
Computational Steering of
Multi-Scale Biochemical Networks

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

M.Sc. Computer Science
Mostafa Herajy

geboren am 17. 11. 1980 in Aswan, Ägypten

Gutachter: Prof. Dr.-Ing. Monika Heiner

Gutachter: Prof. Dr. rer. nat. habil. Wolfgang Marwan

Gutachter: Prof. Dr. Beih S. El Desouky

Tag der mündlichen Prüfung: 29.01.2013

Eidesstattliche Erklärung

Hiermit erkläre ich Eides statt, dass ich die vorliegende Arbeit selbständig verfasst
und angefertigt habe, nur die angegebenen Quellen und Hilfsmittel und keine anderen
benutzt bzw. verwendet habe und die wörtlich oder inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Die Veröffentlichung der Dissertation verletzt keine
bestehenden Schutzrechte.

Mostafa Herajy

iii

Acknowledgements

Unlike the other parts of this thesis, words cannot express what I would like to say
in this section. My feeling towards the persons who contributed to my education and
my life until I have reached this moment is much more than just saying thank you to
them. However, I will try to do it.

First of all I would like to express my sincere acknowledgement to my supervisor Prof.
Dr.-Ing Monika Heiner for giving me this research opportunity and for her support and
advice during this work.

I would like to thank Prof. Dr. rer. nat. habil. Wolfgang Marwan and Prof. Dr. Beih
El Desouky for their careful reviews and valuable comments. I also thank all the other
members in my defence committee.

Next, I am very grateful to all members in the Data Structure and Software De-
pendability Chair for their daily help, assistance and discussions, including Mrs Sigrid
Schenk, Christian Rohr, Martin Schwarick, and my former office-mate Fei Liu. Special
thank goes to Mary Ann Blätke from the Magdeburg group.

Further, my warmest thanks belong to my family for their support, particularly, my
wife and my daughter Amany. I am grateful to all the other people and friends who
helped me during this work.

I should also like to thanks BTU and the institute of computer science for providing
me with all the required facilities for conducting this research.
Last but not least, I would like to acknowledge the financial support of the GERLS

(German Egyptian Research Long Term Scholarships) program, which is administered
by the DAAD in close cooperation with the MHESR (Ministry of Higher Education
and Scientific Research) and German universities.

All praise and thanks be to Allah

Cottbus, den 29.01.2013
Mostafa

iv

Abstract

Computational steering is an interactive remote control of a long running application.
The user can adopt it to adjust the simulation parameters on the fly. Correspond-
ingly, simulation of large scale biochemical networks is computationally expensive,
particularly stochastic and hybrid simulation. Such extremely intensive computations
necessitate an interactive mechanism to permit users to try different paths and ask
simultaneously "what-if" questions while the simulation is in progress.
Furthermore, with the progress of computational modelling and the simulation of

biochemical networks, there is a need to manage multi-scale models, which may con-
tain species or reactions at different scales (called also stiff systems). In this context,
Petri nets are of considerable importance in the modelling and analysis of biochemical
networks, since they provide an intuitive visual representation of reaction networks.
The contributions of this thesis are twofold: firstly, we introduce the definition and

present simulation algorithms of Generalised Hybrid Petri Nets (GHPN bio) to repre-
sent and simulate stiff biochemical networks where fast reactions are represented and
simulated continuously, while slow reactions are carried out stochastically. GHPN bio

provide rich modelling and simulation functionalities by combining all features of Con-
tinuous Petri Nets (CPN) and Extended Stochastic Petri Nets (XSPN), including
three types of deterministic transitions. Moreover, the partitioning of the reaction net-
works can either be done off-line before the simulation starts or on-line while the
simulation is in progress.
Secondly, we introduce a novel framework which combines Petri nets and compu-

tational steering for the representation and interactive simulation of biochemical net-
works. The main merits of the framework proposed in this thesis are: the tight coupling
of simulation and visualisation, distributed; collaborative; and interactive simulation,
and intuitive representation of biochemical networks by means of Petri nets.
Generalised hybrid Petri nets and computational steering will together provide an

invaluable tool for systems biologists to help them to obtain a deeper system level un-
derstanding. GHPN bio speed up the simulation and simultaneously preserve accuracy,
while computational steering enables users of different background to share, collabo-
rate and interactively simulate biochemical models. Finally, the implementation of the
proposed framework is given as part of Snoopy - a tool to design and animate/simulate
hierarchical graphs, among them qualitative, stochastic, continuous and hybrid Petri
nets.
Keywords Systems Biology; Computational Steering; Interactive Simulation; Gen-

eralised Hybrid Petri Nets; Hybrid Modelling of Biochemical Networks; Static and
Dynamic Partitioning

v

Zusammenfassung

Computational Steering ist eine interaktive Fernsteuerung von Applikationen mit langer
Laufzeit. Der Nutzer kann sie einsetzen, um Paramater "on-the-fly" einzustellen. Die
stochastische und hybride Simulation von biochemischer Netzwerk ist sehr recheninten-
siv. Derart aufwendige Berechnungen erfordern interaktive Techniken, die es Nutzern
ermöglichen, unterschiedliche Ausführungen während der Berechung zu testen.
Durch die rasant fortschreitende Entwicklung der rechnergestützten Modellierung

und Simulation biochemischer Netzwerke besteht zunehmender Bedarf, Modelle, in
denen Substanzen und Reaktionen unterschiedlicher Skalierung (multi-scale models)
auftreten, zu verwalten. Dabei sind Petrinetze von besonderer Bedeutung, da sie eine
sehr intuitive visuelle Darstellung von Reaktionsnetzwerken erlauben.
Die vorliegende Arbeit liefert folgenden Beitrag: Zunächst werden verallgemein-

erte hybride Petrinetze (GHPN bio) und deren Simulation vorgestellt, um sogenannte
"steife" (engl. stiff) biochemische Netzwerke zu modellieren und zu simulieren. Schnelle
Reaktionen werden dabei kontinuierlich behandelt, langsame Reaktionen dagegen wer-
den stochastisch behandelt. Durch die Kombination der Eigenschaft von kontinuier-
lichen Petrinetzen (CPN) und erweiterten stochastischen Petrinetzen (XSPN) bi-
eten GHPN bio ein hohes Maßen Ausdruckstärke hinsichtlich Modellierung und Simu-
lation. Die Zuordnung der Transitionen zu kontinuierlichen oder stochastischen (Pari-
tionierung) kann dabei sowohl statische als auch dynamisch während der Simulation
vorgenommen werden.
Daräberhinaus wird ein neues Framework vorgestellt, das Petrinetze und Computa-

tional Steering zum Zweck der Darstellung und interaktiven Simulation biochemischer
Netzwerke zusammenfährt. Die wesentlichen Besonderheiten sind: die enge Kopplung
zwischen Simulation und Visualisierung, die verteilte; kooperative; und die interaktive
Simulation und die intuitive Repräsentation biochemischer Netze.
Zusammen stellen verallgemeinerte hybride Petrinetze und Computational Steering

für Systembiologen ein nützliches Werkzeug dar, das helfen kann, komplexe Zusammen-
hänge auf Systemebene zu verstehen. GHPN bio können dazu verwendet werden, die
Simulation biochemischer Netze ohne Genauigkeitsverlust zu beschleunigen. Compu-
tational Steering erlaubt es Benutzern mit unterschiedlichem fachlichen Hintergrund
biochemische Modelle gemeinsam zu bearbeiten und zu simulieren. Das vorgeschla-
gende Framework wurde in unserem Modellierungswerkzeug Snoopy implementiert.

Freie Schlagwörter Systembiologie; Computational Steering; interaktiven Sim-
ulation; verallgemeinerte hybride Petrinetze; hybride Modellieren von biochemischer
Netzen

vi

Contents

Abstract v

Zusammenfassung vi

1 Introduction 1
1.1 Overview . 1
1.2 Motivations . 3
1.3 Objectives . 5
1.4 Thesis Outline . 6

2 Computational Steering: an Interactive Simulation Technique 9
2.1 Introduction . 9
2.2 Batch versus Interactive Simulation . 11

2.2.1 Interactive Visualisation . 11
2.2.2 Computational Steering . 12

2.3 Approaches . 15
2.3.1 Program Annotation . 15
2.3.2 Redesigning the Simulation Application 16
2.3.3 Steering by Scripting . 16
2.3.4 High-level Abstractions . 17
2.3.5 Selecting the Appropriate Approach 17

2.4 Tasks . 19
2.4.1 Model Exploration . 19
2.4.2 Algorithm Experimentation . 19
2.4.3 Performance Optimisation . 19

2.5 Software . 20
2.5.1 CUMULVS . 21
2.5.2 CSE . 21
2.5.3 DISCOVER . 22
2.5.4 POSSE . 23
2.5.5 RealityGrid . 23
2.5.6 SCIRun . 24
2.5.7 Magellan . 24
2.5.8 STEEL . 25

vii

Contents

2.5.9 EPSN . 25
2.5.10 Others . 26

2.6 Challenges . 26
2.6.1 Performance of Computational Steering System 26
2.6.2 Steering of Parallel and Distributed Applications 27
2.6.3 Application Consistency . 28

2.7 Closing Remarks . 28

3 Simulation Approaches of Biochemical Networks 29
3.1 Introduction . 29
3.2 Preliminaries . 30
3.3 Deterministic Approach . 31

3.3.1 Types of ODE Solvers . 32
3.3.2 Problem of the Deterministic Approach 34

3.4 Stochastic Approach . 34
3.4.1 Chemical Master Equation . 35
3.4.2 Direct Method . 36
3.4.3 First Reaction Method . 37
3.4.4 Next Reaction Method . 37
3.4.5 Tau-leaping Method . 39
3.4.6 Others . 41

3.5 Hybrid Approach . 42
3.5.1 Reaction Partitioning . 42
3.5.2 Simulator Synchronisation . 44

3.6 Petri Nets . 46
3.6.1 Stochastic Petri Nets . 49
3.6.2 Continuous Petri Nets . 51
3.6.3 Hybrid Petri Nets . 53
3.6.4 High-Level Petri Nets . 55

3.7 Closing Remarks . 56

4 Generalised Hybrid Petri Nets 57
4.1 Introduction . 57
4.2 Generalised Hybrid Petri Nets . 58

4.2.1 Modelling . 58
4.2.2 Formal Definition . 63
4.2.3 Semantics . 65
4.2.4 Generation of the Corresponding ODEs 67
4.2.5 Marking-dependent Arc Weights 68
4.2.6 Conflict Resolution . 71

4.3 Simulation of GHPN . 74

viii

Contents

4.3.1 Simulation of Statically Partitioned GHPNbio 74
4.3.2 Transition Partitioning . 77

4.4 Implementation Aspects . 79
4.4.1 Stochastic Simulation Algorithm 80
4.4.2 Selecting an Appropriate ODE Solver 80
4.4.3 Detecting Discrete Events . 81

4.5 SPN, CPN and GHPN: the Big Picture 81
4.6 Comparison with Other Hybrid Petri Net Tools 83
4.7 Examples . 83

4.7.1 Break-Repair Model . 85
4.7.2 Goutsias Model . 85

4.8 Conclusions . 89

5 A Computational Steering Framework 91
5.1 Introduction . 91
5.2 Requirements and Characteristics . 92
5.3 Framework . 93

5.3.1 Overview . 93
5.3.2 Steering Server . 95
5.3.3 Graphical User Interface . 97
5.3.4 Application Programming Interface 98
5.3.5 Simulators . 101

5.4 Backtracking . 103
5.5 Steering Algorithms for Simulation of Biochemical Networks 103

5.5.1 What Could Be Steered . 105
5.5.2 Deterministic Simulation . 106
5.5.3 Stochastic Simulation . 107
5.5.4 Hybrid Simulation . 108

5.6 Implementation Issues . 109
5.6.1 Model Synchronisation . 109
5.6.2 Sockets and Threads . 110
5.6.3 Communicating Model Specification 111
5.6.4 Communicating Output Matrix 111

5.7 Comparison . 113
5.8 Conclusions . 114

6 Case Studies 115
6.1 The T7 Phage Model . 116

6.1.1 Slow and Fast Reactions . 118
6.1.2 Simulation Results . 118

6.2 The Eukaryotic Cell Cycle . 119

ix

Contents

6.2.1 Related Work . 122
6.2.2 The Model . 123
6.2.3 Decision to Perform Division . 126
6.2.4 Cell Division and Marking-dependent Arc Weights 126
6.2.5 Transition Partitioning . 126
6.2.6 Simulation Results . 128

6.3 Circadian Oscillation . 129
6.3.1 Model Overview . 132
6.3.2 Simulation Results . 133
6.3.3 Online Steering of the Model Parameters 135
6.3.4 Coloured Model . 136

6.4 Discussion . 138
6.5 Conclusions . 140

7 Conclusions and Future Work 141
7.1 Conclusions . 141

7.1.1 Generalised Hybrid Petri Nets . 141
7.1.2 Computational Steering Framework 142
7.1.3 Case Studies . 142

7.2 Outlook . 143
7.2.1 Extending Generalised Hybrid Petri Nets 143
7.2.2 Extending the Computational Steering Framework 145

Bibliography 147

x

List of Figures

2.1 Traditional batch simulation approach 12
2.2 Visualisation pipeline . 13
2.3 Computational steering framework . 14

3.1 Petri net representation of a simple enzyme-catalyzed reaction 47
3.2 Examples of extended arcs . 51
3.3 Stochastic simulation results of the enzyme-catalysed reaction 52
3.4 Continuous simulation results of the enzyme-catalysed reaction 53
3.5 Hybrid Petri net representation of the water tank model 54

4.1 Graphical representation of GHPN’s elements 61
4.2 An example of a stiff biochemical network 62
4.3 Possible connections between GHPN elements 62
4.4 Extended arc semantics . 63
4.5 Example of ODEs generation of GHPN without extended arcs 69
4.6 Example of ODEs generation of GHPN with a read arc 69
4.7 Example of ODEs generation of GHPN with read and inhibitor arcs . . 70
4.8 Example of ODEs generation of GHPN with a modifier arc 70
4.9 Marking-dependent weight illustrated by a simple biological example . . 72
4.10 Conflict between continuous transitions 73
4.11 Generalised hybrid Petri net representation of T7 phage model 75
4.12 Relationship between SPN, CPN, and GHPN 82
4.13 Generalised hybrid Petri net representation of the break-repair model . . 86
4.14 Simulation results of the break-repair model 86
4.15 Generalised hybrid Petri net of the Goutsias model 87
4.16 Stochastic, and hybrid simulation results of Goutsias model 88

5.1 Snoopy’s computational steering framework 94
5.2 Snoopy’s steering GUI . 98
5.3 Graphical illustration of a typical application scenario of Snoopy’s steer-

ing framework . 99
5.4 Inheritance diagram of Snoopy’s steering API (SPSA) 100
5.5 Summary of the different simulation approaches 102
5.6 Inheritance diagram of simulators supported in Snoopy 104

xi

List of Figures

5.7 Example of a simple coloured Petri nets 112

6.1 Continuous simulation results of the T7 phage model 117
6.2 Comparison of the T7 phage model’s reaction rates 118
6.3 Continuous, stochastic, and hybrid simulation results of T7 phage model 120
6.4 Graphical illustration of the cell cycle regulation 121
6.5 A continuous Petri net representation of Tyson-Novak model 122
6.6 Generalised hybrid Petri net representation of the eukaryotic cell cycle . 125
6.7 Generalised hybrid Petri net representation of the division process of

the eukaryotic cell cycle . 127
6.8 Graphical illustration of when a cell divides 127
6.9 Example of different transition firing rates 128
6.10 Time course result of Y . 130
6.11 Time course result of mRNAx . 130
6.12 Time course result of mRNAz . 131
6.13 Continuous and hybrid simulation results of the cellular volume 131
6.14 Generalised hybrid Petri net representation of the circadian oscillation

model . 133
6.15 Time course results of the circadian oscillation model 134
6.16 Using computational steering to simulate the circadian oscillation model 136
6.17 Coloured continuous Petri net of the circadian oscillation model 137

xii

List of Tables

2.1 Comparison between different computational steering approaches 18

4.1 T7 Phage viral kinetics reaction set . 74
4.2 Comparison between selected HPN classes 84
4.3 Goutsias model reaction set . 87

5.1 Comparing Snoopy’s computational steering framework with other com-
putational steering and biochemical modelling software 114

6.1 Reaction set of the eukaryotic cell cycle model 124
6.2 Reaction set of the circadian oscillation model 132
6.3 Runtime performance of executing the coloured model 138
6.4 Comparison of continuous, stochastic and hybrid simulation runtimes

using multi-step ODE solver . 139
6.5 Comparison of continuous, stochastic and hybrid simulation runtimes

using single-step ODE solver . 139

xiii

List of Tables

xiv

List of Algorithms

2.1 Example for program annotation approach 16
3.1 Direct method . 37
3.2 First reaction method . 38
4.1 Simulating statically partitioned generalised hybrid Petri nets 76
4.2 Dynamic partitioning of generalised hybrid Petri nets 79
5.1 Collaborative steering algorithm of deterministic simulation 106

xv

LIST OF ALGORITHMS

xvi

List of Symbols

Rj Chemical reaction
Si Chemical species
N Number of chemical species
M Number of chemical reactions
kj Reaction rate constant in the continuous setting
cj Reaction rate constant in the stochastic setting
vj State-change vector of a reaction Rj
Xi(τ) System state at time τ
τ0 Initial time
τ Current time
[] Concentration of chemical species
v reaction velocity
Vmax maximum reaction velocity
Km Michaelis constant
Kcat The turnover number
vji Change in the number of molecules of Si due to the oc-

currence of the reaction Rj
αji Stoichiometric coefficient of species Si when participat-

ing in reaction Rj
aj(x) Propensity of a reaction Rj at state X(τ) = x
Px(τ) Probability that at time τ the system will be in a state

X(τ) = x
δτ The next time a stochastic reaction to occur
a0(x) Total (cumulative) propensity
ri Random Number
τj′ Putative firing time
O() Time-complexity function of an algorithm
nj(δτ ;x, τ) Number of times a reaction Rj will fire in the time in-

terval [τ, τ + δτ]
h ODE integrator step-size
ξ Random number exponentially distributed with a unit

mean
as0(x) Cumulative propensity of slow reactions
pi Place
tj Transition

xvii

LIST OF SYMBOLS

m(pi) Current marking of a place pi
•tj Set of pre-places of a transition tj
t•j Set of post-places of a transition tj
•pi Set of pre-transitions of a place pi
p•i Set of post-transitions of a place pi
N Set of positive integer numbers
N0 Set of non-negative integer numbers
R+
0 Set of non-negative real numbers

Q+ Set of positive rational numbers
m0 Initial marking
P Set of places
T Set of transitions
A Set of arcs
F () Mathematical function
m[tj〉] Transition tj is enabled on the current making m
V Set of rate functions
Hs Set of all stochastic hazard functions
Hw Set of all weight functions
Pdisc Set of discrete places
Pcont Set of continuous places
Tstoch Set of stochastic transitions
Tim Set of immediate transitions
Ttimed Set of deterministically delayed transitions
Tscheduled Set of scheduled transitions
Tcont Set of continuous transitions
Acont Set of continuous arcs
Adisc Set of discrete arcs
Aread Set of read arcs
Ainhibit Set of inhibitor arcs
Aequal Set of equal arcs
Areset Set of reset arcs
Amodifier Set of modifier arcs

xviii

List of Abbreviations

CPN Continuous Petri Nets

GHPN bio Generalised Hybrid Petri Nets

QPN Qualitative Petri Nets

SPN Stochastic Petri Nets

XSPN Extended Stochastic Petri Nets

API Application Programming Interface

BDF Backward Differentiation Formula

CDK Cyclin-Dependent protein Kinases

CME Chemical Master Equation

DNA Deoxyribonucleic Acid

DPN Differential Petri Nets

FOHPN First-Order Hybrid Petri Nets

FSPN Fluid Stochastic Petri Nets

GUI Graphical User Interface

HDN Hybrid Dynamic Nets

HFPN Hybrid Functional Petri Nets

HFPNe Hybrid Functional Petri Nets with extension

HPN Hybrid Petri Nets

M phase Mitosis phase

mRNA Messenger Ribonucleic Acid

ODEs Ordinary Differential Equations

S phase Synthesis phase

SBML Systems Biology Markup Language

SSA Stochastic Simulation Algorithm

xix

LIST OF ABBREVIATIONS

SSServer Snoopy Steering Server

xx

1 Introduction

1.1 Overview

With the progress of molecular biology, systems biology has been recently gaining
renewed interest to examine the structure and dynamics of cellular and organismal
functions [Kit02]. To obtain such system-level understanding, we need new methods
and techniques to facilitate dry-lab experiments. Additionally, systems biologists need
to collaborate together in conducting one and the same dry-lab experiment and in-
teractively steer the simulation while it is running. Furthermore, with the advances of
computing powers, simulation engines can be distributed over different machines and
therefore they need to be remotely controlled by the user. In this context, computa-
tional steering is an emerging technique which can inevitably contribute in achieving
these goals.
Computational steering [MWL99] is the tight coupling of visualisation and simula-

tion. Through it, the user can change the simulation parameters simultaneously while
the simulation is in progress. Further, it is an emerging technology for interactive appli-
cations. In other words, computational steering can be described as a remote control of
a long running application [PHPP05]. An important property of computational steer-
ing is that it allows user interactions with the running simulation and monitoring of
intermediate results rather than waiting until the simulation ends and then visualising
the results.
On the one side, many well known software have recently been introduced to sim-

ulate biochemical networks (e.g., COPASI [HSG+06], Dizzy [ROB05], Cell Illustrator
[NSJ+10] and Cell Designer [FMJ+08]), however they ignore some useful features such
as: collaboration, distribution and interactivity, which are helpful for system biologists.
Other web-based applications (e.g., Virtual Cell [MSS+08]) support some kind of col-
laboration and distribution. Nevertheless, using those software, users are not aware of
what is happening in the background, which makes the entire simulation process look
like a black box. Systems biologists need to interact with their experiments and with
each others by changing some key parameters and asking "what-if" questions. Further-
more, such applications are based on the batch approach that keeps the users away
from their experiments during the simulation [SWR+11]. Our aim is to overcome these
limitations by integrating computational steering with the simulation of biochemical
reactions. Accordingly, using computational steering, systems biologists could drive and
guide the simulation in the direction of desirable output by monitoring intermediate

1

1 Introduction

results and adapt the key parameters of the running application.
On the other side, many computational steering environments have been developed

during the last two decades (e.g., CUMULVS [GKP97], CSE [LMW96], RealityGrid
[PHPP05], POSSE [MLP02], DISCOVER [MMMP01, LJPS05], and SCIRun [PJ95]),
however they are used to build new applications or require modifications to the source
code of the application. With other words, they assume the existence of legacy simula-
tion code which needs to be integrated in such environments [SWR+11]. Thus, they are
inapplicable if the source code is unavailable. Additionally, they have a steep learning
curve [MLP02, PHPP05] which makes them unsuitable for many systems biologists.
Correspondingly, Petri nets [Mur89, DA10] have been proven to be useful in mod-

elling biochemical networks [RML93, MTA+03, GH06, GHL07], since they provide
an intuitive graphical representation and a well-developed mathematical theory for
process analysis. In addition, Petri nets might bridge the gap between computational
theoretician and experimentalist. In this thesis, we are specifically interested in quanti-
tative Petri nets [GHL07] (stochastic, continuous and hybrid Petri nets) and their high
level representations (hierarchical and coloured Petri nets) [Liu12]. Indeed, integrating
Petri nets and computational steering into the same framework will result in a pow-
erful and interactive tool for systems biologists. We obtain the elegant representation
and the well mathematical foundation merits of Petri nets along with the interactive
capabilities of computational steering.
In this thesis, two points are addressed in the context of systems biology : the hybrid

modelling of biochemical reaction networks, and the development of a computational
steering framework to collaboratively and interactively steer the simulation of reac-
tion networks. In the former point, we introduce the definition of Generalised Hybrid
Petri Nets (GHPN bio), while in the latter a novel framework is proposed to integrate
Petri nets and computational steering for the modelling and simulation of biochemical
reaction networks.
GHPN bio [HH11, HS12, HH12a] combine the power of continuous Petri nets (CPN bio)

[GH06] and extended stochastic Petri nets (XSPN bio) [MRH12]. They are particularly
well suited to represent and simulate stiff biochemical networks. The modelling power
of this class of Petri nets allows the combination of discrete and continuous network
parts in one model, which permits to represent, e.g., a biological switch in which con-
tinuous elements are turned on/off by discrete elements. The models can be simulated
using either static partitioning, in which the partitioning is done off-line before the sim-
ulation starts, or using dynamic partitioning, in which the partitioning is done on-line
during the simulation.
Furthermore, GHPN bio extend the framework that was proposed by Heiner and

Gillbert in [GHL07] to include hybrid Petri nets as an intermediate approximation of
the stochastic and continuous worlds (for more details see Chapter 4).
Further contributions of this work are the introduction as well as the implementation

of a computational steering framework which utilises Petri nets as modelling language

2

1.2 Motivations

for the representation and interactive simulation of biochemical reactions [HH12b]. Its
main features are the tight coupling of visualisation and simulation, distributed; collab-
orative; and interactive simulation of biochemical networks, and intuitive; and under-
standable representation of the reaction networks with the help of Petri nets, and the
extendibility to include external user simulators. The implementation of this framework
is given as part of Snoopy [RMH10, HHL+12] - a tool to design and animate/simulate
hierarchical graphs, among them qualitative, stochastic, continuous and hybrid Petri
nets. During this thesis we use the term kinetic modelling applications (software) to
denote software tools that perform the quantitative modelling of biochemical reaction
networks.
Although we focus here on the problem of modelling biochemical reaction networks,

the two presented tools can be applied to other scientific disciplines, e.g., modelling of
technical systems.
The rest of this chapter presents an overview of the thesis by pinpointing the moti-

vations and objectives of our work. Additionally, it provides a high level organisation
of the remaining chapters.

1.2 Motivations

• The recent renaissance of quantitative modelling of biological systems.

Systems level understanding has been recently gaining increasing interest. This
renders it possible for biological systems having desired properties to be virtually
constructed, modified, and tested using the quantitative modelling and simu-
lation before the actual conduction of the wet-lab experiment. Thus, precious
efforts and resources could be inevitably saved in comparison to blind trial-and-
error methods [Kit02]. Furthermore, quantitative modelling of biological networks
contributes to the in-depth understanding of the complexity of biological systems
which in turn will have imperative effects to other important fields. For instance,
understanding of the biology that underlies certain diseases will increase the pro-
ductivity of drug discovery [KGM11].

• The need for a biologist to directly and easily design a quantitative
simulation and its multi-purpose evaluation.

Software tool support for systems biologists is crucial for the understanding of the
biological model dynamics. Although many tools have been recently deployed in
the context of systems biology, they still lack some significant key features such as
collaboration, distribution and interactivity. Moreover, some tools are acceptable
when they operate on small models, however they become impractical when the
model complexity increases. Systems biologists need not only to construct wet-
lab experiment using the designed tool, but also they would like to do that

3

1 Introduction

comfortably.

• The interactive nature of computational steering makes it suitable for
implementing the biochemical simulation of wet-lab experiments in a
straightforward manner.

Interacting with the simulation while it is running, monitoring intermediate re-
sult, and sharing models and simulation results between different users are some
of the important outcomes of incorporating computational steering into bio-
chemical modelling tools. Traditional biochemical modelling software look like
a "black-box" when they perform the simulation. Furthermore, the user is not
aware of what is taking place in the background. Users need to monitor interme-
diate result and perform "what-if" analysis simultaneously while the simulation is
in progress. Additionally, collaborative and distributed simulation of biochemical
networks will certainly promote sharing of knowledge between different scientists.
In this thesis, we argue that computational steering could elegantly be applied
to the kinetic modelling of biochemical networks. Moreover, it will certainly fa-
cilitate the job of systems biologists if it is implemented efficiently in a software
tool.

• Some biological models require to be represented in a hybrid way
(cells/molecular interactions in one model).

Traditionally, biological networks are simulated either using the purely determin-
istic or the purely stochastic approach. However, most of the biological systems
are better to be considered in a hybrid way [MTA+03, NDMM04, FMJ+08].
For instance, discrete simulation is of paramount importance when studying the
role of intrinsic and extrinsic noises of the eukaryotic cell cycle [KBPT09]. How-
ever, some phenomena have to be simulated continuously (e.g., cell growth). This
model is considered in more detail in Chapter 6. Through this view, quantitative
information as well as discrete states could be mixed together in one model. As
another example, consider a biological model that combines continuous opera-
tions such as translation and transcription of genetic information and discrete
operations such as the control system of gene expression. It can not be intu-
itively modelled using the deterministic or stochastic approach alone [MNM11].
Therefore, the hybrid modelling approach is of significant importance to study
the dynamics of such models. Here, we often use the term continuous simula-
tion to refer the deterministic one since the latter can typically be implemented
by constructing and solving a set of ordinary differential equations (ODEs) (see
Chapter 3). Hence, the ODE system response is continuous over time.

4

1.3 Objectives

• Deterministic simulation does not consider the fluctuation of molecules,
especially when there are low numbers of them.

The deterministic approach is the conventional way of simulating biochemical
pathways. In this approach, reactions and their influence on the concentrations
of the involved species are represented by a set of ordinary differential equations
(ODEs). While this approach has the advantage of a well established mathemati-
cal basis and strong documentation, it fails to capture the phenomena which occur
due to the underlying discreteness and random fluctuation in molecular numbers
[LCPG08, Pah09], especially in situations where the number of molecules is low.
Therefore, deterministic simulation is not adequate when the molecular fluctua-
tion is crucial for the model behaviour. In this case, the result of stochastic and
deterministic simulation will not be the same. Hence, in this situation, stochastic
results are closer to the model behaviour than the continuous one [Gil07].

• Stochastic Simulation is computational expensive (fast reactions, large
number of molecules).

Contrary, stochastic simulation [Gil76, Gil77] provides a very natural way of sim-
ulating biochemical pathways, since it can successfully capture fluctuations of the
underlying model. Furthermore, it deals correctly with the problem of extremely
low number of molecules [Gil07]. In stochastic simulation, species are no longer
represented as continuous concentrations which change continuously with time,
instead, they are represented as discrete entities such that their dynamics can be
simulated using the machinery of Markov process theory.

A major drawback of the stochastic simulation is that it is computationally expen-
sive, when it comes to simulate larger biological models [MA99, LCPG08, Pah09],
especially in some cases where species with large numbers of molecules exist. The
reason behind this problem comes from the fact that we have to simulate every
reaction event when we use stochastic simulation to simulate biological mod-
els [Gil07]. This drawback motivates the search for other methods to enhance the
capability of the stochastic approach. Hybrid simulation is one of these methods.

The last two motivations clearly emphasise the importance of a hybrid tool that
could deal with models of more than one time scale: e.g., slow and fast.

1.3 Objectives

• Integrating stochastic and continuous modelling approaches for the
hybrid representation and simulation of stiff biochemical networks.

The first objective of this thesis aims to develop a hybrid modelling tool to fa-
cilitate the hybrid representation and simulation of biochemical networks. The

5

1 Introduction

resulting apparatus intuitively combines stochastic and continuous parts in the
same model and permits multi-scale biochemical networks to be accurately and ef-
ficiently simulated. Additionally, cell-molecular interactions could be easily mod-
elled, where cells are modelled as discrete entities while molecular reactions are
carried out continuously. The developed tool is based on Petri nets as a visual
modelling language of the reaction network. The main motivation of resorting
to the hybrid modelling is to reach a compromise between the accuracy of the
stochastic simulation and the computation efficiency of the continuous counter-
part. More elaborately, using generalised hybrid Petri nets to model biochemical
networks, users could increase (decrease) the simulation accuracy by increasing
(decreasing) the number of transitions that are treated stochastically.

• Designing and implementing a computational steering framework which
utilises Petri nets for modelling biochemical networks.

The second objective is to design and implement a computational steering frame-
work that utilises Petri nets as a modelling language for the representation and
interactive simulation of biochemical reactions. The resulting framework consists
of four components that are dependent on each other. Moreover, on the one hand;
the framework is easy to be used by naive users, since no additional knowledge
is required to perform the simulation. On the other hand, it can support experi-
enced users by giving them the opportunity to extend the simulation algorithms
according to their needs. The framework is offered to the user as a client/server
model, where the server represents the current running simulation, while the
client represents the user’s remote control that manages remotely running simu-
lations.

• Testing and validating the proposed framework using a number of case
studies. Finally, we aim to apply the proposed computational steering framework
and the developed generalised hybrid Petri nets to some case studies with varying
level of complexities. The presented examples illustrate how the two introduced
tools operate. These examples are discussed in details in Chapter 6.

1.4 Thesis Outline

Chapter 1: Introduction

Chapter 1 (this chapter) provides an overview of the overall thesis organisation. The
motivations and objectives as well as the general outlines are also given in this chapter.

6

1.4 Thesis Outline

Chapter 2: Computational Steering: An Interactive Simulation Technique

Chapter 2 provides an overview of computational steering as an interactive simula-
tion technique. This chapter starts by comparing computational steering with the tra-
ditional visualisation pipeline, then different computational steering approaches and
tasks are briefly presented. Finally, the chapter is concluded by discussing current
challenges that computational steering faces to be used in the context of biochemical
network modelling. As a general view, the applications of computational steering in
other areas as well as some of the previously introduced environments are given.

Chapter 3: Simulation Approaches of Biochemical Networks

This chapter presents background information of biochemical networks modelling and
simulation using the continuous, stochastic, and hybrid approaches. First, basic def-
initions are presented, afterwards, different views of biochemical networks are briefly
compared with each others as will as their limitations to simulate stiff biochemical
networks. To make it self-contained, the hybrid modelling approach is discussed in this
chapter in the context of the other two simulation techniques: stochastic and determin-
istic simulation. Particular attention is given to stiff biochemical networks, since they
are intended to be addressed more elaborately using Generalised Hybrid Petri Nets in
Chapter 4. With this point in mind, the role of quantitative Petri nets in modelling
of reaction networks is outlined. This chapter presents also the relationship between
different Petri net classes and the corresponding simulation approaches.

Chapter 4: Generalised Hybrid Petri Nets

This chapter introduces one of the main contributions of the thesis, namely Generalised
Hybrid Petri Nets (GHPN bio). The modelling part is given in terms of the graphi-
cal notations, connection rules, and the formal definition of GHPN bio. Two related
simulation algorithms are presented to simulate GHPN bio using different approaches:
static and dynamic partitioning. Besides, the relationship of qualitative, stochastic,
continuous, and generalised hybrid Petri nets is delineated. Afterwards, some of the
implementation issues are briefly discussed. Finally, we compare GHPN bio with other
hybrid Petri nets which are being used to model biochemical networks.

Chapter 5: A Computational Steering Framework for Collaborative, Distributed,
and Interactive Simulation of Biochemical Networks

The other main contribution of this thesis is introduced in this chapter. Firstly, the
requirements and characteristics of a computational steering based kinetic modelling
software is propounded. After that, the proposed computational steering framework is
elaborately discussed by presenting its main components: the steering server, steering

7

1 Introduction

GUI, steering API, internal and external simulators. Secondly, steering algorithms are
discussed for deterministic, stochastic, and hybrid simulation methods. Eventually,
the chapter is closed by discussing some of the implementation issues related to the
synchronisation and communication of the framework components.

Chapter 6: Case Studies

In this chapter we illustrate the functionality of the developed tools using typical
biological examples. Three case studies are used to achieve this goal: the intracellular
growth of bacteriophage T7, the eukaryotic cell cycle, and the circadian oscillation
model.

Chapter 7: Conclusions and Future Work

Finally, this chapter concludes the thesis by summing up the overall presented infor-
mation and proposes possible extensions for future work.

8

2 Computational Steering: an
Interactive Simulation Technique

2.1 Introduction

With the advances of computing power and the proliferation of multi-core processors, it
becomes essential to execute long running and computationally expensive simulations
at powerful and remote computers – which enjoy high speed computational units – to
profit from such precious processing resources. However, such powerful computers do
not provide a direct interactive visualisation and analysis of the resulting simulation
data due to either the intrinsic batch processing approach of these computers or the
sharing of their resources between different users. Thus, there is a need to remotely
mange and analyse the simulation output traces simultaneously while the simulation
is in progress. Correspondingly, many different techniques have been proposed to over-
come these limitations [ASM+11]. Computational steering is among the elegant and
promising tools that provide a tight coupling between simulation and visualisation
modules of scientific models.
Computational steering is an interactive technique that permits the manual and

automatic guidance and intervention of long running applications. Through it, the user
can change the simulation key parameters and immediately obtain a feedback from the
computational modules. Furthermore, it closes the loop of the traditional visualisation
pipeline and eventually speeds up the scientific discovery process [MWL99]. In other
words, computational steering can be defined as runtime control of an application
and of the resources it uses for the purposes of experimenting with the application
parameters or improving application performance [VS96]. For recent applications of
computational steering see [DWB+12, BMS+12, LR12].

Initially, computational steering was inspired in 1987 by the National Science and
Foundation Visualisation in Scientific computing workshop report [DeF87]. At that
time, the batch simulation approach was the dominating method for organising scien-
tific simulation code. However, the workshop emphasised that scientists need to be able
to interact with and steer their simulation and play an active rather than a passive role.
"Scientists not only want to analyse data that results from super-computations; they
also want to interpret what is happening to the data during super-computations. Re-
searchers want to steer calculations in close-to-real-time; they want to be able to change
parameters, resolution or representation, and see the effects. They want to drive the

9

2 Computational Steering: an Interactive Simulation Technique

scientific discovery process; they want to interact with their data. The most common
mode of visualisation today at national supercomputer centres is batch. Batch process-
ing defines a sequential process: compute, generate images and plots, and then record
on paper, videotape or film. Interactive visual computing is a process whereby scientists
communicate with data by manipulating its visual representation during processing.
The more sophisticated process of navigation allows scientists to steer, or dynamically
modify computations while they are occurring. These processes are invaluable tools for
scientific discovery".

Currently, there are many computational steering environments that are based on the
general idea which was proposed by the National Science and Foundation Visualisation
in Scientific Computing workshop (e.g., CUMULVS [GKP97], CSE [LMW96], Reali-
tyGrid [PHPP05], POSSE [MLP02], DISCOVER [MMMP01, LJPS05], and SCIRun
[PJ95]). The differences between these environments are either the intended applica-
tion, the steering approach or the location of the simulation module. However, they
presume or enforce the existence of legacy simulation code which needs to be integrated
into the computational steering framework. Moreover, none of these software tools is
dedicated to quantitatively simulate biochemical reaction networks. Such quantitative
simulation is an imperative task of systems biology.

Systems biology, as an emerging inter-disciplinary field, shares some common features
with traditional scientific applications (e.g., Computational Fluid Dynamics). For in-
stance, to carry out complex kinetic pathway analysis, we need long running simulations
and extensive computational resources. Thus, in this thesis, the potential contributions
of computational steering for kinetic modelling software are investigated to remotely
and interactively manage and simulate the multi-scale biochemical networks. Indeed,
using computational steering, computational expensive biochemical network applica-
tions can inevitably benefit from remote computational resources and the "what-if"
analysis nature of computational steering which eventually might lead to new discov-
eries. Moreover, computational steering will locate systems biologists at the centre of
their dry-lab experiments.

This chapter is organised as follows: we commence with comparing the conventional
non-interactive simulation with the interactive one. In this context, we distinguish
between two different yet related interactive techniques: interactive visualisation and
interactive simulation. Afterwards, a general overview of the ingredients of a typical
computational steering environment is provided. Later, the approaches and tasks of
the computational steering are compared with each other. Additionally, this chapter
also lists some of the early developed computational steering environments. Finally,
we conclude by discussing some challenges that face computational steering to become
more popular in the context of scientific simulation, particularly systems biology.

10

2.2 Batch versus Interactive Simulation

2.2 Batch versus Interactive Simulation

The traditional scientific computing approach usually consists of three sequential steps:
modelling, computation and visualisation [PJB97, MWL99]. The major drawback of
this approach of computation is that: it is a sequential process and does not provide
the user with the opportunity to interact with the simulation module, since the data
analysis and visualisation stages are done off-line completely after the simulation ter-
minated. Furthermore, because the visualisation of the simulation result is done as a
post processing step, errors at the simulation phase may be discovered only during
the final visualisation [PJB97, JPH+99], which requires repeating the entire simula-
tion process from scratch and consequently extends the overall experiment time. Errors
might result from setting inappropriate model parameters or initial values. Therefore,
they are logical errors. Figure 2.1a is a graphical illustration of this approach.
Contrary to this approach, Figure 2.1b illustrates the interactive simulation tech-

nique which closes the loop between the presentation of the data and the running
simulation. Users are allowed to view intermediate results, interpret them and make
changes to the parameter values that are critical to the response of the running model.
Typically, the user will change parameters after having interpreted the results. Next,
the user change is enacted by the steering application to the running simulation. How-
ever, the type of user data is application-dependent. For instance, if the computational
steering task is model exploration (see Section 2.4), then the user will be mainly inter-
ested in the application input and output. However, in case of performance optimisa-
tion, the user will need to view the application structure [MWL99].
Furthermore, the National Science and Foundation Visualisation Report distinguished

between two types of interactivity: interactive visualisation and the more sophisticated
interactive approach, called computational steering. In the following, these two related
approaches are compared to each other.

2.2.1 Interactive Visualisation

The classical model of visualisation that was described by Haber and McNabb [HM90]
consists of three related steps as it can be noticed from Figure 2.2: filtering – the data
quantity is reduced or interpolated, mapping – an abstract geometric object is con-
structed, and rendering – the final image is produced. This model of visualisation is
typically used to implement many open source visualisation packages (e.g., the Visu-
alisation Tool Kit, VTK [VTK12]) and commercial one (e.g., AVS [AVS12]).
In this viewpoint, interactivity could be supported only at the visualisation level by

closing the loop between the filtering of the data and its rendering. For instance, if
the user wants to view different levels of granularities of the rendered image, a few
visualisation parameters could be changed without repeating the overall simulation
process.

11

2 Computational Steering: an Interactive Simulation Technique

Modelling Computation Visualization

(a) Batch simulation approach

Modelling Computation Visualization

Interpretation

(b) Interactive simulation approach

Figure 2.1: Two simulation techniques: (a) batch simulation: modelling, computation,
and visualisation are done sequentially. Users have to wait until the com-
putation process finish completely in order to observe the final results and
correct potential errors. (b) interactive approach: whereby the user can get
insights from the simulation while it is running.

Although this technique provides some kind of interactivity, it does not utilise a full
interaction between simulation and users since they are still separated from each other.
Moreover, the process of visualisation is done off-line which necessitates the reading of
the simulation’s output from a file. A better view of enhancing such framework is to
connect the pipeline directly to the simulation without writing intermediately to a file
and to provide two ways of communication between the simulation and visualisation.

2.2.2 Computational Steering

As a further degree of interactivity, computational steering could provide the user with
full access to both the simulation and visualisation simultaneously while the simulation
is in progress. Such tight coupling of computation and data analysis tools is essential
for the deep understanding of what is happening in the background.
Figure 2.3 presents an overview of a typical computational steering architecture.

Almost all of the computational steering environments follow this architecture as can
be seen in [VS96, PJB97, MWL99], and [MP02b], however, they might differ on how
and where these layers and components are implemented. In this figure, we can notice

12

2.2 Batch versus Interactive Simulation

Filtering Mapping Rendering

Simulation
output

Final
image

Figure 2.2: Visualisation pipeline: the process of visualisation is done in three sequen-
tial steps: filtering, mapping and rendering [CW01].

obviously the closed loop between the user and the simulation. Moreover, three layers
of computations could be distinguished: application, steering, and user layers.

Application Layer

The application layer represents the data source unit. This could be either a running
simulation which produces the dynamics of a certain model or a parallel application in
which its load needs to be adjusted. Usually, the main operation of the application layer
is to accept new parameter values and perform a re-calculation of the simulation result
or a reconfiguration of the application load. Moreover, the application layer module
could be run at the same machine or distributed across different computers.

Steering Layer

As an intermediate layer, the steering layer serves the communication and the synchro-
nisation between the application and user layers. When a user changes some parameter
values, these changes are propagated to the running application by means of this layer.
Furthermore, other essential and optional functionalities are also supported at this
level. An example of the required functionalities is the synchronisation of the user’s
changes to the application, while checkpointing and optimisation are examples of op-
tional functionalities.

13

2 Computational Steering: an Interactive Simulation Technique

Application
Layer

Steering
Layer

User
Layer

Output
Computation

Reconfiguration

New Values

Change Values

Monitoring

New Values

Change Values

InterpretationManipulation

Enacting
Application

 Output

Enacting
User

 Change

Synchronization

Check pointing

Visualizing

Optimizing

Figure 2.3: Computational Steering Framework

User Layer

At the top layer is the user who will control (steer) the running application. It is
worth mentioning here that the user could be a human being or another client applica-
tion which adjust parameter values based on the application’s current state as it was
indicated by Vetter et al. [VS96].
Nonetheless, the user performs three related functions: monitoring, interpretation,

and steering. During the monitoring phase, the steering agent observes the current
application’s output and the rendered image that was produced by the application
layer, while in the interpretation phase, the results are mined to get a useful hypoth-
esis. Finally, during the steering stage an appropriate action is taken. This action is
propagated back to the application and the entire circle is repeated until approaching
the final result.

14

2.3 Approaches

2.3 Approaches

There are different methods to implement computational steering environments, among
them are: program annotation, redesigning simulation application, steering by script-
ing, and high level abstractions. The choice between these approaches is application-
dependent. In the following, a detailed discussion of these methods is provided. At the
end of this section, a comparison between these approaches is conducted to aid in the
selection between them to implement a certain application scenario.

2.3.1 Program Annotation

Program annotation (also called program instrumentation) allows non-interactive sim-
ulation applications to be transformed into steerable ones by making a minor mod-
ification to the original code. Such modification will provide an access point to the
parameters and results to render their steering and visualisation, respectively, by the
users [PJB97]. As a typical example of this approach, the simulation code is divided
into different parts and injected with a set of application programming interface (API)
calls, which are developed as part of a specific computational steering environment.
These routines could be better described as a communicator between the simulation
and the data analysis modules.
While this technique has the advantage of easy transformation of the batch sim-

ulation code into an interactive one with minimal efforts, it does not provide much
control over the original application [PJB97]. Moreover, sometimes it becomes inef-
ficient, if the data are being transmitted to a separate visualisation process due to
the transmission overhead [MWL99]. More elaborately, the actual data transmission
could be implemented in a separate thread. However this adds additional complication
to the implementation and introduces many synchronisation problems [Par99]. Algo-
rithm 2.1 provides an illustration of steps of typical instrumentation which are required
to integrate existing simulation code into computational steering environments.
At the beginning of these steps, the application registers a number of variables that

need to be monitored or steered and gives access to their values. These variables could
be of simple data type (e.g., integer or float) or complex variables (e.g., 2-dimensional
matrix). Afterwards, the application initialises itself and might require to read some
values from the steering agent. As it was previously indicated, the steering agent could
be a human being or another program. Later, during the application main loop; a set
of API routines are called to execute the commands that are issued by the steering
agents.
A wide range of computational steering environments are based on this method (e.g.,

CUMULVS, Magellan, and POSSE), as it is very easy to integrate existing code into
the steering tool and after that the steering library could apply whatever algorithm to
the simulation’s input/output.

15

2 Computational Steering: an Interactive Simulation Technique

Algorithm 2.1: Example for program annotation approach
1: Register the variables which need to be monitored or steered;
2: Read the initial parameters and initial conditions;
3: Initialise the simulation;
4: while the simulation is running do
5: Compute one step;
6: Send the intermediate result to the data analysis tool;
7: Receive the parameter change from the graphical user interface;
8: Update the simulation parameters using the new values;
9: end while
10: Send the final result to the data analysis tool;

2.3.2 Redesigning the Simulation Application

Redesigning the simulation application involves designing the new computational ap-
proach with the concept of computational steering in mind [PJB97]. This approach will
give the user more freedom to get full utilisation of the computational steering power
and it will require the simulation code to be completely rewritten to permit the use of
computational steering technique to the problems which are intended to be solved.
An example of the software platforms that use such an approach is SCIRun [PJ95]. It

uses a visual programming language to allow the user to construct a simulation model
from scratch. It is worth mentioning here that this approach is not always applicable to
implement computational steering in all cases, since scientists usually have their own
simulation code which they trust due to long maintenance and debug period. Designing
a model from scratch will not give them the opportunity to reuse their own code. Thus,
some software tools, which follow this approach provide other scenarios to attract users
that have their own simulation application.

2.3.3 Steering by Scripting

Another approach to include computational steering into existing scientific simulation
code is to divide the whole simulation into various small modules and let the user
interacts with them [PJB97]. Using this technique, the output of one module could
be used as the input of another one and the change of key parameters might be per-
formed during the in-between modules. Moreover, other modules like data analysis
and visualisation could easily be added [Par99]. The interaction between the differ-
ent modules is carried out by means of a scripting language (e.g., Matlab [Mat12],
R [R12], Python [Pyt12]). The advantages of this technique is that it is easy to be
implemented and it could use much of the original scientific code. Additionally, ex-
perienced users could use the utilities which are provided by a scripting language to

16

2.3 Approaches

extend their simulation code. Nevertheless, the drawback of this approach is that it
is not highly interactive [PJB97], since it does not provide an ultimate easy way for
naive users to use such a technique. Moreover, the resulting computational steering
architecture will not be intuitive to be used by users which require "press button" and
get results.

2.3.4 High-level Abstractions

The high-level abstraction approach [BJBH93, MP02b] is another variation of pro-
gram annotation. Instead of injecting API calls into the application code, the entire
application is viewed as a set of computational objects [MP02b]. In this scenario, an
object represents a data structure and its associated algorithm. The real collection of
the computational object’s resulting data and the enacting steering command are done
by inheriting the computational object from a set of C++ classes. The actual imple-
mentation of the commands and the extraction of data is carried out by overriding the
appropriate member functions. Furthermore, non-object oriented computational appli-
cation objects could be transformed into object oriented classes using API wrappers.
However, not all of the application code will require to be transformed or inherited
from the base class, instead, only computational objects which need to be used in the
interactive mode will be forced to do such inheritance.
This technique provides a better organisation of the application when it is integrated

into a computational steering environment compared with the program instrumentation
approach. Moreover, it is adequate for distributed applications which span multiple
processors or different memory spaces. In this case, the application object can be
migrated, created, or dynamically deleted and it can still support providing information
and accepting steering commands.
Nevertheless, this approach still requires the user to modify the source application

code which implies that it shares the disadvantages of the aforementioned program an-
notation method. Moreover, it assumes users with object-oriented programming knowl-
edge which is not always viable.
Examples of software that use this approach are : DISCOVER [MMMP01] and Mag-

ellan [VS99].

2.3.5 Selecting the Appropriate Approach

In this part, we summarise the pros and cons of the approaches that have been presented
in this section. Table 2.1 provides a comparison between these approaches. The used
criteria are: methodology, advantages, disadvantages, as well as suitability of a certain
approach for implementing existing or new simulation model.

17

2
C

om
putationalSteering:

an
Interactive

Sim
ulation

T
echnique

Table 2.1: Comparison between different computational steering approaches

Program Annotation Redesigning the
Simulation
Application

Steering by Scripting High-level
abstractions

Methodology inject API calls to the
application code

reorganise the
application code with
computational steering
in mind

divide the simulation
code into small modules
and let the user
interacts with them
using a scripting
language

view the application as
a set of computational
objects. Application
code, which requires
steering features, should
be inherited from the
appropriate classes

Advantage well suited to transform
a non-interactive
simulation code into an
interactive one

full utilisation of
computational steering
power

adapts existing tools to
be used in
computational steering
framework

better organisation of
application code, well
suited for parallel
programs

Disadvantage inefficient in case of
separate visualisation,
does not provide much
control over the
application code,
requires the user to have
simulation code

enforce rewriting the
scientific application

it is not intuitive, not
highly interactive

require the user to have
object-oriented
knowledge

Support of
existing
applications

high low medium medium

Support of
new
applications

low high low low

Examples CUMULVS, Magellan SCIRun Matlap, R DISCOVER (DIOS)

18

2.4 Tasks

2.4 Tasks

Computational steering environments are usually used to perform one or more of the
following tasks: model exploration, algorithm experimentation, or performance optimi-
sation. Although the technique is the same in all of these functionalities which involves
monitoring, interpretation and parameter change, the extracted data as well as the
steering agent might differ. For example, in model exploration usually a human being
performs the interpretation and takes actions. However, in performance optimisation
an automated algorithm is likely to take the decision based on the current system state.
In the following, we discuss briefly these tasks.

2.4.1 Model Exploration

In model exploration, the primary goal is to explore the simulated model behaviour
under the change of various parameter values. Therefore, the focus here is the in-
put/output relationship. This is an early and an actual application of computational
steering in the scientific discovery process. Additionally, model exploration helps scien-
tists to get a deeper understanding of the problem under study by permitting them to
ask "what-if" questions simultaneously while the simulation is in progress. The inter-
pretation and visualisation processes are usually carried out by a human user. In this
context, the steered application is typically simulation code that responds to the user
changes. Examples of software which belong to in this category are: CSE, SCIRun, and
CUMULVS.

2.4.2 Algorithm Experimentation

Algorithm experimentation allows the underlying code to be modified or refined at run
time. It is similar in its function to the model exploration task, however, it is different
in its purpose. In algorithm experimentation, running code could change its internal
data structure in response to the user changes. Furthermore, the expected output to
the user is slightly different from the previous task. Here, the user is primary interested
in the internal data structure organisation and other runtime information. VASE is an
early example of computational steering environments which can perform such tasks.

2.4.3 Performance Optimisation

Performance optimisation [VS99] is used to change the computational resource allo-
cation that affects simulation performance at runtime such as load balancing [Par99].
It is another task of computational steering. In parallel and distributed computation,
there are multiple computational units cooperating to solve the same problem. The
equal distribution of the workload between these working processors is a well known
problem. Computational steering can obviously contribute in solving such problems

19

2 Computational Steering: an Interactive Simulation Technique

by permitting a separate steering agent to change the workload at runtime. Unlike
the previous two tasks, the steering agent is likely to be an automatic algorithm. An
example of steering software which fall in this category is Magellan [VS99].

2.5 Software

Different variations of computational steering tools have been developed during the
recent two decades with different purposes and goals. The ultimate aims of these envi-
ronments range from performance modification of running applications to the modifi-
cation of the underlying computational simulation [Par99]. Previous work has classified
these environments based on different criteria. For example, in [VS96], computational
steering environments are classified primary based on the steering agent (human or
automatic algorithm), while in [MWL99] different criteria are used (e.g., user inter-
face, architecture). In this section, we combine these criteria and provide a more recent
survey of these tools. Our taxonomy is based on the following measures:

• model size that could be studied using the tool

• supported steering approach (e.g., program annotation, redesigning scientific ap-
plication, etc.)

• application area (e.g., computational fluid dynamics, molecular dynamics, etc.)

• steering task (model exploration, performance optimisation, or algorithm exper-
imentation)

• steering agent (human or automated algorithm)

• underlying architecture

• simultaneous steering of different applications or models

• support for parallel applications

• how are the simulation and visualisation coupled together

• collaboration between different users

• ability to integrate existing code into the computational steering framework

• portable implementation (can the tool run on different platforms?)

• distinguishing features of an environment compared with the others

• other functionalities

20

2.5 Software

2.5.1 CUMULVS

CUMULVS, Collaborative User Migration; User Library for Visualisation and Steer-
ing, [GKP97] is a steering library which allows the flexible incorporation of interactive
visualisation and computational steering into existing parallel programs. It was de-
veloped by Oak Ridge National Laboratory. A distinguished feature of CUMULVS
over the other developed computational steering environments is the fault tolerance
capabilities which is useful when running a distributed application. Fault tolerance is
realised by means of check-pointing. The role of these check-pointing functions is not
only to recover the application in case of failure, but also to improve the performance
of the running code by interactively migrating application tasks across heterogeneous
platforms.
The architecture of CUMULVS consists of two parts: one for the application program

and the other one for the possibly commercial visualisation and steering front end. It
is dedicated to existing applications which can be transformed to a steering one by
instrumenting the simulation code with library calls. However; it does not provide
dedicated visualisation modules, instead existing visualisation packages could be used,
which does not provide much control over the simulation and visualisation process.
CUMULVS supports the steering of parallel programs which are built on the parallel

virtual machine framework (PVM) [PVM12], and it supports multiple views of the same
running application to assist collaboration between different users. Furthermore, it can
run across different platforms. CUMULVS has no specific application, however, it can
be used whenever a fault tolerance mechanism is required
Although there are no reported usage in which the steering agent is an automated

algorithm, it is viable to use CUMULVS to automatically balance the load of a dis-
tributed application running on different machines. Additionally, CUMULVS permits
different users to collaboratively steer the same application. A token scheme is used
to prevent conflicts between different user, however, it does not support steering of
multiple applications.
Since CUMULVS could support distributed and parallel applications, it permits the

steering of applications ranging from medium to big size.

2.5.2 CSE

The computational steering environment (CSE) [LMW96, LW97], which was devel-
oped at the Center for Mathematics and Computer Science in Amsterdam, is based on
a centralised data manager with different number of clients that can connect to and
disconnect from it. These clients are called satellites. The main functions of the data
manager is to maintain a database of variables and to notify the connected clients of
changes in the variable values, while satellite clients could be used to perform calcula-
tions and visualisations.

21

2 Computational Steering: an Interactive Simulation Technique

The primary computational steering task of CSE is model exploration and the appli-
cation source code needs to be annotated in order to support computational steering.
CSE supports multiple applications to be steered simultaneously with different users.

Furthermore, these users and application clients could be distributed over different
platforms which means that it is a platform independent. However, CSE allows only
small and medium size models (ranging from 10 to 1,000 of variables) to be steered
and it is not able to steer parallel code.
Since CSE is tailored to model exploration, the steering agent could be only a human

being.
In CSE, visualisation and simulation are tightly coupled with each other. CSE is

provided with a satellite user interface called PGO editor which carries out all of
the visualisation tasks. The PGO editor allows a user to create custom 2D, 3D user
interfaces to visualise and manipulate the data on the data manager side.

2.5.3 DISCOVER

DISCOVER (Distributed Interactive Steering and Collaborative Visualisation Envi-
Ronment) [MMMP01], developed at Rutgers University, is a computational platform
that brings together key technologies in interactive application frameworks. It is a vir-
tual, interactive, and collaborative problem solving environment that enables remote
users to collaboratively monitor and manipulate high performance parallel applications
through web-based portals [LJPS05].
DISCOVER supports a three-tier architecture. The user client is at the front. It is

accessible through a web browser. The running application is at the back end, while
at the middle layer the network of interacting servers.
The DIOS (Distributed interactive object Substrate) library [MP02b] is used to

provide the runtime monitoring, interaction and computational steering of parallel and
distributed applications as part of DISCOVER.
Multiple users can steer different applications simultaneously. Moreover the clients

and servers could be distributed over different machines.
Additionally, DISCOVER provides tight coupling between simulation and visuali-

sation and permits users to adjust the visualisation primitive at run time through a
rule based visualisation [LJPS05]. Moreover, it permits the steering and visualisation
of high-performance parallel/distributed applications.
DISCOVER is used to include existing computational code into collaborative and in-

teractive environments. It is based on the high-level abstractions approach of computa-
tional steering and it supports the model exploration task. DISCOVER is implemented
in Java and therefore could run on different platforms.
Moreover, the web-based framework of DISCOVER distinguishes it from other com-

putational steering environments. The steering agent is often a human which interacts
with the running computational objects.

22

2.5 Software

2.5.4 POSSE

POSSE [MLP02, Ani02] (Portable Object-oriented Scientific Steering Environment) is
a general-purpose, lightweight, portable software system based on a simple client/server
model. The server is implemented to run on the simulation code side and controls
registered application data. The steering server is created as a separated thread on the
running simulation.
POSSE supports the collaboration between different users by permitting different

clients to be attached to the running server, however, only one application can be
steered by the same group of users. Moreover, parallel simulation is supported by
using the message passing interface library.
Using POSSE, a steering client receives runtime information from the application

and conveys this information to the user. POSSE supports both types of steering
agents, however, no typical case study is published to illustrate the use of algorithms
to perform the steering.
Model exploration and performance optimisation tasks can be supported using POSSE.

Additionally, it uses different clients to perform the visualisation and steering.
Originally, POSSE was developed to simulate and visualise aerospace models in real-

time [MLP02] using a multi-processor MIMD architecture.

2.5.5 RealityGrid

The RealityGrid computational steering library [PHPP05] has been developed as part
of the RealityGrid project. Its ultimate goal is to allow computational scientists to have
their own code interactively run over the grid. Therefore, a distinguished feature of this
library over the other mentioned tools is the use of computational steering over the grid.
The computing architecture of the RealityGrid is spilt into: computation, visualisation,
and the steering client. Additionally, it supports the steering of the sequential and
parallel applications, however, no explicit support is given for the latter case (i.e., it
is independent from any parallelisation library, e.g., MPI or PVM). RealityGrid also
supports http file transfer to permit the communication between different steering
components. The steering API is platform independent, which makes it available to be
used under different software and hardware platforms. The RealityGrid API supports
applications written by C, C++, or Fortran.
Likewise, RealityGrid requires the modification of the source code in order to permit

steering and visualisation. It has been used in many different areas of scientific simu-
lation. The steering task of the RealityGrid computational steering library is mainly
model exploration.

23

2 Computational Steering: an Interactive Simulation Technique

2.5.6 SCIRun

SCIRun [PJ95, PJB97] is an integrated shared memory based scientific programming
environment that permits the interactive construction, debugging, and steering of large
scale scientific computations. It is targeted towards medium to large size problems and
it is based on a data flow programming model to allow scientists designing and inter-
actively modifying the simulation. SCIRun is developed at the Scientific Computing
and Imaging Institute, Utah university. The SCIRun data flow paradigm is common to
many scientific visualisation packages which makes it easy to be used by users which
are familiar with those scientific programs (e.g., AVS). Moreover, it can be used both
on single workstation and Symmetric Multi-Processing (SMP) environments [Mar96].
Although SCIRun provides the capability of constructing a new interactive applica-

tion, it does not allow the steering of multiple applications at the same time, nor the
collaborative interaction between multiple users.
SCIRun is usually referred to in the computational steering literature as an exam-

ple of a computational steering software which involves designing the computational
steering application from scratch. Users can use the provided tool to graphically de-
sign a computational module. Afterwards, they are able to interact with the previously
created application.
Steering of programs developed by SCIRun takes place using a human and no support

for an automatic algorithm is provided to perform the monitoring and steering of the
running program.

2.5.7 Magellan

Magellan [VS99] is a prototype computational steering system that uses interpreter
language to control multi-threaded asynchronous steering servers which cooperatively
steer an application. Magellan’s basic structure consists of a group of steering servers
that run in the same application address space. To support steering for an application,
at least one embedded steering server should be running. Only one server is needed
to support steering in shared-memory, thread-based applications. However, distributed
memory applications must have one server for every message passing interface process.
In case of multiple servers, one additional server will be needed to coordinate the work
of other servers. Such master servers usually run at process ID =0 and coordinate
the operation of the other servers where using MPI. The steered application must
be annotated by a set of API calls to allow the server to communicate with it. The
steering agent is interacting with the annotated application through a language called
ACSL. The steering agent could be a human that issues commands at a command line
terminal or another application running in the same or another machine to control the
annotated applications.
An example of the command primitives which are supported by ACSL are: probe

24

2.5 Software

– retrieves or overwrites an application-specific object value regardless of the applica-
tion’s current state, sensor – provides consistent monitor information, and actuator -
alters an application object value. The steering agent does not communicate directly
with the steered application, instead it sends requests to the servers which process it
and reply to the steering client with adequate action. However, to render the command
primitive on the agent side, a corresponding annotation must be added to the original
application code.
Magellan supports the computational steering tasks model exploration and perfor-

mance optimisation. However, only one application can be steered at a given time.

2.5.8 STEEL

As a different application scenario of computational steering, we have developed, in
previous work, STEEL (STeering Environment for E-Learning) [HEA07] to aid stu-
dents in understanding abstract scientific concepts. The STEEL framework is based on
the client/server/client architecture, with an intermediate server that stands between
different clients. The client could be either the simulation code or the steering client.
The steering client performs visualisation and parameter changes. STEEL supports also
the collaboration between different users as a means to implement collaborative learn-
ing, however it does not support running more than one model simultaneously. In case
of multiple users, the steering server will act as a coordinator between them. STEEL
could also integrate parallel applications, but without any assumption of the paralleli-
sation library. Additionally, the different STEEL components could be distributed over
network connected-computers.
Influenced by CUMULVS, STEEL supports check-pointing to provide the opportu-

nity to restart the running simulation in the case of sudden failures.

2.5.9 EPSN

EPSN [ERC06] is a computational steering environment which permits the intercon-
nection between parallel simulations with parallel visualisation systems. It has been
influenced by other computational steering environments that support the steering of
parallel simulation (e.g., CUMULVS). Therefore, this environment is based on a frame-
work coupling parallel simulation and parallel visualisation components. Furthermore,
EPSN is based on a client/server architecture whereby the simulation code and the
visualisation modules could be considered as servers that fulfil client requests.
The integration of an existing legacy simulation code into EPSN is done by anno-

tating the original simulation code with API calls that perform the decomposition and
collection of data from different processors. Later on, the steering process is supported
by a request command. Three types of request commands are provided: control (play,
step, and stop), data access (allows parameter read/write), and action (allows to invoke

25

2 Computational Steering: an Interactive Simulation Technique

user defined routines).
As already mentioned above, EPSN components can be distributed over different

computers and both the simulation and visualisation are possible to be performed using
parallel processing, however it does not support the collaboration between different
users.
EPSN is used to perform model exploration and the users of EPSN are mainly human

beings, since no facility is given to allow automated algorithms to steering the parallel
simulation. EPSN provides its own parallel viewer to visualise the results of parallel
simulation and its steering client which gives some sort of control over the simulation.

2.5.10 Others

There are many other computational steering environments which are not under de-
velopment any more. For example, VASE (the Visualisation and Application Steering
Environment) [BJBH93] allows the steering of existing programs in a way which is
similar to programming language debuggers. On the other hand, computational envi-
ronments which were not originally developed with computational steering as in mind
(e.g., Matlab, R, Mathematica, etc.) can also be used to implement computational
steering through scripting.

2.6 Challenges

There are some challenges which need to be taken into considerations, to efficiently
implement computational steering technique in problem solving environments. In this
section we discuss three of them, namely: the performance of computational steering,
steering parallel and distributed applications, and the consistency of the computational
application.

2.6.1 Performance of Computational Steering System

The performance of a computational steering system is crucial for its success to attract
users. Furthermore, the overall goal of using computational steering is to accelerate
the scientific discovery process or to enhance the performance of a certain application
by redistributing the computational load over different processors. The performance
of a computational steering system can be improved by considering these three factor:
latency of the monitoring process, latency of the steering agent, and the cost of enacting
steering decisions [VS96]. In Chapter 5, we discuss some strategies to increase the
performance of the computational steering environment that is developed during the
course of this thesis.

26

2.6 Challenges

The Latency of Monitoring Process

One of the main functions of computational steering is to analyse, extract and present
the simulation data from the target simulation to the steering agent in a timely fashion
to allow for up-to-date visualisation and interpretation of the simulation results [VS99].
Such a process is usually referred to as monitoring. On the other side, some compu-
tational steering environments tightly integrate the collection of results with the sim-
ulation process itself by running a steering server in the same memory space as the
running simulation. While this technique will save some communication overhead, it
consumes additional memory due to the internal data structures. Some computational
steering environments overcome the problem of memory overhead by running the data
analysis stage in a remote computer by using the client/server model. Nonetheless,
simulation engines produce large amount of data. Transmitting such huge amounts of
data in the scale of petascale or exascale is still a challenge for the implementation of
computational steering environments.

The Latency of Steering Agent

Another factor that influences the performance of a computational steering is the re-
sponse time of the steering agent. In the case of a human agent, we cannot expect a
big improvement of the system performance [VS96]. However, the system should give
the user the ability to run the simulation step by step or in a complete batch way. In
the latter case, the performance will be determined by the algorithm reaction time.

The Cost of Enacting Steering Decision

The steering layer in Figure 2.3 is responsible for communicating the necessary infor-
mation from/to the user. The performance of this layer is also crucial for the overall
system performance, particularly, when the application and the user layers are dis-
tributed across different machines.

2.6.2 Steering of Parallel and Distributed Applications

With the advances of scientific computation, the application code itself could be run
on different computers or parallelised using multi-core machines. This issue bring more
challenges to include such applications into a computational steering framework. Fur-
thermore, the processes of collecting data and sending the user interactions become
more complicated. Additionally, care should be paid to the performance and the consis-
tency of the original application when incorporating it into the computational steering
framework. For example, CUMULVS provides a fault tolerance mechanism to recover
the application in the case of failure instead of starting it again.

27

2 Computational Steering: an Interactive Simulation Technique

2.6.3 Application Consistency

Application consistency (i.e., ensuring that the application’s internal data is coherent)
is another major issue when considering computational steering, particularly in the
case of permitting multiple users to steer the same model simultaneously. In such a
situation, a synchronisation mechanism is required to prevent different users editing
the same data structures at the same time.

2.7 Closing Remarks

In this chapter, we have presented an overview of computational steering techniques,
including various approaches, tasks, and related work. Computational steering is partic-
ularly useful to be used whenever considering solving large-scale problems that require
much time to be simulated. Although many computational steering environments have
been developed in the last years, none of them is dedicated to the task of interactive
modelling and analysing of biochemical networks. In Chapter 5, we present a more
specific and novel application of computational steering, the kinetic simulation of bio-
chemical networks by the use of Petri nets.

28

3 Simulation Approaches of
Biochemical Networks

3.1 Introduction

Computer simulation is an essential tool for studying biochemical systems. The deter-
ministic approach is the traditional way of simulating biochemical pathways [WUKC04,
Gil07, Pah09]. In this approach, reactions and their influence on the concentrations of
the involved species are represented by a set of ordinary differential equations (ODEs).
While this approach has the advantage of having a well-established mathematical
basis and documentation, it lacks the ability to capture the phenomena which may
occur due to the underlying discreteness and random fluctuation in molecular num-
bers [MA99, Pah09], especially in situations where the number of molecules is small.
The stochastic approach [Gil76, Gil77] overcomes the drawbacks of deterministic sim-

ulation and provides a natural way of simulating biochemical pathways, since it can suc-
cessfully capture fluctuations in the underlying model. Furthermore, it deals correctly
with the problem of extremely low numbers of molecules [MA99, ACT+05]. Neverthe-
less, a major drawback of stochastic simulation is that it is computationally expensive
when it comes to simulating larger biological models [ACT+05, LCPG08, Pah09], par-
ticularly when there are large numbers of molecules of some chemical species.
The situation becomes even more complicated if a model combines different reaction

scales, i.e., slow and fast reactions and/or species with small and large numbers of
molecules. In this case, neither stochastic nor deterministic simulation is appropriate to
efficiently analyse it, because stochastic simulation will be very slow and the continuous
one will fail to capture the fluctuation caused by species with few copies of molecules.
Hybrid simulation of biochemical networks has been previously studied in, for exam-

ple, [HR02, KMS04, SK05, ACT+05, GCPS06]. To overcome the problem of stiffness
(see Section 3.4.5), reactions are divided into two subsets: slow and fast. The slow set
is simulated stochastically, while the fast one is simulated continuously using an ODE
system.
In this chapter, we discuss frequently used approaches to simulate biochemical net-

works, including stochastic, deterministic and hybrid. Moreover, we pinpoint the Petri
net counterparts of these approaches: stochastic, continuous, and hybrid Petri nets.
The relationships between the simulation algorithms and Petri net notations are also
given. Based on the algorithms and Petri net classes discussed here, we will introduce in

29

3 Simulation Approaches of Biochemical Networks

the next chapter a new net class that simulates biochemical networks using the hybrid
approach.

3.2 Preliminaries

More formally in this chapter and the next one, we are interested in the following spe-
cific problem: consider a well mixed system of N chemical species S1, . . . , SN , which
interact using M chemical reactions R1, . . . , RM . Each reaction has a rate which de-
termines how often a reaction occurs. The reaction rates are calculated in terms of the
reactions’ substrates and the rate constants k1, . . . , kM (in the stochastic approach, kj
is usually denoted by cj to emphasise that they are not the same, however, they can
be calculated in terms of each other). Besides, the reactions S → φ and φ → S are
used to denote the degradation and synthesis of species S, respectively.
Additionally, each reaction Rj is associated with a state change vector, vj , which

determines the system changes when the reaction Rj takes place. The state of the
system at any time τ , can be represented by an N -vector X(τ) = x1(τ), . . . , xN (τ),
where xi(τ) gives the number of molecules of species Si at time τ , i.e., xi(τ) = Si(τ).
The goal is to find an estimated evolution of the vector X over the time τ , starting
from an initial state X(τ0) [Gil07].
In the following we often refer to a reaction Rj by just giving its index j. Moreover,

to simplify the mathematical notations, the vector X(τ) is sometimes denoted by just
x when it is not important to emphasise the notation of time. Later in Section 3.6, we
derive a correspondence between the notations introduced here and the Petri net ones.
Indeed, biochemical reaction networks can be intuitively modelled using Petri nets.
The system states are evolving with time. At each time step a reaction Rj occurs,

we get a new state of the system. For example, suppose the system is at time τ in a
state X(τ), if a reaction Rj occurs at time τ + dτ ; the system will reach a new state,
X(τ + dτ) = X(τ) + vj . The problem of how to calculate the system state accurately
and efficiently over the time is dissected in many research studies.
In the discrete approach (e.g., stochastic simulation algorithm (SSA) [Gil76]), the

states of the system are represented as vectors of non-negative integer numbers which
change discretely by occurring reactions, while in the continuous approach (e.g., using
ordinary differential equations to simulate the biochemical reaction network) system
states are represented by vectors of non-negative real numbers which change contin-
uously with respect to time. The hybrid approach combines discrete and continuous
states of the system. Continuous states can be viewed as average concentrations when
considering the hybrid setting.
In the sequel, we discuss some of the widely used methods to simulate biochemical

reaction networks.

30

3.3 Deterministic Approach

3.3 Deterministic Approach

If the thermodynamic limit condition holds (i.e., the number of molecules and the
volume of the system approach infinity), then the evolution of the above system can
be represented as a set of ODEs [HR02, WUKC04, Gil07] in the form of (3.1), where
the concentration of species Si is denoted by [Si].

d[Si]

dτ
= fi([S1], . . . , [SN]), (3.1)

where fi([S1], . . . , [SN]) is a function of the species concentration.

The deterministic simulation approach is based on the assumption that the system
under study has sufficiently many molecules that the number of molecules can be ap-
proximated by a continuous variable which can be solved using ordinary differential
equations [GB00]. Under this assumption, species’ concentrations are varying determin-
istically with time (i.e., if we repeat the simulation multiple times from a certain initial
state, we always reach the same state in a future time point). Indeed, deterministic
simulation describes X(τ) as a continuous deterministic process [Gil01].

The system of ODEs can be derived from the biochemical reactions using either
elementary kinetic rate laws (e.g., mass-action) or non-elementary phenomenological
rate laws (e.g., Michaelis-Menten kinetics). The difference between the two laws is the
required level of detail. For instance, a simple enzymatic reaction can be represented
as in (3.2) using Michaelis-Menten kinetics.

S
E−→ P (3.2)

By applying the law of Michaelis-Menten in (3.3) [BGHO08],

v = Vmax
[S]

Km + [S]
(3.3)

The corresponding ODEs can be obtained in (3.4)

d[P]

dτ
= −d[S]

dτ
= Kcat[Et]

[S]

Km + [S]
(3.4)

where Vmax = Kcat · [Et], [Et] is the total concentration of enzyme E, and Kcat, the
turnover number, is the maximum number of substrate molecules converted to product
per enzyme molecule per second.

Using mass-action kinetic law, the reaction in (3.2) can be further detailed into three
elementary reactions.

31

3 Simulation Approaches of Biochemical Networks

S + E
k1−→ S|E

S|E k2−→ S + E

S|E k3−→ P + E

(3.5)

where S|E is a complex formed by the substrate S and the enzyme E. The ODEs
can be derived using (3.6) as shown in (3.7).

d[Si]

dτ
=

M∑
j=1

vjikj

Nj∏
l=1

[Sl]
αjl (3.6)

where vji is the change in the number of molecules of Si due to the occurrence of
the reaction Rj , Nj is the number of reactant species in reaction j, and αjl is the
stoichiometric coefficient of reactant species Sl when participating in reaction Rj . For

the models presented in this thesis we often refer to the term kj

Nj∏
l=1

[Sl]
αjl by just the

pattern MassAction(k).

d[S]

dτ
= −k1 · [S] · [E] + k2 · [S|E]

d[P]

dτ
= k3 · [S|E]

d[E]

dτ
= −k1 · [S] · [E] + (k2 + k3) · [S|E]

d[S|E]

dτ
= k1 · [S] · [E]− (k2 + k3) · [S|E]

(3.7)

There are a multitude of ODE solvers to deal with (3.7) and produce a numerical
solution of it. In the following we briefly discuss some of the available options.

3.3.1 Types of ODE Solvers

Traditionally, ODE solvers can be classified based on different criteria, e.g., fixed-step
vs variable-step size, explicit vs implicit, fixed-order vs variable-order, single-step vs
multi-step, etc. For more details about this classification see [HNW93, HW96]. Usually,
ODE libraries provide an implementation of multiple different solvers that cover more
than one of the aforementioned criteria.
Fixed-step solvers advance the solution from one point to another by a fixed-step, h.

32

3.3 Deterministic Approach

A good approximation of the underlying ODEs is achieved if the step-size is kept very
small [PTVF02]. Examples of the ODE algorithms that fit in this category are Euler
and the classical Runge-Kutta method. However, using very small steps to obtain a
good approximation will result in a slow solver. Nevertheless, the very small step size
might not be required during the whole solution. Therefore, a good ODE integrator
should vary the step size throughout the solution process. Small steps can be used in
non-smooth regions, while relatively big step sizes are used in smooth solutions. Such
ODE solvers are called adaptive or variable-step size solvers. Usually all modern ODE
integrator are adaptive. The step size is usually determined through the satisfaction of
certain criteria, which are called accuracy in this context. The accuracy is a problem-
dependant. The main gains of using those solver type is the speed-up of the integration
time. An example of the algorithms in this category is the Cash-Karp Runge-Kutta
method.
Explicit solvers find the solution of the set of ODEs using the explicit formula:

yn+1 = yn + hf(xn, yn). (3.8)

That is they advance the solution using a previous solution point(s). A major problem
with this approach is that they cannot deal with stiff ODEs (see Section 3.4.5 for
an example). Contrary, implicit ODE solvers can be used to deal with such problem.
Implicit ODE solvers approximate the solution at point yn+1 in terms of the solution
at yn+1. That is, they find a solution by solving an equation involving both the current
state of the system and the later one. For each known explicit algorithm, an implicit
formula can be constructed. For instance, we have the explicit as well as the implicit
Euler method. Some solvers implement the two formulae by switching between the
explicit and implicit method when solving the same problems.
The order of the ODE solver is determined by the error term O(h). An ODE algo-

rithm is called of order n if it produces an error of O(hn+1). For example, the explicit
Euler method is of the first order, since it produces an error of O(h2) while the mid-
point method (or second-order Runge-Kutta) is of the second order, since it produces
an error O(h3) [PTVF02]. Reducing the error term corresponds to improving the ac-
curacy of the solution (i.e., solvers of higher orders are of higher accuracy). Similar to
the step size, some solvers use a fixed order throughout the solution, e.g., Euler, while
others use adaptive order, e.g., BDF (Backward Differentiation Formula).
Single-step algorithms (e.g., Runge-Kutta) produce the solution using only one his-

tory point. By other words, single-step ODE solvers approximate the behaviour of the
model at time τ + dt by taking into account only the behaviour of the model between
times τ and τ + dτ . Contrary, multi-step methods (e.g., BDF) use multiple history
points to produce the solution in a more efficient way. Therefore, multi-step algorithms
use the concept of memory to gain more performance index. For example, CVODE
find a solution at a certain point of time using a high order polynomial to multiple

33

3 Simulation Approaches of Biochemical Networks

predicted points. Thus, they outperform (with many stages) single-step algorithms. We
return back to discuss this point in Section 4.4.2 after introducing the simulation of
GHPN bio.

3.3.2 Problem of the Deterministic Approach

Nevertheless, if the system contains some species with low numbers of molecules, then
the thermodynamic limit condition will be violated and the deterministic approach
will not reflect the actual model behaviour [Gil76]. In this case, stochastic simulation
can be used to simulate the model at the molecular level which takes into account the
inherently discrete and stochastic nature of chemical reactions [MA99].

3.4 Stochastic Approach

Unlike the deterministic approach, stochastic methods [McQ67, Gil76, Gil77, MA99,
Gil07] simulate the system evolution with respect to time in a way that takes into
account the discrete and stochastic nature of reacting chemical species.
In the stochastic settings, each reaction Rj is characterised by a propensity function

denoted by aj which is defined by 3.9 [Gil76].

aj(x)dτ , the probability, given X(τ) = x that one reaction Rj will occur in
the next infinitesimal interval [τ, τ + δτ) (3.9)

The value of aj(x) in 3.9 is calculated based on the reaction type: unimolecular or
bimolecular reaction.

aj(x) =

cj · x, Rj of the form S → P1 + · · ·+ Pn

cj · x1 · x2, Rj of the form S1 + S2 → P1 + · · ·+ Pn
1
2cj · x1 · (x1 − 1), Rj of the form S + S → P1 + · · ·+ Pn

(3.10)

where cj is the stochastic reaction constant. It gives the probability that a particular
molecule or a randomly chosen pair of molecules will react in the next infinitesimal
time dτ , and P1, . . . , Pn are the reaction products.
In a similar mathematical form to (3.6) and (3.10) can be written as in (3.11).

aj(x) = cj ·
Nj∏
i=1

(
xi
αji

)
. (3.11)

In (3.10), the first reaction type is called unimolecular reaction, while the two other
reactions are called bimolecular reactions. The constant cj can be calculated in terms

34

3.4 Stochastic Approach

of the deterministic reaction rate constant kj . More details about how to calculate cj
given kj can be found in [WUKC04, Gil07].
For example, in a reaction of the form S1 + 3S2 + 2S3

c1−→ P1 +P2, a(x) is calculated
as follows

a(x) = c1 ·
(
x1
1

)
·
(
x2
3

)
·
(
x3
2

)
= (c1 · x1) · (

1

3
· x2 · (x2 − 1) · (x2 − 2)) · (1

2
· x3 · (x3 − 1))

In the following we briefly summarise some of the widely used stochastic methods
to simulate biochemical reaction networks.

3.4.1 Chemical Master Equation

The ultimate goal of the stochastic approach is to find the molecule numbers of each
molecular species Si at a certain time τ . This can be expressed in terms of probability
rules by

Px(τ) = P{x, τ |X(τ0), τ0}, (3.12)

meaning the probability at time τ that the system will be in state X(τ) = x given the
initial state X(τ0) [Gil76, WUKC04].
Next, consider the following two system state changes:

x− vj
aj(x−vj)−−−−−−→ x (3.13)

and

x
aj(x)−−−→ x + vj (3.14)

which denote the change to state x, and the change away from state x, respectively
by the occurrence of the reaction Rj .
From (3.13) and (3.14) we get the chemical master equation in (3.15) [McQ67].

∂Px(τ)

∂τ
=

M∑
j=1

[aj(x− vj)P(x−vj)(τ)− aj(x)Px(τ)] (3.15)

While (3.15) can determine (3.12) and in turn could calculate the molecular num-
bers at time τ , it is extremely difficult to solve it either analytically or numerically,
except for very simple models. See [WGMH10, HMMW10] for some examples of how
to solve (3.15) numerically.
The reason for this difficulty is that (3.15) requires one ODE for each possible com-

bination of reactant molecules. In other words, the number of ODEs does not depend

35

3 Simulation Approaches of Biochemical Networks

on the number of reactions or the number of species only, instead it depends on any
possible combination of molecules of any species [Gil76, WUKC04, WGMH10].
Gillespie [Gil76, Gil77] proposed a method to construct numerical realisations of the

number of molecules in each species. The resulting trajectory is equivalent to the one
obtained by applying (3.15) but requires less computations. In the following subsections
we briefly discuss the general idea of generating simulated trajectories of the system
state as well as other various of these methods.

3.4.2 Direct Method

Instead of using (3.12), Gillespie [Gil76] defined a new probability function p(δτ, j|x, τ)
to generate simulated trajectories of X(τ):

p(δτ, j|x, τ) = aj(x)exp(−a0(x), δτ), (3.16)

where p(δτ, j|x, τ) is the probability that the next reaction in the system will occur
in the infinitesimal time interval [τ+δτ, τ+δτ+ε) given that the system is in a certain
state X(τ) = x, δτ the next time for a reaction to occur, ε is a small error, j the type
of this reaction and

a0(x) =
M∑
j=1

aj(x) (3.17)

is the total (cumulative) propensity.
The function p(δτ, j|x, τ) is the joint probability function of two random variables:

δτ and j. Using Monte Carlo simulation, we can generate samples for both δτ and
j [Gil76].
According to the direct method [Gil76, Gil77], the next time δτ at which a reaction

will occur is specified by

δτ = − 1

a0(x)
ln r1 , (3.18)

and the reaction Rµ to occur is determined by

µ−1∑
j=1

aj(x) < r2a0(x) ≤
µ∑
j=1

aj(x) , (3.19)

where r1 and r2 are two random numbers which are generated from a uniform dis-
tribution (0, 1) [Pah09].
The steps involved in simulating a set of reactions using the direct method are

summarised in Algorithm 3.1.

36

3.4 Stochastic Approach

Algorithm 3.1: Direct method
1: τend ← simulation end time
2: Initialise the simulation using the initial state x = x0, τ = τ0;
3: while τ ≤ τend do
4: For each reaction Rj , calculate aj(x);
5: Calculate a0 using (3.17);
6: Generate two random numbers r1, r2 from the uniform distribution (0,1);
7: Calculate δτ , µ using (3.18) and (3.19) respectively;
8: Fire the reaction Rµ;
9: Update the system state and current time using X(τ + δτ) = X(τ) + vµ and

τ = τ + δτ , respectively;
10: end while

3.4.3 First Reaction Method

An alternative to the direct method is the first reaction method [Gil76]. The main
difference between the two methods is how to generate δτ and j. In the first reaction
method,M random numbers, r1, . . . rM , are drawn from the uniform distribution (0,1).
Then, the putative firing times of all of the reactions, δτj′ , are calculated according

to (3.20).

δτj′ = − 1

aj′(x)
ln rj′ (3.20)

After that, the next time a reaction to occur is δτ = the smallest of the δτj′ and the
next reaction type, j, to fire is the one with minimum δτj′ .

Algorithm 3.2 summarises the steps needed to generate simulated trajectories using
the first reaction method.
The first reaction method is empirically slower than the direct method for a system

which contains a substantially large number of reactions [Gil07]. However, the first
reaction method is useful in certain applications where some extensions are added to it.
For instance the next reaction method, which will be presented in the next subsection,
is an extension of the first reaction method that outperforms the efficiency of the direct
method. Moreover, it can be parallelised much easier than the direct method.

3.4.4 Next Reaction Method

The direct and first reaction methods are very slow when they simulate models with
many species and many reactions. Therefore, there are a number of extensions to
enhance the computational efficiency of these basic algorithms. In [GB00], the first
reaction method is extended by two ways to speed up the basic stochastic simulation

37

3 Simulation Approaches of Biochemical Networks

Algorithm 3.2: First reaction method
1: τend ← simulation end time
2: Initialise the simulation using the initial state x = x0, τ = τ0;
3: while τ ≤ τend do
4: For each reaction Rj , calculate aj(x);
5: Draw M random numbers from the uniform distribution (0,1);
6: Calculate the putative firing time, δτj′ , for each reaction using (3.20);
7: Calculate δτ=Min{δτj′} and j=the reaction index of the minimum δτ ;
8: Fire the reaction Rj ;
9: Update the system state and current time using X(τ + δτ) = X(τ) + vj and

τ = τ + δτ , respectively;
10: end while

algorithm (SSA): the introduction of dependency graphs and priority queues.

One reason behind the low performance of the SSA algorithms is the necessity to
keep the reaction propensities up-to-date after the occurrence of a certain reaction. One
naive solution is to recompute propensities of all the reactions when one of them took
place. Following this idea, O(M) basic operations will be needed each time a reaction
occurs. Indeed, it is a source of low performance. Gibson and Bruck [GB00] propose an
idea to minimise the required time for this step by introducing the dependency graph.
The idea behind the dependency graph data structure is to record for each reaction Rj
the other dependent reactions which need their propensities to be updated after the
firing of Rj .

While the dependency graph outperforms the performance of the two other basic
exact methods, it needs more efforts to be implemented. Furthermore, it requires extra
space to store the additionally introduced data structure.

The other extension is the introduction of an indexed priority queue to decrease the
number of generated random numbers. Indeed, the next reaction method uses only one
random number per reaction firing. In this data structure, the next reaction to fire is
always put in the root of a binary tree. Initially, M random numbers are needed to
initialise the priority queue. Afterwards, when a reaction occurs, its putative time is
replaced by a new value and its position is updated so that the basic premise of the
data structure is maintained (i.e., the reaction with minimum firing time is kept in the
root).

It has been repeatedly asserted that the next reaction method could increase the
simulation performance, while preserving the exactness of the SSA. Nevertheless, it re-
quires substantial implementation efforts. The detailed algorithm can be found in [GB00,
Gib00].

38

3.4 Stochastic Approach

3.4.5 Tau-leaping Method

Although the two stochastic simulation algorithms (direct and first reaction methods)
and their many variations are exact and accurate, they are very slow to solve many
practical problems [Gil07, Pah09]. The reason for such low performance is that SSA
insists to simulate each reaction individually.
The tau-leaping method [Gil01, GP03, RPCG03, CGP05, CGP06] has been pro-

posed to overcome such limitations by sacrificing the exactness of the SSA and gaining
some speed-up by firing multiple reactions together in one step. The idea behind such
procedure is to advance the simulation time by a certain step size, δτ , such that during
the time period [τ, τ + δτ], no propensity function is changed by a significant amount.
The constraint of keeping the change in the reaction propensity very small is called
the leaping condition [Gil01]. Calculating an appropriate value of δτ is the central and
most difficult question in using the tau-leaping method.
The tau-leaping method provides one further approximation step to simulate bio-

chemical reaction networks. Indeed, it can provide a smooth transition from the ex-
act SSA to the chemical Langevin equation and finally to the deterministic simula-
tion [Gil01].
The tau-leaping method defines for each reaction Rj a constant nj such such that:

nj(δτ ;x, τ) , the number of times a reaction
Rj will fire in the time interval [τ, τ + δτ], given X(τ) = x.

(3.21)

Under the assumption of the leaping condition, nj(δτ ;x, τ) will be the Poisson ran-
dom variable defined by (3.22) [Gil01, GP03].

nj(δτ ;x, τ) = P (aj(x), δτ) (3.22)

Let d =
M∑
j=1

njvj , then the tau-leaping condition can be rewritten mathematically

as in (3.23).

select δτ : ∀Rj , |aj(x + d)− aj(x)| is effectively small. (3.23)

Explicit Tau-leaping

The first realisation of the tau-leaping procedure is the explicit tau-leaping. It is called
explicit because it uses an explicit updating formula (notice the correspondence in
terminology between ODEs and tau-leaping methods).
The explicit tau-leaping method produces an approximate trajectory of M reaction

channels by firstly selecting a value for the step size δτ that satisfies 3.23. Then it

39

3 Simulation Approaches of Biochemical Networks

generates M statistically independent random numbers from the Poisson distribution
n1, . . . , nm. Finally, the system state is updated using (3.24).

X(τ + δτ) = X(τ) +
M∑
j=1

njvj (3.24)

Although, it seems very trivial to perform the simulation using this simple procedure,
the selection of δτ is tricky [Gil01]. In addition to satisfying the leaping condition, the
stochastic step-size needs to take into consideration the following two problems:

• δτ needs to be large enough such that we get noticeable simulation speed-up,

• the selected δτ should not result in negative values in the species number of
molecules.

These issues are discussed in more details in [GP03, GP03, CGP05, CGP06]. Select-
ing a very small value for δτ such that δτ = 1

a0(x)
, will result in trajectories which are

equivalent to the SSA ones. In this case only one reaction will fire at each time step,
and it will fire only once [Gil01]. Indeed, δτ plays a crucial role in controlling the speed
and accuracy of the tau leaping method.

Stiffness in Biochemical Reactions

Stiffness in systems of ODEs occurs in problems where the independent variables have
more than one time-scales [PTVF02]. Using explicit ODE methods (e.g., explicit Euler
or explicit Rung-Kutta), the ODE integrator takes steps that are excessively small.
Therefore, explicit methods either take very long time to solve the problem or fail
completely to produce a solution. The latter case occurs when the ODE solvers require
a step size which is below a certain accuracy threshold.
Similarly, in the discrete approach (e.g., stochastic simulation), stiffness can occur

due to the existence of reactions with more than one time scales [PWC11]. For an
example see the reaction set in (3.25), assuming mass-action kinetics with c1 = c2 =
105 and c3 = 0.0005 and the initial state x(0) = (10000, 10000, 100), reaction R3 is
much slower than R1 and R2.

R1 :S1
c1−→ S2

R2 :S2
c2−→ S1

R3 :S1 + S2
c3−→ S3

(3.25)

Thus neither the SSA nor the explicit tau-leaping algorithm can efficiently solve the
problem. Moreover, the advantage of leaping multiple reactions together will be lost.

40

3.4 Stochastic Approach

One option to deal with the stiffness problem in the discrete case is to emulate the
ODE methods and use an implicit updating formula (discussed in next subsection).
While another one is to seek the hybrid approach (discussed in Chapter 4).

Implicit Tau-leaping

If the underlying reaction system is stiff, the explicit τ -leaping method will be of low
performance. Inspired by the idea of dealing with stiffness in ODEs, an implicit tau
leaping method was proposed in [RPCG03]. The proposal is to replace the explicit
updating formula in 3.24 with a new implicit formula given by (3.26).

X(τ + δτ) = X(τ) +

M∑
j=1

[Pj(aj(x)δτ)− aj(x)δτ + aj(X(τ + δτ))δτ]vj (3.26)

In fact the major difficulty of developing an implicit method for the tau leaping
simulation is that the tau leaping is based on the Markov process theory which is
memoryless when considering updating the system states [Gil07]. For this reason a
partial implicitisation is used in (3.26).
The trapezoidal tau-leaping method [CP05] and the adaptive explicit-implicit tau-

leaping procedure [CGP07] are two other extension of the updating formula in (3.26).
The detailed steps are beyond the scope of this thesis. Nevertheless, these methods

are not easy to be implemented contrary to the simple SSA procedures. Therefore,
they require the existence of a library of solvers to be used by systems biologists.
Stocksim [LCPG08] is a library that offers an implementation of various algorithms.

3.4.6 Others

Many other extensions of the simple SSA procedure have been reported in the litera-
ture. On the one hand, the Optimised Direct Method [CLP04] reorders the reactions
such that those of large propensities have lower indexes. Similarly, the Sorting Direct
Method [MPC+06] uses a sorting algorithm to dynamically reorder the reactions. The
Kinetic Monte Carlo method [Sch02] reuses intermediate data and performs the search
(step 6 in algorithm 3.1) in O(log M). On the other hand, some procedures are based
on the Quasi-steady state approximation [Gou05] to reduce the reaction set and then
apply the SSA algorithm on the reduced system.
Besides, the standard SSA algorithms support only one event type (reaction type),

namely a stochastic event. Therefore, they preserve the Markovian property. There
are other extensions that do not take into account the Markovian property and thus
they support other event types such as immediate and deterministic time delay (see

41

3 Simulation Approaches of Biochemical Networks

Section 3.6.1) [HLGM09]. Such additional events are necessary to implement a certain
model logic in typical biological cases (see Chapter 6).

3.5 Hybrid Approach

Hybrid simulation of biochemical reaction networks using both stochastic and deter-
ministic kinetics was studied in [HR02, KMS04, SK05, ACT+05, GCPS06, HL07]. The
main idea of this approach is to partition the entire set of reactions into two different
subsets: slow and fast [Pah09]. Slow reactions occur infrequently and they might be
responsible for unexpected model behaviours (e.g., noise, volume variation, molecule
fluctuations). Therefore, they are better to be stochastically simulated. Contrary, fast
reactions occur frequently and it is better, from the simulation efficiency point of view,
to simulate them continuously.
Stochastic simulation can be done using one of the algorithms discussed in Sec-

tion 3.4, while continuous simulation can be carried out using either ODEs or the
chemical Langevin equation. However, the most important and challenging questions
of the hybrid simulation are the partitioning of reactions and the synchronisation of
the stochastic and continuous regimes.
Partitioning the reactions into slow and fast ones might seem to be an easy task.

However, it is critical for a successful hybrid simulation algorithm to have an efficient
partitioning scheme. For instance, inefficient partitioning might result in a hybrid sim-
ulation which is slower than the stochastic one. Moreover, in order to simulate fast
reactions continuously, their reactants have to satisfy the thermodynamic condition
(i.e., the number of molecules and the volume of the system approach infinity) [Gil07].
Nevertheless, partitioning of reactions can be done either off-line (static) before the
simulation starts, or on-line (dynamic) while the simulation is running.
Similarly, synchronisation of the two simulation regimes is vital to the accuracy of

the simulation result. The continuous and stochastic simulators are not isolated from
each other, instead there is a mutual influence between them. Indeed, continuously
simulated reactions depend on the state of the stochastic simulator and the propen-
sities of stochastic reactions are changing with time when the continuous simulator
advances [HR02].
In the sequel, we discuss reaction partitioning and the simulator synchronisation in

more detail.

3.5.1 Reaction Partitioning

An initial step to use hybrid simulation algorithms is to tell the simulation engine
which reactions to simulate continuously and which ones are simulated stochastically.
This problem can be solved using either an off-line (static) approach (i.e., perform the
partitioning independently from the simulation), or using an on-line (dynamic) method

42

3.5 Hybrid Approach

(i.e., re-check and repartition reactions during the simulation). In the following, we
discuss the static and dynamic approaches independently.

Static Partitioning

Using a static partitioning scheme, reactions are partitioned off-line before the sim-
ulation starts. Partitioning can be specified by the user or by providing threshold
values and to let the simulator performs the partitioning during the initialisation. Usu-
ally, users determine such partitioning using some knowledge of previously executed
stochastic or continuous simulation (single run only).
A major advantage of this approach is that it does not require any additional com-

putational overhead during the simulation to perform the partitioning. Moreover, it is
easy to be understood by the modeller, since reactions can easily be enforced to be
simulated stochastically or continuously.
Nevertheless, rates of biochemical reactions are often not constant over time. They

may dynamically change with respect to time, since they depend on the current state of
the reactants. Slow reactions can change themselves into fast ones during the simulation
and vice versa. For instance, simulating an oscillating model may result in reaction rates
that oscillate during the simulation between slow and fast. Thus dynamic partitioning
is useful in this case.

Dynamic Partitioning

To deal with the drawback of static partitioning, dynamic partitioning checks repeat-
edly the current rates of transitions during the simulation. It repartitions them into
stochastic and continuous ones if they have been substantially changed. Such partition-
ing scheme can correctly deal with dynamically changing rates and therefore increases
the simulation efficiency. Reactions can be partitioned according to the current rates,
current number of molecules of reactants, or using combinations of these two criteria.
Using the current reaction rates to perform the partitioning, transitions are parti-

tioned into slow and fast through pre-defined thresholds. High threshold values produce
accurate results, while low values speed-up the simulation. However, partitioning us-
ing reaction rates only does not guarantee that the thermodynamic condition will be
fulfilled. Thus, other partitioning criteria are required.
Dynamic partitioning using a threshold of the species’ number of molecules amends

the drawback of partitioning using only reaction rates. In this method, species are
partitioned according to their current number of molecules into two subsets: those
which are below a certain threshold (group 1) and those which are above the threshold
value (group 2). A reaction is simulated continuously only if all of its reactants belong
to group 2.
A combination of those two methods is frequently used (e.g., in [ACT+05, GCPS06]).

43

3 Simulation Approaches of Biochemical Networks

That is the simulator obtains two thresholds to dynamically perform the partitioning.
One threshold is used for the place markings while another one is used for the transition
rates. A reaction is simulated continuously if the following two conditions are satisfied:

• the current reaction rate is above a certain threshold

• all of the reaction’s reactants are above a certain (other) threshold

Although the dynamic partitioning approach can efficiently deal with the problem
of dynamically changing reaction rates, it introduces new computational challenges to
the simulation. This additional overhead is due to the many rechecking and reparti-
tioning of reactions. Therefore, it is recommended that the user selects in advance the
appropriate partitioning scheme for the model under study.
In Chapter 4, we introduce the dynamic partitioning for hybrid Petri nets and provide

two additional thresholds to help to efficiently simulate and represent biochemical
networks.

3.5.2 Simulator Synchronisation

The hybrid simulation of biochemical networks consists basically of the coordination
of continuous and stochastic simulation modules. Discrete solvers are usually asyn-
chronous (i.e., the time steps are random), while continuous solvers are often syn-
chronous (i.e., the time steps are deterministic) [KMS04]. Early developed hybrid al-
gorithms are based on heuristic ideas, where the occurrence times of stochastic events
are heuristically captured. On the other hand, mathematically founded algorithms are
based on the mathematical relationship between stochastic events and the continuous
simulation. Examples of these approaches are given below.

Heuristic Approach

As one example of the hybrid algorithms that are based on the heuristic approach, we
consider here the one by Kiehl et al. [KMS04]. In this algorithm, the set of reactions
are partitioned into two regimes: discrete and continuous. Reactions in the continu-
ous regime are implemented using the ODEs integrators. The Runge-Kutta algorithm
with fixed or variable step size is used. The partitioning leaves some species being rep-
resented in both regimes due to their participation in reactions which are simulated
using continuous and discrete simulators. These species are called bridging species.
They have two representations: one is a molecular representation (non-negative integer
values) and the other one is concentrations (non-negative real values).
The algorithm starts by calculating the putative time of the stochastically simulated

reactions. Then, the ODEs integrator is advanced to τ+∆τ , where ∆τ is the minimum
of the integrator step size (h) or the stochastic step (δτ). At the end of each ODEs

44

3.5 Hybrid Approach

step, the time-varying propensities are calculated and a putative time for the next
stochastic event is calculated (τ1). The system is updated using either the time and
the state values of the ODE integrator if (τ1 > t + ∆τ), or using the stochastic time
and the states of the continuous variables in addition to the firing of the occurred
stochastic event.
Another example of algorithms that also fit in this category is the one presented

in [TKHT04], where an embedded meta-algorithm is used. They combine multiple
simulation algorithms to solve a multi-time scale model. The method consists of: (1)
data structure, which manages the model specification and execution, (2) driver al-
gorithm, which describes the synchronisation between the different solvers, and (3)
integration algorithm which specifies the procedure by which the state variables are
updated.
Although this approach can combine different simulation algorithms, it can not guar-

antee that events are accurately detected by stochastic and continuous simulators. With
other words, the proposed interrupt function of each algorithm is left to the user to
define it. Moreover, the process of how to assign state variables to each algorithm has
not been discussed.

Exact and Approximate Approach

Due to the combination of both deterministic and stochastic reactions in the hybrid
simulation approach, the propensities of the stochastic reactions depend on the state
change of deterministically simulated reactions [HR02, SK05, Pah09]. Gillespie [Gil91]
derived the correct reaction probability density function for this case as

P (δτ, µ|X(τ), τ) = aµ(X(τ + δτ)) exp (−
∫ τ+δτ

τ
a0(X(τ))dτ) . (3.27)

In [HR02], fast reactions are represented by a continuous Markov process being
coupled with a Markov jump process for slow reactions where the continuous-time
Markov chain is approximated by ODEs. However, they do not consider time vary-
ing propensities for slow reactions; instead a probability is introduced that no reac-
tion occurs to decrease the approximation error [Pah09]. Other hybrid methods, for
example in [ACT+05, GCPS06], consider time-varying propensities of slow reactions
using (3.28).

g(x) =

∫ τ+δτ

τ
as0(x)dτ − ξ = 0 , (3.28)

where ξ is a random number exponentially distributed with a unit mean, and as0(x) is
the cumulative propensity of slow reactions.
Using (3.28), the hybrid simulation algorithm can switch between deterministic and

stochastic simulation by integrating the set of ODEs representing fast reactions along

45

3 Simulation Approaches of Biochemical Networks

with the cumulative propensity, as0(x), till (3.28) is satisfied, which means that a
stochastic event has to occur. Then, a stochastic reaction Rµ is selected such that

µ−1∑
j=1

asj(x) < r2a
s
0(x) ≤

µ∑
j=1

asj(x) , (3.29)

where asi (x) is the propensity of the i-th slow reaction.
Later in Chapter 4, we not only have to detect stochastic events, but also other

event types such as immediate and deterministic events. Immediate events represent
the firing of an immediate transition while deterministic events represent the firing of
a deterministically delayed transition and/or scheduled transition (see Section 3.6).
The algorithms discussed so far focus only on the simulation aspects. There are

however other approaches which model the biochemical networks using a different
primitives. Petri nets are one of these approaches.

3.6 Petri Nets

Petri nets are weighted, directed, bipartite graphs. They consist of two types of nodes:
places, and transitions. Arcs are used to connect different node types. They are directed
(i.e., from places to transitions or vice versa). Places are usually used to represent
passive system components (e.g., conditions, resources, etc.), while transitions are used
to represent active system components (e.g., events, processes, etc.). Places can carry
non-negative integer values called place markings or tokens. Arcs are associated with
positive integer values which are called arc weights.
The original ideas of Petri nets was introduced in Carl Adam Petri’s disserta-

tion [Pet62] and initially called place/transition nets. They are an excellent mathe-
matical and graphical modelling formalism for describing and studying systems that
are characterized by being concurrent, asynchronous, distributed, parallel or non-
deterministic.
Since the ideas of Carl Adam Petri, many extensions have been proposed. Among

the most prominent extensions are deterministically timed, stochastic, continuous and
hybrid Petri nets. They have been applied in many discipline, e.g., industry, academia,
circuit design, communication protocols, distributed computing, production systems,
manufacturing, transportations, ecosystems, and systems biology.
In the biochemical network context, places may represent species (e.g., genes, pro-

teins, mRNA, etc.), while transitions represent reactions (e.g., degradation, translation,
transcription, association, disassociation, phosphorylation, etc.). The place markings
represent the number of molecules of certain species, arc weights correspond to the
stochiometry of the chemical reactions, pre-places are the reactants, and post-places
the products. Before continuing with formally introducing Petri nets, it is useful to

46

3.6 Petri Nets

S

10

E

SE P

R1

R3

R2

(a)

S

9

E

SE P

R1

R3

R2

(b)

Figure 3.1: Petri net representation of the reaction set in (3.5). Pre-places represent
reactants, post-places represent products, transitions represent reactions,
tokens represent molecules. (b) single firing of the transition R1 in Fig-
ure 3.1a. One token is removed from each A, E and added to AE.

define the following notations.

Notation 1 The current marking of a place pi is denoted by m(pi), •tj and t•j denote
the pre-places and post-places of a tradition tj, respectively, •pi and p•i denote the pre-
and post-transitions of a place pi, respectively.

As an illustrative example consider again the enzyme-catalysed reaction in equa-
tion (3.5). Figure 3.1 gives the Petri nets representation of the reaction set in (3.5).
Notice how the Petri net notions are intuitive to graphically represent the biochemical
reaction network. Notice that m(pi) is equivalent to xi which have been introduced in
Section 3.2.
In addition to the static syntax of Petri nets, they have also a dynamic semantics.

The dynamics of Petri nets are defined by enabling and firing of transitions.
A transition t is called enabled if each of its pre-places contains at least the number

of tokens specified by the weight of the corresponding arc. For example, the transition
R1 in Figure 3.1a is enabled, while transition R2 in the same figure is not enabled.

If a transition is enabled, it may fire and the net reaches a new marking state. The
firing of a transition t involves removing some tokens from its pre-places (•t) and adding
some tokens to its post-places (t•). The number of added (removed) tokens is equal
to the arc weight that connect t with the post-place (pre-place) p. For example, the
Petri net in Figure 3.1b is the same one as in Figure 3.1a, but after a single firing of
transition R1. Firing of a transition corresponds to the occurrence of a reaction in the
biochemical context.
Additionally, Petri nets can be classified into different classes based on one or more

properties. For instance, a Petri net is called pure, if it has no self-loop, and it said to
be ordinary if all of its arc weights are 1’s.

47

3 Simulation Approaches of Biochemical Networks

Moreover, Petri nets are characterised by some interesting behavioural and structural
properties. The former ones may be marking-dependent while the latter depend only
on the topological structure of the Petri nets. Examples of behavioural properties are:
reachability, boundedness, liveness, coverability, persistence and reversibility. Examples
of structural properties are: conservativeness, and repetitiveness. Detailed discussion
of these properties can be found in [Mur89].
In the sequel, we formally define Petri nets and some of the well known extensions

which have been published in the context of systems biology. In Chapter 4, we define a
new class of Petri nets which combines all features from the classes that are discussed
in this chapter.

Definition 3.1 (Petri nets) Petri nets are 5-tuple N = < P, T,A, F,m0 > where:

• P is a finite, non-empty, and disjoint set of places.

• T is a finite, non-empty set of transitions.

• A ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.

• F : A→ N is a function that assigns a positive integer number to each arc a ∈ A.

• m0 : P → N0, is a function that assign a non-negative integer number to each
place as the initial marking.

Here N and N0 denote the sets of positive and non-negative integer numbers, respec-
tively.

2

Definition 3.2 (Enabling condition of Petri nets) Let N = < P, T,A, F,m0 >
be a Petri net and m the current marking of N . A transition tj ∈ T is enabled in the
marking m, denoted by m[tj〉, iff ∀pi ∈ •tj, m(pi) ≥ F (pi, tj).

2

Definition 3.3 (Firing rule of Petri nets) Let N = < P, T,A, F,m0 > be a Petri
net, m the current marking of N , and tj ∈ T a transition enabled in the marking m.
A transition tj can fire and reach a new marking m′, denoted by m[tj〉m′, with:

• ∀pi ∈ •tj
m′(pi) = m(pi)− F (pi, tj)

• ∀pi ∈ t•j

m′(pi) = m(pi) + F (tj , pi)

2

48

3.6 Petri Nets

3.6.1 Stochastic Petri Nets

Starting with the standard Petri nets, which contain only one type of place; transition;
and arc, many extensions were proposed. In these discrete classes of Petri nets, the
discrete state space description is preserved (e.g., see [KBD+94, GHL07, HLGM09]).
One popular extension is the introduction of non-standard arcs (extended arcs) which
yields extended Petri nets [HLGM09]. Another extension is the introduction of time as
a delay to either places or transitions [KBD+94, GHL07].

The most popular extensions of net arcs are the read and inhibitor arcs. They are
used to simplify the modelling process. A read arc is used to replace two reciprocal
standard arcs with the same weight, while an inhibitor arc is introduced to inhibit
the enabling of a transition when the marking of a place is greater than or equal to a
certain threshold. Figure 3.2 illustrates the semantics of read and inhibitor arcs.
Unlike extending the standard Petri net definition by defining new arcs, some exten-

sions are focused on associating time to transitions or places [KBD+94]. Assigning time
to places is not frequently used. Time can be assigned to transitions, but the interpre-
tation of the delay may have different meaning. Nevertheless, the time delay could be
deterministic or stochastic. In the former, transitions are fired after a deterministically
delayed time, while in the latter, the delay time is a random variable exponentially
distributed.
Due to space limit, it is not viable to delineate separately all of the variants of

extended and stochastic Petri nets, instead; we will consider one extension which com-
bines most often used features in the context of systems biology : extended stochastic
Petri nets (XSPN bio) [MRH12].
XSPN bio extend the standard Petri nets by including: immediate, deterministically

timed, scheduled and stochastic transitions. Moreover, they provide different arc types:
standard, read, inhibitor, reset, and modifier arcs.

Definition 3.4 (Extended stochastic Petri nets) XSPN bio are a 6-tuple
XSPN bio = [P, T,A, F, V,m0] where:

• P is a finite, non-empty, and disjoint sets of places.

• T = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tstoch is the set of stochastic transitions, which fire stochastically after an
exponentially distributed waiting time.

2. Tim is the set of immediate transitions, which fire with waiting time zero;
they have higher priority compared with other transition types.

3. Ttimed is the set of deterministically delayed transitions, which fire after a
deterministic time delay.

49

3 Simulation Approaches of Biochemical Networks

4. Tscheduled is the set of scheduled transitions, which fire at predefined time
points.

• A = Astandard ∪Ainhibit ∪Aread ∪Aequal ∪Areset ∪Amodifier is the set of directed
arcs, with:

1. Astandard ⊆ ((P × T) ∪ (T × P)) defines the set of standard arcs.

2. Aread ⊆ (P × T) defines the set of read arcs.

3. Ainhibit ⊆ (P × T) defines the set of inhibitor arcs.

4. Aequal ⊆ (P × T) defines the set of equal arcs.

5. Areset ⊆ (P × T) defines the set of reset arcs.

6. Amodifier ⊆ (P × T) defines the set of modifier arcs.

• F : A → N is a function which assigns a positive integer number to each arc as
the arc weight.

• V is a set of functions V = {g, d, w} where :

1. g : Tstoch → Hs is a function which assigns a stochastic hazard function hst
to each transition tj ∈ Tstoch, whereby Hs = {hst |hst : R|

•tj |
0 → R+

0 , tj ∈
Tstoch} is the set of all stochastic hazard functions, and g(tj) = hst ,∀tj ∈
Tstoch.

2. w : Tim → Hw is a function which assigns a weight function hw to each
immediate transition tj ∈ Tim, such that Hw = {hwt |hwt : R|

•tj |
0 → R+

0 , tj ∈
Tim} is the set of all weight functions, and w(tj) = hwt ,∀tj ∈ Tim.

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function which assigns a constant time

to each deterministically delayed and scheduled transition representing the
(relative or absolute) waiting time.

• m0 : P → N0, is a function which assign a non-negative integer number to each
place as the initial marking.

Here R+
0 denotes the set of non-negative real numbers.

2

Please note that the arc weights of reset and modifier arcs are always set to be one
which is a special case of the function F .

50

3.6 Petri Nets

p1 p4

p2

p3

2

3

(a)

p1 p4

p2

p34

2

3

(b)

p1 p4

p2

p3

2

3

(c)

p1 p4

p2

p3

2

3

(d)

Figure 3.2: Examples of extended arcs. p1, p2, p3 are connected with standard, read,
and inhibitor arcs, respectively. (a) the net is not enabled, because p2 < 2,
(b) the net is also not enabled, because p3 > 3, (c) the net is enabled, (d)
the net of (c) after firing of the transition, the markings of p2 and p3 do
not change when the transition fires.

Semantics of SPN

The semantics of an SPN model is the continuous time Markov chains (CTMC),
therefore it can be simulated using one of the SSA algorithms presented in Section 3.4.
However, The extensions of SPN discussed in this section destroy the Markovian
property. Nevertheless, a few extensions can be added to SSA algorithms to produce
the semantics of XSPN on the simulation level.
Figure 3.3 presents the simulation results of the Petri nets in Figure 3.1, when it

is read as a stochastic Petri nets. The transition rate are mass-action kinetics with a
constant rate of 0.1.

3.6.2 Continuous Petri Nets

To model systems with large number of states, it is extremely hard or even impossible to
use the discrete Petri net extensions. Continuous Petri nets were introduced in [DA87]
to overcome such problems. In continuous Petri nets, the discrete token values of places
are replaced with continuous values (also called fluid marking). Transitions fire con-

51

3 Simulation Approaches of Biochemical Networks

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

m
o

le
c
u

le
s

time

S

P

(a)

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

m
o

le
c
u

le
s

time

S

P

(b)

Figure 3.3: Stochastic simulation results of the Petri net in Figure 3.1. (a) single run,
and (b) average of 100 runs .

tinuously with time. Similar to the discrete Petri nets, many extensions were proposed
to the original idea of continuous Petri nets. A recent survey of the different classes of
continuous Petri nets can be found in [DA10].
For our purpose of simulating biochemical networks, we are interested in a certain

class of Petri nets: continuous transitions with maximum firing speed depending on
time [DA10].

Definition 3.5 (Continuous Petri nets) Continuous Petri nets are 6-tuple N = <
P, T,A, F, v,m0 > where:

• P is a finite, non-empty, and disjoint sets of continuous places.

• T is a finite, non-empty set of continuous transitions.

• A ⊆ (P × T) ∪ (T × P) is a finite set of directed arcs.

• F : A→ Q+ is a function which assigns a positive real number to each arc a ∈ A.

• v : T → H is a function which assigns a firing rate function ht to each transition
tj ∈ T , whereby Hc = {ht|ht : R|

•tj |
0 → R+

0 , tj ∈ T} is the set of all firing rate
functions, and v(tj) = ht, ∀tj ∈ T .

• m0 : P → R+
0 , is a function which assigns a non-negative real number to each

place as the initial marking.

Here Q+ denote the set of positive rational numbers.

2

52

3.6 Petri Nets

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

c
o

n
c
e

n
tr

a
ti
o

n

time

S

P

Figure 3.4: Continuous simulation results of the Petri net in Figure 3.1.

Semantics of CPN

The specific continuos Petri nets (continuous Petri nets with transitions of maximum
firing speeds depending on time) have been introduced in systems biology as biochem-
ically interpreted continuous Petri nets (CPN bio) [GH06]. This net can provide a con-
venient means of describing ODEs in a structure-oriented manner. Each transition tj
is associated with a rate function vj(τ) which defines its generally state-dependent
kinetic rate (i.e., reaction propensity in the biochemical context). The corresponding
ODE which describes the change of the concentration of the species pi is generated by
(3.30), see e.g., [GH06],

dm(pi)

dτ
=
∑
tj∈•pi

F (tj , pi)vj(τ)−
∑
tj∈p•i

F (pi, tj)vj(τ) (3.30)

Note that place names are here read as real-valued variables. Equation (3.30) corre-
sponds to (3.1).
Figure 3.4 presents the simulation results of the Petri nets in Figure 3.1, when it is

read as a continuous Petri net. The same kinetics are also used as in simulating the
same example stochastically. In this example, we can notice the similarity between the
single simulation run result of the continuous simulation and the average runs of the
stochastic one in Figure 3.3. In fact, the stochastic simulation results will be identical
to the average stochastic results if many runs are executed for this example.

3.6.3 Hybrid Petri Nets

Hybrid Petri nets [AD98, DA10] incorporate both discrete and continuous capabilities
and can be used to model systems which contain both discrete and continuous elements.
The classical example used to demonstrate the idea of HPN is the water tank model.

53

3 Simulation Approaches of Biochemical Networks

OnOff

Water_tank
Water_increaseWater_decrease

On_to_Off

Off_to_ON

2

0.1

water level test

(a)

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

A
m

o
u

n
t

o
f

W
a

te
r

time

water tank

On

Off

(b)

Figure 3.5: An example of Hybrid Petri Nets: the water tank model (a) HPN represen-
tation, (b) simulation result. Two discrete places are used to represent the
discrete system states (on/off). A continuous place is used to model the
current amount of water in the tank. The minimum and maximum amount
of water in the tank are 0.1, and 2, respectively. The continuous transition
water_increase increases the amount of water by a constant rate (0.1) when
the system is in the on state, while the transition water_decrease decreases
the amount of water by a constant rate 0.1 when the system is in the off
state. The discrete transitions, on_to_off and off_to_on, read the current
amount of water and switch the system state respectively from on to off,
or off to on. Notice that how read arcs are used to read the system state,
while inhibitor arc is used to inhibit the transition off_to_on based on the
amount of water in the continuous place water_tank

Figure 3.5 represents the water tank model using HPN semantics. Obviously, this model
requires discrete and continuous places. The former are used to represent discrete states
(on/off), while the latter are used to model water flow.
Many variations of hybrid Petri nets have been introduced during the last two

decades, with different modelling goals. In the following we briefly discuss some of
the HPN classes which are used in the literature.
An interesting class of hybrid Petri nets are the Differential Petri Nets (DPNs)

[DK98]. DPNs contain differential places (equivalent to continuous places), differential
transitions (equivalent to continuous transitions), discrete places and discrete transi-
tions. They have been introduced for design and performance analysis of industrial
supervisory control systems. Continuous transitions fire continuously with time and
they are associated with a rate and delay. The delay is equivalent of the ODE inte-
grator (fixed or variable) time step size. The main difference between DPNs and other
HPNs is that differential places and arc weights could contain negative values. This

54

3.6 Petri Nets

assumption is useful in some applications where ODE variables can contain negative
values. Moreover, DPNs are conflict free (see Section 4.2.6).
Hybrid Dynamic Nets (HDN) [Dra98] allow any function for defining state-

dependent transition rates, without structural restrictions. Contrary, in our net class,
we restrict the domain of rate functions to the transitions’ pre-places (see Definition
4.2.2). This constraint is very useful in biological context and crucial for the efficiency of
our tools, since the reactions’ rates are calculated in terms of the reactions’ substrates.
We provide a special arc type called modifier to allow any place in the transitions’ rate
functions.
Hybrid Functional Petri Nets (HFPN) were introduced in [MTA+03] to allow

any function to be assigned as an arc weight or as transition delay. Hybrid Functional
Petri Nets with extension (HFPNe) [NDMM04] extend HFPN by generic entities and
generic data types. However, dynamic partitioning of transitions into discrete and
continuous ones is not considered. In [YLL09], transitions can be simulated in an
adaptive way, but distinction between discrete and continuous places is not supported.
Other transition types (e.g., immediate transitions) are not supported neither.
Contrary, Fluid Stochastic Petri Nets (FSPNs) [TK93] combine both stochastic

and continuous net parts into one net class. However, they suffer from unclear and
inconsistent graphical representations [HK99] which make them inappropriate for our
purpose of representing and simulating biochemical networks (for an example see Sec-
tion 4.7.1). More importantly, they do not support the full range of deterministically
delayed transitions as we do.
Finally, another example of HPN classes are the First-Order Hybrid Petri Nets

(FOHPNs) [BGM00]. FOHPN are able to model systems whose first-order continuous
behaviour can be studied by linear algebraic tools. A distinguished feature of FOHPNs
is the use of linear programming to compute transition instantaneous firing speeds
(rates). They consider the problem of transition speed calculation as an optimisation
problem and try to find at each time step the appropriate rates of transitions.
In this thesis we are mainly interested in this specific class of hybrid Petri nets. In

the next chapter a new hybrid Petri net class in introduced which combines both of
the features of extended stochastic Petri nets and continuous Petri nets, introduced in
subsections 3.6.1 and 3.6.2, respectively.

3.6.4 High-Level Petri Nets

With the increasing size of biological models, low-level Petri nets do not scale [Liu12].
Therefore, there is a need to find a better way to easily manage big models with repet-
itive components. Two scenarios can be used to deal with such models. Hierarchical
Petri nets [Feh93] and coloured Petri nets [Jen95]. High-level Petri nets can not be
considered independently from the low-level one. For instance, the majority of analysis
and simulation techniques of coloured Petri nets are mainly based on the uncoloured

55

3 Simulation Approaches of Biochemical Networks

one by unfolding.
Hierarchical Petri nets facilitate the reuse of model building blocks to design larger

ones. Although hierarchy does not add any power to the Petri net, it is important to
design large non-trivial models using Petri nets [Feh93]. Subnets can be represented as
places or transitions. Moreover, hierarchical Petri nets provide a systematic scenario
to view the model under different levels of details.
Coloured Petri nets can represent a group of similar components by one colour com-

ponent, each component is represented and defined in terms of a colour. An interesting
advantage of coloured Petri nets is that the model size can be easily increased [Liu12].
Coloured extensions of all the Petri net class discussed earlier in this chapter have been
presented in the literature (e.g., see [Liu12]). Our computational steering framework,
which will be presented in Chapter 5, also supports coloured Petri nets.

3.7 Closing Remarks

In this chapter we have surveyed previous work in the field of biochemical modelling
and Petri nets. From our discussion we can draw and re-consider the following remarks:

• With the progress of systems biology, it becomes vital to consider substantially
larger computational models. These models can combine subnets of different
scales. Therefore, a continuous or a stochastic approach becomes inefficient to
produce the dynamics of these systems. Thus, it is evident that hybrid simula-
tion is of paramount importance for the simulation and analysis of biochemical
networks.

• For each biochemical modelling approach (deterministic, stochastic, or hybrid),
there is a corresponding Petri net class which can solve the same problem but
in a more elegant and intuitive way. A Petri net model has the advantage of
structural and graphical representation compared with the traditional approaches
(e.g., using only the ODE solvers to simulate the biochemical model). It has a
dual role: graphical and mathematical.

• Although many hybrid Petri net classes have been introduced in the literature,
none of them provides the full interplay between stochastic and continuous tran-
sitions, as required particularly in the context of biochemical network modelling.

Therefore, we are going to introduce Generalised Hybrid Petri Nets in the next chap-
ter. GHPN bio provide a tight coupling of the stochastic and deterministic modelling
approaches. The hybrid modelling capabilities of GHPN bio are not only on the simu-
lation level but also on the representation one. GHPN bio cover almost all of the open
issues that have been discussed in this chapter.

56

4 Generalised Hybrid Petri Nets

4.1 Introduction

Motivated by previous work that has been presented in the literature and briefly sur-
veyed in Chapters 1 and 3, we introduce in this chapter a new Petri nets class, Gener-
alised Hybrid Petri Nets (GHPN bio) [HH12a] tailored to the specific needs of modelling
and simulation of biochemical networks. It provides rich modelling and simulation func-
tionalities by combining all features of Continuous Petri Nets and Extended Stochastic
Petri Nets (XSPN). Herein, we focus on modelling and simulation of stiff biochemical
networks, in which some reactions are represented and simulated stochastically, while
others are carried out deterministically. Additionally, two related simulation algorithms
are presented, supporting static (off-line) partitioning and dynamic (on-line) partition-
ing. This chapter comes with a full-fledged implementation, supporting the introduced
net class as well as the discussed simulation algorithms. The specific contributions of
this part are:

• The introduction of GHPN bio which are particularly well suited for the specific
needs of systems biologists to represent and simulate different reaction types with
convenient and rich modelling capabilities (different transition types and different
arc types). Moreover, GHPN bio, compared with other hybrid Petri nets discussed
in Chapter 3, provide the full interplay of stochastic and continuous transitions.

• The provision of two related algorithms to simulate the dynamics of GHPN bio

using either static partitioning in which the partitioning is done off-line before
the simulation starts, or using dynamic partitioning in which the partitioning is
done on-line during the simulation.

• Unlike previous work of studying stiff biochemical networks which focused on the
simulation aspect only, this chapter considers representation as well as simulation
features for a better understanding of such networks.

• All features discussed in this chapter are implemented in the platform-independent
tool Snoopy [RMH10, HHL+12] which can be downloaded from [Sno12].

In simulating GHPN bio we are more interested in a general simulation algorithms
that allows the combination of any SSA and ODE solvers.

57

4 Generalised Hybrid Petri Nets

This chapter is organised as follows: using the related work which has been presented
in Chapter 3, we start off with introducing GHPN bio and show how they can be simu-
lated using static or dynamic partitioning. More specifically, GHPN bio are defined by
formally specifying their syntax, enabling and firing rules, conflict resolution, and the
generation of the corresponding ODEs. In Section 4.4 we discuss three implementa-
tion aspects related to the simulation of GHPN bio. Next, we discuss the relationship
between SPN , CPN , and GHPN bio. To help to better position our contribution, we
compare between GHPN bio and four other similar hybrid Petri net classes. For the
sake of completeness two simple examples are discussed in this chapter. More realistic
biological case studies are postponed until Chapter 6. Finally, we sum up by some
conclusions and closing remarks.

4.2 Generalised Hybrid Petri Nets

In this section, we discuss in more detail the different aspects of the Generalised Hybrid
Petri Nets class. We start with its modelling capabilities of biological systems, specifi-
cally in simulating stiff biochemical networks, and explain how GHPN bio models can
be simulated.

4.2.1 Modelling

To model stiff biochemical networks, GHPN bio combine both stochastic and continuous
elements in one and the same model. Indeed, continuous and stochastic Petri nets
complement each other. The fluctuation and discreteness can be conveniently modelled
using stochastic simulation, and at the same time the computationally expensive parts
can be simulated deterministically using ODE solvers. Modelling and simulation of
stiff biochemical networks are outstanding functionalities that GHPN bio provide for
systems biology.
Generally speaking, biochemical systems can involve reactions from more than one

type of biological network, for example gene regulation, metabolic pathways, or trans-
duction pathways. Incorporating reactions that belong to distinct (biological) networks
tends to result in stiff systems. This follows from the fact that gene regulation networks’
species may contain small numbers of molecules, while metabolic networks’ species may
contain large numbers of molecules [KMS04].
In the rest of this section, we will discuss in more detail the newly introduced net

class in terms of the graphical representation of its elements as well as the firing rules
and connectivity between the continuous and stochastic net parts.

58

4.2 Generalised Hybrid Petri Nets

Elements

The GHPN bio elements are classified into three categories: places, transitions and arcs.
Figure 4.1 provides a graphical illustration of those elements.
GHPN bio offer two types of place: discrete and continuous. Discrete places (single

line circle) hold non-negative integer numbers which may represent the number of
molecules of a given species (tokens in Petri net notions). On the other hand, continuous
places - which are represented by the shaded line circle - hold non-negative real numbers
which represent the concentration of a certain species. Please note that, except when
otherwise mentioned, the number which a place pi holds, also called its marking, is
referred to by m(pi).

Furthermore, GHPN bio offer five transition types: stochastic, immediate, determinis-
tically delayed, scheduled, and continuous transitions [HGD08]. Stochastic transitions,
which are drawn in Snoopy as a single line square, fire randomly with an exponentially
distributed random delay. The user can specify a set of firing rate functions that deter-
mine the random firing delay. The transitions’ pre-places can be used to define the firing
rate functions of stochastic transitions. Immediate transitions (black bar) fire with zero
delay, and have always highest priority in the case of conflicts with other transitions.
They may carry weights (which can also be defined by a state-dependent functions) that
specify the relative firing frequency in the case of conflicts between immediate transi-
tions. Deterministically delayed transitions (represented as black squares) fire after a
specified constant time delay. Scheduled transitions (grey squares) fire at user-specified
absolute time points. Continuous transitions (shaded line square) fire continuously in
the same way as in continuous Petri nets. Their semantics are governed by ODEs
which define the changes in the transitions’ pre- and post-places. More details about
the biochemical interpretation of deterministically delayed, scheduled, and immediate
transitions can be found in [HLGM09]. To simplify the presentation, we occasionally
refer to stochastic, immediate, deterministically delayed or scheduled transitions as
discrete transitions.
The connection between those two types of node (places and transitions) takes place

using a set of different arcs. GHPN bio offer six types of arc: standard, inhibitor, read,
equal, reset, and modifier arcs. Standard arcs connect transitions with places or vice
versa. They can be discrete, i.e., carry non-negative integer-valued weights (stoichiom-
etry in the biochemical context), or continuous, i.e., carry non-negative real-valued
weights. In addition to their influence on the enabling of transitions, they also af-
fect the place marking when a transition fires by adding (removing) tokens from the
transition’s post-places (pre-places). For more details, see Section 4.2.2.
Extended arcs such as inhibitor, read, equal, reset, and modifier arcs can only be

used to connect places to transitions, and not vice versa. A transition connected with
an inhibitor arc is enabled (with respect to the corresponding pre-place) if the marking
of the pre-place is less than the arc weight. In contrast, a transition connected with a

59

4 Generalised Hybrid Petri Nets

read arc is enabled if the marking of the pre-place is greater than or equal to the arc
weight. Similarly, a transition connected using an equal arc is enabled if the marking
of the pre-place is equal to the arc weight.
The other two remaining arcs do not affect the enabling of transitions. A reset

arc is used to reset a place marking to zero when the corresponding transition fires.
Modifier arcs permit one to include any place in the transitions’ rate functions and
simultaneously preserve the net structure restriction. Besides, the markings of places
connected using read, inhibitor, equal, or modifier arcs does not change when the
corresponding transition fires.
The connection rules and their underlying formal semantics are discussed in more

detail below. Figure 4.1 provides a graphical illustration of all elements. Although this
graphical notation is the default one, they can be customised easily using our Petri
nets editing tool, Snoopy.
As a simple example for the above discussion, consider again the stiff biochemical

network in (3.25) which is now illustrated in Figure 4.2. Using GHPN bio, the slow
reaction R3 can be modelled using a stochastic transition, while the other two fast
reactions, R1 and R2, can be represented as continuous transitions. Places are parti-
tioned into discrete and continuous ones based on the connection rules which will be
discussed next.

Connection Rules

A critical question arises when considering the combination of discrete and continuous
elements: how are these two different parts connected with each other? Figure 4.3
provides a graphical illustration of how the connection between different elements of
GHPN bio takes place.

First, we will consider the connection between continuous transitions and the other
elements of GHPN bio. Continuous transitions can be connected with continuous places
in both directions using continuous arcs (i.e., arcs with real-valued weights). This means
that continuous places can be pre- or post-places of continuous transitions. These
connections typically represent deterministic biological interactions.
A Continuous transitions can also be connected with discrete places, but only by one

of the extended arcs (inhibitor, read, equal, and modifier). Read arcs allow to specify
positive side conditions, while inhibitor arcs allow to specify negative side conditions.
This type of connection permits a link between discrete and continuous parts of the
biochemical model.
Discrete places are not allowed to be connected with continuous transitions using

standard arcs, because the firing of continuous transitions is governed by ODEs which
require real values in the pre- and post-places. Hence, this cannot take place in the
discrete world. It is worth mentioning that some authors allow such connections, e.g.,
see [DK98, BGM00, DA10]. However, they impose additional conditions to ensure that

60

4.2 Generalised Hybrid Petri Nets

Discrete

Standard

Continuous

Stochastic

Inhibitor Equal ResetRead

Continuous Immediate Deterministic

<1>

Scheduled

[_SimStart,1,_SimEnd]

Modifier

Places

Transitions

Arcs

Figure 4.1: Graphical representation of the GHPN bio elements [HH12a]. Places are
classified as discrete and continuous; transitions as continuous, stochastic,
immediate, deterministically delayed and scheduled; and arcs as standard,
inhibitor, read, equal, reset, and modifier.

real values do not occur. For instance in [DA10], if an arc between a discrete place and
a continuous transition exists, another reciprocal arc must exist with the same weight
value. Second, discrete transitions can be connected with discrete or continuous places
in both directions using standard arcs. However, the arc weights need to be considered.
The connection between discrete transitions and discrete places takes place using arcs
with non-negative integer numbers (i.e., discrete values), while the connection between
continuous places and discrete transitions is weighted by non-negative real numbers
(i.e., continuous values). The general rule to determine the weight type of arcs is the
type of the connected place.
Figure 4.4 illustrates graphically the semantics of the different extended arcs that are

included in GHPN bio. Notice how these arcs can simplify the modelling process. For
instance, to model the situation where the current marking is reset when transition t
fires, would require three transitions and several standard arcs. However, using a reset
arc, these can be intuitively done, as shown in Figure 4.4.d. Note that the equivalence
between a read arc and two reciprocal standard arcs, as shown in Figure 4.4.a, is valid

61

4 Generalised Hybrid Petri Nets

S2

S1

S3

R3R1R2

Figure 4.2: An example of a stiff biochemical network: GHPN bio representation of the
reactions in (3.25) Assuming mass-action kinetics with c1 = c2 = 105 and
c3 = 0.0005 and the initial state x(0) = (10000, 10000, 100), reaction R3 is
much slower than R1 and R2.

or

or

or

or

or

or

or

or

Continuous TransitionDiscrete Transition

Figure 4.3: Possible connections between GHPN bio elements. The restrictions are as
follows. Discrete places cannot be connected with continuous transitions
using standard arcs, continuous places cannot be tested with equal arcs,
and continuous transitions cannot use reset arcs.

only under the interleaving semantics of Petri nets.

Connecting continuous places and discrete transitions will result in a model like
in [TK93], in which changes in continuous places are governed by the firing of stochastic
transitions. Discrete transitions can also have discrete or continuous pre-places using
extended arcs.

62

4.2 Generalised Hybrid Petri Nets

p p p p

p

P_reset

pp1 P2

p1p1

t t t t

t

t

t

p1+P2

reset

check_reset

33 3 3 4 3

(a) (b)

(d)(c)

Figure 4.4: Arc semantics in GHPN bio: (a) a read arc replaces two standard arcs to
check m(p) ≥ 3, (b) an equal arc replaces two extended arcs (read and
inhibitor arcs) to check if m(p) = 3, (c) a modifier arc is used to render
the use of place p2 in transition rate without any effect on the enabling of
transition t (assuming that p1 + p2 is a rate function for the transition t),
and (d) a reset arc replaces two immediate transitions, one place and four
arcs to set m(p) = 0 when transition t fires.

4.2.2 Formal Definition

In this section, the syntax and semantics of GHPN bio are formally defined. In Sec-
tion 4.3, two algorithms are presented to simulate the semantics of GHPN bio.

63

4 Generalised Hybrid Petri Nets

Definition 4.1 (Generalised Hybrid Petri Nets) Generalised Hybrid Petri Nets
are a 6-tuple GHPNbio = [P, T,A, F, V,m0], where P , T are finite, non-empty and
disjoint sets. P is the set of places, and T is the set of transitions with:

• P = Pdisc∪Pcont, whereby Pdisc is the set of discrete places to which non-negative
integer values are assigned, and Pcont is the set of continuous places to which non-
negative real values are assigned.

• T = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled ∪ Tcont with:
1. Tstoch is the set of stochastic transitions, which fire stochastically after an

exponentially distributed waiting time.
2. Tim is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with other transitions.
3. Ttimed is the set of deterministically delayed transitions, which fire after a

deterministic time delay.
4. Tscheduled is the set of scheduled transitions, which fire at predefined time

points.
5. Tcont is the set of continuous transitions, which fire continuously over time.

• A = Acont∪Adisc∪Ainhibit∪Aread∪Aequal∪Areset∪Amodifier is the set of directed
arcs, with:

1. Adisc ⊆ ((P × T) ∪ (T × P)) defines the set of discrete arcs,
2. Acont ⊆ ((Pcont × T) ∪ (T × Pcont)) defines the set of continuous arcs,
3. Aread ⊆ (P × T) defines the set of read arcs,
4. Ainhibit ⊆ (P × T) defines the set of inhibits arcs,
5. Aequal ⊆ (Pdisc × T) defines the set of equal arcs,
6. Areset ⊆ (P × TD) defines the set of reset arcs,
7. Amodifier ⊆ (P × T) defines the set of modifier arcs,

where TD = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled is the set of discrete transitions.

• F is a function

F :

Acont → Q+,

Adisc → N,
Aread → Q+,

Ainhibit → Q+,

Aequal → N,
Areset → {1},
Amodifier → {1}.

64

4.2 Generalised Hybrid Petri Nets

which assigns a positive integer value or positive rational value as a weight to each
arc depending on the arc type. If an arc is not explicitly weighted, traditionally,
we assume a weight of 1.

• V is a set of functions V = {g, d, w, f} where :

1. g : Tstoch → Hs is a function which assigns a stochastic hazard function hst
to each transition tj ∈ Tstoch, whereby Hs = {hst |hst : R|

•tj |
0 → R+

0 , tj ∈
Tstoch} is the set of all stochastic hazard functions, and g(tj) = hst ,∀tj ∈
Tstoch.

2. w : Tim → Hw is a function which assigns a weight function hw to each
immediate transition tj ∈ Tim, such that Hw = {hwt |hwt : R|

•tj |
0 → R+

0 , tj ∈
Tim} is the set of all weight functions, and w(tj) = hwt ,∀tj ∈ Tim.

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function which assigns a constant time

to each deterministically delayed and scheduled transition representing the
(relative or absolute) waiting time.

4. f : Tcont → Hc is a function which assigns a rate function hc to each
continuous transition tj ∈ Tcont, such that Hc = {hct |hct : R|

•tj |
0 → R+

0 , tj ∈
Tcont} is the set of all rates functions and f(tj) = hct , ∀tj ∈ Tcont.

• m0 = mcont ∪ mdisc is the initial marking for both the continuous and discrete
places, whereby mcont ∈ R|Pcont|

0 , mdisc ∈ N|Pdisc|
0 .

2

4.2.3 Semantics

The semantics of GHPN bio is given in terms of the discrete and continuous transitions.
To harmonise the mathematical notations, let TC = T − TD = Tcont denote the set of
continuous transitions.

Definition 4.2 (Enabling condition) Let N = [P, T,A, F, V,m0] be a generalised
hybrid Petri net and m be the marking of N at time τ . A transition tj ∈ T is enabled
in the marking m, denoted by m[tj〉, iff ∀pi ∈ •tj:

• m(pi) ≥ F (pi, tj), if (pi, tj) ∈ Acont ∪Adisc ∧ tj ∈ TD,

• m(pi) > 0, if (pi, tj) ∈ Acont ∧ tj ∈ TC ,

• m(pi) ≥ F (pi, tj), if (pi, tj) ∈ Aread,

• m(pi) < F (pi, tj), if (pi, tj) ∈ Ainhibit,

65

4 Generalised Hybrid Petri Nets

• m(pi) = F (pi, tj), if (pi, tj) ∈ Aequal.

2

Definition 4.3 (Firing rule of discrete transitions) Let N = [P, T,A, F, V,m0]
be a generalised hybrid Petri net, m a marking of N , and tj ∈ TD a transition en-
abled in the marking m, m[tj〉, at time τ . The transition tj can fire and reach a new
marking m′, denoted by m[tj〉m′, at time τ + dj if it is still enabled at that new time,
with:

• ∀pi ∈ •tj

m′(pi) =

m(pi)− F (pi, tj) if (pi, tj) ∈ Acont ∪Adisc
0 if (pi, tj) ∈ Areset
m(pi) else

• ∀pi ∈ t•j

m′(pi) = m(pi) + F (tj , pi)

where

dj =

d(tj) if tj ∈ Ttimed
τ + d(tj) if tj ∈ Tscheduled
dstoch(tj) if tj ∈ Tstoch
0 if tj ∈ Tim

is a delay which is associated to the discrete transition tj and dstoch(tj) is random
firing delays with negative exponential probability density function calculated for each
stochastic transition tj using its rate g(tj).

2

According to the above enabling and firing definitions, discrete transitions follow a
policy which is called an enabling memory policy [KBD+94].

Firing of continuous transitions The semantics of continuous transitions are ana-
logue to the ones in continuous Petri nets with maximal firing speeds depending on time
as introduced in [DA10] and tailored to the specific needs is systems biology [GH06].
The transitions’ current firing rates (instantaneous firing speeds) depend on the cur-
rent marking of their pre-places (i.e., species concentrations). In what follows, the firing
semantics of continuous transitions are formally given.

66

4.2 Generalised Hybrid Petri Nets

We introduce the following notation. Let vj(τ) represent the current firing rate of a
transition tj ∈ TC at time τ , mi(τ) = m(pi) denote the current marking of a place pi
at time τ , and fj(τ)=f(tj) denote the maximal firing rate of a transition tj at time τ ,
then:

vj(τ) =

{
fj(τ) if tj is enabled
0 else

(4.1)

Equation (4.1) implies that a continuous transition can fire with its maximal rate if
it is enabled or its rate will be zero otherwise.
When a continuous transition is enabled, it fires as soon as possible and its effect on

the connected places can be given by the following definition.

Definition 4.4 (Firing of continuous transitions) Let N = [P, T,A, F, V,m0] be
a generalised hybrid Petri net, m a marking of N , tj ∈ TC a transition enabled in the
marking m, m[tj〉, at time τ , and vj(τ) denotes the current firing rate of the transitions
tj. The transition tj fires with:

• ∀pi ∈ •tj
mi(τ + dτ) = mi(τ)− F (pi, tj) · vj(τ)dτ (4.2)

• ∀pi ∈ t•j

mi(τ + dτ) = mi(τ) + F (tj , pi) · vj(τ)dτ (4.3)

2

Equations (4.2) and (4.3) are called outflow and inflow of a place pi, respectively,
due to the firing of a transition tj [DA10]. Summing up all inflow and outflow of a
certain place will result in (3.30) (see page 53).

4.2.4 Generation of the Corresponding ODEs

For a given transition tj ∈ TC , the functions read(w, pi), inhibit(w, pi) are defined as
follows:

read(w,m(pi)) =

{
1 if m(pi) ≥ w
0 else

with w = F (pi, tj) ∧ (pi, tj) ∈ Aread, and

inhibit(w,m(pi)) =

{
1 if m(pi) < w

0 else

67

4 Generalised Hybrid Petri Nets

with w = F (pi, tj) ∧ (pi, tj) ∈ Ainhibit

Then the ODE corresponding to each continuous place in GHPNbio can be generated
using (4.4)

dm (pi)

dτ
=
∑
tj∈•pi

F (tj , pi) · vj (τ) · read(w,m(pi)) · inhibit(w,m(pi))−

∑
tj∈pi •

F (pi, tj) · vj (τ) · read(w,m(pi)) · inhibit(w,m(pi))
(4.4)

Notice also that (4.4) is obtained from (3.30) by introducing read and inhibitor arcs.
We will illustrate by examples the effects of extended arcs on the ODEs. Figure 4.5 is
a GHPN bio without any extended arc. Each place has an ODE, because each one is
connected with a transition by a standard arc. The continuous transition rate is abbre-
viated by a pattern from the biochemical context, MassAction(k) (see Section 3.3).

In Figure 4.6, p4 is connected with the transition t using a read arc. Its effect is
reflected in the ODEs by multiplying the transition’s rate function by the aforemen-
tioned boolean function read(w,m(pi)), while it has no ODE because it is a discrete
place; meaning the read arc has no effect on the place itself.
Figure 4.7 contains two different special arcs: read and inhibitor arc. The read arc

plays the same role as in Figure 4.6, and the inhibitor arc makes its effect by the
inhibit(w,m(pi)) function. The weight of the former arc is 5 while the later one has
weight of 2. In this case, the rate function of transition t is switched on whenm(p4) ≥ 5
and m(p5) < 2. The places p4, p5 have zero change rates (p4 is a discrete place, hence
it has no ODE).
Figure 4.8 illustrates the idea behind modifier arcs. The place p4 is connected with

transition t by a modifier arc. The modifier arc allows us to use the pre-place in the
transition’s rate function. Thus the current marking of the pre-place has an influence
on the transition rate without being changed itself.
The functions read(w,m(pi)) and inhibit(w,m(pi)) define full activation and full

inhabitation of the connected transition. If the modeller does not require such semantics
of read and inhibitor arcs and prefers an explicit representation of the inhibition and
activation via appropriate kinetic equations, then a modifier are can be used to model
such cases.

4.2.5 Marking-dependent Arc Weights

To support the special modelling requirements of some biological models (e.g., cell
cycle model), arc weights are allowed to be defined by pre-place of a transition [Val78]
or even a function which is defined in terms of the transition’s pre-places [MTA+03].

68

4.2 Generalised Hybrid Petri Nets

p1

p2

p3

MassAction(k)

dm(p1)/dt = −k ·m(p1) ·m(p2)
dm(p2)/dt = −k ·m(p1) ·m(p2)
dm(p3)/dt = k ·m(p1) ·m(p2)

Figure 4.5: Example of ODEs generation of GHPN bio without extended arcs.

p4

p1

p2

p3

MassAction(k)

dm(p1)/dt = −k ·m(p1) ·m(p2) ·m(p4) · read(1,m(p4))
dm(p2)/dt = −k ·m(p1) ·m(p2) ·m(p4) · read(1,m(p4))
dm(p3)/dt = k ·m(p1) ·m(p2) ·m(p4) · read(1,m(p4))

Figure 4.6: Example of ODEs generation of GHPN bio with a read arc.

69

4 Generalised Hybrid Petri Nets

p1

p2

p3

p4

p5

MassAction(k)

2

5

dm(p1)/dt = −k ·m(p1) ·m(p2) · (m(p4))5 · read(5,m(p4)) · inhibit(2,m(p5))
dm(p2)/dt = −k ·m(p1) ·m(p2) · (m(p4))5 · read(5,m(p4)) · inhibit(2,m(p5))
dm(p3)/dt = k ·m(p1) ·m(p2) · (m(p4))5 · read(5,m(p4)) · inhibit(2,m(p5))
dm(p5)/dt = 0

Figure 4.7: Example of ODEs generation of GHPN bio with read and inhibitor arcs.

p4

p1

p2

p3
MassAction(k)*p4

dm(p1)/dt = −k ·m(p1) ·m(p2) ·m(p4)
dm(p2)/dt = −k ·m(p1) ·m(p2) ·m(p4)
dm(p3)/dt = k ·m(p1) ·m(p2) ·m(p4)

Figure 4.8: Example of ODEs generation of GHPN bio with a modifier arc.

70

4.2 Generalised Hybrid Petri Nets

Consider the following biological example. When a cell divides the mass between
two daughter cells, each daughter takes approximately half of the mass. This situation
cannot easily be modelled using standard Petri nets as shown in Figure 4.9a. In Fig-
ure 4.9b, using the marking-dependent arc weight; the ingoing arc of the transition t
has a weight equal to the marking of the place p1, while each of the two outgoing arcs
has a weight equal to half of the marking of place p1.

Motivated by the case study discussed in more details in Section 6.2, marking-
dependent weights are introduced to the majority of arc types supported by GHPN bio

(standard, read, inhibitor, and equal arc). For more detail see Chapter 6.
The aforementioned definition of GHPN bio does not account for such arc weights.

However, few extensions are required on the syntactic level.

Definition 4.5 (Marking-dependent arc weight) Let Dn and Dq be sets of func-
tions defined as follows:

Dn = {dn|dn : N|
•tj |
0 → N, tj ∈ T}, and

Dq = {dq|dq : R|
•tj |
0 → Q+, tj ∈ T}

then the function F (compare Section 4.2.2) assigns a marking-dependent function
to each arc depending on its type and is defined as follows:

F :

Acont → Dq,

Adisc → Dn,

Aread → Dq,

Ainhibit → Dq,

Aequal → Dn,

Areset → {1},
Amodifier → {1}.

This definition of arc weights permits the functions to be defined in terms of the
marking of the destination transition’s preplaces and therefore preserves the structure
of the Petri net.

4.2.6 Conflict Resolution

A structural conflict [KBD+94, DA10] is given if a place has two post-transitions. A
structural conflict turns into an effective one if the current marking enables both transi-
tions, but only one of them can fire. To resolve the effective conflicts between transitions
which belong to different types, we assume implicitly a priority level assigned to each
transition type. The priority order from high to low is:

71

4 Generalised Hybrid Petri Nets

p1

p2

p3

t

<1>

(a)

p1

p2

p3

t

<1>

p1

p1/2

p1/2

(b)

Figure 4.9: Marking-dependent weight illustrated by a simple biological example. (a)
cell division cannot be modelled, (b) cell division can intuitively be mod-
elled.

• immediate transitions,

• stochastic transitions,

• deterministically delayed (including scheduled) transitions, and

• continuous transitions.

For example, in the case of conflict between an immediate transition and a stochastic
one, the immediate transition will fire first. However, if there is a conflict between
continuous and stochastic transitions, stochastic transitions will be given a priority to
fire. Nevertheless, a conflict might also exist between transitions of the same type.
Conflicts between immediate transitions will be resolved by computing the relative

firing frequencies of each enabled immediate transition. More precisely, if an immediate
transition tj is enabled in the current markingm, then it fires with the probability given
by (4.5).

w(tj)(m)∑
tk∈Tim∧isEnabled(tk,m)

w(tk)(m)
(4.5)

where w(tj)(m) is the weight assigned to an immediate transition tj in the current
marking m, and isEnabled(tk,m) is a function that checks if a transition tk is enabled
on the marking m.
Stochastic transitions will never be in a conflict with each other due to the exponen-

tial distribution of the random waiting time [KBD+94].
Conflicts between deterministically delayed transitions are solved by selecting one of

them randomly. Indeed, they enjoy the original Petri net property of non-determinism.

72

4.2 Generalised Hybrid Petri Nets

B

10

A

1

D

10

EC

R2

k2*A*D

R1

k1*A*B

k1 0.01

k2 0.001

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
o
n
c
e
n
tr

a
ti
o
n

time

A

E

C

(b)

Figure 4.10: Conflict between continuous transitions. (a) Petri net representation, (b)
time course result of species A. Structural conflict might exist, however
there will be no effective conflicts.

Finally, structural conflicts [DA10] might exist between continuous transitions; how-
ever, effective conflicts will not occur. To clarify this point, consider the two simple
reactions in (4.6) and their Petri net representation in Figure 4.10.

A+B
k1−→ C

A+D
k2−→ E

(4.6)

According to the mass-action kinetic law, the rates of the two reactions are: k1 ·A ·B
and k2 ·A ·D, where k1 and k2 are the kinetic rate constants.

In this case, the reaction rates may vary with time; however, the same ODEs will be
used to calculate the current rates as depicted in the simulation result in Figure 4.10.
Other models similar to the this one, where a structural conflict exists while there is
no effective conflict, can be found in [DK98, DA10].

Biological example To motivate the aforementioned discussion of the interconnec-
tion between discrete and continuous parts, consider the generalised hybrid Petri net in
Figure 4.11 which is a direct translation of the reaction set in Table 4.1. It models the
T7 phage viral kinetics using generalised hybrid Petri nets. Two different time scales
can be distinguished in this model. One represents fast reactions and contains R5 and
R6, and the other one comprises the slow reactions R1, R2, R3, and R4. Slow reactions
are modelled using stochastic transitions to preserve the accuracy, while fast reactions

73

4 Generalised Hybrid Petri Nets

No. Reaction Propensity Rate constants
R1 gen→ tem c1 · gen c1 = 0.0025

R2 tem→ φ c2 · tem c2 = 0.25

R3 tem→ tem+ gen c3 · tem c3 = 1.0

R4 gen+ struct→ ”virus” c4 · gen · struct c4 = 7.5× 10E − 6

R5 tem→ tem+ struct c5 · tem c5 = 1000

R6 struct→ φ c6 · struct c6 = 1.99

Table 4.1: T7 phage viral kinetics reaction set [SYSY02]. The net representation is
given in Figure 4.11. For detailed discussion of this model see Section 6.1

are modelled using continuous reactions to speed up the model simulation. Notice how
the read arc that connects transition R5 and place tem is used to link discrete and
continuous parts. If there are tokens in place tem, the rate of reaction R5 will be non-
zero, and it will change depending on the number of tokens in that place. In contrast,
if there is no token in place tem, the reaction rate of R5 will be zero. The simulation
of this model will be discussed later in Section 6.1 (page 116).

4.3 Simulation of GHPN

Having presented the modelling aspects of GHPN bio in the previous section, we discuss
here the approach which is used to simulate GHPN bio. The key simulation idea is to
numerically solve the set of ODEs generated by the continuous transitions until a
discrete event occurs. The event type is dispatched, and afterwards the continuous
simulation is resumed. We start with discussing the simulation of statically partitioned
GHPN bio, before presenting the dynamic partitioning of GHPN bio, which substantially
simplifies the modelling of biochemical networks using GHPN bio.

4.3.1 Simulation of Statically Partitioned GHPN bio

In the following, we illustrate how GHPN bio can be simulated using an extended
version of the algorithms which were discussed in [HR02, ACT+05, GCPS06]. To map
the mathematical notations introduced in Chapter 3 with the ones that are introduced
in this chapter, let

a(tj) = aj(x) =

{
vj(τ) if tj ∈ Tcont
gj(τ) if tj ∈ Tstoch

be the propensity (rate) of a continuous or a stochastic transition.
Algorithm 4.1 summarises the steps that are needed to simulate GHPN bio. Starting

from an initial marking which corresponds to the initial state of a biochemical system,

74

4.3 Simulation of GHPN

gen

tem

Struct

R1

c1*gen

R2

c2*tem

R3

c3*tem

R4

c4*gen*Struct

R5
c5*tem

R6

c6*Struct c1

0.025

c2

0.25

c3

1

c4

7.5e−06

c5

1000

c6

1.99

Figure 4.11: A GHPNbio representation of the T7 phage model; compare Table 4.1.
Values in eclipses are read as parameters.

the algorithm computes state changes over time, which is represented by the current
marking m(τ). Initially, the current marking is set to the initial marking, and the indi-
vidual propensities a(tj) are calculated for both stochastic and continuous transitions
(lines 3-4); afterwards, the cumulative propensity of stochastic transitions is computed
in line 5. Deterministically delayed transitions do not have propensities, since they fire
after a pre-defined time delay at absolute points of time. Note that in the algorithm we
consider scheduled transitions as deterministically delayed transitions since they can
be considered as a special case of them. Note that immediate transitions also do not
have propensities associated with them (see Section 4.1.1).
If there is a non-stochastic transition in the model, then the algorithm determines

the next stochastic transition to fire by integrating the set of ODEs as well as the
cumulative propensities until (3.28) is satisfied. Please note, the ODEs can contain
only (3.28) if there is no continuous transition.
The numerical integrator stops when an event E occurs. The event may be an

enabling of an immediate or deterministically delayed transition, a deterministically
delayed transition has finished its delay, a stochastic event occurred, or the end of
simulation time has been reached. Then, the appropriate action will be taken.
Line 11 updates all of the transitions’ propensities that share a pre-place with a

continuous transition. The function IsEnabled(tj) checks for enabling of a transition
tj , while Fire(tj) fires an enabled transition. The details of these functions are easy to
be implemented, therefore they are not further considered here.
CheckImmediateTransitions() checks if there is any immediate transition enabled.

75

4 Generalised Hybrid Petri Nets

Algorithm 4.1: Simulating Statically Partitioned GHPNbio

1: τ ← 0;
2: ξ ← exp(1){Generate a random number exponentially distributed with a unit

mean}
3: m(τ)← m(0); {current marking=initial marking}
4: ∀tj ∈ Tcont ∪ Tstoch calculate a(tj);
5: a0 ←

∑
a(tj),∀tj ∈ Tstoch;

6: while τ < τend do
7: if There are non-stochastic transitions then
8: Initialise the ODE solver by m(τ);
9: Simultaneously integrate the system of ODEs generated using (3.30) and

g(m(τ)) until an event E occurs;
10: τ ← the current integrator time;
11: Update(a(ti), a0), ∀ti :•ti ∩ {•tj ∪ t•j} 6= φ, ∀tj ∈ Tcont;
12: if E is: ∃tj ∈ Tim ∧ IsEnabled(tj) then
13: CheckImmediateTransitions();
14: else if E is: ∃tj ∈ Tdeter ∧ IsEnabled(tj) then
15: CheckDeterministicTransitions();
16: else if E is: ∃tj ∈ Tdeter ∧ FireTime(tj)= τ then
17: CheckDeterministicTransitions();
18: else if E is: g(m(τ))− ξ ≥ 0 then
19: g(m(τ))← 0;
20: ξ ← exp(1);
21: tchosen ← a transition index i satisfying (3.29);
22: Fire(tchosen);
23: Update(a(ti)), ∀ti : •ti ∩{t•chosen∪ •tchosen}6= φ
24: else if E is: τ ≥ τend then
25: terminate;
26: end if
27: else
28: τ ← τ+exp(a0) {See (3.18).}
29: if (τ < τend) ∧ (a0 > 0) then
30: tchosen ← a transition index i satisfying (3.19);
31: Fire(tchosen);
32: Update(a(ti)), ∀ti : •ti ∩{t•chosen∪ •tchosen}6= φ
33: end if
34: end if
35: end while

76

4.3 Simulation of GHPN

If such a transition is found, it will be fired. If there are several immediate transitions
enabled, then the first one to fire is selected based on their weights as given by (4.5).
The purpose of CheckDeterministicTransitions() is twofold. First, it checks if there

are any enabled deterministically delayed transitions; if so, it puts them in the delay
list along with their tentative time to fire. Secondly, if there are transitions in the delay
list which have finished their delay, then it fires them.
Lines 19-23 and lines 30-32 perform the same task, but for different conditions. In

the former case, a stochastic transition is selected to be fired when the ODE integrator
determines that a stochastic event has occurred. The stochastic transition is selected
based on equation (3.29). In the latter case, the model contains only stochastic transi-
tions. Thus the next reaction time is computed based on equation (3.18), and the next
transition to fire is selected based on (3.19).
When a transition fires, the propensity of this transition as well as the propensities of

any other transitions that are affected by this firing are recomputed and the cumulative
propensity is updated. The simulation ends when the current simulation time exceeds
the simulation’s end time which is specified by the user.
While this algorithm can simulate any GHPN bio, it requires the user to specify the

partitioning in advance. Sometimes it is not easy to do the partitioning off-line. It is also
possible that a good partitioning changes dynamically over time. Therefore, we present
in the next section an algorithm which supports on-line partitioning. In some cases,
the price of this dynamic partitioning is a higher computational overhead [Pah09].

4.3.2 Transition Partitioning

Static partitioning of Petri nets into stochastic and continuous net parts is not always
appropriate. During the simulation, transitions’ rates can drastically vary between
low and high. Furthermore, off-line partitioning is not user friendly, since it is not
easy for naive users to determine which transitions should be considered stochastically
and which one continuously [Pah09]. The latter problem could be overcome by run-
ning stochastic simulation for only one or a few trajectories in order to determine the
partitioning automatically [ACT+05]. Another solution is to use stochastic analysis
techniques.
The partitioning of the reactions into slow and fast can be done through the use of

two thresholds: λ for the transitions’ rates and Λ for the places’ marking [ACT+05,
GCPS06].
However one important question remains: when do we need to consider repartition-

ing? One solution to this problem is to reconsider repartitioning after a specific time
period (for example every one or two seconds). However this will not correctly solve
the problem since there may be significant changes in some species’ populations during
this period. Moreover it results in useless computational overhead when there is no
need to repartition. In our partitioning approach we solve this problem by specifying

77

4 Generalised Hybrid Petri Nets

two other thresholds: a0max , a0min .

Consider equation (3.18), which determines the next time point a stochastic event
will occur. Larger values of a0 will result in smaller time steps in the stochastic simu-
lation. On the other hand, smaller values of a0 will result in larger time steps. In fact
this also affects equation (3.28) which determines when we switch from deterministic
to stochastic simulation. The same arguments hold for (3.28). The main idea here is
that we can control the speed and accuracy of hybrid simulation by specifying a lower
and upper bound of a0. Then the algorithm will realise that it needs to repartition the
net when a0 drops below a0min or exceeds a0max .

Algorithm 4.2 summarises the steps which are needed to carry out on-line parti-
tioning of the network. It considers repartitioning if equation (4.7), (4.8) or both are
violated.

a0min ≤ a0 ≤ a0max (4.7)

m(pi) ≥ Λ,∀pi ∈ {•tj ∪ tj•} ∀tj ∈ Tcont (4.8)

where Λ is a threshold for the marking of a place pi.

An inappropriate choice of the thresholds can result in unsuitable partitioning which
may turn out to be more computationally expensive than static partitioning.

The algorithm takes as input the stochastic and continuous transitions, amin, amax –
the upper and lower bounds of the cumulative propensity, respectively, the transitions’
rate threshold λ, and the places’ marking threshold Λ. Note that the other transition
types (the discrete transition) are not repartitioned. At the end of the partitioning, the
algorithm returns T ′stoch and T ′cont as the new partitioning.

The idea of repartitioning is then easy. If one of the transitions violates the par-
titioning criterion, it will be added to the stochastic transitions, otherwise it will be
added to the continuous one.

A transition type conversion from stochastic to continuous or vice versa might also
involve a conversion of the corresponding transition rate functions. Such conversion is
automatically done only if the user deploys a kinetic pattern transition rate function
(e.g., MassAction). In this case, the simulation algorithm automatically uses the ap-
propriate representation of this pattern (continuous or stochastic) based on the current
transition type.

This algorithmic idea, together with the one which is presented in Section 4.3.1,
provides a dynamic simulation of the GHPN bio which have been introduced in this
thesis.

78

4.4 Implementation Aspects

Algorithm 4.2: Dynamic Partitioning of GHPNbio

Input: amin, amax, λ, Λ, Tstoch, Tcont1

Output: T ′stoch , T ′cont2

1: T
′
stoch ← φ, T ′cont ← φ

2: if a0 < amin ∨ a0 > amax ∨ ∀pi ∈ •Tcont ∪ T •cont ∃m(pi) < Λ then
3: for all tj ∈ Tstoch ∪ Tcont do
4: if a(tj) > λ ∧ ∀pi ∈ {•tj ∪ t•j},m(pi) ≥ Λ then
5: if tj ∈ Tstoch then
6: a0 ← a0 − a(t)
7: T

′
cont ← T

′
cont ∪ {tj}

8: Tstoch ← Tstoch − {tj}
9: end if

10: else
11: if tj ∈ Tcont then
12: a0 ← a0 + a(tj)
13: Tcont ← Tcont − {tj}
14: T

′
stoch ← T

′
stoch ∪ {tj}

15: end if
16: end if
17: end for
18: return T

′
stoch, T

′
cont

19: else
20: return Tstoch, Tcont {No partitioning is needed}
21: end if

4.4 Implementation Aspects

The presented Petri net class and its simulation algorithms are implemented in Snoopy
[HHL+12]. Snoopy is available free of charge for non-commercial use and it can be down-
loaded from [Sno12]. It is platform-independent and runs under Mac OS X, Windows
and Linux (selected distributions). We implemented Gillespie’s direct method [Gil76] to
simulate stochastic transitions, while SUNDIALS CVODE [HBG+05] and other single
step solvers are used to integrate the ODEs induced by the continuous transitions (see
below). Snoopy supports also a dedicated net class to simulate Petri nets which con-
tain only continuous elements (Continuous Petri Nets) and provides 14 different ODEs
integrators. The addition of further stochastic simulators is easy due to the generic
design of Snoopy (see future work). Snoopy supports also many other useful modelling
features like hierarchy and logical nodes which are specifically helpful when considering
modelling and simulation of larger biochemical networks. Furthermore, models devel-

79

4 Generalised Hybrid Petri Nets

oped with Snoopy can in principle be exported to a variety of analysis tools. However,
there is no comparable tool for our GHPN bio models. Therefore, a GHPN bio model
could be exported with some loss of information only. Nevertheless, GHPN bio models
can be exported to other Petri net classes supported by Snoopy whereby any loss of in-
formation is announced. This means that GHPN bio models can be indirectly exported
to SBML, ODEs in LaTeX notation, etc.
Finally, using GHPN bio the same model can be simulated continuously or stochasti-

cally independently of its original modelling method, thanks to dynamic partitioning.
In the following subsections, we discuss briefly some important implementation issues

of the simulation algorithm for GHPN bio.

4.4.1 Stochastic Simulation Algorithm

Obviously, the hybrid simulation algorithm presented in Section 4.3 integrates a stochas-
tic simulation algorithm (SSA) as well as an ODE solver. Theoretically, all of the
stochastic algorithms discussed in Chapter 3 can be used to accomplish this task. How-
ever, not all of them provide an acceptable performance. For instance, although the
next reaction method outperforms the direct method in a stand alone implementation
of the SSA algorithm, it is empirically inappropriate for the hybrid case. The special
data structure required by the next reaction method renders the hybrid simulation
algorithm more complex. Similarly, the first reaction method requires the generation
of random numbers equal to the number of stochastically simulated transitions. Thus,
this method might be useful if the number of stochastic transitions is limited. Finally,
the direct method seems to be the best one among its peer to fit the purpose of hybrid
simulation.

4.4.2 Selecting an Appropriate ODE Solver

Using an appropriate ODE solver is crucial to obtain an acceptable performance and
accuracy index of the problem under study. For instance, using unsuitable ODE solvers
might result in a simulation engine that is slower than a pure stochastic simulation.
In Section 3.3.1 the different types of ODE solvers have been discussed. What is

important to our discussion of ODE solvers, in the context of hybrid simulation, is the
comparison between single- and multi-step methods.
In the case where the ODE system does not contain discontinuities (i.e., the solution

does not jump from one branch to the other), multi-step methods do not require addi-
tional work to compute the history points, since these solutions already exist. However,
if such discontinuities exist, the memory feature (i.e., bookkeeping and reusing history
solution points) is lost and the solver becomes slow. Unfortunately, many systems of
interest experience significant discontinuities during transients [MP02a]. Particularly
in hybrid simulation algorithms, discontinuities occur frequently due to the switching

80

4.5 SPN, CPN and GHPN: the Big Picture

between stochastic and continuous simulation. This makes multistep solver very slow
for this purpose.
To overcome this problem, we provide different ODE solvers such that the user can

select among them. If the model contains many discontinuities (i.e., many stochastic
transitions or few stochastic transitions with high rates), the explicit or implicit Rung-
Kutta solver will be the best choice. Contrary, if the problem under study does not
exhibit any discontinuities or contains only few of them, Adams or BDF [HBG+05]
solvers will be the appropriate choice to simulate the model. We reconsider later this
issue after the presentation of some case studies in Chapter 6.

4.4.3 Detecting Discrete Events

The hybrid simulation algorithm requires switching between the continuous and the
discrete regimes whenever a discrete event occurs. Unfortunately, such events can not
be located only using the current simulation time. For instance, in order to determine
when (3.28) is satisfied, ODE solver needs to repeatedly check it during the numerical
integration. Such a feature is called event detection or root finding [MP02a]. As an
example of the root finding problem, consider a function of the form f(m). Finding
the root of this function means to find the value of m satisfying f(m)=0. However, we
would like to do that simultaneously while integrating the set of ODEs. In this context,
the time where the root is found is also required (i.e., the location of the root). Few
ODE solvers provide such an option. In our simulation problem, we have two different
root functions: the enabling of immediate or deterministic transitions and the detection
of the time point where (3.28) is satisfied. Nevertheless, ODE solvers accomplish this
job by monitoring the signs of the event functions. Therefore, the event location can be
missed if the event function has an even number of roots. Fortunately, our two event
function types have an odd number of events. They are negative before the occurrence
of the root and positive thereafter.

4.5 SPN, CPN and GHPN: the Big Picture

Gilbert et al. propose in [GHL07] a unified framework of modelling biochemical reaction
networks. The framework integrates qualitative, stochastic and continuous approaches
to simulate biological networks. This chapter extends this framework to include the
hybrid approach as combined approximation of stochastic and continuous methods.
Figure 4.12 graphically illustrates the extended framework. Qualitative Petri nets

(QPN) are an abstract representation of reaction networks. They do not contain any
quantitative information. Although this view of the representation and simulation of
biochemical reactions does not enable the prediction of species’ populations over time,
the rich qualitative analysis techniques, available for this category of Petri nets, permit
the analysis of the system behaviour under any time constraints.

81

4 Generalised Hybrid Petri Nets

Figure 4.12: Relationship between SPN , CPN , and GHPN bio. An extension of the
conceptual framework in [GHL07].

Contrary, timed information can be added to the qualitative model using Stochastic
Petri Nets (SPN) (see Chapter 3), while preserving the discrete state descriptions.
The simulation results produced using SPN can be considered as the most accurate
ones among the available quantitative Petri net classes, since they execute one reaction
per simulation step. Here we mean by accuracy the ability of a simulator to reproduce
the biological model behaviour. The QPN model can be converted to an SPN one by
extending the transitions with probabilistically distributed firing rates (waiting times).
Moreover, SPN can be converted back into QPN by abstraction (i.e., removing the
time information).
Similarly, CPN is an extension of theQPN , whereby the time as well as the markings

are continuous and deterministic quantities. The transformation between CPN and
QPN are similar to the one between SPN and QPN .
SPN and CPN can be approximated with each other. The stochastic firing rate

of SPN can be approximated by a deterministic firing, then the discrete tokens are
replaced by continuous concentrations. This direction of approximation might involve

82

4.6 Comparison with Other Hybrid Petri Net Tools

loss of information, particularly, if the number of tokens are small. However, it will
result in a more efficient simulation.
Obviously, the approximation between SPN and CPN is extreme. We have either

to sacrifice efficiency to retain the accuracy or sacrifice accuracy to run the simulation
in a reasonable time. Therefore, there is a need to have a tool with an intermedi-
ate approximation between SPN and CPN . GHPN bio is such a tool. The level of
approximation can easily be controlled using GHPN bio by controlling the number of
transitions and places that belong to each category. A GHPN bio model will become
equivalent to SPN if all model components are discrete. On the other hand, it will be
equivalent to a CPN model if all the elements are continuous.

4.6 Comparison with Other Hybrid Petri Net Tools

In this section we discuss our contributions in comparison to other hybrid Petri nets
classes. Here, we select four HPNs from the literature which support similar features
as GHPN bio. These HPNs are: Fluid Stochastic Petri Nets (FSPN), Hybrid Functional
Petri Nets with extensions (HFPNe), First Order Hybrid Petri Nets (FOHPN), and
Differential Petri nets (DPN). For a short discussion of this classes see Chapter 3.
Table 4.2 summarises the features of each net class. From this table, we can notice

that GHPN bio support important features which do not exist in the other classes.
For example, although almost all these classes provide stochastic and continuous

transitions, the simulation results are not accurate if the model contains both of them.
In other words, they do not support the full interplay (as shown in Table 4.2) be-
tween stochastic and continuous parts. GHPN bio do that by considering time-varying
stochastic rates, while solving the resulting ODEs generated by the continuous transi-
tions.

4.7 Examples

In this section, we present two simple examples to illustrate the hybrid modelling and
simulation of GHPN bio to keep this chapter self-contained. The two examples are:
break-repair, and the Goutsias model. With the first example we aim to demonstrate
the modelling power of generalised hybrid Petri nets compared to fluid stochastic Petri
nets (FSPN). In the second one, we compare between the continuous, stochastic, and
hybrid results when the set of reactions are separable into fast and slow ones. As we
will see, stochasticity can be preserved when GHPN bio is used.

83

4 Generalised Hybrid Petri Nets

Table 4.2: Comparison between selected HPN classes

FSPN HFPNe FOHPN DPN GHPN

Application
Area

Performance
optimisation

Systems
Biology

Manufacturing
Systems

Performance
optimisation

Systems
Biology

Continuous
Transitions

X X X X

Stochastic
Transitions

X X X X

Full Stochastic
- Continuous
Interplay

X

Deterministic
Transitions

X X X X

Scheduled
Transitions

X

Immediate
Transitions

X X X

Standard Arcs X X X X X

Read Arcs X X

Inhibitor Arcs X X

Modifier Arcs X

Reset Arcs X

Marking-
dependent
arcs

X X

Software Tool Cell
Illustrator

Snoopy

84

4.7 Examples

4.7.1 Break-Repair Model

To emphasis the modelling power of GHPN bio, we compare the modelling of a break-
repair system using GHPN bio and FSPN which supports the interplay between stochas-
tic and continuous parts as we do. Although this case study does not have a biological
context, it reveals some important GHPN bio features. The example models a system
of N statistically identical and independent components. Each of them can undergo a
failure and a repair process.
The system was originally modelled in [TK93] as FSPN as given in Figure 4.13a.

The amount of work currently in the system is approximated by the continuous place
load, as it might accumulate a large number of tokens. The number of currently op-
erating machines is represented by the number of tokens in p1 and they can undergo
a failure with rate λ. This failure process is modelled using the stochastic transition
break_down. The number of non-working machines is modelled using the number of
tokens in p2; they can be repaired with rate µ which is achieved by the firing of the
transition repair. Work arrives continuously at a constant rate r when the stochas-
tic transition incoming_work is enabled (hence not when it fires, according to the
rules of FSPN). Similarly, the work is dispatched continuously with a constant rate d
per machine when the stochastic transition break_down is enabled. Thus stochastic
transitions perform two functions: when they are enabled, they continuously consume
(produce) flow with a rate specified by the arc weights, and when they fire, they add
(consume) tokens to (from) a post-place (pre-place). Moreover, the continuous flow
rates are assigned to the arc weights. Such semantics is graphically unclear and incon-
sistent with the usual Petri nets semantics as it was asserted in [HK99].
Figure 4.13b represents the modelling of the same system using GHPN bio. The

process of incoming and dispatching work is modelled using the continuous transitions,
incoming_work and outgoing_work, respectively. The latter transition is controlled
by the number of functioning machines in p1 using a read arc. Figure 4.14 illustrates
the simulation result of the GHPN bio model in Figure 4.13b.
The continuous simulation results in Figure 4.14 suggest that the system enters a

steady state with these settings, however stochastic and hybrid simulation results reveal
that it does not enter a steady state in the average behaviour (104 runs). Such different
interpretations come from the discrete firing of stochastic transitions in the stochastic
and hybrid simulations that take into consideration the perturbation of small numbers
of tokens in the discrete places p1 and p2.

4.7.2 Goutsias Model

This model has been used by Goutsias in [Gou05] as an example for systems that
can be effectively partitioned into two distinct subsystems, one that comprises slow
reactions and one that comprises fast reactions. It has been studied in [WGMH10]

85

4 Generalised Hybrid Petri Nets

p1

15

p2

load

beak_down

p1*lamda

repair

p2*mu

incoming_work

P1*d*load

r

lamda

0.8

mu

0.4

d

250

r

7000

(a)

p1

15

p2

load

beak_down

p1*lamda

repair

p2*mu

incoming_work

r

outgoing_work

p1*d*load

lamda

0.8

mu

0.4

d

250

r

7000

(b)

Figure 4.13: Generalised hybrid Petri net of the break-repair model: (a) FSPN repre-
sentation, (b) GHPN bio representation. Compared to GHPNbio, FSPN
notations are unclear and inconsistent with standard Petri net conven-
tions. Numbers in ovals are read as parameters.

 0

 5

 10

 15

 20

 0 20 40 60 80 100

L
o

a
d

time

continuous
stochastic

hybrid

Figure 4.14: Simulation results of the break-repair model produced with Snoopy’s sim-
ulation engine.

86

4.7 Examples

No. Reaction Propensity Rate constants

R1 RNA→ RNA+M k1 ·RNA k1 = 0.043

R2 M → φ k2 ·M k2 = 0.0007

R3 DNA_D → RNA+DNA_D k3 ·DNA_D k3 = 71.5

R4 RNA→ φ k4 ·RNA k4 = 3.9× 10E − 6

R5 DNA+D → DNA_D k5 ·DNA ·D k5 = 0.02

R6 DNA_D → DNA+D k6 ·DNA_D k6 = 0.48

R7 DNA_D +D → DNA_2D k7 ·D ·DNA_D k7 = 0.0002

R8 DNA_2D → DNA_D +D k8 ·DNA_2D k8 = 9× 10E − 12

R9 M +M → D k9 ·M ·M k9 = 0.08

R10 D →M +M k10 ·D k10 = 0.5

Table 4.3: Goutsias model reaction set

DNA

DNA_2DDNA_D

M 10

D
10

RNA

10

R2
R4

R5

R6

R7

R8

R9

R10

R1 R3

k1

0.043

k2

0.0007

k3

71.5

k4

3.9e−06

k5

0.02

k6

0.48

k7

0.0002

k8

9e−12

k9

0.08

k10

0.5

2

2

Figure 4.15: A GHPNbio representation of the Goutsias model. Transitions with high
rates are represented as continuous transitions, while transitions with low
rates are represented as stochastic transitions. Places are classified as con-
tinuous or discrete so that they satisfy the connection rules.

87

4 Generalised Hybrid Petri Nets

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

n
u
m

e
r

o
f
m

o
le

c
u
le

s
 (

a
v
e
ra

g
e
)

time

stochastic
Hybrid

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

n
u
m

e
r

o
f
m

o
le

c
u
le

s
 (

a
v
e
ra

g
e
)

time

stochastic
Hybrid

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

n
u
m

e
r

o
f
m

o
le

c
u
le

s
 (

a
v
e
ra

g
e
)

time

stochastic
Hybrid

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

n
u
m

e
r

o
f
m

o
le

c
u
le

s
 (

a
v
e
ra

g
e
)

time

stochastic
Hybrid

(d)

Figure 4.16: Stochastic, and hybrid simulation results of Goutsias model: (a) RNA,
(b) DNA, (c) DNA_D, and (d) DNA_2D

and [HMMW10] as example for hybrid numerical solutions of the chemical master
equation. We use the same reactions which have been originally proposed by [Gou05],
and the more challenging parameters which have been used in [HMMW10]. The reac-
tions set is given in Table 4.3.

Figure 4.15 is a hybrid Petri net representation of Goutsias’ model. The partitioning
of transitions and places into discrete and continuous ones is based on running one
trajectory of a fully stochastic simulation. R1, R3, R9, and R10 are reactions with
high rates compared to the other reactions. Thus this set of reactions is represented

88

4.8 Conclusions

by continuous transitions which in turn are simulated by ODEs integrator. Note that
places are partitioned into continuous and discrete ones according to the type of pre-
and post-transitions. Places are considered as discrete ones if the adjacent arcs do not
preclude this interpretation. Figure 4.16 is a time course result of the places RNA, DNA,
DNA.D, and DNA.2D. The result shows that the hybrid simulation result coincides
with the stochastic one for the four species. This is because the reactions in Figure 4.15
are completely separable into stochastic and continuous ones. Therefore, stochastically
simulated reactions are executed as in the pure Monte Carlo simulation.

4.8 Conclusions

In this chapter, we have presented a new class of Petri nets which combines Extended
stochastic Petri nets (XSPN) and continuous Petri nets into one net class, the Gen-
eralised Hybrid Petri Nets. The introduced net class has several functionalities which
help biologists to model and simulate their biochemical networks through an easy-to-
use visual language. GHPN bio models can be simulated by off-line partitioning or by
on-line partitioning.
The two examples discussed in this chapter are simple and intended to explain some

of the elements of GHPN bio. In Chapter 6, three other case studies are presented.
Moreover, the performance of the GHPN bio simulation engine will be discussed there
in terms of runtime behaviour.

89

4 Generalised Hybrid Petri Nets

90

5 A Computational Steering Framework
for Collaborative, Distributed, and
Interactive Simulation of Biochemical
Networks

5.1 Introduction

Although there are many problem solving environments in the context of computational
modelling, which employ the computational steering technique, there is no dedicated
computational steering tool for the scenario of kinetic modelling of biochemical net-
works. Early applications of computational steering were focused on classical computa-
tional problems, e.g., Computational fluid Dynamics, for examples see [JPH+99, Ani02,
ABF+10]. However, few researches adapt general purpose computational steering en-
vironments for applications in systems biology, e.g., in [CFH+05, LGS+07]. Moreover,
software tools that make use of Petri nets as a modelling language focus mainly on pro-
viding the user with a convenient graphical environment to draw the Petri net model,
while they pay little attention to simulate the model conveniently. However, the quan-
titative simulation of Petri nets is not less important than the graphical representation
of the reaction networks. It is an important step towards the understanding of the
model under study.
In addition to the classical advantages of computational steering technique which

have been discussed in Chapters 1 and 2, it has interesting potential outcomes when
it is applied to systems biology problems.
As the main concern of systems biologists is to understand biological models at the

system level, computational steering can increase such understanding by helping them
to set-up "if-conditions" during the conduction of dry-lab experiments. Additionally,
computational steering helps systems biologists to speed up the discovery process.
Finally, computational steering could provide systems biologists with a comfortable
and flexible simulation environment.
In this chapter, the second contribution of this thesis is discussed. Here, we propose,

design and implement a computational steering and Petri nets framework [HH12b]. The
framework combines computational steering and Petri nets to permit users to interact
with the quantitative analysis of Petri net models. Its main features are: intuitive

91

5 A Computational Steering Framework

and understandable representation of reaction networks with the help of Petri nets,
distributed; collaborative; and interactive simulation of biochemical networks, the tight
coupling of visualisation and simulation, and extendibility to include further simulators
provided by the users. Besides, the framework supports coloured and uncoloured Petri
nets (see Chapter 3).
This chapter is organised as follows: first, we outline the general requirements of a

computational steering environment which is tailored to the scenario of kinetic mod-
elling of biochemical networks. Afterwards, we present our computational steering
framework by discussing its interdependent individual components. In Section 5.5, we
discuss in more details the integration of the simulation algorithms and computational
steering. After that we discuss some implementation issues which face the simulation
of multi-scale models using computational steering. A comparison between our frame-
work and other software frameworks, which are used in similar application areas, is
provided in Section 5.7. Finally, we sum up by conclusions and closing remarks.

5.2 Requirements and Characteristics

To be used by systems biologists, a computational steering based kinetic modelling
software should fulfil some requirements and imperative features to facilitate the user’s
job. In this section, we will quickly pinpoint these requirements in the context of
our proposed framework. Some of the significant requirements are: user friendliness,
the ability to be executed in a simple or over distributed autonomous computational
entities, extendibility and versatility, portable implementation, intuitive representation
of the reaction networks, low latency, and collaborative and interactive simulation.
User friendliness is a crucial factor for users. For a computational steering technique

to be successfully used by systems biologists, many technical issues should be hidden
from the user (e.g., multi-threading, socket communication, and portability issues).
Furthermore, no technical assistant should be needed by naive users to set up and run
the resulting software in their own computers and share their models and experiences
with other users. Additionally, the software application needs to be deployed with
minimal, yet very rich set of simulators that could be used without additional external
simulation code. However, in the case of existent legacy code, a facility should be
provided to include it into the provided biochemical kinetic modelling software.
Lightweight communication and steering is another mandatory factor of applying

computational steering to biochemical kinetic modelling applications. Since the final
goal is to decrease the overall experiment duration, the communication between the
user interface clients and the simulator should not extensively affect the simulation
efficiency. One way to accomplish this goal is to send the user the results only upon
request. Moreover, the simulator should not wait for the user input, instead the values
steered by the user could be scheduled for the simulator to be processed at some

92

5.3 Framework

appropriate time points. For more details see Section 5.5.
Nevertheless, the resulting framework should be able to run on a single computer

or several distributed computers. As a typical scenario, the steering server could be
run on a powerful computer and therefore benefits from its huge computing resources,
while the graphical user interface runs at the user’s personal computer or even at a
mobile device.
Extendibility is another important property of a versatile computational steering

based kinetic modelling software. Advanced users need to easily integrate their own
simulation code with an interactive framework. The instrumentation process – the
process by which the simulation code is injected by a set of API calls – should also be
kept user friendly and it should not require previous knowledge of socket communica-
tion or other technical terms. The user wants only to call some tiny APIs to carry out
all of the steering and monitoring tasks. Moreover, it would be helpful if the graph-
ical user interface can be rewritten by means of this APIs to meet the special user
requirements.
Portability is another important issue. The (probably separable) components should

have the ability to run on different computer hardware a long with different operating
systems. The actual portability and synchronisation issues should completely be hidden
from the user. Our implementation fulfils all of of these requirements. Moreover, It can
run on Windows, Mac OS and Linux. Section 5.6 gives more detail about the different
implementation issues.
Finally, using such organisation of components, users can collaborate together in

solving a single problem and share their results upon their needs. Users can navigate
from one model to another and get insights about the latest progress of the current
problem under study. Manual intervention by the user with the simulators is important
too. The interactive intervention enables users to correct simulation parameters without
interrupting the simulator.

5.3 Framework

In this section, the developed framework is precisely outlined. We start with a general
overview of the high-level organisation, followed by a description of the individual
components. The related underlying biological context as well as a typical application
scenario are also given during the subsequent presentation of the framework.

5.3.1 Overview

Figure 5.1 presents the general architecture of the proposed framework. Its main com-
ponents are: the steering server, the steering graphical user interface, the steering appli-
cation programming interface (APIs), and the internal and external simulators. These

93

5 A Computational Steering Framework

External
 Simulator 1

External
 Simulator 2

External
 Simulator N

Change parameters

Result outputPN definition Model Views

Model 1

Internal Simulator

C
h ang

e

R
e

su
lt

Visualization

External simulator
(optional)Steering ServerUsers

Change parameters

Result output

Change parameters

Result output

User 1

User 2

User M
Steering

Visualization

Steerin
g

Steering

Visualization

Visu
aliz

atio
n

Steering

S
te

er
in

g
A

pp
lic

at
io

n
P

ro
gr

am
m

in
g

In
te

rf
ac

e

S
te

er
in

g
A

pp
lic

at
io

n
P

ro
gr

am
m

in
g

In
te

rf
ac

e

PN definition Model Views

Model 2

Internal Simulator

C
h ang

e

R
e

su
lt

PN definition Model Views

Model N

Internal Simulator

C
h ang

e

R
e

su
lt

Figure 5.1: Petri nets and computational steering framework. The framework consists
of four components: steering server, steering graphical user interface (GUI),
steering application programming interface (Steering API), and simulators
(internal and external). The flow of information goes in two opposite di-
rections: from the simulator to the user (monitoring) and from the user to
the simulator (steering). The data structure inside the server is organised
in terms of Petri nets: places, transitions, arcs and parameters. A model
can contain different views. Views are defined by the users and submitted
to the server for further download and manipulation (See Section 5.3.4).

94

5.3 Framework

interdependent ingredients enable systems biologists not only to run their biochemi-
cal network models and get results, but also to share, distribute and interactively steer
them. Additionally, systems biologists do not have to wait until the simulation ends and
then to discover potentially incorrect results. Instead, using the proposed framework,
errors could be discovered early and be immediately corrected during the simulation
and if necessary, the simulation could be restarted using the current setting. Subse-
quently, the overall required time to carry out wet-lab experiments will substantially
decrease.
The main component of the architecture is the steering server. It is the central

manager of the model data and communication traffic between the different frame-
work components. It is a multi-user, multi-model, multi-simulator, and multi-threaded
server. Inside the server, data is organised in terms of individual models which are in
turn defined by means of Petri nets. Section 5.3.2 gives more information about the
operations and functionalities of the steering server.
The steering graphical user interface is the user’s entry point to the overall archi-

tecture. Through it, the user can monitor and steer the simulation output and the
corresponding key parameters, respectively. Users can flexibly connect and disconnect
from their local machines to the available steering servers and view the currently run-
ning models. Model dynamics are produced using either an internal or an external
simulator. Internal simulators are implemented inside the server which currently sup-
ports deterministic, stochastic, and hybrid algorithms, while external simulators are
defined by the user and dynamically linked to the running server.
The steering application programming interfaces (APIs) are used to incorporate an

external simulator into the steering server. Additional responsibility of the API library
is to facilitate the connections between the different framework components. More
specifically, it is used to carry out the communication between the steering GUI and
the steering server.
Finally, this versatile framework permits the simulation to be executed remotely

using an external simulator developed by the user (optional component). The commu-
nication between these external simulation modules and the other architecture compo-
nents takes place through the steering APIs. This means that with modest effort, users
can include their own favourite simulators and perform the monitoring and steering
tasks by help of the other framework components.

5.3.2 Steering Server

At the core of the architecture is the steering server. To support true collaboration
between different systems biologists, the steering server is designed to be multi-user,
multi-threaded, multi-model and multi-simulator. The server records internally infor-
mation about users, model specification, as well as Petri net definition. Moreover, the
server is shipped with a default set of simulators to permit the simulation of complex

95

5 A Computational Steering Framework

biological pathways without any additional components.
Multi-user feature allows for more than one user to simultaneously share the same

model and collaboratively steer the running simulation to get more insights of the
problem under study. Indeed, computational steering could promote knowledge shar-
ing between users of different backgrounds [KGM11]. Furthermore, multi-model and
multi-threaded features coupled by multi-simulator capabilities of Snoopy render the
concurrent execution of multiple models and flexible switching between different inter-
mediate results.
The primary building block of the steering server is the user model. Users submit

their models remotely to the steering server and permit others to use them. A model
consists of the Petri net definition, user views, simulation results, and the currently al-
located simulator to produce model dynamics. Thus, models inside the steering server
are defined in terms of Petri nets, which in turn are specified by places, transitions,
parameters and the connections between places and transitions. More elaborated tuto-
rials of how to use Petri nets to model biochemical networks can be found in [HGD08].
The internal representation of the server data structures correspond to the graphical
representation of the biochemical networks. The model kinetics are specified by the
transition rates, while the initial state is represented by initial place markings. Ad-
ditionally, each model has a set of views associated with it. Views are manipulated
by users using the steering GUI and submitted to the server for further download by
other users. The main functionalities of model views is to give users the opportunity to
monitor simulation results from different perspectives with different settings. Moreover,
intermediate and final results of the simulator are maintained and viewed by collab-
orative users on their terminals. Finally, each model has its own simulator associated
with it. Model simulator runs independently from other simulators which are running
simultaneously on the server.
Furthermore, different users can dynamically connect and disconnect from running

servers without affecting the other connected users and running models. Moreover, data
coherence is maintained transparently from the users by using internally synchronised
objects (see Section 5.6.1). Users can share the same model simultaneously and learn
from each others through steering of model parameters.
The steering process takes place through an internal scheduler of the steering server.

Each model has its own scheduler that coordinates the operation of the associated
simulator. When a user submits a remote command from the GUI client, the current
model scheduler adds this command to what is called TO-DO list. Later on, when the
simulator is ready to dispatch this command, the command is executed and its effect
is displayed to peer users (i.e., collaborating users). The steering commands can be:
altering model parameters, altering place marking, restarting, pausing, stopping the
simulator, etc. The reason behind such organisation is that we cannot steer the bio-
chemical simulation at any point of execution, we have to wait for a suitable time point
before the change can take place. Furthermore; using such an approach, the simulator

96

5.3 Framework

does not need to wait for the user input and accordingly eliminates the delay due to
the incorporation of computational steering into the simulation algorithm. The appro-
priate time point of a change depends on the simulation algorithm (i.e., continuous,
stochastic, or hybrid algorithm). For instance; appropriate time points to change in
continuous simulation are between integration steps of the ordinary differential equa-
tions. In case of conflicts between different users sending the same steering command
to the same running model at the same simulation time point (e.g., two users want to
change model parameters at time 20), only the latest command will take effect and
afterwards other users are informed of the decision. For more details about including
computational steering in a specific simulation algorithm, see Section 5.5.
Nevertheless, the aforementioned issues should rather be kept hidden from the user.

Users might view the server as a simulator which produces model dynamics. All of
the interactions between the user and the steering server are carried out using the
graphical user interface. Accordingly, it does not matter from the users point of view,
where the steering server is located. Moreover, in case of legacy code, there is no direct
relationship between the user and the external simulator. Instead, the steering server
plays a mediator role between the user interface and the external data source.

5.3.3 Graphical User Interface

The ultimate goal of the Steering GUI is to provide the user with a remote control-
like facility to interact with the currently running models. The connection between
the steering GUI and the steering server is dynamically established, meaning that a
connection does not need to be established in advance before the simulation starts.
Among the helpful features that Snoopy’s steering GUI provides are: viewing the run-

ning models inside a remote server, selecting between different simulator algorithms,
changing the simulation key parameters (e.g., reaction rate constants) and the current
Petri net marking, providing the user with different views of the simulation results
including intermediate and final outputs, and remotely changing the simulator prop-
erties (e.g., start and end interval of the simulation). Figure 5.2 provides a screenshot
of Snoopy’s steering GUI.
In a typical application scenario, a user constructs the biochemical reaction network

using a Petri net editing tool (e.g., Snoopy). Afterwards, the Petri net model is sub-
mitted to one of the running servers to quantitatively simulate it. Later, other users
can adapt their steering GUIs to connect to this model. One of the connected users
initialises the simulation while others could stop, pause, or restart it. When the sim-
ulator initially starts, it uses the current model settings to run the simulation. Later,
other users can join the simulation remotely and change model parameters and the
current marking. Figure 5.3 illustrates graphically the application scenario of Snoopy’s
computational steering framework.

97

5 A Computational Steering Framework

Figure 5.2: Snoopy’s steering GUI: steering panel (left), output panel (middle), control
panel (bottom) and manipulation panel (right). The user can select a subset
of the model parameters to change their values during the simulation. The
output can be viewed as table, xy plot, or histogram plot. The model results
could be exported in csv or image format.

5.3.4 Application Programming Interface

To keep the computational steering framework simple, yet extendable, an API library
will be of paramount importance. Modern software permits users to extend existing
capabilities by adding new features or improving existing ones. Such extensions could
be deployed using, e.g., plug-in or API calls. For our purpose, we adapt the concept
of APIs to provide involved functionalities to advanced users. The main roles of the
API library in our framework are: extension of the introduced framework to include

98

5.3 Framework

Figure 5.3: Graphical illustration of a typical application scenario of Snoopy’s steering
framework. The user has two options at the beginning: either reading one
of the models already existing in the server or submitting a new one. In
the latter case the Petri net model can be created using Snoopy Petri net
editing tools. Afterwards, Snoopy’s steering GUI can be used to perform
the monitoring and steering.

additional simulators, communication between different framework components, and
user ability to design a new user interface as well as visualisation modules that are
compatible to communicate with other components. Figure 5.4 illustrates the different
classes of our implementation of the steering API library.
While our framework comes with a set of full-fledged simulators (see Section 5.3.5),

it is possible for users to have their own simulation code included in the framework
of Snoopy. Snoopy’s steering API library renders it possible to convert such batch
simulation code into an interactive one.
Furthermore, the API library makes the entire design of the framework easy to be

implemented and simultaneously promotes the reuse of existing code. For instance, the
steering server and the steering GUI use the same API library to communicate with
each other. Additionally, users are not restricted to use the same user interface which
is illustrated in Figure 5.2; instead, they could implement their own dialogues and use
their favourite visualisation libraries. The availability of such an API library ensures
that the newly designed GUI is compatible to communicate with other framework
components.
In terms of functionality, Snoopy’s steering API can be grouped into four compo-

99

5 A Computational Steering Framework

Figure 5.4: Inheritance diagram of Snoopy’s steering APIs (SPSA). The Snoopy steer-
ing API classes can be classified into four main categories: communication,
data structures, control commands, and end point components.

nents: communication, data structures, control commands, and end point components.
The communication part provides an easy-to-use and portable tool to send and receive
data between two connected entities. The provided APIs could send and receive simple
data types (e.g., integer, double, or character), or compound types (e.g., 1D vector or
2D vectors). Moreover, the API library provides two special data structures to help
organising the simulation code inside clients and servers: models and model views. The
former ones are used to encapsulate the Petri net models including all the necessary
information about places, transitions, and arcs, while the latter data structure facili-
tates the organisation of model views inside individual models. Models could contain
multiple views to provide more elaborated ways of understanding the simulation re-
sults. Please notice that models can be extended to include coloured information as
illustrated in Figure 5.4.

Model views are defined by the user through the steering GUI. They are saved on
the server side and can further be downloaded whenever a user open a model. A view is
defined by selecting a subset of the model places or transitions to monitor their values
during the simulation. Each selected place (transition) is called a curve inside the view.
A curve is defined by a set of attributes, e.g., colour, style, width and so on. In Snoopy,

100

5.3 Framework

when a model is executed for the first time, a default view is created.
Besides, each view is associated with a viewer. The viewer determines how the view’s

data is displayed. For instance a tabular viewer displays the simulation output in a
table.
Views add many advantages to increase the user’s experience of using the steering

framework. They provide an easy way of exploring the model results. After the views
are defined in a model, the user can explore the results by just turning the views. Addi-
tionally, views increase the collaboration among the users. Users on different computers
are able to define different views independently from each other. After that they can
share them by submitting their views to the server. Finally, views are defined "on the
fly" while the simulation is running. Users does not need to interrupt the simulator to
define a new view.
Moreover, the API library contains a number of control commands. The control

commands enable the user to start, restart, stop, and pause the simulation. They
provide a way to manage the remotely running simulation. Additionally, changing
parameter values or asking to refresh the current simulation output is also considered
as a steering command.
Finally, the overall framework can be viewed as two communicating entities: clients

and servers. Clients issue requests and servers reply to these queries. The API li-
brary supports the implementation of those two entities by providing two classes:
spsa::SteeringServer and spsa::SteeringClient (compare Figure 5.4).

5.3.5 Simulators

To combine both extendibility and ease of use, the proposed framework comprises two
types of simulators: internal and external ones. The internal simulators are built into
the steering server, while external simulators might be provided by the user as external
simulation modules. In the following, we give a closer look to both of them.

Internal Simulators

Internal simulators are implemented as part of the steering server. No additional work
is required to use them directly from Snoopy. Currently, three categories of simulation
approaches are implemented: continuous, stochastic and hybrid. Figure 5.5 provides
a graphical representation of the relationships between the different simulation ap-
proaches discussed in Chapter 3 and which are now available in the Server. In each
category, some specific algorithms are provided. For instance, for continuous simula-
tion, users can select from simple fixed-step-size unstiff solvers (e.g., Euler) to more
sophisticated variable-order, variable-step, multi-step stiff solvers (e.g., Backward Dif-
ferentiation Formulas [HBG+05]), or hybrid simulation with either static or dynamic
partitioning (see Chapter 4). Snoopy provides steering commands to all of these algo-

101

5 A Computational Steering Framework

Figure 5.5: Summary of the different simulation approaches of biochemical reaction
networks.

rithms. See [HHL+12], for more information about simulating continuous, stochastic
and hybrid Petri nets using Snoopy. Figure 5.6 presents the inheritance diagram of the
simulation algorithms that are currently supported in Snoopy.
The internal simulators are implemented using the object-oriented approach, and

they are deployed as a stand-alone simulation library which can be called from other
simulation tools. Previous versions of the simulation code of Snoopy [RMH10] are also
integrated into the library. The resulting library is generic and extendable to support
other simulation algorithms.

External Simulators

External simulators are developed by the user to implement a particular simulation
algorithm or to reuse existing code. In the latter case, the simulation code may be
maintained and debugged for a long period of time. Trying to build it from scratch
as an interactive one will require substantial amount of work. Integrating such code
into Snoopy’s computational steering framework will save the user precious time and
perform the required task.
When an external simulator is integrated into the framework, the simulation code

and the server will share the same memory space which in turn saves communicating
the simulation results from/to the running servers. The API library supports the regis-
tration of the simulation data at the servers which could later be used to accommodate
the GUI requests.

102

5.4 Backtracking

To motivate the need of supporting external simulators in our framework, consider
the following scenario. A scientific research group has its own simulation code that fulfils
their need of implementing additional features, e.g., sensitivity analysis, steady state
analysis, etc. However, this code works in batch mode only, i.e., it does not allow users to
interact with the simulation. To add interactivity to their code, they might need a long
time and consequently the entire focus might be shifted. Moreover, it requires them
to be familiar with many computer science techniques, e.g., socket communication,
multithreading, synchronisation, in order to use computational steering for their code.
Using our framework, this aim could be achieved with modest efforts.

5.4 Backtracking

Backtracking is another important aspect to permit the user to rollback to a previous
state of the simulation. This feature enhances the user interaction with the biochemical
simulation and as a result gives the user a better understanding of the problem under
study.
There are two main reasons (functionalities) of including backtracking to our frame-

work: permitting the user to easily restart the simulation from a given history point,
and documenting the manual interactions with the running simulator.
As the ultimate goal of the computational steering technique is to shorten the total

experiment time by allowing the user to change the simulation parameters on the fly, it
is helpful to let the user to restart the simulation from a certain history change point.
The feature enables the exploration of different paths of the running model starting
from the same time point.
Furthermore, for the simulation of a biological model to be reproducible, the user

interactions with the running model need to be saved at each point the user changes
any parameter of the running simulation.
The implementation of the backtracking function involves saving the user changes of

the model parameter as well as the current marking whenever a manual intervention
occurs. Later on, the user is presented with a set of history points to restart the
simulator using one of them.

5.5 Steering Algorithms for Simulation of Biochemical
Networks

In this section, we focus on the detailed algorithms which are used to perform the
steering. However, before that we need to define which part of the model can be changed
during the simulation. Common to all the simulation approaches is the way to perform
the steering. It usually takes place before the numerical simulator performs a step.
However, the simulation approaches differ in the level of granularity with respect to

103

5 A Computational Steering Framework

Figure 5.6: Inheritance diagram of the simulators supported in Snoopy. Snoopy’s sim-
ulation library implements three categories of simulation approaches: con-
tinuous, stochastic and hybrid. In each category, there are some specific
algorithms. The implementation of the simulation library is generic, ex-
tendable, and platform-independent.

104

5.5 Steering Algorithms for Simulation of Biochemical Networks

performing parameter changes. For instance, the semantics of the stochastic simulation
permits the user to change simulation parameters at each single firing of any transition.
However, deterministic simulation allows changes to take place only at a defined grid
resolution. In the following subsections, we discuss the steering of the deterministic,
stochastic, and hybrid simulation algorithms.

5.5.1 What Could Be Steered

Before we discuss the details of introducing computational steering to a specific simu-
lation approach, we consider in this section the question of what can be controlled by
the user during a simulation. In other words, which aspects of the model definition can
be changed while the simulation is running. Generally speaking, changes of a model
specification can be classified into two main categories: adjusting the model parameters
and adjusting the model structure.

Adjusting model parameters involves modifying place markings as well as kinetic
constants which are used to define transition rates. Although modifications related to
this category have a great impact on the understanding of the model understudy, they
fortunately do not require much computational effort in order to respond to the user’s
changes (see next section), particularly if the implementation of the computational
steering is implemented efficiently. Ideally, by the help of such technique, systems biol-
ogists can check many model properties without stopping the simulation. For instance,
the model robustness to small perturbations of parameter values can be checked by
changing key parameter values and monitor how the system responses. As a more spe-
cific example, consider a system that exhibits a steady state under certain parameter
settings. While the system is in a steady state, the user can change some of the kinetic
parameter values and checks if the steady state is affected by such modification or not.

Contrary, adjusting the model structure involves changing the number of places,
the number of transitions, and/or the connection between places and transitions. The
application of these types of changes renders the implementation of biological models
in which their structure are changing with respect to time, e.g., self-modifying models.
Contrary to adjusting model parameters, adjusting the model structure requires a
substantial amount of computational overhead from the simulator’s point of view.
Indeed, the simulator requires – in this case – much time to adapt itself to the user’s
changes.

Hereinafter, we confine ourselves to the type of steering related to the former cat-
egory, namely, adjusting model parameters, while we postpone the latter one to the
outlook.

105

5 A Computational Steering Framework

Algorithm 5.1: Collaborative steering algorithm of deterministic simulation
1: Initialise the ODE solver;
2: Record the initial state to the result matrix;
3: Set the simulator speed;
4: while current time ≤ end time AND isRunning() do
5: Respond to the current scheduled tasks;
6: Reinitialise the ODE solver;
7: Simulate one step;
8: Record the current state to the result matrix;
9: Update the current time;
10: end while

5.5.2 Deterministic Simulation

In this section, we consider the problem of changing transition rate constants as well
as place markings while the deterministic simulation is in progress. From Section 3.3
we know that one of the methods of implementing the deterministic simulation is the
numerical integration of the resulting ODEs by applying a certain kinetic rate law,
e.g., mass-action. Additionally, Sections 3.6.2 and 4.2.4 discussed the generation of
the corresponding ODEs from continuous and hybrid Petri nets respectively. Thus, the
problem of quantitatively simulating continuous Petri nets is simplified to numerically
integrating a set of coupled ODEs.
The algorithm presented here combines computational steering with the ODE solver

without assuming any type of integration algorithms, e.g., stiff vs. unstiff or explicit vs.
implicit methods. The only assumption here is that the ODE solver carries the numer-
ical integration at certain time points (e.g., each 0.1 time unit). Such assumption does
not restrict the use of standard ODE solvers, since almost all solvers permit recording
their output results at certain time points according to the resolution specified by the
user.
Algorithm 5.1 summarises the steps of integrating computational steering with the

simulation of continuous Petri nets.
At step 1 the ODE integrator is initialised. The initialisation phase mainly depends

on the type of ODE solver. For instance, simple single-step algorithms (e.g., Euler)
require no initialisation compared to multi-steps implicit (e.g., BDF). However, we
assume this step exists in our algorithm to keep it general.
Step 2 simply records the model state at τ0 for output purposes, while line 3 sets

the simulation speed (i.e., the how often the simulator can take a step) to the level
selected by the user. The latter step does not exist in standard ODE integrators as the
goal is to solve the problem as fast as possible. However, in our case the user might be
interested in slowing down the simulator speed in order to have the chance to modify

106

5.5 Steering Algorithms for Simulation of Biochemical Networks

model parameters or current marking. In our implementation, we support four levels
of speeds: normal, medium, slow and very slow.
Afterwards, the algorithm enters a loop of repeating a number of steps until the

simulation time reaches the specified end or the user manually stops it. It is worth
mentioning here that the algorithm can be easily modified by the developer to loop
forever until the user stops it to fulfil specific needs.
At line 5 the algorithm obtains the set of scheduled tasks as well as the steering

commands that are defined by the collaborating users. Scheduled tasks are the users’
changes of parameters or marking. The reason for such organisation will become clear
in the subsequent discussion.
Next, in line 6 the ODE solver is reinitialised using the new parameter and marking

values. This step is crucial for the ODE solver to account for discontinuity due to user
changes, particularly for implicit ODE solvers that employ multi-steps algorithms (see
Section 4.4.2).
After that (line 7), the ODE integrator takes one step forward. The step size here

is equal to the output grid resolutions (i.e., the time points at which the simulator
outputs the results). This could be equivalent to taking multiple steps using variable-
step size solvers. Finally, the algorithm records the current model state and updates
the current system time.
To explain the concept of scheduled tasks, which is introduced in this thesis, we

compare our approach with other methods, e.g., [SWR+11]. In [SWR+11], the steering
of model parameters is done by stopping the simulator at the appropriate time point
and then notifying the user to take an action. However, what will happen if the user
does not want to steer at this time point? One option is to instruct the simulator to
continue or let the simulator automatically resume the computation after a certain
time period expired.
Nevertheless, this approach is not computationally efficient. Additionally, it is not

user friendly. Therefore, in our solution we let the user makes changes to the model
at any time during the simulation. Such changes will be applied when we reach an
appropriate time point (line 5 in Algorithm 5.1).
Moreover, this approach is well suited to eliminate conflicts between different users

that are concurrently steering the same model.

5.5.3 Stochastic Simulation

Adding computational steering features to stochastic simulation is similar to the pro-
cedure of steering ODE models, however with two exceptions.
On the one hand, stochastic simulation algorithms are based on the Markovian prop-

erty and therefore, there is no need to consider reinitialisation whenever a change is
applied to parameters or place markings. Fortunately, this feature is useful when con-
sidering computational steering, because it keeps the computational efficiency as before

107

5 A Computational Steering Framework

introducing the steering functionalities to the original simulation algorithm. Moreover,
modification of model parameters can take place at each firing of a transition and not
only at some output grid points. Particularly, these assumptions are valid for SSA
algorithms (refer to Chapter 3 for more details).
On the other hand, stochastic simulation might require to perform more than a

single run to produce the average model behaviour, while deterministic simulation
requires only a single run to produce the complete results. This distinguishing feature
of stochastic simulation necessitates the existence of two steering approaches. One
approach is concerned with the steering of a single run while the other one is related to
the steering of multiple runs. In both cases, the user will have the option to use either
of the two methods.
In the former method, the algorithm of steering stochastic simulations will be similar

to Algorithm 5.1. However, the step in line 7 will represent the firing of a single tran-
sition, while the user can monitor the model response only at the next output point.
In the latter method, the user changes take place only between the individual runs.
The reason for this is that the user will not be able to follow the model simulation on
the basis of single transition firing. Instead, it is feasible to inject the modification of
model parameters between the runs.
To sum up, the Markovian property of stochastic simulation facilitates the use of

computational steering of biochemical models. Changes to the simulator can be applied
in more fine-grained steps than in deterministic simulation.

5.5.4 Hybrid Simulation

Now we turn to hybrid simulation. In fact, the hybrid simulation is more similar (in its
basic functionality) to stochastic simulation rather than to the deterministic one. For
instance, to study model dynamics, multiple runs are typically required. This explains
why the hybrid simulator is derived from the stochastic one, see Figure 5.6.
Nevertheless, hybrid simulation is not identical to the stochastic one. It internally

combines the features of stochastic and deterministic simulation algorithms. As it has
been shown in Chapter 4, the hybrid simulation algorithm consists of the firing of one
or more discrete transitions followed by a step of the ODE solver that corresponds to
the firing of continuous transitions. Therefore, the steering of a hybrid model can take
place at the following points:

• before the firing of a discrete transition,

• before the ODE solver takes a step.

In the former case, there are no additional actions required to cope with user changes
since the firing of a discrete transition depends only on the current making and the
transition firing rates of stochastic transitions. Immediate and deterministically timed

108

5.6 Implementation Issues

transitions with zero delay might fire several times before simulating the continuous
transitions.
In the latter one, the user changes can take place before the ODE solver takes a step,

but this might be after a firing of a discrete transition. As in the purely deterministic
steering algorithm, discussed in Section 5.5.2, the ODE solver requires reinitialisation
before this step in order to account for any discontinuities due to the user interactions.
However such reinitialisation is also required due to the firing of a discrete transition.
Obviously, if all transitions are stochastic ones, the hybrid steering algorithm will be

equivalent to the stochastic algorithm, while if all transitions are continuous ones, the
model can be steered using the deterministic steering algorithm.

5.6 Implementation Issues

In this section we discuss some of the implementation issues that rose during developing
the computational steering framework. The discussed issues are: synchronising the
model data strucure, the use of sockets and threads, communicating model specification
and communicating the result matrix (i.e., simulation output).

5.6.1 Model Synchronisation

Due to the multi-user feature of our computational steering framework, concurrent
writes or read/write of some running models are possible to occur. Therefore, a syn-
chronisation mechanism is necessary to ensure the coherence of the model information
at the server side.
In general this is a well known and classical problem of computer science, see

e.g., [Ray86]. Hence, many solutions are available in the literature to deal with it.
Here we identify three of them (from the implementation point of view). The first of
these solutions is called "mutex". Mutex can coordinate mutually exclusive access to
shared resources and allows only one thread at a time to own a mutex object (i.e., the
synchronisation object). The second solution is to use a critical section to prevent the
concurrent access to shared code. The difference between mutex and critical section is
that under some implementations (e.g., MS Windows), the former can be visible for
different processes, while the latter is visible only for one process. Finally, semaphores
can be used to limit the number of threads concurrently accessing a shared resource.
In our specific scenario, we consider this issue as an optimisation problem: max-

imising user concurrency while preventing concurrent access to the model information.
Therefore, we employ a synchronisation scheme at two different levels: global and local.
Global synchronisation is used to prevent concurrent access to information that is

related to all users, models, or simulators. The synchronisation object is owned by
the server itself and can be used whenever a user requests changes or a (new) user

109

5 A Computational Steering Framework

joins/leaves the system. For instance, when a user submits a new model, all other
users are prevented to access the model or user information.
Contrary, local synchronisation is performed only at the model level. Only users

which share the same model could be interrupted when a user of the same group changes
the model information. Each model has its synchronisation object to coordinate the
operation of the users that are accessing this model as well as the model simulator. For
example, consider again the concept of scheduled tasks which has been introduced in
Section 5.3.2. While one user is appending a new task, the other users are not allowed
to change the TO-DO task list. Similarly, while the simulator is dispatching a task,
users are not permitted to add new ones.

5.6.2 Sockets and Threads

Clients and the servers are communicating with each other through network sockets.
Network sockets are endpoints of the communication flow among two processes [SFR03].
Therefore, for our purpose of providing a platform-independent implementation of our
framework, it is required to use a socket library which can communicate and run under
different platforms. For this reason, we used the wxWidget socket library [wxW12].
However, we had to choose between different options such as: synchronous vs asyn-
chronous communication, blocked/unblocked calls.
Furthermore, we extensively use threads to implement our framework. We can clas-

sify our use of threads into three categories: user threads, worker threads, and dis-
patcher threads.
Each user is represented inside the server as an independent thread. The user’s thread

is created as soon as the connection is successfully set up between the client and the
server. The user thread is terminated when the user exits the system.
Furthermore, each model is associated with a worker thread to perform the sim-

ulation. The worker thread is created when the simulator is started and terminated
when there is no active simulation for this model. Whatever the number of users that
are connected to the same model, only one worker thread is created. This coincides
with our design of running only one simulator and permits all other users to collabo-
rate with each other. Worker threads are assigned a higher priority in comparison to
user threads. This implies that computations have higher priorities over communica-
tions. Moreover, worker threads might spawn multiple different child threads in the
case of using multi-threading to execute several simulation runs of stochastic or hybrid
simulation.
Yet another thread type is the dispatcher thread. It is required to perform the ini-

tialisation of newly connected clients. This step involves sending/receiving the model
specification. The dispatch thread releases the server main loop from the details to
initialise the clients which is communication intensive tasks.

110

5.6 Implementation Issues

5.6.3 Communicating Model Specification

According to the envisaged scenario of implementing computational steering, as given
in Figure 5.3, either the client or the server sends the model specification to the other
side before the actual functionalities of computational steering can take place. In this
step, the model specification has to be transmitted across a local area network (LAN)
or over the internet. The latter communication type is very slow. The problem with
this step is that the user can wait seconds or a few minutes until the actual simulation
starts. However, they will not wait hours for such an initialisation step.
For a low level (i.e., uncoloured) Petri nets, such problem does not exist, because

such models contain usually at most a few hundreds to thousands of places and tran-
sitions. However, the problem will apparently appear when considering coloured Petri
net models, if they are unfolded.
For example, consider a coloured Petri net with three places, one transitions and

three arcs, but with one thousand colours as it is depicted in Figure 5.7. The unfolded
version of this model will contain three thousand places, one thousand transitions and
three thousand arcs. Remember that for each model we have to send many information,
e.g., place names, initial marking, transition names, etc. However this model is a simple
one. An interesting property of coloured Petri nets is that they can scale very easily
(see Chapter 3). Therefore, real coloured models might contain hundreds of thousands
or millions of nodes. Thus, different strategies are required to overcome this problem.
One solution is to serialise place and transition names and issue one socket com-

mand. This will enforce the low-level library to send and receive packets of larger size.
This solution will effectively reduce the communication time, particularly, when com-
municating using LAN. However, the packet size is often limited, especially over the
internet.
Another solution is to compress the data before sending it and uncompress it on the

other side. However, the question is how much compression ratio can we obtain. The
answer will depend on the type of data, especially as we seek lossless data compression.
Nevertheless, this step needs to be done in a very short time to make the compu-

tational steering framework useable. If they have to wait a long time until the system
has been initialised, they will not opt to use computational steering in exploring their
case studies.

5.6.4 Communicating Output Matrix

Another related, yet interesting problem of communicating the model information is
the transfer of the result matrix. That is how to communicate the simulator output to
the user client. A simple calculation will be helpful to understand the problem.
Consider again our simple three-place coloured model. We assume that the result of

the model is stored in an M × N matrix of type double, where M is the number of

111

5 A Computational Steering Framework

p1

1010

10‘all()

CS

p2

1010

10‘all()

CS

p3

CS

X

X

X

Figure 5.7: Example of a simple coloured Petri nets

output points and N is the number of nodes (places/transitions). The total amount of
memory space required to store the result matrix can be calculated in terms of (5.1).

Total matrix size = M ×N × sizeof(double) (5.1)

For our simple example, to record the result of 100 time points, assuming the double
data type is represented by 8 bytes, we need:

Total matrix size = 100× 3000× 8 = 2, 400, 000 bytes

If we increase the number of colours to 100, 000, we will need 240, 000, 000 bytes,
and for 1, 000, 000, we need 2, 400, 000, 000.

It is not feasible to transmit repeatedly 2,6 Gigabytes in a few seconds, to keep the
system all the time responsive. Furthermore, the required space might be much more
if the number of output points are increased (e.g., 1000 or 10,000 points).
However, this problem differs from the problem of communicating the model speci-

fication in two aspects:

• we have to communicate the result matrix each time the client needs to refresh
(i.e., redraw the output);

• we have space for more optimisations.

One workaround is to apply the technique discussed in Section 5.6.3, namely, com-
pressing the result matrix or using a bigger packet size. However, this will not solve
the problem (imagine compressing 2.4 gigabytes, what will be the result!).
Another efficient and natural solution is not to send the entire matrix each time

the user client needs a refresh, instead, we send only a part of the matrix. This is
because users usually select a few places or transitions to view. Therefore, the problem
of transmitting 2.4 gigabyte will be reduced to sending/receiving a few kilobytes or even

112

5.7 Comparison

bytes. Moreover, in the case of exporting the entire matrix to a CSV (comma separated
values) file, where all place values are needed, we can communicate the matrix over
the HTTP protocol. In this case, it is acceptable for the user to wait for the export to
take place. This solution has more potential optimisation. We can only send the matrix
values which have been simulated so far. Usually, the simulator will not produce the
results at one-go, instead, it takes time to produce the solution at each time step. This
heuristics is mainly very useful when considering the simulation of a large number of
output points.
Finally, we can perform the result visualisation at the server side. Therefore, we do

not need to send the raw data to the client to carry out the visualisation. This step will
keep the transmitted data size fixed, despite of the model size. However, this solution
will increase the server load.

5.7 Comparison

In this section we compare our computational steering framework with other software
frameworks. It is not feasible to conduct a comparison with all the computational steer-
ing based environments and Snoopy. Therefore, we select a few of the tools presented
in Chapter 2.
Since the computational steering tools, which have been developed so far, are not

dedicated to the problem of kinetic modelling of biochemical reactions as we do, we
added three tools to our comparison list which explicitly support simulation of bio-
chemical networks. These tools are: Cell Designer, Cell Illustrator, and VCells (see
Chapter 1). However, none of them supports the computational steering technique.
Indeed our work might bridge the gap between those two software type.
Table 5.1 summarises the different features of the Snoopy framework in the context

of the other simulation environments according to some criteria. From this table we can
conclude that Snoopy combines many useful features that are distributed across sev-
eral problem solving environments. That is because Snoopy integrates computational
steering and Petri nets in one framework.

113

5 A Computational Steering Framework

Table 5.1: Comparing Snoopy’s computational steering framework with other compu-
tational steering and biochemical modelling software

Cell
Designer

Virtual
Cell

Cell Il-
lustrator

Snoopy SCIRun Discover CUMULVS

Application
Area

kinetic modelling of biochemical reactions bio-
medical

general purpose

Interactive
Simulation

X X X X

Model Rep-
resentation

non-standard
graphical notations

Petri nets visual
widgets

Multi-user X X X

Multi-model X X

Multi-
simulator

X X

Collaboration X X X X

Platform-
independent

X X X X X X X

Distributed
Components

X X X X

Built-in
Simulator

X X X X

External
Simulator

X X X X

5.8 Conclusions

In this chapter, we have introduced a framework for combining computational steering
and Petri nets to model and simulate biochemical networks. The proposed architec-
ture consists of four interdependent components which can run on the same computer
or could be distributed across different machines. Our implementation of the steering
framework is provided as part of Snoopy. Moreover, this thesis proposes new features of
biochemical kinetic modelling software to support interactivity. The proposed frame-
work is also compared with other software architectures. In the Section 6.3.3 we present
a case study that explains a typical application of computation steering in the context
of modelling biochemical reaction networks.

114

6 Case Studies

In this chapter three case studies are discussed to illustrate the functionalities of
GHPN bio and the computational steering framework by biological examples. These
are: the T7 phage model, the eukaryotic cell cycle, and the circadian oscillation model.
The main advantages of using GHPN bio to study these networks are the intuitive
graphical representation of the system logic as well as the accurate simulation.

The T7 phage reaction network consists of three species and six reactions. GHPN bio

allow us to stochastically represent and simulate reactions which are important to
accurately reproduce the model behaviour, while other reactions that do not influence
the fluctuation of molecules are simulated continuously. Additionally, representing and
simulating this model using GHPN bio results in a substantial improvement in terms
of the runtime over a pure stochastic simulation.

The eukaryotic cell cycle model is an ideal example to demonstrate most of the pre-
sented elements of GHPN bio. For instance, modelling the logic of making a decision
to perform the division requires the adaptation of immediate transitions along with
different types of extended arcs. Similarly, other features like marking dependent arc
weights, logical nodes are also demonstrated using this example. An important require-
ment of this model is to capture the variability of the cellular volume to reproduce the
"in vivo" experiment results. Such variability is due to either intrinsic or extrinsic noise.
The former noise type can be accounted by simulating slow reactions using stochastic
transitions.

The circadian oscillator case study presents another aspect which the hybrid sim-
ulation has to deal with. In this model, transition rates as well as species population
change dramatically over time. Using a pre-determined partitioning of the transitions
will not result in an improvement of the simulation runtime. Dynamic partitioning
can better deal with such models. Moreover, we illustrate how computational steering
can be used to study the effects of changing key parameter values on the period and
amplitude of the resulting oscillation.

Finally, we conclude this chapter by comparing the runtime performance of simulat-
ing these models using different simulation methods as well as investigating different
ODE solvers. Additionally, we propose some recommendations of the suitability of each
simulation approach for specific case studies.

115

6 Case Studies

6.1 The T7 Phage Model

In this section we start demonstrating the operations of GHPN bio through a typical
biological example, the intracellular growth of bacteriophage T7. Our selection of this
case study is motivated by three reasons: first, this is a simple and clear example to
show how stochasticity can play a role. The continuous and stochastic simulation results
suggest different conclusions. Second, the model reactions and the system dynamics
can easily be understood which gives us the chance to concentrate on the syntax and
semantics of the GHPN bio. Indeed, the T7 phage model contains only six reactions,
three species, and ten arcs. Finally, the model’s reactions can be spilt into fast and slow
ones. Therefore, this model has often been used in the literature to discuss the principles
of stochastic or hybrid simulation algorithms (e.g., see [KMS04, ACT+05, YLL09]).
Table 4.1 (see page 74) presents the different reactions that are involved in this model,

while Figure 4.11 (see page 75) shows the graphical representation of the reaction set
as GHPN bio.
Generally speaking, the growth of a virus is determined, within the cell, by a complex

interplay of transcription, translation, assembly and virus release processes. A virus
infection may be initiated by a single virus particle that delivers its genome to its host.
The Petri net representation of the T7 viral model consists of two components, which
have been adapted from [SYSY02], where only stochastic and deterministic versions
are presented: the viral nucleic acids and a viral structural protein (struct).
The viral nucleic acids are further classified as genomic (gen) or template (tem). The

genome is the vehicle by which viral genetic information is transported. The genome
can undergo one of two reactions. The first possibility is to be modified and form tem
(R1), and the second one is to be packaged within the structural proteins to form
progeny virus (R4). The standard sequence of viral replication events involves: (1) the
amplification of the viral template after an infection, and (2) the production of progeny
virus.
If we apply the mass-action kinetic law, which has been discussed in Chapter 3, to

the reactions in Table 4.1, we will get the following coupled set of ODEs:

d[tem]

dt
= c1 · [gen]− c2 · [tem]

d[gen]

dt
= c3 · [tem]− c1[gen]− c4[gen][struct]

d[struct]

dt
= c5 · [tem]− c6 · [struct]− c4[gen][struct].

(6.1)

Using (6.1) the deterministic simulation approach can produce the model dynamics
that is shown in Figure 6.1. Linear stability analysis of the deterministic model revealed
the existence of two steady state nodes [SYSY02]. One unstable steady state occurs

116

6.1 The T7 Phage Model

 0

 5

 10

 15

 20

 0 50 100 150 200

c
o
n
c
e
n
tr

a
ti
o
n
s

time

tem

(a)

 0

 50

 100

 150

 200

 0 50 100 150 200

c
o
n
c
e
n
tr

a
ti
o
n
s

time

gen

(b)

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200

c
o
n
c
e
n
tr

a
ti
o
n
s

time

struct

(c)

Figure 6.1: Continuous simulation results of the T7 phage model. (a) tem, (b) gen, and
(c) struct concentrations. A stable steady state at tem=20, gen=200, and
struct=10000 can be obtained.

when tem = gen = struct = 0. The other one is stable and occurs when tem=20,
gen=200, and struct= 10,000. Srivastava et. al. assert in [SYSY02] that stochastic
simulation does not always result in those steady states. In the following we discuss their
conclusions and show that these conclusions are also valid when the hybrid approach is
used. However, we firstly discuss how the reactions can be partitioned into those which
are simulated continuously and those which are simulated stochastically.

117

6 Case Studies

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

F
ir
in

g
 C

o
u
n
t

time

R1
R2
R3
R4

(a)

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200

F
ir
in

g
 C

o
u
n
t

time

R5
R7

(b)

Figure 6.2: Comparison of the T7 Phage model’s reaction rates. (a) reactions with low
rates (R1 - R4), and (b) reactions with high rates (R5 and R6)

6.1.1 Slow and Fast Reactions

To illustrate the difference of rates among the reactions of the T7 viral model, we run
a single stochastic simulation and analyse the results.
Figure 6.2 shows a time course simulation result of the number of firing of each

transition of the T7 phage model.
The numbers of firing of transitions R1 and R2 are rather limited (Figure 6.2a). They

do not fire more than seven times at each time step. Transitions R3 and R4 fire more
frequently than R1 and R2. However, they exhibit also low firing frequency.
Contrary, transitions R5 and R6 (Figure 6.2b) have much higher firing frequencies

than R1 – R4. Therefore, as shown in Figure 4.11, it is reasonable in terms of perfor-
mance to represent and simulate reactions R1 – R4 using continuous transitions, while
representing and simulating reactions R5 and R6 as stochastic ones.

6.1.2 Simulation Results

In this section we study the simulation result of the GHPN bio model in Figure 4.11.
We use the kinetic parameters in Table 4.1. The system is initiated using one molecule
in tem.
While the model exhibits a stable steady state, using the deterministic simulation,

stochastic and hybrid simulation results in Figure 6.3d show that the model enters a
steady state at tem=13. To interpret such disagreement, we analyse single stochastic
and hybrid simulation runs of the species tem.

118

6.2 The Eukaryotic Cell Cycle

Figure 6.3a shows a single run result of species tem. The model enters a steady
state at tem'20. This result coincides with the one produced via the deterministic
simulation.
Now we consider the simulation result in Figure 6.3b. The model enters the non-

stable steady state at tem=gen=struct=0. The reason for such behaviour is that reac-
tion R2 is fired and tem dies. Therefore, no further reactions will occur in the subse-
quent time points. This behaviour is a special one of stochastic and hybrid simulation
and does not occur in the deterministic case. With other words, the dead state is hidden
in the continuous setting.
Contrary, Figure 6.3c shows that the system enters the non-stable state for some time

and then it recovers and enters the stable state at future time. Such die and recovery
occurs when the gen is firstly synthesised using the current tem molecule (R3) and
then tem is lost (R2). At some later time point, the gen is converted into a new tem
allowing the virus to recover [SYSY02].
Now, we come to interpret the disagreements between hybrid and continuous sim-

ulation results in Figure 6.3d. Although stochastic results should be the same, in the
average, to the deterministic one, we do not obtain such behaviour of the model under
consideration. If we sum up the values of tem in the different runs, simulation results
that exhibit steady state at tem=0 will cancel some values at the stable steady state.
Therefore, the average simulation result of the stochastic and hybrid simulations yields
steady states at lower values than the continuous simulation. Srivastava et al. proved
this explanation in [SYSY02] by eliminating the simulation runs where the model
exhibits the non-stable steady states. They found out that stochastic and continuous
simulation results are equivalent to each other after such post-processing.
Hybrid simulation can account for such stochasticity, since all the reactions related

to tem are simulated stochastically. The major gain of using hybrid simulation over
the stochastic one is the simulation runtime (see Section 6.4).

6.2 The Eukaryotic Cell Cycle

System level understanding of the repetitive cycle of cell growth and division is crucial
for disclosing many unexpected principles of biological organisms. The deterministic
or stochastic approach are alone not sufficient to study such cell regulation due to
the complex reaction network and the existence of reactions with different time scales.
Thus, integration of both approaches is advisable to study such biochemical networks.
The reproduction of eukaryotic cells is controlled by a complex regulatory network

of reactions known as cell cycle [TN01, MCN08, SGCK+08]. Through it, cells grow,
replicate and divide into two daughter cells [KBPT09, SSJT11]. This regulation cycle
consists of four phases: S phase (synthesis) and M phase (mitosis) separated by two
gap phases: G1 and G2 [TN01]. During the synthesis phase, the cell replicates all of

119

6 Case Studies

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

N
u
m

b
e
r

o
f
m

o
le

c
u
la

e
s

time

tem

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

N
u
m

b
e
r

o
f
m

o
le

c
u
la

e
s

time

tem

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200

N
u
m

b
e
r

o
f
m

o
le

c
u
la

e
s

time

tem

(c)

 0

 5

 10

 15

 20

 0 50 100 150 200

c
o

n
c
e

n
tr

a
ti
o

n

time

Hybrid
Continuous
Stochastic

(d)

Figure 6.3: Continuous, stochastic, and hybrid simulation results of T7 Phage model.

its components, while it divides each component type more or less evenly between
the two daughter cells at the end of the mitosis phase [KBPT09]. After the S phase,
there is another gap (G2) where the cell ensures that the duplication of DNA has
completed and prepares itself for mitosis. Newborn cells are not replicated and located
at the G1 gap. Furthermore, the processes of synthesis and mitosis alternate with each
other during the reproduction process. Understanding such control cycles is crucial
for revealing defects in cell growth which underly many human diseases (e.g., cancer)
[TN11]. Figure 6.4 provides a graphical overview of the cell cycle phases.
In the eukaryotic cell cycle, the alternation between the S and the M phase as

120

6.2 The Eukaryotic Cell Cycle

Figure 6.4: Graphical illustration of the cell cycle regulation [wik12]. The cell cycle
consists of four distinct phases: G1, synthesis (S), G2, and mitosis (M).
The first three phases are known as interphase (referred to by the outer
ring). Cells that have stopped dividing are called entering the G0 phase.

well as the balance of growth and division is governed by the activity of a fam-
ily of cyclin-dependent protein kinases (CDK) [KBPT09]. Therefore, many compu-
tational models have been constructed to study the control system of CDK (e.g.,
in [TN01, CCCN+04, MCN08, SGCK+08, KBPT09]). Some of these models are based
on the deterministic approach which represents changes of species concentrations as
continuous variables that deterministically and continuously evolve with respect to
time. However, such approach does not capture the variability of cell size due to the
fluctuation of some species which usually exist in low numbers of molecules [Gil07].
Motivated by this argument, a number of stochastic models have been created and
simulated using either a stochastic simulation algorithm (e.g., [KBPT09]) or by intro-
ducing noise to the model through Langevin equation [Ste04]. However, the stochastic
approach is computationally expensive, particularly when the model under study con-
tains reactions of high rates or species with large numbers of molecules.
In this section we present another argument to motivate the hybrid simulation of

the cell cycle control system. The cell cycle model contains some components which
would be better represented as continuous processes (e.g., volume growth), while other
reactions of low rates are vital to be represented as stochastic processes. For instance,
Mura and Csikasz-Nagy constructed in [MCN08] a stochastic version of the model
in [CCCN+04] using stochastic Petri nets. However, they faced the problem of repre-

121

6 Case Studies

V

10

X

6

Y

2189

Yp

Z

Figure 6.5: A continuous Petri net representation of the Tyson-Novak Model: X (CycB-
Cdk1) phosphorylates Y (Cdh1-APC) and free Y catalyses the degradation
of X. Z denotes the effects of Cdc20 and Cdc14. High activity of X promotes
the synthesis of Cdc20 which activates Cdc14. The dephosphorylated Cdc14
activates Y. This behaviour results in a bistable switch that is responsible
for the transitions between G1 and S-G2-M states.

senting cell growth processes which evolve continuously and exponentially with respect
to time using stochastic Petri net primitives only. Indeed cell growth is a typical exam-
ple where continuous transitions could be used. Moreover, the model which we propose
is graphically and intuitively represented in terms of Petri nets.

6.2.1 Related Work

Mura and Csikasz-Nagy created in [MCN08] a stochastic model based on the work
of [CCCN+04] to study the effect of noise on cell cycle progression. However, their
model is based on phenomenological rate laws (e.g., Michaelis-Menten) which do not
work well with stochastic simulation algorithms [KBPT09] (see Section 3.4.2 to com-
pare Gillespie’s idea). Moreover, some components could not intuitively be represented
using stochastic Petri net primitives only (e.g., cell growth). Sabouri-Ghomi et al.
[SGCK+08], and Kar et al. in [KBPT09], asserted that applying Gillespie’s stochas-
tic simulation algorithm [Gil76] directly to phenomenological rate laws might pro-
duce incorrect results. Therefore, they unpacked the deterministic model of Tyson-
Novak [TN01] in terms of elementary mass-action kinetics. The Tyson-Novak model is
based on a bistable switch between the complex CycB-Cdk1 (denoted by the variable
X) and the complex Cdh1-APC (denoted by the variable Y). Figure 6.5 is a continuous
Petri net representation of the Tyson-Novak. CycB-Cdk1 phosphorylates Cdh1-APC
and free Cdh1-APC catalyses the degradation of CycB-Cdk1. To model a complete cell

122

6.2 The Eukaryotic Cell Cycle

cycle, Kar et al. [KBPT09] unpacked the effect of Cdc20 and Cdc14 which are lumped
in the variable Z in the Tyson-Novak model. High activity of CycB-Cdk1 promotes the
synthesis of Cdc20 which activates Cdc14. Finally the dephosphorylated Cdc14 acti-
vates Cdh1-APC. The Kar et al. model accounts for both intrinsic and extrinsic noises.
Intrinsic noise is due to the fluctuation of species with low numbers of molecules, while
extrinsic noise is due to the unequal division of the cell between the two daughter
cells [KBPT09].
In [SSJT11], a hybrid model which combines ordinary differential equations (ODEs)

and discrete Boolean networks has been constructed to adopt quantitative as well as
qualitative parts in the same model. The Boolean networks approach requires less
knowledge about realistic kinetic rate constants. Liu et al. [LPL+12] simulate the
stochastic model of [KBPT09] using the Haseltine and Rawlings approach [HR02].
However, such models cannot structurally or graphically be represented which makes
it unmanageable for further extensions.
In this section a hybrid Petri net model of the eukaryotic cell cycle is presented.

The model is hybrid in the sense that it combines continuous, stochastic and imme-
diate transitions to represent deterministic, stochastic and control components. Using
Snoopy’s simulator, it can be simulated either using the deterministic or the hybrid
simulator.

6.2.2 The Model

Figure 6.6 shows the hybrid Petri net model based on the previous one introduced by
Kar et al. [KBPT09]. The Petri net model is adopted from the reaction set in Table 6.1.
It consists of 26 places, 51 transitions, and 164 arcs. Proteins, genes and mRNAs are
represented by places. Transitions represent reactions. We use the same kinetic param-
eters and initial values as given in [KBPT09]. Moreover, we use Snoopy’s logical node
features to simplify connections between different nodes. For example, place X and Y
are involved in many reactions which decreases the network’s readability. We repeat
them multiple times with the same names to keep the model understandable (logical
places); likewise the immediate transition divide (logical transitions). Furthermore, the
increase of cell volume size is intuitively represented by a continuous transition with a
rate µ · V , where µ is the growth factor and V is the cellular volume.

In the model, continuous transitions simulate the corresponding reactions determinis-
tically, while stochastic transitions carry them out stochastically. The latter transitions
are responsible for molecular fluctuations. Immediate transitions monitor the model
evolution and perform the division when the free number of molecules of Cdh1_APC
reaches a certain threshold (Ŷ = Y + Y X + XY). Please note that the variable Ŷ is
computed during the model simulation by the weight of the immediate transitions.
In the sequel we present in more detail some of the model’s key components and the

corresponding GHPN bio representations.

123

6 Case Studies

No. Reaction Propensity Rate constant
R1 mRNA_x→ mRNA_x+X k1 ∗mRNA_x ∗ V k1=2.5
R2 X → φ k2 ∗X k2=0.12
R3 Y +X → Y_X k3 ∗X ∗ Y/V k3=1.7976
R4 Y_X → Y +X k4 ∗ Y_X k4=12.0
R5 Y_X → φ+ Y k5 ∗ Y_X k5=3.0
R6 X + Y → X_Y k6 ∗X ∗ Y/V k6=7.875
R7 X_Y → X + Y k7 ∗X_Y k7=42.0
R8 X_Y → Y p+X k8 ∗X_Y k8=105.0
R9 Z + Y p→ Z_Y p k9 ∗ Z ∗ Y p/V k9=44.97
R10 Z_Y p→ Z + Y p k10 ∗ Z_Y p∗ k10=12.0
R11 Z_Y p→ Z + Y k11 ∗ Z_Y p∗ k11=30.0
R12 Y p+X → Y p_X k12 ∗ Y p ∗X/V k12=22.497
R13 Y p_X → Y p+X k13 ∗ Y p_X k13=12.0
R14 Y p_X → φ+ Y p k14 ∗ Y p_X k14=0.003
R15 mRNA_z → mRNA+ Z k15 ∗mRNA_z ∗ V k15=1.2883
R16 Z → φ k16 ∗ Z k16=0.3
R17 TF +X → TFp+X k17 ∗ TF ∗X/V k17=0.01797
R18 TFp+H → TF +H k18 ∗ TFp ∗H/V k18=0.03594
R19 2TFp→ TFp2 k19 ∗ TFp ∗ (TFp− 1)/V k19=0.81
R20 TFp2→ 2TFp k20 ∗ TFp2 k20=90.0
R21 G+ TFp2→ C k21 ∗G ∗ TFp2 k21=0.0957
R22 C + TFp2→ G+ TFp2 k22 ∗ C ∗ TFp2 k22=2.7
R23 Y p→ Y k23 ∗ Y p k23=7.0
R24 C → C +mRNA_z k24 ∗ C k24=1.35
R25 mRNA_z → φ k25 ∗mRNA_z k25=3.5
R26 mRNA_tf → mRNA_tf + TF k26 ∗mRNA_tf/V k26=1.607
R27 TF → φ k27 ∗ TF k27=0.01936
R28 TFp→ φ k28 ∗ TFp k28=0.01936
R29 TFp2→ TFp 2 ∗ k29 ∗ TFp2 k29=0.01936
R30 mRNA_h→ mRNA_h+H k30 ∗mRNA_h ∗ V k30=1.607
R31 H → φ k31 ∗H k31=0.00968
R32 mRNA_y → mRNA_y + Y k32 ∗mRNA_y ∗ V k32=1.607
R33 Y → φ k33 ∗ Y k33=0.01936
R34 Y p→ φ k34 ∗ Y p k34=0.01936
R35 X_Y → φ k35 ∗X_Y k35=0.01936
R36 Z_Y p→ φ k36 ∗ Z_Y p k36=0.01936
R37 Y p_X → φ k37 ∗ Y p_X k37=0.01936
R38 Y_X → φ k38 ∗ Y_X k38=0.01936
R39 Gx→ Gx+mRNA_x k39 ∗Gx ∗ V k39=1.0
R40 mRNA_x→ φ k40 ∗mRNA_x k40=3.5
R41 Gy → Gy +mRNA_y k41 ∗Gy ∗ V k41=7.0
R42 mRNA_y → φ k42 ∗mRNA_y k42=3.5
R43 Gtf → Gtf +mRNA_tf k43 ∗Gtf ∗ V k43=7.0
R44 mRNA_tf → φ k44 ∗mRNA_tf k44=3.5
R45 Ggh→ Ggh+mRNA_gh k45 ∗Ggh ∗ V k45=7.0
R46 mRNA_gh→ φ k46 ∗mRNA_gh k46=3.5
R47 C → TFp+G 2 ∗ k47 ∗ C k47=0.01936

Table 6.1: Reaction set of the eukaryotic cell cycle model
124

6.2 The Eukaryotic Cell Cycle

mRNA_z

mRNA_y

C

C

mRNA_h

mRNA_tf

G_X

G_Y

G_TF

G_GH

ready_for_divide

G

ready_for_check

V

21

V

21

V21

V

21

V 21

V

21

V 21

V

21

Y

2189

Y

2189

Y

2189

Y

2189Yp

232

Yp

232

Yp

232

Z

9

Z9

Yp_X

133

X_Y

36

X_Y

36

X_Y

36

X

6

X

6

X
6

H

1120

TF

2799

Y_X

83

Y_X

83

Z_Yp

127

TF_p2

TF_p2

TF_p

1

mRNA_x

R6

check

divide

divide

divide

divide

divide

divide
divide

divide

divide

divide

divide

divide

divide

divide

critical

2

2

V/2 V

X_Y

X_Y/2

Y

Y/2

X/2

X

Yp_X/2

Yp

Yp/2

Yp_X

H

H/2Y_XY_X/2

TF/2

TF

Z

Z/2

mRNA_x/2

mRNA_z/2

Z_Yp/2

TF_p/2

mRNA_h/2

mRNA_z

mRNA_x

mRNA_h

TF_p2

TF_p2/2

TF_p

Z_Yp

mRNA_y

mRNA_y/2

Figure 6.6: A GHPN bio representation of the eukaryotic cell cycle. The model employs
different types of transitions: continuous, stochastic and immediate. All
reactions affecting mRNAs are represented and simulated stochastically.
Repetitive nodes (places and transitions) with the same name are logical
nodes (highlighted in grey). When the transition divide fires, it divides the
current place marking more or less equally. The type of division (equal, or
unequal) depends on the outgoing arc weight specified by marking depen-
dent weights.

125

6 Case Studies

6.2.3 Decision to Perform Division

When the number of molecules of Ŷ becomes greater than a certain threshold (in our
case 1200), the cell can divide the mass and other components (mRNAs and proteins)
between the two daughter cells. In Figure 6.7 (which is a subnet of Figure 6.6), this
process is represented by an immediate transition check with the weight Ŷ > threshold.
Recall that immediate transition weights determine the firing frequencies of immediate
transitions in conflict. A weight of zero means that a transition can not fire at all.
Therefore, when the transition check has weight greater than zero, it adds a token to
the place ready_to_divide that triggers the transition divide to carry out the division.
To give the transition divide a chance to fire before re-checking the value of Ŷ , an
inhibitor arc is used to constrain this case.
An interesting characteristics of the model is the division process. Although the

division can take place when the value of Ŷ is greater than a certain threshold, it does
not do that all the times. For example, at the beginning of the simulation, the initial
value of Ŷ satisfies the division criterion. However; the cell should not divide because
it is still at G1 phase which means that it has to replicate before it can divide. We
model this sitiuation by adding a new immediate transition which detects the critical
value of Ŷ , before checking for division. Therefore the transition critical monitors the
value of Ŷ . When the value of Ŷ goes below a certain threshold, it enables the division
process. For a simulation trace of this scenario, see Figure 6.8.

6.2.4 Cell Division and Marking-dependent Arc Weights

When a cell divides, it divides all of its components more or less evenly between two
daughter cells. This is another ideal case to demonstrate marking-dependent weights
which have been introduced in [Val78]. In Figure 6.7, when the transition divide fires,
it removes all of the current marking of the place V and adds V/2 to it. To permit
uneven division of the cell volume and other components, arc weights can be a function
which operates on the current place marking [MTA+03]. However, we restrict the used
places in arc weights to the transitions’ pre-places to maintain the Petri net structure.
In Figure 6.7 we model the logics of the division process by the transition divide.

When there is a token in the place ready_for_divide, the transition divide becomes
enabled. When it fires, it consumes Vmarkings and add V/2 to the place volume. More-
over the division takes place for each component making divide better be represented
as a logic transition.

6.2.5 Transition Partitioning

The eukaryotic cell model contains transitions which fire at different rates. For in-
stance, the transition (reaction) R3, as illustrated in Figure 6.9a, fires more frequently
than R1. Slow transitions should be simulated stochastically to account for molecular

126

6.2 The Eukaryotic Cell Cycle

ready_for_check

ready_for_divide
Y_X

83

X_Y

36

Y

2189

V

21

critical

divide

check

VV/2

Figure 6.7: A sub-net for modelling the decision of the division process. The transi-
tion critical monitors the value of Ŷ and adds a token to ready_for_check
when Ŷ < 300. Later, when the value of Ŷ increases and becomes greater
than a threshold (1200), the transition check fires and adds a token to
ready_for_divide which trigger the transition divide to perform the di-
vision. Inhibitor arcs are used as checkpoints for the sequence of events:
critical → check → divide.

Figure 6.8: Graphical illustration of when a cell divides

127

6 Case Studies

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000

R
a
te

s

time

R1

R3

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

R
a
te

s

time

R26

R18

(b)

Figure 6.9: Example of different transition firing rates. (a) transition R3: X+Y→ Y_X
fires more frequently than transition R1: mRNA_x → mRNA_x+X, and
(b) transition R18: H → H+TF fires more frequently than transition R26:
mRNA_tf→ mRNA_tf +TF.

fluctuations, while fast transitions need to be simulated continuously to increase the
numerical efficiency. Indeed, the latter types consume the majority of computational
resources.
In this model, transitions are partitioned statically before the simulation starts. The

transition type is decided by executing a single run and analyse the results as it is
shown in Figure 6.9. Increasing (decreasing) the accuracy of the model’s results in-
volves converting more continuous (stochastic) transitions into stochastic (continuous)
ones. Similarly, controlling the speed of the model simulation will require the opposite
procedure.
Nevertheless, in any case cell growth has to be represented and simulated continu-

ously. Using off-line partitioning, this can be easily told to the simulator by drawing
a continuous transition. However, in the case of dynamic partitioning, the transition
rate threshold should be set less than the expected rate of cell growth which makes the
simulation of this model using dynamic partitioning not possible.

6.2.6 Simulation Results

In this section, we compare the simulation results of the following scenarios: when
reactions related only to mRNAs are simulated stochastically, and when all reactions
are simulated continuously. In all cases cell growth is simulated using a continuous
transition. Figures 6.10 - 6.12 show the results of the continuous and hybrid approaches
for three species. Since reactions related to mRNAs are simulated stochastically in

128

6.3 Circadian Oscillation

hybrid and stochastic simulations, their results are close to each other.
Figure 6.10 shows time course simulation results of protein Y. In hybrid simulations,

Y is affected by fluctuations of mRNAs, while in continuous one there is no such effect.
Figure 6.13 compares continuous and hybrid simulation results for the cellular vol-

ume (V). Using continuous simulation, cells divide all the time equal and the model
produces no variability in its volume size. The hybrid simulation shows variability in
the volume size because species of low numbers of molecules (e.g., mRNAs) are sim-
ulated stochastically which account for the molecular fluctuations and therefore, they
are responsible for the intrinsic noise [KBPT09].
The partitioning of the reactions into stochastic and continuous ones is carried out

using a heuristic approach (see Section 6.2.5). However, a better justification for the
partitioning could be given. For instance, the fast processes can be regarded as processes
that could be described by a quasi (or pseudo) steady state approach, assuming that
they reach equilibrium rapidly. In other words, they could be better described by setting
the corresponding ODEs to zero and solving for the high molecular species. In contrast,
continuous dynamics could be seen as more appropriate for abundant molecules whose
concentrations display a small coefficient of variation, and stochastic dynamics for those
molecules evolving at low copy number.
The presented model could be viewed as a sub-net in a bigger network of reactions

(e.g., modelling budding yeast cell cycle or Fission yeast cells). Snoopy’s hierarchical
nodes might simplify such task as they provide an easy means to insert a sub-net in a
bigger one.

6.3 Circadian Oscillation

In some organisms, there is a control mechanism which is responsible for ensuring a
periodic oscillation of certain molecular species [HL07]. This phenomenon is known as
circadian rhythm and it can be found in many organisms (e.g., Drosophila).
Maintaining the period and amplitude of a temporal oscillation is an important factor

of the evolutionary fitness of an organism [PZV12]. Moreover, such clock networks
share common features in a wide rang of organisms. For example, all networks seem to
include an interaction between two types of components: activator (positive elements)
and repressor (negative elements) [BL00].
An attractive feature of periodic oscillations in biological organisms is that they can

reliably function despite the existence of external noise (such as light or temperature
changes) or internal noise due to the fluctuation of species of low numbers of molecules.
In the presence of internal noise, oscillations sustain but with period and amplitude
that fluctuate with time [BL00].
In this section we study a simple model of circadian oscillation. We run continuous,

stochastic, and hybrid simulations and compare the results. Moreover, this case study

129

6 Case Studies

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700 800 900 1000

c
o
n
c
e
n
tr

a
ti
o
n

time

Y continuous

(a)

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700 800 900 1000

c
o
n
c
e
n
tr

a
ti
o
n

time

Y hybrid

(b)

Figure 6.10: Time course result of the model in Figure 6.6 using Snoopy simulator of
the species Y (a) continuous (b) hybrid.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800 900 1000

c
o
n
c
e
n
tr

a
ti
o
n

time

mRNAx continuous

(a)

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800 900 1000

c
o
n
c
e
n
tr

a
ti
o
n

time

mRNAx hybrid

(b)

Figure 6.11: Time course result of mRNAx; (a) continuous and (b) hybrid.

130

6.3 Circadian Oscillation

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

c
o
n
c
e
n
tr

a
ti
o
n

time

mRNAz continuous

(a)

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000
c
o
n
c
e
n
tr

a
ti
o
n

time

mRNAz hybrid

(b)

Figure 6.12: Time course result of mRNAz; (a) continuos and (b) hybrid.

 0

 5

 10

 15

 20

 25

 30

 35

 500 600 700 800 900 1000

s
iz

e

time

V

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 500 600 700 800 900 1000

s
iz

e

time

V

(b)

Figure 6.13: Continuous and hybrid simulation results of the cellular volume (V); (a)
continuous result, and (b) hybrid simulation result. Continuous simula-
tion does not capture the variability of the cellular volume, but hybrid
simulation does.

131

6 Case Studies

No. Reaction Propensity Rate constant
R1 G1_active→ G1 k1 ∗G1_active k1=50.0
R2 G1 +A→ G1_active k2 ∗G1 ∗A k2= 1.0
R3 G2_active→ G2 k3 ∗G2_active k3= 100.0
R4 G2 +A→ G2_active k4 ∗G2 ∗A k4= 1.0
R5 φ→ mRNA_G2 k5 ∗G1_active k5= 500.0
R6 φ→ mRNA_G2 k6 ∗G1 k6= 50.0
R7 mRNA_G1 → φ k7 ∗mRNA_G1 k7= 10.0
R8 φ→ A k8 ∗mRNA_G1 k8= 50.0
R9 φ→ A k9 ∗G1_active k9= 50.0
R10 φ→ A k10 ∗G2_active k10= 100.0
R11 A→ φ k11 ∗A k11= 1.0
R12 R+A→ A_R k12 ∗A ∗R k12= 2.0
R13 φ→ mRNA_G2 k13 ∗G2_active k13= 50.0
R14 φ→ mRNA_G2 k14 ∗G2 k14= 0.01
R15 mRNA_G2 → φ k15 ∗G2 ∗mRNA_G2 k15=0.5
R16 φ→ R k16 ∗mRNA_G2 k16= 5.0
R17 R→ φ k17 ∗R k17= 0.2
R18 A_R→ R k18 ∗A_R k18= 1.0

Table 6.2: Reaction set of the circadian oscillation model. The GHPN bio representa-
tions of these reactions are given in Figure 6.14

is a prime example to show how computational steering can be applied to a biological
example. Using computational steering, we change some key parameters and monitor
the effects of such changes on the period and amplitude of the oscillation. Finally a
coloured version of this model is created to show some different performance measures
related to our implementation.

6.3.1 Model Overview

We consider a simple model that demonstrates this phenomenon. This model does not
produce the details of any biological organism, but it is useful to study oscillation
mechanisms in general. It consists of two genes which are denoted by G1 and G2.
The model includes also one activator and one repressor which are denoted by A and
R, respectively. The activator and repressor control the two genes and their mRNAs,
mRNA_G1 and mRNA_G2. A and R can be activated to form a complex A_R which
takes place through reaction R12. The activator A binds to the A and R promotors and
subsequently increases their transcription rates. Table 6.2 lists the model reactions,
rates, and parameters [JHNS02]. The Petri net in Figure 6.14 contains 9 places, 18

132

6.3 Circadian Oscillation

G10.2

G2_active

9

G1_active

9

A

A

G20.2

mRNA_G1

A_R

R

mRNA_G2

R1

R2

R3

R4

R9

R10

R8

R11

R12

R16

R18

R17

R7

R6
R5

R14

R15

R13

k1

50

k3

100

k5

500

k7

10

k9

50

k11

1

k13

50

k2

1

k4

1

k6

50

k8

50

k10

100

k12

2

k14

0.01

k16

5

k15

0.5

k17

0.2

k18

1

Figure 6.14: A GHPN bio representation of the circadian oscillation model (Table 6.2).
The parameter k17, highlighted in yellow, is a key parameter in this model.
Transitions are initially represented as continuous, then they are parti-
tioned dynamically into stochastic and continuous ones.

transitions, and 35 arcs.

6.3.2 Simulation Results

Figure 6.15 gives time course simulation results of the GHPN bio model in Figure 6.14.
Using the parameter values given in Figure 6.14, continuous simulation produces oscilla-
tions. However, if the rate constant of reaction R17 (i.e., k17) is changed, e.g., from 0.2 to
0.08, the continuous simulation fails to produce the desired oscillation [JHNS02, HL07].
It is shown in [JHNS02] that stochastic simulation can still produce the expected

oscillation even if there are reactions with low rates.
Hybrid simulation can also produce such an oscillation of this model when species

133

6 Case Studies

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

c
o
n
c
e
n
tr

a
ti
o
n

time (hours)

R (k17=0.2)
A (k17=0.2)

(a)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

c
o
n
c
e
n
tr

a
ti
o
n

time (hours)

A (k17=0.0.08)
R (k17=0.08)

(b)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

c
o
n
c
e
n
tr

a
ti
o
n

time (hours)

A (k17=0.08)
R (k17=0.08)

(c)

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

c
o
n
c
e
n
tr

a
ti
o
n

time (hours)

A (k17=0.08)
R (k17=0.08)

(d)

Figure 6.15: Simulation results of repressor (R) and activator (A) proteins of the circa-
dian oscillation model for continuous, stochastic and hybrid methods with
two different values of k17 (0.2 and 0.08). (a) Continuous simulation pro-
duces sustained oscillation when k17=0.2, (b) but it fails when k17=0.08.
(c) Contrary, stochastic simulation still produces oscillation for small pa-
rameter values (k17=0.08), however it is computationally more expensive.
(d) Hybrid simulation is also able to produce oscillation when k17=0.08,
but with substantial runtime improvement.

134

6.3 Circadian Oscillation

with low numbers of molecules or reactions of low rates are simulated stochastically,
while the others are simulated continuously. However, static partitioning of the Petri
net into continuous and stochastic parts will substantially slow down the simulation,
since the propensity values are changing during the simulation due to the oscillation.
Indeed, this model is well-suited to motivate the dynamic partitioning procedure.
Thus we opted to dynamically partition the model into fast and slow parts during the

simulation. Figure 6.15 shows the simulation result when the Petri net in Figure 6.14 is
simulated using continuous, stochastic, and hybrid methods with two different values
of k17 (0.2 and 0.08). The parameters in the partitioning algorithm are set to make a
trade off between accuracy and speed.

6.3.3 Online Steering of the Model Parameters

Now, we consider the problem of dynamically changing the model parameters. The
simulation results presented in Figure 6.15 were produced using the batch mode. That
means to check how the model reacts to different values of k17, we have to repeat the
simulation experiment each time from the beginning. In this section we perform such
changes online while the simulation is in progress.
In Figure 6.16a the simulator is allowed to run without any intervention from the

user side with a value of k17 equals to 0.2. Thus the oscillation period and the amplitude
are constant during the overall simulation time.
In Figure 6.16b, the continuous simulator is intervened four times by changing the

value of k17. During the time period 0-100, the simulator uses a value of 0.02. The
system does not produce any oscillation. However, for the rest of the simulation time,
the model produces oscillation, but with different periods and amplitudes.
For example, during the time period from 100 to 200, the simulator uses the value

of k17=0.3 supplied by the user to execute the model. Increasing the value of k17 to 3,
the oscillation period as well as the amplitude are decreased. Similar behaviour also
occurs during the subsequent changes of k17 from 2 to 3 and from 3 to 4 during the
time periods 300 - 400 and 400 - 500, respectively.
The advantage of such method of simulation in the context of systems biology is to

permit users to experiment with different parameter sets. This could help in solving
one of the current challenges of kinetic modelling of biochemical reaction networks,
namely parameter estimation.
Computational steering does not play a big role for simple models where there is no

big difference, in terms of runtime, of either restarting the simulation from scratch or
to continue producing the model dynamics from the current simulation time, but with
different parameter values. However, for substantially time-consuming models, it has
a big influence on the overall simulation time.
The latter model sizes are typical models in systems biology in the future, since the

systems biology’s focus is changing from studying and analysing isolated processes to

135

6 Case Studies

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500

c
o
n
c
e
n

tr
a

ti
o
n

time

(a)

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500

c
o
n
c
e
n

tr
a

ti
o
n

time

(b)

Figure 6.16: Simulation results of the circadian oscillation model. (a) k17=0.2 is used
throughout the whole simulation time. (b) Different values; of k17 are
used. k17=0.02 for time points 0 - 100, and the model does not produce
any oscillation, while for time points 100 - 200, 200 - 300, 300 - 400, 400
- 500, values of k17 are set to 0.3, 2, 3, 4, respectively.

much bigger views of holistic biological systems.

6.3.4 Coloured Model

In this section we consider a bigger (in size) and scalable version of the continuous Petri
net model in Figure 6.14. The coloured model presented here can be easily extended to
include more than two genes. We use this example to measure the performance of the
implementation of the computational steering framework which has been presented in
Chapter 5.
The following declarations are added to the continuous Petri net in Figure 6.14 to

get the coloured version. For more details see [Liu12].
constant int N=10;
colorset CS=int with 1-N;
variable x:CS;
We assign to each place in Figure 6.14 the colour set CS, while the variable x is

assigned to the arcs.. Increasing N implies increasing the number of colors in the net
which subsequently increases (in the unfold version) dramatically the net size. For the
sake of completeness, the coloured model is given in Figure 6.17.
Table 6.3 gives the runtime (in seconds) for different values of N ranging from 10

to 50,000 colours. The communication between the client and the server took place
through a LAN connection. The runtimes are computed using the default model view
(see Section 5.3.4). We can conclude from this table that transferring the whole result

136

6.3 Circadian Oscillation

G1

0.2‘all()CS

2.2

G2_active

9‘all()
CS

99

G1_active

9‘all()

CS

99

ACS

A

CS

G2

0.2‘all()

CS

2.2

mRNA_G1
CS

A_R

CS

R

CS

mRNA_G2

CS

R1

R3

R8

R16

R7

R15

R12

R18

R6

R17

R14

R4

R2

R9

R11

R5

R13

R10

k1

50

k3

100

k5

500

k7

10

k9

50

k11

1

k13

50

k2

1

k4

1

k6

50

k8

50

k10

100

k12

2

k14

0.01

k16

5

k15

0.5

k17

0.2

k18

1

Figure 6.17: A coloured version of the circadian oscillation model in Figure 6.14.

137

6 Case Studies

N Number
of places

Number of
transitions

Number
of arcs

Communicating
model
specification

Communicating
result matrix

10 99 198 385 0.359 0.269
100 909 1,818 1,529 0.468 0.405
1,000 909 18,018 35,035 1.497 1.888
10,000 90,009 180,018 350,035 9.485 10.345
50,000 450,009 900,018 1,750,035 40.648 41.65

Table 6.3: Runtime (in seconds) of executing the coloured model using the steering
framework.

matrix from the server to the client might need some time, particularly for larger
models. Therefore communicating only parts of the matrix, as it has been discussed in
Section 5.6.4, will be useful.

6.4 Discussion

In this section, we discuss and analyse the runtime behaviour of the simulation algo-
rithm applied to four biological models which have been presented in Chapter 4 and 6.
Two different comparisons are conducted. First, we compare the three different simula-
tion approaches: continuous, stochastic, and hybrid. Next, we compare the continuous
and hybrid simulation runtimes when different types of ODE solvers are used. Tables
6.4 and 6.5 list the runtimes of the selected models. The simulation was performed
using, a MAC Pro 8×2.2GHz, 8GB RAM. Please note that the stochastic simulation
runtime has not been computed for the eukaryotic cell cycle model, as Snoopy does
not support any SPN primitives to simulate the continuous cell growth.
Biological models vary in size and scales which explains the need for different tools

to deal with such diversities. To illustrate this point consider Table 6.4 which compares
continuous, stochastic, and hybrid simulation in terms of the runtimes required for the
four different biological models. These data were produced with our implementation
of the three simulation approaches (stochastic, continuous, and hybrid) using Snoopy.
The runtimes are computed based on a single run for continuous simulation and 104

runs for the stochastic and hybrid setting.
From this table we can conclude that there is no single optimal method (in terms

of accuracy and speed) which always performs best for all models. For instance, simu-
lating the Goutsias model using the stochastic approach will be very slow. However, it
could capture the true model behaviour. Hybrid simulation saves substantial amount of
work as it simulates only a subset of the transitions in a discrete way, while the others
are simulated continuously. For the Goutsias model, dynamic partitioning is more ex-

138

6.4 Discussion

Continuous Stochastic Hybrid (static) Hybrid (dynamic)
Oscillator 0.197 65,342.273 53,232.862 28,689.125
T7 Phage 0.002 33,567.379 3,149.204 2,249.755
Goutsias 0.002 1,273.084 72.707 75.631
Cell Cycle 2.642 - 194.629∗ -

− have not been performed
∗ only single run for the hybrid simulation is used

Table 6.4: Comparison of continuous, stochastic and hybrid simulation runtimes (in
seconds) for four GHPN bio models using multi-step ODE solver.

Continuous Stochastic Hybrid (static) Hybrid (dynamic)
Oscillator 1.029 65,342.273 to be done to be done
T7 Phage 0.002 33,567.379 264.083 210.575
Goutsias 0.005 1,273.084 89. 387 77.205
Cell Cycle 11.578 - 102.467∗ -

− have not been performed
∗ only single run for the hybrid simulation is used

Table 6.5: Comparison of continuous, stochastic and hybrid simulation runtimes (in
seconds) for four GHPN bio models using single-step ODE solver.

pensive than the static one as the former introduces additional overhead without giving
any improvement. Indeed the reactions of the Goutsias model are easily separable into
two scales.
Contrary, simulation with dynamic partitioning of the oscillator model is faster than

using static partitioning. This happens because transition rates change over time from
low to high and vice versa, as it can be noticed in the oscillations in Figure 6.15.
Now we return to the point which has been discussed in Section 4.4.2. When a multi-

step solver is used in Table 6.4 to perform the continuous simulation of the cell cycle
model, it exhibits high performance compared to simulating the same model using a
single-step method. However, using the same ODEs solver in the hybrid, simulation
the runtime behaviour is reversed.
Such change in the performance is due to the many discontinuities that occur dur-

ing the hybrid simulation. Such discontinuities require the reinitialisation of the ODE
solver. Hence, the performance of single-step ODE solver is not affected by such reini-
tialisation.
Moreover, this point becomes more obvious in the runtime of simulating the T7

phage model. The continuous part of this model does not exhibit stiffness, therefore a
single step explicit ODE solver is well-suited to execute the model behaviour using the
hybrid simulator.

139

6 Case Studies

For the Goutsias model, we do not have such a difference of the simulator perfor-
mance. The number of reactions that are simulated stochastically of this model is
small. Therefore, the number of discontinuities is limited. Hence, multi-step solvers
outperform the single-step one in this case.
As a conclusion, selecting an appropriate ODE solver is important for the perfor-

mance of the hybrid simulator algorithm. However, such a choice, as in the pure deter-
ministic simulation, is model-dependent.

6.5 Conclusions

In this chapter we have presented three case studies to illustrate different aspects
of the two introduced tools in Chapters 4 and 5. Besides the runtime behaviours of
these models, the Goutsias model is additionally analysed comparing single-step ODEs
solvers with the multi-step ones.
As a conclusion for these case studies, stochastic simulation is always slower, but it

is very accurate compared to continuous and hybrid simulation. This motivates us to
provide with GHPN bio a unified framework to simulate one and the same model using
different simulation methods which gives system biologists a tool to easily try different
methods and to choose the most suitable one.
Moreover, computational steering can be used to simulate the presented case studies

in a more convenient way than the framework currently used in kinetic modelling
software.

140

7 Conclusions and Future Work

7.1 Conclusions

During the course of this study, we have presented two different, yet related contribu-
tions to an exciting and interdisciplinary field systems biology. The two contributions
are: the definition as well as the implementation of a new Petri net class, Generalised
Hybrid Petri Nets, and the development of a computational steering framework for the
collaborative, distributed and interactive simulation of biochemical reaction networks.
The mathematical and computational tools, introduced in this work, contribute and
help systems biologists in the ongoing effort of understanding biological phenomenon
at the system level. Moreover, the two contributions are useful in modelling other tech-
nical systems. In the following section we summarise our contributions, while in the
next one we discuss possible future extensions of our work.

7.1.1 Generalised Hybrid Petri Nets

With the advance of computational modelling of biochemical reaction networks, hybrid
simulation plays an important role in producing the dynamics of computational bio-
logical models, particularly for models which require the integration of stochastic and
continuous semantics (for some examples see Chapter 6). Therefore, there is a need
for a Petri net tool that covers a wide range of modelling capabilities and supports
stochastic as well as continuous semantics in one and the same model. Moreover, the
implementation of such a tool is of paramount importance to systems biologists. Thus,
we have developed Generalised Hybrid Petri Nets.
GHPN bio provide the full interplay between stochastic and continuous transitions

through the monitoring of changes in stochastic transitions’ rates during the simulation
of continuous transitions. Moreover, GHPN bio compose a wide range of transition types
(e.g., stochastic, continuous, immediate, and scheduled transitions) which renders them
possible to model different reaction types.
A special application of GHPN bio is the representation and simulation of stiff bio-

chemical networks, where reactions that occur frequently are represented and simulated
through continuous transitions, while reactions that occur infrequently are modelled
using stochastic transitions. Switch-like and fixed time delay semantics can be modelled
through immediate and deterministically timed transitions, respectively.
For the requirements of simulating stiff biochemical reactions, we have implemented

141

7 Conclusions and Future Work

two simulation methods: simulation using static or dynamic partitioning. In the former,
reactions are partitioned only once during the entire simulation time, namely at the
initialisation step of the simulator, while in the latter, partitioning is repeated whenever
there is a need to reconsider partitioning. The computational overhead due to repeating
the partitioning can gain more simulation speed in some cases (e.g., models which
exhibit oscillations).
Furthermore, the implementation of GHPN bio is a platform-independent and it is

available free of charge for academic use.

7.1.2 Computational Steering Framework

Currently available software tools that simulate biochemical reaction networks follow
the batch simulation approach. Therefore they look like a black-box from the user point
of view, when they perform the simulation. Besides, they position the users away from
their simulation. However, users would like to interact with the simulation and depict
errors and incorrect results as soon as possible. Furthermore, collaboration between
different users in investigating the same model is helpful as it promotes the sharing of
knowledge between different users of different backgrounds.
With this motivations, we have developed a computational steering framework for

the interactive simulation of biochemical reaction networks. The main components of
the proposed framework are: the steering server – responsible for managing the running
models and the collaboration and co-ordination between connected users, the steering
graphical user interface – the user entry point to run the interactive simulation, the
steering application programming interface (API) – carrying out the communication
between the different framework components, and the internal and external simulators
– produce the model dynamic through the simulation of the Petri nets.
The introduced framework adopts Petri nets as a formal and graphical modelling

language of biochemical reaction networks. It supports various helpful features for the
modelling and analysis of reaction networks, e.g., intuitive and understandable rep-
resentation of reaction networks, distributed collaborative and interactive simulation
of biochemical networks, the tight coupling of visualisation and simulation, and the
extendibility to include further simulators provided by the users.

7.1.3 Case Studies

Three case studies have been discussed in Chapter 6 to demonstrate the operations of
GHPN bio and the computational steering framework. These case studies have different
scales and expose various behaviours.
The T7 phage model shows that continuous and hybrid simulations yield different

suggestions. The three-place model can accurately be simulated through stochastic and
hybrid simulations rather than the continuous one.

142

7.2 Outlook

The Eukaryotic cell cycle model demonstrates most of the GHPN bio elements. The
continuous version of this model cannot capture the variability of the cellular volume.
Moreover, marking-dependent arc weights are better explained by this model.
Finally the circadian oscillation model discusses different aspect of GHPN bio namely

dynamic partitioning. While the markings are oscillating, transition rates are also os-
cillating. This makes the dynamic partitioning useful to deal with such behaviour.
Furthermore, this model is used to demonstrate the practical use of computational
steering framework.

7.2 Outlook

The work presented in this thesis can be extended in many directions. We classify the
extensions into those that relate to GHPN bio and those that relate to the computa-
tional steering framework.

7.2.1 Extending Generalised Hybrid Petri Nets

With respect to expressiveness, GHPN bio support a rich choice of places, transitions,
and arcs which make GHPN bio a super class of the different hybrid Petri net classes
discussed in Chapters 3 and 4. Therefore, future developments of GHPN bio are more
concerned with efficiently executing the constructed models. In this context poten-
tial extensions are: implementing other stochastic algorithms, enhancing the dynamic
partitioning algorithm, implementing the animation of GHPN bio, the introduction of
weakly-enabled semantics for continuous transitions, coloured and distributed simula-
tion of coloured hybrid Petri nets, and the exploration of further biological case studies.

Implementing Other SSA Algorithms Snoopy’s hybrid simulator currently supports
the implementation of the direct method for simulating stochastic transitions. Another
intended further extension is to support more than one stochastic simulator within
Snoopy. This can easily be achieved due to the modular implementation of the simulator
library.

Efficient Dynamic Partitioning Algorithm Although the dynamic partitioning algo-
rithm which has been presented in Chapter 4 is sufficient for small and medium models,
it could be improved to keep the dynamic simulation more user friendly for big mod-
els. Our suggestion in this direction is to view the dynamic partitioning process as an
optimisation problem and use for example linear programming to solve it.

Animation for GHPN bio Animation of discrete Petri nets has been proved to be
useful for the understanding of the Petri net model as it provides execution for the

143

7 Conclusions and Future Work

single firing of transitions. A similar approach can be developed for hybrid Petri nets.

Weakly enabled Continuous Transitions The semantics of GHPN bio, which has been
defined in Chapter 4, is mainly motivated by biological modelling. Therefore, conflicts
between continuous transitions are not considered (see Section 4.2.6), since transition
rates are defined according to specific rules (e.g., Mass Action). That is continuous
transitions are always strongly enabled (i.e., continuous transitions can fire all the
time using their maximal firing speeds) [DA10]. However, if GHPN bio are intended to
simulate other technical systems where conflicts between continuous transitions might
take place, weakly enabled continuous transitions will also be required [DA87]. Such
type of semantics should take into account the adjustment of continuous transitions’
rates (transition instantaneous speeds) so that negative values do not occur. Never-
theless, this semantics will affect the simulation’s efficiency and hence should be used
with care when simulating biological models.

Coloured-level Simulation As an extension of the hybrid Petri net class which has
been introduced in this thesis, Fei Liu defined in [Liu12] coloured hybrid Petri nets.
However, the simulation of this high-level class is done via unfolding of the coloured ver-
sion into a low-level one. Therefore, a potentially time-consuming process is required
before executing the coloured model. Additionally, some features cannot be imple-
mented on the modelling level due to the required unfolding. A better and straight-
forward strategy might be to execute the simulation directly on the coloured level to
overcome the aforemetioned limitations.

Fine-grained Distributed Simulation of Coloured Hybrid Petri Nets Unfolding of
coloured Petri nets results in increasingly large networks of low-level nets. The sim-
ulation of such Petri nets tends to be very time consuming. However, under some
circumstances the unfolded Petri nets consist of repeated components that can be
partitioned and simulated separately and simultaneously on different machines. To ac-
complish this task two issues need to be solved: (i) partitioning the whole net into
smaller subnets, and (ii) adjusting the simulation algorithm to deal with such smaller
subnets. For the latter issue, Algorithm 4.1, which has been presented in Chapter 4,
requires to be extended in order to cope with such scenario.

Exploring More Biological Case Studies The case studies, which have been presented
in Chapter 6, are chosen to illustrate different aspects of the hybrid approach. Further
complex biological examples can be modelled using GHPN bio.

144

7.2 Outlook

7.2.2 Extending the Computational Steering Framework

The computational steering framework could be extended from different perspectives
to provide more features to the user. Further options are:

Condition-based steering Condition-based steering means that the user defines some
conditions and a corresponding response before the simulation starts. Later, during the
simulation, the simulator checks the conditions and if one or more of them hold, the
corresponding actions are taken. It is similar to scheduled transitions which have been
presented in [HGD08]. However, condition-based steering will give more flexibility to
include other rules which cannot be implemented on the Petri net level. As an exam-
ple, consider the problem of determining the simulation time point when no further
stochastic event takes place.

Extending the Steering Server The implementation of the steering server could be
extended to add some security rules to prevent unauthorised users to access it. More-
over, user roles could be defined on the model base (i.e., which user can access which
model and the type of access).

Steering the Model Structure The discussion in Chapter 5 is centred about the
steering of the model parameters and current markings. This has nothing to do with
the structure. Permitting the user to change the Petri net model structure during the
simulation will help to implement many biological models which require such option.

Wrapper APIs: to integrate legacy code written in other languages The steering
API is completely written in C++ and can be run under many different operating
systems. However, some computational codes were developed using other programming
languages, e.g., FORTRAN. Writing interface functions to call the API library from
these languages will facilitate the adaptation of our framework for those simulation
codes.

Web and Mobile Steering GUI Finally, a steering GUI client can be written as a web
or mobile application to keep systems biologists closely connected with their remotely
running simulation.

145

7 Conclusions and Future Work

146

Bibliography

[ABF+10] Atanasov, A.; Bungartz, H.; Frisch, J.; Mehl, M.; Mundani, R.;
Rank, E. ; Treeck, C.: Computational steering of complex flow sim-
ulations. In: Wagner, Siegfried; Steinmetz, Matthias; Bode, Arndt;
Müller, Markus M. (Eds.): Proceedings of High Performance Comput-
ing in Science and Engineering, Garching/Munich 2009. Springer Berlin
Heidelberg, 2010, pp. 63 – 74 {91}

[ACT+05] Alfonsi, A.; Cancès, E.; Turinici, G.; Ventura, B. ; Huisinga, W.:
Adaptive simulation of hybrid stochastic and deterministic models for
biochemical systems. In: ESAIM: Proc. 14 (2005), pp. 1–13 {29, 42, 43,
45, 74, 77, 116}

[AD98] Alla, H.; David, R.: Continuous and hybrid Petri nets. In: J. Circ. Syst.
Comp. 8 (1998), Nr. 1, pp. 159 –188 {53}

[Ani02] Anirudh, M.: Real-time visualization of aerospace simulations using com-
putational steering and beowulf clusters, The Pennsylvania State Univer-
sity, PhD thesis, 2002 {23, 91}

[ASM+11] Ahern, S.; Shoshani, A.; Ma, K.; Choudhary, A. ; Chritchlow, T.:
Scientic discovery at the exascale / Report from the DOE ASCR 2011
Workshop on Exascale Data Management, Analysis, and Visualization.
2011. – Technical Report {9}

[AVS12] Advanced Visual Systems website. http://www.avs.com/. 2012. – Ac-
cessed: 1/24/2012 {11}

[BGHO08] Breitling, R.; Gilbert, D.; Heiner, M. ; Orton, R.: A structured
approach for the engineering of biochemical network models, illustrated
for signalling pathways. In: Brief Bioinform 9 (2008), Nr. 5, pp. 404 –
421 {31}

[BGM00] Balduzzi, F.; Guia, A. ; Menga, G.: First-order hybrid Petri nets: a
model for optimization and control. In: IEEE Trans. on Robotics and
Automation 16 (2000), Nr. 4, pp. 382–399 {55, 60}

147

http://www.avs.com/

Bibliography

[BJBH93] Brunner, J.; Jablonowski, D.; Bliss, B. ; Haber, R.: VASE: the
visualization and application steering environment. In: Proceedings of the
1993 ACM/IEEE conference on Supercomputing. New York, NY, USA:
ACM, 1993, pp. 560–569 {17, 26}

[BL00] Barkai, N.; Leibler, S.: Biological rhythms: circadian clocks limited by
noise. In: Nature 403 (2000), pp. 267–268 {129}

[BMS+12] Bazilevs, Y.; Marsden, A.; di Scalea, F. L.; Majumdar, A. ; Tati-
neni, M.: Toward a computational steering framework for large-scale
composite structures based on continually and dynamically injected sen-
sor data. In: Procedia Computer Science 9 (2012), pp. 1149 – 1158 {9}

[CCCN+04] Chen, K.; Calzone, L.; Csikasz-Nagy, A.; Cross, F.; Novak, B. ;
Tyson, J.: Integrative analysis of cell cycle control in budding yeast. In:
Mol. Biol. Cel 5 (2004), Nr. 8, pp. 3841–3862 {121, 122}

[CFH+05] Coveney, P.; Fabritiis, G.; Harvey, M.; Pickles, S. ; Porter, A.
On steering coupled models. e-Science All Hands Meeting. 2005 {91}

[CGP05] Cao, Y.; Gillespie, D. ; Petzold, L.: Avoiding negative populations in
explicit Poisson tau-leaping. In: J. Chem. Phys. 123 (2005), Nr. 054104
{39, 40}

[CGP06] Cao, Y.; Gillespie, Daniel ; Petzold, L.: Efficient step size selection
for the tau-leaping simulation method. In: J. Chem. Phys. 124 (2006),
Nr. 044109 {39, 40}

[CGP07] Cao, Y.; Gillespie, D. ; Petzold, L.: Adaptive explicit-implicit tau-
leaping method with automatic tau selection. In: J. Chem. Phys 126
(2007), Nr. 22, pp. 224101 {41}

[CLP04] Cao, Y.; Li, H. ; Petzold, L.: Efficient formulation of the stochastic
simulation algorithm for chemically reacting systems. In: J. Chem. Phys
121 (2004), Nr. 9, pp. 4059 {41}

[CP05] Cao, Y.; Petzold, L.: Trapezoidal tau-lepaing formula for the stochas-
tic simulation of biochemical systems. In: Proceedings of Foundations of
Systems Biology in Engineering, 2005, pp. 149–152 {41}

[CW01] Chatzinikos, F.; Wright, H.: Computational steering by direct image
manipulation. In: Proceedings of the Vision Modeling and Visualization
Conference 2001, Aka GmbH, 2001, pp. 455–462 {13}

148

Bibliography

[DA87] David, R.; Alla, H.: Continuous Petri nets. In: Proceedings of the 8th
Eurpean Workshop on Application and Theory of Petri Nets. Saragossa,
Spain, 1987, pp. 275–294 {51}

[DA10] David, R.; Alla, H.: Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2010 {2, 52, 53, 60, 61, 66, 67, 71, 73}

[DeF87] DeFanti, T.: Special issue on visualization in scientific computing. In:
Computer Graphics 21 (1987), Nr. 6 {9}

[DK98] Demongodin, I.; Koussoulas, N.: Differential Petri nets: Representing
continuous systems in a discrete-event world. In: IEEE Trans. Automat.
Contr. 43 (1998), Nr. 4, pp. 573 – 579 {54, 60, 73}

[Dra98] Drath, R.: Hybrid object nets: an object oriented concept for modeling
complex hybrid systems. In: Proceedings of 3rd International Conference
on Automation of Mixed Processes: Hybrid Dynamical Systems, 1998, pp.
437–442 {55}

[DWB+12] Denham, M.; Wendt, K.; Bianchini, G.; Cortés, A. ; Margalef, T.:
Dynamic data-driven genetic algorithm for forest fire spread prediction.
In: Journal of Computational Science 3 (2012), Nr. 5, pp. 398 – 404 {9}

[ERC06] Esnard, A.; Richart, N. ; Coulaud, O.: A steering environment for
online parallel visualization of legacy parallel simulations. In: Proceedings
of the 10th International Symposium on Distributed Simulation and Real-
Time Applications. Torremolinos, Malaga, Spain: IEEE Press, 2006, pp.
7–14 {25}

[Feh93] Fehling, Rainer: A concept of hierarchical Petri nets with building
blocks. In: Rozenberg, Grzegorz (Ed.): Advances in Petri Nets 1993,
Lecture Notes in Computer Science Volume 674. Springer Berlin / Hei-
delberg, 1993, pp. 148–168 {55, 56}

[FMJ+08] Funahashi, A.; Matsuoka, Y.; Jouraku, A.; Morohashi, M.;
Kikuchi, N. ; Kitano, H.: CellDesigner 3.5: A versatile modeling tool
for biochemical networks. In: Proceedings of the IEEE (2008), Nr. 8, pp.
1254 – 1265 {1, 4}

[GB00] Gibson, M.; Bruck, J.: Exact stochastic simulation of chemical systems
with many species and many channels. In: J. Phys. Chem. 105 (2000),
pp. 1876 – 89 {31, 37, 38}

149

Bibliography

[GCPS06] Griffith, M.; Courtney, T.; Peccoud, J. ; Sanders, W.: Dynamic
partitioning for hybrid simulation of the bistable HIV-1 transactivation
network. In: Bioinformatics 22 (2006), Nr. 22, pp. 2782–2789 {29, 42,
43, 45, 74, 77}

[GH06] Gilbert, D.; Heiner, M.: From Petri nets to differential equations - an
integrative approach for biochemical network analysis. In: Donatelli,
Susanna; Thiagarajan, P. (Eds.): proceedings of Petri Nets and Other
Models of Concurrency - ICATPN 2006, Lecture Notes in Computer Sci-
ence Volume 4024. Springer Berlin / Heidelberg, 2006, pp. 181–200 {2,
53, 66}

[GHL07] Gilbert, D.; Heiner, M. ; Lehrack, S.: A unifying framework for mod-
elling and analysing biochemical pathways using Petri nets. In: Calder,
Muffy; Gilmore, Stephen (Eds.): Computational Methods in Systems Bi-
ology, Lecture Notes in Computer Science Volume 4695. Springer Berlin
/ Heidelberg, 2007, pp. 200–216 {2, 49, 81, 82}

[Gib00] Gibson, M.: Computational methods for stochastic biological systems.
Pasadena, California, California institute of Technology, PhD thesis, 2000
{38}

[Gil76] Gillespie, D.: A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions. In: J. Comput. Phys. 22
(1976), Nr. 4, pp. 403 – 434 {5, 29, 30, 34, 35, 36, 37, 79, 122}

[Gil77] Gillespie, D.: Exact stochastic simulation of coupled chemical reactions.
In: J. Phys. Chem. 81 (1977), Nr. 25, pp. 2340–2361 {5, 29, 34, 36}

[Gil91] Gillespie, D.: Markov processes: an introduction for physical scientists.
Academic Press, October 1991 {45}

[Gil01] Gillespie, D.: Approximate accelerated stochastic simulation of chemi-
cally reacting system. In: J. Chem. Phys. 115 (2001), pp. 1716–1733 {31,
39, 40}

[Gil07] Gillespie, D.: Stochastic simulation of chemical kinetics. In: Annu Rev
Phys Chem. 58 (2007), Nr. 1, pp. 35–55 {5, 29, 30, 31, 34, 35, 37, 39, 41,
42, 121}

[GKP97] Geist, G.; Kohl, J. ; Papadopoulos, P.: CUMULVS: providing fault-
tolerance, visualization and steering of parallel applications. In: Interna-
tional Journal of High Performance Computing Applications 11 (1997),
Nr. 3, pp. 224–236 {2, 10, 21}

150

Bibliography

[Gou05] Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics
in stochastic biochemical systems. In: J. Chem. Phys. 122 (2005), Nr.
184102, pp. 1–15 {41, 85, 88}

[GP03] Gillespie, D.; Petzold, L.: Improved leap-size selection for accelerated
stochastic simulation. In: J. Chem. Phys. 119 (2003), pp. 8229–8234 {39,
40}

[HBG+05] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shu-
maker, D. ; Woodward, C.: SUNDIALS: Suite of nonlinear and differ-
ential/algebraic equation solvers. In: ACM Trans. Math. Softw. 31 (2005),
September, pp. 363–396. {79, 81, 101}

[HEA07] Herajy, M.; EL-Desouky, B. ; Atta, A.: A distributed computational
steering environment for electronic learning applications. In: proceedings
of 3rd ACM International Conference on Intelligent Computing and In-
formation Systems Volume 3, 2007, pp. 208–213 {25}

[HGD08] Heiner, M.; Gilbert, D. ; Donaldson, R.: Petri nets for systems
and synthetic biology. In: Bernardo, Marco; Degano, Pierpaolo; Za-
vattaro, Gianluigi (Eds.): Formal Methods for Computational Systems
Biology, Lecture Notes in Computer Science Volume 5016. Springer Berlin
/ Heidelberg, 2008, pp. 215–264 {59, 96, 144}

[HH11] Herajy, M.; Heiner, M.: Hybrid representation and simulation of stiff
biochemical networks through generalised hybrid Petri nets / Branden-
burg University of Technology Cottbus, Dept. of CS. 2011 (02/2011). –
Technical Report {2}

[HH12a] Herajy, M.; Heiner, M.: Hybrid representation and simulation of stiff
biochemical networks. In: Nonlinear Analysis: Hybrid Systems 6 (2012),
Nr. 4, pp. 942–959 {2, 57, 61}

[HH12b] Herajy, M.; Heiner, M.: Towards a computational steering and Petri
nets framework for the modelling of biochemical reaction networks. In:
Popova-Zeugmann, Louchka (Eds.): In Proc. of 21th international
Workshop on Concurrency, Specification and Programming (CS&P 2012)
Volume 21, Humboldt University of Berlin, 2012, pp. 147 – 159 {3, 91}

[HHL+12] Heiner, M.; Herajy, M.; Liu, F.; Rohr, C. ; Schwarick, M.: Snoopy –
A Unifying Petri Net Tool. In: Haddad, Serge; Pomello, Lucia (Eds.):
Application and Theory of Petri Nets, Lecture Notes in Computer Science
Volume 7347. Springer Berlin / Heidelberg, 2012, pp. 398–407 {3, 57, 79,
102}

151

Bibliography

[HK99] Horton, G.; Kowarschik, M.: Discrete-continuous modeling using hy-
brid stochastic Petri nets. In: proceedings of European Simulation Sympo-
sium, SCS Publishing House., 1999 {55, 85}

[HL07] Hellander, A.; Lötstedt, P.: Hybrid method for the chemical master
equation. In: J. Comput. Phys. 227 (2007), pp. 100–122 {42, 129, 133}

[HLGM09] Heiner, M.; Lehrack, S.; Gilbert, D. ; Marwan, W.: Extended
stochastic Petri nets for model-based design of wetlab experiments. In:
Transactions on Computational Systems Biology XI. Berlin, Heidelberg:
Springer, 2009, pp. 138–163 {42, 49, 59}

[HM90] Haber, R; McNabb, D.: Visualization idioms: a conceptual model for
visualization systems. IEEE Computer Society Press, 1990 (Visualization
and Scientific Computing), pp. 74–93 {11}

[HMMW10] Henzinger, T.; Mikeev, L.; Mateescu, M. ; Wolf, V.: Hybrid numer-
ical solution of the chemical master equation. In: Proceedings of the 8th
International Conference on Computational Methods in Systems Biology.
New York, NY, USA: ACM, 2010, pp. 55–65 {35, 88}

[HNW93] Hairer, E.; Nørsett, S. ; Wanner, G.: Springer Series in Comput.
Mathematics. Volume 8: solving ordinary differential equations I: nonstiff
problems. Springer-Verlag, 1993 {32}

[HR02] Haseltine, E.; Rawlings, J.: Approximate simulation of coupled fast
and slow reactions for stochastic chemical kinetics. In: J. Chem. Phys.
117 (2002), Nr. 15, pp. 6959–6969 {29, 31, 42, 45, 74, 123}

[HS12] Herajy, M.; Schwarick, M.: A hybrid Petri net model of the eukaryotic
cell cycle. In: Heiner, Monika; Hofestädt, Ralf (Eds.): Proceedings of
the 3rd International Workshop on Biological Processes and Petri Nets
(BioPPN), CEUR-WS.org, 2012, pp. 29–43 {2}

[HSG+06] Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Sing-
hal, M.; Xu, L.; Mendes, P. ; Kummer, U.: COPASI — a COmplex
PAthway SImulator. In: Bioinformatics 22 (2006), pp. 3067–74 {1}

[HW96] Hairer, E.; Wanner, G.: Springer Series in Comput. Mathematics.
Volume 14: Solving ordinary differential equations II: stiff and differential-
algebraic problems. Springer-Verlag, 1996 {32}

[Jen95] Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and
practical use. Volume 2. Springer-Verlag, 1995 {55}

152

Bibliography

[JHNS02] Jose, J.; Hao, H.; Naama, N. ; Stanislas, S.: Mechanisms of noise-
resistance in genetic oscillators. In: Proceedings of the National Academy
of Sciences of the United States of America 99 (2002), April, Nr. 9, pp.
5988–5992. {132, 133}

[JPH+99] Johnson, C.; Parker, S.; Hansen, C.; Kindlmann, G. ; Livnat, Y.:
Interactive simulation and visualization. In: Computer 32 (1999), pp.
59–65 {11, 91}

[KBD+94] Kartson, D.; Balbo, G.; Donatelli, S.; Franceschinis, G. ; Conte,
G.: Modelling with generalized stochastic Petri nets. John Wiley & Sons,
Inc., 1994 {49, 66, 71, 72}

[KBPT09] Kar, S.; Baumann, W.; Paul, M. ; Tyson, J.: Exploring the roles of
noise in the eukaryotic cell cycle. In: Proceedings of the National Academy
of Sciences of the United States of America 106 (2009), April, Nr. 16, pp.
6471–6476. – ISSN 1091–6490 {4, 119, 120, 121, 122, 123, 129}

[KGM11] Kitano, H.; Ghosh, S. ; Matsuoka, Y.: Social engineering for virtual
’big science’ in systems biology. In: Nature chemical biology 7 (2011),
Juni, Nr. 6, pp. 323–326 {3, 96}

[Kit02] Kitano, H.: Systems Biology: A Brief Overview. In: Science 295 (2002),
März, Nr. 5560, pp. 1662–1664 {1, 3}

[KMS04] Kiehl, T.; Mattheyses, R. ; Simmons, M.: Hybrid simulation of cellular
behavior. In: Bioinformatics 20 (2004), pp. 316–322. {29, 42, 44, 58, 116}

[LCPG08] Li, H.; Cao, Y.; Petzold, L. ; Gillespie, D.: Algorithms and software
for stochastic simulation of biochemical reacting systems. In: Biotechnol.
Progr. 24 (2008), Nr. 1, pp. 56–61 {5, 29, 41}

[LGS+07] Lloyd, S.; Gavaghan, D.; Simpson, A.; Mascord, M.; Seneurine,
C.; Williams, G.; Pitt-Francis, J.; Boyd, D.; Randal, D.; Sastry,
L.; Nagella, S.; Weeks, K.; Fowler, R.; Hanlon, D.; Handley, J.;
de Fabritiis, G.: Integrative Biology — the challenges of developing a
collaborative research environment for heart and cancer modelling. In:
Future Generation Computer Systems 23 (2007), Nr. 3, pp. 457 – 465
{91}

[Liu12] Liu, F.: Colored Petri Nets for Systems Biology, Brandenburg University
of Technology Cottbus - Computer Science Institute, PhD thesis, 2012 {2,
55, 56, 136}

153

Bibliography

[LJPS05] Liu, H.; Jiang, L.; Parashar, M. ; Silver, D.: Rule-based visualiza-
tion in the discover computational steering collaboratory. In: J. Future
Generation Comput. Syst 21 (2005), pp. 53 – 59 {2, 10, 22}

[LMW96] Liere, R.; Mulder, J. ; Wijk, J.: Computational steering. In: Lid-
dell, Heather; Colbrook, Adrian; Hertzberger, Bob; Sloot, Peter
(Eds.): High-Performance Computing and Networking, Lecture Notes in
Computer Science Volume 1067. Springer Berlin / Heidelberg, 1996, pp.
696–702 {2, 10, 21}

[LPL+12] Liu, Z.; Pu, Y.; Li, F.; Shaffer, C.; Hoops, S.; Tyson, J. ; Cao,
Y.: Hybrid modeling and simulation of stochastic effects on progression
through the eukaryotic cell cycle. In: J. Chem. Phys 136 (2012), Nr. 34105
{123}

[LR12] Lesage, J.; Raffin, B.: A hierarchical component model for large parallel
interactive applications. In: The Journal of Supercomputing 60 (2012),
Nr. 3, pp. 389–409 {9}

[LW97] Liere, R.; Wijk, J.: An environment for computational steering. In:
Nielson, G.; Muller, H (Eds.): Scientific Visualization: Overviews,
Methodologies, and techniques. Computer Society Press, 1997, pp. 89–
110 {21}

[MA99] McAdams, H.; Arkin, A.: It’s a noisy business! Genetic regulation at
the nanomolar scale. In: Trends in Genetics 15 (1999), Nr. 2, pp. 65 – 69
{5, 29, 34}

[Mar96] Marksteiner, P.: High-performance computing —an overview. In: Com-
puter Physics Communications 97 (1996), 8, Nr. 1–2, pp. 16–35. {24}

[Mat12] Matlab Website. http://www.mathworks.de/products/matlab/. 2012. –
Accessed: 1/22/2012 {16}

[MCN08] Mura, I.; Csikász-Nagy, A.: Stochastic Petri net extension of a yeast
cell cycle model. In: Journal of Theoretical Biology 254 (2008), Nr. 4, pp.
850 – 860 {119, 121, 122}

[McQ67] McQuarrie, D.: Stochastic approach to chemical kinetics. In: Journal
of Applied Probability 4 (1967), Nr. 3, pp. 413–478 {34, 35}

[MLP02] Modi, A.; Long, L. ; Plassmann, P.: Real-time visualization of wake-
vortex simulations using computational steering and beowulf clusters. In:
the Fifth International Conference on Vector and Parallel Processing Sys-
tems and Applications (VECPAR),, 2002, pp. 787 – 800 {2, 10, 23}

154

http://www.mathworks.de/products/matlab/

Bibliography

[MMMP01] Mann, V.; Matossian, V.; Muralidhar, R. ; Parashar, M.: DIS-
COVER: An environment for Web-based interaction and steering of high-
performance scientific applications. In: Concurrency and Computation:
Practice and Experience 13 (2001), pp. 737–754 {2, 10, 17, 22}

[MNM11] Matsuno, H.; Nagasaki, M. ; Miyano, S.: Hybrid Petri net based
modeling for biological pathway simulation. In: Natural Computing 10
(2011), September, Nr. 3, pp. 1099–1120. {4}

[MP02a] Mao, G.; Petzold, L.: Efficient integration over discontinuities for
differential-algebraic systems,. In: Computers and Mathematics with Ap-
plications 43 (2002), pp. 65–79 {80, 81}

[MP02b] Muralidhar, R.; Parashar, M.: A distributed object infrastructure
for interaction and steering. In: Concurrency Computat.: Pract. Exper 15
(2002), pp. 957–977 {12, 17, 22}

[MPC+06] McCollum, J.; Peterson, G.; Cox, C.; M.Simpson ; Samatova, N.:
The sorting direct method for stochastic simulation of biochemical systems
with varying reaction execution behavior. In: Computational Biology and
Chemistry 30 (2006), Nr. 1, pp. 39 – 49 {41}

[MRH12] Marwan, W.; Rohr, C. ; Heiner, M.: Petri nets in Snoopy: A unifying
framework for the graphical display, computational modelling, and simu-
lation of bacterial regulatory networks. In: Helden, Jv; Toussaint, A;
Thieffry, D (Eds.): Methods in Molecular Biology – Bacterial Molecular
Networks Volume 804. Humana Press, 2012, Chapter 21, pp. 409–437 {2,
49}

[MSS+08] Moraru, I.; Schaff, J.; Slepchenko, B.; Blinov, M.; Morgan, F.;
Lakshminarayana, F.; Li, Y. ; Loew, L.: Virtual Cell modelling and
simulation software environment. . In: IET Syst Biol. 2 (2008), Nr. 5, pp.
352–62 {1}

[MTA+03] Matsuno, H.; Tanaka, Y.; Aoshima, H.; Doi, A.; Matsui, M. ;
Miyano, S.: Biopathways representation and simulation on hybrid func-
tional Petri net. In: In silico biology 3 (2003), Nr. 3 {2, 4, 55, 68, 126}

[Mur89] Murata, T.: Petri nets: Properties, analysis and applications. In: Pro-
ceedings of the IEEE 77 (1989), April, Nr. 4, pp. 541–580 {2, 48}

[MWL99] Mulder, J.; Wijk, J. ; Liere, R.: A survey of computational steering
environments. In: Future Generation Computer Systems 15 (1999), Nr.
1, pp. 119–129 {1, 9, 11, 12, 15, 20}

155

Bibliography

[NDMM04] Nagasaki, M.; Doi, A.; Matsuno, H. ; Miyano, S.: A versatile Petri
net based architecture for modeling and simulation of complex biological
processes. In: Genome informatics. 15 (2004), Nr. 1, pp. 180–197 {4, 55}

[NSJ+10] Nagasaki, M.; Saito, A.; Jeong, E.; Li, C.; Kojima, K.; Ikeda, E. ;
Miyano, S.: Cell Illustrator 4.0: A computational platform for systems
biology. In: In Silico Biol 10 (2010), Nr. 0002 {1}

[Pah09] Pahle, J.: Biochemical simulations: stochastic, approximate stochastic
and hybrid approaches. In: Brief Bioinform 10 (2009), Nr. 1, pp. 53–64
{5, 29, 36, 39, 42, 45, 77}

[Par99] Parker, S.: The SCIRun Problem Solving Environment and Computa-
tional Steering Software System, University of Utah, PhD thesis, 1999 {15,
16, 19, 20}

[Pet62] Petri, Carl A.: Kommunikation mit Automaten, Bonn: Institute für In-
strumentelle Mathematik, PhD thesis, 1962 {46}

[PHPP05] Pickles, S.; Haines, R.; Pinning, R. ; Porter, A.: A practical toolkit
for computational steering. In: Phil Trans R Soc 363 (2005), Nr. 1833,
pp. 1843–1853 {1, 2, 10, 23}

[PJ95] Parker, S.; Johnson, C.: SCIRun: a scientific programming environ-
ment for computational steering. In: Proceedings of the 1995 ACM/IEEE
conference on Supercomputing. New York, NY, USA, 1995 {2, 10, 16, 24}

[PJB97] Parker, S.; Johnson, C. ; Beazley, D.: Computational steering: Soft-
ware systems and strategie. In: IEEE Computational Science Engineering
4 (1997), Nr. 4, pp. 50–59 {11, 12, 15, 16, 17, 24}

[PTVF02] Press, William H.; Teukolsky, Saul A.; Vetterling, William T. ;
Flannery, Brian P.: Numerical Recipes in C++: The Art of Scientific
Computing. Cambridge University Press, Februar 2002. {33, 40}

[PVM12] Parallel Virtual Machine website. http://www.csm.ornl.gov/pvm/.
2012. – Accessed: 1/31/2012 {21}

[PWC11] Pu, Y.; Watson, L ; Cao, Y.: Stiffness detection and reduction in discrete
stochastic simulation of biochemical systems. In: J. Chem. Phys 134
(2011), Nr. 054105 {40}

[Pyt12] Python Website. http://python.org/. 2012. – Accessed: 1/22/2012 {16}

156

http://www.csm.ornl.gov/pvm/
http://python.org/

Bibliography

[PZV12] Potapov, I.; Zhurov, B. ; Volkov, E.: "Quorum sensing” generated
multistability and chaos in a synthetic genetic oscillator. In: Chaos: An
Interdisciplinary Journal of Nonlinear Science 22 (2012), Nr. 2, pp. 023117
{129}

[R12] R Project Website. http://www.r-project.org/. – Accessed: 1/22/2012
{16}

[Ray86] Raynal, Michel: Algorithms for Mutual Exclusion. MIT Press, 1986
{109}

[RMH10] Rohr, C.; Marwan, W. ; Heiner, M.: Snoopy–a unifying Petri net
framework to investigate biomolecular networks. In: Bioinformatics 26
(2010), April, Nr. 7, pp. 974–975 {3, 57, 102}

[RML93] Reddy, V.; Mavrovouniotis, M. ; Liebman, M.: Petri Net Represen-
tations in Metabolic Pathways. In: Proceedings of the 1st International
Conference on Intelligent Systems for Molecular Biology, AAAI Press,
1993, pp. 328–336 {2}

[ROB05] Ramsey, S.; Orrell, D. ; Bolouri, H.: Dizzy: stochastic simulation of
large-scale genetic regulatory networks. In: J Bioinform Comput Bio 3
(2005), Nr. 2, pp. 415–36 {1}

[RPCG03] Rathinam, M.; Petzold, L.; Cao, Y. ; Gillespie, D.: Stiffness in
stochastic chemically reacting systems: The implicit tau-leaping method.
In: J. Chem. Phys. 119 (2003), Nr. 12784 {39, 41}

[Sch02] Schulze, T.: Kinetic Monte Carlo simulations with minimal searching.
In: Physical Rev. E. 65 (2002), Nr. 3, pp. 036704 {41}

[SFR03] Stevens, W.; Fenner, B. ; Rudoff, A.: Unix Network Programming:
The Sockets Networking API. Volume Volume 1. 3rd Edition. Addison-
Wesley Professional, 2003 {110}

[SGCK+08] Sabouri-Ghomi, M.; Ciliberto, A.; Kar, S.; Novak, B. ; Tyson, J.:
Antagonism and bistability in protein interaction networks. In: Journal
of Theoretical Biology 250 (2008), Nr. 1, pp. 209 – 218. {119, 121, 122}

[SK05] Salis, H.; Kaznessis, Y.: Accurate hybrid stochastic simulation of a
system of coupled chemical or biochemical reactions. In: J. Chem. Phys
122 (2005), Nr. 5 {29, 42, 45}

[Sno12] Snoopy website. http://www-dssz.informatik.tu-cottbus.de/DSSZ/
Software/Snoopy. 2012. – Accessed: 2/2/2012 {57, 79}

157

http://www.r-project.org/
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

Bibliography

[SSJT11] Singhania, R.; Sramkoski, R.; Jacobberger, J. ; Tyson, J.: A hybrid
model of mammalian cell cycle regulation. In: PLoS Comput Biol 7 (2011),
02, Nr. 2, pp. e1001077 {119, 123}

[Ste04] Steuer, R.: Effects of stochasticity in models of the cell cycle: from quan-
tized cycle times to noise-induced oscillations. In: Journal of Theoretical
Biology 228 (2004), Nr. 3, pp. 293 – 301 {121}

[SWR+11] Shu, J.; Watson, L.; Ramakrishnan, N.; Kamke, F. ; Deshpande, S.:
Computational Steering in the Problem Solving Environment WBCSim.
In: Engineering Computations 28 (2011), Nr. 7, pp. 888 – 911 {1, 2, 107}

[SYSY02] Srivastava, R.; You, L.; Summers, J. ; Yin, J: Stochastic vs. Deter-
ministic Modeling of Intracellular Viral Kinetics. In: J. theor. Biol. 218
(2002), Nr. 3, pp. 309–321 {74, 116, 117, 119}

[TK93] Trivedi, K.; Kulkarni, V.: FSPNs: Fluid Stochastic Petri Nets. In:
14th International Conference on Application and Theory of Petri Nets,
1993, pp. 24–31 {55, 62, 85}

[TKHT04] Takahashi, K.; Kaizu, K.; Hu, B. ; Tomita, M.: A multi-algorithm,
multi-timescale method for cell simulation. In: Bioinformatics 20 (2004),
März, Nr. 4, pp. 538–546 {45}

[TN01] Tyson, J.; Novak, B.: Regulation of the eukaryotic cell cycle: molec-
ular antagonism, hysteresis, and irreversible transitions. In: Journal of
Theoretical Biology 210 (2001), Nr. 2, pp. 249 – 263 {119, 121, 122}

[TN11] Tyson, J.; Novak, B.: A systems biology view of the cell cycle control
mechanisms. Elsevier, San Diego, CA„ 2011 {120}

[Val78] Valk, R.: Self-modifying nets, a natural extension of Petri nets. In:
Proceedings of the Fifth Colloquium on Automata, Languages and Pro-
gramming. London, UK,: Springer-Verlag, 1978, pp. 464–476 {68, 126}

[VS96] Vetter, J.; Schwan, K.: Models for Computational Steering. In: Pro-
ceedings of the 3rd International Conference on Configurable Distributed
Systems. Washington,USA: IEEE Computer Society, 1996, pp. 100–108
{9, 12, 14, 20, 26, 27}

[VS99] Vetter, J.; Schwan, K.: Techniques for high-performance computa-
tional steering. In: IEEE Concurrency 7 (1999), pp. 63–74. – {17, 19, 20,
24, 27}

158

Bibliography

[VTK12] Visualization Toolkit website. http://www.vtk.org/. 2012. – Accessed:
1/24/2012 {11}

[WGMH10] Wolf, V.; Goel, R.; Mateescu, M. ; Henzinger, T.: Solving the
chemical master equation using sliding windows. In: BMC Syst. Biol. 4
(2010), Nr. 1, pp. 42 {35, 36, 85}

[wik12] wikipedia website. http://www.wikipedia.org/. 2012. – Accessed:
20/6/2012 {121}

[WUKC04] Wolkenhauer, O.; Ullah, M.; Kolch, W. ; Cho, K.: Modeling and
simulation of intracellular dynamics: choosing an appropriate framework.
In: IEEE Trans. Nanobiosci. 3 (2004), Nr. 3, pp. 200–207 {29, 31, 35, 36}

[wxW12] WxWidgets website. http://www.wxwidgets.org. 2012. – Accessed:
30/3/2012 {110}

[YLL09] Yang, H.; Lin, C. ; Li, Q.: Hybrid simulation of biochemical systems using
hybrid adaptive Petri nets. In: Proceedings of the Fourth International
ICST Conference on Performance Evaluation Methodologies and Tools,
ICST, 2009, pp. 410–420 {55, 116}

159

http://www.vtk.org/
http://www.wikipedia.org/
http://www.wxwidgets.org

	Abstract
	Zusammenfassung
	Introduction
	Overview
	Motivations
	Objectives
	Thesis Outline

	Computational Steering: an Interactive Simulation Technique
	Introduction
	Batch versus Interactive Simulation
	Interactive Visualisation
	Computational Steering

	Approaches
	Program Annotation
	Redesigning the Simulation Application
	Steering by Scripting
	High-level Abstractions
	Selecting the Appropriate Approach

	Tasks
	Model Exploration
	Algorithm Experimentation
	Performance Optimisation

	Software
	CUMULVS
	CSE
	DISCOVER
	POSSE
	RealityGrid
	SCIRun
	Magellan
	STEEL
	EPSN
	Others

	Challenges
	Performance of Computational Steering System
	Steering of Parallel and Distributed Applications
	Application Consistency

	Closing Remarks

	Simulation Approaches of Biochemical Networks
	Introduction
	Preliminaries
	Deterministic Approach
	Types of ODE Solvers
	Problem of the Deterministic Approach

	Stochastic Approach
	Chemical Master Equation
	Direct Method
	First Reaction Method
	Next Reaction Method
	Tau-leaping Method
	Others

	Hybrid Approach
	Reaction Partitioning
	Simulator Synchronisation

	Petri Nets
	Stochastic Petri Nets
	Continuous Petri Nets
	Hybrid Petri Nets
	High-Level Petri Nets

	Closing Remarks

	Generalised Hybrid Petri Nets
	Introduction
	Generalised Hybrid Petri Nets
	Modelling
	Formal Definition
	Semantics
	Generation of the Corresponding ODEs
	Marking-dependent Arc Weights
	Conflict Resolution

	Simulation of GHPN
	Simulation of Statically Partitioned GHPNbio
	Transition Partitioning

	Implementation Aspects
	Stochastic Simulation Algorithm
	Selecting an Appropriate ODE Solver
	Detecting Discrete Events

	SPN, CPN and GHPN: the Big Picture
	Comparison with Other Hybrid Petri Net Tools
	Examples
	Break-Repair Model
	Goutsias Model

	Conclusions

	A Computational Steering Framework
	Introduction
	Requirements and Characteristics
	Framework
	Overview
	Steering Server
	Graphical User Interface
	Application Programming Interface
	Simulators

	Backtracking
	Steering Algorithms for Simulation of Biochemical Networks
	What Could Be Steered
	Deterministic Simulation
	Stochastic Simulation
	Hybrid Simulation

	Implementation Issues
	Model Synchronisation
	Sockets and Threads
	Communicating Model Specification
	Communicating Output Matrix

	Comparison
	Conclusions

	Case Studies
	The T7 Phage Model
	Slow and Fast Reactions
	Simulation Results

	The Eukaryotic Cell Cycle
	Related Work
	The Model
	Decision to Perform Division
	Cell Division and Marking-dependent Arc Weights
	Transition Partitioning
	Simulation Results

	Circadian Oscillation
	Model Overview
	Simulation Results
	Online Steering of the Model Parameters
	Coloured Model

	Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Generalised Hybrid Petri Nets
	Computational Steering Framework
	Case Studies

	Outlook
	Extending Generalised Hybrid Petri Nets
	Extending the Computational Steering Framework

	Bibliography

