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Abstract

Experiments with wireless sensor networks have shown that unidirectional commu-

nication links are quite common. What is even more, they have also shown that the

range of a unidirectional link can exceed that of a bidirectional one by far. Still, most of

todays routing protocols do not use them, they only eliminate their implications. Those

protocols that do use unidirectional links introduce a lot of protocol overhead [45].

One possible conclusion that is often drawn from this fact is that it does not pay to

use unidirectional links in a routing protocol. An alternative one is that the overhead

produced by the protocols needs to be reduced. This thesis follows the second line of

reasoning, and introduces, describes and evaluates five new routing protocols for wireless

sensor networks with unidirectional links.

Wireless Sensor Networks, Unidirectional Links, Routing Protocols



Zusammenfassung

Experimente mit drahtlosen Sensornetzen haben gezeigt, dass unidirektionale Ver-

bindungen häufig auftreten und oft eine grössere Distanz überbrücken als bidirektionale.

Trotzdem werden sie in den meisten Routingprotokollen nicht genutzt. Diese Protokol-

le beschränken sich darauf, negative Auswirkungen der unidirektionalen Verbindungen

zu eliminieren. In Protokollen, die unidirektionale Verbindungen verwenden, entsteht

hierdurch meist ein hoher, zusätzlicher Aufwand [45].

Viele Protokollentwickler schliessen daraus, dass es sich nicht lohnt, unidirektionale

Verbindungen zu nutzen. Eine alternative Schlussfolgerung wäre es zu sagen, dass der

Aufwand, der durch die Verwendung der unidirektionalen Verbindungen entsteht, redu-

ziert werden muss. In dieser Doktorarbeit wurde der zweite Weg gewählt: Es werden

fünf neue Routingprotokolle für drahtlose Sensornetze vorgestellt und evaluiert, welche

unidirektionale Verbindungen nutzen.

Drahtlose Sensornetze, Unidirektionale Verbindungen, Routing Protokolle
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Chapter 1

Introduction

”Unidirectional links commonly occur in wireless ad hoc networks because of

the differences in node transceiver capabilities or perceived interference levels.

Unidirectional links can presumably benefit routing by providing improved

network connectivity and shorter paths. But prior work indicates that routing

over unidirectional links usually causes high overheads.”[45]

1.1 Motivation

Most of the wireless data communication today uses one hop only, i.e. direct communi-

cation between devices. Common examples include Bluetooth keyboards that transmit

directly to a computer or laptops that communicate with a base station using WLAN.

Another example can be found in factory automation. When moving parts have to be

monitored, connecting them with cables is often impossible: The movement would shear

off the cables. An example for such moving machinery can be found in [34], which de-

scribes a sensor network used for vibration analysis in a semiconductor plant. Also, the

use of wireless communication can reduce installation costs. When an existing factory

should be augmented with additional monitoring equipment, it might be necessary to

pass fire doors or other safety installments. Keeping these operational would require

opening a wall to install the cables and sealing it again afterwards, which is very costly.

For all these reasons, more and more wireless communication devices are installed every

day.

In ever expanding networks, the communication patterns also change. When it is

no longer possible for each device to communicate directly, multihop communication is

necessary, where devices that are close to the destination forward the messages from

those that are too far away to communicate directly.

1



CHAPTER 1. INTRODUCTION

One of the fields in which multihop communication is very important are wireless sen-

sor networks. These networks consist of lots of cheap sensor nodes which are equipped

with a number of sensors (e.g. temperature, light) which are important to the appli-

cation, a small CPU, a few kB of RAM, a small flash memory and a radio transceiver.

Often, these nodes are powered by a battery pack, but other types of power supply also

exist. As wireless sensor networks should contain lots of nodes, the price for individual

nodes must be kept low, resulting in the need for cheap components. Cheap radio mod-

ules which are not calibrated often have very different radio characteristics, which, in

combination with environmental influences, lead to often changing links between nodes

(communication neighborhood). Nodes that can communicate now may not be able to

do so in a minute, but again in five minutes from now. Also, differences in the used

transceivers, in node placement and battery status often lead to unidirectional links. A

unidirectional link between two nodes A and B exists if node A can communicate with

node B, but not vice versa.

A B

Figure 1.1: An Example of a Unidirectional Link

Figure 1.1 shows an example of such a unidirectional link from node A to node B.

Node A might be placed on higher ground or might be using a fresh set of batteries.

Whatever the reason, its transmission range is greater than that of node B, resulting

in said unidirectional link. More about the frequent occurrence of unidirectional links,

which has been confirmed in many real world experiments and described in literature,

is presented in chapter 2.

While the route from source to destination is known implicitly in most cable networks,

the ever changing links result in the need for adaptive protocols in wireless networks.

But most of the protocols presented in literature assume bidirectional links, i.e. when

node A can receive messages from node B, node B can also receive messages from node

2



1.1. MOTIVATION

A. Often, these protocols include some means to detect unidirectional links, in order to

remove their implications. A prominent example is blacklisting of nodes, which is used

in many routing protocols, e.g. AODV [57] (see section 3.2.2). For more information

about the way MAC and routing protocols react to the presence of unidirectional links

see chapter 3.

Making unidirectional links usable for communication protocols introduces overhead,

as the upstream node of a unidirectional link (node A in figure 1.1) needs to be informed

of the existence of that link somehow. Marina and Das have evaluated some routing

protocols that make usage of unidirectional links [45]. Their results show that the gain

in connectivity is small, and the overhead is too big when per-hop acknowledgments are

used. Therefore they argue that the costs are not worth the gain and routing protocols

should only utilize bidirectional links.

However, literature suggests that unidirectional links are common, and the connec-

tivity evaluations made for this thesis (section 5.3) show that they occur much more

often than bidirectional links. In some cases, using only bidirectional links leads to

network separation which can be avoided when unidirectional ones are included.

Therefore, this thesis follows a different line of reasoning from the one presented in

[45]: If the costs of per-hop acknowledgments are too high, they should be omitted. Also,

all of the evaluated protocols made unidirectional links usable explicitly, by informing

the upstream node of their existence. If the methods used for this are too expensive,

they must be replaced by ones that are less expensive, or the unidirectional links must

be used only implicitly. In this context, using unidirectional links implicitly means that

the upstream nodes are not informed of the link, but the messages forwarded along

these links are processed and maybe forwarded nonetheless.

Following this reasoning, five new protocols have been designed in this thesis, which

are intended for use in networks with mostly unstable links, many of which are sup-

posed to be unidirectional. The source routing protocol Buckshot Routing (section

4.1), its distance vector based equivalent BuckshotDV (section 4.2) and the overhear-

ing supported enhancement OSBRDV (section 4.3) focus on using unidirectional links

implicitly, without informing upstream nodes of their existence. The other two pro-

tocols, Unidirectional Link Triangle Routing (ULTR, section 4.4) and Unidirectional

Link Counter (ULC, section 4.5) were designed for sensor networks in which each node

knows its two hop neighborhood anyway. This can be the case either because the ap-

plication uses a neighborhood discovery protocol, or because a TDMA MAC is used. In

both cases, the gathered information can be supplied to the routing protocol without

introducing additional costs.
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CHAPTER 1. INTRODUCTION

1.2 Structure of this thesis

In this work new routing protocols for wireless networks with unidirectional links are

presented. Even though these protocols focus on using unidirectional links which are

often experienced in wireless sensor networks (WSN), they can be just as easily trans-

ferred to mobile ad-hoc networks (MANETs) where these links also occur. The reason

for the focus on unidirectional links is explained in chapter 2. The chapter describes

experiments that have shown the frequent occurrence of unidirectional links before ex-

plaining their impact on the medium access control (MAC) - and routing layers. Even

though this work is focused on the development of new routing protocols, it is nonethe-

less essential to think about the implications for the MAC protocols first. Once those

are clear, the impact on the routing layer and some cross-layer issues are discussed.

Chapter 3 shows related work, divided into two sections. Section 3.1 discusses ex-

emplarily chosen MAC protocols that are able to use unidirectional links (section 3.1),

because a routing protocol that uses unidirectional links needs a MAC protocol that

can use them, too. Otherwise, the routing protocol might choose a node as next hop

that is not known by the MAC protocol, causing the MAC protocol to discard the mes-

sage. The second, much larger section of this chapter is dedicated to the description of

existing routing protocols, both from MANETs and WSN (section 3.2). Each protocol

is classified and its ability to work in the presence of unidirectional links is described.

If it can use them, the costs for the usage are also determined.

The five newly developed protocols Buckshot Routing, BuckshotDV, OSBRDV, ULTR

and ULC are described in chapter 4. Also, the basic advantages and disadvantages of

each of them are described in theory there.

The evaluation can be found in chapter 5. The first section shows the simulation

model (section 5.1), before the real world experiment environment is described in section

5.2 and connectivity measurements are presented in section 5.3. The sections 5.4 to

5.6 describe the results of different simulations and real world experiments according

to their application scenario before a closer look is taken at the interaction between

routing protocols and duplicate suppression in section 5.7. The chapter is concluded

with a summary of the obtained results and a guide for choosing the right protocol

under given network conditions (section 5.8).

A list of certain features that could enhance the presented protocols in the future

can be found in chapter 6, while concluding remarks are given in chapter 7.
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Chapter 2

Unidirectional Links

Different classifications of link quality are used in literature. The most commonly used

classification divides links into bidirectional links, asymmetric links and unidirectional

links. A bidirectional link is always defined as a link between two nodes which can

be used to transmit a message from either of those two nodes to the other one. The

terms asymmetric link and unidirectional link are not always defined as clearly, and

sometimes used synonymously. Common definitions for asymmetric links focus on a

variation of either RSSI values (Received Signal Strength Indication) or packet loss

(delivery ratio). When the delivery ratio is used, unidirectional links can be seen as

a subclass of asymmetric links where the delivery ratio in one direction is 0. But this

definition requires the transmission of multiple messages in order to evaluate the delivery

ratio.

For this thesis an unidirectional link is defined as follows: A link from node A to node

B is unidirectional, if node B can receive messages from A, but not vise versa. Even

though this definition is quite straightforward, it is only a theoretical one. In practice,

it is fairly hard to establish such criteria. It is not possible to monitor the status of all

links globally. Even the status of a single link can only be measured at a certain time.

Moreover, only one direction of the link can be measured because the transceivers used

on typical sensor nodes can only transmit or receive and use one channel at a given

time. Worse still, links change over time. A link that seems to be bidirectional at one

moment can become unidirectional or even vanish completely at the next moment.
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CHAPTER 2. UNIDIRECTIONAL LINKS

2.1 Unidirectional Links in Real-World Experiments

This section summarizes some of the experiments with wireless sensor networks which

have shown that unidirectional links do not only exist, but are in fact fairly common.

2.1.1 The Heathland Experiment: Results And Experiences

Turau et al. describe an experiment they conducted in the Lüneburger Heide in Ger-

many [71]. The original goal was to evaluate a routing protocol, which is not character-

ized further in the paper. Rather, the observations they made concerning the properties

of the wireless medium are described, focusing on the frequency of changes and the poor

stability of links. This experiment was conducted using up to 24 Scatterweb ESB [67]

sensor nodes, which were affixed to trees, poles etc., and left alone for two weeks after

program start. One of the purposes of the network was the documentation of the logical

topology (radio neighborhood of nodes), which was evaluated by building a new routing

tree every hour, e.g. for use in a sense-and-send application. The neighborhood was

evaluated using the Wireless Neighborhood Exploration protocol (WNX) [71], which

can detect unidirectional and bidirectional links. All unidirectional links were discarded

and only the bidirectional ones were used to build the routing tree.

(a) All Links

Node

Sink

(b) Only Bidirectional Links

Figure 2.1: A Communication Graph (a)with and (b)without Unidirectional Links

(taken from [71] presentation: [72])

Figure 2.1(a) shows one complete communication graph obtained by WNX, while

figure 2.1(b) shows the same graph without unidirectional links, where a lot of redundant

paths have been lost by the elimination. In fact, one quarter of the nodes are only

connected to the rest of the network by a single link when unidirectional links are
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2.1. UNIDIRECTIONAL LINKS IN REAL-WORLD EXPERIMENTS

removed. If this single link breaks, the nodes become separated, even though there are

still routes to and from them. Thus, the removal of unidirectional links increases the

probability of network separation. As described above, WNX was used to evaluate links

between individual nodes. These links were divided into bidirectional and unidirectional

ones, and all unidirectional discarded. The sink then started building a depth first

spanning tree, which was chosen intentionally in contrast to the breadth first trees used

normally. The authors state that, to evaluate their routing protocol, they needed to

have a certain number of hops, which a breadth first search would not have delivered.

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e

Number of nodes in DFS Tree
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depth-first search trees

The depth-first search trees were used as routing trees, to
forward the data measured at nodes towards the sink. Ob-
viously, the successful transmission of a packet towards the
root correlates with the depth of the node in the routing
tree. Figure 8 displays the relationship between successful
delivery of a measurement packet and the depth of the cor-
responding node in the routing tree. Expectedly, the rate of
success drops approximately exponentially with the depth d.
The plotted curve 100·0.8d closely approximates the delivery
rate of the measurement packets. Hence, the average deliv-
ery rate can fairly well be predicted based on the average
qualities of the individual links. This allows an estimation
of the maximal acceptable hop count for multi-hop routing.
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Figure 8: Transmission success in relation to hop
count

The transmission success of neighborhood packets exhibits
a different run of the curve. The size of a measurement
packet is about 70 bytes including the packet header. Pack-
ets reporting the neighborhood list to the sink are more
than 10% larger than measurement packets. This leads to
a significantly lower success rate as can be seen from Fig-
ure 8. The drop of the success rate was much higher than
expected: at depth five the success rate is about 7% com-

pared to 35% for the smaller packets. The main reason for
this is probably not the larger packet size but is related to
congestion. Neighborhood packets were sent t seconds after
the measurement packets, t randomly chosen between 0 and
15. Due to the retransmission of packets this time difference
became very small after a few hops. This explains the lower
success rates of neighborhood packets for higher hop counts.

5. CONCLUSION
Like every scientific experiment, real deployments of experi-
mental sensor networks need careful planning and first of all
a clear definition of the goals. In sensor networks data log-
ging is almost the only means to acquire data, consequently
a logging strategy must be developed in order to collect the
data to derive the intended goals. After the deployment
there is usually no possibility to intervene in the logging
process. The breakdown into a deployment and an applica-
tion mode proved to be very useful, especially for changing
the topology.

As a first conclusion it can be stated, that link quality esti-
mation and neighborhood management are essential to re-
liable routing in sensor networks. The quality of individual
links varies over time for no apparent reasons and unidirec-
tional links of good quality occur more often than bidirec-
tional links of similar quality. This observation suggests,
that the concept of unit disk modeling used in many the-
oretical investigations is not an appropriate model at all.
The following lessons can be learned from the experiment:
larger packets should be broken up into smaller ones, the
number of retransmissions should be modest, the transmis-
sions should be carefully scheduled to avoid congestion, and
a good understanding of the implementation is indispens-
able.
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Figure 2.2: Packet Delivery versus Hop Count (taken from [71])

Figure 2.2 shows the delivery ratio observed for measurement packets (small) and

neighborhood information packets (large), depending on the distance (hop count). It

can be seen that the delivery ratio seems to shrink logarithmically with the distance:

The function f = 100 ∗ 0.8d (plotted curve) closely approximates the values obtained

for the measurement packets.

As expected from theory, the experiments confirm that shortest path routing is indeed

a good choice for lossy networks such as wireless sensor networks, because the overall

loss probability is smaller for shorter paths. Therefore, the protocols developed in this

thesis (presented in section 4) will also try to use the shortest path whenever possible.
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CHAPTER 2. UNIDIRECTIONAL LINKS

2.1.2 On exploiting asymmetric wireless links via one-way estimation

Sang et al. propagate a similar opinion [65]. They evaluate the three kinds of links

(asymmetric, unidirectional, bidirectional) using protocols like ETX (Expected Trans-

mission Count) [12]. These protocols search for reliable connections, but most focus on

bidirectional links only. This leads to the fact that a link with a reliability of 50% in both

directions is preferred to one with 100% from node A to node B and 0% from B to A. If

data needs to be transmitted only from A to B without need for acknowledgment, this

choice is obviously wrong. To prevent this wrong choice, the authors of [65] propose a

protocol called ETF (Expected Number of Transmissions over Forward Links), which is

able to use unidirectional links. They also show that the reach of reliable unidirectional

links is greater than that of reliable bidirectional links.

In experiments with XSM motes [65] the nodes were placed in a seven by seven

square, with a distance of about one meter between nodes. In four sets of experiments

at different times of day each node sent 100 messages at three different power levels.

Then the packet reception rate was recorded. It is defined for a node A as the number

of packets A received from a node B divided by the number of messages sent (100).

Following this, the packet reception rates of nodes A and B are compared. If the

difference is less than 10%, the link is considered bidirectional. If it is more than

90% the link is considered unidirectional. All other links are called asymmetric. The

XSM nodes offer 9 different transmission power levels, of which three were evaluated:

the lowest, the highest and the third in between. Table 2.1 shows the results of the

experiments.

Table 2.1: Link Quality versus Transmission Power (taken from [65])

bidirectional asymmetric unidirectional number of links

power level 1 50% 43% 7% 500

power level 3 65% 22% 13% 1038

power level 9 88% 6% 6% 1135

The results show that even when using the maximum transmission strength, 12%

of the links would have been discarded by ETX and similar link quality evaluation

protocols that focus only on bidirectional links. As the lifetime is one of the major

optimization goals in a sensor network and receiving/transmitting consumes a lot of

energy, it is rather uncommon to have all nodes constantly transmit using the highest

transmission strength. In fact, current research projects like [47] try to minimize power

8



2.1. UNIDIRECTIONAL LINKS IN REAL-WORLD EXPERIMENTS

consumption by adjusting the transmission strength depending on the required reach

and reliability.

The observations of [65] are summarized by the authors in three points:

1. Wireless links are often asymmetric, especially if transmission power is low.

2. Dense networks produce more asymmetric links then sparse ones.

3. Symmetric links only bridge short distances, while asymmetric and especially uni-

directional ones have a much longer reach.

A conclusion drawn from these three facts is that the usage of unidirectional links in

a routing protocol can increase the efficiency of a routing protocol considering energy

and/or latency.

2.1.3 Design and Deployment of a Remote Robust Sensor Network:

Experiences from an Outdoor Water Quality Monitoring Net-

work

A sensor network which monitors water pumps within wells is described in [13]. The

sensors were used to monitor the water level, the amount of water taken and the saltiness

of the water in a number of wells which were widely distributed. The necessity for this

sensor network arose because the pumps were close to shore and a rise in saltiness

was endangering the quality of the water. The average distance between wells was 850

meters and the transmission range was about 1500 meters. Communication was realized

using 802.11 WLAN hardware both for the nodes as well as for the gateway. For data

transmission between nodes Surge Reliable [81] was used, which makes routing decisions

based on the link quality between nodes.

During the experiments it could be seen, that the (logical) topology of the network

changed dynamically, even though all nodes were stationary. The authors claim that

these changes were probably due to antenna size and changes in temperature and air

moisture. In this context it is important to remember that the distance of nodes was far

below the range of the transmitters (about 50%). While about 70% of the routing trees

observed followed the theory (figure 2.3(a)), there were a lot of strange ones. In one

case the average distance between connected nodes even rose to 1135 meters, as nodes

that should have been able to communicate directly with the gateway were connected

to nodes on the far side instead. In one of these routing trees (figure 2.3(b)), a single

node had to take care of all communication with the gateway, even nodes that were on

the other side were using it as next hop. One possible reason for this strange behavior

9
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(a) A Normal Connectivity Graph

659m

738m

1388

1438m

1234m 1443m

1050m

(b) A Degenerated Connectivity Graph

Figure 2.3: Two Communication Graphs (taken from [13])

is that Surge Reliable chooses the nodes with the best link quality, but only considers

bidirectional links. If unidirectional links would have been used, the results could have

been quite different.

2.1.4 VigilNet: An integrated sensor network system for energy-efficient

surveillance

VigilNet, a military sensor network for terrain surveillance, is described in [21]. This

project aims at the detection of moving vehicles using magnetic sensors attached to

Mica2 sensor nodes. The transport of messages from the nodes to the sink was realized

using a diffusion based algorithm, similar to Directed Diffusion [27], which produced

a routing tree with its root at the sink. To eliminate unidirectional links, a protocol

called Link Symmetry Detection was developed. Each node periodically transmitted

the list of its neighbors. A node that received such a neighbor list checked the list to

determine if it was mentioned. If it was not, the link was an incoming unidirectional

one. When building the routing tree after deployment, the transmission power of all

nodes was halved. Now all nodes determined their parent node from the neighbor lists

received with this half strength. At the end of this setup phase, all nodes switched to full

transmission power. The intention behind this scheme was to ensure that the connection

to the father node would not break. During the experiments, the authors noted that

asymmetric links were far more common than expected. They put this fact down to
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differences in hardware, as the transceivers were not calibrated before the experiment.

Another interesting effect seen in these experiments is that only about 2/3 of all nodes

were able to communicate directly with the sink, because only bidirectional links were

used. If the usage of unidirectional links was enabled, a lot of multi hop communication

might have been saved.

2.1.5 Taming the underlying challenges of reliable multihop routing

in sensor networks

The main focus of [81] is link quality estimation. The authors measured link quality for

a sensor network deployment consisting of 50 Mica Motes from Berkeley.

Figure 2.4 shows the results they obtained. All nodes within a distance of about 10

feet (about 3 meters) or less from the sender received more than 90% of the transmitted

packets. The region within 10 feet of the sending node is therefore called the effective

region. It is followed by the transitional region. Nodes in this region cannot be uniformly

characterized as some of them have a high reception rate while others received no packets

at all. In the transitional region, asymmetric links are common. The last region is the

clear region and contains only nodes that did not receive any transmissions.
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Figure 1: Empirical results illustrating variations in
reception probability.

nodes have good connectivity. The size of this effective re-
gion increases with transmit power. There is also a point
beyond which essentially all nodes have poor connectivity.
However, very distant nodes occasionally do transfer pack-
ets successfully. In the transitional region between these
points, the average link quality falls off smoothly, but in-
dividual pairs exhibit high variation. Some relatively close
pairs have poor connectivity, while some distant pairs have
excellent connectivity. A fraction of pairs have intermediate
loss rates and asymmetric links are common in the transi-
tional region; similar results have also been reported in [3].

The next question is whether link quality is stable when
nodes are immobile. With a fixed source sending to a re-
ceiver at a given distance, we would like to observe how
link quality changes over time. Figure 1(b) shows a situ-
ation where a transmitter sends 8 packets/s in an indoor
environment for a period of 20 minutes at a distance of 15
feet and then is moved closer to the receiver where it re-
mains stationary for four hours. We see that link quality
can undergo abrupt changes. At each distance the mean
link quality is relatively stable, and intermediate between
the present/absent extremes. Furthermore, there is signif-
icant variation in the instantaneous link quality. For ex-
ample, the link quality exhibits a mean of about 65% with
about 10% swing, using a sample size of 240 packets.

If we apply this link characterization to a large field of
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Figure 2: Cell connectivity of a node in a grid with 8-
foot spacing as generated by our link quality model.

nodes, we expect a small, somewhat irregular region of nodes
that share good connectivity. Some more distant nodes are
expected to also have good connectivity. Many nodes over
a large, very irregular region will have limited, but non-
zero connectivity. Many of the intermediate nodes will have
asymmetric connectivity. This is the behavior observed in
deployments [8]. If all nodes transmit periodically, a node
will receive packets frequently from each of its good neigh-
bors, but it will also receive numerous packets from many
more remote nodes.

These observations suggest a simple means of capturing
probabilistic link behavior in simulations while abstracting
away the complex sources of loss. We compute the mean and
variance in Figure 1(a) to create a link quality model with
respect to distance. For each directed node pair at a given
distance, we associate a link probability based on the mean
and variance extracted from the empirical data, assuming
such variance follows a normal distribution. Each simulated
packet transmission is filtered out with this probability. An
instance showing how this model captures a node’s connec-
tivity cell is shown in Figure 2; it matches well with empirical
observation. This model of link quality is used for all sim-
ulation studies below, allowing more of the design space to
be explored while incorporating some of the most significant
variations observed in practice.

3. LINK ESTIMATION

Individual nodes estimate link quality by observing packet
success and loss events. Higher-level protocols use these es-
timations to build routing structures. We seek to find an
estimator that reacts quickly to potentially large changes in
link quality, yet is stable, has a small memory footprint, and
is simple to compute. Reacting to changes quickly allows
higher-level protocols to adapt to environmental changes
and mobility. However, estimations must also be fairly sta-
ble; if they fluctuate wildly, the routing topology is un-
likely to stabilize and routing problems, such as cycles and
stranded nodes, will be common. The memory footprint of
the estimator must be small, because we have limited storage
in which to represent the neighborhood, and its computa-
tional load should be small, since only limited processing is
available and it costs energy.

For sensor networks, the broadcast nature of the wireless
medium allows passive estimation to be performed simply by
snooping on the channel; losses can be inferred by tracking

Figure 2.4: Effective, Transitional and Clear Region (taken from [81])

The authors argue that nodes in the effective region should be preferred when neigh-

bor table decisions are made. A neighbor table decision must be made when a message

is received from a node that is not in the table and the table is full. Then, the choice is
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to remove one of the entries to make room for the new one, or to discard the new one

silently.

When a new entry is made, the question remains which other entry should be re-

moved. This is a special case of cache management problems. The authors decided

to use the frequency algorithm. Each neighbor entry holds a frequency value which is

incremented every time a message is received from the corresponding node. When a

message from a node not in the table is received, the table is checked for entries with

frequency value 0. If one is found, it is removed and the new neighbor entered. Oth-

erwise, no new entry is made, the information about the possible neighbor is discarded

and all entries in the neighbor table are reduced by one.

Link estimation is realized passively by snooping. Each node overhears all trans-

missions from its neighbors and notes the sequence numbers contained therein. If it

overhears the same sequence number twice or more, it knows that retransmissions are

underway, meaning the link is lossy. To enable the correct working of this snooping

mechanism, the authors assume a minimum transmission rate for each node. Still,

snooping is only possible for bidirectional links and only for direct neighbors.

One of the major problems of this approach is information asymmetry. Each node

has estimations for in-bound link quality, but the routing decisions must be made based

on out-bound links. Therefore, link quality estimates are shared with the neighbors on

a periodic basis.

For this thesis, the estimated link quality does not play a major role. On the contrary,

the protocols presented herein are meant to abstract from such problems in order to

keep them simple yet effective. Another example for this is that the authors of [81] argue

that minimum hop count routing often leads to choosing nodes from the transitional

region as next hop, which in turn leads to more frequent route breaks. To take care of

this fact, one of the protocols which were developed in this thesis (Buckshot Routing,

see section 4.1) uses a kind of multi-path routing, which renders it immune to single

broken links..

2.1.6 Understanding packet delivery performance in dense wireless

sensor networks

Zhao and Govindan measured the properties of wireless sensor networks on the physical

and medium access control layers [85]. These measurements were conducted using up to

60 Mica motes, which were placed in three different environments: An office building, a

parking lot and a habitat. The experiments for the physical layer were realized with a

single sender and multiple receiver nodes, and have shown the existence of a grey area

12
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in reception which can consist of up to one third of the network. In this grey area, the

reception quality of nodes varies a lot, both spatial as well as in time. This observation

is similar to the transitional region described in [81](see section 2.1.5). Another result

described by the authors is that in the parking lot and indoor environments nearly 10%

of links are asymmetric. Please note that what the authors call asymmetric links is

otherwise referred to as unidirectional links in this thesis: ”Asymmetry occurs when a

node can transmit to another node but not vice versa” [85]

The authors suggest that neighbors should be selected based on the measured packet

delivery performance, when routing decisions are made. This poses two problems:

• The measurement can only be made by the receiver and must be communicated

to the sender, and

• this measurement induces a lot of overhead, as a significant number of messages

has to be transmitted in order to get a reasonably good value for packet delivery

performance.

The MAC layer evaluation used a simple CSMA/CA protocol, which is the default

implementation for TinyOS. It was augmented with a retransmission scheme, to make

use of the link-layer acknowledgments that were being transmitted anyway. An interest-

ing observation the authors made is that between 50% and 80% of the communication

energy is used for reliability arrangements: retransmissions, forward error correction,

encoding and similar.
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Unfortunately, we could not validate this since no stable
implementation of such a MAC exists for the motes. In ad-
dition, we believe that topology control mechanisms which
reject poorly performing links can greatly improve MAC-
layer performance.

5.3 Packet Delivery Efficiency
Packet loss distributions tell only part of the story. Recall

that our MAC has link-layer error recovery. In this section,
we try to measure the useful work done by the system in
the presence of such an error recovery scheme. For a given
link, we measure the useful work done over that link using
a metric we call efficiency, which is defined as the ratio of
the distinct packets received and the packets transmitted
including retransmission.

We intend to capture the efficiency of link layer retrans-
mission, so our definition does not count the overhead from
coding schemes or preamble for packets. Note that the effi-
ciency metric does not measure channel utilization. Rather,
because it measures the useful work done as a fraction of
total work done, it gives us some indication of the energy
wasted by the system in overcoming packet losses.

Like the packet loss distributions, distributions of effi-
ciency for different environments (for example Figure 27 for
I) show heavy tails. The performance is fairly pessimistic.
In Figure 27 at light loads nearly 50% of the links have an
efficiency of 70% or higher, but at heavy loads, nearly 50%
of the links have an efficiency of less than 20%. The habitat
environment is a little more benign with higher efficiency.
This is evident in the average efficiency curves (Figure 28
as well. With increasing load, the average efficiency drops
from 50% down to 20%. It also shows that coding with
SECDED scheme in I does improve the efficiency, however
the advantage is reduced at higher workload. In addition,
coding overhead is doubled in SECDED scheme thus the
actual goodput (i.e., effective bandwidth times efficiency) is
actually less than with 4b6b coding.

Thus, depending on the load, anywhere between half and
80% of the communication energy is wasted on repairing lost
transmissions. Even under lightly loaded conditions, the
prevalence of pathological links dramatically reduces the ef-
ficiency of the system. This, to us, is a colossal expenditure
of energy in these systems and warrants an investment of
effort in the development of a good MAC layer for sensor
networks.

5.4 Asymmetry in Packet Delivery
The final aspect of MAC layer performance that we ex-

plore is asymmetry in packet delivery. Asymmetry occurs

when a node can transmit to another node but not vice
versa. The existence of asymmetry in wireless communica-
tion is well-known [4, 6, 26]. However its extent is less well
understood, particularly in densely deployed wireless net-
works. In this section, we examine the asymmetry in packet
delivery using a packet loss difference metric for a link pair
between i and j, defined as follows:

Dasym = |Pi←j − Pj←i| (3)

Notice that we are measuring the asymmetry observed at the
MAC layer, which is complicated by possible packet collision
in addition to environmental factors. However, on the other
hand, the measurement is more “realistic” in a sense that it
reflects what application experiences in reality.

Figure 29 shows distribution of packet delivery asymmetry
in I. Asymmetric links are quite common. More than 10%
of link pairs have packet loss difference > 50%, even for
light loads where one expects fewer collisions contributing
to packet loss. The results for the habitat (not shown) are
similar.

A possible explanation for asymmetry is the difference in
transceiver calibration (slightly different transmit powers,
or differences in receiver circuitry). We have experimentally
observed that for a given transmitter, different receivers ex-
hibit slightly different reception rates at the same spatial
separation. The reverse is also true; with a fixed receiver,
different transmitters result in different reception rates at
the same spatial separation. However, these differences are
not enough to quantitatively explain our observed asymme-
try. More extensive experimentation is needed to establish
the cause of asymmetry.

Such asymmetric links are well-known for their impact
on routing [18] and network aggregation [11, 14, 26]. The
fraction of asymmetric links is high enough that topology
control mechanisms should, we argue, carefully target such
links, in addition to rejecting links exhibiting pathologically
performing links.

6. CONCLUSIONS
In this paper, we have described results from a collec-

tion of measurement experiments designed to understand
the packet delivery performance in dense sensor network de-
ployments under realistic environments. Our findings quan-
tify the prevalence of “gray areas” within the communica-
tion range of sensor radios, and indicate significant asym-
metry in realistic environments. We have not yet been able
to devise experiments that indisputably establish causes for
these findings (although we have plausible conjectures, such

12

Figure 2.5: Packet Loss Difference for Pairs of Nodes (taken from [85])
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Figure 2.5 shows the finding of the authors that is most important for this thesis.

They have defined the packet loss difference for two nodes as the difference between the

packet delivery efficiency of both nodes. The figure shows that asymmetric (unidirec-

tional) links are quite common: More than 10% of the surveyed links have a difference

of more than 50%.

The final claim the authors make is about asymmetric (i.e. unidirectional) links:

”The fraction of asymmetric links is high enough that topology control mechanisms

should, we argue, carefully target such links”. All protocols presented in this thesis

(section 4) are based on the existence of unidirectional links, and aim at using them in

order to increase routing performance.

2.1.7 Lessons Learned from Implementing Ad-hoc Multicast Routing

in Sensor Networks

The implications of implementing a MANET protocol for wireless sensor networks are

described in [62, 63]. The authors state that most routing protocols that have been

developed for wireless sensor networks are based on a tree topology, due to the assump-

tion that data has to be transported to a single sink. They argue that a number of

applications for sensor networks exist that do not follow this model and require multi-

cast routing. Tracking of firefighters, mobile nodes and disaster recovery scenarios are

mentioned as examples. The authors also state that many multicast routing protocols

for MANETS have been simulated under unrealistic conditions.

The multicast routing protocol chosen for implementation is Adaptive Demand-

Driven Multicast Routing (ADMR). It uses forwarding trees to transmit messages from

multiple sources to multiple sinks. One of the first drawbacks of this protocol as de-

scribed in [62] is that it uses inverse routes for so-called Receiver-Join messages, which

are transmitted by sinks that want to be part of a multicast group. Another problem

the authors identified is the usage of a minimum hop count weight function. They ar-

gue that this weight function leads to a high loss rate due to the usage of potentially

unstable links. Instead, a weight function based on link stability should be used.

To validate this claim, the authors evaluated link quality of pairs of nodes (forward

link and backward link). Each node transmitted a certain number of packets, and all

nodes recorded how many packets they received. The link delivery ratio is calculated

by dividing the number of messages received from a node by the number of messages

transmitted by this node. Figure 2.6 shows the obtained results, sorted by the link

delivery ratio of the forward link. It can be seen in the figure that a lot of discrepancies

exist.
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3.2.2 Route establishment

When a node expresses its desire to publish data to a group, it
invokes PubSub.publish(), which initiates the periodic route dis-
covery process. A timer is set that will periodically issue a flood
of ROUTE-DISCOVERY messages from this node. The route
discovery interval is configurable; by default it is set to 15 sec,
although for our experiments in Section 4 we decreased the in-
terval to 5 sec to reduce the time to acquire measurements.

Upon receipt of a ROUTE-DISCOVERY message, a node
that has expressed interest in subscribing to the associated group
must establish a forwarding path from the sender by replying
with a unicast RECEIVER-JOIN message. However, reinforc-
ing the path taken by the first ROUTE-DISCOVERY message
will not necessarily yield the best path. Therefore, the receiver
waits for a short time (1 sec in our prototype) in order to ac-
quire measurements on multiple paths from the sender of the
ROUTE-DISCOVERY. After this interval, the path with the low-
est routing cost (as indicated by the Node Table entry for the
corresponding sender) is used to relay the RECEIVER-JOIN.

Because RECEIVER-JOIN messages traverse the reverse
path from sender to receiver, in the presence of asymmetric ra-
dio links this message may experience poor links even when
the sender-to-receiver path has high reliability. Therefore, the
RECEIVER-JOIN uses hop-by-hop acknowledgment and re-
transmission to ensure that it is routed to the sender. Each node
along the path attempts to retransmit the RECEIVER-JOIN up
to 5 times before dropping the message. As a result, it is possible
that a very lossy link will cause the RECEIVER-JOIN to be lost.
A possible solution is to allow RECEIVER-JOIN messages to
traverse multiple reverse paths and expire redundant forwarders
through tree pruning.

3.2.3 Route pruning

The forwarding tree established for a group during sender and
receiver discovery should be pruned when there are no down-
stream receivers for this group or when the sender stops sending
data. For this purpose, every Node Table entry is assigned a life-
time when it is created. The lifetime of a Node Table entry is
decremented by one each time an associated timer fires, and the
entry is expired when the lifetime becomes zero. The lifetime of
each entry is refreshed based on a path reinforcement policy.

In TinyADMR, two path reinforcement strategies are imple-
mented: active reinforcement and passive reinforcement. Ac-
tive reinforcement refreshes a forwarder membership whenever
a new RECEIVER-JOIN message is received, that is, when a
receiver wishes to keep a node as a forwarder along a path. Pas-
sive reinforcement refreshes the forwarder membership based on
passive acknowledgment of each transmitted data packet. De-
tails and impact of these two reinforcement methods are dis-
cussed in Section 4.4.

3.3 Routing state

As specified in Section 2, each node maintains three tables in
order to support the multicast functionality. The size of the Node
Table depends on how many nodes are in the network that are
acting as multicast senders and receivers. The size of the Sender
and Membership Tables can be determined by the number of
multicast groups are expected to exist in the network. Having
enough space in the routing tables, especially the Node Table, is
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critical because ADMR will not perform properly without large
enough table sizes.

The Node Table entries are 8 bytes each. Membership Table
entries are 7 bytes each, while Sender Table entries are 2 bytes
each. By default, we configure each table to hold 32 entries, re-
sulting in a total memory use of 544 bytes. In Section 4.5 we
present techniques for evicting Node Table entries when mem-
ory is limited.

4 Evaluation and Lessons Learned

Implementing ADMR in TinyOS and obtaining good commu-
nication performance in a realistic network environment has
not been a trivial undertaking. There is a significant discon-
nect between the original ADMR protocol as published and the
conditions encountered in a real sensor network. In particular,
ADMR assumes symmetric links, uses hop count as its path se-
lection metric, and ignores memory space issues when maintain-
ing routing tables. In this section we present a detailed evalua-
tion of our TinyOS-based ADMR implementation and present a
series of lessons learned in the process of developing and tuning
the protocol. We believe these lessons will be useful to other
protocol designers working with 802.15.4-based sensor motes.

4.1 Evaluation environment

We have focused exclusively on real implementation and eval-
uation on a sensor node testbed, rather than simulations, to un-
derstand the performance and behavior of TinyADMR. All of
our results have been gathered on an indoor testbed of 30 Mi-
caZ motes installed over three floors of our Computer Science
building (a map of one floor is shown in Figure 5). This testbed
provides facilities for remote reprogramming of each node over
an Ethernet backchannel board (the Crossbow MIB600). Each
node’s serial port is also exposed through a TCP port permit-
ting detailed instrumentation and debugging. Motes are installed
in various offices and labs and are often placed on shelves at a
height of 1-2 m.

Because of the relatively sparse node placement, this testbed
exhibits a high degree of variation in radio link quality and many
asymmetric links. Figure 6 shows the forward and reverse link
delivery ratio (LDR) calculated for every pair of nodes in the

Figure 2.6: Differences in Link Delivery Ratio (taken from [62])

To cope with such discrepancies, ETX [12] has been developed. The quality indicator

presented by ETX takes forward and backward link quality into account. The authors

of [62] propose a different approach. They show that the path delivery ratio would be

the optimal weight function for routing protocols, but it is hard to obtain and requires

additional communication. Also, the link quality indicator that is already available in

the radio module (chipcon CC2420 [23]) on the used motes delivers values that are fairly

close to the measured link quality.

Another problem identified by the authors is that routing protocols for MANETS are

often designed with large storage space in mind, and protocol data tables (e.g. routing

tables) may not fit completely into the RAM of a sensor node. Replacement strategies

are needed and evaluated, but none of them leads to a desirable result. Instead, the

authors claim that a way needs to be found to make the flash memory usable for such

purposes.

While the observation that path reversals may lead to bad packet receptions rates is

valid, one of the conclusions drawn from this fact, namely that lowest hop count should

not be used, is not shared by the author of this thesis. The asymmetric and unidirec-

tional links can be made usable, as long as their implications are already considered

during protocol development. See chapter 4 for details.
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2.1.8 Multichannel reliability assessment in real world WSNs

Ortiz and Culler studied the feasibility of using multiple channels in wireless sensor

networks [52]. They evaluated link quality in three different testbeds: A machine room,

a computer room and an office building, using up to 60 sensor nodes. During the

experiments, each node transmitted 100 messages and each other node recorded the

number of received messages, enabling easy calculation of the packet reception rate.

The authors found that asymmetric links were indeed common in their testbeds.

Furthermore, they defined a link between two nodes to be unidirectional if the packet

reception rate was above a threshold T in one direction, and less than T in the other.

T was varied between 1% and 90%. In the machine room this lead to 32 - 36% of links

being unidirectional, 18 - 34% in the computer room and 10 - 46% in the office building.

2.1.9 Murphy loves Potatoes: Experiences from a Pilot Sensor Net-

work Deployment in Precision Agriculture

Langendoen et al. describe the deployment of a sensor network used to monitor tem-

perature and humidity on potato plants [36]. These influence factors are monitored to

prevent fungal infections of the plants. Normally, all plants are treated with anti-fungus

chemicals, in the experiment only those which exhibited optimal conditions for fungal

growth were to be treated in order to reduce pollution and costs.

The program on the sensor nodes consisted of medium access control (T-MAC), rout-

ing (MintRoute) and over the air reprogramming (Deluge), and of course the sampling

application. The authors describe lots of problems they encountered during the deploy-

ment. For this work, however, only those induced by the used communication protocols

are relevant.

All three protocols are working fine when used separately, but did not work in com-

bination. T-MAC has been designed with a low network load in mind, and had massive

problems when Deluge started to flood update messages. MintRoute produced long

routes even for nodes that could theoretically communicate directly with the gateway.

The authors blame this fact on the often occurring replacements in the routing table:

They were using 109 nodes of which 70 were in direct neighborhood of the gateway. But

the routing table of MintRoute only held 16 entries. The replacement strategy was least

heard, meaning that those nodes from which nothing had been heard for the longest

time were removed. The gateway never transmitted any messages of its own accord,

and thus was removed from the routing tables very often.

T-MAC used its own neighbor list which featured 20 entries, but used a first-in

first-out strategy which lead to different entries than the ones stored by MintRoute.
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When MintRoute had chosen a neighbor as next hop, T-MAC often did not know that

neighbor and discarded the packet. Together with some other problems which are not

mentioned here (see [36] for details) these problems resulted in only 2% of the expected

data reaching the gateway.

The cross-layer cooperation between MAC and routing layer, established for example

by using a common neighbor table as discussed at various points throughout this thesis

(for example in section 4.6) addresses the inter-protocol problems described above.
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2.2 Impact on the MAC Layer

MAC protocols can be roughly divided into two categories: contention based protocols

and dividing protocols.

Contention based protocols work on the basic principle that a node that wants to

transmit a message needs to compete for the medium with its neighbors. The easiest

way to do this is to listen to the medium and transmit if it is free. If it is occupied,

listening is repeated after a certain or random amount of time.

Dividing protocols divide the access to the medium according to certain properties.

These include frequency (FDMA), encoding (CDMA) and time (TDMA) [66, 70]. Each

of those focuses on one property that has to be different in order to allow concurrent

transmissions with the same value for the other properties. If two nodes transmit on

a different frequency, they can use the same encoding and transmit at the same time

(FDMA). With different encoding, these two nodes can send on the same frequency at

the same time (CDMA). If they transmit at different points in time, they can use the

same encoding and frequency (TDMA). There is a fourth dimension to this, which is

often ignored: SDMA. It focuses on the spatial differences. However, moving a node in

order to enable it to transmit is not a commonly used ability because of the overhead.

It is normally used in all other protocols implicitly, allowing nodes that are at least

two hops distant to transmit in the same slot, use the same frequency or encoding. Of

course, it is also possible to combine the different approaches. For example, TDMA and

FDMA are combined in GSM [19, 66, 70].

FDMA protocols require complex and often expensive hardware. Even if each node

is assigned its own transmission frequency, the receiving nodes would need to be able to

listen on multiple frequencies or know beforehand, when to switch to which frequency.

Therefore, FDMA is not often used in wireless sensor networks. The usage of CDMA

induces a lot of computation overhead and different codes are needed for all nodes within

two hop communication range. The ever changing nature of this two hop neighborhood

and the battery powered nature therefore prohibit the usage of CDMA in most sensor

networks. Therefore, only contention based and TDMA MAC protocols and the impact

of unidirectional links on them are considered in this thesis, but the results can easily

be transferred to any of the other protocols by replacing time with e.g. frequency.
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2.2.1 Contention Based Protocols

A typical problem that has to be solved in wireless networks is the hidden station

problem. In the hidden station problem, node A wants to transmit data to a node B.

Before starting the transmission, it listens to the medium, to determine whether the

channel is occupied (CSMA). If it is not, node A begins its transmission. The problem

is that collisions occur at the receiver, not at the sender. A third node C might well

be in transmission range of B, but not of A. Therefore, when listening to the medium,

it would assume that the channel is free and begin its transmission, even though A is

transmitting. Consequently, the messages from A and C collide at node B.

To solve this problem, virtual channel sensing has been invented. After the real

channel sensing, when node A assumes that the medium is free, it sends a Request To

Send (RTS) message which contains the ID of the intended recipient and the length of

the proposed data transmission i.e. the amount of time in which the medium will be

occupied. When node B receives the RTS message and the medium is free, it transmits a

Clear to Send (CTS) message, which once again contains the length of the transmission.

This way, all nodes that could disrupt the transmission from A to B have received either

the RTS or the CTS and know that the medium is occupied, even though it might seem

to be free.

D A B C

Figure 2.7: Virtual Channel Sensing

Figure 2.7 shows an example. In step 1 node A transmits the RTS. Nodes B and D

receive it and know about A’s wish to transmit data to B. In step 2 node B transmits

the CTS, informing C about the impending communication, while at the same time

informing A that it might start transmitting. In step 3 the data message is transferred

from A to B without collision, as all nodes know that they have to wait until the end

of that transmission.
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For the given scenario virtual channel sensing does indeed solve the hidden station

problem. However, one of the basic assumptions of this protocol is that all links are

bidirectional. In networks with unidirectional links a number of problems arise.

A B C

Figure 2.8: Virtual Channel Sensing with Unidirectional Links

In the example seen in figure 2.8 the communication range of nodes A and C is much

larger than the one of node B. There are multiple possible reasons for this, e.g. stronger

batteries or a higher vantage point. Whatever the reason, there is an unidirectional link

from C to B. When node B transmits its CTS message in response to the RTS from

A, C does not receive it. A on the other hand does, and assumes that the medium

has been reserved for its data packet and starts transmitting. If C transmits to any of

its neighbors now, it destroys the message from A at B. Therefore, the hidden station

problem cannot be solved by a traditional RTS-CTS mechanism when unidirectional

links occur. There are some approaches that tackle this problem, e.g. by forwarding

the CTS message over multiple hops as BW RES [59] (section 3.1.3) does. Different

approaches are discussed in section 3.1.
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2.2.2 TDMA Protocols

TDMA MAC protocols divide time into slots and frames, where only one node may

transmit1 in a given slot. This slot re-occurs every frame, and must be unique within

the collision domain. When all nodes have been assigned their correct slots, no collisions

will occur. Also, the hidden station problem does not exist, because the slots are defined

just in such a way, that no nodes within two hops of each other may transmit at the

same time.

If a node A has been assigned a slot x, none of its neighbors may have the same slot.

Additionally, as node A will transmit to one of its neighbors, no other node that may

transmit to any of them may have the same slot either. All these nodes are members

of A’s collision domain.

B C D

E A F

G H I

(a) Bidirectional Links Only

B C D

E A F X

G H I W Y

Z

(b) Unidirectional Links Added

Figure 2.9: Two-Hop Neighborhood

In networks where all transmission ranges are equal and only bidirectional links exist

this collision domain can be easily identified. It consists of all nodes in the two-hop-

neighborhood of the sender, meaning all nodes that can be reached by flooding a message

with a time to live of 2. In Figure 2.9(a) the collision domain of the light grey node

A consists of 24 nodes; its 8 direct neighbors, nodes B - I (dark grey) and their 16

neighbors (black). As long as the neighborhood remains stable, no collisions can occur.

If the neighborhood can change, adaptive protocols are needed. In this case contention

based protocols are often preferred, because they do not introduce additional overhead,

but there are also a number of adaptive TDMA protocols.

1There are also receiver based TDMA protocols where the slots are not assigned to a sender but

rather to a receiver. The problems described here remain the same, though.
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As shown at the beginning of this chapter, stable bidirectional links are not the

normal case, at least not in wireless sensor networks. Instead, they are an uncommon

feature. Even under good conditions, unidirectional links and frequent link changes

dominate the appearance of the network. When unidirectional links are taken into

account, the collision domain for TDMA protocols has to be redefined.

Figure 2.9(b) shows the same network again, this time including two unidirectional

links (X→D and A→W). It is no longer the case that all nodes belonging to node

A’s collision domain can simply be reached by flooding a message over two hops. All

neighbors of A are in the collision domain, where all neighbors now means all nodes

which can be reached by A in one hop. Node A could disturb their communication with

another node that uses the same slot, regardless whether they can transmit to A or not.

In the example this means that the node W now also is counted a neighbor of A.

The second part of the collision domain are all nodes that can transmit to one of

A’s neighbors or to A directly. Note that here the unidirectional links play a prominent

role. Node D has a bidirectional link to A and thus is one of its direct neighbors. D

also has an incoming unidirectional link from node X, which is not reachable from node

A with two hops. Still, it is in its collision domain, as messages from A and X would

collide at D if both nodes were to choose the same slot.

The unidirectional link from A to W means that all nodes that can communicate

with W, including Y and Z, are also in the collision domain of A. But A does not even

know it has an outgoing unidirectional link to W, whereas W can sometimes deduct

this knowledge. This information asymmetry has to be solved by informing A of the

communication opportunity to W if unidirectional links should be used. If only their

implications should be removed, it could be sufficient for some protocols that node W

informs its neighbors that the slot used by A is already taken.

Figure 2.10 shows another example, the same one that was used for the contention

based protocols. During network initialization, all nodes broadcast a hello message to

explore their neighborhood. Node A receives messages from node B. Node B receives

messages from A and C. C does not receive any messages. Now all nodes know which

other nodes they can listen to, but none knows which ones they can communicate with.

To solve this problem, status messages are used which include neighborhood information.

Node A broadcasts that it can hear node B. B receives this message and knows that

the link to A is bidirectional. Node B broadcasts that it can hear A and C. Node A

receives this message and knows that the link to B is bidirectional. Node C broadcasts

an empty list and does not receive anything. As node B receives the empty list from

node C, it knows that the link from C is unidirectional incoming.
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A B C

Figure 2.10: Collision Domain

When slots are assigned, nodes A and B know that they may not choose the same

slot, and B knows that A and C may not choose the same one, but B has no way of

informing C about that fact.

There are two ways of solving this problem, both involving node B. In a larger

network, where B and C have a common neighbor or where there is indeed any route

from B to C at all, B might inform C about the collision domain by sending a message

over multiple hops. Please note that this is already becoming a routing problem, because

the message has to be routed over multiple hops. Another way would be for B to listen

to the transmissions from C to find out which slot it has chosen, and inform A that

this slot is already taken. Even though this might sound easy, it is far from that. Node

A must remain silent long enough for B to determine the slot chosen by C, or B must

detect a collision in the slot. With only 3 nodes participating it might be easy to identify

the reason for the collision, but in a real network with more nodes, outside influence

and changing radio ranges it is far more complicated.

A similar approach is used in MLMAC-UL (section 3.1.9): Node B detects a collision

in a slot (say slot 3). In its own slot, it transmits a status message containing the number

of the slot (3) in which it detected a collision. All nodes that receive this message (node

A in the example) and have chosen that slot release it and search for a new slot.
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2.3 Impact on the Routing Layer

Most existing routing protocols are built for bidirectional links. A common way to

detect a route from one node to another is to flood a message into the network. This

is sometimes called Route Request Message (RREQ) in protocols like Dynamic Source

Routing (DSR) [28] or Ad-Hoc On Demand Distance Vector Routing (AODV) [57]. In

other protocols like Directed Diffusion[27] the flooded messages are called Interests. The

basic mechanism is the same, though. Once the destination is reached, a message is

sent back along the reversed path. In agent based protocols like Rumor Routing [7] the

network is not flooded. Instead, an agent is sent which travels through the net using a

random walk pattern. Still, the assumption that all links are bidirectional is the same.

When an agent which was sent because of a certain event reaches a node, this node

remembers the event and the next hop of the route leading to this event, which is the

reversion of the route the agent has traveled.

Figure 2.11(a) shows the propagation of a RREQ message as used in AODV. The

source, node A, wants to transmit to node H, the destination. As it does not know a path

to node H, it floods the network with a RREQ message which reaches the destination

through multiple paths. Once a RREQ message reaches the destination, the node

addressed in the message sends a route reply message (RREP) along the reversed route.

In the example the message from node F arrives first, and is answered with a RREP

(figure 2.11(b)). All other RREQ messages that arrive later are ignored.
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(a) Route Request Propagation
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(b) Route Reply Propagation

Figure 2.11: Route Discovery in AODV

In networks with stable bidirectional links these protocols provide good results. But

when only one unidirectional link exists within the path the fastest RREQ takes, the

RREP will be lost. Even worse, due to the fact that only the first RREQ is answered,

all further RREQ messages that arrive at the destination are ignored, any bidirectional
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paths that may exist are not found. When the source does not receive a RREP mes-

sage after a certain time, it will restart the route discovery with the same result, only

increasing network traffic but never finding a path.

This problem is exacerbated by the characteristics of unidirectional links. Most

routing protocols assume that the fastest way is the optimal one, and therefore ignore

all following messages. As observed above, the range of unidirectional links is often

far greater than that of bidirectional ones, leading to fewer hops needed to reach the

destination. Thus, the messages forwarded over unidirectional links will likely arrive

earlier than those using the bidirectional ones.

A lot of routing protocols cope with this problem by eliminating the implications of

unidirectional links. This elimination can be done e.g. by blacklisting as in AODV, or by

requesting explicit acknowledgments, which is possible in DSR. There are also protocols

which enable the usage of unidirectional links. Some do that by finding one way from

source to destination and another one from destination to source as in one version of

DSR, others by providing an abstraction between MAC and routing like, for example,

the sub routing layer [61]. This abstraction can use multiple hops as return path from an

unidirectional link, and presents the routing protocol with a network consisting only of

bidirectional links. However, all these protocols introduce a significant communication

overhead.

2.4 Cross-Layer Issues

The usage of unidirectional links in routing offers chances for cross-layer optimization.

The information, whether a link between two nodes is uni- or bidirectional, cannot

only be useful for the routing layer, but also for other protocols like medium access

control, retransmission and transport. Link-layer protocols like Medium Access Control

suffer heavily from unidirectional links. Most protocols assume that communication is

symmetric i.e. that when node X hears node Y node Y can hear node X too. This

is reflected in the protocols by the usage of flow control which is based on RTS/CTS

signals or in the assumption that the medium is free when a node does not hear anything

(CSMA). In the case of link a in figure 2.12 both approaches would fail because node Y

cannot hear node X. Other protocols which use a timed schedule for sending (TDMA)

suffer from asymmetric links, too. A local TDMA slot needs to be defined in order to

avoid collisions. A node that is downstream of an unidirectional link may reserve an

unnecessary slot for the upstream node while the upstream node does not realize that

it can disturb the communication of the downstream node.
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Y

X

node

unidirectional link

bidirectional link

a

Figure 2.12: An example Network with Unidirectional and Bidirectional Links

The information, that the link between nodes X and Y is unidirectional should be

made available to the MAC layer, when it is gathered by the routing protocol. On the

other hand, if the MAC layer discovers a link breakage, it should inform the routing

protocol that this link is no longer available. As it is not foreseeable which other layers

may be interested in this kind of information, a cross-layer data structure should be

used, which can be accessed by anyone interested.

In some protocols for wireless sensor networks, cross-layer issues are solved by com-

bining the two layers of routing and medium access control. An example combination

of tree routing and MAC layer is D-MAC [39, 40], which schedules the sleep cycles of

nodes according to their height in the routing tree, thereby minimizing the end-to-end

delay. While such approaches offer some performance improvements, they force the

application designer to use the specified MAC-layer, when a certain routing protocol is

used.

In this thesis a different approach is used, where cross-layer optimizations are still

possible, but routing- and MAC-layer are only loosely coupled through the usage of

a cross-layer data structure, which can be either used or ignored, depending on the

MAC-layer implementation desired.
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Chapter 3

MAC and Routing Protocols for

Wireless Networks

Even though the declared goal of this thesis is the design of new routing protocols, it is

still useful to take a look at a few medium access control protocols, albeit not in such

depths as will be done for the routing protocols. The reason for this lies in the nature

of unidirectional links. As described in chapter 2, their properties have a deep impact

on multiple layers. Also, a routing protocol can be only as good as the underlying

MAC protocol. If the MAC is not able to work with unidirectional links, e.g. because

it needs direct link layer acknowledgments (i.e. RTS-CTS mechanisms), there can be

no improvement whatever routing protocol is used. Another reason for the inclusion

of MAC protocols in this thesis is the fact that in some protocols for wireless sensor

networks the MAC and routing layers are combined into one.

Even though there are many more protocols in existence, only the most commonly

used ones and those that use unidirectional links are discussed here. This chapter

starts with a discussion of selected MAC protocols (section 3.1), before state of the art

routing protocols are discussed in depth (section 3.2). The chapter ends with a list of

own publications that were used in this chapter (section 3.3).
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3.1 Medium Access Control

Using unidirectional links on the routing layer requires a MAC layer that does not

suppress them. Therefore, a few selected MAC protocols are presented in this section,

even though the focus of this thesis lies on routing protocols. Please note that only

a few chosen protocols are described and the presentation is by no means exhaustive.

Table 3.1 shows the protocols surveyed in this thesis. Protocols are described by their

name, the type, and their way of dealing with unidirectional links. Type can either be

contention based (CSMA) or time multiplexed (TDMA) or, in one case, a combination

of both. The field Unidirectional Links takes on three values: Unidirectional Links

not considered in the protocol (ignored), considered but not used (implications removed)

and made usable (used). This section also includes a protocol that is not mentioned in

the table, because it is not exactly a MAC protocol. The link layer tunneling mechanism

[14] is not concerned with medium access control, but is included here because it deals

with unidirectional links on layer 2 (see section 3.1.11).

Table 3.1: MAC Protocols Surveyed in this Thesis

Name Source Type Unidirectional Links Section

MMP [18] CSMA ignored 3.1.1

NMAC [42, 44] CSMA used 3.1.2

BW RES [59] CSMA implications removed 3.1.3

ECTS-MAC [42, 44] CSMA used 3.1.4

AMAC [80] CSMA used 3.1.5

PANAMA [5] CDMA & TDMA implications removed 3.1.6

LMAC [73] TDMA ignored 3.1.7

AI-LMAC [64] TDMA ignored 3.1.7

MLMAC [41, 43] TDMA implications removed 3.1.8

MLMAC-UL [42, 44] TDMA used 3.1.9

D-MAC [39, 40] TDMA ignored 3.1.10
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3.1.1 MMP

The Multicast MAC Protocol (MMP) [18] is an extension of the IEEE 802.11 MAC in

DCF (Distributed Coordination Function) mode.

Sender RTS DATA

Recv 1 CTS 1 ACK 1

Recv 2 CTS 2 ACK 2

Recv 3 CTS 3 ACK 3

Recv 4 CTS 4 ACK 4

Others NAV Set Until End of ACK Period

Figure 3.1: Message propagation in MMP (taken from [42])

The Request To Send (RTS) message of MMP contains the addresses of all nodes

that should receive the multicast message. When a node receives this RTS, it waits

a certain time, correlating to its position in the RTS, and sends a CTS. When the

slots for all CTS messages have passed and the sender of the RTS has received at least

one CTS, it starts the transmission of the data packet. After the transmissions, the

acknowledgment messages are sent by all of the receivers in the same order as the CTS

messages. Figure 3.1 shows an example for one sender and 4 receivers. MMP does not

directly address the problem of unidirectional links. It is included here nevertheless,

because it is the basis for NMAC (section 3.1.2), which can use unidirectional links.

3.1.2 NMAC

NMAC (Neighbor MAC) [42, 44] is a modification of the Multicast MAC protocol (see

section 3.1.1). As its name suggests, MMP was designed for multicast, not for broadcast.

In NMAC its behavior has been changed to enable broadcast transmissions, and to

enable it to use unidirectional links. A neighborhood discovery protocol is used to

detect any unidirectional links.

Because of the neighborhood discovery protocol, each node knows how many neigh-

bors it has and addresses them all in the RTS packet. When a node receives an RTS

message it waits for a time corresponding to its position in the RTS before transmitting

a CTS. If it has received a certain percentage of the expected CTS messages, the sender

of the RTS transmits the data package after the time for all CTS messages has passed.
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Nodes that are connected by a unidirectional link can also be addressed in the RTS

message and also transmit a CTS, but are not counted when the percentage of received

messages is evaluated, as their CTS messages cannot be received by the sender of the

RTS anyway.

A RTS DATA

B CTS

C CTS

D

E CTS

F CTS

B A C D

F E

Figure 3.2: Message Propagation in NMAC (taken from [42])

The functionality of NMAC is depicted in figure 3.2. Node A wants to transmit

a message, and has nodes B, C, E and F as neighbors. It includes their addresses in

its RTS message and waits until all four have had the chance to transmit their CTS

messages. Then it checks if the amount of CTS messages received is high enough, e.g.

75%, and transmits the data packet if it is.

3.1.3 BW RES

Another extension to IEEE 802.11 is BW RES [59]. It is based on the principle of

forwarding CTS packets to all nodes that may disturb the planned communication. To

determine how far a BW RES message must be forwarded, the transmission strength

of all nodes must be known. The lowest one equals one unit, the highest one N units.

The authors show that a CTS message needs to be retransmitted 2N-1 times to ensure

that it is heard at least N units distant. A node that receives a CTS message waits

between 0 and 6 SIFS (Short Interframe Spacing) before transmitting the BW RES

packet to prevent collisions. While this approach ensures that data communication in

the presence of unidirectional links is possible, it delays the transmission and increases

the network load proportionally to the maximum difference in transmission strength of

nodes.
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3.1.4 ECTS-MAC

ECTS-MAC (Extended Clear To Send MAC) [42, 44] is a contention based protocol for

sparse networks with rare communication. It is similar to BW RES [59] (see Section

3.1.3), because it also tries to forward the CTS message to reduce the probability of

collision. Unlike BW RES, it does not calculate distances and power levels. Also,

all Extended Clear To Send (ECTS) messages are sent at the same time, whereas all

BW RES messages are sent one after another. This leads to more collisions of ECTS

messages, but saves a lot of time.

When a node receives a CTS message it forwards it with a certain probability. Exper-

iments have shown that 50% is a suitable value for sparse networks. If the probability is

less, the ECTS message is not received by enough neighbors. If it is higher, the ECTS

packets collide more often. These collisions are also the reason why the ECTS-MAC

should only be used in sparse networks. To a certain extend, this effect is alleviated

by reducing the probability of sending, but this also leads to more nodes that do not

receive any ECTS messages. ECTS-MAC uses a neighborhood discovery protocol to

detect unidirectional links. This is necessary to enable transmitting via a unidirectional

link, because acknowledgments need to be forwarded to the sender using a second node.

A RTS DATA

B CTS

C ECTS

D

E ECTS

F

B A C D

F E

Figure 3.3: Propagation of ECTS Messages (taken from [42])

Figure 3.3 shows an example of a sparse network, where the probability that an

ECTS message is generated upon reception of a CTS message is set to 50%. Node A

wants to transmit to node B, which transmits a CTS message in response to the RTS

from A. Nodes A, C, E and F receive the CTS message, and two of them generate an

ECTS message. Both ECTS messages are sent simultaneously. After the time for just

a single ECTS transmission has passed, node A can transmit its data packet.
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3.1.5 AMAC

AMAC [80] is built on top of the Sub Routing Layer (SRL) project [61], which is

used to detect unidirectional links. When SRL is used with a routing protocol, it

provides the abstraction of a network with only bidirectional links. To do this, it

must identify unidirectional links, and find a suitable reverse route leading through

multiple nodes. SRL uses a reverse distributed Bellman-Ford algorithm to find reverse

routes and also monitors the network for link changes. AMAC uses the information

from SRL to make unidirectional links usable on the MAC layer. Four new types of

messages are introduced to make communication over unidirectional links possible by

forwarding protocol messages through neighboring nodes. The four types of messages in

AMAC are: XRTS (Extended RTS), XCTS (Extended CTS), TCTS (Tunneled CTS)

and TACK (Tunneled ACK). XRTS and XCTS are used to inform the nodes about the

communication that cannot normally receive receive RTS and CTS, but which may still

disturb the transmission, e.g. because of their long communication range. The TCTS

is sent by the destination of an RTS message if it was received over a unidirectional

link. In this case direct sending of a CTS is not possible, therefore the TCTS must be

forwarded by a neighboring node that can communicate with both participants of the

communication (tunneled). Once the communication is complete, the destination sends

a TACK message which is again tunneled for the same reason.

3.1.6 PANAMA

PANAMA (Pair wise Link Activation and Node Activation Multiple Access) [5] consists

of two different algorithms. PAMA-UN (Pair wise link Activation Multiple Access Uni-

directional Networks) is intended for unicast communication, while NAMA-UN (Node

Activation Multiple Access for Unidirectional Networks) supplies broadcast communi-

cation. PANAMA is based on CDMA (Code Division Multiple Access) and uses DSSS

(Direct Sequence Spread Spectrum). DSSS is based on spread codes which spread the

signal over a large spectrum, resulting in a resistance to narrow-band disturbances and

a better signal to noise ratio. Also, time is divided into slots in PANAMA.

In each slot, nodes with orthogonal spread codes can transmit simultaneously. Codes

are reassigned every slot, nodes compete for the codes by comparing their priority. The

node with the highest priority has won the medium and all its neighbors configure their

radio modules to use its spread code. The link characteristic (bidirectional or unidi-

rectional) is a part of the bandwidth value which is featured in the computation of the

priority. The main difference between NAMA-UN and PAMA-UN is the way priorities

are computed. In NAMA-UN, the priority depends on the sending node, whereas in
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PAMA-UN it is calculated using all incoming links of both nodes participating in the

communication. The calculation of priorities is the most complex part of PANAMA.

Each node needs to know the exact priorities of all its neighbors at any time. The

priority is 0 if the bandwidth from the sender to the receiver is 0 (unidirectional link

from this node to its neighbor). A node wins the contention if its priority is higher

than that of all its neighbors and there is no upstream-only-neighbor (neighbor with

a unidirectional link to this node) that uses the same spread code. The priority of all

neighbors k in slot t is calculated as follows: ptk = bwk
√
Rand(k + t) where bwk is the

bandwidth of node k. Rand is a random function which delivers a number between 0

and 1. The value of pk is set to 0 if bwk equals 0.

In PAMA-UN the computation of the priority depends on all incoming links of both

participating nodes x,y,: pt(x,y) = bw(x,y)
√
Rand(x+ y + t). Both protocols, PAMA-UN

and NAMA-UN depend on knowledge about the two-hop neighbors of a node. To

determine this, a neighborhood protocol is used, which transmits updates about the

neighborhood of a node regularly. Each node can compute its two-hop neighborhood

by combining these messages from all its one-hop neighbors. The update messages

can contain information about multiple links. This information contains the ID of the

neighbors, the status of the link (bidirectional or unidirectional), the type of change

(add or delete a link/neighbor) and the current bandwidth. Depending on whether

mobility is used or not, the interval at which these messages are sent can be adjusted.

3.1.7 LMAC and AI-LMAC

LMAC [73] (lightweight medium access control) is based on a TDMA scheme. Time

is divided into frames and slots. Each node reserves a slot during which it can send.

This slot re-occurs every frame. Every slot is used to send a control message followed

by data payload.

Table 3.2 shows the contents of an LMAC control message. Its total size amounts to

12 Bytes. It contains the identity of the sender and its slot number followed by the most

important field Occupied Slots, which represents a Bit mask of Slots. An unused slot

is represented by a 0 while a 1 represents an occupied one. Thus it is possible for every

node to determine unoccupied slots by combining the control messages of its neighbors.

This is done by performing a simple OR operation on the fields Occupied Slots of all

received control messages. The distance to the Gateway is also transmitted, along with

information of overheard collisions. Finally, the ID of the destination and the size of the

data unit are given. The initialization of nodes is started by the gateway, which defines

its own slot and is used for synchronization.
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Table 3.2: The control message used in LMAC

Description Size (bytes)

Identification 2

Current Slot Number 1

Occupied Slots 4

Distance to Gateway 1

Collision in Slot 1

Destination ID 2

Data Size (bytes) 1

Total 12

After one frame, all direct neighbors of the gateway know its slot and choose their

own ones. This information is transmitted to their neighbors who synchronize on these

messages. After each frame, a new set of nodes with a higher hop distance from the

gateway is synchronized until every node knows its slot. These slots only need to be

locally unique, as the nodes only compete with others up to two hops distant. To

conserve node energy, a node’s transceiver is turned off for the remainder of the current

slot when it is not addressed in the control message. As slots are computed just once

in LMAC, this protocol is not suitable for mobile sensor networks, where nodes can

enter and leave other nodes’ radio neighborhood at any time. Moreover, links need to

be stable over time, which is not the normal case in wireless sensor networks, as the

experiments presented in chapter 2 have shown.

AI-LMAC is introduced in [64]. It is an enhancement of LMAC which allows dynamic

reallocation of slots, depending on the network load. The authors assume a routing tree

which leads to a sink and optimize the slot usage along the branches of this tree. This is

realized by the usage of so-called Data Distribution Tables, which are used to determine

the network load which results after a query from the sink. With this information, slots

can be reserved according to the presumed needs.

3.1.8 MLMAC

Another TDMA based protocol is MLMAC [41, 43], an extension of LMAC. The main

difference between LMAC and MLMAC is their intended scenario. While LMAC as-

sumes a static sensor network where communication takes place between nodes and the

gateway, all nodes are assumed to be mobile and communicate among each other in
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Table 3.3: The control message used in Mobile LMAC (MLMAC)

Description Size (bytes)

Identification 1

Slot number and Status 1

Occupied Slots 1-2

Identity of the Synchronization 1

Age of Synchronization 1

Total 5-6

MLMAC. There may be one or many gateways or maybe there is none. MLMAC does

not depend on a gateway to start the synchronization, instead, it is fully dynamic.

The choice of scenario has a number of consequences. First, there may not be a

gateway to start the synchronization. Second, the chosen slots are not fixed in time.

Due to mobility, it may become necessary for a node to choose a new slot when it enters

a different radio neighborhood. Third, MLMAC differentiates between bidirectional and

unidirectional links, whereas LMAC assumed that all links were bidirectional.

The node that wants to send a packet first starts the synchronization. This removes

the necessity to use the field Distance to Gateway for synchronization. Even when it is

not used for synchronization, the field Distance to Gateway could be used to support

routing decisions in stationary sensor networks. In mobile sensor networks however, this

distance could not be determined only once and stored for further use, as the mobility

of nodes will lead to a change in topology after a certain time. This time depends on

the range of the transceivers and on the speed of the nodes of course, but eventually the

change in topology will take place. The field Distance to Gateway is removed from the

header of MLMAC. The fields Destination ID and Collision in Slot are not used

either, because of the hardware the authors used for their feasibility study. There was

no way to shut down the transceivers and the radio module used a built in checksum to

discard faulty packets. Thus, collisions could not be detected directly and this part of

LMAC was not implemented. As this decision was based solely on the used ER400TRS

radio modules [11], the authors state that it could be revoked when a different platform

is used.

MLMAC’s control message format is shown in table 3.3. This control message is

quite different from the one used in LMAC. As the intended scenario contained a smaller

sensor network, the field containing the identity of the sender was reduced to one Byte.
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Slot number and Status contains five bits for the senders slot and three bits for its

status. The field Occupied Slots is used exactly as in LMAC, only its size is reduced.

1

1000 0100 2

3 0011 1000

4 0011 1101

5 0011 1001

6 0001 0110

7 0000 0110 8 0001 1001

Figure 3.4: Occupied slots as seen by each node (taken from [41, 43])

The field Occupied Slots in the control message of a node contains the used slots

of all its neighbors and itself. In the case of node 4 on figure 3.4 for example the slots 3,

4, 5, 6 and 8 would be marked as used, which results in a representation as 00111101.

Note that in this example the third bit from the left represents the third slot. The

figure shows how slots are chosen with a simple example containing only eight nodes.

In this example you can see that node 2 is not synchronized yet. It receives the control

messages from its neighbors and combines them. 10000100 (from node 1) | 00111000

(from node 3) | 00111101 (from node 4) = 10111101 (seen on node 2).

This means that node 2 can choose between slots 2 and 7. If it chooses slot 2, its

control message would contain the Bit mask 11110000 in the field Occupied Slots, as

node 2 receives messages from nodes 1,3, and 4 and adds its own choice. If it chooses

slot number 7 the field Occupied Slots would contain the Bit mask 10110010. Note

that this method solves the hidden station problem. The number of slots can be chosen

between 3 and 16 in the prototype implementation, thus the size of Occupied Slots

varies between 1 and 2 Byte. If more slots per frame are needed, the size of the field

Occupied Slots grows. Thus far, the slots are chosen in the same way as in LMAC,

except for the fact that the synchronization is started by a node rather than by the

gateway.

The second difference is the fact that MLMAC stays adaptive even after slots are

chosen. The last two fields of a control message are needed, because every node can

start synchronization. Due to this fact, it is possible that two distant nodes start a

synchronization separately, as both of them assume that they are the first to send. Their
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neighbors would synchronize with them and increase the Age of Synchronization

by one before retransmitting. In this case, two different synchronizations would be

flooding the network and meet somewhere in between the two starter nodes. At this

point, nodes would realize that some of their neighbors use a different synchronization

by comparing the field Identity of the Synchronization. Now the field Age of

Synchronization is compared. If the received value is equal to or higher than the local

value stored in a node, this node becomes unsynchronized again and tries to find a new

slot.

Due to the mobility of nodes, a node X may leave the radio range of node Y. Both

nodes then realize that they do not receive any more control messages from each other

and remove the other one from the neighbor list. When X moves into the radio range

of another node Z which knows a different node W which uses the same slot as X,

the control messages of X and W collide at Z. Therefore, Z does not receive any more

control messages in that slot and marks it as unused. Nodes X and W receive the control

message from Z and realize that there must have been a collision of control messages.

After this, they give up their current slot and try to find a different one.

To determine whether a link is unidirectional or bidirectional, a neighbor list is used.

In this list a counter is stored for every neighbor. When a node X receives a control

message from node Y which does not contain the slot of node X, X increments the

counter for Y in its neighbor list. If the received control message contains X’s slot,

the counter is decreased. The range of the counter is 0 - N where N can be configured

freely. Then, a threshold can be set, from which on the link will be noted as (partially)

unidirectional.

MLMAC’s state machine is shown in figure 3.5. The rectangles represent states, the

arrows transitions between them.

Initially, all nodes begin in the Wait-state. When they want to send a message

without having received a control message yet, they change into the Starter-state (8).

When only one node switches to starter, this is a stable state and the node remains

there. If another node switched to the Starter-state earlier, this node gains knowledge

of that fact after some time and switches to the Sleep-state (9) from which it will return

into the Wait-state after a certain time (6).

If a node received a control message from another node in Starter- or Ready-state

while in the Wait-state, it synchronizes its local time with that of the originator of the

control message and switches into the Unsync-state (1). After waiting one frame to

overhear all transmitted control messages and calculate used slots, it chooses its own

slot and transitions into the Sync-state (2). When the node’s newly chosen slot becomes
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Start Wait

Unsync

Sync

Slotverify

ReadySleep

Starter

18

2

34

7

11

5
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6
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Figure 3.5: The finite state machine used in MLMAC (taken from [41, 43])

active for the next time, it starts to transmit its own control messages in every frame

and changes to state Slotverify (3). This state is used to verify that no other node

has chosen the same slot during the last frame. This would be indicated by a collision

of control messages in this slot and lead to a change into the Sleep-state (7).

A node X that transmitted a control message can determine if a collision occurred

by listening to its neighbors’ control messages. If no collision occurred, the neighbor-

ing nodes have added X’s slot to the field Occupied Slots in their control messages.

Otherwise they did not. When X receives control messages containing its slot, it knows

that no collision occurred because no other node has chosen the same slot. Therefore,

it switches into the Ready-state (4).

Like the Starter-state, this is a stable state as long as no collision occurs. If a

collision occurs, there must have been a mistake in the process of choosing slots, and

the node returns into the Sleep-state (5) and finally into the Wait-state to start over

again.

Note that MLMAC also distinguishes between collisions on unidirectional and bidi-

rectional links. If a collision on a unidirectional link occurred on a node in Slotverify-

state (11) or Ready-state (10), this node stays in the same state.
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3.1.9 MLMAC-UL

MLMAC-UL [42, 44] is an enhancement of MLMAC (section 3.1.8) that focuses on

unidirectional links. While MLMAC was able to function in their presence, it only dis-

tinguished between control messages received over bidirectional links and those received

over unidirectional links to remove negative implications of incoming unidirectional

links.

In this section only the changes in MLMAC are discussed, which have been made.

Instead of ignoring collisions that occurred because of unidirectional links, MLMAC-

UL uses a neighborhood discovery protocol to determine neighbors that can be used to

inform the upstream node (originator) of a unidirectional link about the link and make

it usable to forward messages.

The first addition is an independent neighborhood discovery protocol, which is similar

to the ones used in AMAC and PANAMA (see sections 3.1.5 and 3.1.6). It transmits

the neighborhood table of a node periodically infrequently. In the case of changes, only

small update messages are sent. The periodic sending of tables is used to remove any

errors resulting from loss of update packets.

Another change in MLMAC-UL is the fact that nodes can give up their slots. If

a node has transmitted only status messages for a certain time (e.g., 6 frames) it will

inform its neighbors that it is giving up the slot and that it may be used by another

node. Moreover, a node may not only hold one slot in MLMAC-UL. Rather, each node

can use as many slots as it needs by claiming any unused ones, when it has to transmit

lots of data messages. Once the send queue is emptied, it can give up the additional

slots one after the other. For this to be effective it is useful to define a larger frame size

from the beginning, so that there are always enough free slots available (see figure 3.6).

This ability to hold more slots was introduced to reduce the delay and make MLMAC

a better competitor for contention based protocols.

A B C A B C

A B C A B A

Frame with 4 Slots Frame with 4 Slots

Frame with 8 Slots

Figure 3.6: Using different Frame sizes (taken from [42, 44])
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Each node maintains a list of all its neighbors. Three entries define this list: The link

quality, the unidirectionality status and the compressed neighborhood information from

that neighbor. The link quality can be good (more than 90% reception rate), medium

(between 30% and 90% reception rate) or bad (less than 30% reception rate). The uni-

directionality status can be either bidirectional, unidirectional-sender or unidirectional-

receiver. The compressed neighborhood list is maintained by the neighborhood discovery

protocol and used to identify the two-hop-neighborhood of the current node.

The state machine of MLMAC-UL can be seen in figure 3.7. The arrows in the figure

represent the transitions between states and are described in the following.

Start Wait

Unsync

Sync

Slotverify

ReadySleep

Alone

1

92

34

7

10

5

6

8

11

Figure 3.7: The State Machine of MLMAC-UL (taken from [42, 44])

1. When a node needs to acquire its first slot it switches into the state Unsync.

2. The node was in state Unsync for one frame. It chooses a slot and transitions

into the Sync-state. If no slot was empty, the node stays in its current state for

another frame.

3. When its chosen slot arrives, the node changes to state Slotverify.

4. The node sends in its slots. After one frame, it reaches the Ready- state.
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5. If a negative acknowledgment for the last slot was received, the slot is deleted and

the node changes to state Sleep.

6. The node returns to the Wait-state after a random amount of time.

7. Same as 5.

8. There is data to be transmitted and no neighboring node is transmitting. The

node chooses a slot and an identification for the synchronization. After waiting

for a random time it transmits the data and switches to Ready.

9. If this node did not communicate before or it had previously given up one slot, a

new slot is acquired and the node changes into the state Slotverify.

10. No messages from neighbors were received for 5 frames even though this node is

transmitting. This means that this node is either completely isolated, or has only

unidirectional links to others, but no incoming link from any of them. This node

switches to the Alone-state and does not try to transmit anymore, even when data

is available.

11. A message from a neighbor was received, which means that this node is no longer

alone, or a certain number of frames (e.g., 200) have passed. The node switches

to Wait and starts again.

3.1.10 D-MAC

Even though the authors of D-MAC [39, 40] only claim to have developed a MAC-

protocol, it is actually a combination of MAC - and routing. In D-MAC, the network is

assumed to consist of one sink and multiple nodes, which are connected to the sink by

a routing tree. For such a scenario, latencies due to sleep delays and contention near

the sink are the main problems.

D-MAC tries to solve these problems by creating a TDMA schedule that enables

nodes on a path from leaves of the tree to the sink to wake up one after another. Nodes

are classified by their height in the tree (the distance from the sink measured in hops).

Nodes that have the same height need to compete for the medium. The problem of

contention is solved by introducing a more data flag. If a node has won the medium, it

knows that one of its siblings has lost, and sets this flag in its message to the common

parent. When the parent node receives this message, it knows that it has to stay awake

longer, in order to receive the data from its other child.
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But even nodes that do not have the same parent might have to compete for the

medium. In this case the node that loses the competition can transmit a More to

Send message in the appropriate period. It is a very small message containing only the

address of the father node, informing it that there is still data to be received later.

Even though D-MAC is energy aware and reduces latencies, it cannot be used in

the context of this thesis. Its assumptions that links are bidirectional and stable for a

long time and the fact that it includes a tree routing mechanism disqualify it for the

any-to-any routing protocols that use unidirectional links developed in this thesis.

3.1.11 A Link-Layer Tunneling Mechanism for Unidirectional Links

RFC 3077 [14] has been proposed by the unidirectional link routing group (UDLR)

[51] at the Internet Engineering Task Force (IETF) [16]. Its main goal is to make

unidirectional links usable in the internet. There, unidirectional links have a different

nature then those dealt with in the rest of this thesis. As RFC 3077 deals with internet

connections, the links are stable, and unidirectional links exist over a really long period.

An example for unidirectional links as mentioned in RFC 3077 are satellite connections,

where the satellites can transmit to a lot of receivers (”local”broadcast), but the receivers

cannot transmit back to the satellite.

One assumption made by the authors of the RFC is that nodes can be divided into

three categories: Receivers, Send-only feed and Receive capable feed. Receivers

are on the lower end of a unidirectional link, i.e. have an incoming only link. Send-only

feeds, e.g. satellites, have an outgoing unidirectional link. Receive-capable feed are

routers that have ”send-and-receive connectivity to a unidirectional link” [14].

Another assumption made is that each router has more than one IP connection,

allowing for the tunneling of messages.

The basic idea behind the tunneling mechanism is the forwarding of link layer mes-

sages of one interface using the routing layer of another interface on the same node when

this link is unusable.

A

B C
2 2

Figure 3.8: Three Nodes with a Unidirectional Link from Node A to Node B
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Figure 3.8 shows an example consisting only of three nodes. Node A has an outgoing

unidirectional link to node B (Interfaces A1 => B1) and both nodes are connected

by bidirectional links to node C (Interfaces A2 <=> C1, B2 <=> C2). Node A can

transmit to node B using interface A1 on the unidirectional link, but node B cannot

answer. On node B, when a message addressed at interface A1 is passed from the routing

layer to the link layer, the tunneling mechanism takes over. It encapsulates the message

into an IP message for node C, interface C2, that is handed back to the routing layer

and transmitted over interface B2. Upon reception of this message on interface C2,

node C forwards it to node A, interface A2 using interface C1. When node A receives

the message over interface A2, it is de-capsulated and handed to interface A1, which

handles it as if it had been received directly from node B.

This approach offers the possibility of using any routing protocol over the tunneling

mechanisms, and hides the existence of unidirectional links from them. It cannot,

however, hide the longer delay, which can be a huge problem for timeouts used in the

routing protocols. Also, as stated by the authors, this tunneling mechanism does not

work ”where a pair of nodes are connected by 2 unidirectional links in opposite direction”

(using different interfaces). This refers to the fact that all links on the tunnel have to be

bidirectional. If the link from node B to node C in the example above was unidirectional,

the mechanism described in RFC 3077 would have failed, even though a detour existed.

Additional information about the tunneling mechanism, like e.g. the Dynamic Tunnel

Configuration Protocol used there, are not relevant to this thesis and thus are not

discussed here. The details can be found in RFC 3077 [14]. For this thesis it is only

important to notice that one of the basic assumptions, the fact that all links are stable,

does not hold for the wireless networks considered here.
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3.2 Routing Protocols

Routing protocols can be classified by different criteria. One of these are the targeted

systems, e.g. wired or wireless, sensor network or MANET, mobile or static. After this

coarse-grained differentiation, there are a number of criteria that follow: Is the protocol

dependent on the application or not, is it data centric/content based, hierarchical or

location based? The authors of [1] differentiate whether sensor network routing protocols

are data centric, hierarchical or location based, and whether they offer QoS, network

flow or data aggregation. In [2] a different classification is used, even though it is also

a survey of routing protocols for wireless sensor networks.

For this thesis the way nodes are addressed by queries is important. Three different

ways are discussed here: First, addressing the global unique identity of a node. Second,

addressing all nodes which fulfill certain criteria, e.g. have measured a temperature

value above a certain threshold for fire detection. Third, addressing a group of nodes

in a certain area. Once the categories have been separated, different (sub-)types can

be defined (table 3.4). These include Distance Vector, Source Routing, Link Reversal

and Geographic protocols as well as those based on Diffusion or Agents and those that

supply Real-Time guarantees.

Table 3.4: Classification of Routing Protocols surveyed in this Thesis

Global Identities Data centric Location Based

Distance Vector x

Source Routing x

Link Reversal x x

Geographic x x x

Diffusion x

Agent Based x

Real Time x

In the following, an overview of these three categories and their representative pro-

tocols described in this thesis is given.

Routing Protocols based on Global Identities

The choice of routing protocol can have an enormous impact on the number of trans-

mitted messages and, consequently, on the total number of bytes transmitted. If the
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routing protocol always chooses the shortest path the number of data packet trans-

missions is minimized, no matter which routing protocol is used. The total number of

bytes transmitted for one data packet depends on the routing header, though, whose

size varies greatly with the chosen routing protocol. In source routing, the source knows

the whole path from source to destination and includes it in the packet. This leads to

different header sizes, depending on the number of hops. In distance vector approaches,

each node along the path knows the way and the source only needs to include the ID

of the destination and the next hop. This way, less data is transmitted but additional

information needs to be kept in the intermediate nodes.

Route discovery has to be taken into account, too. Many routing protocols supply

the shortest path to the destination (least number of hops) but that path has to be

established somehow. The source can broadcast a route request for example, which is

flooded either through the whole network or only within a certain radius (see expanding

ring search in [57]). The handling of the flooded messages and the replies differs quite

a lot, depending on whether the protocol in question is a source routing protocol or a

distance vector protocol.

Finally, route maintenance is called for. If a node becomes unavailable due to mo-

bility, variations in link quality or energy outage an alternative route is needed. This

link break can be detected and repaired by different means. A classical approach is the

use of hello-messages which are transmitted periodically to detect link failure. When

no hello (or other) message has been received from a neighbor for a certain time, the

link to that neighbor and all paths that use this neighbor as next hop are removed from

the routing table. As this approach induces a lot of communication overhead, it has to

be avoided in resource constrained networks and especially in wireless sensor networks.

When a message cannot be forwarded due to link breaks, there are once again multiple

ways to react. Some protocols attempt local repair, others just transmit a route error

message back to the originator of the message. This behavior is often found in distance

vector routing and source routing protocols respectively. A third way of reacting is the

inversion of an incoming link into an outgoing one, as done by link reversal protocols

(see section 3.2.17)

Table 3.5 shows the different distance vector, source routing and link reversal pro-

tocols surveyed in this thesis. It denotes the type of protocol, Distance Vector (DV),

Source Routing (SR), Link Reversal (LR) or Geographic (Geo) and the way of dealing

with unidirectional links (ignore their existence, remove their implications or make use

of them).
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Table 3.5: Protocols Based on Global Identities Discussed in this Chapter

Name Source Type Unidirectional Links Section

DSDV [56] DV ignored 3.2.1

AODV [55, 57] DV implications removed 3.2.2

AODV-BR [37] DV implications removed 3.2.3

Route Reply Salvaging [4] DV implications removed 3.2.4

NST-AODV [17] DV implications removed 3.2.5

AODV-RPS [45] DV implications removed 3.2.6

Unnamed [60] DV used 3.2.7

DYMO [10] DV implications removed 3.2.8

DSR [28, 29, 30] SR used 3.2.9

DSR-DCU [83] SR used 3.2.10

DSR-CSA [54] SR ignored 3.2.11

LBSR [3] SR used 3.2.12

Full and Partial Reversal [8] LR ignored 3.2.17

TORA [53] LR ignored 3.2.18

GeoTORA [32] LR, Geo ignored 3.2.19

Data Centric Routing Protocols

Data centric routing protocols rely on application knowledge, which is used to identify

the destination of messages. This makes them unusable for general purpose networks

like the internet, but can increase efficiency in specialized networks like wireless sensor

networks. A query in a data centric networks normally consists of attribute-value pairs,

e.g. temperature higher than a certain threshold or an area within certain boundaries.

As the routing protocols developed for this thesis are specifically designed to be general

purpose and do not rely on application knowledge, only a few data centric protocols are

surveyed here (table 3.6).

Location Based Routing Protocols

Location based routing protocols assume that all nodes know their physical location, and

make routing decisions based on geographical distances. The actual mode of decision can

be quite different. In some protocols, all nodes need to know their neighboring nodes,

and decide which neighbor should forward a message depending on the distance gained
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Table 3.6: Data Centric Protocols presented in this Chapter

Name Source Type Unidirectional Links Section

Directed Diffusion [26, 27] Data Centric, Diffusion ignored 3.2.13

Solar Aware Routing [67] Data Centric, Diffusion ignored 3.2.14

Push/ One-Phase-Pull [24] Data Centric, Diffusion ignored 3.2.15

Rumor Routing [7] Data Centric, Agents ignored 3.2.16

GEAR [84] Data Centric, Geographical ignored 3.2.21

by that one hop. In others, the forwarding decision is made on the receiving nodes. Each

calculates its distance to the destination. Nodes that are nearer forward the messages

after a short delay, nodes that are farther wait longer. If a waiting node overheard

the forwarding of the message it wants to transmit, it discards the message instead.

In yet other protocols a direct line between the originator node and the destination is

calculated, and the node that is closest to this line is chosen as forwarding node.

All geographical routing protocols have one problem in common, though. If there

are obstacles somewhere between originator and destination, the message is forwarded

up to that obstacle and no way further might be found. There are once again multiple

ways to react and each protocol has a different preferred method of bypassing obstacles.

Table 3.7 shows the geographical protocols surveyed in this thesis. Their methods of

forwarding and obstacle bypassing are discussed in the corresponding sections.

Table 3.7: Location Based Protocols presented in this Chapter

Name Source Type Unidirectional Links Section

GeoTORA [32] Geographical, Link Reversal ignored 3.2.19

GPSR [31] Geographical ignored 3.2.20

GEAR [84] Geographical, Data Centric ignored 3.2.21

SPEED [20] Geographical, Real Time ignored 3.2.22

In the following, the surveyed routing protocols that are based on global identities

are described, followed by data centric protocols and, finally, location based protocols.
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3.2.1 Highly Dynamic Destination-Sequenced Distance-Vector Rout-

ing (DSDV) for Mobile Computers

Perkins and Bhagwat propose a routing protocol for mobile nodes that builds upon the

distributed Bellman Ford (DBF) algorithm [56] (also used in the internet, in the routing

information protocol (RIP) [22]). DSDV proposes a solution to the major problem of

DBF, the count-to-infinity problem.

The count-to-infinity problem has its origin in the way weight functions are generated

in DBF. Consider a small part of a network as shown in figure 3.9(a). Nodes B, C and D

are lined up, the rest of the network is connected via nodes B or D. All nodes advertise

their routing tables periodically. In the first step, each node only knows itself and

broadcasts its existence. After the first step, each node knows its neighbors, and knows

that they are one hop distant. In the second step, this information is also propagated,

and all nodes know of their two-hop neighbors and so on, until each node has gained

knowledge of all other nodes in the network. The information is stored as distance

vector, meaning that each node knows only the distance and the next hop for a certain

other node. Node B would have an entry in its routing table consisting of (D, C, 2)

(destination, next hop, distance). On node C the entry would consist of (D, D, 1).

B C D

(a)

B C D

(b)

Figure 3.9: A simple subnet

The problem arises when a node dies or a link breaks and no path around the broken

link exists, as shown in figure 3.9(b). Node C would detect that it can no longer transmit

to node D. Therefore, it would no longer advertise the route to node D. When routing

information is propagated the next time, node B still advertises the fact that it knows a

route to node D of length 2, which node C would receive and write into its routing table

(incremented by 1). The next routing information message from C would then contain

this value of 3, leading to a value of 4 entered into the table at node B and so on until

infinity. The fact that node D cannot be reached at all is only realized when infinity

(i.e. in this case, the highest possible value) is reached. Until that moment, routes are

still advertised and contain a routing loop between nodes B and C.
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DSDV solves the count-to-infinity problem by introducing destination sequence num-

bers. Every time a node transmits a routing information message, it increments its

sequence number. The routing information that is propagated also contains the most

recent sequence number received from each destination.

The second case in which a sequence number is increased is when a link breaks.

A node that detects a link break increments the sequence number for all destinations

that are reached using that link and sets the weight function to infinity. An important

difference between the two increment operations is the amount by which the sequence

number is incremented. A node that broadcasts its routing table increments the se-

quence number by 2, always resulting in even numbers. At a link break, the sequence

number is incremented only by one. When a node receives an update message for a

destination with a higher sequence number than the stored one, it changes the entry. In

the example described above node B would have an even sequence number for node D

in its routing table, e.g. 50, with a distance of 2. Upon link breakage, node C would in-

crement its sequence number for node D (it has to be equal or greater than that stored

at B) by one, resulting in an odd number, e.g. 53 and a distance of infinity. Upon

reception of the next update message, node B would realize that the sequence number

is higher, and also enter the value of infinity into its routing table.

If, at some point in the future, node D would become available once more, its sequence

number transmitted would be 54 or higher, resulting in an immediate replacement of

the infinity value with the distance contained within the update message (plus one).

The authors of [56] also address the problem that the shortest route is not always

propagated faster than all others. In such a case, propagating all routing information

as soon as it changes leads to a waste of bandwidth, as the routing table is changed

multiple times in each update cycle. The authors propose to delay such updates, and

only propagate important changes at once. An important change would for instance

be the breaking of a link and the subsequent setting of infinity as weight function. All

other changes are only propagated at regular intervals.

While DSDV has solved the count-to-infinity problem, it still has a number of draw-

backs. First of all, each node keeps routing information for all other nodes. This

information does not occupy as much memory as in link state protocols, but still needs

a lot of memory in large networks. Second, most important to this thesis, it can only

operate on bidirectional links. A unidirectional link between nodes C and D on figure

3.9(b) would lead to the afore described behavior on node C’s side. Even worse, node

D would receive the update messages from node C and propagate the non-existing path

in each update cycle.
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3.2.2 Ad hoc On-Demand Distance Vector Routing

As its name suggests, AODV [57, 55] is a routing protocol based on distance vectors.

The route to a destination is not stored completely in one node. Rather, a source

node S knows only the next hop A on the route to a destination D and the distance

to D in hops. Packets for D are sent to A, where the following hop is stored and so

on. This way, the routing information is stored in a distributed manner. Opposed to

source routing, routes do not have to be transmitted with the packets, which results in

smaller messages. AODV is also a reactive protocol, which means that routes are only

determined when they are needed.
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(a) Route Request Propagation
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(b) Route Reply Propagation

Figure 3.10: Route Discovery in AODV

The routing process is carried out in two phases, which are route discovery and route

maintenance. When S wants to send a packet to D for the first time it broadcasts a

route request packet (RREQ). This RREQ is flooded through the whole network or for a

specified number of hops (expanding ring search). Sequence numbers are used to realize

duplicate suppression and to prevent the count to infinity problem, just like in DSDV

(section 3.2.1). Figure 3.10(a) shows the propagation of a RREQ message for node H.

The source node A broadcasts it to its neighbors B,C and D, which enter node A into

their routing table as a direct neighbor. Nodes B, C and D rebroadcast the message in

turn to their neighbors E and F, which enter them into their routing tables as neighbors.

They also enter node A into their routing table, with a distance of two hops and the

node the RREQ was received from as next hop. One of the messages from either node B

or C arrives at node E first and is forwarded. The other one is recognized as a duplicate

and discarded. Node E transmits to node G and node F to node H, which update their

routing tables in the same way. Node H is the destination and acts accordingly. Node

G then transmits the RREQ to node H, but node H identifies it as a duplicate and
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discards it. If the whole network is flooded with the RREQ messages, every node knows

all of its direct neighbors when all RREQ packets are discarded. When expanding ring

search with size N is used this is only true for all nodes within N-1 hops from the source.

Figure 3.10(b) shows the path that is taken by the route reply message (RREP).

When receiving the first RREQ, the destination node H sends a RREP back along the

way the RREQ took. The RREP is addressed to node A and forwarded to node F from

which the RREQ was received. It is then forwarded to node D and finally to node A.

At this moment all nodes on the route, nodes A, D, F and H know routes to nodes A

and H.

Once links are established, route maintenance is called for. There are multiple ways

in which this can be triggered. Link breakage can be detected if a link - or network

layer acknowledgment is requested but not delivered. Another possibility is that no

Hello Message was received for a certain time (see RFC 3561 [55] for more details).

There are different actions taken when links break, according to the previous status of

the link. If the link in question was not in use it is simply marked as invalid. If it

was part of an active route, i.e. packets have been sent along this link recently or the

link break was detected because a packet could not be transmitted, further action is

required. The breakage can be confirmed first, e.g. by sending a RREQ with the ID

of the next hop and a time to live of 1. Once it is confirmed, all routes that use the

broken link have to be removed. To remove the routes from other nodes, too, a route

error message (RERR) is sent to all nodes that are listed in the precursor lists for the

destinations of the broken link. A precursor list contains all nodes from which packets

for a certain destination were received. The RERR message is then either unicast or

broadcast, depending on the number of neighboring nodes in the precursor lists. Instead

of this, a node may perform a local repair. It creates a RREQ for the destination with

an increased sequence number, which is transmitted in the normal way. If it receives

only RREP messages with a greater distance, it should send a RERR message with a

flag indicating that it has a new, longer route. If the route has the same length, no

RERR message needs to be sent.

This is only the basic functionality of AODV. There are many more optional features.

The one that is interesting for this thesis deals with AODV operation in the presence of

unidirectional links. The algorithm described above would fail if there was even a single

unidirectional link in a route. Consider again the network shown in figure 3.10(a).

If the link between nodes D and F was unidirectional and communication was only

possible from node D to node F, the RREQ propagation would have worked exactly as

described. The RREP on the other hand would only have reached node F, and after
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a certain number of retries it would have been discarded. As the destination sent only

one RREP, no route can be found. If the status of the link is persistent, subsequent

RREQs from the source would fail too, even though another, completely bidirectional

path exists.

To prevent this problem, AODV uses blacklisting of nodes. If AODV operates in

an environment where unidirectional links can occur, nodes that transmit a RREP

message set a special flag, indicating that they need an acknowledgment from the next

hop. Nodes that do not transmit the so-called RREP-ACK message are entered into

the blacklist and not considered in future routes. RREQ messages from nodes in the

blacklist are simply discarded.

The route discovery mechanism that uses RREQ and RREP messages as well as

the sequence numbers used for duplicate detection in AODV are the basis for parts of

this thesis. Its way of dealing with unidirectional links by removing them is where the

differences will be seen, as all proposed routing algorithms use them in order to increase

performance.

3.2.3 AODV-BR: Backup Routing in Ad hoc Networks

AODV-BR [37] is an enhancement of AODV (section 3.2.2), that uses a mesh structure

to supply multiple paths. The proposed algorithm is actually independent of AODV. It

works with any distance vector routing protocol that uses a discovery mechanism based

on route requests and route replies. The main achievement of the protocol is to build

multiple routes without sending additional control messages. This is possible because

of the broadcast character of the medium. Every node that overhears a route reply

packet and is not the addressed next hop discards this packet in AODV. In AODV-BR

these nodes enter the node from which the route reply was received as next hop to the

destination into their routing cache. This way, a structure similar to a fish bone is

constructed.

When a link breaks, the node that detected the break broadcasts the data packet it

tried to send, with a flag indicating that this message should be sent using an alternate

route. A neighboring node that receives this message and has overheard the route reply

that created this route forwards the message to the next hop. This way, a detour of

one hop is taken, which ensures the data packet’s delivery where AODV would have

discarded it. Also, a route error packet is transmitted to the source, so that a new

and possibly better path can be established. Please note that the message still has to

traverse all nodes that are on the original route.
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The authors evaluate their approach in a simulation and compare it to AODV. The

results of their simulation show that AODV-BR improves the performance in low traffic

scenarios. In heavy load situations however, it performs worse than AODV, because

the broadcasts and possible duplicate packet transmissions (over 1-2 hops) in case of a

link break lead to congestion and collisions. This is partly a link layer problem, as the

simulated1 802.11 DCF medium access control uses different protocols for broadcast and

unicast. Unicast messages are transmitted using request-to-send (RTS) and clear-to-

send (CTS) messages to reserve the medium for a certain time. Broadcast messages are

transmitted using a carrier sense multiple access with collision avoidance (CSMA/CA)

mechanism, which listens to the medium before transmitting. Another problem of the

evaluation is the usage of the random waypoint mobility model, because it contains

abrupt stops and sharp turns.

The proposed way of finding alternate routes is similar to overhearing, and suffers

from the same problems: Unidirectional links cannot be used because the upstream

nodes do not know about their existence. Still, if the alternative link that should

be used for the detour is bidirectional or points at the next hop at the time of the

broadcast, this protocol might improve the performance. One of the protocols proposed

in this thesis, Buckshot Routing, works in a similar fashion. For details see chapter 4.

3.2.4 Salvaging Route Reply for On-Demand Routing Protocols in

Mobile Ad-Hoc Networks

In [4] the usage of a so-called salvaging route reply (SRR) is proposed. When the trans-

mission of a route reply packet (RREP) fails, it is normally discarded. In the proposed

protocol, the intermediate node which could not transmit the RREP tries to find a dif-

ferent route to the destination of the RREP instead. It achieves this by searching for an

alternate route in its route cache (for multi-path protocols) or conducting a SRR route

discovery within a certain radius (for non-multi-path protocols). A SRR route discovery

means that all nodes within the specified radius (one hop in the simulation mentioned

in [4]) check their routing tables for alternate routes to the destination of the RREP. If

one is found, the node(s) become part of the path. The authors assume that all links

are bidirectional. They motivate their assumption with the fact that the authors of [45]

declare that the advantages of using unidirectional links do not justify the costs. If uni-

directional links are absolutely necessary, link-layer tunneling [14] should be used. The

first argument is discussed in section 3.2.6, the link-layer tunneling in section 3.1.11.

1According to [25], current WLAN hardware does not use RTS/CTS mechanisms, so the results

might have been different if the protocol had been evaluated on real hardware.
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3.2.5 Adapting AODV for IEEE 802.15.4 Mesh Sensor Networks: The-

oretical Discussion and Performance Evaluation in a Real Envi-

ronment

Gomez et al. introduce Not So Tiny - AODV (NST-AODV) [17], which is a smaller

Version of AODV for low-power wireless personal area networks (LoWPANs). The

protocol is based on an earlier AODV version for LoWPANs called tiny AODV, hence

the name. In both protocols sequence numbers are omitted to reduce the network load.

The main contributions of NST-AODV are the usage of link layer notification, buffers

for packets that could not be transmitted and layer 3 retransmissions.

The AODV standard (see section 3.2.2) does not define how link breaks are detected.

It proposes three possible ways. First, the usage of periodically transmitted hello-

messages. If a certain number (default: 2) of hello-messages are missed, the link is

defined as broken. The default value for hello packet transmission is 1 second, leading

to a link failure detection time between 1 and 2 seconds, depending on whether the link

break occurred directly before hello packet transmission or directly thereafter. Second, a

flag in the route reply messages can be set, indicating that an acknowledgment should be

sent (layer 3 ACK). Third, if available, link-layer acknowledgments can be used, where

the absence of an acknowledgment signifies a link break or a unidirectional link. As

only bidirectional links are used, there is no differentiation needed. NST-AODV defines

link-layer acknowledgments as standard. Hello-messages and layer 3 acknowledgments

are not used, because they present unnecessary overhead, and because the time needed

to detect a link break on the link layer is much shorter (tens of milliseconds opposed to

1-2 seconds).

There are two buffers which are used to store packets when no route is available

and route discovery takes place or when a link break is detected. In the second case, a

route error packet would normally have been sent and the message for which the link

break was detected would have been discarded. Instead it is now buffered because of

the assumption that the link break may be only short lived.

The layer 3 retransmission targets exactly that case, because link layer retransmis-

sions use a much smaller timeout. That way, if a break is only temporary, the layer

3 retransmission can deliver the packet without much additional overhead, only the

buffers mentioned are needed and the packet is transmitted a few times more. This is

still a great advantage, as a route error message normally leads to a new route discovery

from the source, which floods the whole network.
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There are a few problems with the evaluation of the protocol. The authors present

experimental results, but a detailed simulation is missing. The method used to introduce

link failures is of debatable quality, as nodes were simply turned off for a short period of

time. In this special example, the proposed protocol was better than the basic version,

because of the layer 3 retransmissions. The exclusion of unidirectional links is a common

problem, but in this case there is also no evaluation for mobility of nodes. However, the

proposed link-layer acknowledgments are a good way of detecting broken links.

3.2.6 Routing Performance in the Presence of Unidirectional Links in

Multihop Wireless Networks

Marina and Das quantify the advantage of using unidirectional links instead of simply

eliminating their impact on a routing protocol for multihop wireless networks [45]. Their

results show that the gain in connectivity is nearly zero, while the shortest path costs

improve. They say that these advantages are removed when the cost of hop by hop

acknowledgments is accounted for, too. Their method of measuring the connectivity is

to compute the average number of strongly connected components and the size of the

longest strongly connected component. To create the unidirectional links they used 3

different approaches. First, two ranges were defined, long and short, and the nodes all

were set to operate in one of them with the same probability. In the second approach

the range was set completely at random within certain boundaries. The third approach

was based on a topology control mechanism which reduces the transmitting power of

a node as long as it still reaches some of its neighbors, so that nodes that are further

away and could be reached using higher transmission power are reached using multiple

hops instead. This was thought to conserve energy, but in fact it has been shown in [48]

that the overall energy consumption in the network increases.

Their results show that there is a gain of about 15% in the size of largest component

when unidirectional links are used and the short range is set to half the long one in the

first approach. The communication cost is reduced by about 10%.

Because of the conclusion that it is not worth the trouble to use unidirectional links,

they present a so-called Reverse Path Search Technique (RPS), which increases the

success of AODV in removing the implications of unidirectional links. In RPS every

node that receives a route request (RREQ) for the first time rebroadcasts it just like

in AODV. The main difference is that multiple routes are used. When a node detects

the loss of a RREP message, it determines that the link it wanted to use must be a

unidirectional incoming one. Therefore it chooses one of its other routes back to the

source. If all routes fail, a backtrack route reply (BRREP) is sent, which tells the node
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from which the RREP was received that the current node has no route to the source

anymore. This so-called upstream node then performs the same algorithm.

The evaluation method of taking the length of strongly connected components seems

to be a good one, but misses the fact that links are not stable over time. All three

approaches for creating unidirectional links were used in a static topology without vary-

ing the transmission range once the network was set up. The second part of the paper

which describes and evaluates RPS uses only blacklisting and hello-messages for com-

parison, two methods which also eliminate unidirectional links. Even though a static

topology was used, the usage of unidirectional links still brought an increase of 15% in

the largest component. For a non-stable topology the value would be even higher, as

the protocols that rely on bidirectional links suffer much more from topology changes

than those proposed in this thesis (see chapters 4 and 5).

Under the assumption that unidirectional links should be ignored, the protocol seems

to work fairly well. The overhead of building multiple routes seems to be a fair price

to pay for the gain in robustness. If a bidirectional path exists, it is found in time.

This makes the algorithm suitable for Mobile Ad-Hoc Networks, and even for wireless

sensor networks with stronger nodes, i.e. with medium sized storage and fairly good

transceivers.

The assumption that the gain in performance is not worth the overhead for using

unidirectional links can be interpreted in two ways, though. The first possibility is to

say that the overhead is too costly and therefore unidirectional links should be removed

as the authors of [45] proposed. The other possibility is to say that the overhead has to

be reduced, which is the focus of this thesis, as the overhead of the reviewed protocols

(O(n2)) is indeed intolerable.

The reverse path search technique could also be used in a modified version to incor-

porate unidirectional links. In fact, one of the routing protocols proposed in this work

has some similarities to the one presented in this section, as they are both distance

vector protocols and take care of the problems that arise for AODV when unidirectional

links exist. The difference is, that RPS removes the implications of unidirectional links,

while the protocols presented in this work use them to gain better performance.
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3.2.7 A Routing Algorithm for Wireless Ad Hoc Networks with Uni-

directional links

The author of [60] proposes a routing protocol based on distance vector routing. Even

though prominent examples of distance vector routing protocols like AODV or DSDV

cannot use unidirectional links (see sections 3.2.1 and 3.2.2), the proposed protocol can.

In this protocol, every node in the network periodically exchanges beacons (explained

later) with its neighbors. Each node retains a list of all neighbors a beacon was received

from called Nodesheard, a matrix of dimension n ∗n called D, where n is the number of

nodes in the network and every entry consists of a tuple (sequence number, distance).

The node also maintains two vectors called To and From in which the sequence number,

distance and next hop are stored for each destination to which this node can send (To)

and for each source, which sends to this node (From).

The beacons transmitted periodically include Nodesheard, which is used to distin-

guish between unidirectional and bidirectional nodes. If a node receives a Nodesheard

which includes its own ID, it knows that the link to the sending node is bidirectional.

If the ID is not enclosed, the link is unidirectional. Nodes also transmit their matrix D

periodically, which is used to build routes. Because of its size the matrix is transmitted

less frequently than Nodesheard.

This protocol is a proactive one, keeping routes from a node to every other node up

to date all the time. This is fitting for the scenario envisioned by the author, as he

assumes low mobility and high data traffic. He assumes that unidirectional links occur

either because of the difference in battery power which causes a node with less power

to diminish its transmission strength, or because of strong interference in one place.

This is called a persistent phenomenon in the paper. Transient phenomena, where links

change from unidirectional to bidirectional, are also mentioned, but not discussed fur-

ther. Unfortunately the paper does not present any simulation or experimental results.

Another problem hinted at in the paper is the problem of cooperation with the MAC

layer, as the MAC protocol used by a routing protocol for unidirectional links needs to

be able to use those, too. See section 2.4 for more information about this problem.

The main performance problem of this algorithm is based on the fact that it is

proactive. The matrix D stored on each node and transmitted periodically means that

O(n2) space is needed on each node and, even worse, messages of the same size have to

be transmitted. This is a major drain on energy and bandwidth. Other distance vector

protocols like DSDV (section 3.2.1) and AODV (section 3.2.2) only need O(n) storage

and message size. This overhead disqualifies the protocol for the usage in large wireless

sensor networks and reduces its usability in Mobile Ad-Hoc Networks.
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3.2.8 Dynamic MANET On-demand (DYMO) Routing

DYMO [10] is the successor of AODV (see section 3.2.2). Like AODV, it is based

on distance vectors and consists of two parts, route discovery and route maintenance.

Routes are created using route request (RREQ) and route reply (RREP) messages, link

failures are handled by transmitting route error (RERR) messages. Many features and

mechanisms are the same as in AODV, therefore only the most important differences

are noted here:

Optional Values or Fields Many of the values that were mandatory in AODV are

now optional. The authors state that the protocol will work without all optional fields,

but its performance might degrade. An example for this is the distance from a node

to the destination which had to be recorded in the routing table in AODV. It can be

omitted in DYMO, but the chosen routes may be suboptimal.

Weight Function While AODV uses the hop count as weight function, the choice of

weight function is left to the user in DYMO. The only requirement is that it has a value

of at least one.

Optional Discarding of Messages In DYMO, messages might be discarded at a

node’s will. The authors do not focus on possible reasons, but enable the discarding

nonetheless. A possible reason might be e.g. load balancing.

Link Breakage In AODV link breaks are only detected when a node tries to forward

a message over a broken link, which leads to the loss of a data message in most cases.

In DYMO all nodes are required to monitor their links continuously. The mechanisms

used for this monitoring are not described by the authors, but examples of possible

ways, including a neighborhood discovery protocol, are hinted at.

Complexity While AODV had 23 configuration parameters, the complexity has been

reduced in DYMO to only 10. But this advantage has to be put in perspective, because

AODV takes care of mechanisms like e.g. blacklisting as part of the protocol, and needs

parameters for this to function correctly. In DYMO the usage of blacklisting is only

advertised, so the parameters are in fact there, only hidden.

For this thesis, one fact is most important: The authors state right at the beginning

of the RFC that DYMO ”only utilizes bidirectional links” [10]. This statement

is strengthened by applying the keyword ”MUST”, which means that this is absolutely
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mandatory for the operation of the protocol according to [6]. If there is a chance

that unidirectional links occur, they have to be suppressed by blacklisting or other

appropriate means, because otherwise persistent packet loss may occur. Still, DYMO

is included here because it is the current and upcoming protocol of a family of distance

vector protocols for MANETS which includes DSDV (section 3.2.1), AODV (section

3.2.2) and DYMO, all proposed at least partially by the same author(s).

3.2.9 DSR: The Dynamic Source Routing Protocol for Multihop Wire-

less Ad Hoc Networks

Dynamic Source Routing (DSR)[28, 29, 30] consists of two basic parts, route discovery

and route maintenance, both of which are only executed on demand. Route discovery

is used to find a route from a node S to node D only when node S wants to transmit a

message and does not know any valid path. Route maintenance is executed when the

transmission of a message from node S to node D failed for any reason.

A B C D E
”A”

id=2

”A,B”

id=2

”A,B,C”

id=2

”A,B,C,D”

id=2

Figure 3.11: Route Discovery in DSR (taken from [28])

Figure 3.11 shows an example of the route discovery process. Node A wants to

find a route to node E and transmits a route request message (RREQ). The route

request contains the identity of the sender and a request id which is used for duplicate

detection. All nodes that receive and forward the RREQ add their own identity to the

message, resulting in a complete path that has been collected when node E is reached

(A=>B=>C=>D=>E).

When the destination receives the RREQ, it sends a route reply (RREP) to the

initiator, containing the accumulated list of intermediate nodes. Of course, duplicate

suppression is used first: If a node receives a RREQ with a message ID it has already

seen or if its node ID is already in the list of nodes the message has passed, it discards

the message (loop prevention).

To transmit a RREP to the initiator of a RREQ, the destination first checks if it

already knows a route to that node. If it does not, it initiates another route discov-

ery, but this time the source route that has already been found gets attached to the
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RREQ message. Otherwise, both nodes would continuously alternate in starting route

discovery, never receiving a route but continuously increasing network traffic.

When DSR is used on top of MAC protocols like IEEE 802.11 which require bidi-

rectional links on the MAC layer, this second route discovery process can be omitted.

Instead, the destination simply reverses the collected source route contained in the

RREQ, and sends the RREP along this bidirectional path.

Messages that could not be sent because route discovery for their destination is

underway are kept in a so-called send buffer. Unanswered route requests are resent

using an exponential backup mechanism; additional messages with the same destination

do not cause additional route requests to be transmitted.

A B C D E

Figure 3.12: Route Maintenance in DSR (taken from [28])

Route maintenance has to be started when messages are lost. Each node is respon-

sible for the next hop of a message in DSR, e.g. in figure 3.12 node C is responsible

for the hop to node D. A node can be informed of a successful reception by the next

node either through link-layer acknowledgments or through passive acknowledgments

(overhearing the forwarding by the next node). If none of these options are available,

DSR provides a flag that can be set in the header of a DSR packet, which causes the

recipient to transmit an explicit acknowledgment.

When a node does not receive any confirmation that the message has reached its

next hop, it retransmits the message up to a configurable number of times. When no

confirmation is received even after these retries, a route error message (RERR) is sent

back to the originator of the undeliverable packet, including the information about the

broken link. The originator then removes the route containing the broken link from its

route cache.

Please note that the original message has not been stored by the originator and is

not transmitted back from the node which detected the broken link. Instead, from the

point of view of DSR, the message is dropped. A retransmission is left to higher layers,

e.g. a TCP layer. If such a higher layer tries to retransmit the message, other cached

routes for the same destination are used if existing. Otherwise, a new route discovery

process is started.
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Both mechanisms, route discovery and route maintenance, have only been described

in their basic form here. There are a number of additional features for both:

• Caching overheard routing information

• Replying to route requests using cached routes

• Preventing route reply storms when using cached routes

• Limiting route request hop count

• Packet salvaging

• Automatic route shortening

• Spreading of route error messages

• Caching of negative information

Caching of overheard routes enables a node that has been part of a communication

or that has overheard a message while it was in promiscuous mode to enter a route

into its route cache without ever having started a route discovery. In networks where

links are fairly stable and bidirectional, this approach saves a lot of communication

overhead, because the probability that a node has to start the costly route discovery

process is reduced drastically. In networks with often occurring unidirectional links

however, there is a high chance that the cached route is unusable or broken (see figure

3.13 for an example). Due to the unidirectional links in the network, the path from node

A to node E and the path from node E to node A are different. In the figure, only the

path from A to E is shown. If one of the intermediate nodes would cache a route back

to node A, this route would never work. Moreover, if node C would overhear node X

forwarding a message from node V addressed at node Z, it would assume that it could

reach Z through X, which is wrong due to the unidirectional link between X and C.

As unidirectional links are the main focus of this work, and the authors of [28] claim

that unidirectional links limit the usefulness of route caching, it is not used. Likewise,

the possibility of using cached routes to answer a route request can also be useful, but

relies on link stability. In networks like WSN where links change often, these so-called

intermediate replies often produce stale routes and are therefore not used in this work.

As they are not used, the route reply storm problem cannot occur and the mechanisms

used to prevent it as described in [28] are not needed. The limitation of the distance

a route request may travel can be used to realize an expanding ring search. RREQs

are initially sent with a low TTL-value. If no reply is received within a certain time,
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A B C D E

V W X Y Z

Figure 3.13: Possible Problems of Overheard Routes in DSR (taken from [28])

the TTL-value is increased for the next try. As the authors stated that they expect the

network diameter (i.e. the longest possible route) to be no more than 10, the usefulness

of this mechanism in large sensor networks is questionable since it possibly adds delay

and can even increase the amount of messages flooded if multiple ring searches are

needed.

Packet salvaging can be used when a link break is detected. The node that detected

the break may search its own cache for a different route to the destination and forward

the message along that path instead of dropping it when an entry is found. The packet

then needs to be marked as already salvaged to avoid creating loops if the new path is

broken as well. Automatic route shortening is used when a node overhears a message of

which it is not the intended next hop, but featured in the future path of the message.

This node then sends a gratuitous route reply to the original sender of the message,

informing it of the shorter route for future use.

Route Error Messages are normally only sent to the originator of a message that

could not be transmitted. If intermediate replies are enabled, it is useful to spread

the knowledge about the broken link further. When the originator starts a new route

discovery, it includes the route error message in its route request, thereby informing

all nodes of the link break and preventing them from answering with stale information

containing that broken link.

Negative information, like the information that a link is broken, can be cached, too.

It is useful when a link breaks and reappears frequently. If a node knows that the link

used by a certain message has a tendency to break, future route replies that feature this

link may be ignored, similar to the blacklisting mechanism for unidirectional links used

in AODV (see section 3.2.2).

DSR also offers support for heterogeneous networks and mobile IP as well as multicast

routing. Both features are irrelevant to this thesis and are therefore not discussed here.
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3.2.10 Distributed Cache Updating for DSR

The author of [83] addresses the problem of stale routes in route caches. Route caches

or route tables are used to store routes that have been discovered or overheard. Stale

routes are routes which are still in a route cache even though they can no longer be used

due to link breakage. DSR (see section 3.2.9) and many similar protocols use timeouts

to remove stale routes after a certain time. The problem with this mechanism is that

sometimes routes that are still viable get removed if the timeout is set too short. If it

is too long, stale routes may stay in the cache and will be used again eventually.

The second mechanism used in DSR is that of issuing route error (RERR) messages.

When a node tries to forward a message and does not receive an (passive or explicit)

acknowledgment that the next node has received said message, a number of retries are

made. If none of these succeed, a route error message is sent to the originator of the

discarded message as part of the route maintenance process.

This route error message is the focus of the cache updating protocol presented in

[83]. In DSR, there are two modes of operation. In the first mode, only the originator

of the discarded message is informed of the link break, regardless of the fact that other

nodes may have cached paths that use this link, too. If nodes operate in promiscuous

mode (i.e. listen to messages not addressed to themselves) all nodes that overhear the

transmission of the RERR message also remove routes that contain the failed link from

their caches.

The proposed distributed cache updating algorithm enhances the route error spread-

ing to reach all nodes that have a route in their cache which uses the broken link. The

node that finds the link break informs all its neighbors that use this link which in turn

inform all their neighbors that use this link and so on. While this sounds like a flood-

ing of the network, it is indeed different from that. Instead, a so-called cache table is

introduced, which holds the information needed to identify neighbors which cached the

broken link as part of a route.

The cache table contains two different types of information. The first part informs

about the caching. If it has been used only in upstream nodes, in both upstream and

downstream nodes or not at all. The second information is the identity of each neighbor

that has learned links through route replies. The data contained in the cache table can

be collected without additional cost, as it can be deduced from the route replies and

data messages a node forwards. They contain the source route.

The author claims that the distributed cache updating outperforms DSR by 19 %

in standard mode and by 7 % in promiscuous mode. However, gratuitous route error

messages were not used in the standard mode of DSR during the evaluation, which
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would have increased its performance. Also, the size of the cache table was simulated

as infinitely large, which would not be possible on real hardware. Then, a replacement

strategy would have to be found, as the cache table would be constantly full in networks

with a high load. This would in turn lead to nodes not being notified of updates and a

decrease of performance for the distributed cache updating protocol.

3.2.11 A DSR Extension for Connection Stability Assessment in Mo-

bile Ad-Hoc Networks

The protocol presented in [54] is a quality of service extension that has been implemented

for dynamic source routing (see section 3.2.9). The author presents a mechanism to

assess connection stability, where a connection can be comprised of multiple different

routes that are used consecutively. This represents the view of the application, which

does not care about how stable a single link or even a whole path is. Rather, it is

concerned whether the packets arrive at all, or within certain time boundaries.

ni+1

ni

Li

Li+1

ni+1

ni
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(a) nb bridging node for link

(ni, ni+1)

ni+1

ni
Li

Li+1

ni+1
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nb

(b) nb bridges interrupted link

Figure 3.14: Bridging of broken links (taken from [54])

The stability is quantified by using what the author calls Bridging Node Density

(BND). It can be intuitively visualized for a single link as the number of common

65



CHAPTER 3. MAC AND ROUTING PROTOCOLS FOR WIRELESS NETWORKS

neighbors of the two nodes that are connected by that link. In figure 3.14 the BND

for the link between node ni and ni+1 has a value of 3, as there are three other nodes

within the intersection of the transmission ranges of both nodes.

This value is summed up for each link on a path and divided by the number of hops

to form the value for a path p. To take into account the fact that longer routes tend to

break more often, and the observation made that this probability seems to grow linearly,

the BND is weighted with the reciprocal of the path length:

wBND =
1

(p− 1)2

p−1∑
i=1

Bi,i+1

A higher value of wBND means that the end-to-end connection ought to be more

stable than one with a low value. The absolute value of the BND heuristic is, however,

not used to predict the lifetime of a connection as some other heuristics are. Rather, it is

only used to compare connections, when different communication partners are available

for the same service. Then, the one with the higher value, i.e. probably the highest

lifespan, is chosen.

3.2.12 LBSR: Routing Protocol for MANETs with Unidirectional Links

The Loop Based Source Routing protocol (LBSR) [3] is based on DSR [28] and de-

signed to use unidirectional links in the routing process. DSR is able to route using

unidirectional links, too, but the method is not very efficient as the destination floods

an enlarged route request. This represents much overhead as the packet flooded by

the destination does not only pick up the identities of the intermediate nodes but also

contains the route from the source to the destination (see 3.2.9).

LBSR eliminates the need to flood the network from a message’s destination. Instead

of building a route from the source S to the destination D and back, routing loops are

created. A so-called Lreq message is flooded into the network by S. Every node that

receives this Lreq for the first time rebroadcasts it after attaching its Identity (ID). If

an Lreq is received by node S, a loop has been found. S now knows a route to each

node whose ID is enclosed in the Lreq. Now it transmits (unicast) a packet along that

route which enables all nodes along this route to send packets to each other and to

S by following the enclosed route. If a node that is already part of a loop receives a

message from a node that is not its predecessor in the loop, it adds its ID to the Lreq

and forwards it along its loop.
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The evaluation of LBSR focuses on the number of floodings and messages transmit-

ted. The number of floodings is naturally only half as large, but the total number of

sent messages is higher. The fact that a loop has to be passed by two messages costs

time, energy and bandwidth. The broadcast character of wireless networks, i.e. that

unicast messages are received by all nodes within range, even those not addressed by

the message, has been ignored completely.

The main advantage pointed out by the authors is that the number of entries in the

route cache is many times as large as in DSR. If that is an advantage remains debatable,

though. The protocol creates as many loops as are possible. The increased number of

cache entries means that there are more invalid cache lines if a node moves or a timeout

occurs. Also, the cache size needed is much bigger. Finally, the protocol uses a source

routing approach, which means that the packets used to create longer loops can become

arbitrarily large. If the loop encompasses the whole network, its headers must hold the

identities of all nodes in the network. This enormous overhead definitely disqualifies a

use of this protocol in wireless sensor networks.

3.2.13 Directed Diffusion for Wireless Sensor Networking

Directed Diffusion [26, 27] uses a data-centric approach. There are four types of elements

in Directed Diffusion: interests, data messages, gradients and reinforcements. Requests

from users are transformed into so-called interests. Nodes that fulfill certain criteria

included in the interest messages activate their sensors and transmit their results back

along the reverse path the interests have taken. This path reversal of course once again

means that bidirectional links are needed. Nodes that forward multiple results may

aggregate them, e.g. to pinpoint the location of an event more accurately. Directed

Diffusion uses named data packets to describe tasks. These are usually attribute-value

pairs. When a node receives an interest, it searches its cache for a corresponding entry.

If no entry exists, a new one is created. This entry includes the information contained

in the interest, i.e. the desired data rate, time stamp and duration. A gradient is also

created, which refers to the node the interest was received from. To realize this, locally

unique node identifiers are needed.

If an entry already exists but no gradient to this neighbor can be found, the gradient

with its corresponding time stamp and duration is added. If a gradient already exists,

only the time stamp and duration are updated. There can be any number of gradients

associated with one interest. A node X that finished processing an interest rebroadcasts

it. All neighbors that receive the interest create a gradient referring to X. Note that

all gradients work only locally, i.e. only the next hop is stored. Intermediate nodes
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have no knowledge of the originator of the interest. After a certain time, every node

has a gradient to each of its neighbors, when the interest has been flooded through the

network.

Nodes that have received interests and fulfill the criteria therein unicast data mes-

sages to all neighbors from which an interest was received. These can be identified

through the gradients that are stored in the interest cache. Nodes that receive a data

message check if they have a corresponding interest in their cache. If they do not, the

message is discarded. Otherwise the data cache is checked, and if this results in a match,

the message is discarded (loop prevention). If there is no match in the data cache, an

entry is created and the message is forwarded along the gradients in the interest cache.

At first, the network is flooded by interests as well as by data messages, because

every node sends all messages to all of its neighbors (figure 3.15). Eventually, as many

copies of the data message as it has neighbors would reach the sink. This is of course

not what is wanted. Therefore, Directed Diffusion allows the sending of reinforcements.

These reinforcements are transmitted along a preferred route. A sink that receives the

first data message may choose to reinforce the path through the node that forwarded

this message, because it is seemingly the fastest path. Other criteria like e.g. the

highest data rate can also be applied. An important fact is that all decisions about

reinforcement are made locally. No extra communication between nodes is necessary,

and no node knows more than its local neighbors. Nodes do not even need to know the

identities of source and destination.

Source

Event

Interests

(a)

Source

Event

Gradients

(b)

Source

Event

(c)

Figure 3.15: Setup of Gradients (taken from [27])

Intermediate nodes may also start reinforcements, to enable local repair. When a

node on a previously reinforced path realizes that it does not receive data messages at

the necessary rate any more, it uses reinforcement rules to find another empirically good

path.
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It is possible, that local rules result in multiple paths between source(s) and sink(s).

Therefore, a way to truncate unwanted paths is also needed. An easy way to do this is

to associate a timer with every gradient. If no reinforcement is received for a certain

time, the gradient will simply fade. Another way is the usage of so-called negative

reinforcements. If the sink has two incoming gradients, it sends a negative reinforcement

to one of the corresponding neighbors, e.g. the one whose messages constantly arrive

after the ones from the other. When a node receives a negative reinforcement, it degrades

the corresponding gradient. If there are no other gradients left, it transmits a negative

reinforcement to the node from which it received its data messages.

This protocol is one of the most cited protocols for wireless sensor networks. The

fact that it is data-centric and does not require globally unique identities makes it very

popular. There are, however, a few problems. Locally unique identities are still needed.

This means that within two hops of a node X, no other node may use the same identifier

as X. In wireless sensor networks, where neighborhoods are determined by radio range

and radio range changes every so often, realizing an identity finding protocol that fulfills

the necessary criteria only with local communication is hard. More problematic is the

fact, that identities have to stay locally unique, even if the nodes are mobile. In most

cases, this can only be guaranteed if identities are globally unique, too.

The example application sketch uses geographic information to specify the nodes of

interest. If geographic information and locally unique identities are available, it is fairly

simple to turn these two into globally unique identifiers that are based on the region

and refined with the local identity.

The diffusion approach has a very simple way of dealing with unidirectional links:

They are ignored. If an interest is propagated over a unidirectional link from node X

to Y, then Y can never send back a data message along this link. X does not receive a

message from Y and does not reinforce the gradient of Y. In fact, it does not even know

that Y had a gradient that pointed at X. As no reinforcements arrive, the gradient will

be removed after a certain timeout or any other aging mechanism.

This removal of unidirectional links is once again the major drawback of the algo-

rithm. Directed Diffusion does not guarantee optimal paths, and indeed there may be

better ones using unidirectional links.
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3.2.14 Scatterweb - Low power Sensor Nodes and Energy Aware Rout-

ing

Schiller et al. describe the design of the ScatterWeb ESB nodes and the ScatterFlasher

as well as an energy aware routing scheme they denote as Solar Aware Routing [67].

The routing protocol is an extension of directed diffusion (see section 3.2.13), and is

used to differentiate between two kinds of nodes in a heterogeneous network: Energy-

scavenging nodes and purely battery powered nodes.

The basic assumption behind Solar Aware Routing is that nodes which have means

to generate their own power (e.g. from solar cells, vibration or temperature differences)

should be preferred when routing decisions are made, in order to conserve the batteries

of all other nodes, thus enhancing overall network lifetime.

The authors specify (among some other minor changes) two new fields for the interest

and data messages called Bcount and Scount. When a node forwards a message, it

increases one of these counters; B(attery)count for battery operated sensor nodes and

S(cavenging)count for nodes that use environmental energy.

When a sink decides to reinforce a path, a new weight function has become avail-

able. While directed diffusion normally uses shortest path or highest link quality weight

functions, now the path with less battery operated nodes can be chosen. If ties occur,

an additional weight function, e.g. the shortest path among those tied, is applied.

As Solar Aware Routing is built upon directed diffusion, the propagation of interests

and reinforcements also relies on bidirectional links.

3.2.15 Matching Data Dissemination Algorithms to Application Re-

quirements

The main problem addressed in [24] is the choice of routing protocol in data centric

networks. As the authors show, the wrong choice of dissemination protocol and its

interaction with the application can introduce up to 60% overhead. But typical ap-

plication developers are not system experts, and need guidance in choosing the right

protocol.

The second contribution made in the paper is an introduction of two new diffusion

algorithms: Push and one-phase pull diffusion. The original version of directed diffusion

is labeled as two-phase pull in this paper, because it involves two floodings of the

network; Flooding of interest messages to find sources and flooding of exploratory data

messages to reinforce gradients.
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Two-phase pull works well in scenarios where only a few sinks are present, in many

applications there is just one gateway node. But for a different scenario, where com-

munication between sensor nodes is necessary (e.g. activation messages), the number

of gradients and flooded messages increases drastically. Push diffusion was designed

with such a scenario in mind, where many sources and many sinks exist, but data is

generated only seldom. In Push diffusion, sinks do not flood interest messages. Instead,

communication is started by the sources, by flooding exploratory data messages, thus

removing one of the floodings from two-phase pull.

One-phase pull works in the exact opposite way. Sinks flood their interest messages

into the network (pull). Here, the second part of two-phase pull, where the sources flood

exploratory data, is removed. Instead, the data is sent along one gradient directly, by

answering the first message that arrived and ignoring all others. This choice is based

on the fact that the message that arrives first must haven taken the fastest path, and

the assumption that the other direction will be equally fast.

This assumption is made in many other protocols, and leads to the same problems

for one-phase push. The authors also state that the problem of asymmetry is known,

but they expect the medium access layer to identify asymmetric links.

Even though asymmetric links are mentioned, unidirectional links, as a special case

of asymmetric ones, and their implication on the proposed protocols are not discussed

in the paper. However, it can be deduced from the description of the protocols and

their relation with directed diffusion (two-phase pull) that unidirectional links would

reduce the performance drastically. While two-phase pull can ignore the implications of

unidirectional links, messages sent using one of the two new diffusion protocols would

not reach either the sink or the source respectively, if there was a unidirectional link on

the path the fastest interest/exploratory data message uses.

3.2.16 Rumor Routing Algorithm for Sensor Networks

Rumor Routing [7] is another data-centric routing algorithm. When an event occurs,

nodes that detect the phenomenon generate an agent with a certain probability. An

agent is a long lived packet which travels through the network in a random way. It

builds a path to the event, and may pick up paths to more events as it travels. Figure

3.16 shows an example of this.

The black and grey clouds represent events 1 and 2 respectively. An agent has been

sent by a node which detected event 1 (not shown) and has passed all black nodes, which

now know a route to the event. A second agent has been generated by a node which

detected event 2. The beginning of its path is shown as the grey nodes. Once the agent
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Figure 3.16: Agent propagation in rumor routing (taken from [7])

arrives at a node which has knowledge of the route to event 1, it starts propagating

routes to both events. Nodes that know both routes are shown half black half grey.

As it is expected that more than one node detects an event, a probabilistic approach

is used to determine whether an agent should be created or not. If more than one agent

is created, their paths may overlap or collide. This is used to reduce the length of a

path when an agent that knows a shorter path arrives at a node. Figure 3.17 shows a

case in which a second agent reduces the path length drastically.

When an agent reaches a node that is interested in the event, that node sends an

interest back along the path the agent has taken. This usage of the reversed path makes

Rumor Routing unusable in the presence of unidirectional links.

3.2.17 Analysis of Link Reversal Routing Algorithms for Mobile Ad

Hoc Networks

Busch et al. analyze the performance of the full and the partial reversal algorithm [8].

These algorithms build a directed acyclic graph (DAG) that leads from any node to

a fixed destination. If there are multiple destinations, one graph has to be built for

each of them. When a node has to transmit a message, it simply sends it on any of its

outgoing links for that destination. This way, the used route is not always the shortest,

but the message will reach the destination eventually. When links break, nodes that
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Figure 3.17: Path length reduction in rumor routing (taken from [7])

have no more outgoing links reverse all of their incoming ones (full reversal) or only a

certain subset of them (partial reversal). This may cause further reversals in neighboring

nodes. The results of the analysis show that the full reversal algorithm is asymptotically

optimal, while the partial one is not.

While link reversal routing may be efficient for n-to-1 communication, the fact that

a separate DAG is needed for each destination means that link reversal will not be used

in this thesis. Realizing any-to-any routing with link reversal algorithms would result

in as many DAGs in each node as there are nodes in the network. This represents

too much memory consumption, computational overhead and communication cost for

both wireless sensor networks and Mobile Ad-Hoc Networks. Moreover, the route rever-

sals require all links to be physically bidirectional, even though they are used logically

unidirectional.
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3.2.18 Temporally-Ordered Routing Algorithm

Even though the Temporally Ordered Routing Algorithm (TORA) [53] uses a directed

acyclic graph (DAG) to describe routes in the network, it still relies on bidirectional

links. These are needed because TORA is based on the link reversal principle.

The focus of TORA is the reduction of the impact of link failure (e.g. due to node

mobility) on routing performance. The authors state that TORA will not find the

shortest path to a destination in most cases, but it will find one and find it fast, if one

exists. They also state that shortest path routing protocols produce a high overhead

when a link failure has to be handled, because failure notifications sometimes need to

be propagated through the whole network.

To prevent this overhead, no routes through the network are stored. Instead, a node

only has a certain number of incoming and outgoing links, with respect to a sink. This

means that a node has multiple different routes to choose from at any given time. If an

outgoing link breaks, no action has to be taken as long as there is still a route to the

destination (the detection of link breakage is not part of TORA, it is left to the link

layer).

When the last outgoing link breaks, the node becomes a global maximum (in terms of

distance to the destination). It then has to propagate its new height level to its neighbors

(not described in TORA) and reverses its known links. This reversal may cause one or

more of its neighbors to loose their last outgoing link and so on. The height levels are

propagated through the network, and used to detect network partitions.

Figure 3.18 shows how the failure of the last outgoing or downstream link on a Node i

is handled by TORA. When a link failure occurred, the node simply needs to propagate

a new reference level. Otherwise, if its neighbors have different reference levels, it takes

the highest reference level found among its neighbors and propagates that. If all of

the node’s neighbors do have the same level, the reflection bit comes into play. This

bit is used to show that the current level of a node has not been set by itself, but

adapted from another node (”reflected”). This is necessary to prevent false positives

in the partition detection algorithm. Otherwise, two nodes that have chosen the same

level independently would assume a partition and start erasing routes. This reflection is

used to represent a so-called sub-level. If the bit is set, the node checks whether it has

been the one to define that level. If it has been, it starts the erasure process, otherwise

a new reference level is generated.

There are two problems with TORA. First, it can only use bidirectional links as do all

link reversal algorithms. Second, it needs to define a separate DAG for each destination

in the network. This would qualify it for a scenario where all messages are transmitted
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Case 2 (Propagate): Node i has no downstream links (due
to a link reversal following reception of an UPD packet)
and the ordered sets (!j, oidj, rj) are not equal for all j "
Ni.
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In essence, node i propagates the reference level of its
highest neighbor and selects a height which is lower than
all neighbors with that reference level.

Case 3 (Reflect): Node i has no downstream links (due to
a link reversal following reception of an UPD packet) and
the ordered sets (!j, oidj, rj) are equal with rj = 0 for all j "
Ni.

! !i i i j joid r oid, , , ,( ) = ( )1
# i i i, ,( ) = ( )0

In essence, the same level (which has not been “reflected”)
has propagated to node i from all of its neighbors. Node i
“reflects” back a higher sub-level by setting the bit r.

Case 4 (Detect): Node i has no downstream links (due to a
link reversal following reception of an UPD packet), the
ordered sets (!j, oidj, rj) are equal with rj = 1 for all j " Ni,
and oidj = i (i.e. node i defined the level).

! i i ioid r, , , ,( ) = + + +( )
# i i i, ,( ) = +( )

In essence, the last reference level defined by node i has
been reflected and propagated back as a higher sub-level
from all of its neighbors. This corresponds to detection of
a partition. Node i must initiate the process of erasing
invalid routes as discussed in the next section.

Case 5 (Generate): Node i has no downstream links (due to
a link reversal following reception of an UPD packet), the
ordered sets (!j, oidj, rj) are equal with rj = 1 for all j " Ni,
and oidj 2 i (i.e. node i did not define the level).

! i i ioid r t i, , , ,( ) = ( )0 , where t is the time of the failure

# i i i, ,( ) = ( )0

In essence, node i experienced a link failure (which did not
require reaction) between the time it propagated a reference
level and the reflected higher sub-level returned from all
neighbors. This is not necessarily an indication of a
partition. Node i defines a new reference level.

Following determination of its new height in cases 1,
2, 3, and 5, node i updates all the entries in its link-state
array LS; and broadcasts an UPD packet to all neighbors j
" Ni. The UPD packet consists of a did, and the new
height of the node i which is broadcasting the packet, Hi.
When a node i receives an UPD packet from a neighbor j

" Ni, node i updates the entries HNi, j and LSi, j in its
height and link-state arrays. If the update causes a link
reversal which results in node i losing its last downstream
link, then it modifies its height as outlined in the cases
above. Fig. 2 summarizes these five cases in the form of a
decision tree, starting from the time a node loses its last
downstream link. In the event node i loses a link (i, j) "
L which is not its last downstream link, node i simply
removes the entries HNi, j and LSi, j in its height and link-
state ars.

The following examples illustrate how the algorithm
works. Fig. 3 provides an example where no reaction is
required. The network is first depicted as at the end of Fig.
1, with the addition that link (B, E) is marked as failing.
Since all nodes still have downstream links following the
failure, no transmissions are required. The significance of
this is greater for networks which are highly connected. If
a given node in the network on average has degree k (i.e. k
adjacent links), then one could estimate the average
number of downstream links for a given node to be (k/2).
This implies that a node could tolerate (k/2)-1 downstream
link failures without requiring any reaction. Fig. 4
provides an example where a reaction is required. The
network is first depicted as at the end of Fig. 3, with the
addition that link (D, H) is marked as failing.

2 . 4 . 3 Erasing Routes.  Following detection of a
partition (case 4), node i sets its height and the height
entry for each neighbor j " Ni to NULL (unless the
destination is a neighbor, in which case the corresponding
height entry is set to ZERO), updates all the entries in its
link-state array LS, and broadcast a CLR packet. The CLR
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Fig. 2 Maintaining routes decision tree

DEST

(0,0,0,3,A) (0,0,0,2,B)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,D)

(0,0,0,1,E)

(0,0,0,0,F)

(a) Link (B,E) fails

DEST

(0,0,0,3,A) (0,0,0,2,B)

(0,0,0,3,C)

(0,0,0,2,G) (0,0,0,1,H)

(0,0,0,2,D)

(0,0,0,1,E)

(0,0,0,0,F)

(b) No reaction necessary, all nodes 

still have downstream links

Fig. 3 Link failure with no
reaction
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Figure 3.18: The Decision Tree for Route Maintenance used in TORA (taken from [53])

in a N-to-1 pattern, e.g. a sense-and-send application in a sensor network. But for an

any-to-any communication pattern, the overhead in terms of memory consumption and

protocol messages is much too high as each node would need to store as many DAGs as

there are nodes in the network. Also, the logical reversal of links requires all links to be

(physically) bidirectional.

3.2.19 GeoTORA

GeoTORA [32] is an extension of TORA (see section 3.2.18) that uses geographical

information. More specifically, GeoTORA does not route messages to a single node,

but to all nodes within a certain region (geographic multicast, also-called geocast).

The directed acyclic graph (DAG) used in TORA as routing structure for a single

sink is shown in figure 3.19. It shows how a link break between nodes D and F occurs

(a), and the incoming links of node D are reversed as a reaction to this breakage of the

last outgoing link by D (b). As a result of this reversal, node C has no more outgoing

links and reverses its incoming link from node B (c) which in turn switches its link from

node A (d). Now a fully functional route exists once more.
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Figure 3.19: Route Maintenance by Link Reversal used in TORA, as depicted in

GeoTORA [32]

GeoTORA modifies the single destination approach of TORA to enable anycast. In

anycast, the destination of a message is not a single node, but any one member within a

certain group of nodes. To enable this anycast, the sink concept of TORA is enlarged.

Where only the single destination of a message had no outgoing links in TORA, all

members of an anycast group follow this scheme in GeoTORA. Moreover, there are

direction-less (logically as well as physically bidirectional) links between sinks of the

same anycast group.

Figure 3.20 shows an example, where nodes A, B, C and D are in the same anycast

group (a). Even though the shown links are logically unidirectional, the physical links

are assumed to be bidirectional. All nodes that are not members of the group use a

DAG from TORA to reach any of the members. If one of the directed links break,

e.g. the link between nodes G and A (b), links outside the anycast group are reversed

following TORAs methodology until the DAG is repaired (c).

GeoTORA is not an anycast protocol, as its proposed enhancements only define the

first step towards anycast. Messages are assumed to be directed at a certain area for

which the anycast group has been defined. Therefore, a node that is within the group

floods messages in the geographic area upon reception. All non-members that receive

such a flooded message discard it, all members rebroadcast it. Sequence numbers are

used to implement duplicate suppression.
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Figure 3.20: Local Repair of the DAG in GeoTORA (taken from [32])
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Figure 3.21: Membership Changes in a Geocast Group (taken from [32])

Figure 3.21 shows the impact of node mobility on GeoTORA. At first, nodes A, B,

C and D are members of the group because they are within the geocast region. Now,

node C leaves the specified area while node K enters. As node C is no longer a member

of the group, it needs the DAG to forward messages, while node K is now connected to

all members via bidirectional links.

GeoTORA removes the need to have a separate DAG for each possible destination,

i.e. each node, from TORA as nodes are grouped in geocast regions. Also, it enables

the usage of an area as destination rather than individual nodes. Still, even though the

number of DAGs is reduced, GeoTORA is not usable for any-to-any routing and cannot

operate on unidirectional links.
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3.2.20 Greedy Perimeter Stateless Routing

Being a geographical routing protocol, Greedy Perimeter Stateless Routing (GPSR) [31]

requires that each node knows its own position and, if it is the originator of a message,

the position of the destination in order to make forwarding decisions. Also, each node

needs to know the positions of all of its neighbors, which are transmitted as beacons at

regular intervals.

y

x

Figure 3.22: Greedy Forwarding in GPSR (taken from [31])

The basic principle of GPSR is greedy forwarding, as shown in figure 3.22. When a

node X wants to transmit a message, it checks its neighbor table to find all neighboring

nodes that are (geographically) closer to the destination than itself. From this set of

nodes, the neighbor with the shortest distance to the destination (node Y on figure 3.22)

is chosen and the message is forwarded to this node. This process is repeated by each

node upon reception of the message until the message reaches the destination.

Greedy techniques suffer from one problem, though. It is possible that the message

is received by a node that has no neighbors that are closer to the destination than itself

for various reasons (e.g. a communication obstacle). GPSR solves this problem by using

perimeter forwarding, a forwarding principle based on the right-hand rule for graph

traversal. The message is routed along the perimeter of what the authors call the void.

This method is only feasible for planar graphs, and suffers from crossing edges in the

communication graph.
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D

v z

w y

xx

void

Figure 3.23: Perimeter Forwarding in GPSR (taken from [31])

Figure 3.23 shows the void of node X with respect to destination D. It consists of the

intersection between two circles. The transmission range of X and the distance between

X and D around D. There can be no nodes in this area, otherwise node X would have

used them as forwarding node in the greedy fashion.

GPSR has a high delivery ratio if the number of obstacles is small. If it is high,

the perimeter forwarding is needed more often, which degrades performance. GPSR’s

memory consumption is also low, as nodes only need to remember their direct neighbors

instead of whole tables of destinations and the routes to them.

One of its drawbacks with respect to this thesis is that it can only use bidirectional

links, as a node has no knowledge of neighbors it can reach through unidirectional

links. Worse still, it will even know the position of a node that has a unidirectional link

pointing to it, and try to forward messages to this neighbor which are never received.
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3.2.21 Geographical and Energy Aware Routing

Geographical and Energy Aware Routing (GEAR) [84] is a data centric, location based

routing protocol that was developed especially for wireless sensor networks. Its basic

principle is similar to that of GPSR (see section 3.2.20), as it uses a greedy forwarding

mechanism. The difference is that GEAR does not use the distance between a node and

the destination alone as weight function, but rather also includes the energy consumption

of candidate nodes to decide which one should forward a message. This is realized using

the so-called learned cost of a neighbor. It is defined as a weighted sum of the distance

and the energy consumption:

α ∗ distance+ (1− α) ∗ energy consumption

The choice of α has a strong influence on the chosen routes. If it is set to 1 or all

neighbors have the same energy value, only the distance is evaluated, resulting in a

purely greedy forwarding. If it is set to 0 or all neighbors are equidistant, the decision

degenerates to a load splitting algorithm.

Another difference between GPSR and GEAR is the handling of voids or holes as

they are called in GEAR. When a node realizes that none of its neighbors is closer to the

destination, it forwards the message to one of its neighbors but also increases its own

cost for the destination. As these values are propagated (infrequently), its neighbors

come to know of the higher cost eventually and may select a different route.

The third difference has its origin in the data centric property of GEAR. While GPSR

addresses nodes by their exact location, GEAR assumes that messages are destined for

a certain region, i.e. a square area. It forwards the messages to the centroid of that

square, which means that there must not be a node at that exact location. Rather,

mechanisms are needed and provided to stop a message from traveling around this area

”forever” (i.e. until its time to live expires).

As the learned costs of routes is propagated using local broadcast, nodes with in-

coming unidirectional links may calculate wrong forwarding information, depending on

the used weight function. The probability of a wrong forwarding decision rises with the

percentage of unidirectional links and the frequency of link changes/breaks.
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3.2.22 SPEED

SPEED [20] is a geographical routing protocol for real-time applications. It offers three

different kinds of delivery service: Regular unicast, area-multicast and area-anycast. It

has been designed with wireless sensor networks in mind and provides a per-hop delay

guarantee to meet the real-time requirements of an application.

SD

NS

K

F

FS

L Next

L

Figure 3.24: Selection of Forwarding Node in Speed (taken from [20])

Figure 3.24 shows the forwarding principle used in SPEED. Node S wants to transmit

a message to node D. The white circle around S represents a geographical distance of K

units. All neighbors within this area are ignored as they would not bring the message

much further to the destination. K is a parameter of SPEED and set before deployment.

The larger circle around S represents its communication range, every node that is within

this circle but not within K distance of node S is a member of the Neighbor Set (NS) of

node S.

L is the distance between nodes S and D. All nodes in the NS of node S that are

further away than L from node D are ignored. As the message should be at least a

distance of K closer to the destination after the next hop, all nodes whose distance is

higher than L-k are also removed from the candidate set. The resulting set of nodes is
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called the Forwarding Candidate Set (FS). The distance between one of those candidate

nodes and the destination is shown as L_next in the figure.

The real-time characteristics of SPEED are realized in the next step. Nodes in the

FS are divided according to the delay they induce on the communication. The absolute

distance gained by one hop (L - L_next) is divided by this delay (SendToDelay). Nodes

that achieve a higher score in this ranking have a higher probability of getting chosen

as next hop. As each hop shortens the distance of the message to the destination by at

least K, the maximum number of hops needed is L/K plus one for the starter node. In

combination with the single-hop delay guarantee, this property is meant to provide an

upper boundary for message delivery time.

One of the major drawbacks of SPEED is that is does not provide any mechanism for

routing around a communication obstacle (hole or void). Instead, the authors argue

that a formula can be found that defines the necessary network density to guarantee

a void free network. Also, if the deadline for single hop delivery cannot be met, the

message is dropped. This might be a mistake, if one of the later hops could have

compensated the delay.

SPEED relies on a so-called Neighbor Beacon Exchange to compute the per hop

delays. Every node broadcasts its ID, position and receive delay periodically. Nodes

that receive such a beacon message store the data in their neighbor table and use it

in their forwarding decisions. As neighbor beacons are only transmitted using local

broadcast, unidirectional links lead to wrong information in the neighbor table and

thus wrong forwarding decisions.
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Chapter 4

New Routing Protocols

As chapter 3 has shown, existing protocols for wireless sensor networks or Mobile Ad-Hoc

Networks still lack the ability to handle unidirectional links in an efficient manner. Many

of those protocols deal with unidirectional links by removing their negative impact on

the routing tables, while some of them use unidirectional links explicitly. Making these

unidirectional links usable introduces overhead, which has to be weighted against the

gain. The authors of [45] have evaluated some of the existing protocols and concluded

that the gain is not worth the cost. While this might have been true for their scenario and

the protocols they evaluated, it is possible to have scenarios where network separation

occurs when unidirectional links are eliminated. It is also possible to have protocols

that induce far less overhead than the ones they considered.

The authors of [48] are primarily concerned with energy consumption in wireless

networks. Even though energy consumption is not explicitly addressed in this thesis,

there is one fact from the paper that should be mentioned here: Multihop communica-

tion does not save energy. One basic assumption made in some protocols is that it is

cheaper to have a message travel two hops to a destination instead of one because the

transmission power needed for a certain distance d scales with dn where n is at least 2.

Thus, the energy consumed by two hops of 1/2 d would be much smaller. While this

is true when only the energy needed to bridge the distance is measured, real hardware

has a high power consumption that is induced by the transmitter and receiver electron-

ics (α) which is independent of the transmission power. As shown in the paper, the

consumption is rather α+ βdn, with α as the dominating part. Therefore, introducing

an additional hop does not conserve energy, quite on the contrary. For this reason, all

nodes are assumed to always transmit on the highest power level, and shorter paths are

preferred in the context of this thesis.
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Table 4.1: The five protocols developed in this work

Name Type diameter density optimization requirement

Buckshot SR small medium code size none

BuckshotDV DV any medium packet size none

OSBRDV DV any medium - high #packets none

ULTR DV medium - high medium - high cross-layer neighbor info

ULC DV medium - high medium - high info gain neighbor info

To solve the problems described in chapter 2 without introducing too much overhead,

new routing protocols are needed. Because of the different application scenarios, there

are a lot of variations in the requirements for the routing layer. Designing a routing

protocol that delivers the best results under all of these circumstances is simply im-

possible. Therefore, five new routing protocols are presented in this chapter. All of

these protocols use flooding at least for route discovery, making a duplicate detection

mechanism necessary. The suggested method is to use the identity of the source of a

message and a growing sequence number as used e.g. in AODV (see section 3.2.2).

A very brief overview of the protocols is given in table 4.1: It shows the name of

the protocols, their type (Source Routing or Distance Vector), the intended network

diameter and node density as well as the optimizations that distinguish them from

one another. Please note that all of these protocols have of course been designed to

make use of unidirectional links, and the corresponding column has been removed as all

entries would have been the same. However, two of the designed protocols, ULC and

ULTR, require neighborhood information that can be supplied either by a neighborhood

discovery protocol or by a MAC layer (see below).

Four of the described protocols assume a minimum hop routing character, mean-

ing that for each hop taken a counter is incremented by one. While some argue that

minimum-hop routing protocols are likely to have lots of packet losses and therefore less

throughput (e.g. [12]), the proposed protocols have been designed to be resolute against

such losses. Furthermore, the weight function can easily be replaced by a different one

without changing the routing protocol. Examples for different weight functions include

delay, residual energy or load balancing mechanisms. All of these can be integrated by

replacing the described increments with different values. For the routing protocols, the

meaning of these values is irrelevant, only the difference is used to find the shortest (or

cheapest) path.
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Buckshot Routing (section 4.1) has deliberately been kept simple, yet still achieves

a good delivery ratio. It has been designed to require the least amount of memory on

the used sensor nodes.

BuckshotDV (section 4.2) is a distance vector version of Buckshot Routing. It has

been designed for networks with a large diameter, in which the messages of Buckshot

Routing would get too large because of its source routing character.

OSBRDV (section 4.3) was designed to reduce the number of packets that are trans-

mitted, making it usable in low-bandwidth scenarios.

ULTR (section 4.4) has been designed to use cross-layer information provided by a

TDMA MAC protocol, namely the information about the two-hop neighborhood of a

node.

The fifth protocol, ULC, enables the usage of specialized weight functions by collect-

ing information about the links traversed by a route request message. The information

about the links’ status is then provided to the destination node, which can make different

decisions according to the chosen weight function. Also, the collected information can

be made available to the application, easing network monitoring and enabling adaptive

applications (see section 4.5).
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4.1 The Buckshot Routing Protocol

Buckshot Routing [58] is based on the source routing principle also used in e.g. DSR

[28]. When a node A wants to send a message to a node B it looks up the path in

its routing table. If there is an entry, the whole route is attached to the message and

the message is transmitted. If no entry is found, a route discovery is started. The big

difference to DSR lies in the way messages are forwarded.

A B C D E F G H

1

2

3

4

5

Figure 4.1: A Communication Graph containing Unidirectional Links

Figure 4.1 shows a possible communication graph with unidirectional links for a small

sensor network consisting of 40 nodes. Parts of this communication graph will be used

throughout this chapter to illustrate the workings of Buckshot Routing.

In Buckshot Routing, a node that wants to find a route to another node floods

a route request (RREQ) message into the network. Every node that receives such a

RREQ checks if it is the destination of this RREQ. If it is not, it appends its ID to the

route request before retransmission. Please note that the RREQ naturally also travels

over unidirectional links. Figure 4.2 shows an example from the communication graph

depicted above, where node A3 searches for a path to H3. The route most likely taken

by a flooded route request message includes a unidirectional link. Also, it only needs

seven hops which is the minimum number of hops required in this example network to

get from one side to the other. Consequently, RREQ messages arriving later at H3 that

have taken a path with the same or a higher length will be ignored.

When a RREQ message reaches its destination, the whole path that was taken by

the RREQ is enclosed and can be stored in the routing table in reverse order (table 4.2),

just like in DSR when bidirectional links are used. After storing the reversed route, the
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Figure 4.2: Path taken by the fastest RREQ Message

Table 4.2: Routing Table of Node H3

Destination Path

A3 {G3, F3, E3, D3, C3, B3, A3 }

destination transmits a route reply (RREP) message. Now, the neighborhood tables

get involved.

In Buckshot Routing all nodes also remember their neighboring nodes in a neigh-

borhood table. This table is maintained without additional communication overhead,

simply by listening to the medium and recording the last hop of all received messages.

When a node receives a message (RREP or data) that is not addressed to itself, it parses

the message header to identify the intended next but one hop. If that node can be found

in the current node’s neighborhood table, the message is forwarded.

Figure 4.3 shows all links used by RREP messages that reach their intended desti-

nation. The unidirectional link between nodes E3 and F3 that has been used by the

RREQ message can of course not be used in the reverse direction. But it is passed by

on two different sub-paths of length two: One containing the node with the incoming

unidirectional link and another which bypasses that node completely. Both sub-paths

are created by nodes that are not on the original path, but have the next-but-one hop

in their neighbor table. This is called pseudobidirectional links. Bidirectional links are

used as always, unidirectional ones are used in one direction and passed by on the way

back if there is a one-hop detour available.
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Figure 4.3: Multiple Paths taken by a RREP Message

Figure 4.4: Multiple Paths taken by a Data Message

Figure 4.4 shows the paths taken by the Data packet. As the forwarding mechanism

for data packets is the same as for RREP messages, the data packet is also forwarded

around obstacles. Please note that, as the data packet should take the same path

as the answered RREQ message, it could theoretically be forwarded directly, without

using the obstacle evading mechanism. However, this would only work if the logical

topology of the network was stable, with no link changes. As the experiments described

in chapter 2 have shown, this is often not the case. Therefore, the obstacle evasion is

also used for data packets, even though it increases the network load. What is more,

the mechanism increases the robustness not only against unidirectional links, but for

all cases of packet loss. The presented mechanism also enables Buckshot Routing to

operate without retransmissions, which are typically used in other protocols.
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Figure 4.5: Message Handling in Buckshot Routing

The way Buckshot Routing reacts when a message is handed to it from the lower

(Message Received) or the upper layer (Message to send) is depicted in figure 4.5. When

a message needs to be delivered to another node, the algorithm checks for a route to

that node in its routing table. If one is found, a DATA message is sent. Otherwise, a

RREQ message is flooded.
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When a node receives a message, it updates its neighbor table by inserting the ID

of the last hop if that was not already contained. After that, duplicate detection takes

place. If the same message was already received from another neighbor (and thus

handled before), it is silently discarded. If it was no duplicate, the node checks whether

it is the destination of this packet. If it is, the message type is determined and the

message handled accordingly:

The reversed route from a Route Request is entered into the routing table as route

to the source of the RREQ, then a RREP message is sent along this reversed path. The

path taken from a RREP message is used to transmit a DATA packet along the newly

found route after it is inserted into the routing table. Data from a Data packet is simply

handed to the upper layer. If this node is not the destination, it checks if the message is

a RREQ. If it is, the node appends its own identity to the message before broadcasting

it again. If it is a RREP or DATA message, the path it should take has already been

determined previously. Therefore, the node checks if it has the next-but-one hop (the

one after the next) in its neighbor table. If it has, it retransmits the message after

increasing the pointer to the next hop by one.

4.1.1 Message Types

Buckshot Routing uses only the three types of messages described above: RREQ, RREP

and DATA. The message format of each is shown in the following.

Type = RREQ = 1

Source Seq.Num.

Destination

Source

First Hop

Intermediate node 1
...

Intermediate node n

Last Hop

Path takengrows

Figure 4.6: RREQ Packet Format in Buckshot Routing

Figure 4.6 shows the structure of a RREQ message. It contains the type information

and the identity of the destination which are necessary for the ongoing route discovery.

The source sequence number in combination with its identity are used for duplicate

suppression. These four entries are all set by the source of the RREQ when it starts the
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route discovery. They also define the initial size of the RREQ packet. Once it has been

transmitted to the neighbors of the source, it starts to grow. As each node that receives

the RREQ appends its own ID, the RREQ grows by the size of one ID per hop. When

the RREQ reaches the destination, its size equals n∗sizeof(ID)+sizeof(initialRREQ)

where n is the path length from source to destination.

Type = RREP = 2

Source (=Dest. of RREQ) Seq.Num.

Destination (=Source of RREQ)

Source (=Dest. of RREQ)

Pointer to current next-but-one hop

Last Hop of RREQ = Source

Intermediate node 1

Intermediate node 2

Intermediate node 3

Intermediate node 4
...

Intermediate node n

First Hop of RREQ

Destination

Path taken

Path yet to take

next-but-one Hop

Figure 4.7: RREP Packet Format in Buckshot Routing

The format of a RREP message in Buckshot Routing is shown in figure 4.7. It

consists of the type information, followed by the ID and sequence number of the node

that generated the RREP message, i.e. the destination of the corresponding RREQ.

This information is once again used for duplicate suppression. After this, the whole

path that has been taken by the RREQ is included, just as it is in the RREQ itself.

The only addition made is a pointer to the current next-but-one hop, which is needed

for the forwarding algorithm and which increases with each hop.

Figure 4.8 shows the format of a DATA packet as used in Buckshot Routing. It

contains the type of message followed by the sequence number and the identity of the

node that generated this message. Then, the necessary routing information is enclosed:

The identities of all nodes on the path from the source to the destination and, the

pointer to the next-but-one hop which is once again used in the forwarding mechanism.

The application data can be found at the end of the message for alignment reasons.
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Type = Data = 3

Source Seq. Num.

Destination

Source

Pointer to current next-but-one hop

Length of DATA

Source

Intermediate node 1
...

Intermediate node n

First Hop of RREQ

Destination

DATA

Path taken

Path yet to take

next-but-one Hop

Figure 4.8: DATA Packet Format in Buckshot Routing

4.1.2 Variations

There are three interesting possibilities of improvement to the operation of Buckshot

Routing. The first one is to use route shortening, the second one is header shrinking

and the third one are highly dynamic routes.

When a node receives a RREP or DATA message and it is not the intended des-

tination, it checks if it has the next-but-one hop in its neighbor table. If it has, it

retransmits the message. This mechanism could be easily changed to check not only

for the next-but-one hop, but rather for any other node that the packet should pass in

the future. This way, the message reaches the destination much faster. By removing

all hops in between from the packet header, it would even be possible to inform the

destination of the shortened route. This would reduce the network load produced by

future packets.

Another possible extension which is also used in some other source routing protocols

is based on the fact that DATA messages contain the path from source to destination,

but it is only used on the path. Once the destination is reached, the path is irrelevant.

This is already true for the path up to any intermediate node. Once it is reached, the

path taken to it is not used anymore. This leads to the conclusion that the packet
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Type = DATA = 3

Source Seq. Num.

Destination

Source

Length of DATA

Intermediate node 1 ID

Intermediate node 2 ID

Intermediate node 3 ID

Intermediate node 4 ID

Intermediate node 5 ID

Destination

DATA

Type = DATA = 3

Source Seq. Num.

Destination

Source

Length of DATA

Intermediate node 4

Intermediate node 5

Destination

DATA

after three hops

Figure 4.9: Hop-by-Hop Reduction of DATA Packet Size

header can be shortened with each hop the packet takes. As a result of that, there

is also no need for a pointer to the next hop anymore, because only nodes that have

not been passed already remain mentioned in the header. Figure 4.9 shows an example

where the initial path consists of six nodes. Every time the message passes a node, the

current hop information is removed, shrinking the message by the size of one identity.

A major drawback introduced by using this extension is that it disables passive learning

of routes and cache updates.

When following the basic principle of Buckshot Routing, the actual route that is

taken by the data packets differs, depending on the link status. The route description

enclosed in the messages (RREP, DATA) is always the one collected in the RREQ or

its reversed equivalent, though. This opens up the possibility to use highly dynamic

routes: Instead of always using the same path, nodes that forward a RREP or DATA

message may replace the ID of the next hop as shown in the message header by their

own before forwarding the message to the next-but-one hop. This way, messages always

contain the route that has actually been taken, and the destination can replace the path

previously in its routing table (if any) with the new one. In this way, routes are checked

and repaired each time a message is transmitted. This is especially useful for highly

dynamic networks (mobile nodes) or when the communication is assumed to involve a

lot of messages transmitted in both directions over a longer period of time.

One problem remains with these extensions, though: They cannot all be used at the

same time, as e.g. shortened routes would disable the highly dynamic ones.
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4.1.3 Advantages and Disadvantages

Buckshot Routing in its basic form was designed with simplicity in mind. Many other

protocols that enable the usage of unidirectional links are complicated and introduce

a large overhead. The computational overhead and memory consumption of Buckshot

Routing are small. It is expected to provide a good delivery ratio even with an increasing

number of unidirectional links (see chapter 5 for actual numbers), without having the

need to flood the whole network twice as e.g. DSR does. Moreover, Buckshot Routing is

able to deal with changes in the topology much better, because an exact route is never

needed. In many cases where other protocols need to repair routes and handle errors,

buckshot still works fine, because it is inherently fault tolerant [58].

As described in the variations, route shortening is also possible. On the downside,

the packet headers are large due to its source routing nature. This could somewhat be

diminished with header shortening, but is still a problem, which will be addressed in

the next section.

Buckshot Routing is similar to AODV-BR (see section 3.2.3) as both protocols use a

one-hop detour. But AODV-BR needs to detect message loss first, and inquire neighbor-

ing nodes for alternate routes afterward, while Buckshot Routing uses detours implicitly,

removing the communication overhead for a recovery. Also, the neighboring nodes are

inquired for a path to the destination in AODV-BR. In Buckshot Routing they only

need to know the next-but-one hop, due to its source routing character. AODV-BR is

based on distance vectors and does not have the information about the next-but-one

hop available in each node. Moreover, Buckshot Routing can circumvent dead nodes

as well as broken links, because the messages are not forwarded to the next hop, but

to the next-but-one hop. Finally, Buckshot Routing can already use this forwarding

mechanism for RREP messages, enabling the usage of unidirectional links on the path.
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4.2 Buckshot Routing with Distance Vectors

Buckshot Routing is expected to simplify the routing process and still have a good de-

livery ratio. One problem that remains is the network load, as Buckshot Routing is

based on a limited directional flooding, which means that more packets than absolutely

necessary are transmitted. As these transmissions are needed to provide the robustness

against unidirectional links, node failures and message losses, the protocol described in

this section will focus on reducing the packet size, thus reducing network load with-

out losing robustness. To realize this, the source routing based character of Buckshot

Routing will be replaced with a distance vector version.

Table 4.3: Routing Tables in BuckshotDV

Destination Next but one Hop Hop Count

D B 3

In traditional distance vector routing algorithms like DSDV (see section 3.2.1) or

AODV (see section 3.2.2), each node maintains a routing table, with entries consisting

at least of the ID of the destination, the distance, and the next hop. Using the same

entries in Buckshot Routing with Distance Vectors (BuckshotDV) is simply not possible.

As described in section 4.1, Buckshot Routing needs to know the next-but-one hop,

which means that this value has to be kept in the routing table, too. Table 4.3 shows

an example of a routing table for BuckshotDV. Instead of a whole path with many

node identities, it contains a single ID: The next but one hop. But, this has to be

determined somehow, requiring changes to the way route request (RREQ) messages are

built in distance vector protocols.

4.2.1 Message Types

In BuckshotDV a node enters its own ID along with the ID of the node from which it

received a RREQ message before retransmitting it, previous entries are overwritten. A

node that receives a RREQ message now knows its neighbor’s neighbor, and thus the

next-but-one hop on the reversed path, which it enters into its routing table in the form

(Source of RREQ, next-but-one hop, distance). This entry is based on the fact that in

Buckshot Routing the ”real” next hop is never important, only the next-but-one hop.

The only exception to this is the source/destination, which does not have a next-but-

one hop. To compensate this the source enters an illegal ID when creating a RREQ

message.
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The first value in the RREQ is the type of message, followed by the sequence number

of the originating node and its identity, which are used for duplicate suppression and

to build the reversed route. The destination ID is of course necessary to terminate the

route discovery once the destination has been reached. All of these values are fixed

throughout the lifetime of a RREQ message.

The first value being subject to change is the hop count which is incremented by

one on each hop. Please note that of course any other weight function like, e.g. energy,

would also be possible. The hop count is followed by the identities of the previous and

the current hop, which of course change with each hop the message takes.

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count = 0

Illegal Node ID

Source

Source

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count = 1

Source

A

A

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count = 2

A

B

B

+1 +1

Figure 4.10: Per Hop Changes in a Route Request Message in BuckshotDV

Figure 4.10 shows an example of a RREQ message that is transmitted from its

source to node A and then to node B. The changing values are initialized with 0 for the

hop count, an illegal value and the source’s ID before the source transmits it RREQ

message. Upon reception of this message, node A enters the source with a distance of

1 and next-but-one hop: the illegal value into its routing table. This is necessary to

prevent all other neighbors from rebroadcasting a message from A to the destination

over and over again. After creating the routing table entry, node A increments the hop

count of the RREQ message and enters the last hop (the source) and its own ID before

retransmission. On node B the procedure is the same. If some node C received the

message from B it would create a routing entry consisting of the source, a distance of 3

and node A as the next-but-one hop.

When a node receives a RREQ and determines that it is the destination of this

packet, it creates a routing entry for the source of the RREQ message and transmits a

route reply (RREP). RREP messages contain the ID of the node from which the RREP

was received and the identity of the next-but-one hop in BuckshotDV. The next-but-
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one hop is needed to find the route to the source of the RREQ message, the identity of

the previous node is needed to build the backward route. Thus, contrary to Buckshot

Routing in its basic source routing variant, RREP messages are also used to built new

routes. Nodes that receive a RREP message check their neighbor table for the next-but-

one hop listed there, which is the next hop from their perspective. If and only if there

is an entry, they look up the next-but-one hop from their perspective in their routing

table, adjust the values in the RREP message and retransmit it.

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

A

D

C

C

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

Source

C

B

B

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

Illegal Node ID

B

A

A

+1 +1

Figure 4.11: Per Hop Changes in a Route Reply Message in BuckshotDV

In Figure 4.11 an example of the way RREP messages are handled in BuckshotDV

is given. The RREP message consists of four values that do not change and four that

do. The type, sequence number, source ID and destination ID are used in exactly

the same way as before. In the varying fields, the hop count has been reset by the

destination of the RREQ before retransmission and now denotes the distance of each

node that receives the RREP message from the destination of the RREQ. Following

the hop count, the identity of the next-but-one hop is inserted, which is used on the

receiving nodes to decide whether they should forward the message, following Buckshot

Routing’s forwarding mechanism. The other two varying fields are the same as in the

RREQ message: The identity of the last and current hop. They are used to build

routing table entries for the way to the destination (of the RREQ message). In the

example, node A enters an illegal value into the next-but-one hop field, because it is

a direct neighbor of the destination and no next-but-one hop exists. Please note that

node A does not know that, i.e. it retrieves this value from its routing table. No special

case handling is required, because the illegal value had been present as next-but-one

hop in the RREQ due to which this routing entry was made.
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S

D,B,3

A

S,NULL,1

D,D,2

B

S,S,2

D,NULL,1

D

S,A,3

RREQ
RREQ

RREQ

RREP
RREP

RREP

Figure 4.12: Routing Table Entries Generated by BuckshotDV

An example of the way routing table entries are created in BuckshotDV can be seen

in figure 4.12. Node S, the source, searches for a route to node D, the destination. It

transmits a route request message as described above. Upon reception of this message,

node A enters node S into its routing table with no next-but-one hop (illegal value:

NULL) and a distance of 1. When node B receives the (modified) RREQ, it enters node

S with next-but-one hop node S and a distance of 2 into its routing table. Finally, node

D receives the RREQ, creating an entry consisting of node A as next-but-one hop and

a distance of 3 for node S. This concludes the building of the backward route. Now the

forward route has to be established by the route reply message, which is transmitted by

node D. Node B receives it and enters node D with no next-but-one hop and a distance

of 1 into its neighbor table. For node A the entry consists of node D as next-but-one

hop and a distance of 2. Node S enters node B as next-but-one hop and a distance of 3

into its routing table.

Type = DATA = 3

Source Seq. Num.

Destination

Source

next-but-one Hop

DATA

Figure 4.13: DATA Message Format in BuckshotDV

100



4.2. BUCKSHOT ROUTING WITH DISTANCE VECTORS

Once the RREP message has arrived at the source and the routing table entry has

been created, the DATA packet can be transmitted. As no new route needs to be learned

from a data packet, the identities of the previous and current hop are omitted in DATA

packets.

The data packet format used in BuckshotDV is shown in figure 4.13. Just like

when forwarding a RREP message, each node that receives a DATA message checks its

neighbor table for the next-but-one hop listed in the message and replaces it with its

own next-but-one hop for the listed destination if and only if it has found the neighbor

in its neighbor table.

4.2.2 Variations

A possible variation of BuckshotDV concerns the DATA messages. In the basic version,

they contain only one entry that changes with each hop: The next-but-one hop which

is used for routing decisions. It would be possible to include the current and previous

hop, to learn about the path that has been taken by the DATA message. Then, a node

that receives a message could update its routing table entry for the source of the data

message.

4.2.3 Advantages and Disadvantages

When compared to pure Buckshot Routing, BuckshotDV is complicated and requires

more computation and copying on each node. Still, when comparing it to protocols

like AODV, it remains simple. Its main advantage compared to Buckshot Routing is its

scalability. In Buckshot Routing, as in all source routing protocols, the message headers

grow with increasing network diameter. In BuckshotDV the header size is constant for

each type of packet, making it usable in large networks. However, where Buckshot

Routing is able to use route shortening if some of the intermediate nodes move closer

to the source, BuckshotDV is not. The only point where BuckshotDV could use route

shortening is when the destination becomes a direct neighbor of one of the intermediate

nodes, which could then find it in its neighbor table.
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4.3 Overhearing Supported BuckshotDV

In the previous section (4.2) BuckshotDV was introduced, which focuses on reducing the

size of the messages transmitted by Buckshot Routing. While a reduction of the number

of bytes that need to be transmitted is of course a reduction of energy consumption and

network load, its gain is only limited for small networks. This is due to the fact that

only a few node identities can be removed. But even in larger networks, the number of

messages will presumably be the most important factor, as each routing message may

also be fitted with a MAC header. Even if it is not, some of the current hardware used

in sensor networks needs quite long preambles to synchronize sender and receiver, thus

increasing bandwidth consumption drastically. For this reason, Overhearing Supported

BuckshotDV (OSBRDV) focuses on possibilities to reduce the number of transmissions

while keeping messages nearly as small as in BuckshotDV.

The basic idea behind OSBRDV is to delay messages on nodes that are not on

the original route, and refrain from sending them if the node on the original route

forwarded the message. This can be determined by overhearing the next-but-one hop

node (as listed in the message, i.e. the direct successor of this node) sending the message

in question to a node further along the path. The problem that arises with this new

approach is that nodes now need to know whether or not they are on the original path.

This leads to the need of transmitting not only the identity of the next-but-one hop

inside a data message, but also including the direct next hop. Thus the message size is

increased again, by the size of one identity. But as the size of an identity is assumed to

be small in wireless sensor networks, it can be safely assumed that reducing the number

of messages only by a fraction will already be enough to even out the additional identity

transmitted.

In an optimal case, if all links on the path and those to all neighboring nodes are

bidirectional, only nodes that are on the path would transmit the message. But this case

is very unlikely as the experiments described in section 2 have shown. Normally, there

will be unidirectional links around which messages have to be routed by OSBRDV.

4.3.1 Message Types

OSBRDV uses the same three message types BuckshotDV uses: Route Request, Route

Reply and DATA. The Route Request message format stays exactly the same, only the

other two are changed. However, the handling of a RREQ message is slightly different:

Instead of storing only one node identity upon reception of a RREQ or RREP, two are

stored in the routing table now (table 4.4).
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Table 4.4: Routing Tables in OSBRDV

Destination Next Hop Next but one Hop Hop Count

D A B 3

Figure 4.14 shows the message formats for RREP (l) and DATA messages (r). The

RREP now contains four node identities in the variable area: The next-but-one hop

is used to determine whether a node is a candidate for forwarding or whether it has

to discard the message right away. If the value found in the field ”next hop” equals

the identity of the node that is working on the message, the message is retransmitted

without delay, otherwise it is delayed for a certain time, depending on parameters like

MAC protocol, per-hop-delay and similar. The current and previous hop identities

are needed to build the reversed route on this node and on the next one, just like in

BuckshotDV.

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

next-but-one Hop

Previous Hop

Current Hop

Next Hop

Route Reply

Type = DATA = 3

Source Seq. Num.

Destination

Source

next-but-one Hop

Next Hop

Current Hop

DATA

Data

Figure 4.14: RREP and DATA Message Format in OSBRDV

The DATA message only contains three varying fields, the next-but-one hop, the

next hop and the current hop. The first two fields are used to determine if the node

that has received the message is a forwarding candidate or even on the direct path.

Depending on this, the forwarding is delayed or not. The current hop is used upon

message reception to determine if the message has already been entered into the list of

deferred messages during its previous hop.
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S A B D

C

1

1

2 3

3

6

Figure 4.15: Transmission of a RREP or DATA Message in OSBRDV

Figure 4.15 shows an example transmission of a RREP or Data message in OSBRDV.

In the first step, the source (S) transmits a message for the destination (D) with next

hop A and next-but-one hop B. This message is received by nodes A and C. Node A

is the intended next hop and forwards the message in step 2, after the current hop,

next hop and next-but-one hop are adjusted. Node C, on the other hand, is not on the

direct path. It stores the message in its list of deferred messages. When node B receives

the message, it acts exactly like node A and forwards the message after the necessary

adjustments.

Now there are two different scenarios: Either node C receives the message from node

B in step 3, or it does not. If node C receives the message, it searches in its list of

deferred messages for the source and sequence number. In the stored message, the

next-but-one hop is denoted as node B. If this entry matches the current hop of the

received message (and it does), the received message has already traveled closer to the

destination. Therefore, node C discards its stored message, thus reducing network load.

If node C does not receive the message from node B in step 3 (or later), it assumes

that the intended forwarder was unable to forward the message, and transmits the stored

message after a certain timeout. In the example, a timeout of five time units has been

chosen, therefore the message is forwarded in step 6.

4.3.2 Variations

To keep the routing tables up to date, it could be possible to learn routes from DATA

messages. But that would require including the previous hop, as in the route reply

messages. Also, it could be possible to replace the handling of messages by nodes that

are not on the direct route: A probabilistic forwarding could be used. Using a random

number generator, two thresholds (F and D) could be customized. If the random number

R was below F, the message would be forwarded directly. If R was between F and D,

the message would be discarded. If R was higher than D, the message would be deferred

and forwarded if no retransmission by the next hop was overheard.
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The first case is used to increase the chance of successful message delivery to the next

but one hop. The second case reduces the network load while the third case represents

the normal operation of OSBRDV and the redundant transmission needed to guarantee

a certain delivery ratio.

Actual values for F and D should be chosen according to the average route length,

frequency of changes and frequency of unidirectional links.

4.3.3 Advantages and Disadvantages

OSBRDV needs to transmit less messages than the previous two versions of Buckshot

Routing. How much less depends strongly on the network topology and the number of

unidirectional links involved. On the other hand, it gets more complicated, since a timer

has to be set at configuration time and evaluated at runtime. If the configured timeout

is too low, more messages than necessary will be transmitted. If it is too high, long

delays will be introduced on lossy networks. The additional identity that is needed to

determine whether or not a node lies on the original path must be stored in the routing

tables and transmitted in data packets, thus increasing local storage and message size.

But the fact that less messages need to be transmitted could be worth these side effects

(see chapter 5).
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4.4 Unidirectional Link Triangle Routing

While the previously described protocols focused on using existing unidirectional links

implicitly, the two following routing protocols need to know about the existence of

unidirectional links beforehand. This is realized using a neighborhood discovery protocol

which is described in the next subsection.

In unidirectional link triangle routing, a neighborhood table entry on node A consists

of the ID of the neighbor (e.g. B) , the status of the link to that neighbor (bidirectional,

unidirectional-incoming or unidirectional-outgoing) and, if the link is unidirectional-

incoming, the identity of another neighboring node (e.g. C), which can be used to

forward data to the node in question (node B). Table 4.5 shows an example for all three

kinds of links.

Table 4.5: Routing Tables in ULTR

Destination Next Hop Link Status Forwarder

D A bidirectional none

E B incoming C

F G outgoing none

When a node wants to transmit a message to another node that is not included in its

neighbor table or its routing table, it starts a route discovery by transmitting a route

request (RREQ) message. This message is flooded through the network and creates

routing entries for the source on all nodes it passes. The entries include only the next

hop and the distance, resulting in a distance-vector protocol like e.g. AODV.

However, the handling is different once the destination has been reached and trans-

mits the route reply. When a node receives a message that is not flooded, i.e. a route

reply (RREP) or DATA message, it checks its routing table to find out which of its

neighbors is the intended next hop just like in AODV. Unlike AODV, there is another

step after that one. Once the node knows the neighbor that has been chosen to forward

the message, it checks its neighbor table to see if the link to that node is currently

an unidirectional-incoming one. If it is, and a detour of one hop is possible, the node

forwards the packet first to the detour node which in turn retransmits the message to

the intended node. Otherwise the message is silently discarded. Please note that broken

links can be treated just like unidirectional-incoming ones.
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C

A B

ID, Status, Forwarder

A, outgoing, none

C, bidirectional, none

B

ID, Status, Forwarder

B, incoming, C

C, bidirectional, none

A

ID, Status, Forwarder

A, bidirectional, none

B, bidirectional, none

C

Figure 4.16: Neighbor Table Entries in Unidirectional Link Triangle Routing

Figure 4.16 shows a small part of a network and the corresponding neighborhood

table entries used in this protocol: The nodes A, B and C from the example above are

connected bidirectionally, with the exception of the link between nodes A and B which is

unidirectional, enabling only transmissions from B to A. The neighborhood table of node

A consists of two entries, a bidirectional one for node C and a unidirectional-incoming

one from node B, with node C denoted as designated forwarder. The neighborhood table

of node B contains node A, which would not be possible without a two-hop neighborhood

discovery protocol, as node B does not receive any messages from node A. The link is

marked as unidirectional-outgoing, and thus does not need any forwarder. The second

entry features node C with a bidirectional link, needing no forwarder either. Finally,

the neighborhood table of node C contains nodes A and B, both marked as connected

through bidirectional links and not needing any forwarders.

Due to the fact that the unidirectional link and the detour that is taken on the way

back form a triangle, this protocol is called unidirectional link triangle routing (ULTR).

ULTR is similar to the link layer tunneling mechanism proposed by the unidirectional

link working group of the IETF (see section 3.1.11), but does not require multiple

interfaces on the nodes to communicate. Also, depending on the used neighborhood

discovery protocol, it may even be able to work with triangles which include more

than one unidirectional link, which the link layer tunneling mechanism cannot handle.

Moreover, ULTR works completely on the routing layer, the link layer is not involved.

This is an advantage when timeouts are used, because the extra hop and thus longer

delay are not hidden from the routing layer.
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4.4.1 Neighborhood Discovery

The neighborhood discovery protocol needed for ULTR can be quite simple and needs

only be started on a node once it receives the first message from a neighbor, i.e. when

the first route request message is flooded into the network. Once it has been started, the

neighborhood discovery protocol regularly transmits a message containing the IDs of all

nodes from which this node has received messages recently and the status of its links to

and from them. When a node receives such a hello message, it checks whether its ID is

contained therein. If it is not, the receiving node knows that it is on the receiving side

of a unidirectional link.

In other protocols, where unidirectional links are not used, a lot of overhead would

now be necessary to inform the upstream node (the sender of the hello message) of the

unidirectional link. In this protocol, the upstream node does not need to know about

its existence. The receiving node only marks the link as unidirectional-incoming in its

neighbor table.

When a node A receives a hello message via the bidirectional link from node C in

which the upstream node of the unidirectional link is listed and the link to that node

(from C to B) is marked as bidirectional, node A enters the sender of the hello message

(node C) as a forwarding neighbor into the corresponding neighbor table entry (for node

B). Please note that this would also be possible if there was a unidirectional link from C

to B, but the proactive detection of this special case would probably introduce a large

overhead and solve only one special case: If there is a unidirectional link from C to B

and no other neighbor of A has a bidirectional link to B.

When a message (RREP or DATA) is sent the reversed way, it needs to be for-

warded along a one-hop-detour. This message can be used to inform the upstream

node of the link, which is then entered into the upstream node’s neighborhood table as

unidirectional-outgoing. Please note that for the routing alone this information would

not be necessary, indeed it would be easy to hide the fact that the message has taken a

detour. But for the sake of timers that can be used for retries on MAC- or routing layer

it helps to know that the delay could be twice as high. In this case, the information

about this special link can be acquired ”for free” and could be used to solve the problem

described above. The information about the unidirectional-outgoing link can also be

used by the MAC layer not only for retries, but also to determine the right two-hop

neighborhood of a node, which is a mandatory information for TDMA protocols.
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4.4.2 Message Types

ULTR uses the same three message types as all other protocols described in this chapter,

Route Request, Route Reply and DATA. Figure 4.17 shows an example for each of them:

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count

Current Hop

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

Next Hop

Forwarder

Type = DATA = 3

Source Seq. Num.

Destination

Source

Next Hop

Forwarder

DATA

DataRoute ReplyRoute Request

Figure 4.17: Message Types Used in ULTR

A RREQ message contains the identity and sequence number of the source which are

used for duplicate detection, followed by the identity of the destination. The hop count is

incremented by one on each hop as usual, and the identity of the last hop is used to build

the backward route. A Route Reply message contains sequence number and identity

of the source for duplicate detection as well as the identity of the destination. For

forwarding purposes the next hop and, if necessary, the forwarding node are included.

The DATA packet contains the sequence number and identity of its source as well as

the identity of its destination and, of course, the application data. This is followed once

again by the identities of the next hop and, if suitable, the forwarding node.

4.4.3 Variations

ULTR relies on a neighborhood discovery protocol, which might introduce too much

overhead, depending on the protocol, its configuration and the application scenario. In

order to get rid of this overhead, a variation without neighborhood discovery can be

used: Nodes that try to forward a message and do not get a confirmation that the next

hop received the message (either through link layer acknowledgments or overhearing)

can use a localized version of BuckshotDV (see section 4.2) instead. This way, detours

of a configurable length would be possible.
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Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count

Last Hop

Current Hop

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

Last Hop

Current Hop

Next Hop

Mode

Type = DATA = 3

Source Seq. Num.

Destination

Source

Last Hop

Current Hop

Next Hop

Mode

DATA

DataRoute ReplyRoute Request

Figure 4.18: Message Types in ULTR Without Neighborhood Discovery

When this variation is used, some modifications to the message types are necessary

(see figure 4.18). Information about the last hop would have to be included in RREQ

messages, in addition to the current hop. Both node IDs are stored in the routing table.

A node decides which entry to use depending on the overheard status of the link. If

the next hop is assumed to be connected by a bidirectional link, the normal next hop is

used. Otherwise the message is set to Buckshot mode and the next-but-one hop is used.

The last hop is also used for implicit link detection: If a node overhears the transmission

of a message in which it is denoted as last hop, it knows that the link between itself and

the current hop denoted in the message is currently bidirectional.

A RREP message contains three node IDs instead of only two: The last hop ID and

current hop ID are used to build the backward route for normal and for Buckshot mode

just as they are used in the RREP. The next hop ID is used for forwarding. However,

the RREP also contains a flag denoting the mode of transmission, which can take on

the values ”normal” and ”buckshot”. It is evaluated upon message reception to decide if

a node shall forward the message or not. In normal mode it only forwards the message

when it is denoted as next hop in the message, in Buckshot mode it also forwards the

message if it has the next-but-one hop in its neighbor table.
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The DATA message features the same three node IDs that are present in the RREP

message. For routing purposes alone, the last hop ID would not be needed, but it is

nevertheless included for link status detection. The mode flag is also present again, to

enable the usage of one-hop Buckshot Routing if the status of the next link is unknown

or known to be unidirectional-incoming.

4.4.4 Advantages and Disadvantages

This protocol is by far the most complex protocol presented yet. The complexity is the

price for the reduced number of data packet transmissions, as no flooding of DATA pack-

ets, not even a limited one, is used. Periodic updates of the neighborhood table ensure

that the link status information it holds is always up to date, which also enables implicit

local repair. Altogether this should lead to a higher delivery ratio. On the downside

the usage of hello messages also leads to more protocol overhead, as these messages can

be quite large in dense networks. Therefore, the typical tradeoff between actuality and

network load has to be made when setting the hello period, which makes configuring

the protocol harder. On the other hand a new option for cooperation between MAC

and routing arises.

Like all routing protocols that use unidirectional links, ULTR also needs a MAC

that can transmit over unidirectional links. The information about the existence of

the unidirectional links probably needs to be collected to a certain extend anyway,

depending on the MAC protocol used. So either this can be retrieved from the MAC

without additional cost, or the MAC protocol can query the routing layer for it using an

appropriate interface. More information about the cooperation options between MAC

and routing is provided in section 4.6.
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4.5 Unidirectional Link Counter

In the protocols previously described unidirectional links were only used implicitly (in

the Buckshot variants) or with local detours (in Unidirectional Link Triangle Routing).

In none of these protocols information about unidirectional links was made available

to distant nodes. In the case of ULTR this could even lead to a suboptimal choice of

route if the route taken by the RREQ consisted mostly of unidirectional links. Then,

the reversed route would still work, but messages sent along it would use up to twice

as many hops and take a much longer time. Furthermore, if no local detour exists,

messages will get stuck.

4.5.1 Message Types

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count

# Unidirectional Links

Current Hop

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

# Unidirectional Links

Next Hop

Forwarder

Type = DATA = 3

Source Seq. Num.

Destination

Source

Next Hop

Forwarder

DATA

DataRoute ReplyRoute Request

Figure 4.19: Message Types used in ULC

In Unidirectional Link Counter (ULC), these two problems are solved. When a node

receives a route request message, it checks its neighbor table for a way back to the last

hop. This can be a direct way (if the link is bidirectional) or a local one-hop detour. If

the way back is bidirectional, the hop count of the route request is increased by one and

it is retransmitted. If the link is marked as an unidirectional-incoming one but a one-hop

detour to the last hop is known, the number of hops and the number of unidirectional

links passed by this RREQ are both increased by one. Please note that this requires

the new field ”Number of Unidirectional Links” to be present in the RREQ and RREP

messages (figure 4.19). The DATA message stays exactly the same as in ULTR.
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As this inclusion of the number of unidirectional links in the RREQ and RREP is

essential to this protocol, the protocol is called Unidirectional Link Counter or ULC.

When a destination receives a route request message, it can read the number of hops the

message has taken to reach it in the hop count as usual. But in this protocol it can also

calculate the number of hops the route reply will probably need by adding the number

of unidirectional links to the hop count. Once multiple RREQs have been received by

the destination, a number of different weight functions can be used to determine which

one of these routes should be used.

4.5.2 Possible Weight Functions

Which weight functions are available depends heavily on the intended scenario. They

include, but are not limited to: Least number of hops, least number of hops with

unidirectional links added or best average route. Once the weight has been calculated,

it can be entered into the routing table. Table 4.6 shows an example of a routing table

for ULC.

Table 4.6: Routing Tables in ULC

Destination Next Hop Route Weight

D A 4

Least Number of Hops When using this weight function, the shortest path from

source to destination is chosen. This can be very useful when the main traffic is expected

to flow from the source to the destination with only a marginal amount going the

other way. An example for this behavior would be a sensor network with a sense-and-

send application where periodic data is sampled automatically and acknowledged only

occasionally.

Least Number of Hops with Unidirectional Links Added The addition of both

values delivers the maximum path length used in communication between source and

destination of the RREQ. This can be important when the packet loss rate for a single

hop is high. As the probability of successful transmission along a path (Ppath) is the

potentialization of the probability for a single hop (Phop) by the number of hops (x),

the number of hops is the only variable and thus most important factor: Ppath = Phop
x.
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Another scenario that uses this weight function might be the usage of a time sen-

sitive application. If messages are expected to travel not only from the source to the

destination but also vice versa within certain time boundaries, the maximum length of

one direction is set.

Best Average Route When the number of expected transmissions from source to

destination is about as high as the number of transmissions expected from destination

to source, it is useful to keep the average length of the paths small. This is achieved

by simply adding half the number of unidirectional links to the hop count, as the local

detours are needed only in one direction. This weight function is also useful when

the application involves a query-response traffic pattern, meaning that messages always

need to travel from the source to the destination and back. For such scenarios, the

round trip time, i.e. the number of hops needed to travel both directions once, is most

important.

4.5.3 Neighborhood Discovery

The neighborhood discovery protocol must fulfill the same requirements as the one

described in ULTR. Nodes need to know about their incoming unidirectional links, and

about the existence of a one hop-detour to the source for every unidirectional link.

Therefore, the same protocol can be used, which regularly transmits the identities of

all neighbors and their link status. The handling of incoming hello messages is also the

same.

4.5.4 Variations

The neighborhood discovery protocol used in ULC is necessary, because every node

needs to know the status of its links before the first RREQ message is received, in order

to increase the counter for unidirectional links if the message was received over such a

link. If this information is not provided or not used by the underlying MAC protocol as

well, the induced overhead can make ULC unfitting for a number of application scenar-

ios. Therefore, a variation has been designed, which does not require a neighborhood

discovery protocol:

Nodes that receive a message over a link for the first time set the status of that

link as unidirectional-incoming. If a node overhears the forwarding of a message it has

already transmitted by a neighboring node, the link to that node is set as bidirectional.
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This passive evaluation of links leads to three drawbacks in link information quality:

First of all, unidirectional-outgoing links can no longer be detected. However, this is not

such a big problem, as it is only necessary to route around unidirectional-incoming links.

Second, the protocol needs a certain settling time. When the first RREQ message in the

whole network is transmitted, all links it passes will be listed as being unidirectional.

But once a few messages have been transmitted from different sources, the neighborhood

tables should be much more accurate. The third drawback is that link changes can only

be detected by using a timeout for all links and removing neighbor table entries after

a certain time. This raises the need to learn about neighbors once more, when new

messages are transmitted.

When a Route Reply or DATA message is transmitted and a node that should for-

ward it finds the connection to the next hop listed as unidirectional-incoming, the node

switches to a limited usage of BuckshotDV for the next hop of the message.

The usage of passive link status monitoring once again makes some modifications to

the message format necessary. Figure 4.20 shows the the message types:

Type = RREQ = 1

Source Seq. Num.

Destination

Source

Hop Count

# Unidirectional Links

Last Hop

Current Hop

Type = RREP = 2

Source Seq. Num.

Destination

Source

Hop Count

# Unidirectional Links

Last Hop

Current Hop

Next Hop

Mode

Type = DATA = 3

Source Seq. Num.

Destination

Source

Last Hop

Current Hop

Next Hop

Mode

DATA

DataRoute ReplyRoute Request

Figure 4.20: Message Types in ULC Without Neighborhood Discovery

Route Request messages now contain the last hop in addition to the current hop.

This is used to detect bidirectional links: If a node receives a message in which it is listed

as last hop, it enters the link to the current hop denoted in the message as bidirectional

into its neighbor table.
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RREP and DATA messages use three node IDs: last hop, current hop and next hop.

Last and current hop are used for link detection and to build the inverted route just

as in the RREQ message. The next hop is used to decide if the node that received the

message should forward it. Here the mode flag is evaluated first. It can once again take

on the values ”normal” and ”buckshot”. In normal mode the field ”next hop” contains

the ID of the intended forwarder, all other nodes discard the message. In Buckshot

mode the field actually contains the next-but-one hop, and all nodes that have this

next-but-one hop in their neighbor table forward the message.

Table 4.7: Routing Tables in ULC

Destination Next Hop Next but one Hop Route Weight

D A B 4

Nodes that forward a RREP or DATA message look up the next hop in their routing

table and check the link to it in their neighbor table. If the link is listed as being

bidirectional the message is sent in normal mode, otherwise Buckshot mode is used.

Enabling the usage of Buckshot mode requires including the next but one hop into the

routing table of ULC (table 4.7).

4.5.5 Advantages and Disadvantages

The unidirectional link counter offers a number of possible weight functions, which can

be chosen according to user specifications. The fact that the RREQ messages collect

information about the unidirectional links they have passed means that this information

is freely available to other protocols. For example, it can be combined with a monitoring

protocol like Sensorium [50], and used for passive network monitoring. ULC can also

cooperate with the MAC layer when detecting unidirectional links and one-hop-detour

neighbors (see section 4.6). Upstream nodes of unidirectional links do not need to

be informed explicitly of their existence as in ULTR. They learn of their outgoing

unidirectional links only when a route reply or DATA packet is sent via the detour, and

only supply the information to possibly existing retransmission protocols.
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4.6 Cooperation with the MAC-Layer

All protocols described in this chapter were designed specifically to utilize unidirec-

tional links. This makes it imperative to use a MAC layer that can also transmit over

unidirectional links. Any protocol that uses the standard ”request to send” - ”clear to

send” mechanism is completely unsuitable, as no clear to send message will ever be

received over an outgoing unidirectional link. Moreover, nodes with an outgoing unidi-

rectional link will never know that they could be disturbing the communication between

two other nodes (see section 2.2). There are some improvements that allow contention

based protocols to work with unidirectional links, e.g. ECTS-MAC [42, 44] (see section

3.1.4). Some of the MAC protocols that utilize unidirectional links route their link layer

acknowledgments back to the upstream nodes. For this, the neighborhood table used

by ULTR (section 4.4) and ULC (section 4.5) could be reused.

Plan based MAC protocols need to know the two-hop neighborhood of each node to

identify the collision domain. Within this domain, the varying parameter (e.g. frequency

(FDMA), code (CDMA) or slot (TDMA)) needs to be unique for each node. Therefore,

a neighborhood discovery protocol is needed which finds these two-hop neighbors. The

protocols used for ULTR or ULC could easily be enhanced to deliver this information.

Otherwise, if the MAC protocol already has its own neighborhood discovery protocol, it

only needs to make the gathered information available to the chosen routing protocol.

The usage of such a neighborhood discovery protocol would also implicitly solve the

”special case” of a unidirectional link triangle with more than one unidirectional link,

enabling the unidirectional link triangle and unidirectional link counter protocols to

make use of such links as well.

This usage of a single neighborhood discovery protocol for both MAC and routing

reduces communication overhead and memory consumption by far. It also ensures that

both layers work on the same data. If they would use different algorithms, different

storage sizes or replacement strategies, lots of problems could result, as described e.g.

in Murphy Loves Potatoes [36] (see section 2.1.9).
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Chapter 5

Evaluation

To the best of the author’s knowledge, no sensor network routing algorithms exist, that

make use of unidirectional links. Therefore, the protocol most used in deployments was

chosen for comparison: A tree routing based approach with retransmissions, which is

quite common in sense-and-send applications where all nodes transmit their data to the

sink regularly (e.g. [71, 13, 21, 36]). As this may seem to be an unfair comparison,

two protocols from the MANET area were also chosen as competitors: DSR in the

version that uses unidirectional links (see section 3.2.9) and AODV-BR (see section

3.2.3). AODV-BR does not use unidirectional links, but has an interesting way of

detecting them and salvaging the data message that caused the detection, which is

somehow similar to the forwarding mechanism used in Buckshot Routing. As fourth

reference protocol, Flooding is included. While it is known that Flooding induces a

lot of overhead, it can still deliver valuable insights. In the simulations, Flooding is

used to determine the upper limit of messages that could reach the destination. In the

real world experiments carried out for this work, the network load it generates is used

to understand the performance of the MAC protocol supplied by the hardware in use.

The distance measured in hops is taken as weight function (minimum hop routing),

but other weights, e.g. residual energy, could also be used with the same result, as all

protocols would work on the same values. Routes with a lower weight replace older ones

with a higher value in the routing tables.

The authors of [49] propose a combined evaluation method that uses experiments with

real hardware, emulation and simulation techniques in order to speed up the deployment

of new protocols. The combination of all three methods enables the developer to identify

which problems occur and shows him/her where further investigation is necessary. The

routing protocols AODV, DSR and OLSR were used to evaluate the proposed approach

to protocol monitoring.
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The authors found that latency and timing are crucial to the performance of reactive

protocols like AODV and DSR, because of buffering times. The queue-ups that can

result from this buffering were apparent in the experiments, but not in the emulations.

In conclusion of this paper it can be said that all three methods of evaluation have

their own gain for a protocol developer, if they are used correctly. For simulations,

the choice of the underlying communication model is crucial. The emulation can be

fed with real world connectivity data, and can be used to evaluate the implications of

the network stack used on the real devices. Experiments are needed to generate this

connectivity data.

It is important that for all three methods exactly the same implementation of the

protocol is used, and that this implementation is the one that can be used directly on

the hardware which is used in the real experiments.

Following this approach and the advice from Stojmenovic [69], the same implemen-

tation was used for both simulations and real world experiments in this evaluation (see

appendix A for details). In the next section, the methods used in the simulations are

described. They enable the evaluation of the algorithms and their ability to handle

unidirectional links under controlled circumstances (section 5.1). The general principle

of the real world experiments, including the chosen locations, is described in section 5.2.

After these two methods of evaluation have been described, the results of connectivity

measurements conducted on the different real world locations is described (section 5.3).

The actual evaluation of the routing protocols designed in this thesis and those chosen for

comparison is presented in sections 5.4 to 5.6, sorted by the application scenario in use.

Following these evaluations, the interaction between duplicate suppression mechanisms

and routing protocols is discussed(section 5.7) before a summary of the achieved results

is given in section 5.8.
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5.1 Simulations

All simulations were performed using the discrete event simulator OMNeT++ (see ap-

pendix A). The simulated networks consisted of four different sizes of grids: 100 nodes

(10x10), 400 nodes (20x20), 900 nodes (30x30) and 1600 nodes (40x40). A grid align-

ment was chosen to represent applications that need area coverage, where each node

is equipped with sensors that have a range of one distance unit. But, as will be seen

below, the exact placement of the nodes is not important, because connectivity is deter-

mined using a connectivity matrix (see section 5.1.1). The different numbers of nodes

represent network sizes ranging from small to huge networks, and thus increase the

number of hops needed to communicate from one end of the network to the other. This

determines the route length, which has a tremendous impact on the performance of all

routing protocols.

All simulations are restricted to the usage of a ”perfect behavior” MAC. While it is of

course true that the choice of medium access control protocol can have a strong influence

on the performance of the routing layer, the goal of the simulations is the evaluation

of the ability of the routing protocols to work in the presence of unidirectional links,

not of their interaction with the MAC layer. Also, many of the effects of a MAC layer,

e.g. the available neighbors for each node, would be the same for all evaluated routing

protocols. The effects could only differ between protocols, when they are depending on

the generated network load, as different protocols transmit different types of messages

with different sizes and in different frequencies. But all of these are highly dependent

on the application, and it is not possible to evaluate all possible application scenarios.

As simulation results are never 100% accurate, real world experiments have been

conducted, too. Details about the methods of evaluation used for the real world exper-

iments are shown in section 5.2. This section follows Stoijmenovic’s advice [69], and

uses a simple model in order to keep side influences small and results interpretable.
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5.1.1 Connectivity between Nodes

To simulate a certain connectivity between nodes, thousands of connectivity matrices

were generated before running the simulations. The same generated matrices were used

for all protocols. The large number of matrices is necessary to simulate the constantly

changing nature of wireless links. As the largest networks, consisting of 1600 nodes,

needed to be simulated for the longest time, they also needed the highest number of

connectivity matrices: For a single simulation 17761 connectivity matrices were needed.

In each of these matrices, a (directed) link from node A to node B exists with a

probability of α/d6 where d is the distance between node A and node B. The inverse

link, from node B to node A exists with the same probability. Therefore, the link is

bidirectional with a probability of (α/d6)× (α/d6), unidirectional (in any one direction)

with α/d6× (1− (α/d6)) and non existing with (1− (α/d6))2. The quotient (d6) reflects

the dampening induced by the distance between nodes while α represents the probability

that a link between geographically adjacent nodes exists.

Nodes were arranged on a regular grid to reflect application scenarios which need

area coverage, e.g. vehicle tracking. As all nodes were arranged on a grid, nodes

that are directly above, below, right or left of a node are called direct neighbors and

their distance was defined as 1. α was varied between 0.9, 0.95 and 1, and for each

value of α ten sets of matrices with different seeds for the random number generator

were generated, leading to 30 sets of matrices per network size, and a total of 996120

connectivity matrices containing between 10.000 and 2.560.000 entries.

Please note that due to the fact that the matrices were generated randomly, there

is no guarantee that there always was a path from sender to destination. Therefore, no

upper limit can be calculated, but Flooding is used as reference protocol: The number

of application messages delivered by Flooding is taken as 100% and the delivery ratio

of all other protocols calculated accordingly.

5.1.2 Application Settings

In each simulation, each node wanted to transmit a total of 110 messages to one or more

destinations, depending on the scenario. After the initialization phase of the network,

one message was transmitted every 100 milliseconds. To ensure that route discovery

was finished, the logging remained inactive until all nodes had started the transmission

of their fifth message. The connectivity matrices were changed every second. Please

note that the absolute values of the time units are not important for the simulation,

only their relation (1:10). They could also have been set to 6 seconds and one minute

yielding the same results.
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5.1.3 Protocol Performance

In the simulations, logging only began once each node had started the transmission

of its fifth message. Therefore the theoretical optimum of delivered messages could

be calculated, if connectivity could be guaranteed. But the connectivity matrices were

generated randomly, therefore network separation could be possible. Flooding delivered

close to the theoretical optimum, and is used as maximum for the simulations. For

all simulations, the delivery ratio of a protocol is defined as the number of messages

delivered by the protocol divided by the number of messages delivered by Flooding.
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5.2 Real World Experiments

To evaluate the influence of medium access control and the properties of real hardware,

all nine protocols (five new ones and four from related work) were evaluated on the

eZ430-Chronos [15] sensor nodes (see appendix A).

All protocols use the same sensor nodes on the same locations, meaning that node

0 used to evaluate Flooding is the same piece of hardware on the same location as

node 0 used in the experiments evaluating BuckshotDV and so on. Depending on the

application scenario, the experiments were conducted on some or all of the locations

described below. Each protocol was evaluated using a freshly charged set of batteries.

5.2.1 Application and Logging

In the real experiments, each node wanted to transmit a message every minute. The

experiments ran for one hour each, therefore 60 messages were transmitted by the

application on each node. In all experiments, 36 nodes were placed in a square of six

times six. Each node recorded the number of application messages it received, and all

nodes recorded the number, type and size of all messages they transmitted or forwarded.

Like in the simulations, it was once again possible that nodes were disconnected

from the network and suffered from network separation. Also, sometimes nodes failed

due to hardware problems. Therefore, the type of messages transmitted by a node was

evaluated, too. When a node only transmitted route request messages and not a single

data message, it did obviously not find any route to the sink.

5.2.2 Protocol Performance

In the real world experiments, logging began at once. Therefore the theoretical optimum

of delivered messages could be calculated, if connectivity could be guaranteed which is

never the case in real world deployments. In contrast to the simulations, Flooding

could not be used as reference protocol because it did not always deliver the highest

number of application messages. Therefore, the delivery ratio is defined as the number of

application messages delivered to their destination divided by the number of application

messages transmitted.
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5.2.3 Program Size

The size of the programs deployed on the eZ430-Chronos is shown in table 5.1. Please

note that the values were measured for scenario 1 (sense-and-send, section 5.4), but differ

only marginally for the other scenarios as the main components (system and routing

protocol) are always the same. Only the application differs from scenario to scenario,

but its influence on the program size is marginal.

It can be seen on the table that DSR has by far the largest memory footprint,

concerning both flash (”text”) and RAM (”bss”). The lowest footprint can be seen on

Flooding. It needs only about 500 Bytes flash and 200 Bytes RAM more compared to

the system without routing, most of which is needed for the duplicate suppression.

Table 5.1: Total size of the deployed systems for different routing protocols in Byte

protocol text data bss dec

AODV-BR 14590 0 2260 16850

Buckshot 14576 0 2424 17000

BuckshotDV 13954 0 1920 15874

DSR 17760 0 3586 21346

Flooding 12444 0 1644 14088

OSBRDV 14882 0 2536 17418

Tree Routing 13234 0 1990 15224

ULC 14718 0 2066 16784

ULTR 14550 0 2066 16616

System without routing 11918 0 1418 13336

Basic System 8612 0 994 9606

Connectivity Evaluation 11368 0 3632 15000

The basic system, including only the operating system Reflex (see appendix A)

without any scenario specific parts (no routing protocol, no application) is also shown

for comparison. It needs 8612 Bytes of flash and 994 Bytes of RAM. Most of the RAM

consumption is due to the 10 network buffers with 64 Bytes each.

DSR did not fit on the microcontrollers with the settings used in the simulations,

therefore some of them (e.g. the number of messages that can be stored) had to be

reduced to make it fit. As DSR has the largest memory footprint, all other protocols had

no problem fitting on the micro controller when using the same settings (see appendix

A for details).
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5.2.4 Experiment Locations

Four different locations were used for the real world experiments:

• On a Desk

• Affixed to Poles

• Placed directly onto a lawn

• Placed directly onto stones

Desk Experiments This deployment is a single hop layout, where each node is able

to receive messages from each other node. The nodes lay directly next to each other.

An old set of batteries was used without re-charging them, because range did not really

matter in these experiments. They were used to validate the correct operation of the

protocols.

(a) affixed to poles (b) placed on the lawn (c) on a stone pavement

Figure 5.1: A modified eZ430-Chronos Sensor Node

Poles For the pole experiments, small poles were deployed on the lawn in front of the

main building of our university, with about one meter distance between each of them.

Then, the sensor nodes were affixed to them using cable straps, at a height of about 20

cm (figure 5.1(a)). The pole placement was usually used at 8am.
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Lawn After the pole experiments were finished and evaluated, the nodes were reset

and placed on the ground directly next to the poles as shown on figure 5.1(b). The resets

were done by disconnecting the batteries and reconnecting them directly afterwards.

The same set of batteries as before was used on each node without charging. When

using all four locations, the lawn experiments were started at about 10 AM.

Stones After the lawn experiments, the nodes were disconnected, and poles as well

as nodes and batteries collected. The experiments on the stones were always started

at about 1 PM, using the same set of 72 AA batteries used in the morning without re-

charging, but the pairing of batteries and nodes might have changed, i.e. the batteries

that were connected to node 4 in the pole and lawn experiments might be connected

e.g. to node 27 in the stone experiments. These experiments were conducted on the

stone pavement on our campus (figure 5.1(c)).
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5.3 Connectivity Evaluation

To get a feeling for the behavior of the real hardware and to keep the possibilities of

application errors to a minimum, the first experiments were made using a fairly simple

application. 36 sensor nodes were deployed on the lawn outside of the university’s main

building, spaced one meter from each other [38].

As only the connectivity should be measured, the ”application” consisted of a simple

flooding with duplicate suppression. Node 0 was connected to a laptop via USB and

transmitted 50 messages, with a pause of one minute between messages. Each node

that received a flooded message first logged the neighbor from which it received the

message. After that, the node checked if it had already handled a message with this

sequence number. If it had, the message was discarded, otherwise the node changed the

field ”last hop” to contain its own ID and rebroadcast the message.

Even this simple application ran into two problems: The CC430 uses a so-called CCA

Medium Access Control, which is basically a CSMA/CA scheme. A node that wants

to transmit a message waits for a random time (backoff) before sensing the medium.

If it is free, the message is transmitted. Otherwise, the radio waits for a random time

before trying again. The used hardware was not able to receive messages during the

backoff, which meant that even in an experiment with 3 nodes (0, 1, 2) node 2 was

never able to receive messages from node 1, because it was still in its backoff when node

1 transmitted. To solve this problem for the connectivity evaluation, a software delay

was introduced. The software waited between 1 and 13 milliseconds before handing the

message to the hardware. This delay could be tolerated, because application knowledge

was available (node 0 transmitted a new packet only every minute).

Retrieval of data was induced by sending a message to a node, telling this node

that it should transmit its gathered neighborhood information. Sadly, the nodes were

unable to receive any messages after a seemingly random time. Sometimes, nodes would

function only for a couple of minutes, while others ran for more than a day and still

responded. The influence of stray messages on the application could be ruled out due

to precautions in the software. The problem seemed to exist in the state machine of the

radio. To remove this problem, a watchdog timer was introduced which reset the radio

every five minutes if the application did not receive any messages during that time. If

it did receive a message, the watchdog was restarted. While this could lead to problems

if nodes radios failed during the experiment, it was mainly used to gather the results,

once the sensor nodes were collected and returned to the office. Two different radio

channels and four placements (lawn, stones, poles and trees) were evaluated. For each

placement, the initial connectivity graph is shown here.
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5.3.1 Lawn Experiment, Channel 0, Sink (Node 0) connected to Lap-

top

Figure 5.2: First Connectivity Graph obtained on the lawn, channel 0

The first experiment was conducted on the lawn in front of our university. Figure

5.2 shows the connectivity graph obtained for the first of the fifty messages that were

flooded into the network. One of the nodes, node 30, had a defective battery contact and

did not participate at all. Four other nodes, nodes 12, 27, 28 and 33 suffered a complete

reset during transportation, leading to loss of the connectivity data they gathered. Still,

a lot of information could be obtained.

Node 0, which was connected to a laptop using a USB cable, was heard by lots of

nodes, even those far away like node 11, node 29 or node 31. This shows that the

transmission strength of the nodes, while it was set to 0dBm for all nodes, still depends

on the power supply, i.e. the batteries. In deployments where a sink node connected to a

fixed power supply such as a computer should be used, the longer reach of the sink node

might well be a problem. This problem would for example manifest, when a tree routing

approach is used, and the sink floods a message through the network to establish initial

father and child connections between nodes. Most of the nodes would assume node 0

as their father, but be unable to transmit directly to it. Also, the results show that

even though the nodes were only one meter distant from each other, bidirectional links

are rare and unidirectional links are common. Counting all links, 3018 unidirectional

and only 403 bidirectional links have been recorded. If the unidirectional links from

the nodes that have failed during transport are excluded (560 seemingly unidirectional

ones), the ratio is still 2458 unidirectional links against 403 bidirectional ones.

130



5.3. CONNECTIVITY EVALUATION

To remove the influence of the higher transmission strength of the ”sink” (node 0), all

links to and from node 0 can be removed from the equation. But even then, the result

seems pretty obvious: 1477 unidirectional links stand opposed to 355 bidirectional ones

(ratio 4.16 : 1). As for the theory of stable links, 7019 link changes were recorded during

the 50 minute deployment.

5.3.2 Lawn Experiments, Sink (Node 0) connected to batteries

To remove the influence of the USB cable connected to node 0 completely, the experi-

ment was repeated. This time, and in all subsequent experiments, node 0 used a normal

battery pack like all other nodes. The experiment was conducted on two different chan-

nels, namely channel 0 and channel 3. The initial connectivity graphs are shown in

(a) Channel 0 (b) Channel 3

Figure 5.3: First Connectivity Graph obtained on the lawn with node 0 connected to

batteries, for both channels respectively

figure 5.3(a) for channel 0 and in figure 5.3(b) for channel 3. Even though precautions

were taken, one node (node 25) still suffered a reset before the gathered data could be

retrieved during the experiment on channel 0. The application was the same, with 50

flooded messages. 4039 unidirectional links as well as 818 bidirectional links with 7019

changes were recorded on channel 0, if the links from node 25 are removed that still

leaves 3912 unidirectional ones opposing 818 bidirectional links (4.78 : 1 ratio) over the

length of the whole experiment. On channel 3, as much as 4411 unidirectional links and

757 bidirectional ones (ratio 5.83 : 1) and 7103 link changes were measured.
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5.3.3 Stone Pavement Experiments

To evaluate the influence of the ground on which the sensor nodes were placed, the

experiments were repeated again, but this time the nodes were placed on the stone yard

of the university. Figure 5.4(a) once again shows the first connectivity graph obtained

on channel 0. Altogether 3570 unidirectional links and 851 bidirectional ones were

(a) Channel 0 (b) Channel 3

Figure 5.4: First Connectivity Graph obtained on the stone pavement for each channel

respectively

measured on channel 0, resulting in a ratio of 4.19 : 1. Also, 6589 link changes occurred.

The initial connectivity graph obtained on channel 3 is shown in figure 5.4(b). 3508

unidirectional links and 712 bidirectional ones were detected (ratio 4.93 : 1), with 5528

link changes occurring. This is nearly the same as the ratio obtained in the previous row

of experiments. The average ratio seems to be between 4 and 5 to 1 for all experiments,

even though individual values vary between 2.40 and 11 to 1.
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5.3.4 Pole Experiments

The previous experiments were all conducted with sensor nodes that lay on the ground,

which is a safe assumption for many deployments. However, if the nature of radio

communication is taken into account, the nodes should be placed with a certain distance

from the ground, to increase the communication range and reception. Therefore, the

36 sensor nodes were connected to wooden poles and placed about 20 cm above the

university lawn in these experiments.

(a) Channel 0 (b) Channel 3

Figure 5.5: First Connectivity Graph obtained on the poles on channels 0 and 3 respec-

tively

Figure 5.5(a) visualizes the first obtained connectivity graph for channel 0. Alto-

gether 5150 unidirectional links and 492 bidirectional ones (ratio 10,47 : 1) with a total

of 7146 changes were measured. Interestingly, the better radio characteristics increased

the number of unidirectional links far more than the number of bidirectional ones. The

ratio of unidirectional ones to bidirectional ones increased up to 18 :1.

The connectivity graph obtained at the start of the experiment on channel 3 is

visualized in figure 5.5(b). Even though the figures seem quite different at first glance,

the properties of the following 59 for each channel show that the basic connectivity

characteristics are similar: Lots of unidirectional links, a few bidirectional ones and

many link changes. Altogether 4761 unidirectional links and 225 bidirectional ones

(ratio 21.61 : 1) with 5541 changes were measured.
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5.3.5 Tree Experiment, Channel 0

To evaluate the connectivity at an even higher elevation, the sensor nodes were affixed

to a five times five tree arrangement on the campus of our university. Please note that

the absolute value for links does naturally decrease, as only 25 nodes are used in this

scenario, instead of 36.

Figure 5.6: First Connectivity Graph obtained on the trees on channel 0

Figure 5.6 shows the initially measured connections. A total of 2977 unidirectional

links and 330 bidirectional ones were measured (ratio 9.02 : 1) with 3329 link changes

occurring during the experiment. While the increase in height caused better transmis-

sion characteristics, the trees made much larger obstacles than the poles, resulting in

communication characteristics that were somewhat in between those measured in the

placements on the ground and those on the poles.

5.3.6 Absence of Link Stability in all Environments

The connectivity measurements have shown that unidirectional links occur even more

often than literature suggests, and confirmed that the height of the placement of nodes

does influence the communication range as expected. More specific, the number of

unidirectional links increases stronger than the number of bidirectional ones.

Figure 5.7 visualizes the results on the example of the lawn experiments on channels

0 and 3 in detail. Each round represents one flooded message, with one minute passing

between rounds. The figure shows the number of unidirectional (U) and bidirectional

(B) links as well as the number of changes between the previous round an the current one

(C). Each change of a single link is counted separately, meaning that a unidirectional link

that appears or disappears counts as one, a bidirectional one that turns unidirectional
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Figure 5.7: Measured Links on the lawn for Channels 0 and 3: (C)hanges,

(U)nidirectional Links, (B)idirectional Links

is also counted as one but a bidirectional link that appears or disappears counts as

two changes, one for each directed link contained therein. It can be seen that the

number of link changes is often higher than the number of unidirectional links. This is

due to the fact that when one unidirectional links disappeared and another appeared,

two changes occurred. The ratio of unidirectional links compared to bidirectional ones

changes frequently, but there are always far more unidirectional than bidirectional links

present. The ratio varies between 3 to 1 and 91 to 1, with an average value of 8.69

to 1 over all presented experiments. This high number of unidirectional links supports

the cause of this thesis, namely the necessity of using unidirectional links in routing

protocols.

Figure 5.8 shows a box plot of the number of link changes per minute for each

placement and channel. It can be seen that apart from the tree environment which only

featured 25 nodes instead of 36, the number of changes seems to be always high, fairly

independent of the environment and channel.

When considering the networks consisting of 36 nodes, an average number of 108 link

changes per round (minute) can be recorded. This high number of link changes in a very

short time makes it highly improbable, that a path which has been measured at one

point in time will exist long enough to transmit a high number of application messages

over this exact path. Other forwarding mechanisms which can react to such changes

implicitly are required. Protocols should be able to react to these changes without
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Figure 5.8: Box plot of average number of link changes per round for each location and

channel

creating route error messages and restarting of route request flooding. The protocols

developed in this thesis (see chapter 4) are good examples and should work well under

the observed circumstances. The results obtained by evaluating them and the reference

protocols, both in simulations as well as in the real world experiments, are presented in

the next sections.
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5.4 Application Scenario 1: Sense and Send

The application implemented for scenario 1 represents a sense-and-send behavior that

is often found in sensor networks: All nodes within the network wanted to transmit all

their messages to the same destination.

5.4.1 Simulation Results

The destination (sink) was fixed within a single simulation, but multiple simulations with

different destinations were evaluated. For the network containing 100 nodes, all nodes

in the upper left quadrant were chosen (25 destinations), for the network with 400 nodes

this quadrant contained 100 nodes. Evaluating only one quadrant was chosen because

of the symmetry of the network, and because of run time limits (a single simulation of

Flooding in a network consisting of 1600 nodes took about 27 hours to complete). For

the networks containing 900 and 1600 nodes a whole quadrant would have meant too

many simulations, therefore only the 20 most interesting nodes (the corners and the

middle of each quadrant) were chosen (20 destinations).

As 30 different connectivity change lists were used for each destination in each net-

work size, 4950 simulations with run times between 5 minutes and more than a day

were necessary for each protocol.

Buckshot Routing

Four different versions of Buckshot Routing were simulated, with two parameters that

varied: The maximum route length allowed and whether or not caching of overheard

routes was used. The variation in route length was evaluated for DSR as well (see

below), because both protocols use source routing, meaning that the complete path has

to be included in the messages, leading to pretty large messages. With a route length

of 15 and a nodeIdType uint16, the header of a Buckshot Routing message can have

a size of more than 30 Bytes. As a route reply in DSR contains two paths (source →
destination and destination → source), the header size is already more than 60 Bytes

when a route length of 15 is allowed. On the eZ430-Chronos (see appendix A) the

radio hardware allowed only message sizes of 64 Bytes. Caching of overheard messages

reduces the number of messages transmitted during route discovery drastically, and is

especially important in the real experiments, where the network load affects the used

MAC layer (see section 5.4.2).

Figure 5.9 shows the number of application messages that arrived at the sink in

percent of the number of messages delivered by Flooding for four different versions of
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Figure 5.9: Delivery ratio of Flooding and four Buckshot Routing versions, Scenario 1

Buckshot Routing. It can be seen that the influence of the allowed route length was

much smaller than the influence of caching of overheard routes. This is due to the

sense-and-send application scenario used in the simulations: When Buckshot Routing

transmits a data message, the path the message actually takes is collected on the way and

replaces the message header. Therefore, the destination always learns the currently best

path, and enters it into its routing table. When it transmits a message in the opposite

direction, this newer, better path is used and the originator of the first message learns

the path that has been taken just as the destination did. But in the evaluated scenario

communication was only one way, the destination never transmitted messages back to

the nodes (except for route replies). Therefore, a once overheard and cached bad path

stays active throughout the simulation.
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Figure 5.10: Number of transmitted Messages, Flooding and four Buckshot Routing

versions, Scenario 1

The number of messages transmitted by each of the protocols can be seen in figure

5.10. The limit for the maximum route length has a strong influence on the number

of messages transmitted once the networks get bigger. For networks with 20 times 20

nodes, a route length of 15 seems to be just about right. However, when the hop distance

gets larger, many nodes do not find any route to the destination. This can be seen in

the reoccurence of route discovery for every application message, which always leads to

a new flooding (for 15 hops) of route request messages. As the hardware used in the real

experiments dictates a maximum message size and therefore a maximum route length

for source routing protocols, it also limits the possible network size.

The cost of delivering a single application message to the sink measured in transmit-

ted messages is depicted in figure 5.11. The figure shows that even though the version
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Figure 5.11: Number of transmitted Messages to deliver a single data message to the

sink, Flooding and four Buckshot Routing versions, Scenario 1

of Buckshot Routing that uses caching and route length 40 delivered the least number

of messages, its ratio is fairly good. This is due to the large number of route request

floodings that can be spared when caching of overheard routes is used and will become

important later on in the real world experiments.

Related Work Protocols

The number of data messages received at the sink for the reference protocols is shown

in figure 5.12. It can be seen that none of the other protocols gets anywhere near the

performance of Flooding, with DSR performing worst. Even in the smallest network

consisting of 10 times 10 nodes, both DSR versions deliver only about 10% of the

messages.
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Figure 5.12: Delivery ratio of AODV-BR, Tree Routing and two DSR versions, Sce-

nario 1

The other two protocols perform better in the small network, but show a steep decline

in delivery ratio for the larger networks. This decline is due to the fact that even though

the number of nodes in the network and therefore the maximum possible number of

delivered messages increases drastically, the total number of delivered messages increases

only marginally.

The absolute number of messages received at the sink for the two versions of DSR

is shown in figure 5.13. It can be seen that DSR delivers a nearly constant number of

messages, independent of the network size. While the number of nodes and thus the

number of application messages handed to the routing protocol is multiplied by 16, the

number of application messages that arrive at the sink increases only marginally. This

is due to the fact that DSR suffers heavily from link changes and longer routes change
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Figure 5.13: Total number of Data messages at the sink, two DSR versions, Scenario 1

more often. Another interesting fact about DSR is that the version with route length

limited to 15 delivers more messages than the one which allowed route lengths up to 40

hops for all larger networks. The reason for this seemingly strange behavior can be seen

when investigating nodes that are about 15 to 17 hops from the sink. Please remember

that the hop distance changes as links change. Therefore, nodes might have a distance

of more than 15 during their first route discovery, and less during a later one. When

only short routes are allowed and no route is found, the messages are stored until a

later route discovery finds a route containing 15 hops at max. Then, all stored messages

are transmitted at once. These messages have a higher chance of being delivered, as

the route information is current and the path is shorter. When using the 40 hop limit,

these nodes choose the first, long path that is found. But longer paths have a higher

probability of message loss, leading to fewer messages being delivered in total.
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Figure 5.14: Number of transmitted Messages, Flooding, AODV-BR, Tree Routing

and two DSR versions, Scenario 1

The total number of messages transmitted by each of the protocols chosen for com-

parison is shown in figure 5.14. Flooding naturally transmitted the most messages

by far. Also, it can be seen that Tree Routing transmitted very few messages, and

DSR with route length 40 transmitted much more messages than the version with route

length 15.

The number of messages transmitted in order to bring a single application message to

the sink is shown in figure 5.15. Even though DSR with route length 40 delivered nearly

the same amount of data as DSR with route length 15, the high number of transmitted

messages makes it the most costly related work protocol by far. Interestingly, even

though it transmits a large number of messages, the high number of delivered messages

make Flooding the second best. Only Tree Routing performs better. This is due to
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Figure 5.15: Number of Messages transmitted to deliver a single application message,

Flooding, AODV-BR, Tree Routing and two DSR versions, Scenario 1

the fact that Tree Routing has very low costs for delivery failures. Nodes close to the

sink are often able to deliver their messages. Nodes that are farther apart transmit their

messages, and try two retransmissions if the message is not forwarded by the next hop.

But, contrary to the other protocols, no route error messages are generated and no new

route discovery is initiated when the retransmissions are not successful.

BuckshotDV, OSBRDV, ULC and ULTR

The delivery ratio of the four other protocols developed in this work, BuckshotDV,

OSBRDV, ULC and ULTR is compared to Flooding in figure 5.16. Note that the scale

starts at 80%.

144



5.4. APPLICATION SCENARIO 1: SENSE AND SEND

Number of Nodes

D
el

iv
er

y 
R

at
io

80%

85%

90%

95%

100%

BuckshotDV

Flooding

OSBRDV

ULC
ULTR

100 400 900 1600

Figure 5.16: Delivery Ratio of BuckshotDV, OSBRDV, ULC, ULTR and Flooding,

scale starts at 80%, Scenario 1

What catches the eye right away on the figure is that the delivery ratio of all four

protocols is very high and increases with network size. ULTR seems to have reached

its maximum at 97% already in networks consisting of 20 times 20 nodes, while the

other protocols still get better, more or less gradually. Also, it seems that ULC and

BuckshotDV converge to the same value of about 97%, but to be sure more simulations

with larger networks would be necessary. These were not done for this thesis for two

reasons: First, the simulation run time would be very high. A single simulation of

Flooding in the 40 times 40 network took more than a day, and 600 of these were

necessary. In 50 times 50 networks the value would be much higher. Second, the

largest network that was simulated, 40 times 40, already contains 1600 nodes and it is

unlikely that such large sensor networks will be deployed for a real application in the
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near future. If larger networks are deployed, it is likely that a logical partitioning of the

network would be realized on application level, and multiple sinks would be used.
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Figure 5.17: Number of Messages transmitted by BuckshotDV, OSBRDV, ULC, ULTR

and Flooding, Scenario 1

The number of messages transmitted by BuckshotDV, OSBRDV, ULC, ULTR and

Flooding is shown in figure 5.17. The figure shows that ULC and ULTR need a lot of

message transmissions to compensate for the missing neighborhood discovery protocols:

As both protocols were designed with the assumption that either a neighborhood discov-

ery protocol or the used MAC layer would supply link information, they suffered from

the absence of accurate information. The passive overhearing that was implemented

instead can only detect bidirectional and unidirectional incoming links, which makes

the explicit usage of unidirectional links all but impossible. Therefore, both protocols

try to find bidirectional links, or, if these are not available, switch to buckshot mode
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for one hop, which increases the network load very much, when it is initiated too of-

ten. Another problem for these protocols was timing: Passive detection of links only

works when messages are transmitted, but links change more often than messages are

transmitted. Therefore, both protocols often worked on outdated information.
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Figure 5.18: Number of Messages transmitted to deliver a single application message,

BuckshotDV, OSBRDV, ULC, ULTR and Flooding, Scenario 1

Much more surprising is the performance of OSBRDV, which was designed to re-

duce number of messages transmitted by BuckshotDV by storing messages and maybe

discarding them if their forwarding by the next hop is overheard. Obviously, this did

not work, as OSBRDV transmitted more than twice as many messages as BuckshotDV.

The reason for this increase in number of transmitted messages lies in the highly dy-

namic network topology and the delayed transmissions. Due to the high number of

unidirectional links, nodes often did not overhear the forwarding of their message by
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the intended next hop and forwarded the message after the timeout. But in the mean-

time, the logical topology of the network had changed, and additional nodes received

the message, once again storing it and forwarding after a certain delay.

The costs that the delivery of a single data message caused are shown in figure 5.18.

ULTR produces almost the same costs as Flooding with more than 1500 messages in the

network consisting of 1600 nodes. It is closely followed by ULC, as both protocols were

subject to the same problems. The limited directional flooding used in BuckshotDV

seems to work, though. It needed to transmit the lowest number of messages per

application message by far.

Comparison between all Protocols

Concluding the evaluation of these simulations it can be said that all protocols devel-

oped for this thesis have achieved a much better delivery ratio than the protocols used

for comparison. Only Flooding delivered more messages, which is why it was used as

reference, and the delivery ratio of a protocol defined as the number of messages deliv-

ered by that protocol divided by the number of messages delivered by Flooding (figure

5.19).

Even though the simulations did not feature MAC layer elements, it can already be

seen that the protocols chosen from related work are not able to work in an environment

with many unidirectional links and often changing links in general. On the other hand,

the results clearly show that the developed protocols have achieved their design goals,

namely resistance against often changing links and usage of unidirectional links. Only

Flooding delivered better results in the simulations, and it is known that Flooding

runs into huge MAC layer problems when it is used on real hardware. Moreover, the

protocols developed in this thesis work better in larger networks, except for the source

routing variant of Buckshot Routing. But source routing should only be used in small

networks anyway, due to the resulting header size.
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Figure 5.19: Delivery Ratio of all Protocols for different Network Sizes, Scenario 1

5.4.2 Real World Experiment Results

For the real world experiments of scenario 1, all four different locations described in

section 5.2.4 were used. Each protocol was evaluated on each location, with node 0 in

the lower left corner as destination (sink).

The delivery ratio of each protocol is shown in figure 5.20, sorted by protocol and

location. For most protocols, the number of delivered messages for the desk and pole

locations is roughly the same, as these two locations differed only marginally. The desk

location is one hop, while the pole location contained between one and two hops on

average. The figure also shows that Flooding delivers a nearly constant number of

messages for the pole, lawn and stone environments.
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Figure 5.20: Delivery Ratio of each Protocol achieved in the real experiments, Scenario

1

The other three reference protocols, AODV-BR, DSR and Tree Routing show a

steep decline in delivered messages for the lawn and stone pavement placements. All

protocols developed for this thesis were able to deliver more messages to the destination,

except for ULTR on the stones. The reason for the bad results from ULTR lies in its

dependency on accurate link information. As described in section 4.4, ULTR tries

to route messages around unidirectional links explicitly. But in order to build this

triangle, neighborhood information is needed. The current implementation of ULTR

tries to obtain this information passively, by overhearing forwarded messages. For a

rapidly changing environment this approach is bound to fail. It would be interesting

to see, how a protocol implementation that uses a neighborhood discovery protocol or

neighborhood information provided by the MAC-layer would perform.
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Figure 5.21: Total Number of Messages transmitted by each Protocol, Scenario 1

The number of protocol and data messages transmitted by each protocol can be seen

in figure 5.21. Once again, Flooding remains fairly stable throughout the locations.

While all other protocols transmitted more messages in the last two locations (lawn,

stone pavement), the number of messages transmitted by ULC and ULTR declines.

This is once more due to the absence of accurate link information. Both protocols were

designed with the assumption that link information would be available either from a

neighborhood discovery protocol or from the MAC layer. Using only overheard messages

instead does not work in the first two locations: When all nodes can transmit directly

to the sink and the sink never answers, all links are assumed to be unidirectional and

buckshot mode is induced. But when buckshot mode is started by every node, the

network load rises close to that of flooding. This can be seen by taking a closer look at

the type of transmitted messages: A lot of the transmitted messages were data messages.
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Figure 5.22: Number of Protocol Messages transmitted by each Protocol, Scenario 1

An even more interesting fact that can be seen in the figure is that the passive

neighborhood discovery mechanism starts to work in the multihop environments. When

paths are more than 1-2 hops in length, forwarded messages are received more often and

the nature of the links can be observed. Therefore, even though it might seem strange,

ULC and ULTR need to transmit fewer messages in networks with a larger diameter.

The number of protocol messages, i.e. non-data messages, transmitted by each pro-

tocol can be seen in figure 5.22. As already seen above, ULTR suffered badly from the

missing neighborhood discovery protocol. Where ULC only incremented a counter for

unidirectional links, ULTR always switched to buckshot mode. The huge number of

protocol messages transmitted by ULTR consisted mainly of route request messages.

In fact, a route discovery took place for nearly each data message generated by the

application in ULTR.
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Figure 5.23: Total Number of Messages transmitted by each Protocol divided by the

number of delivered data messages, Scenario 1

Another measurement of the cost paid to deliver an application message is shown in

figure 5.23. The figure shows the total number of transmitted messages divided by the

number of application messages that reached the sink. Unsurprisingly, Flooding once

more shows a relatively constant performance and DSR and AODV-BR show too high

values. Interestingly, Tree Routing seems to have performed quite well. If only this

figure would be taken into account when choosing a protocol, Tree Routing would be

preferred. However, the numbers presented here have to be put into perspective. The

result of Tree Routing is achieved because it uses nearly no protocol messages, and

two retransmissions are its only reaction to message loss. No route error messages are

generated and no new route discovery is started. Therefore, the cost of a lost application

message is much lower than in the other protocols. DSR represents the other end of

153



CHAPTER 5. EVALUATION

the spectrum: When a message loss is detected there, a route error message is created

and transmitted to the originator. When the route error is received, the route is deleted

and a new route discovery is initiated, which leads to a flooding of the whole network.

If conditions are really bad, it may even lead to flooding the network twice. Except for

the problems experienced by ULTR in the 1-2 hop locations, the protocols developed in

this thesis perform fairly well. But the results also show that the number of nodes used

in the real world experiments was actually a little low - as the simulations have shown

(see section 5.4.1), the big differences between protocols can be seen better in larger

networks. However, using a few hundred nodes in the real world experiments was not

possible as there were not that many nodes available.

5.4.3 Comparison between Simulations and Experiments

The real world experiments were conducted with 36 nodes, while the simulations fea-

tured either 100, 400, 900 or 1600 nodes. To show that the tendencies seen in the

simulations represent those that would be achieved with a large scale sensor network,

a network consisting of 36 nodes was also simulated, using the simulation parameters

specified in appendix A.

Figure 5.24 shows the median of the delivery ratio of all evaluated protocols for the

two multihop experiments (lawn, stones) and the 36 nodes simulation. Naturally, the

results of Flooding in the simulation are much better than those achieved in the real

world experiments, as Flooding suffers heavily from the broadcast storm problem in the

real experiments. The used CSMA MAC layer simply cannot handle the huge number

of messages. Except for ULTR, the simulation results and those of the two experiment

settings are quite similar for the protocols developed in this thesis. From the protocols

used for comparison, only AODV-BR shows a large difference between simulation and

real world results.

When looking at the results those two protocols, AODV-BR and ULTR, achieved in

the real world experiments, it can be seen that they have a strong variation in delivery

ratio between the lawn and stone experiments. This high variation seems to imply that

both protocols are especially vulnerable to one or more properties of the real experiments

which do not have so much influence on the other protocols.

Both AODV-BR and ULTR try to use an explicit detour around unidirectional links,

using link information detected during route reply transmission (AODV-BR) or during

transmission of DATA messages (ULTR). As the connectivity measurements have shown,

link changes occurred even more often than expected, making conditions for AODV-BR

and ULTR harder in the real world than in the simulations. None of the other protocols
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Figure 5.24: Delivery Ratio of each Protocol; Experiments vs. Simulations

suffered as much as these two. For DSR, an additional increase in frequency of changes

made no difference, as it could not even tolerate the one simulated. For Tree Routing,

the small network diameter and the 2 retransmissions on each hop were enough to

deliver about 50% of application messages. The link changes would not have influenced

Flooding, but Flooding produced a very high network load which the MAC layer could

not handle. ULC worked on incorrect information, but did not suffer as strongly from

this due to the fact that only the calculation of the weights might be wrong, but routes

could still be found. For Buckshot Routing, BuckshotDV and OSBRDV a mistake in

their neighbor table only resulted in unnecessary transmissions, but did not lessen the

delivery ratio much. Still, it can also be seen that the deployed sensor network was not

large enough for them to show their full potential.
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In summary it can be said that the used simulation approach has some limitations,

as it does not include the medium access control protocol used in the real experiments.

However, the results show that the usage of connectivity matrices and the way they were

generated is close to reality, and can be used to evaluate the influence of unidirectional

links and frequent link changes on the routing protocols. This is exactly what the

simulations were intended for as the used MAC layer and other side effects of the used

hardware might (and hopefully will) change for future deployments. When the exact

properties of the hardware that will be used in a deployment are known beforehand,

these could be included in the simulations, but that was not the case for this thesis.

Some of the less favorable communication properties of the eZ430-Chronos (e.g. the

inability of the CCA to receive messages during backoff) were only discovered during

the connectivity measurements (see section 5.3).

Another advantage of the developed simulation model is the fact that the connectivity

data gathered during the connectivity measurement experiments can easily be included.

The data that could be gathered this way was not presented in this work, because the

number of data sets from the connectivity experiments currently available is too small.
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5.5 Application Scenario 2: Single Pairing

In this scenario all settings, including the number of messages a node wants to transmit,

are the same as in the sense-and-send scenario. However, instead of a single sink as

destination for all messages from all nodes, each node has a randomly chosen partner

node it wants to communicate with. This pairing of nodes was generated before the

simulations and experiments, and differs only between different network sizes: If e.g.

node 15 is the partner of node 21 for the network consisting of 36 nodes, this pairing

remains fixed for all protocols as well as for simulations and real world experiments.

This pairing of nodes represents a communication pattern for MANETs and was

chosen because two of the protocols used for comparison (AODVBR and DSR) are

MANET protocols.

5.5.1 Simulation results

In the simulations for the single pairing scenario, the same connectivity change lists

were used that have already been used in the sense-and-send scenario. However, as the

destination was not a single fixed one for all nodes, the simulations were not varied

according to the destination. Instead, the generated pairings were used as stated above.

Flooding was once again used to measure the upper limit for delivered messages and

the delivery ratio was defined as the number of messages delivered by a protocol divided

by the number of message delivered by Flooding.

Buckshot Routing and Related Work Protocols

The delivery ratio of AODVBR, Buckshot Routing, DSR, Flooding and Tree Routing

is shown in figure 5.25. For all protocols except Flooding the delivery ratio declines

with increasing number of nodes. It can be seen that AODVBR and Tree Routing

suffer the most from the increased route length in the larger networks, as the decline of

their delivery ratio is steep. For AODVBR, building the initial route is the crucial part.

When a route has been successfully established, the fish bone structure can be used to

salvage data packets. But since building the initial route requires a bidirectional path

and the probability of a complete path being bidirectional decreases with route length,

AODVBR only works in small networks. For Tree Routing, building the initial route

is no problem. However, due to the dynamic nature of links between nodes, the initial

path is obsolete soon and the two retransmissions used as reaction to message loss are

not sufficient in larger networks.
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Figure 5.25: Delivery ratio of AODV-BR, Buckshot Routing, DSR, Flooding and Tree

Routing, Scenario 2

The delivery ratio of DSR and Buckshot Routing also declines due to their source

routing nature. However, finding the initial route is not a problem for either of them,

as DSR uses one flooding for each direction and Buckshot Routing uses multiple paths

implicitly. The main difference between both protocols are their route maintenance

mechanisms. When DSR detects a route break it tries to inform the originator of the

message that caused the detection of the break. Following this, a new route discovery

with all its costs takes place. In Buckshot Routing this route maintenance is done im-

plicitly with each received message, resulting in fewer stale routes and a better delivery

ratio. Also, a maximum route length of 40 and caching of overheard routes were used

for Buckshot Routing and DSR in this scenario. When the delivery ratio of Buckshot

Routing for this scenario is compared to that achieved by the same variant in the sense-
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and-send scenario it can be seen that the delivery ratio has increased from less than

20% to nearly 60% in the networks containing 1600 nodes. This is due to the fact that

the implicit route maintenance did not work in the sense-and-send scenario as all mes-

sages were transmitted from the nodes to the sink. As the nodes never received replies

from the sink, they could never use the implicit route maintenance mechanism. In this

scenario however, the pairing of nodes results in a constant message exchange between

a node and its partner, leading to routes that are up to date most of the time.
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Figure 5.26: Number of transmitted Messages, AODV-BR, Buckshot Routing, DSR,

Flooding and Tree Routing, Scenario 2

The number of transmitted messages for each protocol is shown in figure 5.26. Here,

the impact of the route maintenance mechanism of DSR can be seen: It transmits

more than twice as many messages as Flooding as it tries to repair broken routes.

Tree Routing presents the other extreme, it transmits nearly no messages at all, while

Buckshot Routing and AODVBR need slightly more messages.
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Figure 5.27: Number of Messages transmitted to deliver a single application

message,AODV-BR, Buckshot Routing, DSR, Flooding and Tree Routing, Scenario 2

When the network load is considered (figure 5.27), the impact of the low number

of messages transmitted by Tree Routing can be seen even better: The number of

messages transmitted to deliver a single application message would suggest that Tree

Routing is an excellent choice. However, this fact needs to be correlated with the

delivery ratio in most cases, and the delivery ratio of Tree Routing is the lowest of

all protocols. This is once again due to the length of routes. Tree Routing delivers a

nearly constant number of data messages to the destination (roundabout 8000) for the

networks with 400, 900 and 1600 nodes, even though the total number of application

messages that is handed to the routing protocol increases proportionally to the number

of nodes in the network.
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BuckshotDV, OSBRDV, ULC and ULTR

The delivery ratio of BuckshotDV, Flooding, OSBRDV, ULC and ULTR is shown in

figure 5.28. Note that the scale starts at 80%. Except for ULC, all protocols deliver well

above 95% of application messages for networks containing at least 400 nodes. The figure

once more confirms that the performance of BuckshotDV increases with network size as

the number of available redundant paths increases. OSBRDV does not performs as well

as BuckshotDV, which can be attributed to the delaying of messages and the potential

loss of redundancy incurred thereby. But with 97% delivery ratio the performance is

still much better than that of the related work protocols. The performance of ULTR

seems largely independent of the network size with a slight increase from 96% to 97%

for the network with 900 nodes.
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Figure 5.28: Delivery ratio of BuckshotDV, Flooding, OSBRDV, ULC and ULTR, scale

starts at 80%, Scenario 2
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Figure 5.29 shows the total number of messages transmitted by BuckshotDV, Flood-

ing, OSBRDV, ULC and ULTR. The number of transmitted messages is nearly the same

for all protocols, except for Flooding. When these results are compared to those of the

sense-and-send scenario, it can be seen that the number of messages transmitted by

BuckshotDV has increased much more than that of the other protocols. This is the

price that BuckshotDV pays for a high delivery ratio: As the routing tables are contin-

uously refreshed by messages from the partner node, the number of nodes that receive a

message and also know the next but one hop increases. As all of these forward the mes-

sages in BuckshotDV, the number of redundant paths that are used is increased. This

leads to an increase of delivery ratio of roughly 5% for all network sizes. But to achieve

this raise in delivery ratio the number of transmitted messages is nearly doubled.
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Figure 5.29: Number of transmitted Messages, BuckshotDV, Flooding, OSBRDV, ULC

and ULTR, Scenario 2
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The increased number of messages transmitted by BuckshotDV naturally also in-

creases the umber of messages transmitted to deliver a single application message. Fig-

ure 5.30 shows the performance of BuckshotDV, Flooding, OSBRDV, ULC and ULTR

in that regard. BuckshotDV still performs best, but only marginally. When it is com-

pared to the performance of Buckshot Routing in its source routing variant, it can be

seen that the source routing variant transmits much fewer messages per delivered data

message but only has a delivery ratio of 59% for the network consisting of 1600 nodes,

whereas BuckshotDV delivers 99%. This is a good example for a choice to be made by

the application programmer: If high network load poses a problem but message delivery

might fail every once in while, source routing Buckshot Routing can be used. But if the

delivery ratio takes prominence over all else, BuckshotDV is the protocol of choice.
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Figure 5.30: Number of Messages transmitted to deliver a single application message,

BuckshotDV, Flooding, OSBRDV, ULC and ULTR, Scenario 2
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Comparison between all Protocols

The delivery ratio achieved by each of the simulated protocols in the single pairing

scenario is shown in figure 5.31. It can be seen that the protocols developed in this

thesis all perform better than those chosen from related work. Moreover, except for

Buckshot Routing, the delivery ratio stays the same or increases with network size.

For AODVBR, DSR, Tree Routing and Buckshot Routing the delivery ratio decreased

with network size. But most interestingly, the delivery ratio of DSR improved drastically

when compared to the sense-and-send scenario. Also, the decline in delivery ratio with

increasing number of nodes is visible, but it is not as steep as for AODVBR and Tree

Routing.
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Figure 5.31: Delivery Ratio of all Protocols for different Network Sizes, Scenario 2

Concluding the evaluation of these simulations it can be said that DSR gained most

from the change of application scenario. This was expected, as DSR was designed for
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MANET scenarios, not for sense-and-send scenarios in wireless sensor networks. How-

ever, Buckshot Routing, BuckshotDV and OSBRDV also show an increase in delivery

ratio as the implicit route maintenance starts to work for them. Also, the delivery

ratio of protocols developed for this thesis is still higher than that of the related work

protocols, for all network sizes.

5.5.2 Real World Experiment results

In the experiments for the single paring scenario, only two locations were used: The

desk and the stone pavement. No experiments were made on the poles, because of the

similarity between pole and desk scenario. On the desk, all nodes can communicate

directly while on the poles the logical distance between nodes was only 1-2 hops even

in the sense-and-send scenario where the destination was on the corner of the deployed

grid. The pairings used in this scenario reduce the average route length and would result

in even more single hop routes for the pole scenario, making the experiments redundant.

The lawn placement has been neglected due to its similarity with the stone pavement

placement.

Figure 5.32 shows the delivery ratios of all protocols that were achieved in the real

world experiments on the desk and stone pavement. With the exception of ULTR, all

protocols delivered 100% of messages in the desk scenario. This behavior has also been

seen in the sense-and-send scenario and can be explained by the absence of up-to-date

link information. ULTR normally depends on the MAC layer or the application to

deliver neighborhood information. As none was available, neither from MAC nor from

the application, the current implementation relies on passive gathering of neighborhood

information by overhearing the forwarding of messages. But in a single hop environment

not enough forwarded messages are overheard.

In the stone pavement experiments, even Flooding did not deliver all messages,

which gives an insight into the MAC-layer problematic experienced more or less by all

protocols. Apart from Flooding, OSBRDV has the best delivery ratio in this scenario.

The reason for this lies in the delaying of messages by nodes that are not directly on

the path which reduces the MAC layer problems experienced by Buckshot Routing and

BuckshotDV which are next in line. Tree Routing also has a good delivery ratio in

this scenario as it does not produce too much network load and the average path length

was fairly small, making its two retransmissions a good reaction to message loss. ULC

and ULTR both suffer from inaccurate information in their neighbor tables, and often

use their fallback mechanism. DSR is continuously trying to repair routes, and thereby

increases the network load very much, which can be seen in the next figure.
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Figure 5.32: Delivery Ratio of each Protocol achieved in the real experiments, Scenario

2

The total number of messages transmitted by each protocol is shown in figure 5.33.

For the experiments on the desk it can be noted, that ULTR transmits more messages

than Flooding which can also be explained by the fallback mechanism in use: When

ULTR starts route discovery, the network is flooded with a route request message. The

destination receives this message and answers with a route reply but does not know if

the link to the previous hop is unidirectional or bidirectional. Therefore, it uses the

fallback mechanism, meaning that each node that knows the next hop forwards the

message, which results in a second flooding of the network. Now that the route has

been built, the data message can be transmitted. This process is repeated every time

that the link timeout removes a link to the destination from a nodes neighbor table.
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Figure 5.33: Total Number of Messages transmitted by each Protocol, Scenario 2

In the stone pavement placement, the passive neighborhood discovery works much

better, leading to fewer messages transmitted by ULC and ULTR. Here, DSR trans-

mits more than 57.000 messages and thus nearly as many as Flooding. The protocols

developed in this thesis transmit between 17.000 and 30.000 messages while AODVBR

and Tree Routing transmit about 15.000 and 8.000 messages respectively. These num-

bers already hint at the fact that Tree Routing profits quite a lot from the application

setting and the small network diameter.

A more detailed look at the number of messages transmitted by each protocol is given

in figure 5.34, where only the protocol packets are counted. Naturally, Flooding has the

least number of protocol messages as it does not use any, and all transmitted packets are

data messages. On the desk, Buckshot, BuckshotDV and OSBRDV transmit nearly the

same amount of messages (648-665), while AODVBR, ULC and Tree Routing transmit
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Figure 5.34: Number of Protocol Messages transmitted by each Protocol, Scenario 2

about twice as much (1109-1283). As 36 nodes were present in the network, a flooding of

one route request or tree building message by each node would result in 1296 (36× 36)

transmissions. Therefore, these three protocols transmitted the expected number of

messages. Buckshot, BuckshotDV and OSBRDV transmit fewer messages, because they

do not need to start a route discovery for each node: When a node overhears a different

node transmitting a route reply message, it extracts the information contained therein

and enters it into its own routing table. DSR and ULTR flood the network multiple

times for each route discovery, resulting in an awfully high number of route request

and route reply messages. For DSR this is due to the specification for the operation in

the presence of unidirectional links. For ULTR it is once more due to the absence of

accurate neighborhood information.
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On the stone pavement, the number of protocol messages rises enormously for DSR,

as a lot of link breaks lead to the creation of route error messages and subsequent

new floodings of the network in order to find a new route. The lowest number of

protocol messages (apart from Flooding) is transmitted by Tree Routing which only

transmits its tree building messages at the start of the experiment. When this figure

is compared to the previous one, it can be seen that Tree Routing transmitted about

6.700 data messages, meaning that most of the time the two retransmissions took place.

Buckshot Routing also has a low number of transmitted protocol packets, but the usage

of redundant paths leads to a higher number of data messages transmitted.
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Figure 5.35: Total Number of Messages transmitted by each Protocol divided by the

number of delivered data messages, Scenario 2

The number of messages transmitted to deliver a single application message is shown

in figure 5.35. As there were 36 nodes in the network, Flooding transmitted 36 mes-
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sages for each data message delivered to the destination. The overhearing of route reply

messages described above leads to a good performance on the desk for Buckshot, Buck-

shotDV and OSBRDV, with AODVBR, DSR and Tree Routing following close. The

high number of data messages transmitted by ULC and ULTR due to the inaccurate

neighborhood information leads to a performance equal to Flooding for ULC and an

even worse one for ULTR.

On the stone pavement, Tree Routing performed best, with Buckshot, OSBRDV

and Buckshot following. When the delivery ratio (figure 5.32 ) is also taken into ac-

count it can be said that for this application scenario, network size an placement, the

choice of routing protocol should be made between Tree Routing, Buckshot Routing

and OSBRDV. OSBRDV has the highest delivery ratio, and should be chosen when

network load is not a major concern. Tree Routing produced the least network load

per application message delivered and should be chosen if some message losses could

be tolerated but the network load is the most important factor. Buckshot Routing

represents a good choice in between.
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5.6 Application Scenario 3: Multiple Pairings

The third application scenario, multiple pairings, once again uses the same settings as

the two previous ones, only the application was changed. Instead of all nodes transmit-

ting to a single sink or one communication partner for each node, there are multiple part-

ners now. Each node has one communication partner at the start of the simulations/-

experiments and transmits the first five messages to this node. Once five messages have

been transmitted, the communication partner is changed. This is repeated every time

five messages have been transmitted, until the total number of messages specified (110

for simulations, 60 for experiments) has been reached. The pairings of nodes were once

again generated randomly before the start, and the same pairings were used for all

protocols.

This represents a MANET scenario where all nodes only want to exchange a few

messages with a chosen partner before communicating with a different node. The fact

that each pairing is only used for five messages results in a reduction of the importance

of route maintenance. It is much more likely that a route is stable for five minutes

than for a whole simulation/experiment, resulting in less route errors. Instead, route

discovery rises in importance, as it is carried out after every five application messages.

5.6.1 Simulation results

The simulations once again used the connectivity change lists that were generated before

the start, to keep network connectivity equal for all protocols. As in the single pairing

scenario, the pairings define a different destination for each node, making the additional

simulation parameter destination used in the sense-and-send scenario unnecessary.

The delivery ratio remains defined as the number of application messages delivered by

a protocol divided by the number of messages delivered by Flooding in the simulations.

Buckshot Routing and Related Work Protocols

The delivery ratio of Buckshot Routing is compared to that of the related work protocols

in figure 5.36. It can be seen that Buckshot Routing still outperforms all related work

protocols, even though the application scenario has been switched to one that should

be better for the related work protocols. As the importance of route maintenance is

reduced, one of the advantages of Buckshot Routing, the implicit route maintenance,

has only a small impact.

For AODVBR and Tree Routing, the number of nodes and therefore the route

length is much more important than the communication pattern of the application: The

171



CHAPTER 5. EVALUATION

changes between single pairing and multiple pairings are marginal. The performance of

Tree Routing increased by one percent for the largest network while that of AODVBR

decreased by two percent. A bigger difference can be seen for the smaller networks, where

AODVBR has lost 10% of its performance compared to the single pairing scenario in

the network consisting of 100 nodes. This decrease in delivery ratio is due to the fact

that building the initial route is one of the weaknesses in AODVBR. When searching

for a route, the path has to be bidirectional to enable the route reply to use the same

path as the route request. Once this path has been established, the fish bone structure

that has been built with the route replies can be used to salvage data messages when

links break. In the multiple pairings scenario, each node needs to search routes to 22

different nodes instead of only one.
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Figure 5.36: Delivery ratio of AODV-BR, Buckshot Routing, DSR, Flooding and Tree

Routing, Scenario 3
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The number of messages transmitted by Buckshot Routing and the related work

protocols is shown in figure 5.37. With twice the number of transmitted messages as

Flooding, DSR once more transmitted the most messages by far. Buckshot Routing,

AODVBR and Tree Routing transmitted far less messages, with Tree Routing pro-

ducing the least number. When the results are compared to those of the single pairing

scenario, only Buckshot Routing shows a significant difference. This is due to the fact

that Buckshot Routing now needs 22 times as many floodings of the network, one for

each new route discovery and node in the network instead of only one for each node. As

Buckshot Routing does not transmit any route maintenance messages, route discovery

and data transmission are the two factors that define its performance. Therefore, the in-

creased number of route discoveries has a strong influence on the number of transmitted

messages.
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The cost of delivering a single data message measured in transmitted messages is

shown in figure 5.38. Even though Buckshot Routing transmitted more messages than

AODVBR, the much higher number of delivered messages results in a fairly good per-

formance. Only Tree Routing transmitted less messages per application message de-

livered. However, this is once more due to the fact that the cost of delivery failure is

small in Tree Routing. When the delivery ratio is also taken into account, Buckshot

Routing emerges as the better protocol. On the downside, the increased number of mes-

sages transmitted by Buckshot Routing when compared to the single pairing scenario

results in an increased cost of delivered messages.
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BuckshotDV, OSBRDV, ULC and ULTR

The delivery ratio achieved by BuckshotDV, OSBRDV, ULC and ULTR is shown in

figure 5.39, note that the scale starts at 80%. It can be seen that all protocols deliver

more than 95% of application messages, regardless of network size. The only exception

is ULC, which starts at 88% for the network containing 100 nodes and rises up to 93%

for the largest network, containing 1600 nodes. OSBRDV and ULTR deliver between

95% and 97%, with only a low variation between network sizes. BuckshotDV starts

with a delivery ratio of 95% and increases its performance up to 99%.
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Figure 5.39: Delivery ratio of BuckshotDV, Flooding, OSBRDV, ULC and ULTR, scale

starts at 80%, Scenario 3

The high number of delivered messages comes at the price of an increased number

of transmitted messages, as figure 5.40 confirms. Here, it can be seen that the number

of messages transmitted by BuckshotDV, OSBRDV, ULC and ULTR has risen when
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compared to the single pairing scenario. While the number is still lower than that of

Flooding for all four protocols, it has gotten close. This is especially true for Buck-

shotDV, which now transmits the highest number of messages except for Flooding.

In the single pairing scenario, BuckshotDV transmitted the second least number of

messages, only OSBRDV transmitted less. The fact that the number of transmitted

messages rises for all protocols developed in this thesis can be explained by the increase

in redundancy and the higher number of route searches as the route replies already use

multiple redundant paths.
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Figure 5.40: Number of transmitted Messages, BuckshotDV, Flooding, OSBRDV, ULC

and ULTR, Scenario 3

This high number of transmitted messages is the reason why the performance of

BuckshotDV decreases in the multiple pairings scenario. Figure 5.41 shows the perfor-

mance of BuckshotDV, OSBRDV, ULC and ULTR measured in messages transmitted
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Figure 5.41: Number of Messages transmitted to deliver a single application message,

BuckshotDV, Flooding, OSBRDV, ULC and ULTR, Scenario 3

per application message delivered. If only this figure were concerned, OSBRDV would

be the protocol of choice. When the delivery ratio is also taken into account, it is no

longer easy to say which protocol should be preferred. OSBRDV has the best mes-

sages/data ratio and delivers 95-96% of messages. In most applications, that will be

enough. But if a higher delivery ratio is needed, ULTR, BuckshotDV or even Flooding

might be considered for this application scenario.

Comparison between all Protocols

The delivery ratio of all protocols is compared in figure 5.42. The related work protocols,

AODVBR, DSR and Tree Routing all show a steep decline in delivery ratio, with DSR

performing best of these three. Interestingly, the decline of delivery ratio is not as steep
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Figure 5.42: Delivery Ratio of all Protocols for different Network Sizes, Scenario 3

for DSR as it is for AODVBR and Tree Routing. This is due to the fact that DSR has

a better route discovery mechanism. While flooding the whole network twice in order

to establish a route produces a lot of network load, it also means that a route will be

found in most cases. Only if network separation occurred, no route will be found. How

long a route found this way can be used depends on link stability, however. But since it

only needs to be used for five messages before a different destination is selected, there

is a good chance some of the five messages can be transmitted successfully. This can

be seen in the network with 1600 nodes, where DSR was able to deliver one third of

application messages, meaning that between one and two messages were delivered to

each destination on average.

Buckshot Routing also suffered from increased route length due to its source routing

nature while BuckshotDV, ULC and ULTR increase their performance with increased
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number of messages. The performance of OSBRDV is mostly independent of the network

size.

5.6.2 Real World Experiment results

The experiments for the multiple pairings scenario featured the same settings and lo-

cations as the experiments for the single pairing scenario (section 5.5.2): The desk

placement was used as single hop, and the stone pavement as multihop environment.

The pole placement would have been redundant to the desk placement while the lawn

placement would have been similar to the stone pavement environment.
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Figure 5.43: Delivery Ratio of each Protocol achieved in the real experiments, Scenario

3

The delivery ratio achieved by all protocols in the multiple pairing scenario is shown

in figure 5.43. In the desk experiments, all protocols reached 100 % delivery ratio except
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for ULC and ULTR. This is due to the passive neighborhood discovery used in both pro-

tocols: Only when the forwarding of a message is overheard by a node that has already

forwarded that message and is listed as last hop, the neighborhood discovery assumes

bidirectional links. Otherwise, links are assumed to be unidirectional. This leads to a

lot of mistakes, as nodes do not need to forward messages in a single hop environment,

meaning that all links in the network are assumed to be unidirectional. Therefore, the

backup mechanism is always used unnecessarily, resulting in a high network load which

in turn leads to more collisions and message loss.

On the stone pavement, OSBRDV has the highest delivery ratio, even higher than

Flooding. The reason for this can be found in the MAC layer, which has problems with

a high network load. In OSBRDV, all nodes that are not on the direct path store the

messages for some time, reducing the immediate network load compared to BuckshotDV.

However, these messages are transmitted later, increasing the total number of messages.
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This total number of transmitted messages is shown for all protocols in figure 5.44.

ULTR once more has the highest number of transmitted messages for the single hop

environment due to the problems with the neighborhood detection. On the stone pave-

ment, the passive neighborhood detection works better, and the number of transmitted

messages is reduced. There, Flooding transmits the greatest number of messages while

Tree Routing transmits the smallest. Still, when considering that only 2160 appli-

cation messages were generated it can be seen that Tree Routing often used its two

retransmissions.
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Figure 5.45: Number of Protocol Messages transmitted by each Protocol, Scenario 3

The number of protocol messages transmitted by each protocol can be seen in figure

5.45. Flooding naturally did not transmit any protocol messages, followed by OSBRDV

which transmitted 701 protocol messages and BuckshotDV with 1171 messages in the

desk placement. ULTR transmitted the most protocol messages.
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On the stone pavement, Tree Routing needed the least number of protocol mes-

sages, apart from Flooding, followed by OSBRDV. DSR transmitted the most protocol

messages, followed by AODVBR and ULTR. Buckshot Routing, ULC and BuckshotDV

are placed somewhat in between.
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The number of transmitted messages divided by the number of delivered application

messages is used to measure the performance of all protocols in figure 5.46. For the

desk placement, OSBRDV shows the best performance, directly followed by Buckshot

Routing and BuckshotDV. Tree Routing is placed shortly thereafter, with AODVBR

following.

When the sensor nodes were placed on the stone pavement, Tree Routing needed

the least number of transmissions to deliver a single application message, which is once
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again due to the low cost of delivery failure. When only the cost of an application mes-

sage delivery is considered, Tree Routing performs best. However, OSBRDV delivered

nearly twice as many messages but needs more messages to reach this increase in deliv-

ery ratio. If the delivery ratio is most important, OSBRDV would be chosen for such

small networks and this application scenario. If the network load is more important,

Tree Routing should be chosen.
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5.7. INTERACTION BETWEEN ROUTING PROTOCOLS AND DUPLICATE
SUPPRESSION

5.7 Interaction between Routing Protocols and Duplicate

Suppression

Most papers describing routing protocols do not specify the way duplicate detection

should be implemented. Often, it is only stated that a duplicate suppression mechanism

should be used. If a way of suppressing duplicates is specified, it is frequently proposed

to use the identity of the originator and a sequence number to uniquely identify a

message.

When a node receives a message, the first thing it should do in order to avoid unnec-

essary work is to consult its duplicate suppression. If the message has been received and

handled before, there is no need to process it any further and it is silently discarded.

Otherwise, the tuple (sender ID, sequence number) is entered into the duplicate list and

the message is processed.

During work on the implementation of BuckshotDV it became apparent that this may

lead to message loss under certain circumstances which are described in this section.

5.7.1 Route Changes in Intermediate Nodes

The first problem can only arise for distance vector protocols. Figure 5.47(a) shows

a path from node S to node D that node S has built with a route discovery. It leads

through nodes A and C.

S A

B C

D

(a) Path from S to D via A

S A

B C

D

(b) Path from A to D

Figure 5.47: Paths From S to D and from A to D

During the lifetime of that path, node A has learned a different path that leads to

node D (figure 5.47(b)). This could be due to timeouts or simply related to the fact
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that caching of overheard routes is enabled. As the new path from Node A to node

D is not longer but more current than the one stored in node A’s routing table, most

protocols would use this new path in the future.

The problem arises the next time node S wants to send a message to node D. It

looks up the next hop in its routing table and transmits the message to node A. Due

to the broadcast characteristics of the wireless medium, not only node A but all nodes

within communication range of node S receive this message (figure 5.48(a)). As the

first thing they do upon reception of a message is checking for duplicates, each of the

receiving nodes, including node B, decide that the message is no duplicate and enter it

into their duplicate suppression. During the processing that follows, each node discards

the message except for node A, which is listed as next hop.

S A

B C

D

(a) Path from A to D Step One

S A

B C

D

(b) Path from A to D Step Two

Figure 5.48: Hop wise Transmission

In the next step, node A looks up the next hop on the path to node D in its routing

table and inserts node B as next hop in the message before retransmitting. Figure

5.48(b) shows which nodes receive the message, among them the intended next hop,

node B. Upon reception, node B checks if the received message is a duplicate. As it

still has the same originator and sequence number, it is identified as a duplicate and

discarded even though node B was the intended forwarder. In source routing protocols

this problem should not arise, because intermediate nodes do not change the route.

5.7.2 Changing Local Topologies and Unidirectional Links

This problem is experienced by both distance vector and source routing protocols. It

is similar to the problem described above, as a node on the path overhears a message

before it is addressed as next hop.
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S A

B C

D

(a) Path from S to D via A

S A

B C

D

(b) Path from S to D Step One

Figure 5.49: Paths From S to D and First Transmission

Figure 5.49(a) shows once again the path from node S to node D, leading from node S

over node A and node C. Due to changes in the logical topology, the message that node

S transmits is also received by nodes B and C (figure 5.49(b)) in step one. All nodes

enter the message into their duplicate suppression, but only node A, being the intended

forwarder, retransmits the message. When node C receives the message, it identifies it

as a duplicate and discards the message, even though node C is the intended forwarder.

Please note that it does not matter if the link between nodes S and C is unidirectional

or bidirectional, as the error will occur in either situation. Still, as has been shown

in section 2, unidirectional links often have a far greater reach than bidirectional ones,

therefore such longer links might more often be unidirectional.

5.7.3 Example Results of BuckshotDV

To quantify the influence of the duplicate suppression on the performance of the rout-

ing protocols, BuckshotDV without caching of overheard routes was simulated in two

different versions. In BuckshotDV there are three criteria which are checked to see if a

DATA message that has been received by an intermediate node has to be discarded or

processed:

• Duplicates are discarded

• If the enlisted next but one hop is not a neighbor, the message is discarded

• If no route to the destination is known, the message is discarded
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Table 5.2: Delivered Messages for BuckshotDV, Duplicate Suppression first vs. last

Number of Nodes Version A Version B Difference Percent

100 7691.244 8586.817 895.5733 89.57037

400 32222.42 37224.84 5002.417 86.56162

900 79524.57 88284.47 8759.903 90.07764

1600 148562.3 160569.4 12007.10 92.52217

Only if a message has passed these three checks it is handled and forwarded.

The difference between the two evaluated versions lies only in this handling of a

received DATA message. In the first version (A), duplicate suppression is used first. In

the second version (B), the duplicate detection is moved to the end of these checks and

only used on messages that pass the previous two checks.

Both protocol versions were evaluated with the same settings and the same number

of simulations (4950 each) that were used for the sense-and-send scenario (section 5.4).

Table 5.2 shows the results for the four different network sizes. Using the duplicate

suppression first delivers fewer DATA messages for all network sizes, as expected. How-

ever, the amount of messages lost is also much higher than expected. Between 7.5% and

13.5% of DATA messages less were delivered because they were detected as duplicates

(which is correct) and not forwarded (which is not correct in this case).

5.7.4 Solutions

There are multiple ways to solve these problems, depending on the protocol for which

the problems should be solved:

• Disabling New Routes. The first problem can be solved by disabling the learning

of new routes in the intermediate nodes for distance vector routing protocols. This

is not recommended as it would obviously lead to stale routes.

• Use a Proactive Approach. If intermediate nodes know which other nodes use

them as next hop they could notify those of the route changes, leading to a higher

network load.

• Route Shortening. Route shortening enables intermediate nodes (node C in the

example) to detect that they should forward the message in the future. Thus, they

transmit it upon first reception. This is only possible for source routing protocols.
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• Reordering of Processing Order. If a node completely processes a message before

checking with the duplicate suppression, nodes that are not the intended next hop

would discard the message without entering it into their duplicate suppression list.

Obviously, this would also increase the computing load on the nodes.

For all protocols which include the next hop in their message, it seems to be the

easiest way is to check upon reception of a message if the current node is the intended

next hop and discard the message otherwise. Only after that, duplicate suppression

takes place. But even that might not be enough if the forwarding of messages should

be used as acknowledgment by the next but one hop. Then, the received message can

surely be found in the list of duplicates, because it has been transmitted by this node

before. Therefore, the processing order must be similar to the one described above for

OSBRDV :

1. Check if the message is a passive acknowledgment

2. Establish whether this node is the next hop

3. Use duplicate suppression
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5.8 Summary

The connectivity measurements have shown that unidirectional links occur even more

often than literature suggests, and that links also change much more often than expected.

But even under those conditions, the protocols developed for this thesis show a fine

performance as the evaluations of three different applications scenarios have shown.

However, the results also show that it is not possible to define a single best protocol.

When application programmers need to decide which routing protocol they are going

to use, there are a number of influence factors that should be taken into account. Ex-

amples include the network diameter, the frequency of unidirectional links, link stability

and the importance of network load versus delivery ratio among others.

Figure 5.50 provides a rough guideline for choosing a protocol if these four parameters

are known. In the figure, the network diameter can be very small, small, medium or

large. Unidirectional links can be rare, common or make up most of the links in the

network (”mostly”). The link stability can be low, medium or high. The fourth choice

concerns the importance of data: If the delivery of as many messages as possible takes

preference over all, the optimization ”delivery” is chosen. Otherwise, if the network load

is high due to application requirements, increasing it even further might cause problems

for the MAC or lead to energy concerns. Then, the optimization ”load”should be chosen.

In the figure, the protocols evaluated in this thesis are shown separately, only ULC

and ULTR are both recommended for small networks with a high number of unidirec-

tional links and medium link stability. They are not separated further because they

show a similar performance for the presented factors. However, ULC could provide the

information it gathered about the status of links to another layer. Whether this is useful

or not depends on the application and protocol stack in use. Moreover, all protocols

might behave differently when other MAC protocols, other hardware or different place-

ments are used. Therefore, the recommendations given in the figure are only a rough

guide as there are a lot of other influence factors in a real world deployment.
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Chapter 6

Future Work

As has been described in the evaluation section, the routing protocols were only sim-

ulated using a perfect behavior medium access control. The decision had been made

because the number of variables had to be kept small in order to keep the results in-

terpretable. In the future it might be interesting to investigate the interdependencies

between MAC and routing in greater depth, by evaluating the developed routing proto-

cols in fixed scenarios with a predefined percentage of unidirectional links, but varying

MAC layers.

As for the routing protocols, all of them are working on neighborhood relations. It

might be interesting to investigate a geographic version of Buckshot Routing (section

4.1). If the nodes need to know their location for application purposes, the location

might also be used to make forwarding decisions, resulting in a geographically limited

directional flooding. This would enable the omission of neighbor table and routing table.

Buckshot Routing might be augmented with a mechanism that reduces redundancy

similar to a duplicate suppression algorithm, but used on the MAC layer. If the unique

identities of messages that are used for duplicate detection were known to the MAC

layer, messages that are still in the transmit queue might be dropped with a certain

probability if the transmission of that message by another node is overheard.

Overhearing Supported BuckshotDV (section 4.3) could also be varied using proba-

bilistic means. The size of a message might be decreased further, by having each node

forward the message immediately with a certain probability. Those nodes which did not

forward the message immediately could use a random delay. After this delay, they would

transmit the message anyway, unless they overheard it being transmitted by another

node during their waiting period, in which case the message would be dropped finally.

While this method has the means to reduce the message size, it will probably have a

small impact on delivery ratio. Whether that is tolerable depends on the application.
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The presented protocols were developed to deal with the problem of unidirectional

links. Some of them have also been designed to reduce network load, and thus to reduce

energy consumption implicitly. But a real energy survey of the protocols is still missing.

The ranking of the protocols might be different, if node sleep cycles are taken into

account. Then, not all nodes would be awake and listening at the same time, which has

a strong impact on the way flooding can be realized and on overhearing mechanisms.

As energy consumption is very important in battery powered sensor networks, the

forwarding decisions of Buckshot Routing, BuckshotDV and OSBRDV could be modified

to include the remaining energy of a node to a certain extent. Nodes could forward

messages with a certain probability, based on their remaining energy or, if available,

that of their neighbors.

In the real experiments, a strong influence of the network load on the delivery ratio

has been seen. In experiments with two versions of BuckshotDV, the version that uses

caching of overheard routes delivers many more messages than the version without

overheard routes. This is the opposite of the results surveyed in the simulations, where

overheard routes led to a decline of delivery ratio. The reason for this difference lies in

the properties of the real hardware: The transceivers of the eZ430-Chronos were unable

to handle the large number of messages generated. In the future it would be interesting

to evaluate all protocols on different hardware. Also, ways should be found to reduce

the number of transmitted messages.

Even though Buckshot Routing, BuckshotDV and OSBRDV use a limited directional

flooding, the additional messages created thereby are not a big problem. The main

concern is finding the initial route. As in most other on-demand routing protocols,

this involves a flooding of the whole network with route request messages. Unlike most

others, the route reply also uses a limited directional flooding. These two floodings

represent a high network load. It would be interesting to replace this route discovery

mechanism with a probabilistic or gossiping approach.

In the evaluation, the different routing protocols have shown different strengths and

weaknesses. Tree Routing has proven to have an excellent cost per delivered data

message, because the cost of a transmission failure is very small. In small networks

it delivered about 40% of application messages using only a few retransmissions. If

this delivery ratio can be tolerated by the application or the data is not time critical

and data aggregation techniques for the last three to five samples could be used, Tree

Routing would be a good choice. It could be possible to combine Tree Routing with

BuckshotDV: The nodes that are within two or three hops from the sink use Tree

Routing while those further from the sink need the robustness and resilience against
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unidirectional links that BuckshotDV provides. This would result in less network load

close to the sink, as Tree Routing produces only few messages. This reduction of

network load close to the sink could lead to less congestion in high load scenarios and

to a longer lifetime of the network: In sense-and-send scenarios, the nodes closest to the

sink normally deplete their batteries first because they have to be awake more often in

order to forward data messages. Reducing the network load near the sink can reduce

this effect. On the nodes farther from the sink, the additional communication cost

caused by the redundant transmissions is necessary to realize a certain delivery ratio.

ULC and ULTR suffered a number of problems due to the absence of a neighborhood

discovery protocol. Passive neighborhood discovery does not work in single hop scenar-

ios. As a destination never forwards RREQ messages, its neighbors never know that

there is a bidirectional connection. Only when they receive the RREP, they realize that

there is an unidirectional-incoming link from the sink to them, but they never realize

that it is bidirectional. The passive detection of links used in the current implementa-

tion works only when the network load is high enough. But a high network load leads

to MAC problems which should be avoided if possible. Also, it would lead to a high

energy consumption which depletes the batteries of the sensor nodes faster. It would

be interesting to evaluate the performance of ULC and ULTR with a neighborhood

discovery protocol or a TDMA MAC layer which supplies the two-hop information it

needs to calculate time slots and rounds to a cross layer data structure which can be

accessed by the routing protocol, too.

The CSMA MAC used in the real world experiments presents a general problem for

all evaluated protocols. CSMA MAC layers are known to have a bad delivery ratio

when the network load is high. However, network load is especially high when protocols

flood messages through the whole network during route discovery, making this phase

once again the most vulnerable part of the surveyed routing protocols. In the future it

would be interesting to evaluate the influence of different types and categories of MAC-

layer. For example D-MAC [39] with its slot allocation scheme that has been optimized

for sense-and-send scenarios should be evaluated. The slot allocation scheme tries to

minimize latencies from leafs to the sink and therefore reduces the risk of message

loss due to congestion. But D-MAC would have to be modified somewhat, as it does

not allow message generation on intermediate nodes, only on leaf nodes. Other MAC

protocols described in section 3.1 should also be considered.

Even though one of the design goals for the protocols developed for this thesis was

simplicity, there are still a number of parameters to configure the protocols. ULC

and ULTR have a strong dependence on protocol parameters, and especially the link
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timeout. When it is set too low, links are deleted faster than they can be detected, if

it is too high, link information if often outdated. This problem is closely related to the

network load and the problem of passive detection of links. But different values for the

other protocol parameters should be evaluated, too.

While the number of real world routing experiments was high and the way they

were conducted was very time consuming, more connectivity measurement experiments

should be made. Currently, there are only two sets of data for each scenario described in

section 5.3, which could be included in the simulations. While the developed simulation

model delivered results close to those measured in the real world routing experiments,

it would be good to have more empirically gathered connectivity matrices which could

be compared to the generated ones.

To further evaluate the developed simulation model, criteria should be defined which

can be used to evaluate the similarity between generated and measured matrices. Also,

the simulation could be enhanced with different MAC layers and properties of real

hardware. While the current version is good at simulating unidirectional links and often

changing communication neighborhoods, MAC layer issues are ignored. Including the

problems caused by MAC and other properties of the used hardware would enable better

simulations, but also make the simulations hardware dependent. This dependency is

the reason why MAC layer issued were not simulated in this thesis. Also, developing

realistic models for different hardware and MAC layers is enough work for a thesis on

its own.

198



Chapter 7

Conclusion

In this thesis, unidirectional links in wireless sensor networks were reviewed. A literature

study (see chapter 2) as well as own experiments with real sensor network hardware

(section 5.3) have shown that these unidirectional links are common, especially in low

power, low cost devices that are typically used in wireless sensor nodes. Literature

also shows that unidirectional links often have a far greater reach than bidirectional

ones, resulting in massive problems for protocols that use shortest paths measured in

hop count. Therefore, most protocols try to operate on bidirectional links only, and

eliminate the implications of unidirectional links as much as possible.

The impact of unidirectional links on medium access control and routing protocols

has been described in theory, before selected state of the art MAC and routing protocols

were discussed concerning their ability to handle unidirectional links. In this theoretical

discussion it was already apparent that most state of the art protocols are only able

to deliver a good performance if unidirectional links are rare. The few protocols that

can make explicit use of unidirectional links produce a lot of overhead. Literature

suggests that the overhead induced by making unidirectional links usable is too high,

and therefore only bidirectional links should be used [45].

This thesis does not deny that the protocols surveyed in [45] induce a lot of overhead,

but draws a different conclusion from that fact. When unidirectional links are common

but the costs of using them explicitly are too high, the costs must be reduced or the

unidirectional links made usable implicitly.

Following this line of reasoning, three new routing protocols, Buckshot Routing,

BuckshotDV and OSBRDV were designed which use unidirectional links implicitly.

Also, two other routing protocols, ULC and ULTR were designed which make use of

unidirectional links explicitly, but should only be used when the information about the

links is already available. This could for example be the case when the application
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needs a neighborhood discovery protocol, or when a TDMA MAC was used that makes

the information about the two hop neighborhood it needs to define slots and frames

available to the routing protocol. As no such protocol was available in the evaluation,

a passive link detection scheme was devised which can deliver the required information

under certain circumstances.

To evaluate the five designed protocols, a simulation model for unidirectional links

and link changes was designed and implemented (section 5.1) for the network simulator

OMNeT++ [74] with the MiXiM extension [33, 46]. Using this model, the simulation is

fed with connectivity matrices represented in change lists, which were generated before

the simulation and could therefore be used for each protocol. The used simulation model

is based purely on this connectivity input, which replaces the physical layer of MiXiM.

It is used solely to analyze the ability of a routing protocol to cope with unidirectional

links and link changes, the generated network load is not analyzed. Therefore, a perfect

behavior MAC was used.

Four protocols were chosen as competitors for the evaluation: AODV BR [37], DSR

[28], Tree Routing and a simple Flooding. AODV-BR uses so-called backup routing to

salvage data messages when the next hop on the route is unavailable. The reason for this

unavailability could, among others, be a link that has turned unidirectional-incoming.

The salvaging is realized by forwarding the message that could not be delivered to

the intended next hop to neighbors that have overheard the transmission of the route

reply that was used to build the currently unavailable route. These neighbors then

forward the message to the node from which they received the route reply, enabling

the message to take a one hop detour. DSR was one of the first protocols that take

unidirectional links into account by flooding the network twice during route discovery,

instead of using the inverse route of the route request message for the route reply. These

two protocols have been developed for MANETs, but have been chosen for comparison

nonetheless. The reason for this is the fact, that to the best of the author’s knowledge

no routing protocols for wireless sensor networks exist that use unidirectional links.

Tree Routing remains one of the most commonly used protocols for wireless sensor

networks, and was also included in the evaluation therefore. To compensate for link

changes, Tree Routing uses up to two retransmissions on each hop. In contrast to

DSR, which also uses these two retransmissions, Tree Routing only discards a message

after three unsuccessful transmission attempts, whereas DSR generates a route error

message and initiates a new route discovery for the next message. Flooding is the

most simple of communication patterns, it only needs a duplicate suppression. Also, if

a route from source to destination exists at all, Flooding uses it as it uses all available
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paths. This is the reason why Flooding was used in the simulations to determine the

maximum possible number of delivered data messages, as the generated matrices could

theoretically include network separation.

All nine protocols were implemented in C++, making the implementation indepen-

dent from the used hardware and operating system. This independence was shown by

using the same implementation for the simulations in OMNeT++ and the real world

experiments on eZ430-Chronos sensor nodes from Texas Instruments [15].

To show the relevance of using unidirectional links in routing protocols for wireless

sensor networks, real world experiments were performed. In the first row of experi-

ments, the connectivity between nodes was evaluated in four different locations and on

two different radio channels. The results confirm that unidirectional links are indeed

common, even more so than literature suggested. The experiments revealed an average

number of more than 100 link changes per round (minute) in a network consisting of

only 36 nodes. The number of unidirectional links was always higher than the number

of bidirectional ones, with an average ratio between 4 and 5 to 1. There were always

more than twice as many unidirectional links than bidirectional ones, and in one case

the ratio even reached 91 to 1 as one connectivity graph contained 91 unidirectional

links and only a single bidirectional one. Therefore, using unidirectional links implicitly

in order to achieve robustness against quick changes in (logical) network topology was

the right choice.

The evaluation of the protocols consisted of three different scenarios: A sense-and-

send application (section 5.4), a single pairing application where each node transmitted

to a random partner node throughout the whole experiment or simulation (section 5.5)

and a multiple pairings application in which each node changed its communication

partner after each fifth transmitted message (section 5.6).

In the sense-and-send scenario 4950 simulations with grids of nodes consisting of 100

(10x10), 400 (20x20), 900 (30x30) or 1600 (40x40) nodes and different destinations were

conducted for each protocol. As four versions of Buckshot Routing and two versions of

DSR were simulated, this amounts to 64350 simulations with a runtime between five

minutes and more than a day. For the other two application scenarios, the number

of simulations was smaller because they already included changing destinations in the

application, making the additional variation in the simulations unnecessary.

Simulation results show that all related work protocols suffer heavily from the ex-

istence of unidirectional links and from link instability once the network size and thus

the length of possible routes increases. However, the protocols designed in this thesis

show a very good delivery ratio, which even increases for larger network sizes. This is
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due to the fact that more redundant routes become available in larger networks. Up to

97% delivery ratio were reached in scenario one. Buckshot Routing is the only one of

the developed protocols whose performance declines for larger networks, which is due to

its source routing nature: The path that should be taken by messages is determined at

the source, making it vulnerable to link changes. But Buckshot Routing still performs

far better than all related work protocols even in scenario one, even though it could

not benefit from its greatest advantage of being able to create highly adaptive routes.

Highly adaptive routes, as used by Buckshot Routing, BuckshotDV and OSBRDV,

change the routing table entries with each received message, making them adaptive to

link changes. This is only possible due to limited directional flooding, which uses mul-

tiple nearby paths for the same message. However, the sense-and-send scenario used

in scenario one implied that messages were only transmitted in one direction, and thus

nodes never received updates for their paths to the sink.That the developed protocols

achieved such a high delivery ratio even though profiting from their greatest advantage

was denied to them shows their robustness. In scenarios two and three, the highly

adaptive routes could be used due to the change in application behavior.

After the importance of using unidirectional links was confirmed, all routing protocols

were evaluated in four different real-world locations: A single hop environment on a

desk, placed onto poles which created an environment with between one and two hops

on average and two multihop deployments on the ground, a lawn and a stone pavement.

To compare the results achieved in the real world experiments with those of the sim-

ulations, the network consisting of 36 nodes that was used in the real world experiments

was also simulated. The results for the stone pavement and lawn scenarios correlate

with the simulations for most protocols. Only those that suffered most from timing

problems, namely AODV-BR and ULTR, differ significantly. As has been known from

literature, Flooding suffers from the broadcast storm problem, resulting in too many

collisions due to MAC layer problems.

The results of all other protocols achieved in the real world experiments correspond

fairly well to the simulation results, leading to the conclusion that the performance of

the developed protocols would increase with network size. Seemingly the used network,

while being fairly large for an evaluation deployment, was still too small to fully show

the advantages of the developed protocols.

But even though the network was not large enough and the communication pattern

was not optimal for them, the protocols developed in this thesis delivered a high number

of messages.
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Appendix A

Implementation Details

This section describes all choices that were made during the implementation of the five

developed protocols and the four protocols used as reference. The first choice concerned

the operating system that was used as basis, followed by the choice of simulator and

hardware for the real experiments. After that, parameter settings and abstractions that

were used are described before protocol specific details are discussed.

A.1 Reflex

Reflex [75, 76, 77, 79] is an operating system for deeply embedded systems and sensor

nodes that has been developed by the distributed systems/operating systems group at

Brandenburg University of Technology Cottbus, Germany. It is based on the event flow

principle which removes the need for explicit synchronization within components [78].

Reflex is implemented in C++, which enables the application programmer to use state

of the art object oriented programming methods. Also, this fact enables Reflex to be

used on a range of different platforms, because all that is needed to deploy it is a C++

compiler and a few lines of assembler code for hardware specific drivers. To enable its

use in wireless sensor networks, a power management scheme has been integrated [68]

and is continuously being improved.

All protocols are implemented operating system independent (see section A.4), but

an operating system has to be used nonetheless. For the reasons listed above, Reflex

has been chosen.
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A.2 OMNeT++

OMNeT++ [74] is a discrete event simulator that can be used to simulate different

kinds of networks. OMNeT supplies a framework of modules which can be combined to

form compound modules. Both types of modules contain gates, which can be connected

using channels, to allow the modules to communicate with each other. This is done

by passing messages from one module to the other. OMNeT is implemented in C++.

which made the integration of Reflex into OMNeT possible [35].

To enable simulations of a sensor network, the MiXiM framework [33] has been used.

It provides an abstraction for communication layers. Explicit simulation of unidirec-

tional links using a connectivity matrix has been added to MiXiM for this thesis. For

more details see section 5.1.1.

A.3 EZ430-Chronos

For all real world experiments, eZ430-Chronos Sensor nodes from Texas Instruments [15]

were used. The eZ430-Chronos is an inexpensive evaluation platform for the CC430. It

features an MSP430 micro controller with an integrated CC1100 sub-gigahertz (868MHz)

communication module [9]. The evaluation board is delivered as a compact sports watch

containing several sensors, e.g. a three-axis accelerometer, and five buttons which are

connected through general purpose I/O pins. The sports watch casing has been removed

in order to use the eZ430s as sensor nodes.

Figure 5.1 in section 5.2.4 shows the used eZ430-Chronos sensor nodes in three dif-

ferent placements which were used in the real world experiments. An external battery

pack has been soldered to the nodes, which replaces the internal coin cells. This enables

the usage of freshly charged batteries for each protocol.

Apart from the modification for the batteries, the sensor nodes were used as they

were delivered, no calibration was made. This should reflect the fact that future users

would neither be able nor willing to calibrate a large number of nodes. Instead, they

are used ”out of the box”. The transmission power was also left at the preset level of 0

dBm, which lead to a small transmission range. This small transmission range is also

due to the absence of a real antenna on the eZ430-Chronos: The metal surrounding the

display acts as antenna.
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A.4 Common Interfaces and Constants

To ensure that the implementation of the routing protocols is independent of the actual

platform and the operating system they are used on, a wrapper class called Routing-

Wrapper has been created which implements the operating system dependent part so

that the protocols can be independent.

Listing A.1: Class RoutingWrapper

class RoutingWrapper :public LocalBroadcastIF{

public:

virtual void run();

virtual void assign(reflex :: Buffer* buffer );

virtual void send(uint8 * message , uint8 length );

private:

reflex ::Sink1 <reflex :: Buffer* > *lowerOut;

nodeIdType id; ///< the unique node id

RoutingProtocol* routingProtocol;

RoutingApplication* routingApplication;

ILogger* log;

};

Listing A.1 shows the most important functions and member variables of this wrap-

per. The run()-method is typical for the operating system Reflex, as it is called each

time an activity is scheduled. It is used in the routing wrapper to call the start()-

method of a routing protocol during initialization of the sensor network. After the

initialization phase is finished, the handleTimer()-method of the used routing protocol

is periodically called, which is used in different ways by each protocol (see below). Re-

ceived messages are handed to the RoutingWrapper from a lower layer in the assign()-

method. There, the reflex::Buffer, which is operating system specific, is copied into

a simple array and handed to the routing protocol before the buffer is recycled.

The RoutingWrapper implements the interface LocalBroadcastIF which enables the

transmission of an arbitrary number of bytes to all neighboring nodes (local broadcast).

This is realized using the send()-method with its parameters: a pointer to a character

array and the length of the message. Due to restrictions imposed by the operating

system (reflex::Buffer cannot hold more than 255 bytes) the size of a message is re-

stricted, and an unsigned character is large enough to describe the length. In the real

world experiments the length is even further reduced because the used hardware can

only handle messages which are at most 64 bytes in length. In the send()-method,
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data logging also takes place. The RoutingWrapper has a member which implements

the ILogger-interface, and which is informed of the transmission using the method

logTransmittedPacket(transmittingNode, type, size). This logging mechanism

is hardware dependent, and differs between simulations where one central component

can be used and the real world experiments were each node has its own logger.

In order to exchange the routing protocols encapsulated by the routing wrapper, each

routing protocol implements the RoutingProtocol-interface (listing A.2).

Listing A.2: Interface RoutingProtocol

class RoutingProtocol{

public:

virtual uint8 send(uint8* msg , uint8 length , nodeIdType dest )=0;

virtual void receive(uint8 * message , uint8 length )=0;

virtual void handleTimer ()=0;

virtual void start (){}

protected:

nodeIdType id; ///< the unique node id

Receive2IF* upperOut;

LocalBroadcastIF* lowerOut;

};

The methods send(), receive() and handleTimer() are pure virtual functions and

must be implemented by each routing protocol, while the start()-method has per

default an empty implementation. Tree Routing is the only protocol that uses this

method to build initial routing trees at the beginning of the simulations or experiments.

All other implemented protocols (except for Flooding) are on-demand routing protocols

and establish their routes only when the first messages should be transmitted.

The send()-method is used by an upper layer to deliver a pointer to a character array,

the length of the message and its destination to the routing protocol. The length of such

a message is limited by the protocol parameter maxLengthRoutingInput. In this case it

is important to remember that the total size of a message, including routing information,

may not exceed the maximum size of a reflex::Buffer (simulation:255 bytes, real

experiments: 64 bytes) and maxLengthRoutingInput should be set accordingly. For

other operating systems and other sensor node hardware this parameter might differ.

Messages are handed from the RoutingWrapper to the routing protocol using the

receive()-method. There, the protocol decides which type the message has and handles

it accordingly.
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Table A.1: Handling of a Timeout by the implemented Routing Protocols

AODV-BR one-hop retransmissions or transmission of route error messages

Buckshot Routing ignored

BuckshotDV ignored

DSR one-hop retransmissions or transmission of route error messages

Flooding ignored

OSBRDV transmit deferred route reply or data messages

Tree Routing one-hop retransmissions

ULC remove inactive neighbors from neighbor table

ULTR remove inactive neighbors from neighbor table

Each protocol reacts differently when its handleTimer()-method is called. Some

retransmit stored messages, others delete neighborhood information. Table A.1 gives a

brief overview.

The member variables upperOut and lowerOut are used to connect to the upper

and lower layers, respectively. In the current implementation the upper layer is the

RoutingApplication while RoutingWrapper represents the lower layer. The id is used

to decide if received messages should be forwarded, discarded or handed to the upper

layer.

The class RoutingApplication is used to simulate different applications (listing

A.3). At the beginning, the member variable msgToSend holds the number of appli-

cation messages that need to be transmitted. When the RoutingWrapper calls the

handleTimeout()-method of the application, a new message is generated and handed

to the routingProtocol. As the payload is not really important in this scenario, the

message only contains ten times the id of this node. Therefore the payload has a size

of 10 or 20 bytes, depending on the size of a nodeIdType. When the routing protocol

hands a message to the RoutingApplication using the receive()-method, the log is

used to store information about the received data message. The log is of type ILogger,

and depends on the environment. In simulations, a global logging component was used

which counts all received messages and is also called by the RoutingWrapper each time

a message is transmitted to record the number of transmitted bytes (see section 5.1).

In experiments with real hardware, no central component exists and each node has to

store this information locally. It was retrieved after the end of each experiment.
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Listing A.3: The Routing Application

class RoutingApplication: public Receive2IF

{

public:

virtual void receive(uint8 * message , uint8 length );

void handleTimeout ();

private:

RoutingProtocol* routingProtocol;

nodeIdType id;

int msgToSend;

ILogger* log;

};

All implemented routing protocols use the same duplicate suppression. It is based

on the identity of the originator of the message and a sequence number. However,

the implementation of the duplicate suppression differs between simulations and real

experiments, as the sensor node hardware does not offer very much storage space.

Due to the types of routes that are stored, some protocols can use the same type of

routing table while others cannot. For example, Buckshot Routing and DSR are both

source routing protocols and both use the same routing table. The same can be said

about neighbor tables - some protocols need to store the same information and share an

implementation while others do not. ULC needs to store information about the status

of the links to its neighbors to make forwarding decisions, while Buckshot Routing only

needs to know if a certain node is a neighbor at all. Table A.2 shows which protocol

uses which implementation.

To keep the results comparable, only a single configuration file was used for all

protocols: the routingconf. Table A.3 shows the parameters, their setting for the

simulations and which protocol uses them. Those parameters that were changed for the

real experiments are shown in table A.4 below.

MaxRouteLength describes the maximum allowed length of a route in hops. It is

necessary for the routing tables and to guarantee that no messages larger than

the maximum size imposed by the operating system (Reflex : 255 Bytes) and

hardware (eZ430-Chronos nodes: 64 Bytes) are created. As only the source routing

protocols use messages of variable size and need to store the whole route in their

routing tables, this parameter is used only by Buckshot Routing and DSR. These

two protocols were evaluated with two different settings: 15 hops and 40 hops

limit.
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Table A.2: Routing - and Neighbor Tables used by the implemented Routing Protocols

routing table neighbor table

AODV-BR two instances of RoutingTable_AODVBR none

Buckshot Routing RoutingTable_BR Neighbortable

BuckshotDV RoutingTable_BRDV Neighbortable

DSR RoutingTable_BR none

Flooding none none

OSBRDV RoutingTable_OSBRDV Neighbortable

Tree Routing RoutingTable_TreeRouting none

ULC RoutingTable_ULC Neighbortable_ULC

ULTR RoutingTable_ULTR Neighbortable_ULTR

Table A.3: Configuration Parameters used by the implemented Routing Protocols

Parameter Setting Used By

MaxRouteLength 15 or 40 Buckshot, DSR

NumNodes 100/400/900/1600 all (duplicate suppression)

duplicateEntries 100 all (duplicate suppression)

illegalID NumNodes+1 BRDV,DSR,OSBRDV,Tree,ULC,ULTR

NumRTEntries NumNodes all except Flooding (routing tables)

MaxNeighbors NumNodes Buckshot,BRDV,OSBRDV,ULC,ULTR

maxLengthRoutingInput 80 all

nodeIdType uint8 / uint16 all

maxRREQ 10 all except Tree and Flooding

maxDeferred 20 OSBRDV

deferredTime 25 OSBRDV

linkTimeout 5 ULC, ULTR

weightUnidirectional 2 ULC

weigthBidirectional 1 ULC

maxStored NumNodes AODV-BR, DSR, Tree

oneHopTimeout 25 AODV-BR, DSR, Tree

numberOfRetransmissions 2 DSR, Tree
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NumNodes The number of nodes in the network.

duplicateEntries defines the number of sequence numbers stored for each node by

the duplicate suppression. In combination with NumNodes it defines the RAM

consumption of the duplicate detection and is needed by every protocol.

illegalID is used in routing tables as well as in some types of messages to mark entries

as invalid.

NumRTEntries The number of entries in a routing table. As Flooding does not need

a routing table, it is the only one that does not use NumRTEntries.

MaxNeighbors The number of entries in a neighbor table, it is used only by the

protocols developed in this thesis.

maxLengthRoutingInput The maximum size of application data that can be handed

to the routing protocol. Used by each protocol to calculate the maximum size of

a DATA message.

nodeIdType The type of ID used for each node, either uint8 or uint16, depending on

network size. It is also needed by all protocols. Together with MaxRouteLength

and maxLengthRoutingInput it defines the largest size a message can grow up to.

maxRREQ is used by all protocols except Tree Routing and Flooding. It defines

the highest number of route discoveries that might be carried out at the same time,

as each application message must be stored until route discovery is completed.

Once a route reply message was received and the application message transmitted,

the storage space is available again.

maxDeferred is a parameter that is only used for OSBRDV. When a message is over-

heard by a node that is not on the direct path included in the message, it is

deferred for a certain time. If the forwarding of that message is overheard during

this time, there is no need to forward it anymore and it is discarded.

deferredTime The time in which the forwarding of a deferred message must be over-

heard in OSBRDV before it is transmitted. Measured in number of times the method

handleTimer() must be called.

linkTimeout ULC and ULTR use the linkTimeout to remove incoming links from their

neighbor lists.
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weightUnidirectional used in ULC to determine whether routes that contain unidi-

rectional links are preferred over those that do not.

weigthBidirectional used in ULC to determine whether routes that contain bidirec-

tional links are preferred over those that contain unidirectional ones.

maxStored The number of DATA messages that can be stored for one hop retrans-

mission. Used by AODV-BR, DSR and Tree Routing.

oneHopTimeout The number times handleTimer() must be called before a stored

message is retransmitted or, if the maximum number of retransmissions was

reached, a route error message is generated. Used by AODV-BR, DSR and Tree

Routing.

numberOfRetransmissions The number of times a stored message gets retransmit-

ted before it is discarded. As AODV-BR uses exactly one retransmission, this vari-

able is only used by DSR and Tree Routing.

A.5 Parameter Differences between Simulations and Out-

door Experiments

Table A.4 shows the four parameters that were changed for the real experiments. All

other parameters remained the same as in the simulations and described in table A.3.

Table A.4: Parameter differences between Simulations and real Experiments

Parameter Setting Used By

nodeIdType uint8 all

duplicateEntries 5 all (duplicate suppression)

maxLengthRoutingInput 10 all

maxStored 15 AODV-BR, DSR, Tree

The nodeIdType was changed because of the network size: For a network consisting of

36 nodes a uint8 is sufficient, as it can hold up to 256 values. The number of duplicate

entries has also been reduced, because of the network size. In a smaller network, it

is highly improbable that more than one message from the same node is still being

transmitted by some nodes. Therefore, it is more than sufficient to remember the last

five sequence numbers seen from each node. Reducing the number of messages that

can be stored as well as the length of the routing input leads to a large reduction of
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memory consumption, as these two are multiplied to determine the space needed to store

messages for retransmission. This reduction of memory consumption was necessary in

order to fit DSR onto the EZ430-Chronos.

A.6 Protocol Specific Implementation Details

Even though the implementation of some protocols was straightforward, there are some

aspects that emerged during the implementation of others. Here, these details are

discussed.

A.6.1 AODV-BR

Even during implementation and the short simulations that were used only to validate

the implementation, it became apparent that AODV-BR is not as robust as it seemed at

first. The ”fish bone” structure it uses to recover lost data packets works quite well once

a bidirectional path between source and destination has been established. But as it

uses the inverted path of the route request for the route reply message, and route reply

messages are not salvaged by the fish bone structure, finding a working bidirectional

path at the beginning proves to be the biggest challenge for AODV-BR.

A.6.2 DSR

In its original version, DSR has been specified with IPv4 addresses in mind. For this

thesis, it has been altered to use nodeIdType instead. According to the specification,

when unidirectional links are used, explicit layer 3 (routing) acknowledgment messages

should be used for each hop. Because of these acknowledgment messages, the worst

case scenario for DSR is an uninitialized network, in which a single message needs to

be transmitted from one end of the network to the other. As no routes are known,

and caching of overheard routes should not be used (according to the specification),

each node on the route needs to start a route discovery for the last hop. As each route

discovery includes two floodings of the whole sensor network, a route of length n would

result in 2n+2 floodings.

Memory usage is problematic, too: all messages need to be stored for one hop retrans-

mission until an acknowledgment message is received or the number of retransmissions

has been exceeded.

As DSR creates a lot of messages, nodes soon ran out of network buffers in some

preliminary simulations. Moreover, the order of operations is important, especially if

network buffers are scarce. When a message has been received, its buffer is recycled.
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Therefore, at least a single buffer must be available. If it is used to transmit an ac-

knowledgment to the last hop, then the actual message might be lost because there is

no buffer for it to be transmitted. This means that the received message is forwarded

first, the acknowledgment is sent thereafter. If there once again is no available buffer,

this leads to a retransmission of the message by the last hop which is undesirable, but at

least the message reaches its destination. Even if enough network buffers are available,

this reversed order means that finding a fitting value for oneHopTimeout is getting much

more complicated. It can no longer simply be set to the approximate round trip time,

because one or more other messages might get transmitted before the acknowledgment

message.

In the simulations, all of this could be fixed by increasing the number of network

buffers to 200 per node, but for a real deployment this seems hardly possible. On the

other hand, the necessity to handle so many messages in such a short time should not

arise in a real deployment.

A.6.3 OSBRDV

One of the most critical elements of OSBRDV is the timer. Starting a separate timer for

each message that gets deferred would introduce much overhead, therefore a periodic

timer is used. When a message is deferred, it is stored in an array, and its timeout set

to deferredTime (25). The periodic timer is activated every 100 ms, meaning that a

message is stored for 2400 - 2500 ms, depending on the moment it was stored. In the

simulations, this is ample time for the intended next hop to process and transmit the

message.

As OSBRDV depends on overheard messages to discard deferred ones, it must process

each incoming message. Only after the list of deferred messages has been checked,

duplicate suppression may take place.

The number of messages that can be stored is also critical, as the memory to store

them must be allocated static in Reflex. This can lead to a huge amount of wasted

memory, which is a problem for resource constrained sensor nodes. On the other hand,

choosing the number too low would lead to a bad delivery ratio as messages that could

not be stored are discarded.

According to the algorithm, nodes that are neighbors of the destination of a RREP

or DATA message would wait for it to retransmit the message. As a destination does

not normally forward the message, all its neighbors would retransmit the message even

though it has already been received. To avoid this, received messages are retransmitted

so that the neighboring nodes may discard their deferred messages.
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There is a strict order in which the operations must be performed when receiving a

RREP or DATA message in OSBRDV:

1. Check deferred messages

2. Search next but one hop in neighbor table

3. Discard duplicates

4. Check if route to destination is known

5. Check if message has to be deferred

6. Alter message and retransmit

A.6.4 Tree Routing

Tree Routing needs an initialization phase in which each node transmits a tree building

message. The tree will be used throughout the lifetime of the network. Nodes store each

DATA message they forward for a certain time. If they do not overhear the next hop

transmitting the message, they retransmit it up to numberOfRetransmissions times in

the hope that the link to the next hop has become available again. The timeout and

the number of retransmissions are configuration parameters (see table A.3).

A.6.5 ULTR

Finding the right setting for the link timeout is absolutely critical for ULTR. If it is

chosen too small, the implemented version of ULTR degenerates to a complicated version

of Buckshot Routing. If it is set to high, link breaks are not detected and wrong routing

decisions are made. No suggestion of a good value can be made here, because a good

value depends on the network load and thus on the application. As the link status is

checked implicitly with every transmission, an application that transmits often can set

a lower timeout value than one that transmits only seldom. Still, even if the application

transmits only rarely, the timeout should not be set too large, because link changes may

still occur due to environmental causes.

When ULTR switches to Buckshot mode, it checks only if there is an incoming

link from the next hop. If there had been an outgoing link, the message could have

been transmitted in normal mode. This is due to the fact that, in the absence of a

neighborhood detection protocol, only incoming and bidirectional links can be detected

implicitly. Pure outgoing links are listed as unknown in the neighborhood table. The

same is true for ULC.
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A.6.6 ULC

Like ULTR, the implemented version of ULC works without a neighborhood discovery

protocol. This leads to a suboptimal performance right after the start of the application.

When the first message needs to be delivered, route discovery is started by transmitting

the first RREQ message. All nodes that receive this message consider the link over

which they have received it to be unidirectional-incoming, because no outgoing links

have been passively detected yet.

As multiple RREQ messages will be received by a destination one after the other,

multiple RREP messages are transmitted, if the weight of the path stored in the mes-

sages received later is preferable to that of the earlier received ones. The route in the

routing table is changed accordingly.

ULC suffers from the same timeout problem as ULTR. If the timeout is set too high,

messages are discarded ineffectively. If it is set too low, ULC will become a weighted

version of Buckshot Routing. The problem of message loss in normal mode could be

solved by storing the message in intermediate nodes. If the link to the next hop is

assumed to be bidirectional, it is safe to assume that the forwarding of the stored

message will also be overheard. If it is not overheard, the message could be transmitted

in Buckshot mode. However, this is not implemented as it would lead to a higher

memory consumption.

215



APPENDIX A. IMPLEMENTATION DETAILS

A.7 Own publications referenced in this chapter

• Karsten Walther, Reinhardt Karnapke, and Jörg Nolte. An existing complete

house control system based on the reflex operating system: Implementation and

experiences over a period of 4 years. In Proceedings of 13th IEEE Conference on

Emerging Technologies and Factory Automation, 2008. [76]

• Karsten Walther, Reinhardt Karnapke, André Sieber, and Jörg Nolte. Using pre-

emption in event driven systems with a single stack. In The Second International

Conference on Sensor Technologies and Applications, Cap Esterel, France, 2008.

[77]
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Glossary

AI-LMAC The MAC protocol AI-LMAC. 35

AMAC A MAC protocol that uses tunneling to make unidirectional links usable on

the MAC layer. 32, 33

AODV Ad hoc On-Demand Distance Vector Routing. 51–53

AODV-BR Backup Routing in Ad hoc Networks. 53

Buckshot Routing A source routing protocol that was developed for this thesis. It

uses unidirectional links implicitly by creating multiple paths. 86–88, 90–94

BuckshotDV A distance vector version of Buckshot Routing that was developed for

this thesis. 95–99

BW RES A modified RTS/CTS reservation scheme. 31

D-MAC A combination of MAC and tree routing protocol. 42

Directed Diffusion A diffusion based routing protocol for wireless sensor networks.

67–69

DSDV Highly Dynamic Destination-Sequenced Distance-Vector Routing. 49, 50

DSR The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks.

60, 61, 63

DYMO Dynamic MANET On-demand Routing. 58–60

ECTS-MAC Extended Clear To Send MAC. 31, 32

GEAR Geographical and Energy Aware Routing. 79
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Glossary

GeoTORA A geographic version of TORA. 75–77

GPSR Greedy Perimeter Stateless Routing. 77–79

LBSR The Loop Based Source Routing protocol. 66

LMAC The MAC protocol LMAC. 34, 35

MLMAC An enhancement of LMAC for mobile sensor nodes. 35–39

MLMAC-UL An enhancement of MLMAC that utilizes unidirectional links. 39, 40

MMP The Multicast MAC Protocol. 29, 30

NMAC The Neighbor MAC. 30

NST-AODV Not So Tiny - AODV. 55

OSBRDV An overhearing supported version of BuckshotDV that was developed for

this thesis. 100–103

PANAMA Pair wise Link Activation and Node Activation Multiple Access. 33

Rumor Routing An agent based routing protocol for wireless sensor networks. 71, 73

Solar Aware Routing A diffusion based routing protocol that prefers nodes that

scavenge energy. 69, 70

SPEED A geographical routing protocol for real-time applications. 80, 81

TORA Temporally-Ordered Routing Algorithm. 73–75

ULC Unidirectional Link Counter (ULC) was developed for this thesis. It assigns

weights to paths based on the number of unidirectional and bidirectional links

contained therein. 110–112, 114

ULTR Unidirectional Link Triangle Routing (ULC) was developed for this thesis. It

uses a detour of one hop to bypass a unidirectional incoming link, building a

triangle of links. 105–107, 109
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