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OVA-based Multi-Class Classification for Data
Stream Anomaly Detection

Tino Noack, Ingo Schmitt, Sascha Saretz

Brandenburg University of Technology
Cottbus, Germany

Institute of Computer Science, Information and Media Technology
{Tino.Noack, Ingo.Schmitt, Sascha.Saretz}@tu-cottbus.de

Abstract. Mobile cyber-physical systems (MCPSs), such as the Inter-
national Space Station, are equipped with sensors which produce sensor
data streams. Continuous changes like wear and tear influence the system
states of a MCPS continually during runtime. Hence, monitoring is nec-
essary to provide reliability and to avoid critical damage. Although, the
monitoring process is limited by resource restrictions. Therefore, the fo-
cal point of the present paper is on time-efficient multi-class data stream
anomaly detection. Our contribution is bifid. First, we use a one-versus-
all classification model to combine a set of heterogeneous one-class clas-
sifiers consecutively. Such a chain of one-class classifiers provides a very
flexible structure while the administrative overhead is reasonably low.
Second, based on the classifier chain, we introduce classifier pre-selection.

1 Introduction

Mobile cyber-physical systems (MCPSs), such as the International Space Station
(ISS), are location independent and embedded into a physical environment. Me-
chanical influences (e.g. continual friction) as well as external impacts of a harsh
and uncertain physical environment (e.g. geophysical effects) can cause wear and
tear. Mostly, wear and tear leads to system state changes which can cause sud-
den changes such as crashes. On that score, monitoring MCPSs is indispensable
to ensure reliability and to avoid critical damage. The monitoring process, which
takes place on a MCPS, is often limited by resource restrictions (e.g. processing
capacity, memory or power consumption). To compensate resource restrictions
an external wireless network often connects a MCPS with external information
systems. External information systems are usually stationary parts of a MCPS.

MCPSs are equipped with sensors which produce sensor data streams [1,12].
These data streams have to be processed in an appropriate manner for monitor-
ing MCPSs. Further information about real-time monitoring are provided by [33].
Data stream processing [7, 28], which involves knowledge discovery from data
streams (KDDS) [11] as well as data stream mining [4], has received much atten-
tion in recent years. Substantial components of data stream processing are data
stream clustering, data stream classification and data stream anomaly detection.
The time-efficiency is very important for data stream processing. However, there
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exists only a little work considering time-efficient data stream anomaly detection
at the moment. Applying anomaly detection techniques in a data stream context
is necessary to monitor MCPSs; and simultaneously, to identify a large number
of system states during runtime. For that reason, the focal point of the present
paper is on time-efficient multi-class data stream anomaly detection.

1.1 Basic Notation

As depicted in Figure 1, a multi-class anomaly detection problem is based on a set
of classes (bounded regions) Ω = {ω1, ω2, ..., ωk}. These classes represent expert
knowledge about the system states of a MCPS. A vector space S [2] and the clus-
ter assumption [25] are the basic foundations. A multi-class anomaly detection
problem corresponds to the anomaly class ΩC = S\

⋃
i ωi. The anomaly class

represents the unawareness about the system states. A data stream is considered
as a continuous and almost infinite stream of unlabelled instances [1]. A vector
space S is spanned by a set of n mutually independent (orthogonal) attributes
A1, ... , An. Attribute values are functions over time T , i.e. values of Ai with
i = {1 .. n} are values of ai : T → R. We denote the time as an index. Hence, an
unlabelled instance with index t is represented as st = (at,1 at,2 ... at,n)

′∧st ∈ S.

1.2 Problem Description

The shape of the present classes can diverge widely. Hence, an approximation of
the present multi-class anomaly detection problem is required. We suggest to use
a distinct and optimized classifier for each class. Therefore, a multi-class anomaly
detection problem can be comprehended as a set of binary decisions. Each bi-
nary decision corresponds to a dichotomous classifier. A dichotomous classifier
provides two mutually exclusive decisions. It returns true if an unlabelled in-
stance was accepted and false if an unlabelled instance was not accepted. At
most one of a set of dichotomous classifiers yields true. This implies a distinct
classification result. A set of dichotomous classifiers entails two advantages in
contrast to homogeneous multi-class classification. On one hand, such a set of
classifiers usually provides a higher classification accuracy. On the other hand,
a multi-class anomaly detection problem falls apart into a set of simple binary
classification problems.

The set of dichotomous classifiers have to be combined in a sufficient man-
ner. A combination is required to solve a multi-class anomaly detection problem
under timing-constrains. We suggest a consecutive application of these dichoto-
mous classifiers. The resulting classifier chain provides a very flexible structure
while the administrative overhead is reasonably low. Moreover, we suggest to use
an one-versus-all (OVA) [13, 14, 31] multi-class classifier model. Each classifier
of an OVA-based multi-class classification model is trained between the target
class and the other classes including the anomaly class. Therefore, we suggest
the application of a set of one-class classifiers [30]. Versatile performance studies
of one-class classifiers are contributed by [5,15]. As stated in [30], each one-class
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Fig. 1. Example of a multi-class anomaly detection problem (based on [6])

classifier algorithm comprises two distinct elements. First, a distance or a re-
semblance of an instance to a class. Second, a threshold θ on this distance or
resemblance. This threshold is used to define a one-class classifier as a dichoto-
mous classifier. Further on, a chain of disjointed one-class classifiers provides a
distinct classification result for a multi-class anomaly detection problem.

To the best of our knowledge no substantial research has been conducted to
study OVA-based multi-class classification models for data stream anomaly de-
tection. Due to the consecutive application of one-class classifiers, an OVA-based
multi-class classification model becomes to a linear or sequential search problem.
Further information about sequential searching are provided by [16]. The main
disadvantages of such a chain of one-class classifiers are time-inefficiencies. How-
ever, the reduction of processing time can also help to reduce power consumption.
Therefore, our contribution is a minimization of the average processing time. A
one-class classifier entails a probability of occurrence and a processing time. The
absolute processing time depends on a specific target machine. First, we mini-
mize the expected value over the probability of occurrence in conjunction with
the processing time of the component one-class classifiers. This minimization is
intended to decreases the processing time of the classifier chain for the majority
of unlabelled instances. Second, we minimize the processing time in the worst
case scenario when an unlabelled instance has to be processed by all of the com-
ponent classifiers. Therefore, we suggest classifier pre-selection. We approximate
each one-class classifier by means of a minimal bounding hypersphere. After-
wards, the distances of an unlabelled instance to all of the hypersphere centres
can be calculated. On that score, it is possible to preselect a reduced set of can-
didate classifiers. Moreover, we use the ISS Columbus Air Loop [19,20] in a real
world case study to evaluate and assess the aforementioned suggestions.

The remaining sections of the paper are structured as follows. We discuss
related work in Section 2 and Section 3 introduces the ISS Columbus Air Loop.
Moreover, we describe the minimization of the average processing time of a
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classifier chain in Section 4 and classifier pre-selection is delineated in Section
5. We explain the experimental setup and perform the real world case study in
Section 6. Finally, we discuss the results and conclude our work in Section 7.

2 Related Work

Commonly, classification-based anomaly detection encompasses three phases:
training, assessing and classifying. Training is used to learn a classifier model
from a set of labelled training data X tr⊂S. Assessing is used to evaluate and refine
the learned model by training instances (e.g. cross validation [10]). Classifying
is used to classify unlabelled instances by the learned model. Classification-
based anomaly detection is grouped into two categories: multi-class and one-
class classification techniques. As stated in [6], multi-class classification-based
anomaly detection works mostly in a supervised manner. It presumes that the
training data X tr involve multiple classes which include the anomaly class. One-
class classification-based anomaly detection works in a semi-supervised manner.
It presumes that the training data involve only one class label [6, 30].

Normally, monitoring MCPSs requires the interaction with human experts
during the training and assessing phases. For example, the ISS Columbus Fail-
ure Management System [19, 20] dispatches the occurring data streams almost
completely (down-sampled) to an external information system (the ground sta-
tion) to provide historical data. This contrasts the widely adopted assumption
that data streams cannot be stored almost completely. Indeed, such an almost
complete storage is very expensive. But among other reasons, human experts
are responsible for related and consequent decisions. Therefore, historical data
is a prerequisite for long-term failure analysis and adequate anomaly detection.

Considering the existence of an external information system, we distinguish
between online and offline training methods for data stream anomaly detection.
Online training methods neglect the existence of external information systems
and they assume that a data stream cannot be stored completely. Furthermore,
they provide the ability for training the model; and simultaneously, for classify-
ing unlabelled instances in real-time or near real-time. For this purpose, online
training methods are applied by means of one-pass algorithms while only a small
window-based set of training instances is available. In the context of online data
stream anomaly detection, user interaction and fast algorithms are mutually ex-
clusive. Therefore, the assessment of the resulting model is often neglected by
online training methods. One reason is the absence of a reasonable number of
training instances due to windowing. Hence, the accuracy is proved insufficiently.
Besides, the verification of classifying results by human experts is very difficult.
Some online training methods require an input of labelled training instances
during runtime and at certain time intervals for model training or retraining.
The OcVFDT [18, p. 80] approach, for example, prerequisites 20% of labelled
training data during runtime. Such an online training method entails three more
drawbacks. First, the provision of labelled training data during runtime cannot
be always guaranteed and it contradicts the functioning of most of the real world
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Fig. 2. KDC - A cyclic monitoring process (based on [21,22])

applications. Second, model training or retraining during runtime expends com-
putational resources which are actually envisaged for system monitoring. Third,
training such an unassessed model during runtime can cause unforeseeable and
critical side effects for the entire monitoring process.

Due to the aforementioned drawbacks, our work focuses on offline training
methods. As depicted in Figure 2, offline training methods require an offline
subcycle and an online subcycle of a Knowledge Discovery Cycle (KDC) [21,22].
The offline subcycle is used for long-term analysis, for model training and model
assessing. Model training and model assessing are performed on an external
information system which provides much system resources. Thus, heavyweight
algorithms can be applied while historical training instances are available. There-
fore, training the model can be very time consuming while the online resources
are not adversely affected and the resulting model can be easily assessed by hu-
man experts. The trained model needs to be transferred from the offline subcycle
to the online subcycle from time to time. The online subcycle is used to apply
the trained model for data stream anomaly detection. Computational resources
of the online subcycle are exclusively used for classifying unlabelled instances by
means of the previously created model. Therefore, classifying can be very fast.
Following this, we discuss present algorithms for data stream anomaly detection.

OLINDDA [27] implements a cluster-based approach for novelty and concept
drift detection. By default, OLINDDA works in an unsupervised manner and it
uses standard clustering algorithms to identify unknown clusters. Afterwards,
the similarity to known clusters is assessed. As stated in [29, p. 1512], this
method detects new emerging concepts rather than anomalies. Thus, OLINDDA
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is not generally used for the purpose of data stream anomaly detection which
constitutes the main disadvantage of OLINDDA.

FRAHST [24] is a rank-adaptive algorithm for fast principal subspace track-
ing. It works in an unsupervised manner and it is used to identify anomalies in
streaming data of low dimensions. Therefore, the subspaces are built using di-
mensionality reduction. Observed data that cannot be sufficiently explained by
the current model is considered as anomalous. One obvious disadvantage of this
method is the loss of information during dimensionality reduction. Moreover, it
does not provide the ability to distinguish between heterogeneous classes.

A method which uses ensembles of streaming half-space trees (HS-Trees) is
described in [29]. A HS-Tree is a binary tree while each node is used to capture
a number of data elements within a particular subspace of the data stream. The
HS-Trees method is a fast one-class anomaly detector for evolving data streams.
As stated in [29, p. 1511], the HS-Trees approach requires only ’normal’ data,
which excludes the anomaly class, to retrain the model. The model is retrained
continuously at the end of each window. The main disadvantage of the proposed
method is the paraxial separation of the subspaces. Hence, the anomaly detection
task becomes ambiguous when the subspaces are not paraxially separable.

A very fast decision tree for one-class classification of data streams (OcVFDT)
is described in [18]. This OcVFDT approach is an extension of the very fast
decision tree (VFDT) [9]. During the training phase, the OcVFDT algorithm
constructs a tree forest and then the best tree is chosen as final output classifier.
As stated in [18, p. 80], OcVFDT presupposes approximately 20% of labelled
training instances during runtime to retrain the classification model. The pro-
posed method contains two disadvantages. First, it uses discrete attribute val-
ues. Hence, it is not widely applicable. Second, the computational effort of this
method depends on the selected one-class classification algorithm. Thus, train-
ing a tree forest as well as the classification of unlabelled instances can be very
time-consuming when a complex one-class classifier has been chosen.

We analysed four data stream anomaly detection methods. The assessment
and the evaluation of the resulting model by human experts is neglected by all
of the analysed methods. Therefore, training a solid model, which is based on
long-term historical data, is not sufficiently considered by the analysed methods.
Considering these disadvantages, our contribution is the adjustment of an offline
training method, in particular OVA-based multi-class classification, for anomaly
detection to the demands of data streams under timing constrains.

3 Example - ISS Columbus Air Loop

The ISS Columbus Module [19,20] is a MCPS and it comprises an air loop. The
ISS Columbus Air Loop is part of the life support system. The ISS Columbus
Failure Management System is responsible for crew health and for detecting time
critical failures. The ISS Columbus Air Loop is monitored by the failure manage-
ment system. The air loop consists of fan assemblies which provide air circulation
in the ISS Columbus Module. Moreover, the fan assemblies are responsible for
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Fig. 3. IRFA training data and seven classes

air exchange between the ISS Columbus Module and the ISS. Amongst others,
air circulation is required for air revitalization, for air conditioning, for smoke
or fire detection and for avoiding dead air pockets. The ISS Columbus air loop
contains an Inter Module Ventilation Return Fan Assembly (IRFA). The IRFA
is monitored by different sensors. For the sake of simplicity, we focus on three
sensor attributes. This includes speed, current and pressure. The speed relates
to the rotating speed of the fan assembly and the unit of measurement is 1/min.
The current relates to the electrical input current of the IRFA and the unit of
measurement is A. The pressure relates to the pressure head that is generated
by the IRFA and the unit of measurement is kPa. Figure 3 depicts the train-
ing data which was previously clustered by human experts. The training data
comprise seven classes Ω = {ω1, ω2, ..., ω7}. Each class refers to a specific system
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state of the IRFA. The class ω1, for example, relates to a faulty system state
while the speed of the IRFA is unusually increased. The class ω5, for example,
refers to a default system state while the IRFA works as expected. The class ω7,
for example, describes a system state while the IRFA has been switched off. The
values in the parentheses denote the number of instances.

4 Minimizing the Time Consumption in Average

Figure 4 depicts a consecutive chain of a set of one-class classifiers occ(i). Each
one-class classifier is a dichotomous classifier. Moreover, each one-class classi-
fier provides a binary decision (true or false) due to the provided threshold θ.
True implies that an unlabelled instance was accepted by a classifier and false
implies the opposite. We define the applied one-class classifiers as disjoint to
avoid ambiguous classification results. Therefore, the combination of these mu-
tually exclusive classifiers leads to a distinct classification result. The consecutive
chain of one-class classifiers refers to OVA-based multi-class classification while
the classifiers are combined by means of binary decisions. The applied one-class
classifiers can be rearranged into k! many different permutations π.

The termination condition of such an OVA-based multi-class classifier model
entails two possibilities. First, the algorithm terminates when an unlabelled in-
stance was accepted by a classifier. Second, the algorithm terminates when all
of the component one-class classifiers fail. The worst case scenario relates to a
case when an unlabelled instance has to be processed by all of the component
one-class classifiers. Each one-class classifier entails a processing time t(i). The
bracketed indexes refer to a permutation. Amongst others, Bifet et al. established
a requirement for data stream environments which states: “Process an example
[an unlabelled instance] at a time, and inspect it only once (at most)” [3, p.
1601]. In conformity with this statement, the processing time of a one-class clas-
sifier refers to the classification of one unlabelled instance at a time. The main
purpose is the minimization of the overall processing time which is consumed by
an OVA-based multi-class classifier model to solve a multi-class anomaly detec-
tion problem. Hence, it is intended to reach the termination condition as fast as
possible for the majority of the unlabelled instances in average.

Under consideration of a set of training data X tr it is possible to estimate
the probabilities of occurrence for each class pi, where p1 + p2 + · · · + pk = 1.
These probabilities can be assigned to the corresponding classifiers.

pi =
| {st ∈ X tr ∧ st ∈ ωi} |

|X tr|
(1)

Based on these estimates it is possible to select a permutation from the set
of all permutations such that the termination condition is reached as early as
possible for the majority of the unlabelled instances. According to [16, p. 399],
this can be achieved when the one-class classifiers are sorted descending by the
estimated probabilities.

p1 ≥ p2 ≥ · · · ≥ pk (2)
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Fig. 4. One-versus-all multi-class classifier chain

The main disadvantage is that the processing time was not taken into ac-
count. Therefore, we suggest to consider the probability of occurrence as product
with the processing time. Because of the consecutive chain of the one-class classi-
fiers, the processing time t̃(i) of a classifier is the sum of the previously executed
classifiers. This refers to the expected value µπ of a permutation π.

t̃(i) =

i∑
m=1

t(m), µπl
=

k∑
m=1

p(m) · t̃(m) (3)

The permutation with the minimal expected value provides the minimal av-
erage processing time. The empirical calculation of the minimal expected value
represents a feasible solution. However, this solution is very expensive due to
the calculation of k! many permutations. Therefore, we introduce the following
theorem which is based on [26] and [16, p. 404].

Theorem 1. Let p(i), t(i) and t̃(i) be as defined above. The arrangement of the
one-class classifiers in an OVA-based multi-class classification model is optimal
if and only if

p(1)

t(1)
≥
p(2)

t(2)
≥ · · · ≥

p(k)

t(k)
. (4)

In other words, the minimal expected value over all permutations π provides the
minimal average processing time if and only if (4) holds.

Proof. Suppose that p(i) · t̃(i) and p(i+1) · t̃(i+1) are interchanged. On that score,
a permutation changes from

· · ·+ p(i) · t̃(i) + p(i+1) · t̃(i+1) + · · · (5)

to
· · ·+ p(i+1) · (t̃(i+1) − t(i)) + p(i) · t̃(i+1) + · · · . (6)

This results in a change of the expected processing time by p(i+1) · t(i)−p(i) ·
t(i+1). Therefore under the given assumptions, it follows that the change from
(5) to (6) increases the processing time. Consequently, the permutation (6) is
not optimal and (4) holds for any optimal permutation.

According to [16, p. 404], we showed that the permutation which provides the
minimal expected value is locally optimal and that adjacent interchanges lead to
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no further improvements. Moreover, it is necessary to show that the permutation
is globally optimal. As stated in [16, p. 404], we consider two proofs. The first
proof uses computer science and the second proof uses a mathematical trick.
Finally, we consider three special cases.

First proof. Assume that (4) holds and consider that the one-class classi-
fiers are sorted as follows occ(1), occ(2), ..., occ(k). Such an arrangement can be
achieved by using a sequence of interchanges such that each interchange replaces
..., occ(j), occ(i), ... by ..., occ(i), occ(j), ... for some i < j. This decreases the over-
all processing time in average by the non-negative amount p(i) · t(j) − p(j) · t(i).
Thus, the permutation which provides the minimal expected value also provides
the minimal average processing time.

Second proof. In accordance with [16, p. 404], replace each probability p(i) by

p(i)(ε) = p(i) + εi − (ε1 + ε2 + · · ·+ εk)/k, (7)

where ε is a really small positive number. In the case that ε is sufficiently small
we can exclude x1px1(ε) + · · · + xkpxk(ε) = y1py1(ε) + · · · + ykpyk(ε) unless
x1 = y1, ..., xk = yk ∧ px1(ε) = py1(ε), ..., pxk(ε) = pyk(ε). Therefore, (4) will
not hold if the processing times of all one-class classifiers are equal and the
probabilities of occurrence of all one-class classifiers are equally distributed as
well. This contrasts the proof of [16, p. 404]. The proof of [16, p. 404] demands the
inequality of only one parameter x1 6= y1, ..., xk 6= yk. On that score, the proof
of [16, p. 404] neglects the interchanging of the probabilities of each permutation.
This contradicts the fundamental assumption [16, p. 399] while (2) holds.

Under consideration of all k! permutations of the component one-class classi-
fiers, we know that there exist at least one permutation which satisfies (4) due to
the exclusion of equality of both parameters (processing time and probability of
occurrence). Hence, (4) uniquely determines the permutation with the minimal
expected value for the probabilities pi(ε) if ε is sufficiently small. By continuity,
this also holds if ε is set equal to zero. Following, we consider three special cases.

(a.) Special case one. The first special case takes into account that the pro-
cessing times of all component one-class classifiers are equal t(1) = t(2) = · · · =
t(k). Therefore, the processing time can be reduced while (2) and (4) hold. Hence,
the one-class classifiers are arranged in descending order by the probabilities.
This refers to the basic assumption of [16, p. 399] while (2) holds.

(b.) Special case two. The second special case takes into account that the
probabilities of occurrence are equally distributed p(1) = p(2) = · · · = p(k).
Therefore, the probabilities can be reduced and (4) holds. Thus, the one-class
classifiers are arranged in ascending order by the processing times.

(b.) Special case three. The third special case refers to both previous special
cases while the processing times are equal and the probabilities of occurrence are
equally distributed as well. Hence, the expected values of all permutations are
equal and it exists no permutation with minimal expected value as claimed by
the theorem. Hence, the theorem does not hold for equality of both parameters.

ut
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5 Classifier Pre-Selection

The application of an OVA-based multi-class classification model for data stream
anomaly detection leads to a chain of one-class classifiers. The previous section
discusses the minimization of the processing time for the majority of unlabelled
instances. Although the worst case scenario, when all component one-class clas-
sifiers have to be processed, is still remaining. The chain of one-class classifiers
provides a very flexible structure and it can be used to take further advantages
of it. The main idea of the suggested classifier pre-selection is the extraction of
a set of candidate classifiers such that the processing time can be further de-
creased. Therefore, we suggest to approximate each one-class classifier with an
additional classifier. This leads to an ensemble of two classifiers for each class.
Ensembles of classifiers are aimed to create more accurate classification decisions
by combining classifiers for a given classification problem at the expense of in-
creased complexity [8, 11, 17]. However, we use an ensemble of two classifiers to
reduce the processing time by classifier pre-selection.

As depicted in Figure 5, we suggest to use a minimal bounding hypersphere
hi to represent this additional classifier. Each hypersphere bounds the corre-
sponding one-class classifier minimally. Moreover, each hypersphere provides a
centre ci and a radius ri. In contrast to all other geometrical descriptions, a
hypersphere provides a material advantage. The distance of an unlabelled in-
stance to the centre of a hypersphere is independent from the position of the
unlabelled instance to the hypersphere. Contrary to the one-class classifiers, the
hyperspheres must not be disjoint. If an unlabelled instance st needs to be clas-
sified, the distances to all of the centres of the hyperspheres di(st, ci) have to
be calculated. A one-class classifier is a candidate if the distance of an unla-
belled instance to the centre is below the radius of the bounding hypersphere
di(st, ci) ≤ ri. The resulting set of candidate classifiers is still in an optimal
arrangement while the remaining classifiers can be excepted.

We assume that the calculation of the distances is less time consuming than
the calculation of all component one-class classifiers. This assumption holds for
use cases when the number of classes is relatively low and the processing time of
the one-class classifiers is relatively high. However, when the number of one-class
classifiers increases, the calculation of the distances increases as well. On that
score, we suggest to use the triangle inequality to approximate the distance of an
unlabelled instance to a class. This decreases the processing time additionally.

6 Experiments

At the beginning, this section describes the experimental setup. Further on, we
present the minimization of the time consumption in average and classifier pre-
selection. Finally, we compare our suggestions with the HS-Tree approach [29].
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6.1 Experimental Setup

As depicted in Figure 6, our implementation provides an offline subcycle and
an online subcycle which are based on the KDC [21, 22]. The offline subcycle is
represented by a client and the online subcycle is represented by a server. The
client and the server are weakly coupled whereas the communication takes place
by means of an external network. The offline subcycle is used to train the clas-
sification model. The training instances are stored in a database (PostgreSQL).
Preprocessing, clustering and model training can be realized by means of data
mining tools such as Matlab or specific implementations (e.g. Java-based imple-
mentations). Thereafter the trained models are stored into a database as well.
The communication between the client and the server is implemented my means
of a protocol. The client provides a Java-based implementation to retrieve the
trained models from the database and to register these models onto the server by
means of the protocol. Moreover, the client provides the functionality to generate
a data stream. Therefore, unlabelled instances are retrieved from the database
and sent to the server using the implemented protocol as well. We used an off-
the-shelf computer system (Intel Core i3 with 2.26 GHz and 4 GB memory) for
the client.

The server provides the counterpart of the protocol implementation. When
the server was started it awaits the handshake with a client. If the communica-
tion has been established the server waits for the registration of a data stream,
scheduler and anomaly detection algorithms. The scheduler is used to manage
the registered anomaly detection algorithms. Finally, when all necessary parts
have been registered, the server awaits the initialization of the data stream. The
anomaly detection algorithms produce a result for each incoming unlabelled in-
stance. These results are stored into result sets. These result sets are sent to
the client by means of the protocol. The retrieved result sets are stored into the
data base as well. The server is implemented by means of Java and we used the
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Raspberry Pi [23] as target machine which provides a low budget ARM processor
(700 MHz with 512 MB memory).

Online subcycle
Mobile cyber-physical 

system

Offline subcycle
External information

system

External network

Server
Anomaly detection

Protocol

Protocol

Off-the-shelf computer system

Low budget ARM processor
Raspberry Pi

Client
Model training

- Matlab (DDTools)
- PostgreSQL

Fig. 6. Prototypical implementation

6.2 Average Time Consumption and Classifier Pre-Selection

According to the aforementioned example, we trained a one-class classifier per
class. This includes two Gaussian one-class classifiers, two nearest neighbour
(NN) one-class classifiers, a k-centres one-class classifier and two support vector
domain description (SVDD) one-class classifiers. Table 1 summarizes the clas-
sifier labels and the processing time of each one-class classifier. The one-class
classifiers were trained by means of Matlab and the DDtools toolbox [32]. The
resulting one-class classifiers were also evaluated by means of a 10-fold cross
validation. We determined the processing times in average of the component
one-class classifiers empirically (wall-clock time). As presented in Table 1, the
processing times of the Gaussian one-class classifiers are almost the same. The
processing times of the NN one-class classifiers or the SVDD one-class classifiers
differ significantly. The processing time of a NN one-class classifier increases with
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the number of training instances. The processing time of the SVDD one-class
classifier increases with the number of selected support vectors.

Table 1. Classifier labels and processing times

Label occ1 occ2 occ3 occ4 occ5 occ6 occ7

Classifier Gaussian NN k-centres NN SVDD SVDD Gaussian

t(i) in ms 0.411 3.773 1.703 10.618 3.198 2.113 0.436

We selected two permutations. Permutation π1 represents the minimized av-
erage processing time while permutation π2 is randomly selected. Moreover, we
used two data sets. The first data set X test1 represents the aforementioned classes
with a percentage distribution of the training instances without anomalies. The
second data set X test2 extends the first data set with anomalies. As presented in
Table 2, the empirical values are higher than the calculated values due to the ad-
ministrative overhead. Furthermore, the values are higher when the second data
set was used. The reason for this is that the worst case scenario has occurred
more often due to the existence of anomalies. Table 2 shows that the processing
time of permutation π1 is under the processing time of permutation π2. This
underscores the aforementioned theorem (Section 4) empirically.

Table 2. Average time consumption

Permutation Arrangement µπl in ms X test
1 in ms X test

2 in ms

π1 ω7, ω5, ω1, ω6, ω3, ω4, ω2 3.58 6.14 7.88

π2 ω4, ω5, ω7, ω6, ω1, ω3, ω2 14.39 17.31 18.26

Further on, we used the classifier pre-selection to further decrease the process-
ing time in the worst case scenario. Therefore, we calculated the distances from
the unlabelled instances to the centres of the hyperspheres directly. However,
the triangle inequality could be used to decrease the processing time addition-
ally. Table 3 summarizes the results under consideration of the aforementioned
permutations π1 and π2 as well as the data sets X test1 and X test2 . As can be seen,
the classifier pre-selection decreases the processing time in each of the cases
while the empirically calculated values are approaching each other. We assumed
a major difference between both values of π1 and π2 for the second data set
due to the minimization of the average processing time. We expected that the
classifier pre-selection, as extension of the OVA-based multi-class classification
model, decreases the processing time additionally. Although in the given data
set, the hyperspheres does not intersect. On that score, the arrangement of the
one-class classifiers is not evident. We assume that the optimal arrangement
becomes more effective if the hyperspheres would intersect.
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Table 3. Classifier pre-selection

Permutation Arrangement µπl in ms X test
1 in ms X test

2 in ms

π1 ω7, ω5, ω1, ω6, ω3, ω4, ω2 3.58 6.09 6.02

π2 ω4, ω5, ω7, ω6, ω1, ω3, ω2 14.39 6.37 6.22

6.3 Comparison with the HS-Tree Approach

A comparison between both approaches is very difficult and we are obliged to
provide a fair comparison. Therefore, we initially summarize some differences be-
tween both approaches. Our approach is an offline training method and it takes
advantages of the existence of external information systems. The classification
model can be retrained during runtime while the online resources are not ad-
versely affected. Therefore, the retrained model has to be transmitted from time
to time to the online subcycle. The OVA-based multi-class classification model
provides a very flexible structure while each class can be bounded by means of an
optimized classifier. Hence, the time consumption depends on the selected one-
class classifiers. Conversely, the HS-Tree approach is an online training method
without any further transmission of the model. The HS-Tree approach intersects
the state space by means of hyperplanes. Thus, classification results could be
ambiguous if the classes are not paraxially separable.

However, the publication [29] claims two contrary statements. First [29, p.
1511], the HS-Tree ”... requires only normal data for training [...] The model
features an ensemble of random HS-Trees, and the tree structure is constructed
without any data.”. Second [29, p. 1513], ”Once HS-Trees are constructed, mass
profile of normal data must be recorded in the trees before they can be em-
ployed for anomaly detection.“. Therefore, the HS-Tree approach is initially an
offline training method while historical data can be used for training. It would
be very negligent in some application domains to apply such an untrained and
unassessed anomaly detecting model. On that score, we used the HS-Tree imple-
mentation as an offline training method while the model is online adaptive. This
indicates another disadvantage of the HS-Tree. The HS-Tree is really big and
many data needs to be transferred to the online subcycle which expenses a lot
system resources (e.g. data path and time). Table 4 summarizes the processing
times of the HS-Tree. The ensemble uses three trees for training. As can be seen,
the processing time is approximately one millisecond smaller than our approach.

Table 4. HS-Tree classification time

X test
1 in ms X test

2 in ms

5.08 5.34
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7 Conclusion

The time-efficiency is very important for data stream processing and especially
for data stream anomaly detection under resource restrictions. We suggest an
OVA-based multi-class classification model for data stream anomaly detection.
Moreover, we introduced classifier pre-selection as an extension of the OVA-
based multi-class classification. We performed a real world case study and the
results are very promising. The results show that the average processing time
can reduced due to the selection of an optimized arrangement of the component
one-class classifiers. The processing time can be further decreased by the use of
classifier pre-selection. We compared our suggestions with the HS-Tree approach.
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