concurrent to a transfer t j where ti ≤ t j, does not necessarily occur after ti. To

resolve this, it is further assumed that the sequence of transfers during test shall have the

same timing relations as the transfers in the simulation. Accordingly, the timing of the

occurrences of the transfers is taken into account. Thus, any transfer tk that temporally

fires after a transfer t j with ti ≤ t j, is also assumed to occur after ti. One can describe

this formally as shown in Equation 4.3.(
ti ≤ t j

)
∧

(
time(t j) < time(tk)

)
⇒ ti ≤ tk. (4.3)

Under these considerations, an algorithm can be defined that generates the desired

4.3. Workflow 67

sequence of concurrent transfer groups. Therefore, consider the following definitions

â Let S C be the set of channels C1, . . . ,Cm between the DUT and the TP.

â Let T be the set of transfers on the channels C1, . . . ,Cm.

â Let fC : T → S C be a function mapping a transfer to its corresponding channel.

â Let Gi ⊆ T, 1 ≤ i ≤ n be the groups of concurrent transfers.

â Let σ = (G1, . . . ,Gn) be the sequence of concurrent groups.

â Let initially be k = 1 and 1 ≤ k ≤ n.

Thereby, Gk designates the presently considered group of concurrent transfers. Initially,

all groups Gi, 1 ≤ i ≤ n are empty. Now, let t be the transfer that fires next in the

simulation and, therefore, t shall be added to the transfer protocol. If t does not access a

channel that has been accessed by any other transfer tx ∈ Gk, then t can be added to Gk.

Otherwise, t cannot be concurrent to the transfers in Gk and has to be added to the next

group. Therefore, k is incremented and Gk designates the next group in the sequence.

Finally, t is added to Gk.

Listing 4.2: Pseudo-code for generating the sequence of concurrent transfer groups

procedure log_transfer(t : T)

variable b : boolean := false;

3 begin

foreach t′ ∈ Gk do

if fC(t) = fC(t′) then
b := true;
break;

8 end if;

done;

if b = true then

k := k + 1;
13 Gk := ∅;

end if;

Gk := Gk ∪ {t};

end procedure;

To utilize this algorithm during simulation, the transfer procedures call the proce-

dure log_transfer(). As will be shown in the continuation, this algorithm has one

68 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

limitation which has to be manually resolved by the user. However, to illustrate its ap-

plicability, it has to be shown that the relations of the transitions executed during test

are the same as the ones observed in the simulation. Therefore, the relations of every

two consecutive transfers in the simulation are considered, since the simulator also pro-

cesses the transfers sequentially. Thus, let ti, t j be two transfers with time(ti) < time(t j)

and ∀tk ∈ T, time(t j) < time(tk), i.e., t j fires next after ti in the simulation. Now, one has

to distinguish between several cases:

1. If ti ‖ t j ∧ fC(ti) , fC(t j), then the algorithm adds ti and t j into the same group.

Thus, ti and t j are concurrent in the test sequence as well.

2. The case where ti ‖ t j ∧ fC(ti) = fC(t j) is invalid in consideration of functionally

deterministic circuits.

3. If ti ≤ t j ∧ fC(ti) = fC(t j), the algorithm adds ti and t j into separate groups, say

ti is added to Gx and t j is added to Gx+1. Thus, ti and t j are sequential in the test

sequence.

4. Unfortunately, if ti ≤ t j ∧ fC(ti) , fC(t j), then the algorithm adds ti and t j into

the same group which does not reflect the sequence relation between ti and t j.

However, in practice the DUT itself often resolves this conflicting situation. For

example, one may consider again the asynchronous FIFO. Due to the limitation

of the algorithm, the generated sequence may start with a group including both a

transfer at the input and one at the output interface. However, due to the behavior

of the FIFO, first the input transfer will be performed and after that the transfer at

the output. Nevertheless, a mechanism is required that allows the user to define

sequential relations between transitions.

In order to overcome this limitation, a second method is required that waits for a set

of transfers. Of course, the identification of a transfer might be ambiguous. Instead, it is

easier to wait for the execution of transfers on a set of channels. A possible solution to

determine whether a transfer on a specific channel was performed is to count the number

of transitions on the channel. This is again only possible for functionally deterministic

circuits, where the number and order of output responses are well defined. Accordingly,

a function fN : S C → N is defined that maps a channel Ci ∈ S C to the number of its

transitions. Based on this, a second procedure can be defined that ensures the sequence

relation between transfers on a specified set of channels and all transfers executed after

its call. In case of the considered algorithm, the procedure simply has to increment the

4.3. Workflow 69

Listing 4.3: Pseudo-code of the wait procedure
procedure wait_for_transfers(S ′C : S ∗C)

variable nT : map from S C to N;
3 variable b : boolean;
begin
foreach C ∈ S ′C do

nT (C) := fN(C);
done;

8

do
wait_for_activity(S C);
b := false;
foreach C ∈ S ′C do

13 if nT (C) = fN(C) then
b := true;
break;

end if;
done;

18 while b = true;

k := k + 1;
end procedure;

group index k. Listing 4.3 shows the resulting procedure, which is here and after referred

to as wait procedure.

In the first loop, the current number of transfers on each of the channels C ∈ S C is

stored. Afterwards, the second loop waits for any activity on any of the channels. Such a

functionality is supported by any common hardware description language (HDL). Then,

it is checked whether the numbers of transitions of all channels have changed. Note

that the function fN is concurrently adapted by the transfer procedures according to the

current number of transfers on each channel.

To ensure that a transfer t occurs after the transfers on the specified channels, the

wait procedure has to be called prior to the call of the transfer procedure performing

t. Finally, after executing the entire simulation of the test bench, the sequence S con-

tains all transfers aligned in concurrent groups. As mentioned, when executing the test,

all transfers of a group Gi are executed before the transfers of Gi+1. Obviously, this

may block transfers until all transfers that occur earlier in the simulation have been per-

formed, even though one of the blocked transfers might be actually concurrent to some

of the previously executed transfers. Similarly, it might happen that the execution of the

transfer sequence is interrupted, although the transfer to wait for actually may also occur

later. However, since the transfer sequence of the test shall be the same as the one of the

70 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

simulation, these situations are negligible.

4.3.2.3 Definition of the Transfer Protocol Format

The purpose of the transfer protocol is to describe the transactions of the DUT and its

environment, i.e., the pattern for the functional test. As a prerequisite for this, infor-

mation about the asynchronous channels used in the sequence is required. Accordingly,

each channel accessed in the sequence has to be fully specified prior to its usage. This in-

cludes all the information that is part of the model defined in Section 2.1.4. Based on this

information, the processor has to be configured before the actual test sequence is exe-

cuted. Finally, as described above, the test sequence itself comprises transfer statements

that are combined via concurrency and sequence operators expressing the relations be-

tween the transfers. In the following, the transfer protocol grammar is defined in the

Bacus-Nauer-Form (BNF).

Before discussing the format in detail, the question shall be answered why a new

format is defined rather than using an existing language, such as Balsa. The reason for

this is the need for specific constructs which are not supported by any other language, but

which are essential for the generation of a test processor program. An example for this is

the construct to define properties of the channels used within the test sequence. However,

the format of the transfer protocol has several similarities to existing languages. For

example, the channel transfer operators ’=>’ and ’<=’ are very similar to the handshake

operators in Balsa.

To separate the definition of the resources from the test sequence, the transfer pro-

tocol file is composed of a declaration and a test sequence section. These sections are

introduced by the corresponding keywords DECLARE and TEST, and are terminated with

the END keyword.

<transfer protocol> ::= <declaration section> <test sequence section>

In the declaration section all the resources used within the test sequence section have

to be declared. As defined previously, a resource can either be a channel or a signal/bus.

<declaration section> ::= ’DECLARE’ <declarations> ’END’

<declarations> ::= | <channel declaration> ’;’ <declarations>

| <signal declaration> ’;’ <declarations>

In order to address a channel in the test sequence, it is required to associate an identi-

fier with a channel. Thus, a channel declaration comprises an identifier and the channel

properties. These properties include the type (push or pull), the number of phases (two

or four), the encoding (single-rail or dual-rail) and the initial values of the handshake

4.3. Workflow 71

signals. Furthermore, it is required to specify whether a channel is an input or an output

of the DUT. This information is essential for the configuration of the processor and for

the mapping of the handshake signals to the input and output of a handshake port of the

processor (see Equation 4.1 and 4.2). Therefore, the direction of the channel from the

DUT point of view has to be defined. Thus, if an input channel of the DUT shall be de-

fined the direction has to be set to IN. Besides these properties that concern the control

part of the channel, the information about the data signals needs to be defined. This only

includes the number of data signals. An explicit definition of the handshake and the data

signals is not necessary, since these are hidden within the channel.

<channel declaration> ::= <identifier> ’:’

<direction> ’CHANNEL’ ’(’ <channel properties> ’)’

<channel properties> ::= <type> ’,’ <phases> ’,’ <encoding> ’,’

<req-init> ’,’ <ack-init> ’,’ <number>

<direction> ::= ’IN’ | ’OUT’

<type> ::= ’PUSH’ | ’PULL’

<phases> ::= ’2P’ | ’4P’

<encoding> ::= ’SR’ | ’DR’

<req-init> ::= <bit>

<ack-init> ::= <bit>

The declaration of a signal resource is similar. A signal resource is declared by

defining an identifier, the direction of the signal and the type, i.e., either a single signal

or a bus. For a bus, one needs to define the bus range identifying the indices of the

leftmost and the rightmost bus signal, respectively.

<signal declaration> ::= <identifier> ’:’ <direction> <signal specification>

<signal specification> ::= ’SIGNAL’ | ’BUS’ ’(’ <number> ’...’ <number> ’)’

After declaring all resources the test sequence can be defined in a block embraced

by the TEST and END keywords. The elements of this sequence are separated using

the sequence operator ’;’. Each of these elements can either be a group of concurrent

statements or a nonconcurrent statement. Thereby, a concurrent statement is a trans-

fer statement or a signal operation, either. To indicate the concurrency, the transfer

statements of a concurrent group are separated by the concurrency operator ’,’. A Non-

concurrent statement must not be part of a concurrent group. An example of this is the

wait statement introduced later.

72 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

<test sequence section> ::= ’TEST’ <test sequence> ’END’

<test sequence> ::= | <concurrent statements> ’;’ <test sequence>

| <nonconcurrent statement> ’;’ <test sequence>

<concurrent statements> ::= <concurrent statement>

| <concurrent statements> ’,’ <concurrent statement>

<concurrent statement> ::= <transfer statement> | <signal operation>

In general, a transfer statement is used to apply stimuli or to read responses from a

channel. It comprises a channel identifier, the transfer operator, and a logic vector. The

transfer operator indicates whether to write to, or to read from the channel. The logic

vector describes the pattern. In case of an output channel, this pattern is the expected

value. However, such a transfer statement can only be applied if the channel comprises

data signals. Thus, a different construct is required to support control/synchronization

channels which do not have any data signals. To this end, the SYNC keyword is intro-

duced. In the same way as in Balsa, it forces a handshake on the specified channel

without transferring data. This construct can also be applied to standard channels that

have data signals. For example, if the response of an output channel is negligible, then

the SYNC statement can be used to perform handshake synchronization only.

<transfer statement> ::= <identifier> <transfer operator> <logic value>

| ’SYNC’ <identifier>

<transfer operator> ::= ’<=’ | ’=>’

As opposed to transfer statements, signal operations assign or compare logical val-

ues to signal resources. Apart from that, a major difference to transfer statements is that

signal operations are not flexible in timing. This means that they are executed at the

moment of reaching them in the test sequence. This is clear for a signal assignment.

For a comparison, this means that the test sequence is treated as failed if the signal re-

source does not correspond to the specified value. Obviously, such a comparison only

makes sense at well-defined states of the DUT, e.g., after specific transfers. A cognate

statement is the signal wait statement introduced farther below.

<signal operation> ::= <identifier> <signal operator> <logic value>

<signal operator> ::= ’:=’ | ’==’

As mentioned, nonconcurrent statements affect the global state and behavior of the

TP. Therefore, these statements must not occur in a concurrent group. In the current

version of the transfer protocol format, these statements can either be a timeout state-

ment, a timeout routine statement, a wait statement or a signal wait statement. Timeout

statements and timeout routine statements are constructs dedicated to the detection of

4.4. Summary of the Concept 73

deadlocks during the test. With the help of a timeout statement one can define the maxi-

mum time to wait for an event of the DUT. If the time required for an operation exceeds

the specified timeout period, then a deadlock is assumed. In this case, a routine is called

which can be specified with the help of a timeout routine statement. Therefore, the name

of the routine has to be passed as argument to the statement. A wait statement is used

to define an idle period which can be used to hold a certain state for a specified time. A

similar construct is the signal wait statement. It also holds a certain state, but it uses a

signal comparison as the condition to continue the execution of the test sequence.

<nonconcurrent statement> ::= <timeout statement> | <wait statement>

| <signal wait statement>

<timeout statement> ::= ’SET’ ’TIMEOUT’ <time>

<timeout routine statement> ::= ’SET’ ’TIMEOUT_ROUTINE’ <identifier>

<wait statement> ::= ’WAIT’ ’FOR’ <time>

<signal wait statement> ::= ’WAIT’ ’UNTIL’ <compare statement>

Finally, the supported simple data types of the transfer protocol are defined as fol-

lows:

<identifier> ::= <alpha> | <identifier> <alpha> | <identifier> <digit>

<time> ::= <real> <time unit>

<real> ::= <number> ’.’ <number>

<number> ::= <digit> | <number> <digit>

<alpha> ::= ’a’ | . . . | ’z’ | ’A’ | . . . | ’Z’

<logic value> ::= <bit> | <bit vector>

<bit> ::= ’’’ <logic> ’’’

<bit vector> ::= ’"’ <logic vector> ’"’

<logic vector> ::= <binary> | <logic vector> <binary>

<logic> ::= ’0’ | ’1’ | ’X’

<digit> ::= ’0’ | ’1’ | . . . | ’9’

<time unit> ::= ’ps’ | ’ns’ | ’us’ | ’ms’ | ’s’

4.4 Summary of the Concept

To summarize, the concept comprises a test processor that provides generic interfaces

including handshake control and data ports. The ports can be combined in order to es-

tablish asynchronous handshake channels. Thereby, the realization of the combination

between the ports is intentionally not defined by the concept. Instead, this depends on the

particular realization of the test processor. For example, in an on-chip implementation

74 Chapter 4. Concept for Functional Tests of Asynchronous Circuits

the combination of the ports can be realized fully in hardware, since the interconnection

to the components to be tested is fixed. Thus, there is no need for a programmable asso-

ciation between the handshake and the data ports. In comparison to that, the combination

in an off-chip implementation should be configurable, such that it can be adapted to the

interfaces of a large variety of designs to be tested.

In comparison to other functional test approaches, a test processor, as introduced

here, fulfills all criteria for performing functional tests. It provides full flow control, sup-

ports fast and easy exchange of test patterns, overcomes worst-case timing assumptions

due to real asynchronous communication. Furthermore, in case of an off-chip imple-

mentation, the processor can support various different designs by keeping the handshake

ports and the combination of the ports to channels configurable. As will be shown in

the next chapters, the processor concept is an appropriate test equipment for performing

functional tests.

Besides the processor, the theoretical background to describe and generate patterns

for elastic tests is defined. The key idea of the approach is that the pattern generation is

based on standard behavioral simulations of the DUT.

"Nothing is particularly hard if

you divide it into small jobs."

— Henry Ford

Chapter 5

Test Processor Implementation

Based on the generic concept, a specialized test processor architecture, called NoTePAD

(Novel Test Processor for Asynchronous Devices) is proposed in this chapter. The in-

tention of this implementation is to provide a configurable, high-performance test equip-

ment that enables elastic functional tests of asynchronous circuits. The introduced ar-

chitecture is highly optimized for the two major tasks during functional tests: the appli-

cation of stimuli, and receipt/comparison of responses. Consequently, the provided test

processor solution is more feasible for an off-chip implementation. The development of

the solution was basically driven by the ideas of preceding implementations presented in

[Zeidler 2011, Zeidler 2012a]. Similar to the solutions for synchronous ICs, provided in

[Galke 2002, Frost 2007], the intention of these approaches was to describe an on-chip

test processor for testing asynchronous components of an SoC. The on-chip TP imple-

mentation especially makes sense if the SoC already comprises a processor. Then, the

processor can be adapted, such that it can also be used for test purposes. Thus, readers

interested in on-chip implementations of the concept are kindly referred to these publi-

cations.

5.1 Design Decisions

The two test processor implementations proposed previously fully comply to the generic

concept. Although they are basically intended for integration into an SoC, the test pro-

cessors can, of course, also be realized off-chip as a stand alone test systems. However,

their RISC architecture imposes several performance limitations mainly caused by the

following aspects:

75

76 Chapter 5. Test Processor Implementation

â The handshake protocols are described in software. The handshake ports of the

processors only provide mechanisms to ease the detection and the generation of

protocol events. In order to generate or to react to a single event, the corresponding

instruction has to be called. This implies that only one channel transfer can be

processed at a time.

â The processor core has to transmit the data between the ports and the memory via

explicit calls of instructions. This is one of the most critical bottlenecks of the

architecture.

â The association between the handshake and data ports to form asynchronous chan-

nels is also implemented in software. To perform a data transfer, the ports asso-

ciated with a channel are individually addressed in separate instructions. This

extremely increases the program size and the time for a single data transfer.

To overcome these limitations, the novel architecture shall provide mechanisms to

â generate the sequence of handshake signal transitions completely in hardware,

â directly couple handshake ports with an arbitrary number of data ports,

â concurrently process an arbitrary number of transfers at different channels at a

time.

A direct consequence of the realization of these mechanisms is that the number of in-

structions for performing one data transfer is reduced. To unify the execution of all

types of asynchronous transfers, the HPs shall be implemented such that only a single

instruction is required to perform any kind of asynchronous handshakes. Therefore, the

handshake execution is implemented in hardware. After its initial configuration, a HP

shall generate the sequence of handshake signal transitions depending on the protocol

type and the direction of the transfer.

Based on these advanced requirements, a couple of decisions are taken that affect the

design of the processor. One basic decision is related to the design methodology of the

processor. As well as the previous RISC implementations, NoTePAD is a synchronous

design. This eases the implementation, e.g., using an FPGA, and the test of the TP itself.

Especially, the testability is dramatically improved in case the TP is implemented as an

IC, since standard test approaches for synchronous designs, such as scan, can be applied.

A further design decision affects the protocol support. Protocols which encode the

events into data signals, e.g., dual-rail protocols, require that these signals are safely

5.1. Design Decisions 77

transferred to the receiver to prevent metastability. Thus, the synchronous implemen-

tation of the processor demands that the data input signals have to be migrated into the

clock domain of the processor, e.g., using synchronizers. This considerably increases the

interface logic. Furthermore, to detect the events of such protocols, it would be necessary

to interconnect the data ports. For example, consider a dual-rail interface as previously

shown in Figure 2.6. The completion detection requires the interconnection of pairs of

data ports via OR-gates. Finally, the outputs of the OR-gates have to be connected via

a C-element. A configurable implementation of this scheme would be extremely com-

plicated. Therefore, NoTePAD will only support bundled-data protocols. By this, only

the control input signals and the inputs of the handshake ports have to be equipped with

a synchronizer as shown in Figure 5.1a. However, if the test processor is implemented

using an FPGA, protocol converters can be used to interface the TP with the asynchro-

nous DUT. These protocol converters have to be created for each channel that uses a

non-single-rail encoding scheme. Afterwards, the converters have to be connected with

the ports of the TP and finally integrated into the FPGA. Examples of such converters

are given for the conversions between single and dual-rail interfaces in Appendix B.

Moreover, with respect to 4-phase bundled-data protocols, the data validity scheme has

to be defined. The most commonly used schemes are the early and the broad scheme.

Therefore, NoTePAD will only support these schemes.

These decisions have some implications to the execution of the handshake signalling.

Unfortunately, a synchronous implementation of the handshake procedure imposes addi-

tional latency. Although the HPs shall implement respective automatons for all different

kinds of bundled-data protocols in hardware, the required number of cycles for a hand-

shake is strictly coupled to the number of phases of the protocol and the synchronization

latency, e.g., when using a two-flop synchronizers. For example, to perform a 4-phase

handshake at least six cycles are required. Figure 5.1b illustrates this behavior for a 4-

Q D

S2

hi

clk

Q D

S1

ack

reqho

TP DUT

(a)

ho = req

clk

ack

Q(S2)

1

2

4

5

6

8

Q(S1) 3 7

(b)

Figure 5.1: Handshake interface between the TP and the DUT

78 Chapter 5. Test Processor Implementation

phase single-rail push handshake initiated by the TP. In fact, the handshake requires only

5 cycles, but one additional cycle is required before the next handshake can be initiated.

In step 1 the TP assigns the request whereupon the DUT responds by setting the

respective acknowledgment in step 2. However, due to the two-flop synchronizer this

response is no earlier than two cycles later visible to the TP in step 4. When the request

was detected, the TP may initiate the return-to-zero phase one cycle later in step 5.

Finally, the steps 6–8 exhibit the same behavior as the steps 2–4.

5.2 Hardware Implementation

The test processor is designed according to the criteria defined in Section 1.2 and the

above mentioned design decisions. In order to optimize the architecture with respect to

its performance, the processor is modelled at Register Transfer Level (RTL) rather than

architectural level, e.g., using an architecture description language (ADL) such as LISA

(Language for Instruction Set Architectures) [Zivojnovic 1996] as it was done with the

previous TP approaches. This section discusses the overall architecture of NoTePAD

and all its components.

5.2.1 Global Architecture of NoTePAD

The first step of the design of the processor architecture contemplates the elementary

components. According to the concept, the processor comprises a core coordinating all

activities of the processor and the port component that includes the handshake and data

ports. In order to enable a direct coupling of the HPs with the DPs, the port component

has to provide a mechanism for the interconnection of these ports. Therefore, a port

switch is introduced which connects each HP with a set of DPs. To this end, the switch

stores the channel information defining the association of the HPs with the DPs.

The idea followed with this interconnection is to let the handshake ports directly

control the associated data ports. Thus, when a data transfer shall be performed at a

certain channel, then the respective HP forces all associated DPs to apply new data or to

read the responses of the DUT. In the opposite direction the DPs report their statuses to

the port switch that bundles the information according to the channel configuration and

sends completion information to the HPs.

As a second step, the tasks of the processor core are considered. According to the

definition in Section 4.2.3, the core coordinates the activities of the processor and pro-

vides access to the memory for the DP, such that these can load and store patterns. These

tasks are almost completely independent of each other. Therefore, the core is separated

5.2. Hardware Implementation 79

into two independently operating modules: the sequencer and the memory access con-

troller.

The sequencer is a simple microcontroller that fetches, decodes and executes the

instructions from the program memory and controls all the other components of the

processor. It sends commands to the handshake ports which, in turn, forward commands

to the DPs via the port switch. For this to be applicable, the port switch has to be

configured according to the pin configuration. This is one of the basic tasks of the

sequencer prior to the test execution. Furthermore, the sequencer also provides the

interface for the ETE as described in Section 4.2.2.

The memory access controller connects all DPs with the memory. Its major task is

to coordinate the memory accesses initiated by the DPs. Behind this approach is the

idea to let the DPs autonomously read and write data from and to the memory. By this,

the central controlling unit, i.e., the sequencer, is relieved of managing the access to the

data memory. This eliminates one essential bottleneck of the previously published test

processor implementations. In order to read stimuli and to store test results, each DP

can issue a read or write request to the memory access controller. Thus, the controller

has to resolve access conflicts. Therefore, the controller arbitrates between the different

requests and forwards them to the memory.

For the interconnection of the components, one has to take into account that the

durations of the individual operations of NoTePAD, e.g., performing a data transfer with

the DUT, are not fixed. Therefore, the global interconnection scheme between almost all

components of NoTePAD is based on synchronous handshake mechanisms. This means

that a receiving component provides a completion signal to the sending component. The

sending component is only allowed to issue new data if the receiving component has

indicated the completion of the last transaction. For example, for the control of the

handshake ports, the sequencer sends one command to all of these ports and selects

the ones that shall execute this instruction. Then, the sequencer waits until all selected

handshake ports have completed their operation before issuing a new one. Therefore,

each HP provides a completion indication signal to the sequencer. In a similar way, the

HPs are connected with the DPs via the port switch. Each DP delivers a status signal to

the port switch. According to the pin configuration, the switch combines these signals

to one status signal for each HP.

Figure 5.2 illustrates the resulting control flow. The sequencer issues a command

to the HPs which send a corresponding command to the port switch. The port switch,

in turn, forwards the commands to the associated DPs which execute the command in

the step denoted by the label 1. After the completion of the operation, each DP sends

an indication signal to the port switch. The port switch then computes the completion

80 Chapter 5. Test Processor Implementation

send HP instruction

Sequencer HP Port switch

send DP instruction
forward DPinstruction

DP

report completion

of DP instruction

report completion

of HP instruction

report completion

of instruction by all

DPs

2

1

Figure 5.2: Control flow of NoTePAD

information from all DPs associated with a HP. If all associated DPs have completed the

operation (labelled with 2), then the completion indication is sent to the HP. Finally, the

HP reports the completion of the command to the sequencer.

Eventually, the global structure is derived from these basic architectural considera-

tions. Figure 5.3 illustrates all components and their major interconnects. As shown in

the figure, the processor is connected to two independent memory blocks. One stores the

data including the test patterns and additional data required for the execution of the test,

such as configurations for the ports. The other memory block stores the program for the

sequencer. These blocks do not necessarily have to be separated. However, the memory

should be connected via independent memory ports in order to enable the processor to

simultaneously access the data and the program. Thus, one can also think about a dual-

port Random Access Memory (RAM) implementation, where one port is connected to

the sequencer and the other is connected to the memory access controller.

5.2.2 Design of the Data Ports

According to the concept, a data port is a component that provides a set of inputs and a

set of outputs to exchange data with the DUT. Thus, a data port supports mechanisms

for applying, receiving, and comparing data. For the implementation of the ports, these

functionalities are considered separately.

As commonly known, three states have to be distinguished, when digital data is

5.2. Hardware Implementation 81

HP1

HP2

HPm

DP1

DP2

DPl

Port Switch

Sequencer
Prog

Mem

Memory

Access

Controller

Data

Mem

dm_out

dm_in

dm_addr

dm_wr

pm_out

pm_addr

seq
_
d
m

_
ad

d
r

seq
_
to

_
d

m

d
m

_
to

_
seq

seq
_
d

m
_
req

dp_dm_req1

dp_data1

dp_addr1

dm_to_dp

hp_status2

hp_status1

hp_statusm

hp_opcode,

hp_data

dp_dm_ack1

hp_en2

hp_en1

hp_enm

dp_dm_ack1

dp_dm_ackl

ex
t_

m
em

_
req

ex
t_

m
em

_
ad

d
r

ex
t_

to
_
tp

tp
_
to

_
ex

t

h
alt

en
ab

le

rst_
p

c

dp_dm_req2

dp_data2

dp_addr2

dp_dm_reql

dp_datal

dp_addrl

d
p
_
stat

l

d
p

_
o
p
c

l

d
p

_
o
p
c

2

d
p
_

stat2

d
p

_
o
p
c

1

d
p
_

stat1

d
p
s_

stat1

o
p
c_

to
_
d
p

1

o
p
c_

to
_
d
p

2

d
p
s_

stat2

o
p
c_

to
_
d
p

m

d
p
s_

stat
m

hi1

ho1

ho2

hom

hi2

him

do1

do2

dol

dil

di2

di1

is_out1

is_out2

is_outl

p
s_

co
n
fig

p
s_

o
p
co

d
e

pm_wr

Figure 5.3: Architecture of NoTePAD

82 Chapter 5. Test Processor Implementation

applied to a single output signal. These states can be described by a three-valued logic

Lapply = {0, 1,Z}:

â 0/1 designate the digital logical values applied to an output signal. These values

represent the low and high voltage levels, respectively.

â Z indicates high impedance, thus, no data is applied. In this case, the output driver

is switched off and the signal may obtain a value driven by another source.

In the opposite direction, there are also three states possible, when data is read from an

input signal. These states can be described by the logic Lreceive = {L,H, X}.

â L/H are the digital logical values read from an input source, representing low and

high voltage levels, respectively. Note that these values are intentionally different

to 0/1, for a clear separation between drive and strobe operations.

â X indicates an unknown logical value. This means that a data bit is either logical-0

or logical-1.

Since the data ports shall support both operations, these logics are merged to Ltest =

Lapply ∪ Lreceive. To represent the members of the resulting logic with a digital logic, a

triple (vi,mi, di), vi,mi, di ∈ {0, 1} can be used, where

â vi determines the logical value,

â mi represents a mask determining whether an input is significant or not, and

â di is the drive information used to switch the output driver of the data bit bi of a

DP on or off.

Then, the logic Ltest can be mapped to the following values of (vi,mi, di):

0 7→ (vi,mi, di) = (0, 1, 1)

1 7→ (vi,mi, di) = (1, 1, 1)

Z 7→ (vi,mi, di) = (−,−, 0)

L 7→ (vi,mi, di) = (0, 1, 0)

H 7→ (vi,mi, di) = (1, 1, 0)

X 7→ (vi,mi, di) = (−, 0, 0)

where ’−’ represents a don’t care value

This triple is the data required for every single bit of the data ports. To store this

data, a scheme is applied that is similar to the solution of the test processor provided in

[Galke 2002]. In this realization, the I/O ports use a combination of two registers: one

stores the value v = v0 . . . vn−1 applied to the outputs or read from the inputs, and another

register stores the mask m = m0 . . .mn−1. Thereby, n designates the bit width of the DPs,

which is 16 in the implementation provided in [Galke 2002]. However, their approach

5.2. Hardware Implementation 83

lacks of the drive information, since their test processor is intended for integration into

an SoC. Thus, the DPs can directly be connected with in- and outputs of the components

to be tested. Therefore, the drive information is not required.

In contrast to that, NoTePAD is a stand-alone test equipment that is intended to

be realized outside of the DUT-chip. Its data I/O pins should be used for both input

and output data transmissions. Therefore, a further register is required that stores the

drive information. However, since each DP is associated with at most one unidirectional

channel, it is not necessary to store drive information for every single pin of the DP.

Instead, only a single flip-flop stores the global drive information for all bits of a data

port.

A further issue of the DP concerns the number of inputs and outputs of the ports.

As afore indicated, the DPs in previous test processor implementations comprise a rel-

atively high number of inputs and outputs, i.e., 16 [Galke 2002, Zeidler 2011] and 32

[Zeidler 2012a] respectively. Basically, this number is derived from the width of the

data bus of the processor. However, if channels shall be realized, whose data part is not

a multiple of the bit width n of the DPs, then a considerable number of in- and outputs

might be wasted. Thus, this number is too large for a generic solution that is sought by

NoTePAD.

For this reason, a different scheme is applied. Basically, each data port also com-

prises a value register storing v = v0 . . . vn−1 and a mask register storing m = m0 . . .mn−1.

However, the DPs have only k < n in- and k outputs. In the continuation, these inputs

and outputs are labelled with di and do, respectively. The crux of the implementation

is that the registers are organized as shift registers. Thus, when applying new stimuli

or performing a comparison operation the registers are shifted by k bits. The reason for

storing n rather than k bits is related to the width of the bus. Thus, when reading pat-

terns from the memory, the data word delivered by the memory comprises data for n/k

transfer operations. Obviously, n has to be a multiple of k.

With this scheme, the bits ṽ = v0 . . . vk−1 are directly connected to the outputs

do0 . . . dok−1 of the DP to apply stimuli. In order to implement the receive functionality,

the same set of bits ṽ = v0 . . . vk−1 is compared with the k inputs of the DP. Therefore,

the inputs di0 . . . dik−1 of the DP are bitwise connected with v0 . . . vk−1 via XOR-gates.

The output of these XOR-gates are in turn connected with the k bits m̃ = m0 . . .mk−1 of

the mask register via AND-gates. By this, all non-significant bits are set to logical-0.

The resulting bits (v0 ⊕ di0)m0 . . . (vk−1 ⊕ dik−1)mk−1 are shifted into the value regis-

ter. Hence, after each n/k shift operations the value register contains the desired fault

signatures of the last n/k comparisons. This signature has to be written to the memory.

However, since the new data can be loaded in parallel to the writing of the signature, the

84 Chapter 5. Test Processor Implementation

number of shift operations is actually n/k − 1. Then, the result signature comprises the

value (v0 ⊕ di0)m0 . . . (vk−1 ⊕ dik−1)mk−1 of the outputs of the AND-gates and the value

vk . . . vn−1 stored in the shift register.

As mentioned previously, all DPs are indirectly connected with the memory via the

memory access controller (MAC) for loading and storing data. As a basic prerequisite

for that, each DP has to autonomously read and write the respective data from and to the

memory. A key issue of this scheme is that the loading and the storing of the data of

the shift registers become a bottleneck, since all DPs associated with a channel would

issue a memory access request after each n/k data transfers. A simple solution to that

issue is the introduction of FIFO buffers. Therefore, an output FIFO is used to buffer

the data from the memory. Thus, depending on the use of the data port as an input or an

output, this FIFO stores either input stimuli for the DUT or expected output signatures.

The input interface of the FIFO is connected to the MAC, whereas its output interface

is connected with the shift registers. Accordingly, an input FIFO is used to store the

result signatures that are to be written to the memory. Therefore, its input interface is

connected with the value register, and the output interface is connected with the MAC.

This is illustrated later in Figure 5.5 showing the entire architecture of the ports.

The properties of the FIFO have to be carefully selected. Thereby, the width of

the words stored in the FIFOs is strictly coupled to the width of the two shift registers.

Since these registers have to be filled simultaneously with data, the bit width of the

output FIFO is twice the bit width of these registers. In contrast to that, the width of

the input FIFO is equal to the width of the value register. According to this, the data

words read from the memory have also twice the bit width of the words that are written

to the memory. The depth of the FIFOs depends on the total number of DPs. Typically,

the depth should be kept at a minimum to reduce the hardware requirements. However,

if the depth is too small, then the buffers may become empty during the test run, even

though they were totally filled at the beginning of the test.

Using these buffers the memory requests of several DPs can be scheduled consecu-

tively in time without sacrificing performance. A DP simply needs to issue a memory

read access when the output FIFO is not full. Corresponding to that, a write request can

be issued to store comparison results if the input FIFO is not empty.

In order to coordinate these requests, each DP is equipped with a port controller.

Depending on the states of the FIFOs, it issues respective memory access requests which

consist of the following information:

â an indicator for the request type (read or write),

â the address of the data to be read or written, and

5.2. Hardware Implementation 85

â in case of a write request, the data to be written to the memory.

The acknowledgment for such a request is delivered by the MAC. In case of a read

request, the acknowledgment is bundled along with the data read from the memory. This

is different for a write request. In this case, the acknowledgment is directly asserted

when the request is accepted by the MAC. Thus, there is no need to wait until the data

reached the memory. In sum, the controller provides the following interface signals to

the MAC:

â The output memreq encodes whether a memory request is issued and the type of

the request.

â The input memrdack is the acknowledgment signal indicating the completion of a

memory read request.

â The input memwrack is the acknowledgment signal indicating the completion of a

memory write request.

â The output memaddr defines the address of the data to be read from or written to

the memory.

â The input din is the input for data read from the memory.

â The output dout is the output for data to be written to the memory.

Considering these requests, there is one open issue. The addresses of the data have

to be determined and managed. According to that, a major task of the port controller

is the management of these addresses. Therefore, it contains a register for storing the

address of the data to read, and one register which stores the memory address for the

comparison results. In order to simplify this address management, each DP has an array

of read data in the memory that is associated with it. Furthermore, in case a DP is used

as an input port, an array of data within the memory is reserved, where the DP can store

its comparison results. Thus, when a memory request has been completed, the value of

the respective address register has to be simply incremented in order to point to the next

data. To ensure that these address registers do not exceed the boundaries of the arrays,

the controller has an additional register, i.e., the data word counter. This register stores

the number of data words associated with the port. It is decremented each time a new

data word has been loaded from the memory. Obviously, prior to the test operation all

these registers have to be initialized with the start addresses of the respective data arrays

and the number of data words. Therefore, the controller uses a unique identification

number to determine the addresses of this data within the memory. For example, the

86 Chapter 5. Test Processor Implementation

dp0_read_data_addr:

0x1fa0
0x0000

0x0002

0x0004

dp0_write_data_addr:

0x20a0

dp0_data_count:

128

dp0_read_data0dp0_read_data_addr: 0x1fa0

.
.
.

.
.
.

dp0_read_data127

dp0_write_data1/0

0x209f

dp0_read_data_addr: 0x20a0

dp0_write_data127/1260x211e

.
.
.

.
.
.

0

0x0008

0x0006

dp1_read_data_addr:

0x2120

dp1_read_data0dp1_read_data_addr: 0x2120

Address

information block

of the data port 0

Array of read data

of data port 0

Array reserved for

comparison results

of data port 0

Figure 5.4: Data memory organization of NoTePAD

required information of the DP φ0 (i.e., the ID is 0) is placed within the first three data

words of the data memory. Furthermore, to ease the calculations, the address data blocks

are placed at every forth data word. The resulting memory organization is exemplarily

shown in Figure 5.4.

Another task of the port controller is to coordinate the operations of the shift registers

and their interactions with the FIFOs. Basically, the registers have to be filled with the

data from the output FIFO when the first data shall be applied or compared. Then, these

registers have to be shifted for the next n/k − 1 test activities of the port. In case a DP is

used for an input channel, the data from the value register has to be written to the input

FIFO. Finally, when the next test operation is initiated, the shift registers have to be filled

again with the data from the output FIFO. This procedure is repeated until all data words

have been applied or compared. This is the case if the data word counter became zero.

5.2. Hardware Implementation 87

Finally, the port controller implements a state machine that manages all the activi-

ties of the DP and delivers status information to the handshake ports. These activities

are triggered by the operations that are defined by the associated HP. Obviously, these

operations include the test operations for applying stimuli and for comparing responses

of the DUT with expected data. Taking the direction of the port into account, the same

opcode can be used for both operations. In addition to these primary operations, a few

more are required to configure and control the port. As already pointed out, the address

registers have to be initialized prior to the test execution. This requires three operations:

set-read-data-address (SRDA), set-write-data-address (SWRA) and set-data-word-counter

(SDWC). Furthermore, in order to prevent any data gap during the test, it is beneficial to

fill the output FIFOs with data. Similarly, after the test execution, it has to be guaranteed

that the data is flushed from the shift registers into the input FIFOs and from there into

the memory. Thus, two more operations are required: fill-output (FILL) and flush-input

(FLSH). Additionally, a DP has to be configured whether it is allowed to issue mem-

ory access requests. Otherwise, if a DP was not set up correctly, it may access invalid

memory addresses. This mechanism also inhibits unused DPs to issue memory requests.

Accordingly, a further operation, i.e., the toggle-memory-request (TMRQ) operation, is

introduced which toggles a specific bit of the port controller. This bit indicates whether

the port is allowed to issue memory access requests. Finally, an operation (NOOP) is

required indicating that the port is in idle mode.

In the other direction, each DP has to deliver status information to its associated

HP (via the port switch). As indicated previously, this especially includes completion

information, since the duration of many operations is not fixed. Furthermore, the DP

provides information indicating whether the port has data for executing the next data

transfer. This information is evaluated by the HP prior to a data transfer.

In summary, the DPs provide the following interface signals to the HPs (via the port

switch):

â The input en indicates whether the port is enabled.

â The input opcode determines the mentioned operations: NOOP, SRDA, SWRA, SDWC,

TMRQ, FILL, FLSH, TEST.

â The input dir indicates the direction of a port (input, output).

â The output opok is the acknowledgment signal indicating the completion of the

last operation assigned to the port.

88 Chapter 5. Test Processor Implementation

Output-FIFO

I/
O

R
eg

is
te

r

Input-FIFO

DP-Controller

em
tp

y

w
r_

en

rd
_
en

fu
ll

load

rotate

32

16em
tp

y

w
r_

en

rd
_
en

fu
ll

M
as

k
R

eg
is

te
r

di

do
16

16

memack

memreq

memaddr

opok

opcode

din

dout

teok

dir

k

k

k

k

en 32

16

Figure 5.5: Architecture of a data port of NoTePAD

â The output teok indicates whether the port is able to execute the next test opera-

tion.

The final architecture of a DP resulting from these considerations is shown in Figure

5.5. For the implementation, the width of the shift registers was selected to comprise

n = 16 bits. Consequently, the input FIFO has also a word width of 16 bits. The

data words stored within the output FIFO are 32 bits wide, due to the necessity to store

the data for the value and mask registers. The number k of inputs and outputs of the

DPs is kept configurable in the HDL description of the component. This allows quick

adaption of the number of available data I/Os during design time of the test processor

if an FPGA is used for the implementation. This number has to be traded against the

hardware overhead. Furthermore, one has to take into account that increasing k may

lead to squandered I/Os. As afore mentioned, this is the case if the bit width of a channel

is not a multiple of k. This also implies that the data belonging to the useless pins is

wasted as it cannot be omitted to retain the data block alignment. Thus, increasing the

number k of DPs, while keeping the total number of I/Os constant, potentially results in a

waste of data memory, but also in a significant reduction of the hardware requirements.

On the other hand, decreasing k reduces the waste of memory, but increases the area

requirements. An evaluation of suitable configurations is delivered later in Chapter 7.

To come right to the point, it has turned out that two or four I/Os per DP are suitable.

5.2. Hardware Implementation 89

5.2.3 Design of the Handshake Ports

The main purpose of the handshake ports is to provide the handshake interface, compris-

ing the input hi and the output ho, and to coordinate the flow of the selected protocol.

However, as opposed to the previous TP implementations [Zeidler 2011, Zeidler 2012a],

the HPs autonomously generate the handshake event sequence and fully control their as-

sociated DPs. To this end, the HPs implement a state machine that sends instructions

to the DPs and generates all the handshake signal transitions depending on the chosen

protocol. Accordingly, each HP requires a configuration register storing the protocol in-

formation p of the asynchronous channel C = (H,D, v0, p), the initial values hiinit, hoinit

of the handshake signals defined by the function v0 and the direction of the port, i.e.,

input or output.

In order to control the HPs, these are connected to the sequencer. As defined in

the global architecture, the sequencer sends the same opcode to all HPs. Furthermore,

it enables the HPs that shall perform the currently selected operation. Similar to the

completion indication of the DPs, the HPs acknowledge the execution of an operation

via a respective signal. Furthermore, to configure the type of the protocol, the HPs are

equipped with an additional configuration data input. Finally, the resulting interface to

the sequencer comprises the following signals:

â The input hp_opcode determines the operation to be performed by the HP.

â The input hp_en defines whether the HP is enabled to execute the operation de-

fined by hp_opcode.

â The input hp_config is used to define the protocol information and the initial

values of the handshake interface signals.

â The output hp_opok indicates whether the HP has completed the last operation.

Corresponding to the functionality of the HPs, they provide a couple of operations.

These include an operation to configure the protocol, i.e., set-asynchronous-handshake-

protocol (SAHP), and another one to initiate a handshake-based data transfer (TEST). In

addition, since the DPs are controlled by the HPs, the operations of the DPs have to be

made accessible via respective operations of the HPs. Therefore, the HPs provide the

operations INIT, TMRQ, FILL and FLSH. All of these instructions, except INIT, directly

forward the according instructions to the associated DPs. The INIT instruction encapsu-

lates the three DP operations SRDA, SWRA, and SDWC to setup the address and data count

registers. To ensure that all registers have been configured correctly, the HPs wait until

all their associated DPs have completed one operation before applying the next opcode.

90 Chapter 5. Test Processor Implementation

Additionally, this instruction initializes internal signals of the HP which are needed for

the detection and generation of protocol events. As an example, consider a 2-phase pro-

tocol. To detect the transition of the input hi an internal signal is used that stores the

previous value of hi. This internal signal has to be initialized to the initial value hiinit

prior to the start of the test.

To apply the opcode to the DPs and to observe their states, the HPs provide the

following interface signals connected with the associated DPs via the port switch:

â The output dps_opc is the opcode sent to the associated DPs.

â The output dps_dir indicates whether the HP and its associate DPs implement

an input or an output channel.

â The input status signal dps_opok indicates whether all associated DPs have com-

pleted the last operation.

â The input status signal dps_teok indicates whether all associated DPs can execute

the next test operation.

The latter two signals are computed by the port switch (see Section 5.2.4). For the sake

of simplicity, these signals are combined to dps_stat. Similarly, the signal dps_dir is

treated as part of the opcode.

Finally, the core of the handshake ports is the state machine that coordinates the

operations of the HP and its associated DPs. Its most important tasks are the control and

the monitoring of the handshake signals according to the selected handshake protocol.

For the design of this state machine, separate synchronous automatons were created

from the STGs of the supported protocols. Obviously, two automatons had to be created

for each protocol: one for sending and one for receiving data. As mentioned, the most

important bundled-data protocols are supported. For outgoing 4-phase data transfers,

the broad data validity scheme is applied which covers all other schemes. For incoming

data transfers, at least the early data validity is assumed which also covers the broad data

validity. Finally, to support late data validity for incoming data transfers, an additional

automaton has to be created. Furthermore, the information about the scheme has to be

added to the protocol. However, since this scheme is rarely used, it is currently not

supported by NoTePAD.

For the correct implementation of the FSMs, the cycle latency dopc required for the

propagation of the opcode from the HP to the DPs and the latency dstat of the status

signals from the DPs to the HPs have to be taken into account. These delays are, in turn,

determined by the implementation of the port switch. Accordingly, one has to consider

the following constraints:

5.2. Hardware Implementation 91

â A handshake signal transition that shall occur after a DP operation has to be de-

layed by dopc cycles. To ensure that the transition really occurs after the DP oper-

ation, a further delay buffer can be added to the output ho.

â The evaluation of the status signal, indicating whether the next TEST operation

can be issued, has to be delayed by at least dopc + dstat + 1 cycles after assigning

the TEST operation to the DPs. The additional cycle is introduced by the response

latency of the DPs. This ensures that the status signal has propagated to the HP.

Based on these considerations, the FSMs were created according to the respective

STGs. The complete set of STGs of the protocols and the according FSMs can be found

in Appendix A. However, the Figure 5.6 exemplarily illustrates the STG and the respec-

tive Mealy-FSM for sending data according to the 4-phase push protocol. In the STG,

the blue transitions designate the transitions which are generated by the TP, whereas the

red transitions are generated by the DUT.

For each state transition of the FSM, the significant input combinations and the re-

lated outputs are separated by a dashed line. Note that the inputs are basically boolean

conditions which may be combined via logical AND (&) and OR (|) operators. Further-

more, one can see a variable cyc which denotes a cycle counter. This internal variable

of the state machine is used to delay the state transition. In certain states, the HP eval-

uates the value of this counter and remains in these states as long as the counter is not

zero. Thereby, the value assigned to the counter is determined by the constraints defined

above. In the current implementation of the port switch, both dopc and dstat are one

AD

req
+

ack
+

req
-

ack
-

(a) STG

S0

S1S2

hi = hiinit &

dps_stat = 1 &

cyc = 0

dps_opc := TEST

cyc := dopc

cyc = 0

ho := ¬hoinit

cyc := dstat–1

hi = hiinit

ho := hoinit

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hiinit

cyc := max(0,cyc–1)

hi = hiinit |

cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure 5.6: Automaton for the 4-phase push protocol from the sender point of view

92 Chapter 5. Test Processor Implementation

cycle. Therefore, it is not necessary in some cases to delay the state transition. However,

the FSMs show the values depending on the generic latency variables dopc and dstat for

the sake of generality. Finally, a handshake is completed when the initial state is reached

again. Thus, the completion of a handshake is reported to the sequencer when traversing

a transition that leads to the initial state.

The STG shown in Figure 5.6 starts with the transition AD. This designates that valid

data has to be applied by the TP. After that the TP can issue a request which is acknowl-

edged by the DUT. Then, the request is reset by the TP. Finally, the DUT resets the

acknowledgment as well.

In the respective FSM, the next valid data is applied via assigning the opcode TEST

for the associated DPs. This is only allowed if all DPs are able to perform the next test

operation (i.e., dps_stat = 1) and the input handshake signal hi is at its initial value.

Then, the HP waits until the opcode reaches the DPs. Since all associated DPs were

able to perform the test operation, it is not necessary in this state to wait for delivery

of the status signal of the DPs. After dopc cycles the request is issued by setting the

output handshake signal ho to the inverse of its initial value stored in hoinit. Finally, the

HP waits for the acknowledgment of the DUT at the input signal hi before it resets the

output ho to the initial value. However, before the next handshake can be performed, it

has to be ensured that the status signal from the DPs has propagated to the HP. Thus,

after the TEST operation has been executed by the DPs, at least dstat cycles have to go

by. Therefore, it might be necessary to delay the execution of the next handshake.

Similarly, the Figure 5.7 shows the STG and the FSM for receiving data according

to the 2-phase push protocol. In this case, the protocol events are represented by signal

req*

SD

ack*

(a) STG

S0

S1

cyc = 0

ho := ¬ho´

ho´ := ¬ho´

cyc := dstat

hi = hi´ &

dps_stat = 1 &

cyc = 0

hi´ := ¬hi´

dps_opc := TEST

cyc := dopc

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hi´ | cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure 5.7: Automaton for the 2-phase push protocol from the receiver point of view

5.2. Hardware Implementation 93

transitions. Since there is no distinction between the rising and falling signal transitions,

the transitions are labelled with asterisks. According to the protocol, the TP has to

wait for the request of the DUT before it can strobe the data. In the STG, the strobe

of data is indicated by the transition SD. After the receipt of the data, the TP sets the

acknowledgment.

To realize the transition signaling in the synchronous FSM, two further internal vari-

ables hi’ and ho’ are introduced. These variables store the previous values of the

handshake signals. During the initialization of the handshake ports, these signals are set

to the initial values hiinit and hoinit. If a transition is detected or generated, then the

respective signal (hi’ or ho’) is inverted. Accordingly, the HP first waits for a transi-

tion of the input signal hi. This is the case if hi is unequal to hi’. If the transition is

detected, the HP forces the DPs to strobe the data via assigning the opcode TEST. Again,

the HP has to wait until the opcode has reached the DPs. Then, it sets the acknowledg-

ment by generating a transition of the output signal ho. Finally, the HP has to wait for

dstat cycles in order to fulfil the second constraint.

Based on the implementation of the FSMs, the number of cycles required for the

execution of the handshakes can be analyzed. The FSMs are designed such that after

assigning the TEST operation to the DP (which takes one cycle), the next handshake

can be initiated at the earliest after dopc + dstat + 1 cycles. However, this is typically

not the limiting factor. Instead, one has to consider the number of cycles consumed by

the individual operations: As indicated, one cycle is required for setting the opcode for

the DP. After that, the next handshake signal transition can be generated by the TP at

the earliest after dopc cycles. The generation of the transition also consumes one cycle.

Then, the transition on the handshake port input hi has to be detected, which in the best

case requires two cycles. Thus, under the assumption that dopc = dstat = 1, five cycles

are at least required for a 2-phase handshake. In case of 4-phase protocols, three further

cycles are required: one for resetting the handshake signal and two further cycles for

detecting the second transition of hi. Note that the order of these operations may vary

in the different FSMs implementations, but not their presence.

5.2.4 Design of the Port Switch

The port switch is the central connection point between the handshake and the data

ports. It stores the configuration that describes the association between these ports. This

association comprises two functions ADP and AHP. ADP : Ω → Φ ∪ {∅} maps the DPs

Ω = {ω0, . . . , ωl−1} to their associated handshake port. Since not all DPs might be

used in a test program, ADP might map some of the DP to ∅. In the opposite direction,

94 Chapter 5. Test Processor Implementation

AHP : Φ → Ω∗ (where Ω∗ designates the power set of Ω) is the pseudo-inverse function

to ADP. This function maps the handshake ports Φ = {φ0, . . . , φm−1} to a set of their

associated DPs. Again, not all HPs might be used in a configuration of a test.

To implement these mappings, the port switch is equipped with two register banks

storing two different matrices MDP and MHP as shown in Equation 5.1.

MDP =

s0
...

sl−1

 MHP =

a0,0 . . . a0,l−1
...

. . .
...

am−1,0 . . . am−1,l−1

 (5.1)

To realize ADP, the matrix MDP stores the ID si = id(φ j) = j, i ∈ {0, . . . l − 1} of the

associated HP φ j = ADP(ωi) for each DP ωi ∈ Ω. In addition to that, it is required

to indicate whether a DP is mapped to an HP or to ∅. The latter case indicates that

the certain DP is not used for the implementation of a channel. Therefore, one further

register stores a bit mask e = e0 . . . el−1 such that ei = 1 if ADP(ωi) , ∅. Otherwise,

ei is set to 0 which indicates that the port is not activated at all during the execution

of a specific test. In order to implement AHP, the matrix MHP stores one bit vector

a j = a j,0 . . . a j,l−1 for each HP φ j ∈ Φ. The bits of this vector designate which of the DPs

are associated with the HP φ j. Thus, if a j,t = 1, then DP ωt is associated with HP φ j.

Depending on these configuration matrices, the port switch forwards the operation

code from the handshake ports to the data ports and computes the status information

that is delivered by the DPs to be sent to the HPs. To obtain the status information,

the status signals opok and teok from the DPs are combined in the following way:

Let opok0, . . . , opokl−1 be the set of the signal opok of all DPs and teok0, . . . , teokl−1

the set of the signal teok. Furthermore, let dps_opok j be the status signal for a HP

φ j indicating that all its associated DPs have completed their last operation. Similarly,

dps_teok j designates the status signal for φ j indicating that all its associated data ports

are able to perform the next data transfer. Then, dps_opok j and dps_teok j can be

derived from Equations 5.2 and 5.3.

dps_opok j = (opok0 ∨ a j,0) ∧ . . . ∧ (opokl−1 ∨ a j,l−1) (5.2)

dps_teok j = (teok0 ∨ a j,0) ∧ . . . ∧ (teokl−1 ∨ a j,l−1) (5.3)

Each of these resulting signals are fed to the respective handshake port. Accordingly,

the port switch provides the following interface signals to the HPs:

â The inputs opc_to_dp0, . . . , opc_to_dpm−1 determine the opcodes provided by

the HPs to their associated DPs.

5.2. Hardware Implementation 95

â The outputs dps_opok0, . . . , dps_opokm−1 are the combinations of the status sig-

nals opok0, . . . , opokk−1 of the DPs indicating that all associated DPs have com-

pleted their last operation.

â The outputs dps_teok0, . . . , dps_teokm−1 are the combinations of the status sig-

nals teok0, . . . , teokk−1 of the DPs indicating that all DPs can perform the next

data transfer.

The interface to the DPs comprises the following signals:

â The output signals dp_opc0, . . . , dp_opcl−1 are the opcodes for each DP delivered

by the HPs.

â The input signals dp_opok0, . . . , dp_opokl−1 and dp_teok0, . . . , dp_teokl−1 are

the status signals of the DPs.

â The output signals dp_en0, . . . , dp_enl−1 are the enable signals e0 . . . el−1 for the

DPs.

In order to set and reset the configuration, the switch provides two corresponding

operations PS_SET and PS_RST, respectively. A further operation PS_NOP retains the

values of the configuration matrices. To define the desired operation and the configura-

tion of the matrices, the port switch has the following interface to the sequencer:

â The input ps_opcode defines the desired operation of the port.

â The input hp_id defines the ID of the handshake port if the PS_SET is executed.

â The input dp_id specifies the ID of the data port if the PS_SET is executed.

The latter two interface signals hp_id and dp_id are combined to ps_config. To define

a port association, the opcode PS_SET and the IDs of the ports have to be provided.

Then, the port switch sets the entries of the matrices as well as the enable signal ei for

the defined port ωi.

The resulting architecture of the port switch is illustrated by the schematic shown in

Figure 5.8. For the sake of simplicity, the signals dp_opoki and dp_teoki are combined

to dp_stati. As shown in the figure, the port switch comprises l multiplexers whose

outputs depend on the register bank storing the matrix MDP. Each of these multiplex-

ers selects the opcode for one of the l DPs from the HPs. Furthermore, the block DP

Enable Register stores the enable signals e = e0 . . . el−1 for each DP. For the oppo-

site direction, the port switch comprises logic to generate the status signals for each of

96 Chapter 5. Test Processor Implementation

p
s_

co
n

fig

(h
p

_
id

,
d

p
_

id
)

p
s_

o
p

co
d

e

Register

bank for MDP

Register

bank for MHP

MUX

MUX

o
p
c_

to
_

d
p

0

o
p
c_

to
_

d
p

m
-1

d
p
_

o
p
c

0

d
p

_
o
p

c
l-1

d
p
_

stat
l-1

d
p

_
stat0

Controller

DP Enable Register

d
p

_
en

0

d
p

_
en

l-1

d
p
s_

stat
0

a0,0

d
p
s_

stat
m

-1

a0,k-1

am-1,0

am-1,k-1

s0

sk-1

DP Opcode

Register

Status Register

Figure 5.8: Port switch of NoTePAD

the HPs with regard to the matrix MHP. Finally, the purpose of the Controller block

is to coordinate the operations of the port switch and the control of the register banks.

To prevent timing problems all outputs of the port switch are registered. Obviously,

this results in the afore mentioned latencies dopc = dstat = 1. However, in case of a

large number of DPs, the computation of the status signals becomes a bottleneck due to

the combinational path required for combining possibly several dozens of status signals

from the DP. In this case, one can add a pipelined computation in order to achieve high

clock frequencies. Of course, this increases dstat which has to be considered in the

handshake port implementation. A different approach could be that only subsets of the

DP can be associated with the individual HP. This decreases the number of inputs of

the combinational logic tree required for the status signal computation. Hence, the path

delay is reduced. However, this also decreases the flexibility to combine an arbitrary

subset of the data ports with one handshake port.

5.2.5 Architecture of the Memory Access Controller

The MAC connects all DPs with the data memory and coordinates the memory accesses.

Therefore, it arbitrates between incoming read and write access requests from the DPs.

5.2. Hardware Implementation 97

In addition to that, it also provides an interface for the sequencer by which data can be

up- and downloaded before and after the test execution, respectively. Furthermore, this

interface can be used by the sequencer to load and store data during test execution. In

general, this allows the sequencer to implement a stack for executing complex programs

including subroutine calls. However, typically the programs are almost completely se-

quential, except of special situations, e.g., a deadlock. The very few subroutine calls can

also be implemented without a stack, since it is not intended that the depth of the call

tree exceeds one subroutine call. Therefore, memory accesses during the test execution

are very rare.

The major challenge of the implementation of the MAC is the arbitration of a high

number of concurrently incoming requests. Apparently, in order to prevent deadlocks

or throughput bottlenecks, all access requests from the DPs are considered to have the

same priority. The only component that can issue a request with a higher priority is

the sequencer. Even though memory accesses of this unit are very rare, a low memory

response latency is required for this central control unit to ensure fast execution of the

program.

To guarantee that all requests from the DPs are processed, the MAC implements a

round-robin schedule mechanism. Therefore, the MAC scans its interfaces to the DPs

for pending requests in a cyclic manner. The requests are processed one after the other

and cycle by cycle. If a request of one DP is processed, then the next request of this DP

is processed at earliest after all pending requests of other DPs. To ensure that a DP issues

a new request only if no other request of this port is pending, the interfaces of the DPs

and the MAC implement a synchronous handshake protocol. Thereby, the MAC has to

distinguish between read and write request. Obviously, to complete a read request, a DP

has to wait for the response of the memory. This is different for a write request, where

the data to be written is transmitted along with the request itself. Thus, a write request is

fully processed when it is accepted by the MAC. With respect to the data transmission,

one further point to mention is the width of the data words written to and read from the

memory, respectively. Due to the architectural concept of the DPs, the data written to

the memory comprises n = 16 bits, whereas each data word read from the data memory

is 2n = 32 bits wide.

One essential challenge of the implementation of the MAC is the arbitration. In gen-

eral, the arbitration between potentially hundreds of requests in one clock cycle would

result in complex combinational circuitry and a significant reduction of the maximum

clock frequency of the system. Therefore, the entire arbitration process is disassembled

according to a divide-and-conquer approach. For this, the MAC is decomposed into a set

of memory access arbiter (MAA) that are connected in a tree-like architecture as shown

98 Chapter 5. Test Processor Implementation

in Figure 5.9. These arbiters are constructed in such a way that they are able to forward

one of r > 1 incoming requests within one clock cycle. Thereby, the number r is kept

generic which allows an adaption to the number of DPs during design phase of the pro-

cessor. Obviously, increasing r reduces the arbiter stages and, therefore, the response

latency for a read request as well. However, there is one limiting factor that strongly

restricts r, i.e., the clock frequency. This is due to the complexity of the resulting com-

binational logic implementing the arbitration scheme. It exponentially increases with

the increase of r and, therefore, limits the maximum operating frequency of the MAC.

During the design phase, it has turned out that r = 4 request interfaces are suitable. This

number results in an implementation of the MAC whose maximum operating frequency

is well balanced with the other components of the processor.

Following the structure shown in Figure 5.9, the set of l DPs can be interconnected

with the memory by using
∑l̃ogr(l)−1

i=0 ri arbiters, where l̃ogr(x) delivers the smallest integer

number y such that y ≥ logr(x). Apparently, for a well-balanced MAC l has to be a power

of r. Thus, for the considered implementation of the arbiter with four incoming request

interfaces 16, 64, 256, . . . DPs are suitable. The resulting depth of the arbiter tree1 is

equal to logr(l). This number strictly affects the minimum latency in cycles required for

accessing the memory from a DP. In the real implementation the latency is even larger,

since additional cycles might be required for accessing the memory.

For the connection with either the DPs or the arbiters of a lower stage, each arbiter

provides r input request interfaces. On the other side, each MAA provides one output

request interface that is connected to the arbiter of a higher stage. These interfaces

comprise the signals given in the following list. Thereby, the direction of the signals is

given for the input and for the output interface separated by the slash.

â The input/output req indicates the presence of a memory request and its type.

â The input/output data is the data to be written to the memory.

â The input/output addr is the memory address of the data.

â The output/input wrack is the acknowledgment signal indicating the completion

of a write access to the memory.

The only arbiter that differs from the others is the root arbiter connected to the mem-

ory. Besides the usual request interfaces for the MAA of the lower stage, it provides

an additional interface for the sequencer. A memory access request at this interface is

treated to have the highest priority. Therefore, these requests are processed immediately.

1The depth determines the number of arbiters on the path from the DPs to the memory.

5.2. Hardware Implementation 99

Since data memory accesses from the sequencer are very rare, as will be shown later,

this is a suitable solution. Furthermore, since the memory is expected to accept one read

or write access per clock cycle, there is no acknowledgment signal at the output interface

of this arbiter. This simplifies the design of the root arbiter.

In addition to the above mentioned interface signals, all MAAs, including the root ar-

biter, provide one read acknowledgment signal rdack for each input request port. How-

ever, instead of feeding these signals back to the lower arbiter stage (or to the DP) these

signals are connected to some additional logic shown in the lower part of Figure 5.9. This

circuitry generates the read access acknowledgments dp_rd_ack0, . . . , dp_rd_ackl−1

for the DPs.

The purpose of this circuitry is to prevent that the read access acknowledgment needs

to propagate the entire path back from the memory to the DP. Such a behavior would

block all the arbiters on the path. Furthermore, the acknowledgment would require twice

the number of cycles compared to the depth of the arbiter tree. Therefore, the read ac-

knowledgment signals of all arbiters on the path from a DP to the memory are combined

via AND-gates. Thereby, the registers store the combination of the read acknowledg-

ments for each DP for the different logr(l) stages. Finally, the value of the read acknowl-

edgment dp_rd_acki(t) for the DP ωi in cycle t is determined by the formula shown in

Equation 5.4.

dp_rd_acki(t) =

logr(l)−1∧
j=0

rdack j,i/r j(t − j − 1) (5.4)

The bus for the data read from the memory is directly connected to the respective

ports of the DPs and the sequencer, respectively. For this reason, these signals are not

shown in the figure. However, in practice this direct interconnection may impose con-

siderable routing effort. In an FPGA implementation, each of the 32 data bus bits has to

be fanned out in order to connect them to the inputs signals of potentially hundreds of

DPs. In case of implementing the TP as an IC, a bus system can be used to decrease this

routing effort.

5.2.6 Architecture of the Sequencer

The sequencer is the central control unit that coordinates the activities of the handshake

ports and the port switch. It manages the flow of operation of the entire test system.

One of its basic tasks is to detect deadlocks during the execution of asynchronous data

transfers. The sequencer fetches the instructions from the program memory, decodes

them, and controls and observes the HPs and the port switch. In addition to that, it also

100 Chapter 5. Test Processor Implementation

rd
ac

k
lo

g
(l

)-
2

,r
-1

rd
_

ac
k
_
re

g
lo

g
(n

)-
2

rd
_
ac

k
_

re
g

0

rd
_

ac
k
_
re

g
lo

g
(n

)-
1

Memory

Access

Arbiter

dp_wr_ack0

Memory

Access

Arbiter

dp_reqr-1

dp_datar-1

dp_addrr-1

Root

Memory

Access

Arbiter

Memory

Access

Arbiter

dp_wr_ackr-1

Memory

Access

Arbiter

dp_reql-1

dp_datal-1

dp_addrl-1

dp_wr_ackl-1

req1,0

data1,0

addr1,0

wrack1,0

dp_req0

dp_data0

dp_addr0

mem_wr

data

addr

req1,r-1

data1,r-1

addr1,r-1

wrack1,r-1

req1,l/r-1

data1,l/r-1

addr1,l/r-1

wrack1,l/r-1

reqlog(l)-1,0

datalog(l)-1,0

addrlog(l)-1,0

reqlog(l)-1,r-1

datalog(l)-1,r-1

addrlog(l)-1,r-1

wracklog(l)-1/0

wracklog(l)-1,r-1

ext_req

ext_data

ext_addr

ext_ack
2

rd
ac

k
0

,l
-1

rd
ac

k
0
, 0

dp_rd_ackl-1

dp_rd_ack0

Memory

Access

Arbiter

rd
ac

k
lo

g
(l

)-
1

,0

rd
ac

k
lo

g
(l

)-
1
,r

-1

rd
ac

k
lo

g
(l

)-
2
,r

-r

rd
ac

k
lo

g
(l

)-
2

,r
-1

rd
ac

k
lo

g
(l

)-
2

,0

rd
ac

k
lo

g
(l

)-
2
,r

-1

rd
ac

k
lo

g
(l

)-
1

,0

rd
ac

k
lo

g
(l

)-
1
,r

-1

2

rd
ac

k
lo

g
(l

)-
2

,0

rd
ac

k
0
, 0

rd
ac

k
0
, r

-1

rd
ac

k
0
, r

rd
ac

k
0
, 2

r
-1

rd
ac

k
0
, l-

r

rd
ac

k
0
, l-

1

Figure 5.9: Memory access controller of NoTePAD

5.2. Hardware Implementation 101

has access to the data memory via the afore mentioned interface of the MAC. Therefore,

the sequencer is the central unit that provides access to both, the program and the data

memory for the ETE via the external interface described in Section 4.2.2.2. Furthermore,

the sequencer implements the interface to special control signals of the DUT, e.g., used

to connect the reset signal.

Apparently, the sequencer is a specialized microprocessor. Its design is mainly

driven by the required operations to control the components and to execute a program.

The required functionality mainly includes instructions to embed the operations of the

HPs and the port switch, as well as additional control flow instructions, and memory ac-

cess and register manipulation instructions. The complete overview of these instructions

is given later in the Section 5.3.

One essential point resulting from the instruction set is the width of the instructions.

Obviously, the width of the instructions is determined by the number of instructions and

respective data to pass to them. To anticipate, the processor supports 22 instructions.

Thus, at least 5 bits are required to encode the operations. As shown later, the bit width

of the data passed to the instructions is determined by the number of handshake ports

and control signals. Finally, the instructions comprise 24 bits: 8 bits are used for the

opcode and the remaining 16 for encoding the data belonging to these instructions. Of

course, 8 bits for the opcode are much more than actually required, but this leaves room

for further extensions.

In consideration of the complexity of the required operations, the sequencer has

been decomposed into a pipeline of two stages in order to fit the clock frequency of the

other components. The first one fetches the instruction from the memory. Therefore, it

manages the program counter and the branch addresses delivered by the second stage.

Furthermore, in order to program the processor prior to the test execution, this stage is

connected to the interface of the ETE. Thus, when the program shall be downloaded, the

processor is in an inactive state and directly forwards the data from the ETE interface to

the memory.

The second stage decodes and executes the instructions. Thus, it is this block which

controls and monitors the other components. The decode stage has a register file com-

prising eight 32-bit registers. Some of these registers are reserved for special purposes

while others can be used for general purposes. Since many operations of the controlled

components may require several cycles for completion, this stage needs the possibility

to pause the execution of the program. Therefore, it provides a control signal to the fetch

stage indicating whether to stall the pipeline. For example, in case of performing asyn-

chronous data transfers, the sequencer stalls the pipeline, sets the operation code for the

HPs, and selects the HP to be activated. Afterwards, the sequencer has to wait until all

102 Chapter 5. Test Processor Implementation

activated HPs have performed the transfer and reported the completion at the respective

status signal hp_opok.

However, stalling a pipeline may result in a deadlock of the entire program if at least

one HP is not able to complete its operation. Therefore, two registers of the register file

are used to implement a timeout counter scheme. One of these registers is used to define

the upper bound of cycles to wait. The second register stores the current number of cy-

cles exceeded since the start of the last operation. If the value of this register exceeds the

value of the timeout register, then the execution of the current operation is interrupted. In

order to enable adequate reactions to such unexpected behavior, the processor branches

to a program address specified by a third register. However, information is required to

identify the cause of the deadlock. Here, two things are of importance: the current pro-

gram address and the information which of the ports did not complete the last operation.

Thus, the value of the status signals hp_opok of the HPs have to be stored. Accordingly,

two further registers are used to store the respective information. The first one simply

stores the current program address and the second one stores a mask describing the val-

ues of the status signals. If a bit bi, i ∈ {0, . . . ,m − 1} of this mask is logical-0, then the

HP φi ∈ Φ has not completed its last operation.

Based on these considerations, the register file comprises the following registers:

â CYCLCNT (r0) — is the accumulator for addition operations that is typically used

for counting cycles and memory address calculations.

â TIMEOUT (r1) — timeout register storing the maximum number of cycles allowed

for any kind of operations whose timing is not defined.

â JMPADDR (r2) — register storing the address to jump to in case of a timeout.

â RETADDR (r3) — register that stores the return address in case of any branch.

â MASKREG (r4) — register that receives the mask of status signals.

â TMPREG1 (r5) — first register for temporary data

â TMPREG2 (r6) — second register for temporary data

â TMPREG3/STACKPT (r7) — third register for temporary data that can be used by

convention as stack pointer register.

The decode stage also implements the port comprising the control in- and outputs.

This port simply comprises a set of inputs ci0 . . . cic−1 and a set of outputs co0 . . . coc−1

that can be used in parallel. To prevent metastability, the inputs have to be migrated into

5.3. Instruction Set 103

RegFile

Decode & Execute

Logic

In
st

r

R
eg

PC

M
U

X

A
d

d
rR

eg

C
o

n
tr

o
lR

eg
s

C
tr

l

R
eg

Flags

Control Logic

jmp, stall

valid,flush

instr

d
m

_
to

_
se

q

se
q
_

to
_

d
m

se
q
_

d
m

_
ad

d
r

se
q
_

d
m

_
re

q

+1

P
M

R
eg

hp_status

hp_opcode

ps_hp_config

jmp_addr

pm_addr

pm_wr

pm_out

tp
_

to
_

ex
t

ex
t_

m
em

_
ad

d
r

ex
t_

m
em

_
w

r

ex
t_

to
_

tp

DMemReg
Ext

Reg

Halt

Reg

h
al

t

rst_pc

en
ab

le

ps_opcode,

hp_en

co

ci

Fetch Decode

pc

Figure 5.10: Sequencer component of NoTePAD

the clock domain of the processor, e.g., using synchronizers. Finally, the decode stage is

also connected to the ETE interface allowing the patterns to be downloaded to the data

memory.

In summary, the architecture of the sequencer is shown in Figure 5.10. The figure

illustrates all the interface signals and the main components of the sequencer.

5.3 Instruction Set

The instruction set of NoTePAD covers operations to setup the processor, to execute the

test sequence and to finally upload the test results. A majority of the required instructions

is directly derived from the operations of the individual components. Thus, in order to

control the port switch, the handshake and the data ports, the sequencer has to provide

instructions encapsulating the operations of these components. Moreover, instructions

are required that control the flow of operation during test execution. According to the

demands of the transfer protocol, this includes instructions to wait for a specific time,

e.g., to realize a time window between setting and releasing the reset signal of the DUT.

Also, branch instructions and other control flow operations are required, e.g., for the

synchronization with the ETE. Furthermore, instructions are needed that provide access

to the registers of the sequencer and to the data memory.

104 Chapter 5. Test Processor Implementation

According to their functionality, the instruction set of NoTePAD can be divided into

several groups:

â control flow instructions

â port switch instructions

â handshake and data port instructions

â register manipulation instructions

â memory access instructions

The simplest instruction of the group of control flow instructions is the idle operation

that can be used to wait for one test processor cycle before the next operation is executed.

The next one is the wait instruction. This instruction stalls the pipeline, resets the cycle

counter and afterwards increments this register each clock cycle until it reaches the value

of the timeout register. Then, the stall signal is released and the processor continues the

program execution.

Further required control flow instructions are branch operations. Typically, common

microprocessors support various types of branch instructions, such as conditional and

unconditional branches. However, since NoTePAD is intended to execute sequential

programs with only a very few number of branches, it provides only one unconditional

branch instruction. The branch destination address for this instruction has to be stored

in the JMPADDR register. Furthermore, the instruction simultaneously stores the return

address (i.e., the value of the program counter) in the RETADDR register and sets the

program counter to the branch destination address. This is required to implement simple

subroutines, e.g., a handler function for unexpected behavior of the DUT.

The last control flow instruction is required for the synchronization mechanism of

the processor with the ETE. As defined in the concept (cf. Section 4.2.2.2), this opera-

tion is used to indicate that a specific stage of the program was reached. For example,

the processor can indicate the completion of the test sequence and that the test result are

ready for upload. Therefore, the processor provides the halt instruction. This instruc-

tion sets the ETE interface signal halt and stalls the pipeline. This state is kept until the

enable control signal has been asserted by the ETE.

In sum, the control flow operations include the following instructions:

â noop — is the idle operation.

â wait — stalls the pipeline and waits for the number of cycles defined by the

timeout register.

5.3. Instruction Set 105

â bral — stores the return address in the RETADDR register and sets the program

counter to the branch destination address specified by the JMPADDR register.

â halt— sets the halt signal of the processor and stalls the pipeline. The processor

can be enabled to continue the operation by setting the control signal enable to

logical-1.

The port switch instructions directly implement the two operations provided by this

component. The first one is used to reset the entire port switch configuration and, there-

fore, deletes the port associations. The second instruction is used to define the associa-

tion of one HP with a DP. For this, the IDs of the ports have to be passed to the instruction

as immediate values2. Consequently, the port switch operations are the following:

â rsio — resets the configuration of the port switch

â conf hp=imm6, dp=imm10— sets the configuration such that the DP defined by

imm10 is associated with the HP defined by imm6.

The largest set of instructions is dedicated to setup and control the data and hand-

shake ports. Thus, these instructions directly implement the operations provided by the

HPs. All of these instructions either provide a field specifying a mask or an ID in order

to select the active ports of this instruction. Thereby, each bit hi of the mask hm−1 . . . h0

represents the enable signal hp_eni for one of the m handshake ports.

Furthermore, this group also includes two operations accessing the control in- and

outputs. One of these instruction sets the control outputs and the other one is used to

compare the input signals. Thereby, the comparison instruction is organized such that it

stalls the pipeline of the processor until the input control signals are equal to an expected

value passed to the instruction. In order to prevent deadlocks, this instruction also makes

use of the timeout scheme. Both instructions provide a field for specifying a mask that

determines which of the signals shall be set or compared, respectively. To summarize,

the port instructions are the following:

â sahp hp=imm6, protocol=imm6 — sets the handshake protocol configuration

of the port with the specified ID. The protocol configuration is a six bit mask

comprising the following bits:

hiinit hoinit type enc phases dir

6 5 4 3 2 1 0

2Immediate values represent numerical values in an instruction.

106 Chapter 5. Test Processor Implementation

where

– hiinit and hoinit are the initial values of the handshake signals defined by the

function v0 of a channel,

– type defines the initiator type: push (type = 0) or pull (type = 1),

– enc indicates the encoding style: currently only single-rail (enc = 0) is sup-

ported,

– dir denotes the direction of the channel: input channel (dir = 0) or output

channel (dir = 1)

â init hpmask=imm16 — induces the handshake ports selected by the mask to

consecutively activate the SRDA, SWRA, SDWC operations of their associated DPs.

Thus, after executing this instruction all the DPs that are associated with the en-

abled handshake ports are fully configured to read and write data from/to the mem-

ory.

â tmrq hpmask=imm16 — forces the selected HPs to allow or to disallow all their

associated data ports to issue memory access request. This instruction has to be

called after setting the port switch configuration and prior to the test execution in

order to specify the active data ports.

â fill hpmask=imm16 — induces the selected HPs to activate the FILL operation

of the associated DPs. After the execution of this instruction the output buffers of

all DPs associated with one of the selected HPs are filled with test patterns. This

instruction can be used prior to a test to prevent bottlenecks during test execution

due to temporarily unavailable data.

â flsh hpmask=imm16 — induces the selected handshake ports to activate the

FLSH operation of the associated DPs. This operation has to be executed after

the test sequence. It guarantees that the input data (response/fault signatures) of

all DPs associated with one of the selected HPs are written to the memory.

â test hpmask=imm16 — forces the handshake ports selected by the mask (and

their associated DPs) to perform one transfer. The instruction stalls the pipeline

until either all selected HPs have completed the transfer or a timeout is detected.

In the latter case, the processor branches to the address defined by the JMPADDR

register.

â ctri mask=imm8, value=imm8 — performs a bitwise comparison of the value

with the control inputs specified by the mask. The instruction also stalls the

5.3. Instruction Set 107

pipeline until either all selected control inputs are equal to the expected value

or the timeout is detected.

â ctro mask=imm8, value=imm8 — sets the selected output control signals to

the specified value.

In order to manipulate the values of the registers, the processor provides three in-

structions: one instruction moves the value from one to another register, one instruc-

tion performs a simple addition and two further instructions set the value of a register.

Thereby, one of the latter two instructions sets the lower 16-bits and the other one sets

the upper bits of a register. These instructions comprise a field for specifying a 16-bit

immediate value.

â move rd, rx— writes the value of register rx to register rd .

â addu imm16— adds the 16-bit immediate value imm16 to the accumulator regis-

ter.

â setl/seth rd, imm16 — set the lower/upper 16-bit of register rd to the value

of the 16-bit immediate value.

Finally, the last group of instructions realizes memory accesses functions. Three

instructions implement data exchange operations between the registers and the memory.

One aspect resulting from the architecture of NoTePAD is the width of the data of the

memory interface. The data written to the memory has half the width of the data read

from memory. Therefore, it requires two instructions for writing a 32-bit data word into

the memory. One instruction stores the lower half and one the upper half of the bits of

a register within the memory. In the other direction, only one instruction is required to

read a 32-bit data word from the memory.

In addition to these basic memory access instructions, another instruction is used

to transfer the content of the data memory to the ETE. In order to simplify the upload

procedure, the instruction is designed such that an entire data array can be uploaded.

Therefore, the start and the end addresses of the array have to be specified. Afterwards,

the instruction can be called which reads the data words cycle by cycle from the memory

and forwards them to the ETE interface. In order to compute the memory addresses, this

instruction utilizes the adder required for the timeout scheme. This reduces the amount

of arithmetical and multiplexing logic within the sequencer. As a consequence, prior to

the execution of the upload instruction, the start and end address have to be stored in the

cycle counter (CYCCNT) and the timeout (TIMEOUT) register, respectively.

Finally, the memory access instructions are the following:

108 Chapter 5. Test Processor Implementation

â slwd/shwd rx, ry — stores the lower/upper 16-bits of the register rx at the

memory address specified by register ry.

â ldwd rd, rx— reads a 32-bit data word from the memory address specified by

register rx and writes the data into register rd .

â dout — loads the data at the address of the timeout counter register and forwards

this data to the external interface. The timeout counter and the timeout boundary

register have to be loaded with the start and the end address of the data array to be

transferred. The instruction stalls the pipeline until the counter value exceeds the

boundary register.

5.4 Tools Related to the Processor

Obviously, in order to create executable programs for the desired architecture, proces-

sor related tools, such as an assembler and a linker, are required. Therefore, an addi-

tional LISA model of the sequencer has been created besides the RTL-implementation

of NoTePAD. This model includes all resources and instructions of the sequencer men-

tioned in the previous sections. Based on this LISA-model in combination with the tool

suite of the Synopsys Processor Designer, an assembler and linker have been created

that allow the generation of binary programs for the sequencer.

"Things should be made as simple

as possible, but not any simpler."

— Albert Einstein

Chapter 6

Test Program Generation

In this chapter, an implementation of the test program generation flow is discussed. An

essential step of this flow is the generation of the transfer protocol. This chapter dis-

cusses how this protocol is generated from a standard logic simulation environment.

The prerequisite for this is the utilization of a special package in the test bench modelling

the environment of the design-under-test. A possible implementation of this package is

presented. Finally, the transfer protocol has to be translated to a program for the test pro-

cessor. Therefore, a mapping of the expressions of the transfer protocol to instructions of

the proposed test processors is defined. This mapping is the base for the implementation

of a compiler tool that generates assembly code for the NoTePAD solution.

6.1 The Channel Simulation Package

The heart of the test program generation approach is the channel simulation package. It

implements the algorithm defined in Section 4.3.2 that serializes the transfers and gener-

ates the transfer protocol from a functional simulation of the DUT. Therefore, it provides

an abstract data type that models generalized asynchronous channels. Moreover, the

package includes the mentioned transfer procedures that implement the different hand-

shake protocols for the interactions of a DUT with its environment. Therefore, these

procedures take instances of the channel data type as input, perform the data transfer in

the simulation and write the corresponding transfer statement into the protocol file. In

order to realize this functionality in a reusable manner, the package was implemented as

a VHDL package. To some extent, the implementation of the package is similar to a so-

lution provided in [Sparsø 2001]. In their approach, two VHDL packages are described

that provide an abstract and a real asynchronous channel implementation. These imple-

109

110 Chapter 6. Test Program Generation

mentations differ in the way the handshaking is encoded. The abstract channel model,

provided there, is based on abstract phases of the handshaking, e.g., idling, waiting

for the request, waiting for the acknowledgment etc. The implementation of the real

channel package relies on the actual implementation of the handshake signalling using

explicit handshake signals. Although the solution presented in this chapter is similar to

this real channel package, it differs in several aspects. Apart from the generation of the

transfer protocol, the most important difference is that the channel simulation package

implements various different handshake protocols rather than a particular one. Before

the package is described in detail, the general approach of writing the test bench for the

simulation of the DUT and the resulting issues for the channel simulation package shall

be discussed.

6.1.1 Preconsiderations

As usual in test benches, the DUT has to be instantiated. Naturally, all resources for

accessing the DUT have to be defined in the declaration section of the architecture of

the test bench. This especially includes the signals and channels required to interface

the DUT instance. As previously indicated, the same applies to the transfer protocol

that shall be generated from the test bench. All resources used in the test section have

to be defined in the declaration section of the transfer protocol file. This leads to the

following issue. Before the definition of the resources can be written into the transfer

protocol, the respective file has to be opened. Basically, opening and writing a file in the

declaration part of a VHDL architecture is not a problem. However, the issue raises from

the demand that certain internals of the package, such as the file object, shall be hidden

from the user. This eases the entire flow due to the abstraction from internal activities

of the package. For this reason, the required activities, such as opening the hidden

protocol file, are encapsulated in procedures. However, procedures cannot be called in

the declaration part of a VHDL architecture. The solution to this is the following: The

declaration of the resources in the test bench is detached from writing this declaration

into the transfer protocol file. Then, the writing of these declarations has to be done later

in a process of the architecture body of the test bench. This also allows the declaration

of channels that shall not be included into the transfer protocol. This is useful, e.g., if

the test bench connects various designs that shall individually be tested. Then, the test

bench can make use of instances of the channel data type, which will not appear in the

transfer protocol.

Apart from writing the declaration, two more actions are required for the correct

generation of the transfer protocol. As defined, a transfer protocol consists of a decla-

6.1. The Channel Simulation Package 111

ration section and a test section. Thus, after declaring all resources, the test section has

to be initiated before the transfers can be logged into the file. Finally, when all transfers

have been executed, the protocol file has to be completed by ending the test section and

closing the file. Although other solutions might be possible, all these activities should

preferably be integrated into a separate process in the test bench. This process opens the

protocol file, writes the resource declarations, initiates the test sequence, and closes the

file as shown in Figure 6.1. Besides this control process, the test bench may comprise

individual processes that access the different channels connecting the DUT. This is quite

common for an asynchronous DUT. All these processes have to be synchronized with

the control process at certain points. For example, as it is shown in Figure 6.1, the pro-

cesses accessing the channels have to wait for the start of the test sequence before they

are allowed to perform data transfers. These synchronization activities have to be taken

over by the designer creating the test bench. However, the channel simulation package

shall deploy mechanisms to ease the synchronization. Finally, if all these measures for

declaring the resources and creating the transfer protocol have been heeded, the gener-

ation of the test sequence itself shall only be a matter of calling procedures to perform

channel and signal data transfers.

6.1.2 Test Processor and Package Setup

Basically, the implementation of the simulation package shall be kept generic in order to

abstract from the test processor implementation. However, some constructs are required

that are directly related to the test processor and to the creation of the protocol. This

especially concerns the various properties of the TP shown in Listing 6.1. Thus, the

open_transfer_protocol();

declare_channel(c1);

...

declare_channel(cn);

start_test_sequence();

wait until

all_channels_closed();

close_transfer_protocol();

wait until

test_sequence_started();

open_channel(c1);

send(c1,data_c1_1);

...

send(c1,data_c1_x);

close_channel(c1)

...

Control Process

Process Channel c1 Process Channel cn

wait until

test_sequence_started();

open_channel(cn);

receive(cn,data_cn_1);

...

receive(cn,data_cn_y);

close_channel(cn)

Async. DUT

C1 Cn

Test Bench

Figure 6.1: Processes of the test bench and their interaction with the DUT

112 Chapter 6. Test Program Generation

Listing 6.1: Definition of test processor related constant
--! Period of time for one clockcycle of the processor.
constant TP_PERIOD : time := 5 ns;
--! Maximum number of handshake ports of the processor.

4 constant MAX_CHANNELS : integer := 16;
--! Maximum number of io pins of the processor.
constant MAX_IO_PINS : integer := 64;
--! Maximum number of either input or output signals.
constant MAX_SIGNALS : integer := 8;

9 --! Maximum length of a name for a signal or channel.
constant MAX_NAME_LEN : integer := 20;

clock cycle period, the maximum number of handshake and data ports and the maximum

number of control inputs and outputs have to be defined according to the architecture of

the processor. These parameters have to be adapted to the concrete TP implementation

used for the test. Besides these processor related parameters, a further one specifies the

maximum length of the identifiers for channel and signal resources.

6.1.3 Procedures for Accessing the Transfer Protocol

As previously indicated, several things are required for the creation, the access, and

the completion of the transfer protocol. The transfer protocol itself is a simple text

file object in VHDL. The declaration of this file object is hidden within the package

implementation. However, as it is illustrated in Figure 6.1, a procedure is required that

opens a physical file for writing and associates it with the hidden file object. This is

implemented by the tp_open_transfer_protocol() procedure. In addition to that,

this procedure has to initiate the declaration section of the protocol. Thus, after a call

to tp_open_transfer_protocol(), all the channel and signal resources used in the

test sequence have to be declared. After that, the transfer protocol has to be switched

to capture the test sequence. Therefore, the procedure tp_start_test_sequence()

ends the declaration section and starts the test section. This procedure has to be called

prior to any transfer on the declared resources. In order to inform the processes, which

access the channels connect to the DUT, a synchronization function is required. This

function, called tp_test_sequence_started(), has to indicate whether the transfer

protocol was switched to the test sequence. Finally, when all transfers of the test bench

have been processed, the protocol file needs to be closed. This is accomplished by

the tp_close_transfer_protocol() procedure. The interfaces of all these required

functions and procedures are shown in Listing 6.2.

6.1. The Channel Simulation Package 113

Listing 6.2: Procedures and functions to access the transfer protocol
--! Opens and initializes the transfer protocol.
procedure tp_open_transfer_protocol(filename : string);
--! Starts the test sequence.
procedure tp_start_test_sequence;

5 --! Checks whether the test sequence has been started.
impure function tp_test_sequence_started return boolean;
--! Verifies whether the test sequence has been started.
procedure tp_assert_test_sequence;
--! Closes the transfer protocol.

10 procedure tp_close_transfer_protocol;

6.1.4 Model of the Handshake Protocol Type

As a prerequisite for modelling asynchronous channels, a model for the asynchronous

protocol type is required. Therefore, several types are declared that represent the char-

acteristics of an asynchronous channel. According to the abstract channel model, these

characteristics include the initiator type (push/pull), the number of phases (2-phase/4-

phase), and the data encoding (single-rail/dual-rail). Then, the protocol type itself is

a combination of these characteristics implemented via a record type. As previously

indicated, not all combinations of the properties and the corresponding protocols are

supported by the test processor. However, this generic implementation allows future

integration of additional protocols. Listing 6.3 illustrates the types for modelling hand-

shake protocols.

Listing 6.3: Definition of the type for modelling the handshake protocol type
--! Type used to determine the initiator of a transfer
type INIT_TYPE is (PUSH, PULL);
--! Type determining the number of phases (2-phase/4-phase)
type PHASE_TYPE is (TWO, FOUR);

5 --! Type modelling the data encoding (single-rail/dual-rail)
type ENCODING_TYPE is (SR, DR);
--! Type that models the protocol type, i.e., a combination
--! of the various handshake protocol properties.
type TP_PROTOCOL_TYPE is record

10 --! Determines the initiator of the handshake.
init : INIT_TYPE;
--! Determines the number of phases.
phases : PHASE_TYPE;
--! Defines the data encoding.

15 enc : ENCODING_TYPE;
end record;

114 Chapter 6. Test Program Generation

6.1.5 Channel Resources

The model of the asynchronous channels in the simulation package is implemented as a

record type. According to the definition of asynchronous channels, the type TP_CHANNEL

comprises the handshake protocol information, the handshake signals and their initial

values, and finally the data signals. Moreover, the direction of the channel from the

perspective of the DUT is required for the mapping of the handshake signals to the in-

and outputs of the handshake ports of the processor. In addition to this, the direction is,

of course, also essential for the data transfers. It defines whether the channel is driven

by the DUT or its environment.

Besides the characteristics inferred by the abstract channel model, a variety of other

properties are required for the generation of the transfer protocol and the correct exe-

cution of the transfers. This includes a unique identification number, the name of the

channel, the number of transfers, and the state of the channel. The name of the channel

is used as the identifier of the channel in the transfer protocol. Typically, it is recom-

mended to set the name to the same identifier as used in the test bench. The identification

number is internally used by the channel simulation package, e.g., in the algorithm gen-

erating the test sequence. The user does not need to take care about this number. The

same applies to the number of transfers. According to the wait procedure defined in

Section 4.3.2.2, this member is internally required for determining whether a transfer

has been performed on the channel. Finally, the state member is also used internally to

indicate whether the channel has been correctly initialized and prepared for performing

data transfers. Furthermore, this member indicates whether the channel will show up

any further activity during test. Using this information, one can determine the point in

time of the simulation when the protocol can be closed. Consequently, four states can be

distinguished:

â The state UNINITIALIZED indicates that the channel has not been initialized.

â The state INITIALIZED indicates that the channel was correctly initialized but not

opened for usage.

â The state OPENED indicates that the channel is ready for transferring data.

â The state CLOSED indicates that there will be no further activity on the channel.

The utilization of these states enables the verification of the usage of a channel and

corresponding accesses. Therefore, all procedures that operate on channels check this

member. In case of an invalid usage an error message is delivered.

6.1. The Channel Simulation Package 115

Finally, the record type for the generalized asynchronous channels is shown in List-

ing 6.4. The listing also shows the array type TP_SET_OF_CHANNELS which is used

to define sets of channels. This is, e.g., necessary for the wait procedures to spec-

ify sequence relations between transfers. Furthermore, the interface of the function

tp_init_channel() is illustrated which eases the initialization of a channel.

Listing 6.4: Structure and initialization of channels

--! Type used to indicate a channel as an input or output.

type DIRECTION is (INPUT, OUTPUT);

--! Type to indicate the state of a channel.

4 type CHANNEL_STATE is (UNINITIALIZED ,INITIALIZED ,OPENED,CLOSED);

--! This type describes an asynchronous channel.

type TP_CHANNEL is record

--! ID of the channel. Used for internal identification.

9 id : integer;

--! Name of the channel.

name : string(1 to MAX_NAME_LEN);

--! Stores the number of transfers

transferid : integer;

14 --! Determines whether the channel is an input or output.

dir : DIRECTION;

--! Determines the state of the channel.

state : CHANNEL_STATE;

--! Stores handshake protocol information.

19 hp : TP_PROTOCOL_TYPE;

--! The request signal of the channel.

req : std_logic;

--! The acknowledgement signal of the channel.

ack : std_logic;

24 --! The initial value of the request signal.

req_init : std_logic;

--! The initial value of the acknowledgement signal.

ack_init : std_logic;

--! The data bus of the channel.

29 data : std_logic_vector(MAX_IO_PINS -1 downto 0);

--! Bit width of the data.

size : integer;

end record;

--! An array type for channels

34 type TP_SET_OF_CHANNELS is array (natural range <>) of TP_CHANNEL;

116 Chapter 6. Test Program Generation

--! Initializes a channel with the specified parameters

function tp_init_channel(

name : in string;

39 width : in integer;

dir : in DIRECTION;

init : in INIT_TYPE;

phases : in PHASE_TYPE;

enc : in ENCODING_TYPE;

44 req_init : in std_logic := ’0’;

ack_init : in std_logic := ’0’) return TP_CHANNEL;

After declaring and initializing a channel in the declaration part of the test bench

architecture, the channel can be registered in the transfer protocol. This is accom-

plished by the procedure tp_register_resource() which writes the channel prop-

erties into the transfer protocol. Obviously, the protocol file has to be opened using

tp_open_transfer_protocol() before this procedure is called. From the functional

point of view, the channel can be used to apply and receive data. However, accord-

ing to the possible states the channel has to be opened to indicate that the channel is

active. In addition to that, it might be necessary in some cases to set the data signals

to predefined values before the first handshake is executed. Therefore, the procedure

tp_open_channel(), which opens a channel, provides an optional parameter. This

parameter designates the value assigned to the data signals of the channel without per-

forming a handshake. After calling this procedure the channel is opened and allowed

to perform transfers. Finally, as indicated in Figure 6.1, the channel has to be closed

in order to indicate that the channel will not perform any further activity. Using this

information, a process in the test bench can check whether channels handled in other

concurrent processes are active. To ease this check the package provides two functions

tp_is_opened() and tp_is_closed() whose interface is shown in Listing 6.5.

The most important functions are the transfer procedures. With respect to this, there

are three possible activities. Obviously, two procedures have to be provided to write

data to a channel (tp_send()), and to read data from a channel (tp_recv()). These

procedures implement the different handshake protocols and write the transfer statement

into the protocol file. However, these procedures can only be applied to channels having

data signals. In order to support control channels without any data signal, a further

procedure (tp_sync()) is required that only performs a handshake and adds a SYNC-

statement to the protocol.

Furthermore, it might be necessary to wait for transfers on a set of channels before

6.1. The Channel Simulation Package 117

Listing 6.5: Channel preparation procedures
--! Registers a channel and writes a declaration statement
--! into the transfer protocol.
procedure tp_register_resource(ch : in TP_CHANNEL);
--! Opens and initializes a channel according to the protocol.

5 procedure tp_open_channel(signal ch : inout TP_CHANNEL;
data : in std_logic_vector := "U");

--! Closes a channel.
procedure tp_close_channel(signal ch : inout TP_CHANNEL);
--! Determines whether a channel was closed.

10 function tp_is_opened(signal ch : in TP_CHANNEL) return boolean;
--! Determines whether a channel was closed.
function tp_is_closed(signal ch : in TP_CHANNEL) return boolean;

continuing with the execution of a process. Therefore, the package provides two over-

loaded procedures1 named tp_wait() that implement the wait procedure mentioned in

Section 4.3.2.2. These procedures pause the execution of the calling process and wait un-

til each specified channel has executed a handshake. To express this sequential behavior

in the transfer protocol, the present concurrent transfer group is terminated. More details

about that are given in Section 6.1.8. In summary, Listing 6.6 shows the prototypes of

the procedure related to channel transfers.

Listing 6.6: Handshake procedures

--! Performs a handshake and writes data into the channel.

procedure tp_send(signal ch : inout TP_CHANNEL;

3 value : in std_logic_vector);

--! Performs a handshake and reads data from the channel.

procedure tp_recv(signal ch : inout TP_CHANNEL;

value : out std_logic_vector);

--! Performs only a handshake.

8 procedure tp_sync(signal ch : inout TP_CHANNEL);

--! Waits for a transfer on the specified channel.

procedure tp_wait(signal ch : in TP_CHANNEL);

--! Waits for transfers on all specified channels.

procedure tp_wait(signal chs : in TP_SET_OF_CHANNELS);

6.1.6 Signal Resources

A signal resource is quite similar to a channel. As shown in Listing 6.7, the correspond-

ing data type comprises an identification number, a name, a direction, the data signals
1Overloaded procedures are procedures that have the same name, but a different parameter list.

118 Chapter 6. Test Program Generation

Listing 6.7: Structure and initialization of signal resources
--! This type describes a signal or bus resource.
type TP_SIGNAL is record

3 --! Id of the signal.
id : integer;
--! Name of the signal.
name : string(1 to MAX_NAME_LEN);
--! Direction of the signal.

8 dir : DIRECTION;
--! Left bus range specifier.
left : integer;
--! Right bus range specifier.
right : integer;

13 --! Data signals.
data : std_logic_vector(MAX_SIGNALS -1 downto 0);
--! Bit width of the signal.
size : integer;

end record;
18

--! Defines a signal with the desired parameters
function tp_define_signal(

name : string;
dir : DIRECTION;

23 left : integer := 0;
right : integer := 0) return TP_SIGNAL;

--! Writes a declaration statement into the transfer protocol.
procedure tp_register_resource(sig : in TP_SIGNAL);

and the according number of signals actually used. Furthermore, in order to cover entire

data buses, the record type has two additional members left and right. These are

used to describe the original bus range. For example, to declare a bus with the range (3

to 8), left has to be set to 3 and right to 8. As well as for the channel record type,

the simulation package provides a function tp_init_signal() for initializing a signal

resource and a procedure tp_register_resource() to register a signal in the transfer

protocol.

After the declaration, a signal resource can be used in the test section. Therefore,

the package provides one procedure to assign a value to a signal resource. The other di-

rection, thus, reading data from the signal resource is more ambiguous due to the timing

relaxed nature of the desired test. Here, two different scenarios have to be distinguished.

On the one hand, the signal may simply be read and compared in the moment of reach-

ing that action in the transfer protocol. However, due to the lack of accurate timing the

actual point in time of the comparison during test may differ from the one in the simula-

6.1. The Channel Simulation Package 119

tion. Thus, such a simple comparison makes sense only in well-defined states, e.g., after

the execution of a specific channel transfer.

On the other hand, it might be necessary to wait until the DUT delivers a specific

value at a certain control output. In order to support both scenarios, the channel simu-

lation package provides two functions, i.e., tp_get_value() and tp_sync_value()

shown in Listing 6.8. The first one, tp_get_value(), directly reads the value of the

signal during the simulation and writes a signal comparison statement into the transfer

protocol. This means for the according test that the test processor has to directly check

the value of the signal. If the received value does not match the expected one, then the

test is treated as failed.

The functionality of the procedure tp_sync_value() is more sophisticated. It pro-

vides one optional parameter expvalue. If this parameter is defined, then the procedure

waits until the value of the signal resource is equal to this parameter during simulation.

Otherwise, the procedure simply reads the current value of the signal. In both cases, the

procedure writes a signal wait statement into the transfer protocol. Thus, the test pro-

cessor will wait until the value of the signal resource becomes either equal to the value

of the signal computed by the simulation or the value defined by expvalue.

Listing 6.8: Accessing signal resources

--! Assigns a value to the specified signal.

procedure tp_assign(

3 signal sig : inout TP_SIGNAL;

value : std_logic_vector);

--! Reads the value from the signal and writes an

--! according statement into the protocol.

8 function tp_get_value(signal sig : in TP_SIGNAL)

return std_logic_vector;

--! Reads a value from the signal possibly syncs this

--! value with the expected value. In both cases a

13 --! wait statement is written to the protocol.

procedure tp_sync_value(signal sig : in TP_SIGNAL;

actvalue : out std_logic_vector;

expvalue : in std_logic_vector := "X");

120 Chapter 6. Test Program Generation

6.1.7 Miscellaneous Functions

Apart from the functions and procedures dedicated to processor resources, there are a

couple of activities required to provide further control of the transfer protocol genera-

tion. One of these activities is the control of the timeout of transfer operations. Thus,

one procedure is required that writes timeout statements and another one is required to

write timeout routine statements into the transfer protocol file. Similarly, a method is

required that waits for a certain time window and writes a corresponding wait statement

into the protocol file. Finally, in some situations it might be required to explicitly ter-

minate the present concurrent transfer group. In consideration of these activities, the

channel simulation package provides the control functions shown in Listing 6.9.

Listing 6.9: Control functions

--! Terminates the present concurrent transfers.

procedure tp_sync;

4 --! Pauses the execution of the calling process for the

--! specified time and writes a wait statement into the file.

procedure tp_wait(waittime : time);

--! Writes a timeout statement into the transfer protocol file

9 --! that specifies the timeout for handshake and signal

--! comparison operations.

procedure tp_set_timeout(timeout : time);

--! Writes a timeout routine statement into the transfer

14 --! protocol file that specifies the name of the routine

--! that is called in case of a timeout.

procedure tp_set_timeout_routine(routine : string);

6.1.8 Implementation of the Sequence Generation Algorithm

As a first step of the implementation of the approach described in Section 4.3.2.2, one

has to define how the concurrent transfer groups and the test sequence are represented

by VHDL constructs and how these are stored in memory during simulation. Basically,

the concurrent transfer groups are independent from each other and are sequentially cre-

ated. Therefore, it is not required to simultaneously store the entire test sequence in the

memory during the simulation. Instead, every group and even each transfer can directly

be written to the protocol file. However, for this to be applicable, one has to add either

the concurrency or the sequence operator between the separate statements. Of course, to

6.1. The Channel Simulation Package 121

determine which of these operators should be inserted, one has to consider the transfers

that are already in the presently considered transfer group designated by Gk in Listing

4.2. Thus, one has to keep Gk in the memory during the simulation. However, instead of

buffering the entire information about the transfers, it is enough to store only the chan-

nels accessed by the transfers in Gk. At this point, the unique IDs of the channels come

into play. Therefore, a structure is required that stores the IDs of the accessed channels.

Apart from that, further information about the registered resources is required. This is

necessary to prevent the transfer procedures to log transfers of unregistered channels.

Therefore, the IDs of the registered channels are stored. To encapsulate all this informa-

tion for the test sequence generation, the record type TP_STATE is introduced as shown

in Listing 6.10. Prior to its definition, an array type is declared that is used to store the

IDs of channel resources.

The most important part of Listing 6.10 is the record type TP_STATE itself. The type

comprises a boolean value indicating whether the transfer protocol has been initialized,

the number of used control in- and outputs, the number of data pins that are associated

with registered channels, and two sets of channel IDs. Each of these sets is implemented

using an instance of the defined array type and the number of IDs actually stored in the

array. According to their names, the first set stores the IDs of the channels registered

in the transfer protocol, whereas the second one stores the IDs of the channels that are

accessed concurrently. Afterwards, a global instance tp_proc of TP_STATE is created

that is used by the transfer procedures. The listing also shows the file object for the

transfer protocol.

Listing 6.10: Internal data structures of the channel simulation package

--! Array type for storing the IDs of channels.

type TP_CHANNEL_IDS is array (integer range <>) of integer;

--! Type modelling the state of the test processor.

4 type TP_STATE is record

--! Determines whether the TP is ready for the test sequence

is_init : boolean;

--! Number of used input control signals

num_in_signals : integer;

9 --! Number of used output control signals

num_out_signals : integer;

--! Number of used data pins

num_data_pins : integer;

--! Number of registered channels

14 num_registered_channels : integer;

--! IDs of registered channels

122 Chapter 6. Test Program Generation

registered_channels : TP_CHANNEL_IDS(0 to MAX_CHANNELS -1);

--! Number of concurrent accesses

num_accessed_channels : integer;

19 --! IDs of concurrently accessed channels

accessed_channels : TP_CHANNEL_IDS(0 to MAX_CHANNELS -1);

end record;

--! Variable storing global status information.

shared variable tp_proc : TP_STATE;

24

--! The transfer protocol file object.

file tp_transferprotocol : text;

Using these constructs, the procedure log_transfer() can be implemented that

realizes the algorithm. Listing 6.11 shows this procedure. It takes as input the accessed

channel and the textual description of the transfer, i.e., the corresponding transfer state-

ment. This description has to be generated by the callers of this procedure.

Prior to the definition of the procedure a text line buffer is declared. The purpose

of this buffer is the following. As mentioned, instead of buffering all the concurrent

transfers, these are directly written to the protocol file. However, either the concurrency

operator or the sequence operator has to be inserted between the last logged statement

and the next one to be added. Therefore, each statement is first written into the buffer.

When the next statement shall be logged, the according operator is added to the buffer

which is afterwards written to the protocol file. After that, the buffer is set to the descrip-

tion of the current transfer.

Listing 6.11: Implementation of the concurrency check

--! Stores the next line to be written to the transfer protocol.

shared variable tp_buffer : line;

4 procedure log_transfer(ch : in TP_CHANNEL;

transferdesc : inout line) is

begin

-- Check whether the current channel is registered.

-- If not, we don’t need to log the transfer.

9 if not contains(ch.id, tp_proc.registered_channels ,

tp_proc.num_registered_channels) then return;

end if;

-- Check the channel to be present in the concurrent group.

14 if contains(ch.id, tp_proc.accessed_channels ,

6.1. The Channel Simulation Package 123

tp_proc.num_accessed_channels)

then

-- If the channel already exists in the group add the

-- sequence operator to the buffer, write the buffer

19 -- to the file

if (tp_buffer /= null) then

write(tp_buffer , ";");

writeline(tp_transferprotocol , tp_buffer);

end if;

24 -- ... and reset the concurrent group.

tp_proc.num_accesses := 0;

else

-- ... otherwise add the concurrency operator and write

-- the buffer to the file.

29 if (tp_buffer /= null) then

write(tp_buffer , ",");

writeline(tp_transferprotocol , tp_buffer);

end if;

end if;

34

-- Afterwards , write the description of the current

-- transfer to the buffer.

write(tp_buffer , transferdesc.all);

39 -- Add the channel to the considered concurrent group.

tp_proc.accessed_channels(

tp_proc.num_accessed_channels) := ch.id;

tp_proc.num_accessed_channels :=

tp_proc.num_accessed_channels + 1;

44 end;

The first step of the procedure log_transfer() checks whether the transfer has to

be logged. This is the case if the ID of the accessed channel is in the set of registered

channels of the global tp_proc object. Similarly, the second step checks whether the

channel has already been accessed by any other transfer in the currently considered trans-

fer group. If this is not the case, then the concurrency operator is added to the buffer.

However, if the channel was already accessed, then the sequence operator is added to

the buffer and the set storing the IDs of the accessed channels is cleared. In both cases

the buffer, comprising the last statement, is written to the protocol file. Finally, the de-

scription of the current transfer is written to the buffer and the channel ID is added to the

124 Chapter 6. Test Program Generation

set of concurrently accessed channels. Obviously, log_transfer() only adds the last

statement to protocol file. The current transfer applied to the function is only stored in

the buffer. For this reason, the buffer still contains the very last statement at the end of

the simulation. Thus, the content of the buffer has to be written to the protocol file before

closing it. This step is part of the procedure tp_close_transfer_protocol().

Basically, the log_transfer() procedure has to be called by tp_send() and

tp_recv() to log the transfer. However, these procedures are further decomposed. Two

further procedures, i.e., read_value() and write_value(), are introduced that read

and write the data value of a channel and generate the transfer statement. Finally, these

procedures call log_transfer() as shown in Listing 6.12. Both procedures have an

additional boolean parameter sync_only. This parameter determines whether to per-

form only a synchronization handshake. If this is the case, a SYNC transfer statement is

Listing 6.12: Reading and writing channel data
1 --! Writes the specified data to the data part of the channel.
procedure write_value(signal ch : inout TP_CHANNEL;

data : in std_logic_vector; sync_only : boolean) is
variable desc : line;

begin
6 if sync_only then

write(desc, " SYNC " & get_name(ch));
else

write(desc, " " & get_name(ch) & " <= ");
write(desc, ’"’ & str(data) & ’"’);

11 assign_data(ch, data);
end if;
log_transfer(ch, desc);

end procedure;

16 --! Reads the data value from a channel and assigns it
--! to the specified output variable.
procedure read_value(signal ch : inout TP_CHANNEL;

data : out std_logic_vector; sync_only : boolean) is
variable desc : line;

21 begin
if sync_only then

write(desc, " SYNC " & get_name(ch));
else

write(desc, " " & get_name(ch) & " => ");
26 write(’"’ & str(ch.data(ch.size-1 downto 0)) & ’"’);

assign_data(data, ch);
end if;
log_transfer(ch, desc);

end procedure;

6.1. The Channel Simulation Package 125

written into the protocol file.

Finally, the transfer procedures implement the individual handshake protocols and

call the procedures read_value(), write_value() to log the transfers. Listing 6.13

shows a simplified excerpt of the implementation of tp_send(). This procedure takes

as input the channel object and the data value to be sent. In addition to that, the pro-

cedure also has the optional boolean parameter sync_only, which is forwarded to the

write_value() procedure. By default sync_only is set to false such that a full data

transfer is performed.

Listing 6.13: Implementation of the transfer procedure for sending data

procedure tp_send(

signal ch : inout TP_CHANNEL;

value : in std_logic_vector;

sync_only : boolean := false) is

5 begin

-- Checks consistency

assert tp_proc.is_init;

assert ch.state = OPENED;

10 assert ch.dir = INPUT;

case ch.hp.init is

when PUSH =>

case ch.hp.phases is

15 when TWO =>

...

when FOUR =>

case ch.hp.enc is

when SR =>

20 -- Wait until the acknowlegement is low

if (ch.ack /= ch.ack_init) then

wait until ch.ack = ch.ack_init;

end if;

-- Assign the data to the channel

25 write_value(ch, value, only_sync);

-- Issue the request

ch.req <= not ch.req_init after TP_PERIOD;

-- Wait for completion of the transacation

wait until ch.ack = not(ch.ack_init);

30 -- Reset request to finish the handshake

ch.req <= ch.req_init after TP_PERIOD;

126 Chapter 6. Test Program Generation

when DR =>

...

35 end case;

end case;

when PULL =>

...

end case;

40 --! Update transfer ID

ch.transferid <= ch.transferid + 1;

end procedure;

In the implementation of tp_send(), a variety of consistency checks are performed

first. During the simulation, these checks test whether the transfer protocol and the spec-

ified channel have been opened properly. Afterwards, a set of case-statements selects

the protocol according to the respective information stored in the channel object. List-

ing 6.13 exemplarily shows the implementation of the 4-phase single-rail push protocol.

The first step of this protocol checks whether the next data transfer can be initiated. This

is the case if the acknowledgment signal is in its inactive null-value, i.e., the value of the

ack_init member of the channel. Afterwards, the data value is assigned to the data part

of the channel via the call of write_value(). Consequently, the transfer is logged in

the protocol file. After applying the data to the channel, the request is issued by setting

the request signal of the channel to the inverse of its initial value req_init. To emulate

the test processor environment to a certain extent, this assignment is delayed by the clock

cycle period of the processor. Then, the procedure waits for the acknowledgment of the

receiver before the request signal is reset. As a final step, the procedure increments the

transfer counter of the channel in order to indicate that a transfer has been performed.

In the opposite direction, the transfer procedure tp_recv() reads data from a chan-

nel. Its parameters are almost identical to tp_send() except that the data value param-

eter is an output rather than an input. Listing 6.14 shows the fragment of the procedure

implementing the 2-phase single-rail push protocol. In the first phase of the protocol

the procedure waits for a transition on the request line. Afterwards, the data is read

from the channel and the transfer statement is written to the protocol file via the call of

read_value(). As a last step of the protocol, the receipt of the data is acknowledged

by generating a transition on the acknowledgment line. Finally, the transfer counter is

incremented.

6.1. The Channel Simulation Package 127

Listing 6.14: Implementation of the transfer procedure for receiving data

procedure tp_recv(

signal ch : inout TP_CHANNEL;

3 value : out std_logic_vector;

only_sync : boolean := false) is

begin

-- Consistency checks

8 assert tp_proc.is_init;

assert ch.state = OPENED;

assert ch.dir = OUTPUT;

case ch.hp.init is

13 when PUSH =>

case ch.hp.phases is

when TWO =>

case ch.hp.enc is

when SR =>

18 -- Wait for the request

wait until ch.req’event;

-- Read the value from the channel

read_value(ch, value, only_sync);

-- Acknowledge the receipt

23 ch.ack <= not(ch.ack) after TP_PERIOD;

when others =>

...

end case;

28

when FOUR =>

...

end case;

...

33 end case;

--! Update transfer ID

ch.transferid <= ch.transferid + 1;

end procedure;

According to Section 4.3.2.2, a further requirement for the generation of the protocol

is the wait procedure. For the sake of usability, there are two implementations of this pro-

cedure: one waits for a transfer on a single channel and the other one waits for transfers

128 Chapter 6. Test Program Generation

on a set of channels. To detect a transfer, these functions make use of the transferid

member of the channels. Corresponding to the conceptual algorithm described in List-

ing 4.3, the actual transfer IDs of the involved channels are stored first. Afterwards, the

procedures wait until all IDs have been changed by the transfers procedures executed

concurrently by other processes. Finally, when each specified channel has performed

a transfer, the present concurrent transfer group is terminated via adding the sequence

operator. Thus, any transfer performed after the call of tp_wait() is ensured to occur

after the specified transfers in the transfer protocol, as well.

Listing 6.15: Implementation of the wait procedures

--! Waits for a transfer on a single channel

procedure tp_wait(signal ch : in TP_CHANNEL) is

variable current_transfer_id : integer;

4 begin

tp_assert_test_sequence;

current_transfer_id := ch.transferid;

wait until ch.transferid /= current_transfer_id;

tp_sync;

9 end procedure;

--! Type for storaging IDs of channels

type TRANSFER_IDS is array (natural range <>) of integer;

14 --! Helper function that checks whether the transfer IDs of

--! all specified channels change

function tp_all_channels_fired(

signal chs : in TP_SET_OF_CHANNELS;

ids : TRANSFER_IDS) return boolean is

19 begin

for i in chs’range loop

if ids(i) = chs(i).transferid then

return false;

end if;

24 end loop;

return true;

end function;

--! Waits until each specified channel has performed at

29 --! least one handshake

procedure tp_wait(signal chs : in TP_SET_OF_CHANNELS) is

variable current_transfer_ids : TRANSFER_IDS(chs’range);

6.1. The Channel Simulation Package 129

begin

tp_assert_test_sequence;

34 for i in chs’range loop

current_transfer_ids(i) := chs(i).transferid;

end loop;

wait until tp_all_channels_fired(chs, current_transfer_ids);

tp_sync;

39 end procedure;

130 Chapter 6. Test Program Generation

6.2 Mapping of a Transfer Protocol to a Processor Pro-

gram

With the help of the procedures introduced above, the transfer protocol can be generated

from the functional simulation of the DUT. The next step in the flow is the generation of

the test processor program from the created transfer protocol. This requires a mapping

of the protocol statements to instructions of the test processor. Obviously, this step

hardly depends on the test processor implementation. The following sections describe

the entire procedure of creating a program for the provided NoTePAD architecture from

the transfer protocol.

6.2.1 Preconsiderations Regarding the Program Generation

As outlined in the concept (see Section 4.3.2), the program is created in a platform

dependent assembler format. Obviously, this direct mapping to assembler code has

the disadvantage that the generated program cannot be reused for a different test pro-

cessor architecture. An alternative approach is the generation of code in a high-level-

language, such as C. However, high-level languages have several disadvantages. First,

a C-compiler for the special processor would be required, whose creation is an exhaus-

tive task. Furthermore, a library is needed that provides procedures to access the special

functionalities of the processor. But the most important disadvantage is that high-level-

languages demand a stack to realize context switches resulting from subroutine calls.

However, in consideration of the desired programs, such context switches and, there-

fore, the stack as well, are not required due to the almost fully sequential nature of the

generated programs. Therefore, the management of the stack leads to computation over-

head which is not required. Moreover, the processor is basically not designed to execute

programs derived from high-level languages. All these considerations lead to the deci-

sion to generate assembler code rather than platform independent high-level language

code. This has the advantage that the generated code is kept compact with respect to the

generated instruction sequences and resource management.

Basically, the entire program can be divided into different phases. Two of these

phases are directly derived from the two sections of the transfer protocol: the initial-

ization phase and the test execution phase. The initialization phase comprises all the

required steps for setting up the processor. In the test execution phase the entire test

sequence as described by the transfer protocol is carried out. Besides these two phases,

two further steps are required that are not represented by a section in the protocol file,

i.e., the finalization of the test and the upload of the test results. The test finalization

6.2. Mapping of a Transfer Protocol to a Processor Program 131

phase comprises additional steps to guarantee that all test results are available. After

that the results have to be sent to the ETE in the result upload phase.

The initialization phase can be further divided into the processor initialization and

the test preparation phase. In the processor initialization phase the resources of the pro-

cessor are initialized, whereas the test preparation phase comprises activities to prepare

the execution of an individual test, e.g., the reinitialization of the ports. In practice, it

might be beneficial to separate the processor initialization from the other phases. For ex-

ample, consider the case that a single device shall pass through a sequence of functional

tests. Typically these tests utilize the same resources. In order to shorten the program

and the test execution time, the initialization phase of the processor can be executed once

before the entire sequence of tests. On the other hand, in case the processor resources

have to be changed, the processor has to execute the initialization phase. In comparison

to that, the test preparation phase has to be executed once for each test.

This separation of the entire program into different phases has some effects to the

generation of the program. This especially concerns the creation of the program files.

Thus, instead of creating one single file, the program is split into various files. One

set of files includes the processor initialization and another set includes the test specific

phases. This allows that the processor initialization can be executed separately from the

other phases. Moreover, in consideration of generating assembler code, the programs are

further divided for the following reason. Typically, assembler programs are separated

into sections. The most important ones are the program section (typically called text

section) and the data section. Obviously, the program section comprises the instructions

to be executed by the processor, whereas the data section includes statically allocated

data fields. During the link process, all possibly distributed sections of the same type are

combined to a single one, which is finally mapped to memory resources.

To gain a clear separation between the sections, the generated programs are divided

into various files. The program section, including all instructions, is written into one

file or, in case of a separation of the processor initialization phase, into two files. In

comparison to that, the data section is spread over several files. Each of these files

includes the data for one data port. This is due to the agreement that the data for each

data port is aligned in an array. Hence, separating this data into dedicated files allows

that the data can directly written into the files. Otherwise, it would be required to collect

all the data for each port during the translation process. According to this, the respective

file for a data port, which is part of an output channel of the TP, includes the stimuli to be

applied to the DUT. Compared to this, the file for a data port used as an input comprises

the expected data and a memory array reserved for the responses/fault signatures. The

size of the memory for the responses is determined by the product of the number of

132 Chapter 6. Test Program Generation

transfers of the respective channel and the number of pins of the data port.

A further aspect that regards the DP data is their alignment in words which have to

match the size of the words read from the data memory of the processor. For this reason,

it might be necessary to buffer the data for each port until the size of the buffered data

matches the size of a word read from the memory. For example, consider the case that

each data port comprises 4 pins and the width of the data words read from the memory

is 32 bits. For the proposed processor implementation, each data word, which is read

from the memory and delivered to a data port, comprises 16 bits for the data value and

16 bits for the mask. Consequently, each of these words includes the required data for

4 data transfers. According to that, the data of 4 transfers have to be collected before

the data word is written into the file. To further illustrate this, consider the sequence of

channel transfers in Listing 6.16. Note that the data part of the channel comprises 15 bits.

Assume that these transfers are the only ones performed on this channel. Furthermore,

assume that the data ports associated with the channel are ω3, . . . , ω0, where ω3 realizes

the most significant (leftmost) bits and ω0 realizes the least significant (rightmost) bits.

Listing 6.16: Sequence of data transfers on a channel

1 DECLARE

ch1 : OUT CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 15);

END

TEST

...

6 ch1 => "110 1000 0000 0001";

ch1 => "010 1XX0 1110 1111";

ch1 => "X01 0010 1000 0101";

...

END

Corresponding to that, the data of the four data ports that are written to the data files

is shown in Listing 6.17. Note that the data is combined in one file which is typically

spread over four files. Apart from the test pattern data for the individual data ports,

also the configuration of the address registers and the word counter has to be generated.

According to the defined memory organization shown in Figure 5.4, this configuration

has to be stored at the start of the data memory to ensure that the DPs can access the

correct data. With respect to the test pattern data, the file includes the expected output

responses and a memory reservation statement for each port. The latter one is used

for storing the responses or fault signatures captured by the port. The statement itself

comprises the start address label of the reserved data array, the size in bytes and the byte

alignment.

6.2. Mapping of a Transfer Protocol to a Processor Program 133

Listing 6.17: Corresponding content of the files for the data ports
.data

CONF_OF_DP0:
.word (DP0_RDATA -DMEM_START)
.word (DP0_WDATA -DMEM_START)

5 .word ((DP0_RDATA_END -DP0_RDATA) >> 1)
.word 0

CONF_OF_DP1:
.word (DP1_RDATA -DMEM_START)
.word (DP1_WDATA -DMEM_START)

10 .word ((DP1_RDATA_END -DP1_RDATA) >> 1)
.word 0

CONF_OF_DP2:
.word (DP2_RDATA -DMEM_START)
.word (DP2_WDATA -DMEM_START)

15 .word ((DP2_RDATA_END -DP2_RDATA) >> 1)
.word 0

CONF_OF_DP3:
.word (DP3_RDATA -DMEM_START)
.word (DP3_WDATA -DMEM_START)

20 .word ((DP3_RDATA_END -DP3_RDATA) >> 1)
.word 0

DP0_RDATA:
.word 0x0fff05f1

25 DP0_RDATA_END:
.bss DP0_WDATA , 4, 4

DP1_RDATA:
.word 0x0fff08e0

30 DP1_RDATA_END:
.bss DP0_WDATA , 4, 4

DP2_RDATA:
.word 0x0f9f0288

35 DP2_RDATA_END:
.bss DP0_WDATA , 4, 4

DP3_RDATA:
.word 0x03770526

40 DP3_RDATA_END:
.bss DP0_WDATA , 4, 4

For better illustration, consider the binary representation of the 32-bit data words:

mn/a m3 m2 m1 vn/a v3 v2 v1

data of ω3 : 0000 0011 0111 0111 0000 0101 0010 0110

data of ω2 : 0000 1111 1001 1111 0000 0010 1000 1000

data of ω1 : 0000 1111 1111 1111 0000 1000 1110 0000

data of ω0 : 0000 1111 1111 1111 0000 0101 1111 0001

134 Chapter 6. Test Program Generation

The left half of these 32-bit words comprises the bits for the mask, whereas the right half

of the bits includes the data value. Thereby, the column labelled with m1,m2,m3 denote

the masks for the three data transfers and v1, v2, v3 designate the value for the transfers.

Since only three transfers are executed on this channel, the four leftmost bits of each of

the half words (mn/a, vn/a) are not used and set to logical-0. Note that the undetermined

bits (designated by X-values in Listing 6.16) cause the mask and the value bits at the

corresponding positions to be set to logical-0, as well. Furthermore, it can be seen that

the leftmost bits of the individual 4-bit blocks of the data port ω3 are not used, since only

15-bits are required for the channel. Therefore, the mask and the value bits are also set

to logical-0 at the respective bit positions.

6.2.2 Mapping to NoTePAD Instructions

Based on the above mentioned considerations, the mapping of the transfer protocol to

the instructions of NoTePAD is discussed in this section. For this, the phases of the

generated programs are described separately.

6.2.2.1 Processor Initialization

The first activity in the processor initialization phase is to reset the resource configu-

ration. For the NoTePAD processor, this is achieved by executing the rsio instruction

which resets the configuration of the port switch and deletes the associations of the data

ports with the handshake ports. Afterwards, the new associations can be defined accord-

ing to the declarations in the transfer protocol. Therefore, the channel and the signal

declarations of a transfer protocol are processed one by one.

As defined in Section 4.3.2.3 a channel declaration has the following format:

<name> : <dir> CHANNEL(<type>, <ph>, <enc>, <ri>, <ai>, <bits>)

Three steps are required to setup a channel corresponding to the properties defined

by its declaration in the protocol file. First, the channel resources, i.e., one handshake

port and a set of data ports have to be allocated. This allocation has to take the maxi-

mum number of available ports and the number k of pins of each data port into account.

Thereby, the number x of allocated DPs is determined by the smallest natural number

such that x · k ≥ b, where b is the number of required bits for the channel (determined by

<bits> in the above declaration). Afterwards, in the second step the allocated ports have

to be associated with each other. This is accomplished by executing the conf instruction

for each of the allocated data ports. Thus, let i be the ID of the next allocatable handshake

port φi. Furthermore, letω0, . . . , ωy−1 be the set of already allocated data ports. Then, the

6.2. Mapping of a Transfer Protocol to a Processor Program 135

instruction conf hp=i, dp= j has to be generated for each j ∈ {y, . . . , y+ x−1}. Finally,

in the last step the handshake protocol configuration needs to be defined for the allo-

cated HP. Therefore, the configuration bit mask p is created as defined in Section 5.3

from the protocol parameters <type>, <phases>, <enc>, <req_init> and <ack_init>.

This configuration mask is applied to the handshake port by executing the instruction

sahp hp=i, protocol=p.

In comparison to channels, the initialization of signal resources requires only the

allocation of control signals. Therefore, no explicit instruction has to be generated.

Instead, the allocation only has to take care about the number of control pins. Thus, after

the execution of the instructions for setting up the channels, the processor initialization

is finished. As mentioned, these instructions have to be called only once, unless the

required resources need to be changed. One important thing to note is that this resource

allocation is also relevant for the interconnection of the processor with the DUT, since it

determines the pin configuration.

An example of the generation of the processor initialization phase is given in the

next section.

6.2.2.2 Test Preparation

As indicated before, the test preparation phase comprises test specific initializations

which have to be executed once before each test. For the NoTePAD solution, this in-

cludes the initialization of the handshake and the data ports via the execution of the init

instruction. Besides the initialization of the internal signals of the HPs, the instruction

induces the selected handshake ports to consecutively apply the SRDA, SWRA and SDWC

opcodes in order to initialize the registers of the associated data ports. To select the HPs,

a mask has to be generated which has logical-1s at all positions that are equal to one of

the IDs of the allocated HPs. As a result of the execution of the init instruction, all

associated data ports request the required data from the memory as described in Section

5.2.2. Furthermore, an additional step is required to allow the used data ports to issue

memory requests. Therefore, the tmrq instruction has to be called. This instruction

receives the same mask as parameter as the init instruction.

Besides the initialization of the data port registers, it might be beneficial to fill the

output FIFOs prior to the test run. This is useful if the DUT has a high data throughput.

Thus, filling the FIFOs prior to the test execution might prevent bottlenecks due to empty

output FIFOs. On the other hand, if the data rate of the DUT is low, then filling the FIFOs

could increase the required test time as the data could be loaded while running the test.

Therefore, this step is optional. In practice, one has to consider the throughput of the

136 Chapter 6. Test Program Generation

DUT and the number of connected data ports in order to decide whether to execute the

fill instruction.

Finally, the branch address register has to be set such that it points to a timeout

routine. By default, the code implementing the test finalization phase is used as the

timeout routine. To set the branch address register to the start address of this routine, a

combination of the setl and seth instruction is used.

As an example, consider the fragment of a transfer protocol shown in Listing 6.18

and the corresponding assembly code shown in Listing 6.19. Note that the declaration of

the rst signal does not result in any code. Furthermore, assume that each DP has four

I/Os.

Listing 6.18: Declaration section of a transfer protocol

DECLARE

rst : IN SIGNAL;

3 cin : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 8);

cout : OUT CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 8);

END

Listing 6.19: Assembly code for the considered transfer protocol fragment

.text

INIT_PROC:

; Reset port switch configuration

rsio

5 ; Associate the data ports with the handshake ports

conf hp=0, dp=0

conf hp=0, dp=1

conf hp=1, dp=2

conf hp=1, dp=3

10 ; Configure handshake protocol

sahp hp=0, protocol=0x5

sahp hp=1, protocol=0x4

INIT_TEST:

; Initialize the ports

15 init hpmask=0x0003

; Allow data memory requests

tmrq hpmask=0x0003

; Load timeout routine

seth r2, (END_OF_TEST >> 16)

20 setl r2, (END_OF_TEST & 0xffff)

6.2. Mapping of a Transfer Protocol to a Processor Program 137

6.2.2.3 Test Execution

As defined by the format, the transfer protocol comprises various types of test activities

including channel transfers, signal operations, and finally wait operations. To certain

respects, the generation of the instructions implementing the transfer statements is triv-

ial for the NoTePAD processor. In comparison to the RISC processor implementation

provided in [Zeidler 2012a], each group of concurrent channel transfers is mapped to

one single test instruction. Therefore, a bit mask representing the enable signals for

the handshake ports has to be generated for each concurrent transfer group. Thus, the

bit at position i of this mask is set to logical-1 if the handshake port φi is involved in

the concurrent transfer group. Otherwise, the bit is set to logical-0. The resulting mask

is applied as a parameter to the test instruction. To illustrate this, consider Listing

6.20 which shows an example of a transfer protocol that utilizes five channels: one syn-

chronization channel ctl, one opcode channel opc, two operand channels op1 and op2,

and finally a result channel res. Assume that the handshake ports associated with each

channel are allocated in the order of their declaration. Thus, the HP associated with the

channel ctl is φ0 and the one associated with the channel res is φ4.

Listing 6.20: Example of a transfer protocol

DECLARE

ctl : IN CHANNEL(PUSH, 2P, SR, ’0’, ’0’, 0);

op1 : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);

op2 : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);

5 opc : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);

res : OUT CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);

END

TEST

SYNC ctl,

10 opc <= "0000",

op1 <= "0011",

op2 <= "1011";

SYNC ctl,

opc <= "0100",

15 op1 <= "0110",

op2 <= "0011",

res => "0011";

res => "1001";

END

138 Chapter 6. Test Program Generation

In the first concurrent transfer group only the first four channels are active. In the

second group, all channels perform a handshake operation. Finally, in the last group

only res, i.e., the fifth channel, is active. The generated code for this test sequence is

given in Listing 6.21.

Listing 6.21: NoTePAD assembler code fragment for the test sequence of the considered

transfer protocol

1 .text

EXEC_TEST:

...

test hpmask=0x07

test hpmask=0x17

6 test hpmask=0x10

The generation of instructions implementing signal operations is very similar. How-

ever, it is not possible to execute both types of signal operations simultaneously, since

the input (comparison) and output (assignment) signal operations are realized by dif-

ferent instructions. In order to resolve conflicting situations, two means can be taken

into account. On the one hand, one can define a default resolution approach that the as-

signment operations are executed before the comparison operation or vice versa. On the

other hand, and this is probably the better option, one can resolve these conflicts during

the generation of the protocol. Thus, instead of generating a group including both, sig-

nal assignments and signal comparisons, one should explicitly separate these activities

in the test bench. This can be achieved by using either the tp_sync() or the tp_wait()

procedures of the channel simulation package. The same applies to the combination of

handshake and signal operations in one concurrent group. Since it is not possible in the

current processor implementation to execute both activities at the same time, it is recom-

mended to explicitly separate them into different concurrent groups. However, due to the

lack of an exact timing in an asynchronous system, it is very unlikely that some hand-

shake transfers have to take place exactly at the same time as a control signal operation.

Therefore, this limitation is typically not critical. Apart from the mentioned restriction,

several signal assignments or signal comparisons can be combined and executed simul-

taneously.

According to these considerations, the instructions realizing signal operations can

be generated in a comparable manner as the one for handshake operations. Thus, for

each concurrent group comprising signal operations, the indices of the control ports

associated with the signals have to be determined. Using these indices a mask can be

derived such that the bit ei of the mask e0 . . . ec−1 (c is the number of supported control

6.2. Mapping of a Transfer Protocol to a Processor Program 139

pins) is set to logical-1 if i is one of the identified indices. Otherwise, the bit is set to

logical-0. In the same way, the value of the signal is assigned to the bit vector d0 . . . dc−1.

Thus, let x be the value to be applied to the signal whose associated control signal is cii

or coi, respectively. Then, di is set to x and ei is set to logical-1. Depending on the

signal operation to be performed, the resulting mask and value bit vectors are applied

to either the comparison operation ctri or the assignment operation ctro. However,

for a comparison operation an additional step is required for the translation. As defined,

the test is treated as failed if the control input value does not match the expected value.

In this case, the timeout routine shall be called whose start address is specified in the

branch address register of the sequencer. To achieve this behavior, the value of the

timeout register is simply set to 1 prior to the call of ctri. Thus, if the input signal does

not match the expected value, then ctri immediately branches to the timeout routine.

Finally, after the ctri instruction, the timeout register has to be restored to its previous

value.

The last statements, which have to be translated, are the wait statements, signal wait

statements, timeout statements and timeout routine statements. Signal wait statements

are translated in a very similar way as signal comparisons. The only difference is that

the timeout register is kept untouched. Consequently, the instruction waits for the signal

to become equal to the specified value as long as the timeout is not exceeded.

Wait and timeout statements are translated in a different way. With recall to their

definition in Section 4.3.2.3, these statements expect the specification of the time to

wait. The translation of these statements is very similar, since they are mapped to the

same mechanism implemented in NoTePAD.

Basically, both statements set the timeout register via calls of setl and seth. In case

of the timeout statement, these are the only instructions to be generated. This is different

for wait statements. For these statements, the additional wait instruction has to be called

after setting the timeout register. Furthermore, the previous value of the timeout register

has to be restored after the execution of the wait instruction. Basically, this can be

achieved in two ways. One can use an additional register buffering the original value or

one can set the timeout register again using setl and seth. Both possibilities result in

the same overhead, since both require two additional instructions. In practice, for some

cases, i.e., if either the lower or the upper 16 bits of the timeout register shall remain

unchanged, then directly setting the timeout register can even be faster, since only one

of the setl and seth instructions has to be called.

In order to determine the value of the timeout register according to the time t spec-

ified by the statements, the cycle time tp of the processor is required. With this infor-

mation, one can determine the corresponding number z of cycles to wait. Obviously,

140 Chapter 6. Test Program Generation

the exact timing might not be met, since the precision is limited by the clock period of

the processor. Accordingly, the wait time is approximated to the nearest multiple of the

cycle period of the processor. Thus, the number z of cycles is determined as shown in

Equation 6.1.

z =

zt = t/tp, zt ∈ N when t − zt · tp < t − (zt + 1) · tp

zt = t/tp + 1, zt ∈ N otherwise.
(6.1)

However, there are some special cases for the correct translation of the wait state-

ments. In order to match the required number of cycles to wait, the cycles needed for

executing instructions have to be taken into account. This includes the register assign-

ment and the execution of the wait instruction itself. Consequently, one has to subtract

three cycles from z in order to gain the correct number to be written into the timeout

register. However, if z is less or equal to three, then the described sequence of three

instructions lead to an incorrect timing. To avoid this, the usual instruction sequence is

replaced by z ≤ 3 noop instructions. Obviously, in this case it is also not necessary to

restore the timeout register.

If z is greater than three, then there are some special cases to be considered when

restoring the timeout register. Naturally, the recovery of the original value is only nec-

essary if the subsequent element in the test sequence does not manipulate the timeout

register as well. On the other hand, assume that the next element in the sequence also

implements a wait statement, where the number z of cycles to wait is 3 ≤ z ≤ 6. In this

case, the timeout recovery of the previous element can be redeemed with the number of

cycles to wait in the next element.

Finally, timeout routine statements are translated again using a combination of setl

and seth. In this case, the instructions are used to set the branch address register such

that it points to the program address passed to the statement. The program address has

to be specified via a label that defines the start of a routine of the generated code or a

routine that has been externally defined. For the latter case to be applicable, the routine

has to be written in assembler code and linked together with the other program files,

when the program is translated to a binary.

An example of all these considerations is delivered in Listing 6.22. It shows a trans-

fer protocol including signal and channel assignments as well as wait and timeout state-

ments. For the translation of the protocol, it is assumed that the operating frequency of

the processor is 200 MHz, thus, tp = 5 ns.

The corresponding code for this protocol is illustrated in Listing 6.23. The first two

instructions implement the timeout routine statement. These instructions set the value of

the branch address register to the start address of the result upload routine. The next two

6.2. Mapping of a Transfer Protocol to a Processor Program 141

Listing 6.22: Sequence of wait and timeout statements
DECLARE

rst : IN SIGNAL;
3 opc : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);
END
TEST

SET TIMEOUT_ROUTINE END_OF_TEST;
SET TIMEOUT 200 ns;

8 opc <= "0000";
WAIT FOR 10 ns;
rst <= "1";
WAIT FOR 24 ns;
rst <= "0";

13 WAIT FOR 15 ns;
opc <= "1100";

END

instructions correspond to the first timeout statement. After that, a handshake on the opc

channel is performed. Then, the two noop instructions implement the wait statement

that cause the processor to wait for 10 ns. Then, the reset signal is set to logical-1. In the

original transfer protocol this state is kept for 24 ns. But due to the clock period of 5 ns,

the time is approximated to 25 ns. After this period, the reset signal is set to logical-0

again and the program execution is interrupted for 15 ns. However, before the handshake

can be executed in the next step, the value of the timeout counter has to be restored which

requires two cycles. These two cycles are subtracted from the required number of cycles

to wait. According to the described procedure, this leads to one noop instruction and

the two cycles for setting the timeout register. However, in the considered example an

explicit window to wait is defined prior to the timeout definition. If this is not the case,

the timeout recovery introduces an additional delay. In the current implementation this

delay cannot be avoided. However, due to the asynchronous nature of the considered

DUTs, such delays are typically negligible.

Listing 6.23: Assembler code for the sequence of wait and timeout statements

.text

EXEC_TEST:

...

; Set timeout routine

5 seth r2, (END_OF_TEST >> 16)

setl r2, (END_OF_TEST & 0xffff)

; Set the timeout counter 200 ns

seth r0, 0x0000

142 Chapter 6. Test Program Generation

setl r0, 0x0028

10 ; Execute handshake

test hpmask=0x0001

; Wait for 10 ns

nop

nop

15 ; Set the reset signal

sout mask=0x0001, value=0x0001

; Wait for 25 ns

seth r0, 0x0000

setl r0, 0x0002

20 wait

; Set the reset signal

sout mask=0x0001, value=0x0000

; Wait for 10 ns and set the timout counter to 100 ns

nop

25 seth r0, 0x0000

setl r0, 0x0014

; Execute handshake

test hpmask=0x0001

...

30 END_OF_TEST:

...

6.2.2.4 Test Finalization and Default Timeout Routine

After the test execution, some further steps are required to complete the test. This in-

cludes the flushing of the input FIFOs to ensure that all test results are written to the

memory. After that, the DPs have to be disabled, such that they cannot issue further

memory access requests. This is necessary to guarantee that the DPs do not issue invalid

requests if the test program is reset. Furthermore, the test finalization is by default also

used as timeout routine. Therefore, the mask register and the return address register are

stored in the memory. This enables that the information about the cause of the timeout is

accessible for the upload. Listing 6.24, shown in the next section, illustrates the required

steps.

6.2.2.5 Result Upload

The last step of the translation process is the generation of the result upload phase.

As mentioned previously, this phase is not directly part of the transfer protocol, but an

6.2. Mapping of a Transfer Protocol to a Processor Program 143

implicit step after the test sequence. In this phase, all results captured during the test

have to be uploaded to the ETE via the dedicated interface in order to enable analysis of

the test results.

As a first step in the phase, the ETE has to be synchronized with the TP. Thus, as

mentioned in Section 4.2.2.2, the ETE has to be informed that the test is finished and

that the TP is ready to upload the results. Therefore, the halt instruction is used. This

instruction sets the halt output control signal of the TP to logical-1 and afterwards waits

for the input control signal enable to be set to logical-1 by the ETE as well.

After synchronization, the upload of the test data can be started. This especially

comprises the responses and fault signatures captured by the data ports. As defined

previously, this data is aligned in arrays, i.e., one array for each DP. Thus, for each

of the used DPs a sequence of instructions is required that transfers the array of data

words to the ETE interface. The dout instruction of NoTePAD implements the desired

functionality. As a prerequisite for this operation, the start address of the array has

to be stored in the cycle counter and the end address in the timeout register. Again,

the instructions setl and seth are combined to load these 32-bit addresses into the

respective registers. These addresses are determined via labels in the assembler code.

Finally, the program is stopped with an additional call of the halt instruction.

An example of the result upload phase for two data ports is shown in Listing 6.24.

Listing 6.24: Assembler code for uploading the results

; Forward declaration of labels related to the DPs

.ref DP9_RDATA

.ref DP9_RDATA_END

4 .ref DP9_WDATA

.ref DP9_WDATA_END

.text

...

9 END_OF_TEST:

; Flush all data from the DPs to the memory

flsh hpmask=0x0008

; Disable the data ports associated with the specified HPs

tmrq hpmask=0x000f

14 ; Load address for storage of timeout information

setl r0, (MASK_AND_PC >> 16)

seth r0, (MASK_AND_PC & 0xffff)

; Store the program address where a timeout has occurred

slwd r3, r0

144 Chapter 6. Test Program Generation

19 shwd r3, r0

; Increment address

addu 2

; Store result mask

slwd r4, r0

24 slwd r4, r0

UPLOAD:

; Synchronize with ETE

halt

29 ; Define start and end array addresses

seth r0, (DP9_WDATA >> 16)

setl r0, (DP9_WDATA & 0xffff)

seth r1, (DP9_WDATA_END >> 16)

setl r1, (DP9_WDATA_END & 0xffff)

34 ; Transfer the data to the ETE

dout

halt

.data

39 ...

; Configuration for a data port

CONF_OF_DP9:

.word DP9_RDATA ; Address of the read-data array

.word DP9_WDATA ; Address of the write-data array

44 .word (DP9_RDATA_END -DP9_RDATA >> 1) ; Number of words

.word 0 ; Dummy to gain regular alignment

; Read-data array

DP9_RDATA:

49 .word 0xffff6a81

...

DP9_RDATA_END:

; Write-data array

DP9_WDATA:

54 .bss DP9_WDATA , 256, 4

DP9_WDATA_END:

MASK_AND_PC:

.bss MASK_AND_PC , 8, 4

6.2. Mapping of a Transfer Protocol to a Processor Program 145

6.2.3 Compiler for Generating Test Programs from Transfer Protocols

For the automatization of the program generation, a compiler tool, called tpc, has been

developed. The tool implements the described mapping rules and generates assembler

code for the NoTePAD architecture. It parses the entire protocol file and simultaneously

builds up the statement tree which is traversed afterwards. This allows for the detection

and cancellation of possible additional delays, e.g., introduced by timeout statements.

The tool has various options to define architectural parameters and to control the gen-

erated output. The architectural parameters include the number of handshake and data

ports, pins per data port etc. The output control options address, e.g., the separation of

the processor initialization phase from the other phases, and the filling of the data port

FIFOs. A more detailed description of the tool can be found in Appendix C.1.

"Forget mistakes. Forget failures.

Forget everything except what

you’re going to do now and do it."

— William Durant

Chapter 7

Evaluation of the Concept

In this chapter, an evaluation of the entire concept is provided. Therefore, different as-

pects have to be considered. First of all, it has to be shown that the concept works in

general. Therefore, the framework, including the proposed test processor and the respec-

tive tools, is applied to perform functional test of an asynchronous DUT. The selected

design was implemented, simulated according to the pattern generation flow, and finally,

connected with the TP to perform the tests. On the other hand, various parameters of the

framework are evaluated in order to appraise its applicability in real test scenarios. The

considered parameters include the speed of the execution of a program, the hardware

requirements of the TP and other required resources, e.g., memory utilization of a pro-

gram. Other classical properties, such as fault coverage, are not considered, since these

properties are determined by the performed test in combination with a fault model, but

not by the equipment executing the test.

7.1 Application of the Framework to an Asynchronous De-

vice

As afore indicated, the first step of the evaluation is the application of the proposed

framework to an asynchronous DUT. In this way, the general applicability of the ap-

proach to gain an elastic test of asynchronous handshake circuits is shown. Before show-

ing the application of the framework, the DUT is introduced. After that, it is shown how

the functional test programs were generated according to the proposed workflow.

For the evaluation, a NoTePAD implementation with 4 control inputs, 4 control out-

puts, 16 handshake and 16 data ports was used. Thereby, each of the data ports com-

147

148 Chapter 7. Evaluation of the Concept

prises 4 pins which results in 64 available data pins for realizing asynchronous channels.

Furthermore, the TP was constrained to operate at a frequency of 200 MHz. This param-

eter was derived from the implementation of the NoTePAD architecture using a Xilinx

Virtex-5 VLX 155T FPGA. Finally, a demonstrator was built by combining the DUT

and the test processor to one FPGA-design. This demonstrator was fully implemented,

including synthesis, placement, and routing. Based on the resulting Verilog-netlist and

the respective timing information of the demonstrator, various simulations were carried

out that illustrate the execution of the test programs.

7.1.1 The Device-Under-Test

The design selected for the evaluation of the concept is an asynchronous QDI circuit im-

plementing a 16-bit ALU. The ALU, whose structure is shown in Figure 7.1, implements

logical operations such as bitwise-AND, -OR, -XOR, -INV, arithmetical operations like

addition, subtraction and negation as well as a complex operation computing the great-

est common divisor (GCD) of two unsigned 16-bit values. The circuit was implemented

using dual-rail logic. According to this, every logical dual-rail gate was implemented us-

ing combinations of C-elements and OR-gates. Since real C-elements are not available

in the FPGA, these were realized using the latch-based implementation shown in Figure

2.9d. Due to the completion detection of the dual-rail implementation which is sensitive

to PVT variations, the circuit is expected to behave timing nondeterministic. Hence, it

is an ideal DUT for showing the applicability of the provided TP solution.

The circuit has four interface channels: three input channels for two operands and the

operation code as well as one output channel for the result. All channels operate using

the 4-phase single-rail push protocol. As mentioned, the ALU internally works with

dual-rail logic. However, the external interfaces use a 4-phase bundled-data protocol for

the communication. Therefore, handshake protocol converters, as shown in Chapter B,

are inserted at the boundary interfaces of the ALU. Furthermore, the DUT provides a

reset signal rst for initialization purposes.

Basically, the ALU is composed of the mentioned protocol converters at the bound-

ary interfaces, a processing unit (alu), a control unit (alu_ctrl) and a variety of

multiplexers, demultiplexers and dual-rail registers arranged in a cyclic structure. The

processing unit alu is the heart of the circuit. It calculates the results depending on

its operands and control signals. For the coordination of the operation, the controller

alu_ctrl delivers the control signals for the processing unit and for the other compo-

nents. Therefore, it reads the chosen opcode and the value of the operands to set the

values of the control signals accordingly.

7.1. Application of the Framework to an Asynchronous Device 149

rst

op
_
in
_s
el
3

op
_
in
_s
el
2

o
p_
in
_s
e
l1
_
ac
k

op
_
in
_s
el
1

rs
t

o
p_
in
_s
e
l3
_
ac
k

o
p_
in
_s
e
l2
_
ac
k

o
ut
_e

n_
a
ck

o
ut
_e

n

op
_
in
_
se
l1
_a

ck

alu_rsa

alu_sub

alu_ack

alu_res_sel(3:0)

alu_exch_ops o
ut
_e

n_
a
ck

o
ut
_
e
n

a
lu
_c
tr
l

op2_in(15:0)

op1_in(15:0)

op1_in_ack

op2_in_ack

opc_in(3:0)

opc_in_ack

o
p
_i
n_

se
l

o
p
_i
n_

se
l_
ac
k

op_out(15:0)

op_out_ack

opc_out_ack

opc_out(3:0)

rst

d
o
_a

ck

d
o

di
_a

ckdi

d
r_
re
g
1

rs
t

di di
_a

ck

d
o
2

d
o
2_

a
ck

d
o
1

d
o
1_

a
ck

d
o
3

d
o
3_

a
ck

fo
rk
3x
1 rst

op
_
in
_
se
l1

op
_
in
_
se
l2
_a

ck
op
_
in
_
se
l2

di

di
_a

ck

dr
_
re
g
1_
in
it_
0

d
o
_a

ck

d
o

rs
t

rs
t

o_
ac
k

o(
15

:0
)

a
(1
5
:0
)

b
(1
5
:0
)

b
_
ac
k

a
_
ac
k

dr
_m

ux
16

s_ack

s

rst

rs
t

dr
_r
eg
1
6

di
(1
5:
0)

ac
k_
in

d
o
(1
5
:0
)

a
ck
_
o
ut

do
1_

a
ck

do
1(
15

:0
)

do
2_

a
ck

do
2(
15

:0
)

fo
rk
2
x1
6

d
i_
ac
k

d
i(1
5
:0
)

rst

o_
ac
k

o(
15

:0
)

a
(1
5
:0
)

b
(1
5
:0
)

b
_
ac
k

a
_
ac
k

dr
_m

ux
16

s_ack

s

rst

rs
t

dr
_r
eg
1
6

di
(1
5:
0)

ac
k_
in

d
o
(1
5
:0
)

a
ck
_
o
ut

do
1_

a
ck

do
1(
15

:0
)

do
2_

a
ck

do
2(
15

:0
)

fo
rk
2
x1
6

d
i_
ac
k

d
i(1
5
:0
)

rst

o
p2
(1
5:
0)

op
2_

ac
k

a
lu

o
p1
(1
5:
0)

o
p1
_
ac
k

rs
(1
5:
0
)

rs
_a

ck

rst

ctl_ack

sub

shra
exc_ops

res_sel(3:0)

dr
_d
e
m
ux

b(
15

:0
)

a(
15

:0
)

a_
ac
k

b
_a

ck

s

rst

s_ack

i(1
5
:0
)

i_
ac
k

ou
t_
en

ou
t_
en

_
ac
k

do
(1
5:
0)

a
ck
_
o
ut

re
q_

o
ut

rs
t

a
ck
_
in

d
i(1
5
:0
)

du
a
l_
to
_s
in
g
le
_r
ai
l

re
s(
15
:0
)

re
s_
ac
k

re
s_
re
q

re
q_

in

di
(1
5:
0)

d
o
(1
5
:0
)

rs
t

ac
k_
in

ac
k_
ou

t

si
ng
le
_t
o_
d
ua
l_
ra
il

op
1(
15
:0
)

op
1_
ac
k

op
1_
re
q

o_
ac
k

o
(3
:0
)

a
(3
:0
)

b
(3
:0
)

b
_
ac
k

a
_
ac
k

s

dr
_
m
ux
4

rst

s_ack

op
_
in
_
se
l3

rs
t

dr
_
re
g
4

di
(3
:0
)

ac
k_
in

d
o(
3
:0
)

a
ck
_
o
ut

si
n
gl
e_

to
_d
u
al
_r
ai
l

re
q
_i
n

d
i(3
:0
)

do
(3
:0
)

rs
t

a
ck
_i
n

a
ck
_o

ut
op
c_
a
ck

op
c_
re
q

o
pc
(3
:0
)

op
_
in
_
se
l3
_a

ck

re
q_

in

di
(1
5:
0)

d
o
(1
5
:0
)

rs
t

ac
k_
in

ac
k_
ou

t

si
ng
le
_t
o_
d
ua
l_
ra
il

op
2_
ac
k

op
2_
re
q

op
2(
15
:0
)rs
t

rs
t

dr
_r
eg
1
6

d
i(1
5
:0
)

a
ck
_i
n

do
(1
5:
0)

a
ck
_o

u
t

rs
t

dr
_
re
g
16

d
i(1
5
:0
)

ac
k_
in

d
o
(1
5
:0
)

a
ck
_
ou

t

rs
t

dr
_r
eg
1
6

di
(1
5
:0
)

a
ck
_i
n

do
(1
5
:0
)

a
ck
_o

u
t

rs
t

dr
_
re
g
16

d
i(1
5
:0
)

ac
k_
in

d
o(
15

:0
)

ac
k_
ou

t

rs
t

d
r_
re
g4 di
(3
:0
)

ac
k_
in

d
o(
3:
0)

a
ck
_
ou

t
rs
t

dr
_
re
g
4

d
i(3
:0
)

a
ck
_
in

do
(3
:0
)

a
ck
_o

ut

rs
t

rs
t

Figure 7.1: The design-under-test: an asynchronous 16-bit ALU

150 Chapter 7. Evaluation of the Concept

In case of logical or standard arithmetical operations, the ALU works as a pipeline.

Thus, the opcode and the operands propagate from the primary inputs to the processing

unit and to the controller. The controller then delivers the control signals to the process-

ing unit which calculates the result. Finally, the result propagates to the output interface.

For the computation of the GCD, the Euclidean Algorithm, as given in Listing 7.1, is

used. As opposed to the standard implementation, e.g., shown in [Sparsø 2001], the

structure is optimized such that the two comparisons (a < b and a , b) of the operands a

and b are performed by one comparator that is part of the controller. For the calculation

of the difference between the operands, the processing unit is configured to calculate

rt = max(a, b) − min(a, b). The minimum and maximum is determined via exchanging

the operands depending on the comparison result delivered by the controller. Afterwards,

the intermediate result rt is fed to a demultiplexer that either forwards the result to one

of the registers within the feedback loop or directly to the output. Thus, if a and b are

equal, then rt is fed to the output. Otherwise, rt is written into the lower register of the

feedback loop. In this case, the inner register within the feedback loop receive the other

operand, i.e., min(a, b). Furthermore, the register in the middle of the loop receives the

opcode to ensure that this data is available for the next iteration of the algorithm. This is

repeated until both operands are equal.

Listing 7.1: Euclidean Algorithm for computing the GCD

function gcd(a, b : N)

begin

3 while a , b do

if a > b then

a := a − b;

else

b := b − a;

8 end if;

done;

return a;

end function;

7.1.2 Demonstrator

To illustrate the functionality of the test processor, a demonstrator was created by com-

bining the considered asynchronous ALU with the NoTePAD processor implementa-

tion. The resulting design was integrated into a Xilinx Virtex-5 VLX 155T FPGA plat-

form. The memories for the processor were implemented using integrated Block RAMs

7.1. Application of the Framework to an Asynchronous Device 151

(BRAMs) of the FPGA. For the program memory, a block of 1024×24-bit data words

has been used. The data memory was realized using an 8192×16-bit BRAM.

All ports of the DUT were connected with the according ports of the processor to em-

ulate a real test environment. For this interconnection, the pin information was derived

from the resource allocation performed during the compilation of the transfer protocol.

This information is described in a file (see Section D.5 in Appendix D) generated by the

transfer protocol compiler tpc. Figure 7.2 shows the resulting block diagram with all

interconnections.

7.1.3 Test Program Generation

Corresponding to the workflow, the considered DUT needs to be simulated in order to

generate the test program. For this, either the RTL description or, if available, the netlist

with corresponding timing information can be used. In this particular case, the netlist

in combination with the respective timing information in Standard Delay Format (SDF)

was used for the simulation. As a preliminary step of the simulation, the test bench has

DataMem

8192 x 16 bit

Async.

ALU

op1

op2

res

opcrst

NOTEPAD

HP0

DP0-DP3

HP1

DP4-DP7

HP3

DP9-DP12

HP2

DP8

co0

d
m

_
w

r

d
m

_
in

d
m

_
ad

d
r

d
m

_
o

u
t

ProgMem

1024 x 24 bit

p
m

_
w

r

p
m

_
in

p
m

_
ad

d
r

p
m

_
o

u
t

ext_mem_req

ext_mem_addr

ext_to_tp

tp_to_ext

halt

enable

rst_pc

Figure 7.2: The demonstrator: NoTePAD connected with the asynchronous ALU

152 Chapter 7. Evaluation of the Concept

been adapted to use the channel simulation package proposed in Section 6.1.

Listing 7.2 shows the declarative part of the resulting test bench, whereas the entire

test bench can be found in Appendix D.1. As the very first step in the test bench, the

package is imported. Then, the listing continues as usual with the declaration of the

test bench entity and the considered DUT. Afterwards, the channel and signal resources

are declared that are used to apply and receive the patterns. In the considered scenario,

a reset signal rst and the mentioned interface channels of the DUT are declared, i.e.,

opc, op1, op2, and res.

Listing 7.2: Declarative part of the test bench for the ALU
-- Include the test bench package
use WORK.tp_bench_pack.ALL;

4 entity tb_asynch_alu is
end tb_asynch_alu;

architecture tb_asynch_alu_arch of tb_asynch_alu is
-- The asynchronous DUT

9 component asynch_alu is
port (

rst : in std_logic;
opc : in std_logic_vector (3 downto 0);
opc_req : in std_logic;

14 opc_ack : out std_logic;
op1 : in std_logic_vector (15 downto 0);
op1_req : in std_logic;
op1_ack : out std_logic;
op2 : in std_logic_vector (15 downto 0);

19 op2_req : in std_logic;
op2_ack : out std_logic;
res : out std_logic_vector (15 downto 0);
res_req : out std_logic;
res_ack : in std_logic);

24 end component;

-- Declaration of the reset control signal
signal rst : TP_SIGNAL := tp_init_signal("rst", INPUT);
-- Declaration of the opcode, operand, and result channels

29 signal opc : TP_CHANNEL :=
tp_init_channel("opc", 4, INPUT, PUSH, FOUR, SR);

signal op1 : TP_CHANNEL :=
tp_init_channel("op1", 16, INPUT, PUSH, FOUR, SR);

signal op2 : TP_CHANNEL :=
34 tp_init_channel("op2", 16, INPUT, PUSH, FOUR, SR);

signal res : TP_CHANNEL :=
tp_init_channel("res", 16, OUTPUT, PUSH, FOUR, SR);

7.1. Application of the Framework to an Asynchronous Device 153

Afterwards, the DUT is instantiated as shown in Listing 7.3. At this point, the signal

and channel resources are connected with the ports of the DUT.

Listing 7.3: DUT instantiation

uut : asynch_alu

port map (

rst => rst.data(0),

4 opc => opc.data(3 downto 0),

opc_req => opc.req,

opc_ack => opc.ack,

op1 => op1.data(15 downto 0),

op1_req => op1.req,

9 op1_ack => op1.ack,

op2 => op2.data(15 downto 0),

op2_req => op2.req,

op2_ack => op2.ack,

res => res.data(15 downto 0),

14 res_req => res.req,

res_ack => res.ack);

According to the desired structure of the test bench described in Section 6.1.1, a

separate control process ctrl_proc is introduced as shown in Listing 7.4. The first

activity in this process is the creation of the protocol file. Afterwards, the signal and

channel resources are registered. Then, after all resources were registered the test se-

quence needs to be initiated. To this end, the tp_start_test_sequence() procedure

is called. Then, the DUT is initialized by generating a logical-1 pulse on the reset signal.

Finally, the process waits until all channels are closed before the transfer protocol is

completed via executing tp_close_transfer_protocol().

Listing 7.4: Control process

ctrl_proc : process

begin

-- Create the protocol file

tp_open_transfer_protocol("async_alu");

5 -- Register the signal and channel resources

tp_register_resource(rst);

tp_register_resource(op1);

tp_register_resource(op2);

tp_register_resource(opc);

10 tp_register_resource(res);

-- End declaration section and start the test sequence

154 Chapter 7. Evaluation of the Concept

tp_start_test_sequence;

-- Initialize the DUT via setting the reset signal

tp_wait(10 ns);

15 tp_assign(rst, "1");

tp_wait(100 ns);

tp_assign(rst, "0");

tp_wait(10 ns);

-- Wait until all channels are closed

20 wait until tp_is_closed(op1) and tp_is_closed(op2)

and tp_is_closed(opc) and tp_is_closed(res);

-- Close the tranfer protocol file

tp_close_transfer_protocol;

wait;

25 end process;

The channels themselves are handled by individual processes as shown in Listing

7.5. Each of these processes starts with opening the respective channel using the pro-

cedure tp_open_channel(). Thereby, the processes that handle input channels call

tp_open_channel() with the initial data value as parameter. For the output channel,

this parameter is not required and, therefore, omitted. Afterwards, all these processes

wait for the reset signal to become inactive in order to ensure that the circuit is initial-

ized and ready to process data. Therefore, there is no need to first wait for the start of

the test sequence via the call to tp_test_sequence_started(). Then, all input chan-

nels start with transferring data. In comparison to that, the process proc_res first waits

until all input channels have performed at least one data transfer using the call to the

wait procedure tp_wait(). This ensures that the first data transfer on the channel res

occurs after the first data transfers on the input channels in the transfer protocol. There-

fore, it is necessary to declare an array that includes the considered channels. After all

input channels have performed a handshake, the process listens for activity on the output

channel and performs the data transfer. In the given example, this is done seven times

according to the number of performed operations1. When all data tokens have been sent

and received, the individual channels are closed.

Eventually, the created test bench is simulated in order to generate the transfer pro-

tocol. Therefore, a standard logic simulator, such as Mentor Modelsim or Xilinx ISim

can be used. The corresponding waveform of the simulation is illustrated in Figure 7.3.

According to the behavior described in the test bench, the simulation starts with the pulse

on the reset signal rst. Afterwards, data tokens are applied to the input channels of the

1Remark: Not all input tokens are shown in the example to save space.

7.1. Application of the Framework to an Asynchronous Device 155

Listing 7.5: Channel control processes
-- Process handling the opcode
proc_opcode : process
begin

tp_open_channel(opc, "0000");
5 wait until rst.data(0 downto 0) = "0";

tp_send(opc, op_and);
...
tp_close_channel(opc);
wait;

10 end process;

-- Process handling the first operand
proc_op1 : process
begin

15 tp_open_channel(op1, "0000000000000000");
wait until rst.data(0 downto 0) = "0";
tp_send(op1, "0000000000000001");
...
tp_close_channel(op1);

20 wait;
end process;

-- Process handling the second operand
proc_op2 : process

25 begin
...

end process;

-- Array of all input channels
30 input_channels <= opc & op1 & op2;

-- Process handling the result
proc_res : process

variable result : std_logic_vector(15 downto 0);
begin

35 tp_open_channel(res);
tp_wait(input_channels);
for i in 0 to 6 loop

tp_recv(res, result);
end loop;

40 tp_close_channel(res);
wait;

end process;

156 Chapter 7. Evaluation of the Concept

Figure 7.3: Simulation of the test bench with underlying netlist and timing of the ALU

DUT which afterwards delivers the responses of the chosen operations. In the consid-

ered example, the first three operations are a bitwise AND operation, an addition, and a

subtraction. The fourth and fifth operations compute the GCD of 6 and 24 as well as of

18 and 27. These operations require considerable amount of time which is indicated by

the long time window between the respective handshakes.

As a result of the simulation, the transfer protocol was created. The generated pro-

tocol is shown in Listing D.2 which can be found in Appendix D. In the next step, the

protocol was translated using the transfer protocol compiler. Thereto, the defined pa-

rameters (frequency, number of ports etc.) of the TP were passed as options to the tool.

The result of the compilation is provided in Listing D.3 also located in Appendix D. Af-

terwards, the assembler program was translated and linked using the dedicated processor

tools (assembler and linker). The created binary file was, in turn, translated to memory

map files which include the ASCII-descriptions of the memory content.

7.1.4 Test Results and Further Optimizations of the Generated Pro-

gram

For the simulation of the demonstrator, the memory blocks were preinitialized with the

data from the afore created memory map files. Afterwards, the demonstrator was syn-

thesized, placed, and routed to gain the netlist and the respective timing information

required for the simulation. As a final step, the SDF-file was edited such that the setup

and hold timing checks of the first flip-flop of the synchronizers are disabled. This is

necessary to emulate the metastability filtration capabilities of the synchronizers.

Figure 7.4 shows the resulting waveforms of the simulation. At first glance, these

waveforms are very similar to the ones shown in Figure 7.3, which were gained from the

initial simulation for creating the transfer protocol. However, on closer inspection one

can notice little differences at the beginning of the test sequence. These differences are

more emphasized in a zoomed view shown in Figure 7.5 and Figure 7.6. For example,

7.1. Application of the Framework to an Asynchronous Device 157

Figure 7.4: Simulation of the demonstrator executing the functional test program

the time window between the release of the reset signal and the first handshakes is much

longer than the one in the initial simulation. Furthermore, the first handshakes on the

input channels are sequentially initiated by the test processor. These effects are caused

by the fact that the patterns were not completely loaded into the FIFO buffers of the data

ports when the first test instruction is executed. Hence, the individual transfers are

delayed until all associated data ports of a channel have received the patterns from the

memory. In the considered example, the channel opc is the first that is ready to perform

the transfers. This is because the channel opc is realized using one data port only which

is filled with data first. Therefore, the transfer on this channel is executed first, followed

by transfers on the channels op1 and op2.

In principle, this effect is not critical for an asynchronous DUT, since its event-driven

behavior compensates such irregularities. Nevertheless, this behavior can be prevented

by filling the output FIFO buffers prior to the test execution. To this end, the transfer

protocol is retranslated via invoking the transfer protocol compiler with the option to

fill the data ports. This option inserts the fill instruction into test preparation phase

of the test program. Afterwards, the new program was translated and simulated in the

same way as before. Figure 7.7 shows the waveforms of the simulation. As can be seen,

all handshakes on the input channels are initiated simultaneously as it is the case in the

initial simulation shown in Figure 7.5.

158 Chapter 7. Evaluation of the Concept

Figure 7.5: Start of the initial ALU simulation

Figure 7.6: Start of the test sequence without preloading the data ports

Figure 7.7: Simulation of the program with preloaded data ports

7.2. Evaluation of the Processor Implementation 159

7.2 Evaluation of the Processor Implementation

Apart from its general applicability, the provided approach has to be evaluated in terms

of its feasibility in real test scenarios. Therefore, the targeted processor architecture

needs to be analyzed with respect to hardware requirements, operating frequency, and

derived properties such as test execution time for given sets of transfers.

7.2.1 Hardware Requirements of the FPGA Implementation

At first, several implementations of the NoTePAD architecture were created and evalu-

ated with respect to their hardware requirements. For these implementations, the number

of handshake ports and the number of control inputs and outputs were fixed to 16, 8, and

8, respectively. As with the demonstrator, the Xilinx Virtex-5 VLX 155T FPGA was

used as target platform. This FPGA provides 97,280 registers (flip-flops/latches) and

Lookup Tables (LUTs), 640 input/output buffers (IOBs), 424 18Kbit BRAMs. To gain

maximum performance results, the clock frequency was set to 250 MHz for the synthe-

sis. In order to obtain a well balanced MAC, the number of request interfaces of the

MAAs was set to 2 for the implementations with 32 and 128 data ports. In all other

cases, the MAAs were configured to have 4 request interfaces.

Table 7.1 shows the hardware requirements gained from the synthesis using Xilinx

ISE 13.3. The first column lists the total number of data pins that are available for the

data part of the asynchronous channels. This number is determined by the number of

data ports and the number of pins per data port which are given in parenthesis. The

other columns show the FPGA primitive requirements of the individual NoTePAD im-

plementations including the registers, LUTs, IOBs, and 18Kbit BRAMs. The table lists

Table 7.1: Results of the FPGA implementation of the NoTePAD architecture with vary-
ing number of data pins

Data Pins max. Freq. # Registers # LUTs # IOBs # BRAMs

(16/4) 234.35 MHz 6790 (7%) 10462 (11%) 32 (8%)
64 (32/2) 200.00 MHz 13906 (14%) 19641 (20%) 370 (54%) 64 (15%)

(64/1) 202.38 MHz 24360 (25%) 33985 (35%) 128 (30%)

(32/4) 214.73 MHz 13874 (14%) 19783 (20%) 64 (15%)
128 (64/2) 201.93 MHz 24296 (25%) 33824 (35%) 434 (64%) 128 (30%)

(128/1) 142.32 MHz 53082 (54%) 67224 (69%) 256 (60%)

256
(64/4) 203.79 MHz 24232 (25%) 34720 (36%)

562 (83%)
128 (30%)

(128/2) 160.74 MHz 52954 (54%) 67550 (69%) 256 (60%)

160 Chapter 7. Evaluation of the Concept

the absolut number of used components and the utilization related to the resources of the

target FPGA.

As expected and confirmed by the illustrated results, the number of data ports strongly

affects the hardware requirements of the NoTePAD implementation in terms of logic

components (flip-flops, LUTs) and BRAMs. Furthermore, the increase of the number

of pins per port affect almost only the total number of data pins. This is shown by the

implementations having 64 data ports. Therefore, increasing the number of pins per port

is a good measure to increase the total number of data pins without increasing the logic

requirements. However, with respect to this parameter one has to trade between the total

number of data pins, hardware requirements, flexibility, and performance. As already

pointed out, increasing the number of pins per port potentially results in wasted pins

and possibly memory space. Furthermore, the performance might be affected. For this,

consider that the data port FIFOs have a fixed size. In the provided architecture each

FIFO buffer can store the data for 64 × 16 transfers for one pin. Increasing the number

of pins per data port obviously reduces the total number of transfers buffered by one

FIFO. Now, consider a scenario where a large number of channels are constantly active.

In this case, it might happen that one of the buffers runs empty, since the transfer data

might not be exchanged fast enough between the active data ports and the data memory.

This might cause bottlenecks due to data gaps in the execution of the program. As a

countermeasure, the number of pins per port can be reduced while the number of data

ports is increased. This leads to a processor design that is able to buffer data for more

transfers. On the other hand, such an implementation has higher hardware requirements

with respect to registers, LUTs, and BRAMs. This is shown by the TP implementations

which have a constant number of data pins, but different numbers of data ports and pins

per port.

One contradictory point with respect to the implementation results is related to the

maximum clock frequency. In some cases, the frequency increases even though the im-

plementation is more complex than others. As an example, consider the implementation

pair of row 2 and 7 (32/2 and 64/4). In other cases, e.g., consider row 6 and 7 (128/1 and

128/2), the maximum clock frequency increases although the number of pins per data

ports is increased. This is probably the result of the different placement and routing of

the resulting circuits. However, a deep analysis of the cause of these effects is out of the

scope of this work.

Nevertheless, there is one additional point with respect to the maximum frequency.

It can be observed that the performance of the implementations with 128 data ports is

significantly reduced in comparison to the other implementations. The cause of this

performance loss is related to the implementation of the port switch. There, the status

7.2. Evaluation of the Processor Implementation 161

information of 128 ports are combined to one status signal for each handshake port. The

combinational path of the resulting logic limits the performance. As indicated before,

one can implement a pipelined computation of the status signal to counteract this effect.

However, this further increases the number of cycles for the signal propagation from the

data ports to the handshake ports and, therefore, the number of cycles for the handshake

execution as well.

Finally, to further estimate the value of the implementations, one has to consider the

number of pins typically provided by commercial testers. Basically, this number is de-

termined by the architecture of the test system and its purpose. Thus, the number of pins

strongly varies between different test systems. However, 256 pins are a representative

number in average. According to this, the version with 64 data ports and 4 pins per port

is a suitable implementation, since it can operate at 200 MHz and provides a sufficient

number of data pins.

7.2.2 Test Execution Properties

Besides the hardware requirements, some more parameters are relevant for the evalu-

ation of the implementation. These parameters are related to the executed tests: the

transfer rate per channel and the memory requirements. Therefore, two different types

of experiments were performed for the analysis of the test execution. First, the differ-

ent handshake protocol implementations were evaluated with respect to the number of

cycles required for completing a single data transfer. To this end, a program includ-

ing one channel for each supported handshake protocol has been created and simulated.

As shown in the waveforms of Figure 7.8 the program sequentially executes four hand-

shakes on each channel. The DUT was emulated by a test bench. Thereby, all signals

driven by the test bench responded to the events of the TP with a delay of 1 ns. Since

this delay is less than the clock period of the TP, the TP is the limiting factor during the

handshake execution. Therefore, the minimum number of cycles, as well as the maxi-

mum transfer rates for the respective transactions, can be derived from this simulation.

Table 7.2 shows the resulting numbers and the transfer rates at an operating frequency

of 200 MHz. The results confirm the theoretical considerations made in Section 5.2.3.

Thus, the minimum number of cycles for a transfer is mainly determined by the num-

ber of cycles required for the signal synchronization (via the synchronizers) and by the

number of cycles for exchanging the information between the handshake and the data

ports.

The next type of experiments considers the performance of the proposed test system

in real scenarios for the asynchronous ALU. Therefore, several programs were created

162 Chapter 7. Evaluation of the Concept

Figure 7.8: Simulation of all supported handshake protocols

Table 7.2: Minimum number of cycles for one handshake and respective transfer rates

push pull
Direction 2-phase 4-phase 2-phase 4-phase

send 5 (40 MS/s) 8 (25 MS/s) 5 (40 MS/s) 8 (25 MS/s)
receive 5 (40 MS/s) 8 (25 MS/s) 6 (33 MS/s) 8 (25 MS/s)

that implement random tests for the considered DUT. These tests were executed using

the same NoTePAD implementation as used in Section 7.1. Thus, the TP has 16 data

ports each comprising 4 pins, and 16 handshake ports. In this configuration only 4 HPs

were actually used. For this processor implementation, three sets of programs were

created. These programs include all operations of the ALU except the GCD2. One set

comprises 1k, the next 10k, and the last 100k ALU operations, respectively. Since each

operation requires four transfers to complete, the individual programs include 4k, 40k

and 400k data transfers. Each of these sets comprises one test program with and one

program without the filling of the data ports with patterns prior to the test execution. In

order to determine their runtime, the resulting programs were simulated using the RTL-

model of the demonstrator. The results of all simulations are shown in Table 7.3 and

2The GCD operation may require considerable amount of time. Therefore, it is excluded from the tests
to not distort the performance results

7.2. Evaluation of the Processor Implementation 163

Table 7.3: Program runtime

data port # Cycles Exec. Time
Operations filling total init. test upload @ 200 MHz

1000
yes 9507 943 8034 530 47.54 µs
no 8653 76 8047 530 43.27 µs

10000
yes 86007 943 80034 5030 430.04 µs
no 85153 76 80047 5030 425.77 µs

100000
yes 851007 943 800034 50030 4255.04 µs
no 850153 76 800047 50030 4250.77 µs

Table 7.4, respectively.

The former table shows the number of cycles consumed by the individual phases

of the programs as well as the required time for executing the entire programs. Again,

the operating frequency of the processor was set to 200 MHz. As expected, filling the

data ports increases the required time for the test preparation phase, but reduces the time

of the test execution phase. The obvious reason for this is that the patterns are already

available when the test has started. However, for the considered DUT, the additional

overhead does not justify the speedup of the test execution. It can be seen that the test

execution is accelerated by only 13 cycles for all program sets. Against this benefit is the

fact that filling the FIFOs constantly requires 867 cycles for all three program sets. This

results in 943 cycles in total for the entire initialization phase compared to 76 cycles for

the programs that renounce the filling of the buffers.

In consideration of the test execution, the table shows that approximately 8 cycles

are required for executing one operation. This includes the application of the stimuli and

the receipt of the response. As shown previously, the limiting factor is the handshake

execution itself.

In order to illustrate the benefit of the test processor, consider the same test scenar-

ios realized with a boundary scan. Therefore, assume that one scan chain connects all

boundary registers of the considered DUT. Accordingly, the scan chain is composed of

52 scan cells. Thus, to perform one operation at least 37 cycles are required:

â 2× 16 + 4 cycles are required to shift the patterns into the operand and the opcode

registers, while concurrently scanning out the result register, and

â at least 1 cycle is required for executing the operation. Basically, this number

might be even larger, since one has to assume the worst case timing of the DUT.

164 Chapter 7. Evaluation of the Concept

Consequently, the functional test using NoTePAD is 4.625 times faster than the boundary

scan approach. However, this only applies if the scan test also runs at 200 MHz. If

one assumes a more realistic scan clock frequency of approximately 50 MHz, then the

test using NoTePAD is executed more than 18.5 times faster than the boundary scan

approach.

Furthermore, to show the performance improvements in comparison to the solution

provided in [Zeidler 2012a], comparable programs for this TP architecture were created.

The programs include 4k and 40k data transfers, respectively, which were executed with

a target frequency of the TP of 100 MHz. After simulation of these programs it turned out

that the programs need 117,440 and 1,173,645 cycles to complete, respectively. Thus,

each sequentially executed transfer requires approximately 30 cycles. This results in

approximately 120 cycles for one operation of the ALU. In consideration of the operating

frequency, the NoTePAD architecture is approximately 30 times faster than the solution

provided in [Zeidler 2012a].

Besides the execution time, also the memory requirements are of importance, since

these limit the amount of transfers within a single functional test. Furthermore, the size

of the program also affects the test time, since the program including the patterns has

to be loaded to the memory prior to the test. Accordingly, the program and the data

memory requirements of the above mentioned programs were determined. The results

are shown in Table 7.4. The program size is given in number of instructions where

each instruction word comprises 24 bits. The programs with and without filling the data

port FIFOs differ in only one instruction. Therefore, the table shows the results for the

programs without filling the FIFOs only3. The data memory requirements are identical

for each program pair. Finally, the time required for the program upload is determined

by the number of cycles needed for storing the program and the data memory content.

Thereby, each instruction is written at once in one cycle into the program memory, while

two bytes of the data are written into the data memory in one cycle.

Similar to the test execution time, the memory requirements can be compared with

the TP solution provided in [Zeidler 2012a]. Due to the software implementation of

the handshake signalling, the programs are much larger compared to the programs of

NoTePAD. This obviously also affects the time for uploading the programs. Thereby,

each 32 bit instruction is written in one cycle into the program memory. The data is

written in blocks of 4 bytes per cycle into the data memory. The program upload runs

at 100 MHz. Finally, as indicated by the results shown in Table 7.5, the time for loading

the entire program is approximately 3.5 times larger than for the NoTePAD solution.

3+1 indicates that the number of cycles for the program with filling the buffers has to be increased by
one.

7.3. A Test Scenario 165

Table 7.4: Memory requirements of NoTePAD and respective time for the program up-
load

Data Memory Program
Operations # Instructions Requirements Upload

1000 1064 (+1) 15,260 B 43.47 µs
10000 10064 (+1) 150,248 B 425.94 µs

100000 100064 (+1) 1,500,224 B 4250.88 µs

Table 7.5: Memory requirements of the TP provided in [Zeidler 2012a] and respective
time for the program upload

Data Memory Program
Operations # Instructions Requirements Upload

1000 11542 16,068 B 155.59 µs
10000 112238 160,068 B 1522.55 µs

7.3 A Test Scenario

Based on the evaluation of the test execution, a test scenario can be derived for the

considered ALU. Suppose that 10k devices shall be tested by executing the program

that performs 10k ALU operations. The upload of the program to the memories of

NoTePAD requires 425.94 µs. This is negligible, since it is done only once before the

test. Afterwards, the processor has to be configured, which is also only done once before

the tests. Then, 4257.70 ms are required to test all devices, resulting in approximately

4.258 s for the entire test including the upload of the program. The test of all devices

using the TP provided in [Zeidler 2012a] would require 117.37 s including the upload of

the program. In comparison to that, consider the boundary scan approach again under the

assumption that 37 cycles are needed for one operation. The scan clock is supposed to

be 50 MHz. Then, approximately 74 s are required for executing the test for all devices.

Note that the time for the change of the device, e.g., consumed by a wafer prober, is

neglected.

However, one has to consider that typically various tests are executed. Then, the

program has to be loaded to the test processor memory prior to each test. Suppose that

10 tests, each comprising 10k ALU operations, shall be executed for each device. In this

scenario, the test of all devices using NoTePAD requires approximately 85 s, whereas

the test using a boundary scan requires 740 s. Finally, the test using the solution in

[Zeidler 2012a] would require 1326 s.

"Look at a day when you are

supremely satisfied at the end.

It’s not a day when you lounge

around doing nothing; it’s when

you’ve had everything to do,

and you’ve done it."

— Margaret Thatcher

Chapter 8

Conclusions

This chapter summarizes the work and the major achievements. Furthermore, the limi-

tations of the provided solutions are identified and discussed. Finally, an outlook about

possible extensions and improvements is given that can be the subject of future activities.

8.1 Summary of the Work

This work is concerned with the realization of functional tests of asynchronous devices.

The general issue in this context is related to the event-driven timing behavior of asyn-

chronous handshake circuits that cannot be handled by common hardware testers. This

applies to both, cycle-based and event-based testers currently available, since all these

systems are basically not designed to react to signal events generated by the DUT. As

a result of the lack of this property, an asynchronous handshake-based communication

cannot be established between a DUT and a standard tester. This leads to problems with

respect to functional tests.

This work tackles this issue and proposes a methodology based on a special test

processor supporting asynchronous handshake communication. The key feature of the

processor is a programmable port component that provides generic interfaces for the

communication with asynchronous devices. This port component comprises two types

of ports. The first type of ports are special handshake ports that implement various types

of asynchronous handshake protocols. The second type of ports is used to realize the

167

168 Chapter 8. Conclusions

data part of an asynchronous channel. These ports are designed to send, receive and

compare data. In order to provide a generic solution, the ports can be combined in a

configurable manner. This allows that arbitrary channels with different properties can be

established between the DUT and the test processor.

Apart from the test processor itself, a workflow is proposed that describes how the

test processor can be used in a standard test environment. One essential part of this

workflow is the generation of programs for the provided test processor, which realize

the desired functional tests of the DUT. The methodology for the program generation is

based on the creation of a special test pattern file during logic simulation of the DUT.

This so-called transfer protocol includes the description of the dataflow on the base of

channel transfers rather than signal transitions. By this, the static timing of conventional

test patterns is resolved which allows elastic tests. After its generation, the transfer

protocol can be compiled to gain the desired processor program.

Based on the theoretical concept, a practical implementation is discussed. Therefore,

a complete framework including a test processor implementation and respective tools for

the generation of the test programs is presented. The provided processor is especially

designed for the extension of commercial test equipment, but it can be used as a stand

alone test system as well.

In order to show the feasibility of the approach, the entire framework was applied to

an asynchronous DUT implementing a quasi-delay-insensitive ALU. It is shown how the

individual steps of the framework are carried out to generate and execute the functional

tests of the selected DUT. For the illustration of the functionality, a hardware demonstra-

tor was created that embeds the DUT into the TP environment. This demonstrator was

implemented using a Xilinx Virtex-5 VLX 155T FPGA. After the implementation, the

gained netlist was simulated with corresponding timing information. The results show

that the concept works fine and that the tests exhibit the desired elastic timing behavior.

Besides the application of the framework, additional experiments have been carried

out to evaluate further parameters of the infrastructure. This includes the required hard-

ware resources of the processor as well as the runtime and memory utilization of differ-

ent test programs. By this, the practical suitability of the approach is demonstrated. The

experiments have shown that the proposed processor architecture can be implemented

using existing FPGA hardware platforms and a maximum clock frequency of 200 MHz

can be reached. Hence, the processor overcomes the performance limitations of alterna-

tive approaches and also fulfills demands, such as a flexibility, and controllability. This

makes the proposed concept a suitable mechanism for performing functional tests of

asynchronous circuits.

8.2. Summary of the Achievements 169

8.2 Summary of the Achievements

The theoretical part of the work includes the following achievements:

â a generic concept of a test processor for performing functional tests of asynchro-

nous handshake interface devices,

â a workflow for generating elastic functional tests from a logic simulation using

any standard simulation tool,

â a file format, called transfer protocol, describing elastic test patterns for handshake

interface devices that prevents static cycle-based timing

Furthermore, the applicability of the approach has been shown by implementing the

theoretical concept. In this context the achievements of the work comprise:

â an implementation of the generic test processor concept called NoTePAD (Novel

Test Processor for Asynchronous Devices)

â a realization of the workflow by providing a framework including

– a VHDL package that provides a generic model for asynchronous channels

and respective functions to perform data transfers for the generation of trans-

fer protocols during the functional simulation of the DUT,

– a compiler tool translating transfer protocols to programs for the proposed

NoTePAD architecture, and

– a tool translating the binary programs for the processor to standard test pat-

terns.

8.3 Impact of the Solution

The work introduced a powerful test technique for performing functional tests of asyn-

chronous circuits. This concept builds the foundation to overcome one of the most lim-

iting factors of the utilization of the asynchronous design style. With the help of the

provided test processor, functional tests of asynchronous designs in the context of sys-

tem debugging and production tests are now possible. Based on the provided concept,

novel test systems can be realized that directly support asynchronous handshake proto-

cols.

Furthermore, with the introduction and semi-automated generation of the transfer

protocol format, a generic methodology for describing elastic test sequences has been

proposed. Due to its abstract nature, the format can also be used by other test systems.

170 Chapter 8. Conclusions

8.4 Limitations of the Approach

The approach aims at the test of timing nondeterministic circuits, i.e., circuits whose

output sequences are not fixed with respect to their timing. However, the test of func-

tionally nondeterministic circuits is a general problem at all. This has several reasons.

The biggest issue to be solved in this context is the identification of the right response.

For this, a magic predictor would be required. Furthermore, with respect to the genera-

tion of test patterns, there is the open question how a nondeterministic behavior can be

simulated. Therefore, it is potentially required to extract all possible states and respective

responses of the DUT reachable from a nondeterministic state transition.

Another limitation is related to the restriction to bundled-data protocols only. Al-

though it has been illustrated (see Appendix B) how dual-rail circuits can be interfaced

using protocol converters, it might be more efficient to directly support other data encod-

ing styles. However, to ensure safe data transfers, the data ports may also be equipped

with synchronization techniques in order to safely migrate the asynchronously arriving

data signals into the clock domain of the test processor. Furthermore, the data ports have

to be connected with each other in order to detect protocol events. Such a configurable

interconnection of the data ports may impose considerable overhead.

A further restriction of the NoTePAD solution is the synchronous handshake im-

plementation. To prevent metastability, synchronizers are added at the input handshake

interfaces. Unfortunately, this considerably slows down the execution of transfers.

8.5 Outlook on Future Activities

With respect to the architecture of NoTePAD, the following enhancements can be taken

into account:

â Extensions to directly support further encoding styles. Currently, the only way to

support other encoding styles is to add protocol converters. Besides the hardware

overhead, these converters add further latency. Thus, a direct support of the most

important encoding styles, e.g., dual-rail and 1-of-n codes, would be beneficial.

â Implementation of the handshake ports using asynchronous logic. This prevents

the slow synchronizer-based handshaking currently implemented and enables a

fully asynchronous communication. As a result, the synchronizers connected to

the input interface signal of the handshake ports are obsolete. This enhancement

would considerably accelerate the asynchronous communication.

8.5. Outlook on Future Activities 171

â Support for source synchronous circuits. Another class of circuits, which tend to

be hard testable with standard hardware testers, are source synchronous circuits.

These circuits align their outputs to a clock signal internally generated by the

DUT. Similar to handshake circuits, it is necessary to react to these output clocks

in order to capture the responses of the DUT. A possible solution is to further

extend the handshake ports to support such output clocks of the DUT.

â Integration of the functionality of control ports into data ports. Currently, control

signals that are not aligned to handshake ports are realized by special ports that

have to be accessed separately. A more general approach could be the adaption

of the data ports such that these could also be used to implement control inputs

and outputs not associated with handshake ports. A possible solution could be the

extension of the port switch such that the sequencer is able to send commands

directly to subsets of data ports.

â Generation of the port switch configuration. The port switch is the mediator be-

tween the handshake and the data ports. It stores the association between these

ports to form asynchronous channels. In the current implementation of NoTePAD,

this configuration is programmable using respective instructions of the processor.

Due to the required logic managing the port association, a delay of one cycle is

required for the data exchange between the handshake and the data ports. For

the execution of a handshake, this means that two cycles are squandered: One for

sending the opcode from a handshake port to the data ports and one for transmit-

ting the status signal from the data ports to the handshake port. This could be

avoided if this configuration is directly implemented in hardware by hard-wired

interconnections rather than programmable connections. This is possible, since

the target platforms for the realization of NoTePAD are FPGAs. For this, the con-

figuration of the port switch has to be generated from the pin configuration that

defines the association between the handshake and the data ports. Then, for every

different design to be tested, an adapted processor can be generated.

Besides further developments in the direction of the processor architecture, there are ba-

sically two further tools required which complete the entire tool suite for the framework:

â In consideration of the analysis of the test results, a tool is required that maps

the responses of the processor to the respective channel transfers. This tool needs

to consider the order of the uploaded port data and the bits per port. Using this

information, it is trivial to map every bit of the uploaded data to a bit of a response

of the DUT.

172 Chapter 8. Conclusions

â Furthermore, for the integration of NoTePAD into an FPGA mounted onto a tester

load board, it is required to map the FPGA interface pins to pins of the DUT.

Therefore, a mapping of the FPGA pins to the pins of the socket and a further

mapping from the socket to the DUT pins is required. Having this information, a

constraint file (.ucf) comprising the pinning of the FPGA could be generated to

route the ports of the processor to specific pins of the FPGA. The generation of

the constraint file could easily be realized by a new software tool.

Appendix A

Handshake Protocol

Implementations

AD

req*

ack*

(a) STG

S0

S1

cyc = 0

ho := ¬ho´

ho´ := ¬ho´

cyc := dstat

hi = hi´ &

dps_stat = 1 &

cyc = 0

hi´ := ¬hi´

dps_opc := TEST

cyc := dopc

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hi´ | cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.1: Send 2-phase push protocol

req*

SD

ack*

(a) STG

S0

S1

cyc = 0

ho := ¬ho´

ho´ := ¬ho´

cyc := dstat

hi = hi´ &

dps_stat = 1 &

cyc = 0

hi´ := ¬hi´

dps_opc := TEST

cyc := dopc

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hi´ | cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.2: Receive 2-phase push protocol

173

174 Appendix A. Handshake Protocol Implementations

req*

AD

ack*

(a) STG

S0

S1

cyc = 0

ho := ¬ho´

ho´ := ¬ho´

cyc := dstat

hi = hi´ &

dps_stat = 1 &

cyc = 0

hi´ := ¬hi´

dps_opc := TEST

cyc := dopc

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hi´ | cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.3: Send 2-phase pull protocol

req*

ack*

SD

(a) STG

S0

S1

hi = hi´ &

cyc = 0 &

dps_stat = 1

hi´ := ¬hi´

dps_opc := TEST

cyc := dopc+dstat

hi = hi´

ho := ¬ho´

ho´ := ¬ho´

dps_stat = 0 |

cyc > 0 |

hi = hi´

cyc := max(0,cyc–1)

hi = hi´

cyc := max(0,cyc–1)

dps_opc := NOOP

(b) FSM

Figure A.4: Receive 2-phase pull protocol

175

AD

req
+

ack
+

req
-

ack
-

(a) STG

S0

S1S2

hi = hiinit &

dps_stat = 1 &

cyc = 0

dps_opc := TEST

cyc := dopc

cyc = 0

ho := ¬hoinit

cyc := dstat–1

hi = hiinit

ho := hoinit

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hiinit

cyc := max(0,cyc–1)

hi = hiinit |

cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.5: Send 4-phase push protocol

req
+

SD

ack
+

req
-

ack
-

(a) STG

S0

S1S2

hi = hiinit &

dps_stat = 1 &

cyc = 0

dps_opc := TEST

cyc := dopc

cyc = 0

ho := ¬hoinit

cyc := dstat–1

hi = hiinit

ho := hoinit

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hiinit

cyc := max(0,cyc–1)

hi = hiinit |

cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.6: Receive 4-phase push protocol

176 Appendix A. Handshake Protocol Implementations

req
+

AD

ack
+

req
-

ack
-

(a) STG

S0

S1S2

hi = hiinit &

dps_stat = 1 &

cyc = 0

dps_opc := TEST

cyc := dopc

cyc = 0

ho := ¬hoinit

cyc := dstat–1

hi = hiinit

ho := hoinit

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

hi = hiinit

cyc := max(0,cyc–1)

hi = hiinit |

cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

(b) FSM

Figure A.7: Send 4-phase pull protocol

req
+

ack
+

SD

req
-

ack
-

(a) STG

S0

S1S2

hi = hiinit &

cyc = 0

ho := ¬hoinit

hi = hiinit &

dps_stat = 1

dps_opc := TEST

cyc := dopc

cyc = 0

ho := hoinit

cyc := dstat–1

hi = hiinit |

cyc > 0 |

dps_stat = 0

cyc := max(0,cyc–1)

hi = hiinit

cyc := max(0,cyc–1)

cyc > 0

dps_opc := NOOP

cyc := max(0,cyc–1)

(b) FSM

Figure A.8: Receive 4-phase pull protocol

Appendix B

Protocol Converters

C

C

...

.
.
.

reqin

ackin

ackout

din[0]

din[n-1]

dout[0]t

dout[0]f

dout[n-1]t

dout[n-1]f

C

C

C

.
.
.

.
.
.

(a) 4-phase single-rail to 4-phase dual-rail converter

C

C

...

.
.
.

reqoutackin

ackout

din[0]t

din[n-1]t

dout[0]

dout[n-1]
C

C

C

.
.
.

din[0]f

din[n-1]f

(b) 4-phase dual-rail to 4-phase single-rail con-
verter

Figure B.1: Protocol converters

177

Appendix C

Tools

C.1 Transfer Protocol Compiler

This tool compiles a transfer protocol to a NoTePAD assembler program. It is invoked

via

tpc [options] filename

where filename is the name of the transfer protocol to be translated. The tool provides

various options that can be divided into individual groups. The first group contains

general options related to delivery of information about the translation process and the

tool itself. The next group comprises options to define the architectural parameters of

the target NoTePAD architecture. This includes the operating frequency, the number

of handshake and data ports etc. Furthermore, there is a group of options that control

the generated program output. One can define whether the initialization phase of the

processor shall be separated from the test sequence and whether the expected signatures

of data ports used as inputs shall be overwritten by gained fault signatures.

General option
-h, --help – Displays a help message.

-v, --verbose – Delivers more verbose output messages.

Options related to the test processor architecture
-f, --frequency value – Determines the operating frequency of the test

processor. The value should be defined in MHz.

If omitted the default of 200 MHz is assumed.

-t, --timeout value – Determines the default timeout assumed for par-

allel transfers. The value should be given in nano-

seconds. Default is 1000 ns.

-H, --hps number – Determines the number of handshake ports.

-i, --dps number – Determines the number of data ports.

-b, --bit-per-port number – Determines the number of bits used per data port.

179

180 Appendix C. Tools

Output options
-o, --output output-file – Name of the output file

-s, --split – Separates the processor initialization from the test

phase. If this option is set, tpc generates a separate

program file including only the initialization phase

of the processor.

-O, --overwrite-data – Determines whether to overwrite the expected re-

sponses with the actually received responses. This

saves memory, but requires an additional download

of the data between testing individual devices.

-z, --zero-input – Forces the expected data of input channels to be

zero. This is useful when the results shall be re-

ceived but not compared by the test processor.

-p, --dp-preload – Causes the data ports to be filled prior to the test ex-

ecution. This may prevent bottlenecks due to data

gaps during the test execution, but increases the test

preparation time.

Output files

As a result of the compilation the tool creates several output files:

â program file(s) including the test processor program and the data block comprising

the data port configurations. If the option -s is specified the tool separates the

processor initialization from the test sequence. Furthermore, if the size of the

generated program describing the test sequence exceeds 4 MB the entire program

is distributed over multiple files each having a maximum size of 4 MB. This is due

to the fact that the assembler has problems when translating files larger than the

defined maximum size.

â data file(s) each comprising the data for one data port used.

â a pinning file including a description of the mapping of the channel resources used

in the transfer protocol to actual ports of the test processor.

C.2. Memory Map Converter 181

C.2 Memory Map Converter

A further tool that has been developed in the frame of this work is the memory map

converter. This tool is used to translate a memory map file created from a binary program

for the test processor into various output formats. This comprises memory initialization

files (COE and MIF) for Xilinx memory blocks as well as EVCD pattern files. The tool

is invoked via

cmm [options] filename

It also provides the above mentioned general options as well as options to define the

output format.

General option
-h, --help – Displays a help message.

-v, --verbose – Delivers more verbose output messages.

Output options
-o, --output output-file – Name of the output file

-f, --format {COE,MIF,EVCD} – This option is used to define the output format

when translating a memory map file. The for-

mat specification is a comma (’,’) separated list

of the defined output formats. If omitted all

output formats are created.

-w, --bit-width number – This option defines the width of the bit vectors

written into a MIF file. This width has to match

the word width of the memory block for which

the output MIF file is created.

-p, --is_program – This option defines whether the input file de-

scribes the program or the data memory con-

tent. If the option is omitted, the input file is

treated as data memory content. This affects

the value of the write-enable signal for the two

memory blocks.

Appendix D

Demonstrator

Listing D.1: Test bench for the asynchronous ALU

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.NUMERIC_STD.ALL;

library WORK;

use WORK.asynch_pack.ALL;

8 use WORK.asynch_alu_pack.ALL;

use WORK.tp_bench_pack.ALL;

entity tb_asynch_alu is

end tb_asynch_alu;

13

architecture tb_asynch_alu_arch of tb_asynch_alu is

component asynch_alu is

port (

18 rst : in std_logic;

opc : in std_logic_vector (3 downto 0);

opc_req : in std_logic;

opc_ack : out std_logic;

op1 : in std_logic_vector (15 downto 0);

23 op1_req : in std_logic;

op1_ack : out std_logic;

op2 : in std_logic_vector (15 downto 0);

op2_req : in std_logic;

op2_ack : out std_logic;

28 res : out std_logic_vector (15 downto 0);

res_req : out std_logic;

res_ack : in std_logic);

183

184 Appendix D. Demonstrator

end component;

33 signal rst : TP_SIGNAL :=

tp_init_signal("rst", INPUT);

signal opc : TP_CHANNEL :=

tp_init_channel("opc", 4, INPUT, PUSH, FOUR, SR);

signal op1 : TP_CHANNEL :=

38 tp_init_channel("op1", 16, INPUT, PUSH, FOUR, SR);

signal op2 : TP_CHANNEL :=

tp_init_channel("op2", 16, INPUT, PUSH, FOUR, SR);

signal res : TP_CHANNEL :=

tp_init_channel("res", 16, OUTPUT, PUSH, FOUR, SR);

43

signal input_channels : TP_SET_OF_CHANNELS(2 downto 0);

begin

48 uut : asynch_alu

port map (

rst => rst.data(0),

opc => opc.data(3 downto 0),

opc_req => opc.req,

53 opc_ack => opc.ack,

op1 => op1.data(15 downto 0),

op1_req => op1.req,

op1_ack => op1.ack,

op2 => op2.data(15 downto 0),

58 op2_req => op2.req,

op2_ack => op2.ack,

res => res.data(15 downto 0),

res_req => res.req,

res_ack => res.ack);

63

proc_ctrl : process

begin

tp_open_transfer_protocol("async_alu");

tp_register_resource(rst);

68 tp_register_resource(op1);

tp_register_resource(op2);

tp_register_resource(opc);

tp_register_resource(res);

185

tp_start_test_sequence;

73

tp_wait(10 ns);

tp_assign(rst, "1");

tp_wait(100 ns);

tp_assign(rst, "0");

78 tp_wait(10 ns);

wait until tp_is_closed(op1) and tp_is_closed(op2)

and tp_is_closed(opc) and tp_is_closed(res);

tp_close_transfer_protocol;

83

wait;

end process;

proc_opc : process

88 begin

tp_open_channel(opc, "0000");

wait until rst.data(0 downto 0) = "0";

tp_send(opc, op_and);

tp_send(opc, op_add);

93 tp_send(opc, op_sub);

tp_send(opc, op_gcd);

tp_send(opc, op_gcd);

tp_send(opc, op_xor);

tp_send(opc, op_sra);

98 tp_close_channel(opc);

wait;

end process;

proc_op1 : process

103 begin

tp_open_channel(op1, "0000000000000000");

wait until rst.data(0 downto 0) = "0";

tp_send(op1, "0000000000000001");

tp_send(op1, "0000000000000110");

108 tp_send(op1, "1000001111111110");

tp_send(op1, "0000000000000110");

tp_send(op1, "0000000000010010");

tp_send(op1, "1111111111111111");

tp_send(op1, "1000000000000001");

186 Appendix D. Demonstrator

113 tp_close_channel(op1);

wait;

end process;

proc_op2 : process

118 begin

tp_open_channel(op2, "0000000000000000");

wait until rst.data(0 downto 0) = "0";

tp_send(op2, "1010101011111111");

tp_send(op2, "0000000000000001");

123 tp_send(op2, "0000000001110001");

tp_send(op2, "0000000000011000");

tp_send(op2, "0000000000011011");

tp_send(op2, "0000000000000001");

tp_send(op2, "0000000000000001");

128 tp_close_channel(op2);

wait;

end process;

input_channels <= opc & op1 & op2;

133

proc_res : process

variable result : std_logic_vector(15 downto 0);

begin

tp_open_channel(res);

138 tp_wait(input_channels);

for i in 0 to 6 loop

tp_recv(res, result);

end loop;

tp_close_channel(res);

143 wait;

end process;

end tb_asynch_alu_arch;

187

Listing D.2: Generated transfer protocol of the ALU

DECLARE

3 rst : IN SIGNAL;

op1 : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 16);

op2 : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 16);

opc : IN CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 4);

res : OUT CHANNEL(PUSH, 4P, SR, ’0’, ’0’, 16);

8

END

TEST

13 WAIT FOR 10000 ps;

rst <= "1";

WAIT FOR 100000 ps;

rst <= "0";

WAIT FOR 10000 ps;

18 opc <= "0000",

op1 <= "0000000000000001",

op2 <= "1010101011111111";

opc <= "0100",

op2 <= "0000000000000001",

23 op1 <= "0000000000000110",

res => "0000000000000001";

opc <= "0101",

op2 <= "0000000001110001",

op1 <= "1000001111111110",

28 res => "0000000000000111";

opc <= "1010",

op2 <= "0000000000011000",

op1 <= "0000000000000110",

res => "1000001110001101";

33 opc <= "1010",

op2 <= "0000000000011011",

op1 <= "0000000000010010",

res => "0000000000000110";

opc <= "0010",

38 op2 <= "0000000000000001",

op1 <= "1111111111111111",

res => "0000000000001001";

188 Appendix D. Demonstrator

opc <= "1000",

op2 <= "0000000000000001",

43 op1 <= "1000000000000001",

res => "1111111111111110";

res => "1100000000000000";

END

189

Listing D.3: Compiled assembler program

.ref MASK_AND_PC

.ref DP0_RDATA

3 .ref DP0_RDATA_END

.ref DP1_RDATA

.ref DP1_RDATA_END

.ref DP2_RDATA

.ref DP2_RDATA_END

8 .ref DP3_RDATA

.ref DP3_RDATA_END

.ref DP4_RDATA

.ref DP4_RDATA_END

.ref DP5_RDATA

13 .ref DP5_RDATA_END

.ref DP6_RDATA

.ref DP6_RDATA_END

.ref DP7_RDATA

.ref DP7_RDATA_END

18 .ref DP8_RDATA

.ref DP8_RDATA_END

.ref DP9_RDATA

.ref DP9_WDATA

.ref DP9_RDATA_END

23 .ref DP10_RDATA

.ref DP10_WDATA

.ref DP10_RDATA_END

.ref DP11_RDATA

.ref DP11_WDATA

28 .ref DP11_RDATA_END

.ref DP12_RDATA

.ref DP12_WDATA

.ref DP12_RDATA_END

.text

33 INIT_PROC:

rsio

conf hp=0, dp=0

conf hp=0, dp=1

conf hp=0, dp=2

38 conf hp=0, dp=3

conf hp=1, dp=4

conf hp=1, dp=5

190 Appendix D. Demonstrator

conf hp=1, dp=6

conf hp=1, dp=7

43 conf hp=2, dp=8

conf hp=3, dp=9

conf hp=3, dp=10

conf hp=3, dp=11

conf hp=3, dp=12

48 sahp hp=0, protocol=0x5

sahp hp=1, protocol=0x5

sahp hp=2, protocol=0x5

sahp hp=3, protocol=0x4

INIT_TEST:

53 init hpmask=0x000f

tmrq hpmask=0x000f

seth r2, (END_OF_TEST >> 16)

setl r2, (END_OF_TEST & 0xffff)

EXEC_TEST:

58 seth r1, 0x0003

setl r1, 0x0d3e

sout mask=0x0001, value=0x0001

seth r1, 0x0000

setl r1, 0x0009

63 wait

seth r1, 0x0003

setl r1, 0x0d3e

sout mask=0x0001, value=0x0000

noop

68 noop

test hpmask=0x0007

test hpmask=0x000f

test hpmask=0x000f

test hpmask=0x000f

73 test hpmask=0x000f

test hpmask=0x000f

test hpmask=0x000f

test hpmask=0x0008

END_OF_TEST:

78 flsh hpmask=0x0008

tmrq hpmask=0x000f

seth r0, (MASK_AND_PC >> 16)

setl r0, (MASK_AND_PC & 0xffff)

191

slhw r3, r0

83 slhw r3, r0

addu 2

slhw r4, r0

slhw r4, r0

UPLOAD:

88 halt

seth r0, ((DP9_WDATA -DMEM_START) >> 16)

setl r0, ((DP9_WDATA -DMEM_START) & 0xffff)

seth r1, ((DP9_WDATA -DMEM_START+2) >> 16)

setl r1, ((DP9_WDATA -DMEM_START+2) & 0xffff)

93 dout

seth r0, ((DP10_WDATA -DMEM_START) >> 16)

setl r0, ((DP10_WDATA -DMEM_START) & 0xffff)

seth r1, ((DP10_WDATA -DMEM_START+2) >> 16)

setl r1, ((DP10_WDATA -DMEM_START+2) & 0xffff)

98 dout

seth r0, ((DP11_WDATA -DMEM_START) >> 16)

setl r0, ((DP11_WDATA -DMEM_START) & 0xffff)

seth r1, ((DP11_WDATA -DMEM_START+2) >> 16)

setl r1, ((DP11_WDATA -DMEM_START+2) & 0xffff)

103 dout

seth r0, ((DP12_WDATA -DMEM_START) >> 16)

setl r0, ((DP12_WDATA -DMEM_START) & 0xffff)

seth r1, ((DP12_WDATA -DMEM_START+2) >> 16)

setl r1, ((DP12_WDATA -DMEM_START+2) & 0xffff)

108 dout

halt

halt

.end

Listing D.4: Data section of the program

.data

DMEM_START:

CONF_OF_DP0:

4 .word (DP0_RDATA -DMEM_START)

.word 0

.word ((DP0_RDATA_END -DP0_RDATA) >> 1)

.word 0

CONF_OF_DP1:

9 .word (DP1_RDATA -DMEM_START)

192 Appendix D. Demonstrator

.word 0

.word ((DP1_RDATA_END -DP1_RDATA) >> 1)

.word 0

CONF_OF_DP2:

14 .word (DP2_RDATA -DMEM_START)

.word 0

.word ((DP2_RDATA_END -DP2_RDATA) >> 1)

.word 0

CONF_OF_DP3:

19 .word (DP3_RDATA -DMEM_START)

.word 0

.word ((DP3_RDATA_END -DP3_RDATA) >> 1)

.word 0

CONF_OF_DP4:

24 .word (DP4_RDATA -DMEM_START)

.word 0

.word ((DP4_RDATA_END -DP4_RDATA) >> 1)

.word 0

CONF_OF_DP5:

29 .word (DP5_RDATA -DMEM_START)

.word 0

.word ((DP5_RDATA_END -DP5_RDATA) >> 1)

.word 0

CONF_OF_DP6:

34 .word (DP6_RDATA -DMEM_START)

.word 0

.word ((DP6_RDATA_END -DP6_RDATA) >> 1)

.word 0

CONF_OF_DP7:

39 .word (DP7_RDATA -DMEM_START)

.word 0

.word ((DP7_RDATA_END -DP7_RDATA) >> 1)

.word 0

CONF_OF_DP8:

44 .word (DP8_RDATA -DMEM_START)

.word 0

.word ((DP8_RDATA_END -DP8_RDATA) >> 1)

.word 0

CONF_OF_DP9:

49 .word (DP9_RDATA -DMEM_START)

.word (DP9_WDATA -DMEM_START)

193

.word ((DP9_RDATA_END -DP9_RDATA) >> 1)

.word 0

CONF_OF_DP10:

54 .word (DP10_RDATA -DMEM_START)

.word (DP10_WDATA -DMEM_START)

.word ((DP10_RDATA_END -DP10_RDATA) >> 1)

.word 0

CONF_OF_DP11:

59 .word (DP11_RDATA -DMEM_START)

.word (DP11_WDATA -DMEM_START)

.word ((DP11_RDATA_END -DP11_RDATA) >> 1)

.word 0

CONF_OF_DP12:

64 .word (DP12_RDATA -DMEM_START)

.word (DP12_WDATA -DMEM_START)

.word ((DP12_RDATA_END -DP12_RDATA) >> 1)

.word 0

.bss MASK_AND_PC , 8, 4

69

DP0_RDATA:

.word 0xffff6e61 , 0x0fff01f2

DP0_RDATA_END:

DP1_RDATA:

74 .word 0xffff0f00 , 0x0fff00f1

DP1_RDATA_END:

DP2_RDATA:

.word 0xffff0300 , 0x0fff00f0

DP2_RDATA_END:

79 DP3_RDATA:

.word 0xffff0800 , 0x0fff08f0

DP3_RDATA_END:

DP4_RDATA:

.word 0xffff811f , 0x0fff011b

84 DP4_RDATA_END:

DP5_RDATA:

.word 0xffff170f , 0x0fff0001

DP5_RDATA_END:

DP6_RDATA:

89 .word 0xffff000a , 0x0fff0000

DP6_RDATA_END:

DP7_RDATA:

194 Appendix D. Demonstrator

.word 0xffff000a , 0x0fff0000

DP7_RDATA_END:

94 DP8_RDATA:

.word 0xffffa540 , 0x0fff082a

DP8_RDATA_END:

DP9_RDATA:

.word 0xffff6d71 , 0x0fff00e9

99 DP9_RDATA_END:

.bss DP9_WDATA , 4, 4

DP10_RDATA:

.word 0xffff0800 , 0x0fff00f0

DP10_RDATA_END:

104 .bss DP10_WDATA , 4, 4

DP11_RDATA:

.word 0xffff0300 , 0x0fff00f0

DP11_RDATA_END:

.bss DP11_WDATA , 4, 4

109 DP12_RDATA:

.word 0xffff0800 , 0x0fff0cf0

DP12_RDATA_END:

.bss DP12_WDATA , 4, 4

Listing D.5: Pinning information

SIGNAL rst : co(0);

3 CHANNEL op1 : req => ho(0),

ack => hi(0),

data(15 downto 0) => do(15 downto 0);

CHANNEL op2 : req => ho(1),

ack => hi(1),

8 data(15 downto 0) => do(31 downto 16);

CHANNEL opc : req => ho(2),

ack => hi(2),

data(3 downto 0) => do(35 downto 32);

CHANNEL res : req => hi(3),

13 ack => ho(3),

data(15 downto 0) => di(51 downto 36);

List of Figures

2.1 Asynchronous handshake circuits . 11

2.2 Asynchronous handshake protocols . 12

2.3 Data validity schemes . 13

2.4 Bundled data protocol . 13

2.5 Dual-rail handshake protocol . 14

2.6 4-bit dual-rail register with completion detection 15

2.7 Push vs. pull protocols . 15

2.8 Circuit fragment with delays in logical gates and wires 17

2.9 The Muller C-element . 18

2.10 The MUTEX-element . 19

2.11 Hazard effect . 19

2.12 A two-flop synchronizer . 21

2.13 Graph-based descriptions of an asynchronous circuit 24

2.14 4-phase Muller pipeline . 27

2.15 Dual-rail Muller pipeline . 28

2.16 2-phase Micropipeline . 29

2.17 Finite state machines . 30

2.18 A GALS system . 31

2.19 An asynchronous communication channel based on synchronizers 32

2.20 A FIFO-based point-to-point communication channel 33

2.21 Sender and receiver of a pausible clock communication channel 34

2.22 Two ACL units with a stuck-at-0 fault at ack2 38

2.23 Scan technique . 39

2.24 Asynchronous sequential circuit with and without scan elements 40

2.25 BIST for an asynchronous unit-under-test 41

3.1 Timing variations of simulated and measured responses of an asynchronous

device-under-test . 44

3.2 GALS system architecture with scan . 46

195

196 List of Figures

3.3 Integration of FIFOs to compensate timing non-determinism 49

3.4 Synchro-Tokens GALS architecture . 50

4.1 Abstract model of the DUT . 52

4.2 Concept of the test processor for asynchronous devices 54

4.3 Implementation schemes . 55

4.4 Integration of the test processor into the test flow 61

4.5 Flow for generating the test processor program 65

5.1 Handshake interface between the TP and the DUT 77

5.2 Control flow of NoTePAD . 80

5.3 Architecture of NoTePAD . 81

5.4 Data memory organization of NoTePAD 86

5.5 Architecture of a data port of NoTePAD 88

5.6 Automaton for the 4-phase push protocol from the sender point of view . . 91

5.7 Automaton for the 2-phase push protocol from the receiver point of view . . 92

5.8 Port switch of NoTePAD . 96

5.9 Memory access controller of NoTePAD 100

5.10 Sequencer component of NoTePAD . 103

6.1 Processes of the test bench and their interaction with the DUT 111

7.1 The design-under-test: an asynchronous 16-bit ALU 149

7.2 The demonstrator: NoTePAD connected with the asynchronous ALU 151

7.3 Simulation of the test bench with underlying netlist and timing of the ALU . 156

7.4 Simulation of the demonstrator executing the functional test program 157

7.5 Start of the initial ALU simulation . 158

7.6 Start of the test sequence without preloading the data ports 158

7.7 Simulation of the program with preloaded data ports 158

7.8 Simulation of all supported handshake protocols 162

A.1 Send 2-phase push protocol . 173

A.2 Receive 2-phase push protocol . 173

A.3 Send 2-phase pull protocol . 174

A.4 Receive 2-phase pull protocol . 174

A.5 Send 4-phase push protocol . 175

A.6 Receive 4-phase push protocol . 175

A.7 Send 4-phase pull protocol . 176

A.8 Receive 4-phase pull protocol . 176

List of Figures 197

B.1 Protocol converters . 177

List of Tables

7.1 Results of the FPGA implementation of the NoTePAD architecture with

varying number of data pins . 159

7.2 Minimum number of cycles for one handshake and respective transfer rates 162

7.3 Program runtime . 163

7.4 Memory requirements of NoTePAD and respective time for the program

upload . 165

7.5 Memory requirements of the TP provided in [Zeidler 2012a] and respective

time for the program upload . 165

198

Listings

4.1 Two concurrent processes . 65

4.2 Pseudo-code for generating the sequence of concurrent transfer groups . 67

4.3 Pseudo-code of the wait procedure . 69

6.1 Definition of test processor related constant 112

6.2 Procedures and functions to access the transfer protocol 113

6.3 Definition of the type for modelling the handshake protocol type 113

6.4 Structure and initialization of channels 115

6.5 Channel preparation procedures . 117

6.6 Handshake procedures . 117

6.7 Structure and initialization of signal resources 118

6.8 Accessing signal resources . 119

6.9 Control functions . 120

6.10 Internal data structures of the channel simulation package 121

6.11 Implementation of the concurrency check 122

6.12 Reading and writing channel data . 124

6.13 Implementation of the transfer procedure for sending data 125

6.14 Implementation of the transfer procedure for receiving data 127

6.15 Implementation of the wait procedures 128

6.16 Sequence of data transfers on a channel 132

6.17 Corresponding content of the files for the data ports 133

6.18 Declaration section of a transfer protocol 136

6.19 Assembly code for the considered transfer protocol fragment 136

6.20 Example of a transfer protocol . 137

6.21 NoTePAD assembler code fragment for the test sequence of the consid-

ered transfer protocol . 138

6.22 Sequence of wait and timeout statements 141

6.23 Assembler code for the sequence of wait and timeout statements 141

6.24 Assembler code for uploading the results 143

7.1 Euclidean Algorithm for computing the GCD 150

7.2 Declarative part of the test bench for the ALU 152

199

200 List of Tables

7.3 DUT instantiation . 153

7.4 Control process . 153

7.5 Channel control processes . 155

D.1 Test bench for the asynchronous ALU 183

D.2 Generated transfer protocol of the ALU 187

D.3 Compiled assembler program . 189

D.4 Data section of the program . 191

D.5 Pinning information . 194

Bibliography

[Abramovici 1990] Miron Abramovici, Melvin A. Breuer and Arthur Friedman. Digital

Systems Testing and Testable Design. IEEE Press, 1990. [cited at p. 35, 36, 37, 40]

[Advantest 2013] Advantest. V93000 SOC, 2013. http://www1.verigy.com/ate/

products/V93000/index.htm. [cited at p. 3, 44]

[Ali 1996] Md. Liakot Ali, Zahari Mohamed Darus, Mohd Alauddin Mohd Ali and

Iftekhar Ahmed. Test processor ASIC design. In Proceedings of the IEEE Inter-

national Conference on Semiconductor Electronics (ICSE ’96), pages 261–265,

November 1996. [cited at p. 53]

[Ali 2002] Mohd Alauddin Mohd Ali, Syed Zahidul Islam and Md. Liakot Ali. Test

processor chip design with complete simulation result including reseeding tech-

nique. In Proceedings of the IEEE International Conference on Semiconductor

Electronics (ICSE ’02), pages 218–221, December 2002. [cited at p. 53]

[Altaf-Ul-Amin 1999] Md. Altaf-Ul-Amin and Zahari Mohamed Darus. VHDL de-

sign of a test processor based on mixed-mode test generation. In Proceedings

of the Ninth Great Lakes Symposium on VLSI, pages 244–245, March 1999.

[cited at p. 53]

[Alves 1998] Vladimir C. Alves, Felipe M. G. Franca and Edson P. Granja. A BIST

Scheme for Asynchronous Logic. In Proceedings of the 7th Asian Test Sympo-

sium (ATS’98), pages 27–32, Washington, DC, USA, 1998. Universidade Fed-

eral do Rio de Janeiro, Brazil, IEEE Computer Society. [cited at p. 41]

[Anderson 1991] James H. Anderson and Mohamed G. Gouda. A New Explanation of

the Glitch Phenomenon. Acta Informatica, vol. 28, no. 4, pages 297–309, April

1991. [cited at p. 19]

[Beigne 2006] Edith Beigne and Pascal Vivet. Design of On-chip and Off-chip In-

terfaces for a GALS NoC Architecture. In Proceedings of the IEEE Interna-

tional Symposium on Asynchronous Circuits and Systems (ASYNCH ’06), vol-

201

http://www1.verigy.com/ate/products/V93000/index.htm
http://www1.verigy.com/ate/products/V93000/index.htm

202 Bibliography

ume 0, pages 172–183, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[cited at p. 33]

[Bhutada 2007] Rani Bhutada and Yiannos Manoli. Complex Clock Gating with Inte-

grated Clock Gating Logic Cell. In Proceedings of International Conference on

Design & Technology of Integrated Systems in Nanoscale Era (DTIS’07), pages

164–169, 2–5 September 2007. [cited at p. 9]

[Branover 2004] Alex Branover, Rakefet Kol and Ran Ginosar. Asynchronous Design

By Conversion: Converting Synchronous Circuits into Asynchronous Ones. In

Proceedings of the Design, Automation and Test in Europe Conference and Ex-

hibition (DATE ’04), volume 2, pages 870–875, Washington, DC, USA, Febru-

ary 2004. VLSI Systems Research Center, Technion – Israel Institute of Tech-

nology, Haifa, Israel, IEEE Computer Society. [cited at p. 26]

[Chaney 1973] Thomas J. Chaney and Charles E. Molnar. Anomalous Behavior of Syn-

chronizer and Arbiter Circuits. IEEE Transactions on Computers, vol. C-22,

no. 4, pages 421–422, 1973 1973. [cited at p. 20]

[Chapiro 1984] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Sys-

tems. PhD thesis, Stanford University, October 1984. [cited at p. 8, 31]

[Chelcea 2000] Tiberiu Chelcea and Steven M. Nowick. Low-latency asynchronous

FIFO’s using token rings. In Proceedings of the 6th International Symposium

on Advanced Research in Asynchronous Circuits and Systems (ASYNC ’00),

pages 210–220, 2000. [cited at p. 33]

[Chu 1987] Tam-Anh Chu. Synthesis of self-timed VLSI Circuits from Graph-theoretic

Specifications. PhD thesis, Massachusetts Institute of Technology, 1987.

[cited at p. 26]

[Cortadella 1996] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano

Lavagno and Alex Yakovlev. Petrify: A Tool for Manipulating Concurrent Spec-

ifications and Synthesis of Asynchronous Controllers. In Proceedings of the 11th

Conference on Design of Integrated Circuits and Systems, Barcelona, November

1996. [cited at p. 26]

[Cortadella 2004] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Kelvin Lwin

and Christos P. Sotiriou. From Synchronous to Asynchronous: An Automatic

Approach. In Proceedings of the Conference on Design, page 21368, Washing-

ton, DC, USA, 2004. Univ. Politècnica de Catalunya, Barcelona, Spain; Cadence

Bibliography 203

Berkeley Labs Berkley and San Jose, CA, USA; Politecnico di Torino, Torino,

Italy; Cadence Berkeley Labs; ICS-FORTH Crete, Greece, IEEE Computer So-

ciety. [cited at p. 26]

[Cortadella 2010] Jordi Cortadella, Luciano Lavagno, Djavad Amiri, Jonas Casanova,

Carlos Macian, Ferran Martorell, Juan A. Moya Vicen, Luca Necchi, Danil

Sokolov and Emre Tuncer. Narrowing the margins with elastic clocks. In Pro-

ceedings of the IEEE International Conference on IC Design and Technology

(ICICDT), pages 146–150, 2010. [cited at p. 10]

[Couranz 1975] George R. Couranz and Donald F. Wann. Theoretical and Experimental

Behavior of Synchronizers Operating in the Metastable Region. IEEE Transac-

tions on Computers, vol. C-24, no. 6, pages 604–616, June 1975. [cited at p. 20]

[Darus 1997] Zahari Mohamed Darus, Iftekhar Ahmed and Md. Liakot Ali. A test pro-

cessor chip implementing multiple seed, multiple polynomial linear feedback

shift register. In Proceedings of the Sixth Asian Test Symposium (ATS ’97),

pages 155–160, November 1997. [cited at p. 53]

[Dike 1999] Charles Dike and Edward Burton. Miller and noise effects in a synchroniz-

ing flip-flop. IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pages 849–855,

jun 1999. [cited at p. 21]

[Dinh Duc 2002] Anh Vu Dinh Duc, Jean-Baptiste Rigaud, Amine Rezzag, Antoine

Sirianni, Joao Fragoso, Laurent Fesquet and Marc Renaudin. TAST CAD Tools.

In Proceedings of the 2nd Asynchronous Circuit Design Workshop (ACiD’02),

2002. [cited at p. 25]

[Edwards 2000] Douglas A. Edwards and Andrew Bardsley. Synthesizing an Asynchro-

nous DMA Controller with Balsa. Journal of Systems Architecture, vol. 46,

no. 14, pages 1309–1319, December 2000. [cited at p. 25]

[Edwards 2002] Douglas A. Edwards and Andrew Bardsley. Balsa: An Asynchronous

Hardware Synthesis Language. The Computer Journal, vol. 45, no. 1, pages

12–18, January 2002. [cited at p. 25]

[Fan 2010] Xin Fan, Miloš Krstić, Christoph Wolf and Eckhard Grass. A GALS FFT

processor with clock modulation for low-EMI applications. In Proceedings

21st IEEE Intl. Conf. Application-specific Systems, Architectures and Proces-

sors (ASAP), 2010. [cited at p. 8]

204 Bibliography

[Fang 2005] David Fang, John Teifel and Rajit Manohar. A High-Performance Asyn-

chronous FPGA: Test Results. In Proceedings of the 13th Annual IEEE Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM ’05), pages

271–272, Washington, DC, USA, April 2005. Computer Systems Laboratory,

Cornell University, USA, IEEE Computer Society. [cited at p. 10]

[Frost 2007] Raik Frost, David Rudolph, Christan Galke, Rene Kothe and Heinrich T.

Vierhaus. A Configurable Modular Test Processor and Scan Controller Architec-

ture. In Proceedings of the 13th IEEE International On-Line Testing Symposium

(IOLTS ’07), pages 277–284, July 2007. [cited at p. 53, 54, 75]

[Fuhrer 1999] Robert M. Fuhrer, Steven M. Nowick, Michael Theobald, Niraj K. Jhay,

Bill Linz and Luis Plana. MINIMALIST: An Environment for the Synthesis, Ver-

ification and Testability of Burst-Mode Asynchronous Machines. Technical re-

port, Columbia University, Computer Science Deptartment, 1999. [cited at p. 26,

31]

[Furber 1994a] Steve B. Furber, Paul Day, Jim D. Garside, Nigel C. Paver, Steve Tem-

ple and John V. Woods. The design and evaluation of an asynchronous micro-

processor. In Proceedings of the IEEE International Conference on Computer

Design: VLSI in Computers and Processors (ICCD ’94), pages 217–220. De-

partment of Computer Science, University of Manchester, UK, 10–12 October

1994. [cited at p. 10]

[Furber 1994b] Steve B. Furber, Paul Day, Jim D. Garside, Nigel C. Paver and John V.

Woods. AMULET1: A Micropipelined ARM. In Digest of Papers. Compcon

Spring ’94, pages 476–485. Department of Computer Science, University of

Manchester, UK, 28 February–4 March 1994. [cited at p. 8]

[Furber 1997] Steve B. Furber, Jim D. Garside, Steve Temple, Jianwei Liu, Paul Day

and Nigel C. Paver. AMULET2e: An Asynchronous Embedded Controller.

In Proceedings of the 3rd International Symposium on Advanced Research

in Asynchronous Circuits and Systems, pages 290–299. Department of Com-

puter Science, University of Manchester, UK, IEEE Computer Society, 1997.

[cited at p. 8, 10]

[Furber 1998] Steve B. Furber, Jim D. Garside and D.A. Gilbert. AMULET3: A High-

Performance Self-Timed ARM Microprocessor. In Proceedings of the Interna-

tional Conference on Computer Design: VLSI in Computers and Processors

Bibliography 205

(ICCD ’98), pages 247–252. Department of Computer Science, University of

Manchester, UK, 5–7 October 1998. [cited at p. 8]

[Furber 1999] Steve B. Furber, Jim D. Garside, P. Riocreux, Steve Temple, Paul Day,

Jianwei Liu and Nigel C. Paver. AMULET2e: An Asynchronous Embedded Con-

troller. Proceedings of the IEEE, vol. 87, no. 2, pages 243–256, 1999. [cited at p. 8]

[Furber 2000] Steve B. Furber, Douglas A. Edwards and Jim D. Garside. AMULET3:

A 100 MIPS Asynchronous Embedded Processor. In Proceedings of the Inter-

national Conference on Computer Design, pages 329–334. Department of Com-

puter Science, University of Manchester, UK, 17–20 September 2000. [cited at p. 8]

[Galke 2002] Christian Galke, Matthias Pflanz and Heinrich T. Vierhaus. A Test Proces-

sor Concept for Systems-on-a-Chip. In Proceedings of the IEEE International

Conference on Computer Design: VLSI in Computers and Processors, pages

210–212, 2002. [cited at p. 53, 54, 75, 82, 83]

[Garside 2000] Jim D. Garside, John Bainbridge, Andrew Bardsley, Douglas A. Ed-

wards, Steve B. Furber, Jianwei Liu, David W. Lloyd, S. Mohammadi, Jeffrey S.

Pepper, Oleg A. Petlin, Steve Temple and John V. Woods. AMULET3i - An Asyn-

chronous System-on-Chip. In Proceedings of the 6th International Symposium

on Advanced Research in Asynchronous Circuits and Systems, pages 162–175,

Washington, DC, USA, April 2000. Department of Computer Science, Univer-

sity of Manchester, UK, IEEE Computer Society Press. [cited at p. 8]

[Gill 2005] Gennette Gill and Montek Singh. Synthesizing Asynchronous Burst-Mode

Machines without the Fundamental-Mode Timing Assumption. In ACM/IEEE

International Workshop on Timing Issues, 2005. [cited at p. 30]

[Ginosar 2003] Ran Ginosar. Fourteen Ways to Fool Your Synchronizer. In Proceed-

ings of the 9th International Symposium on Asynchronous Circuits and Systems,

pages 89–, Washington, DC, USA, 2003. IEEE Computer Society. [cited at p. 21]

[Gürkaynak 2002] Frank K. Gürkaynak, Thomas Villiger, Stephan Oetiker, Norbert Fel-

ber, Hubert Kaeslin and Woflgang Fichtner. A Functional Test Methodology for

Globally-Asynchronous Locally-Synchronous Systems. In Proceedings of the 8th

International Symposium on Asynchronous Circuits and Systems, pages 181–

189. Integrated Systems Laboratory, ETH Zürich, Switzerland, IEEE Computer

Society, 8–11 April 2002. [cited at p. 3, 46]

206 Bibliography

[Hawkins 1994] C.F. Hawkins, J.M. Soden, A.W. Righter and F.J. Ferguson. Defect

classes-an overdue paradigm for CMOS IC testing. In Test Conference, 1994.

Proceedings., International, pages 413–425, 1994. [cited at p. 36]

[Heath 2003] Matthew W. Heath and Ian G. Harris. A Deterministic Globally Asyn-

chronous Locally Synchronous Microprocessor Architecture. In Proceedings of

the 4th International Workshop on Microprocessor Test and Verification: Com-

mon Challenges and Solutions, pages 119–124. University of Massachusetts

Amherst, USA, May 2003. [cited at p. 49]

[Heath 2004] Matthew W. Heath, Wayne P. Burleson and Ian G. Harris. Eliminating

Nondeterminism to Enable Chip-Level Test of Globally-Asynchronous Locally-

Synchronous SoC’s. IEEE Computer Society, 2004. citeseer.ist.psu.edu/

heath04eliminating.html. [cited at p. 50]

[Heath 2005] Matthew W. Heath, Ian G. Harris and Wayne P. Burleson. Synchro-

Tokens: A Deterministic GALS Methodology for Chip-Level Debug and Test.

IEEE Transaction on Computers, vol. 54, no. 12, pages 1532–1546, December

2005. [cited at p. 49]

[Hoare 1978] Charles Antony Richard Hoare. Communicating Sequential Processes.

Communications of the ACM, vol. 21, no. 8, pages 666––677, August 1978.

[cited at p. 25]

[Huffman 1955] David A. Huffman. A study of the memory requirements of sequential

switching circuits. Technical report 293, Massachusetts Institute of Technology,

Research Laboratory of Electronics, March 1955. [cited at p. 30]

[Hulgaard 1994] Henrik Hulgaard, Steven M. Burns and Gaetano Borriello. Testing

Asynchronous Circuits: A Survey. Integration, the VLSI Journal, vol. 19, no. 3,

pages 111–131, March 1994. [cited at p. 37, 38]

[IEEE 1364-1995] IEEE Std 1364-1995. IEEE Standard Hardware Description Lan-

guage Based on the Verilog(R) Hardware Description Language. 1995.

[cited at p. 44]

[IEEE 1364-2001] IEEE Std 1364-2001. Standard Verilog Hardware Description Lan-

guage. 2001. [cited at p. 44]

[IntellaSys 2008] IntellaSys. SEAforthr40C18, 2008. http://www.intellasys.

net/index.php?option=com_content&task=view&id=60&Itemid=75.

[cited at p. 8]

citeseer.ist.psu.edu/heath04eliminating.html
citeseer.ist.psu.edu/heath04eliminating.html
http://www.intellasys.net/index.php?option=com_content&task=view&id=60&Itemid=75
http://www.intellasys.net/index.php?option=com_content&task=view&id=60&Itemid=75

Bibliography 207

[ITRS 2012] ITRS. International Technology Roadmap for Semiconductors 2012 – De-

sign. Technical report, Semiconductor Industries Association, 2012. [cited at p. 2]

[Jährig 2004] Ralf Jährig and Walter Anheier. Automatisierte Erzeugung von asynchro-

nen Schaltungen. In AUSTROCHIP 2004, Villach, Austria, pages 13–20. Insti-

tut für Theoretische Elektrotechnik und Mikroelektronik ITEM, August 2004.

[cited at p. 26]

[Jin 2009] Gang Jin, Lei Wang and Zhiying Wang. A New Description Language

for Data-Driven Asynchronous Circuits and its Design Flow. In Proceed-

ings of the Pacific-Asia Conference on Circuits, Communications and Systems

(PACCS’09), pages 322–325, 2009. [cited at p. 26]

[Kabir 2009] M.A. Kabir and Liakot Ali. Design of GLFSR based test processor chip.

In Proceedings of the IEEE Student Conference on Research and Development

(SCOReD), pages 234–237, November 2009. [cited at p. 53]

[Keezer 2005] David C. Keezer, Carl Gray, A.M. Majid and N. Taher. Low-cost multi-

gigahertz test systems using CMOS FPGAs and PECL. In Design, Automation

and Test in Europe, 2005. Proceedings, pages 152–157 Vol. 1, 2005. [cited at p. 55]

[Kermani 2001] Bahram Ghaffarzadeh Kermani, William James Smurthwaite and

James Frank Vomero. Testing Asynchronous Circuits, 2001. [cited at p. 43, 45]

[Khoche 1994] Ajay Khoche and Erik Brunvand. Testing micropipelines. In E. Brun-

vand, editor, Proceedings of the International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems, pages 239–246, Washington, DC,

USA, 1994. Department of Computer Science, University of Utah, Salt Lake

City, IEEE Computer Society. [cited at p. 37]

[Khoche 1995] Ajay Khoche and Erik Brunvand. A partial scan methodology for testing

self-timed circuits. In E. Brunvand, editor, Proceedings of the 13th IEEE VLSI

Test Symposium (VTS’95), pages 283–289, Washington, DC, USA, 1995. De-

partment of Computer Science, University of Utah, Salt Lake City, IEEE Com-

puter Society. [cited at p. 40]

[King 2004] Matthew L. King and Kewal K. Saluja. Testing Micropipelined Asyn-

chronous Circuits. In Proceedings of the 2004 International Test Conference

(ITC’04), pages 329–338, Washington, DC, USA, October 2004. Department of

Electrical and Computer Engineering, University of Wisconsin, Madison, WI,

USA, IEEE Computer Society. [cited at p. 37]

208 Bibliography

[Kinniment 2002] David J. Kinniment, Alex Bystrov and Alex Yakovlev. Synchroniza-

tion circuit performance. IEEE Journal of Solid-State Circuits, vol. 37, no. 2,

pages 202 –209, feb 2002. [cited at p. 21]

[Kishinevsky 1997] Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Alexan-

der Saldanha and Alexander Taubin. Partial Scan Delay Fault Testing of Asyn-

chronous Circuits. In Proceedings of the 1997 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD’97), pages 728–735, Washington,

DC, USA, 1997. The University of Aizu, Aizu-Wakamatsu, Japan; Politecnico

di Torino, Torino, Italy;Cadence Berkeley Laboratories, Berkeley, USA, IEEE

Computer Society. [cited at p. 37]

[Krstić 2005a] Miloš Krstić and Eckhard Grass. BIST technique for GALS systems. In

Eckhard Grass, editor, Proceedings of the 8th Euromicro Conference on Digital

System Design, pages 10–16. IHP microelectronics Frankfurt (Oder), Germany,

IEEE Computer Society, 2005. [cited at p. 3, 47]

[Krstić 2005b] Miloš Krstić, Eckhard Grass and Christian Stahl. Request-driven GALS

technique for wireless communication system. In Proceedings of the 11th IEEE

International Symposium on Asynchronous Circuits and Systems (ASYNC ’05),

pages 76–85, 2005. [cited at p. 33]

[Krstić 2007] Miloš Krstić, Eckhard Grass, Frank Gürkaynak and Pascal Vivet. Glob-

ally Asynchronous, Locally Synchronous Circuits: Overview and Outlook. IEEE

Design Test of Computers, vol. 24, no. 5, pages 430–441, 2007. [cited at p. 8, 31, 32]

[Krstić 2011] Miloš Krstić, Xin Fan, Eckhard Grass, Luca Benini, M. R. Kakoee,

Christoph Heer, B. Sanders, A. Strano and Davide Bertozzi. Moonrake Chip

- GALS Demonstrator in 40 nm CMOS. In Proceedings of the International

Symposium on System-on-Chip (SoC), 2011. [cited at p. 8]

[Lines 2004] Andrew Lines. Asynchronous interconnect for synchronous SoC design.

vol. 24, no. 1, pages 32–41, 2004. [cited at p. 8]

[Majid 2005] A.M. Majid and David C. Keezer. An improved low-cost 6.4 Gbps wafer-

level tester. In Proceedings of the 7th Electronic Packaging Technology Confer-

ence (EPTC’05), volume 2, pages 6 pp.–, 2005. [cited at p. 55]

[Majid 2010] A.M. Majid and David C. Keezer. Stretching the limits of FPGA SerDes

for enhanced ATE performance. In Proceedings of the IEEE Design, Automa-

Bibliography 209

tion Test in Europe Conference Exhibition (DATE’10), pages 202–207, 2010.

[cited at p. 55]

[Martin 1989] Alian J. Martin. Formal Development of Programs and Proofs, chap-

ter Formal Program Transformations for VLSI Circuit Synthesis, pages 59–80.

Addision-Wesley, 1989. [cited at p. 17]

[Martin 1991] Alian J. Martin and Pieter J. Hazewindus. Testing Delay-Insensitive Cir-

cuits. In Proceedings of the University of California/Santa Cruz conference on

Advanced research in VLSI, pages 118–132. Computer Science Department,

California Institute of Technology, Pasadena, USA, MIT Press, 1991. [cited at p. 36]

[McCluskey 1963] Edward J. McCluskey. Fundamental mode and pulse mode sequen-

tial circuits. In Proceedings of the IFIP Congr. Inform. Processing, page 725,

1963. [cited at p. 30]

[McCluskey 1986] Edward J. McCluskey. Logic design principles - with emphasis on

testable semicustom circuits. Prentice Hall series in computer engineering. Pren-

tice Hall, 1986. [cited at p. 21]

[Menon 1978] Premachandran R. Menon and Stephen G. Chappell. Deductive Fault

Simulation with Functional Blocks. IEEE Transaction on Computers, vol. C-27,

no. 8, pages 689–695, August 1978. [cited at p. 35]

[Miller 1965] Raymond Edward Miller. Switching Theory Volume 2: Sequential Cir-

cuits and Machines. Wiley J., New York, 1965. [cited at p. 29]

[Muttersbach 2000] Jens Muttersbach, Thomas Villiger and Wolfgang Fichtner. Prac-

tical Design of Globally-Asynchronous Locally-Synchronous Systems. In Pro-

ceedings of the 6th International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems, ASYNC ’00, pages 52–, Washington, DC, USA,

2000. IEEE Computer Society. [cited at p. 33]

[Nielson 1997] Lars S. Nielson. Low Power Asynchronous VLSI Design. PhD thesis,

Department of Information Technology, Technical University of Denmark, 1997.

[cited at p. 10]

[Nowick 1995] Steven M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous

Controllers. Technical report, Department of Electrical Engineering and Com-

puter Science, Stanford University, December 1995. [cited at p. 31]

210 Bibliography

[Petlin 1995a] Oleg A. Petlin and Steve B. Furber. Scan Testing of Asynchronous Se-

quential Circuits. In Proceedings of the 5th Great Lakes Symposium on VLSI

(GLSVLSI’95), pages 224–229, Washington, DC, USA, 1995. Department of

Computer Science, University of Manchester, UK, IEEE Computer Society.

[cited at p. 41]

[Petlin 1995b] Oleg A. Petlin and Steve B. Furber. Scan Testing of Micropipelines. In

Steve B. Furber, editor, Proceedings of the 13th IEEE VLSI Test Symposium,

pages 296–301, Washington, DC, USA, May 1995. Department of Computer

Science, University of Manchester, UK, IEEE Computer Society. [cited at p. 37, 41]

[Petlin 1997] Oleg A. Petlin and Steve B. Furber. Built-In Self-Testing of Mi-

cropipelines. In Proceedings of the 3rd International Symposium on Advanced

Research in Asynchronous Circuits and Systems, pages 22–29. Department of

Computer Science, University of Manchester, UK, IEEE Computer Society, 7–

10 April 1997. [cited at p. 47]

[Plana 2011] Luis A. Plana, David Clark, Simon Davidson, Steve Furber, Jim Garside,

Eustace Painkras, Jeffrey Pepper, Steve Temple and John Bainbridge. SpiN-

Naker: Design and Implementation of a GALS Multicore System-on-Chip. J.

Emerg. Technol. Comput. Syst., vol. 7, no. 4, pages 17:1–17:18, December 2011.

[cited at p. 8]

[Roncken 1996] Marly Roncken and Eric Bruls. Test Quality of Asynchronous Circuits:

A Defect-oriented Evaluation. In Proceedings of the International Test Con-

ference (ITC’96), pages 205–214. Philips Research Laboratories, Eindhoven,

Netherlands, IEEE Computer Society, October 1996. [cited at p. 36]

[Roncken 2000] Marly Roncken, Ken S. Stevens, Rajesh Pendurkar, Shai Rotem and

Parimal Pal Chaudhuri. CA-BIST for asynchronous circuits: a case study on the

RAPPID asynchronous instruction length decoder. In Proceedings of the 6th

International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC’00), pages 62–72, 2000. [cited at p. 3, 47]

[Rutten 1997] J.W.J.M. Rutten and Michel R.C.M. Berkelaar. Improved state assign-

ment for burst mode finite state machines. In Proceedings of the 3rd Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Sys-

tems (ASYNCH ’97), pages 228 –239, apr 1997. [cited at p. 31]

Bibliography 211

[Schöber 2001] Volker Schöber. Der testfreundliche Entwurf asynchroner Schaltun-

gen. PhD thesis, Fachbereich Elektortechnik und Informationstechnik, Univer-

sität Hannover, Germany, June 2001. [cited at p. 41]

[Seitz 1980] Charles L. Seitz. Introduction to VLSI Systems, chapter System Timing,

pages 218–262. Addision-Wesley Publishing Company, 1980. [cited at p. 7, 18, 66]

[Semiat 2003] Yaron Semiat and Ran. Ginosar. Timing measurements of synchroniza-

tion circuits. In Proceedings of the Ninth International Symposium on Asynchro-

nous Circuits and Systems (ASYNCH ’03), pages 68 – 77, may 2003. [cited at p. 21]

[Shams 1996] Maitham Shams, Jo C. Ebergen and Mohamed I. Elmasry. A compar-

ison of CMOS implementations of an asynchronous circuits primitive: the C-

element. In Low Power Electronics and Design, 1996., International Symposium

on, pages 93–96, 1996. [cited at p. 18]

[Shang 2006] Delong Shang, Alex Yakovlev, Frank Burns, Fei Xia and Alex Bystrov.

Low-cost Online Testing of Asynchronous Handshakes. In Proceedings of the

12th IEEE European Test Symposium (ETS’06), pages 225–232, Washington,

DC, USA, May 2006. School of EECE, University of Newcastle upon Tyne, UK,

IEEE Computer Society. [cited at p. 39]

[Shi 2006] Feng Shi and Yiorgos Makris. A Transistor-Level Test Strategy for C2MOS

MOUSETRAP Asynchronous Pipelines. In Proceedings of the 12th IEEE In-

ternational Symposium on Asynchronous Circuits and Systems (ASYNCH’06),

page 57, Washington, DC, USA, March 2006. Electrical Engineering Depart-

ment, Yale University, USA, IEEE Computer Society. [cited at p. 36]

[Singh 2007] Montek Singh and Steven M. Nowick. MOUSETRAP: High-Speed

Transition-Signaling Asynchronous Pipelines. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 15, no. 6, pages 684–698, June

2007. [cited at p. 13]

[Solutions 2004] Handshake Solutions. HT-80C51 microcontroller. ARM – Device

Database, 2004. http://www.keil.com/dd/chip/3931.htm. [cited at p. 8]

[Sparsø 2001] Jens Sparsø, Steve Furber, René van Leuken, Reinder Nouta and Alexan-

der de Graaf. Principles of Asynchronous Circuit Design: A Systems Perspec-

tive. Kluwer Academic Publishers, Boston, 2001. [cited at p. 9, 12, 16, 17, 29, 30, 43, 48,

63, 109, 150]

http://www.keil.com/dd/chip/3931.htm

212 Bibliography

[Sutherland 1989] Ivan E. Sutherland. Micropipelines. Communications of the ACM,

vol. 32, no. 6, pages 720–738, June 1989. [cited at p. 8, 13]

[Tanenbaum 2007] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall,

3rd édition, 2007. [cited at p. 22]

[Taylor 2007] Samuel M. Taylor. Data-Driven Handshake Circuit Synthesis. PhD the-

sis, University of Manchester, 2007. [cited at p. 26]

[te Beest 2002] Frank te Beest, Ad Peeters, Marc Verra, Kees van Berkel and Hans

Kerkhoff. Automatic Scan Insertion and Test Generation for Asynchronous Cir-

cuits. In Proceedings of the International Test Conference (ITC ’02), pages 804–

813, Washington, DC, USA, 2002. University of Twente, MESA+ Research

Institute, Testable Design and Testing Group, Enschede, Netherlands; Philips

Research Laboratories, Eindhoven, Netherlands; Eindhoven University of Tech-

nology, Eindhoven, Netherlands, IEEE Computer Society. [cited at p. 40, 41]

[Tiempo 2008] Tiempo. Tiempo Asynchronous TAM16 Core IP, 2008. http:

//www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf?page=

uploads/Docs/Tiempo%20TAM16%20IP%20Data%20Sheet%201.2.pdf.

[cited at p. 8]

[Tiempo 2012] Tiempo. Tiempo Asynchronous Circuits System Verilog Modeling Lan-

guage. In Proceedings of the IEEE 18th International Symposium on Asyn-

chronous Circuits and Systems (ASYNC’12), volume 0, pages 105–112, Los

Alamitos, CA, USA, 2012. IEEE Computer Society. [cited at p. 25]

[Tiempo 2013] Tiempo. Cryptoprocessors cores, 2013. http://www.tiempo-ic.

com/products/ip-cores/cryptoprocessors.html. [cited at p. 8]

[Unger 1983] Stephen H. Unger. Asynchronous Sequential Switching Circuit. Krieger

Publishing Co., Inc., Melbourne, FL, USA, 1983. [cited at p. 30]

[van Berkel 1991] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs and

Frits D. Schalij. The VLSI-programming language Tangram and its transla-

tion into handshake circuits. In Proceedings European Conference on Design

Automation (EDAC), pages 384–389, Washington, DC, USA, February 1991.

Philips Research Laboratories, Eindhoven, Netherlands, IEEE Computer Soci-

ety. [cited at p. 25]

http://www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf?page=uploads/Docs/Tiempo%20TAM16%20IP%20Data%20Sheet%201.2.pdf
http://www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf?page=uploads/Docs/Tiempo%20TAM16%20IP%20Data%20Sheet%201.2.pdf
http://www.tiempo-ic.com/uploads/Docs/TAM16_Datasheet.pdf?page=uploads/Docs/Tiempo%20TAM16%20IP%20Data%20Sheet%201.2.pdf
http://www.tiempo-ic.com/products/ip-cores/cryptoprocessors.html
http://www.tiempo-ic.com/products/ip-cores/cryptoprocessors.html

Bibliography 213

[van Berkel 1993] Kees van Berkel. Handshake circuits: an asynchronous architecture

for VLSI programming. Cambridge University Press, New York, NY, USA,

1993. [cited at p. 25]

[Wang 2006] Alice Wang, Benton H. Calhoun and Anantha P. Chandrakasan. Sub-

threshold Design for Ultra Low-Power Systems (Series on Integrated Circuits

and Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[cited at p. 10]

[Wolf 2011] Christoph Wolf, Steffen Zeidler, Miloš Krstić and Rolf Kraemer. Overview

on ATE Test and Debugging Methods for Asynchronous Circuits. In 12th Inter-

national Workshop on Microprocessor Test and Verification (MTV’00), pages

16–21, December 2011. [cited at p. 4]

[Woods 1997] John V. Woods, Steve B. Furber, Jim D. Garside, Steve Temple, Paul Day

and Nigel C. Paver. AMULET1: An Asynchronous ARM Microprocessor. IEEE

Transaction on Computers, vol. 46, no. 4, pages 385–398, April 1997. [cited at p. 8]

[Yun 1992a] Kenneth Y. Yun and David L. Dill. Automatic synthesis of 3D asynchro-

nous state machines. In Digest of Technical Papers. IEEE/ACM International

Conference on Computer-Aided Design (ICCAD’92), pages 576–580, 1992.

[cited at p. 26]

[Yun 1992b] Kenneth Y. Yun, David L. Dill and Steven M. Nowick. Synthesis of 3D

Asynchronous State Machines. In Proceedings of the International Conference

of Computer Design (ICCD’92), pages 346–350. IEEE Computer Society Press,

1992. [cited at p. 31]

[Yun 1994] Kenneth Y. Yun. Synthesis Of Asynchronous Controllers For Heterogeneous

Systems. PhD thesis, Stanford University, 1994. [cited at p. 26, 31]

[Yun 1996] Kenneth Y. Yun and Ryan P. Donohue. Pausible clocking: a first step toward

heterogeneous systems. In Proceedings of the IEEE International Conference on

Computer Design: VLSI in Computers and Processors (ICCD’96), pages 118–

123. Department of Electrical & Computer Engineering, California University,

San Diego, USA, 1996. [cited at p. 8, 33]

[Yun 1999] Kenneth Y. Yun and A.E. Dooply. Pausible clocking-based heterogeneous

systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 7, no. 4, pages 482–488, 1999. [cited at p. 33]

214 Bibliography

[Zeidler 2010] Steffen Zeidler, Alexandre Bystrov, Miloš Krstić and Rolf Kraemer. On-

line testing of bundled-data asynchronous handshake protocols. In Proceed-

ings of the 16th IEEE International On-Line Test Symposium (IOLTS’10), pages

261–267, 2010. [cited at p. 39]

[Zeidler 2011] Steffen Zeidler, Christoph Wolf, Miloš Krstić, Frank Vater and Rolf

Kraemer. Design of a Test Processor for Asynchronous Chip Test. In Proceed-

ings of the IEEE Asian Test Symposium (ATS ’11), pages 244–250, November

2011. [cited at p. 5, 75, 83, 89]

[Zeidler 2012a] Steffen Zeidler, Christoph Wolf, Miloš Krstić and Rolf Kraemer. Eng:

Design of a Novel Test Processor for Functional Tests of Asynchronous Cir-

cuits; Deu: Entwurf einer neuen Testprozessorlösung für den Funktionaltest

asynchroner Schaltungen. In Proceedings of the Test und Zuverlässigkeit Work-

shop (TuZ’12), February 2012. [cited at p. 5, 75, 83, 89, 137, 164, 165, 198]

[Zeidler 2012b] Steffen Zeidler, Christoph Wolf, Miloš Krstić and Rolf Kraemer. Func-

tional Pattern Generation for Asynchronous Designs in a Test Processor Envi-

ronment. In Proceedings of the 21st IEEE Asian Test Symposium (ATS’12),

pages 296–301, November 2012. [cited at p. 5]

[Zhang 2010] Zhen Zhang. Performance Analysis of Synchronization Circuits. Mas-

ter’s thesis, School of Computer Science, University of Manchester, 2010.

[cited at p. 21]

[Zhou 2006] Jun Zhou, David J. Kinniment, Gordon Russell and Alex Yakovlev. A

Robust Synchronizer. In Proceedings of the IEEE Computer Society Annual

Symposium on Emerging VLSI Technologies and Architectures (ISVLSI’06),

pages 442–443, 2006. [cited at p. 21]

[Zhou 2011] Rong Zhou, Kwen-Siong Chong, Bah-Hwee Gwee and J.S. Chang. Quasi-

delay-insensitive compiler: Automatic synthesis of asynchronous circuits from

verilog specifications. In Proceedings of the IEEE 54th International Mid-

west Symposium on Circuits and Systems (MWSCAS’11), pages 1–4, 2011.

[cited at p. 25]

[Zivojnovic 1996] Vojin Zivojnovic, Stefan Pees and Heinrich Meyr. LISA - Machine

Description Language and Generic Machine Model for HW/SW Co-Design. In

Proceedings of the IEEE Workshop on VLSI Signal Processing, pages 127–136,

1996. [cited at p. 78]

	Contents
	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution to the State-of-the-Art
	Publications Related to this Work
	Overview of the Work

	Basics of Asynchronous Circuits and Their Testing
	Asynchronous Circuits
	Concept and History
	Synchronous versus Asynchronous Designs
	Asynchronous Handshake Protocols
	Asynchronous Channels
	Classification Based on Delay Models
	Elementary Components
	Design Issues of Asynchronous Circuits
	Modelling and Design of Asynchronous Circuits
	Typical Architectures of Asynchronous Circuits

	Testing of Asynchronous Circuits
	Fault Models
	Standard Test Methods

	The Challenge of Functional Tests of Asynchronous Designs
	Discussion of the Problem
	Alternative Solutions
	Assuming Worst-Case Behavior
	Utilization of Scan
	Utilization of Built-In Self-Test
	Utilization of Memories and FIFOs
	Eliminating Non-deterministic Behavior

	Concept for Functional Tests of Asynchronous Circuits
	Model of the Device-Under-Test
	Test Processor Concept
	Implementation Schemes
	Definition of Interfaces
	Role of the Processor Core

	Workflow
	Embedding the DUT into the Test Processor Infrastructure
	Generation of Tests

	Summary of the Concept

	Test Processor Implementation
	Design Decisions
	Hardware Implementation
	Global Architecture of NoTePAD
	Design of the Data Ports
	Design of the Handshake Ports
	Design of the Port Switch
	Architecture of the Memory Access Controller
	Architecture of the Sequencer

	Instruction Set
	Tools Related to the Processor

	Test Program Generation
	The Channel Simulation Package
	Preconsiderations
	Test Processor and Package Setup
	Procedures for Accessing the Transfer Protocol
	Model of the Handshake Protocol Type
	Channel Resources
	Signal Resources
	Miscellaneous Functions
	Implementation of the Sequence Generation Algorithm

	Mapping of a Transfer Protocol to a Processor Program
	Preconsiderations Regarding the Program Generation
	Mapping to NoTePAD Instructions
	Compiler for Generating Test Programs from Transfer Protocols

	Evaluation of the Concept
	Application of the Framework to an Asynchronous Device
	The Device-Under-Test
	Demonstrator
	Test Program Generation
	Test Results and Further Optimizations of the Generated Program

	Evaluation of the Processor Implementation
	Hardware Requirements of the FPGA Implementation
	Test Execution Properties

	A Test Scenario

	Conclusions
	Summary of the Work
	Summary of the Achievements
	Impact of the Solution
	Limitations of the Approach
	Outlook on Future Activities

	Handshake Protocol Implementations
	Protocol Converters
	Tools
	Transfer Protocol Compiler
	Memory Map Converter

	Demonstrator
	List of Figures
	List of Tables
	Listings
	Bibliography

