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Abstract 
 

The aim of this work was to study in detail the physical-chemical aspects of water and 

wastewater treatment using different so-called “advanced oxidation systems”. Our target was to 

construct an annular multiphase falling film reactor with a fixed photocatalyst (TiO2) and to 

compare its performance with that of a planar reactor in different chemical oxidation regimes. 

The annular design of the falling film reactor was prepared for heterogeneous photocatalytic 

oxidation systems by combining three different phases (solid fixed photocatalyst, falling liquid 

wastewater and an ozone/oxygen gaseous mixture). UVA light sources were employed for 

irradiation of the photocatalyst surface. 

In the first step, the design, construction and characterisation of the reactor was 

performed. The next step was the assessment of the performance of the falling film reactor in the 

decomposition of selected organic chemicals as model compounds. Six different oxidation 

methods were evaluated for the degradation of model compounds. Photo-oxidation (UVA/O2), 

photo-ozonation (UVA/O3), ozonation (O3), catalytic ozonation (TiO2/O3), photocatalytic 

oxidation (TiO2/UVA/O2) and photocatalytic ozonation (TiO2/UVA/O3) processes were 

investigated in this study. It was shown that due to the synergetic effects between ozone 

molecules and the irradiated surface of TiO2, photocatalytic ozonation was the most effective 

oxidation process for the decomposition of model compounds. Oxalic acid, dichloroacetic acid, 

citric acid, terephthalic acid, p-chlorobenzoic acid, methyl tert-butyl ether, ethyl tert-butyl ether, 

tert-amyl ethyl ether and tert-butanol were chosen as model compounds.  

Two different immobilisation techniques were employed and evaluated for fixing TiO2 

nanoparticles onto the reactor walls. The immobilisation of photocatalysts was performed on 
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borosilicate glass and polymethylmethacrylate. It was observed that the photoactivity of fixed 

TiO2 particles on borosilicate glass was higher than that on polymethylmethacrylate. The 

stability of immobilised photocatalysts on both substrates was good.  

The influences of different experimental parameters, such as the initial concentration of 

model compounds, ozone concentration, solution pH, temperature and solution recycling rate on 

the degradation rate and efficiency of the oxidation systems were studied and discussed. In terms 

of the characterisation of the falling film reactor, different aspects were studied. The thickness 

and distribution pattern of falling films, the gas washing effects of falling films, the absorption of 

ozone in the falling films, the adsorption of organic pollutants on the photocatalyst surface, the 

effect of UVA irradiation on ozone decomposition, etc. were studied in detail. 

The concentration of model compounds was determined by ion chromatography (IC), 

high performance liquid chromatography (HPLC) and headspace techniques. Chemical oxygen 

demand (COD) was applied to quantify the quality of wastewaters and total organic carbon 

(TOC) measurements were employed for the determination of model compound mineralisation. 

At the end of this study, treatment of real wastewater was performed by means of the falling 

film reactor as a case study. The real wastewater was produced in a pyrolysis process. More than 

30 organic and inorganic compounds were included in the composition of this wastewater. The 

application of ozone-based advanced oxidation processes showed good results in terms of colour 

and odour removal of pyrolysis wastewater as well as in terms of decreasing its COD. 
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1. Theoretical 

 
1.1. Introduction 
Currently, water plays a significant role in our daily activities. Imagining a world without water 

available for typical domestic chores (bathing, cooking, cleaning, heating and cooling, etc.) is 

definitely impossible. Just like power, fuel, raw materials and other vital elements are necessary 

for a wide variety of manufacturing industries all over the world, even a small shortage of water 

can affect these processes negatively or completely stop them. It is evident that a lack or 

insufficiency of water, either from rain sources or brought by irrigation systems to agricultural 

fields, leads to non-repairable detriments on production rates as well as on the quality of 

products. Despite this, around 1.26·109 km3 water is spread out over approximately two thirds of 

the Earth’s surface area. This water is continuously recycled between oceans, air and land. Some 

politicians believe that attaining more water resources will be a strong reason for war between 

different nations in the future. 

As life standards improve, water consumption levels and, as a result, wastewater 

generation rates are enhanced. Considering the numerous sources of wastewater, such as 

domestic residences, medical and pharmaceutical departments, agricultural lands, commercial 

properties, industrial plants, etc., many methods and technologies are being used for the 

treatment of water and wastewater discharged by these sectors. Based on the level of toxicity, 

removal complexity and the chemical and biological characteristics of the contaminants in the 

wastewater, a broad spectrum of techniques have been developed for decontamination processes. 



1. Theoretical 

2 

 

In this study, new modifications on one of the present technologies used in the treatment of water 

and wastewater, called “advanced oxidation processes (AOPs)”, will be introduced. 

 

1.2. Overview 
State of the art decontamination technologies are based on condensation, gas washing, 

adsorption, bio-filtration as well as thermal or catalytic combustion. As a result, pollution 

problems are often only shifted from one medium to another because the pollutants are not 

decomposed (with the exception of combustion) [1]. 

In comparison with the techniques mentioned above, the employment of new 

technologies with the generic term “advanced oxidation processes” leads to the decomposition 

and mineralisation of many groups of organic materials in both the liquid [2] and gas [3] phases. 

AOPs have attracted significant attention in recent years. Depending on the chemical structure of 

the pollutant molecules, AOPs mineralise numerous pollutants into ultimately harmless 

substances like CO2 and H2O and therefore avoid the issue of pollution shifting. The particular 

importance of these technologies appears to be in destroying biologically non-degradable 

chemical structures as well as ozone-resistant substances such as organic pesticides and 

herbicides [4-6], aromatic structures [7], organo-halogens [8] and petroleum constituents [9] in 

wastewaters. 

In a general definition, physicochemical procedures which promote in situ generation of 

free hydroxyl radicals as highly oxidative reagents for the decomposition of pollutants in water 

or air are described as “advanced oxidation processes”. These oxidation processes basically use 

three different reagents: ozone, hydrogen peroxide and oxygen in many combinations, either 

combined with each other or applied with UV irradiation and/or various kinds of catalysts 

homogeneously and heterogeneously [10]. Due to the generation of increased amounts of OH 

radicals, combination of two or more AOPs usually leads to higher oxidation rates. With 

promising results observed on the laboratory scale, compared with conventional water and 

wastewater treatment methods, these technologies will likely be more essential for real 

applications in the near future. However, the reactivity of hydroxyl radicals with radical 

scavengers (carbonate, phosphate, etc.), which exist in real wastewaters, is the main 

disadvantage of all oxidative degradation processes based on hydroxyl radical reactions [11]. 
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1.2.1. Characteristics of photocatalysts 

 

1.2.1.1. Photoexcitation 

One of the outstanding advanced oxidation technologies is the photoexcitation of semiconductor 

surfaces with ultraviolet-visible radiation, which provides the appropriate band gap energies to 

generate photoactivated electron-hole pairs; electrons (e-) migrate to the conductivity band and 

holes (h+) are produced in the valance band (Fig. 1.1). The photogenerated electrons and holes 

are assumed to diffuse to the surface and react with the electrophilic and nucleophilic substances 

absorbed on the photocatalyst surface, respectively, producing activated and unstable products, A 

and B (Reactions 1.1 to 1.3). 
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Fig. 1.1. Photogeneration of electron-hole pairs and their oxidative-reductive reactions [12] 

semiconductor hν→  electron(¯) + hole(+)  recombination→  semiconductor + heat (1.1) 

or{ 
electron(¯) + electrophilic molecule (ads) → Product A (1.2) 

hole(+) + nuceophile molecule (ads) → Product B (1.3) 
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Depending on the variety of molecules adsorbed on the photocatalyst surface and their 

reaction rates with electron-hole pairs, the generation of more than two intermediates likely 

occurs as a result of the interaction between the present molecules and these photogenerated 

species. The mean life of the electron-hole pairs before recombination is on the order of 

nanoseconds and, unfortunately, this recombination negatively affects the reduction and 

oxidation reactions on the photocatalyst surface. This event quantitatively decreases the effective 

interactions and consequently reduces the performance of this technology. 

The most interesting approach, highlighting this technology as an effective one, is the 

generation of hydroxyl radicals via interactions between the photogenerated holes and water 

molecules adsorbed on the photocatalyst surface. Furthermore, the presence of adsorbed oxygen 

molecules near the photogenerated electrons leads to the formation of superoxide radical anions 

(O2˙¯) and reduces the possibility of electron-hole recombination as a result. These superoxide 

radical anions either oxidise the pollutant molecules directly or generate further hydroxyl 

radicals. 

Hydroxyl radicals are well-known for being able to either oxidise in the interface as 

adsorbed species on the photocatalyst surface or to diffuse away into the bulk of the solution and 

promote oxidation reactions with pollutants therein. It is worth mentioning that, depending upon 

the conditions, hydroxyl or superoxide radicals, holes, hydrogen peroxide and oxygen molecules 

can play roles at different levels in the photocatalytic treatment. 

 

1.2.1.2. TiO2 as a photocatalyst 

TiO2 is a semiconductor most commonly used as a photocatalyst for environmental purification, 

showing considerable potential in this process [13-15]. This photocatalyst is relatively 

inexpensive and is commercially available under more than one trademark. Degussa P-25, BDH, 

Sachtleben Hombikat UV100 and Millennium TiONA PC50 are examples of commercial TiO2 

materials commonly used for scientific investigation [16, 17]. TiO2 is chemically inert and stable 

and has relatively low toxicity. This semiconductor mainly occurs in nature in three forms called 

anatase, rutile and brookite (Fig. 1.2). Anatase seems to be the most photoactive form, while 

rutile has the most stable structure, such that other forms convert to rutile when heated or 

processed at temperatures higher than 600°C [18]. 
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a) Rutile b) Anatase

c) Brookite
 

Fig. 1.2. TiO2 crystal structures [19] 

 

Fig. 1.3 represents the redox potential for conductivity band electrons and photogenerated 

holes at the valence band for both rutile and anatase compared to the reduction potential of 

oxygen and ozone [20]. Considering Fig. 1.3, it is evident that the crystalline structure of TiO2 

determines the band gap energy and, as a result, indicates the light adsorption properties of the 

semiconductor. Samples of TiO2 with a mixture of anatase and rutile are more active than both 

the pure crystalline phases [21]. This increased activity is due to the fact that the photoexcited 

electrons at conduction band of the anatase part jump to that of the rutile part which is less 

positive, leading to a decrease in electron-hole recombination and, consequently, an increase in 

photoactivity [21]. 

 

1.2.1.3. Superhydrophilicity 

The other unique phenomenon relating to TiO2 is called “superhydrophilicity”. This photo-

induced aspect, which has been well-described by Fujishima et al. [15] leads to high wettability 

of surfaces coated by TiO2 particles after UV illumination. In the case of illumination, the 

photogenerated electrons tend to reduce Ti (IV) cations to the Ti (III) state and the holes oxidise 

O2- to O2. Fig. 1.4 shows that the ejection of oxygen molecules creates oxygen vacancies which 
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then become occupied by H2O molecules, generating a hydrophilic surface. This character of 

TiO2 coatings is considered to be a vital factor for providing suitable falling liquid films in the 

falling film reactor. 
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Fig. 1.3. Redox potential of electrons and holes for rutile and anatase [20] 

 

In addition to increased attention to the properties of TiO2 itself, many studies in the 

literature have reported improvements in the photoactivity of TiO2 particles where they have 

been employed either chemically impregnated (doped) or physically implanted with other 

materials like carbon atoms [22] or carbon nanotubes [23], transition metal ions [24], noble 

metals [25], non-metals [26], etc. These modifications are basically made with the aim of (1) 

widening the wavelength spectrum for photonic activation of TiO2, especially toward cheap and 

more available visible wavelengths by narrowing the band gap, (2) stabilising the anatase 

structure in the catalyst composition, (3) decreasing hole-electron recombination by scavenging 

excited electrons and/or holes and (4) increasing the adsorption of organic molecules on the 

catalyst surface by enhancing the specific surface area. 
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Fig. 1.4. Superhydrophilicity of TiO2 [15] 

 

1.2.1.4. Application of photocatalysts 

Photocatalysts are generally utilised in the treatment of water and wastewater using two 

approaches. The first approach is the immobilisation of catalyst particles on stable and inert 

substrates and the second is adding catalyst particles to polluted water and using them in a 

suspended form. Published reports in recent years show that both techniques still have interest 

for researchers [27-30]. 

Unlike systems employing photocatalyst immobilisation setups, which frequently suffer 

from mass transfer problems, application of a photocatalyst suspended in a liquid solution in a 

slurry form represents more modified mass transfer conditions; in the latter procedure, the 

quantities of semiconductor particles involved in the redox processes are usually greater than for 

immobilised semiconductor systems. The interactions occur in the interfacial region around each 

particle in suspension, while interactions are assumed to be more limited when the particles are 

fixed close to each other on supporting materials. However, the need for filtering and recycling 
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of photocatalyst particles after the treatment and, furthermore, the extinction of UV-vis light due 

to scattering and adsorption of the radiation by the particles existing in the reaction medium are 

considered to be two significant disadvantages for suspension applications, leading to less 

attention to these setups, especially when practical features are being considered. 

 

1.2.2. Ozone and ozonation 

 

1.2.2.1. Ozone properties 

Ozone was recognised for the first time in 1840 by a German scientist, Christian Friedrich 

Schönbein (1799-1868). At that time, he chose the name “ozone” for this unknown gas from the 

Greek term “ozein” which means “to smell”, which was determined easily by its penetrating 

odour. Nowadays, this compound has a wide range of applications, for example as a chemical 

reagent in the synthesis of pharmaceuticals, in lubricants and many other organic compounds, as 

well as for the purification, decontamination and disinfection of water. Due to its relatively high 

redox potential (Reaction 1.4), ozone reacts with many categories of organic and inorganic 

compounds. 

 

O3 + e¯ → O2+O¯    0E  = 2.08 V (1.4) 

HO• + e¯ → HO¯     0E  = 2.8 V (1.5) 

 

Unlike chlorine, the oxidative reactions between ozone and organic compounds do not 

usually yield products with higher levels of toxicity in comparison to the initial organic 

compound. This electrophile agent attacks its target directly via ozone molecules or decomposes 

to form a more powerful oxidant reagent, the hydroxyl radical (Reaction 1.5), thus indirectly 

leading to the oxidation process. The mechanism of ozone decomposition, which occurs in a 

chain procedure, was described by Langlais et al. [31] and is presented briefly in Fig. 1.5. It is 

assumed that the free radical initiating reaction (generation of the hydroperoxide radical HO2˙ 

and the superoxide radical ion ˙O2¯) is the rate-determining step in this mechanism. The ozone 

decomposition rate in the aqueous phase strongly depends on pH. Alkaline pH causes an increase 

in ozone decomposition. Reactions 1.6 and 1.7 compare the ozone decomposition rate at two 

different pH levels [32]. 
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O3 + H2O → 2HO• + O2 k  = 1.1·10-4 M-1s-1 (1.6) 

O3 + HO¯ → •O2¯ + HO2
• k  = 70 M-1s-1 (1.7) 

 

Ozone itself is considered to be a highly selective electrophilic molecule, such that the 

reaction constants for the oxidation of different groups of compounds by ozone are variable over 

a wide range, from < 0.1 M-1s-1 up to about 7·10 9 M-1s-1 [33]. The solubility of ozone in water 

mainly depends on the water temperature and ozone content in the gas phase (Table 1.1). For 

pure ozone gas, it is 570 mg.L-1 at 20°C, about 63 times higher than that for oxygen (9.1 mg.L-1). 

 
Table 1.1. Approximate solubility of ozone in water (mg.L-1) as a function of ozone concentration in gas and 

temperature [35] 

Temperature, °C 2.5%wt. 5%wt. 10%wt. 100%wt. 

0 27.5 54.5 109 1090 

10 19.5 39 78 780 

20 14.25 28.5 57 570 

30 10 20 40 400 

40 6.75 13.5 27 270 

50 4.75 9.5 19 190 

60 3.5 7 14 140 

 

The typical half-life of ozone at ambient temperature is about 3 days in the gaseous phase 

but only 20±5 min when it is dissolved in deionised water (pH 7); however, depending on the 

water quality and conditions, the half-life of ozone in aqueous solutions varies from seconds to 

hours [34]. For this reason, ozone is usually generated in situ and the transportation and storage 

of this gas make no sense. Furthermore, the low stability of ozone in water, in addition to its high 

production costs, are two big disadvantages for the application of ozone alone in wastewater 

treatment. 

Since the direct attack of ozone onto organic molecules occurs only at double bands, at 

more acidic pH levels, where ozone decomposition and the generation of hydroxyl radicals are 

assumed to be slight, ozone reacts slowly with saturated carboxylic acids and molecules 

containing inactivated aromatic systems in their molecular structures. Generally, the existence of 

electron-withdrawing groups (-NO2, -COOH, -COH, -CN, etc.) in the structure of organic 
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molecules decreases the rate of ozone attack, while substitution of electron-donating groups       

(-OH, -CH3, -NH2, etc.) increases the oxidation rate by the direct attack of ozone. 

 

 
Fig. 1.5. Chain mechanism of ozone decomposition [31] 

 

1.2.2.2. Application of ozone 

Regarding the application of ozone, many scientific studies have reported several application 

conditions dealing with ozone as a disinfection and oxidation agent. Various batch and semi-

batch setups and bubble column reactors have been introduced, where various ratios of ozone-

oxygen gaseous mixtures are bubbled through the bulk of the wastewater under different 

experimental conditions and in the presence of numerous categories of auxiliary materials or 

accelerators which enhance the performance of the ozonation process [36-38]. 

 

1.2.3. Combination of TiO2 and ozone 

A quick and simple look at scientific studies reported since the beginning of the 1980s on water 

and wastewater treatment shows a growing tendency with a remarkable progressive slope in the 

last 10 years in terms of the development, extension and advancement of new approaches, ideas 

or designs which aim to solve new problems or to improve the existing methods in this field of 
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science. In this way, many studies have focused on the enhancement of the efficiency of well-

known technologies or the reduction of their costs and other disadvantages by merging them with 

cheaper, more sustainable and more environmentally friendly methods. One of these ideas is the 

combination of the oxidative characteristics of ozone and photo-excited semiconductors to obtain 

a synergistic effect on the decomposition of recalcitrant microorganisms and organic compounds 

by means of photocatalytic ozonation processes. 

Combination of the photocatalytic oxidative features of TiO2 and the excellent oxidation 

properties of ozone by photocatalytic ozonation is thought to be a promising technique to 

improve the oxidation and decomposition conditions of the adsorbed contaminant molecules on 

the photocatalyst surface. At the same time, the oxidation efficiency of ozone molecules 

adsorbed on the irradiated semiconductor surface is assumed to be increased compared with the 

case when ozone is used alone to oxidise pollutants. This effect is mainly attributed to the 

formation of more reactive but non-selective hydroxyl radicals, which react with almost all 

organic molecules at a rate on the order of 106 - 109 M-1s-1 [39]. 

Concerning the application of the TiO2/UVA/O3 combination and its synergistic effects 

on the degradation of contaminant molecules in water, the economic aspects must be highlighted. 

In addition to energy consumption by the UV lamp, compared to photocatalytic oxidation 

processes, photocatalytic ozonation requires additional electrical energy for ozone generation. 

Therefore, at first glance, photocatalytic ozonation seems to be less cost effective from an 

economical point of view. But, for a better assessment, the specific energy consumption must be 

calculated, where the consumed energy is apportioned to the amount of decomposed materials. 

Kopf et al. [20] have shown that the specific energy consumption for the photocatalytic 

ozonation of monochloroacetic acid and pyridine is much lower than that for photocatalytic 

oxidation and ozonation. Beltran et al. [40] have expressed the same belief. They have shown 

that if ozone-based processes are compared for the degradation of sulphamethoxazole, 

photocatalytic ozonation is the most efficient process regarding ozone uptake. Under their 

conditions, after 60 min of reaction, ozone consumption was 78, 20, 25 and 10 mg ozone per mg 

TOC removed for simple ozonation, ozone photolysis, catalytic ozonation and photocatalytic 

ozonation, respectively. Many studies in the literature have reported assessments of this 

advanced oxidation technique in the degradation of numerous groups of organic chemicals [41-

44].  



1. Theoretical 

12 

 

As far as the combination of fixed-bed TiO2 nanoparticles photoexcited by UV-vis light 

and ozone or oxygen is concerned as a photocatalytic oxidation/ozonation system for the 

decomposition of pollutants existing in water, many partial processes are involved in this 

procedure. The steps of this heterogeneous oxidation process are illustrated schematically in Fig. 

1.6. 

The first step consists of the absorption and dissolution of gas molecules of the oxidants 

(O2 or O3) into an aqueous film of polluted water or wastewater. Diffusion steps (2 and 3) occur 

when molecules of oxidants and pollutants are transported via the hypothetical diffusion layer to 

the surface of the photocatalyst. The next step is the adsorption of these molecules on the 

photoactivated surface of catalyst and their further reactions with photogenerated hole-electron 

pairs (step 4). This step is mostly expressed as being preceded by the generation of non-selective 

oxidant OH radicals. Afterwards, the oxidation products leave the catalyst surface by moving out 

of the diffusion layer (steps 5 and 6).  
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Fig. 1.6. Schematic diagram of the heterogeneous photocatalytic oxidation by means of immobilised TiO2 

 

It should be mentioned that, in addition to this pathway, other simultaneous events likely 

occur, such as the direct attack of ozone/oxygen on pollutants in the bulk of the solution or on 
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the photocatalyst surface and diffusion of generated OH radicals far away from the catalyst 

surface into the solution medium to mediate the oxidation process therein [45]; however, Turchi 

and Ollis [46] believe that the latter is impossible. 

 

1.2.3.1. Absorption of gas into liquid 

Incorporation of the maximum possible concentration of oxygen or ozone into contaminated 

water is an important preliminary step which must take place in order to engage the oxidative 

properties of these molecules for the degradation of contaminants. Various parameters such as 

the solubility of the gas into liquid, the temperature of the liquid and gas, the pressure of the gas 

and liquid viscosity affect the absorption level of oxidant gases into water or wastewater and, 

consequently, the efficiency of oxidation. Relating to falling film reactors, Sisoev et al. [47] 

reported that the flow of a wavy falling film as well as the structure and frequency of waves 

intensively affect the mass transfer properties of the system and, as a result, the maximum 

adsorption flux by influencing the diffusion layer which develops from the film surface. As far as 

the combination of a liquid falling film and a gas stream is concerned, two directions of 

movement are possible: co-current and counter-current flow. Akanksha et al. [48] have indicated 

that shear stress increases the rate of absorption in the case of co-current flow and vice versa for 

the counter-current condition. 

 

1.2.3.2. Adsorption of molecules on the photocatalyst surface 

As far as the adsorption of an organic compound (pollutant) on the photocatalyst surface is 

concerned as the first step of decomposition, two pathways for oxidation have been proposed. 

First, a reaction occurs between the active oxidant species, i.e. OH radicals, and the adsorbed 

contaminant molecule at the surface of the catalyst. This kind of reaction is described by the 

Langmuir-Hinshelwood (L-H) mechanism. Several studies have been reported in this way, 

assuming the existence of an adsorption/desorption equilibrium under dark or irradiated 

conditions [49, 50]. Equation 1.1 shows that, according to the L-H mechanism, the initial 

oxidation rate ( 0r ) of any pollutant which is able to be adsorbed on the catalyst surface depends 

on its initial concentration ( pC ); where adsk  is the adsorption/desorption constant and rk  
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represents the reaction (oxidation) constant. One should take into account that adsk  is 

independent of the photon flux. 

 

0 1
r ads p

ads p

k k C
r

k C
=

+
                                 (Equation 1. 1) 

 

Based on Equation 1.1, at very low initial concentrations (1 ads pk C ), the initial reaction 

rate will be given by pseudo first-order kinetics with respect to the initial concentration of the 

pollutant and the equation can be rewritten as 0 r ads pr k k C= , while at high initial concentrations   

(1 ads pk C ), the reaction rate will be independent of the initial concentration, 0 rr k= . Even 

though many judgments stand against the use of the L-H mechanistic model because not all 

assumptions are considered, it is still recommended for its simplicity and its ability to fit 

experimental results well in heterogeneous photocatalytic processes [51]. 
The second type of oxidation happens when OH radicals or other active oxidants which 

are adsorbed at the catalyst surface react with the contaminant in solution. This mechanism is 

known as the Eley-Rideal (E-R) mechanism [52]. The E-R mechanism is shown by Equation 1.2, 

where rk  is the reaction (oxidation) rate constant, adsk  is the adsorption-desorption constant of the 

oxidant on the catalyst surface, pC  is the concentration of the pollutant in solution and oxC  is the 

concentration of the oxidant on the surface. 

 

1
ads ox

r p
ads ox

k Cr k C
k C

=
+

                                (Equation 1.2) 

 

In this case, depending on the concentration of oxidants, there are two possibilities. At a 

low concentration of oxC  (1 ads oxk C ), the equation can be rewritten as r ads p oxr k k C C= . Under 

these conditions, the reaction rate will be first-order with respect to both pollutants and oxidants. 

At excess concentrations of oxC  (1 ads oxk C ), the rate will be first-order with respect to the 

pollutant concentration and independent of the oxidant concentration, r pr k C= . Beltran et al. 
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[53] have described the ozonation of oxalic acid on the surface of a TiO2/Al2O3 catalyst by 

considering an Eley-Rideal mechanism. 

Hufschmidt et al. [16] and Brosillon et al. [54] have proposed that the degradation of 

molecules that are adsorbed poorly or not at all on the catalyst surface is performed by hydroxyl 

radicals in solution. They believe that these active radicals are able to diffuse away from the 

semiconductor surface to the solution medium and react with pollutants therein. The kinetic 

expression of the oxidation process in this case is simply presented by Equation 1.3 as follows: 

 

r pOH
r k C C=



                                  (Equation 1.3) 

 

where rk  is the oxidation rate constant, 
OH

C


 is the concentration of hydroxyl radicals and pC  is 

the pollutant concentration in solution [54]. Moreover, Tatsuma et al. [55] have presented a new 

aspect called “remote oxidation” where the photocatalytic degradation of some aromatic and 

aliphatic hydrocarbons in the gas phase can take place at a distance as much as 500 μm away 

from the TiO2 surface. Even more interesting is that the reaction rate decreases with distance. 

They assumed that the organic compounds in the gas phase had been oxygenated and gradually 

decomposed to CO2 by active oxygen species (OH•, HO2
• and H2O2) that were produced at the 

TiO2 surface and transported to the gas phase. 

 

1.3. Advanced oxidation processes 
In the next sections, a concise review is presented on some studies published in recent years. 

Reviewing these studies, which dealt primarily with the treatment of water and wastewater and 

investigated the influence of many factors affecting the treatment process, can generate an 

overview of the principles of four categories of oxidation processes, providing direction for the 

present study. 

 

1.3.1. Photocatalytic oxidation 

This type of advanced oxidation process occurs where a combination of TiO2, UV light and 

oxygen is employed for the oxidation and decomposition of an organic compound. Oxygen 

molecules are adsorbed on UV-illuminated TiO2 and are involved in a number of reactions. 
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Zalazar et al. [56] have reported that the existence of adsorbed oxygen molecules and their 

reaction with photogenerated electrons on the photocatalyst surface is very important, because it 

decreases the significance of electron-hole recombination and consequently improves the 

effectiveness of oxidative paths which include photogenerated holes. Degradation of a large 

number of chemical substances has been investigated by utilising the benefits of photocatalytic 

oxidation [49; 57-59]. 

 

1.3.1.1. Mechanisms of photocatalytic oxidation 

The fundamental mechanisms of TiO2 photocatalysis have been repeatedly postulated and 

discussed in many studies [15, 60]. Photoexcitation of the TiO2 surface by photons (hv) with an 

energy level providing the band gap energy of TiO2 causes the generation of holes and electrons 

on the catalyst surface. After this photogeneration, hole-electron recombination is assumed to 

take place immediately, releasing a certain amount of energy. Even though, the existence of 

adsorbed electrophilic and nucleophilic molecules on the surface promotes oxidative-reductive 

reactions between electrons and electrophilic substances on one side and holes and nucleophilic 

elements on the other side. 

 

TiO2 + hv → e¯ + h+ (1.8) 

pH < 7: H2Oads + h+ → OH• + H+      or      pH > 7:   OH¯ads + h+ → OH• (1.9) 

O2 ads + e¯ → •O2¯ (1.10) 

R• + •O2¯ → R-O2¯ + H+ ⇄ R-O2H (1.11) 

R + h+ (OH•) multistep→CO2 (1.12) 
•O2¯ + H+ ⇄ HO2

• (1.13) 

2HO2
• → H2O2 + O2 (1.14) 

H2O2 + •O2¯ → OH• + OH¯ + O2 (1.15) 

OH• + R-H → R• + H2O multistep→CO2 (1.16) 

 

Through this process, oxygen molecules participate as electron acceptors, producing 

superoxide radicals (•O2¯) (Reaction 1.10). The reaction between oxygen and electrons is 

relatively slow and could become the controlling step in photocatalytic oxidations. The 

superoxide radical itself can likely oxidise organic molecules (R) [16] by forming peroxides 
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which subsequently results in total oxidation (Reactions 1.11 and 1.12), or they may be involved 

in chain reactions to produce more oxidative OH radicals via the generation of hydrogen 

peroxide molecules (Reactions 1.13 to 1.15). Depending on the acidity of the reaction medium, 

holes react with water molecules (acidic conditions) or hydroxide anions (alkaline conditions) to 

generate the predominant oxidative species, OH radicals (Reaction 1.9). According to Reaction 

1.16, hydroxyl radicals attack pollutant molecules to gradually oxidise and decompose them; 

however, Ishibashi et al. [61] have proposed that the role of holes in the oxidative reactions of 

TiO2 is more important than that of hydroxyl radicals. 

 

1.3.1.2. The effect of photocatalyst loads and properties 

The degradation of an organic substance at the surface of metal oxide/aqueous electrolyte 

systems is a complicated phenomenon because it depends on many factors. For effective 

adsorption, a good interaction between the pollutant molecule and semiconductor surface groups 

is required. For this reason, the structure and properties of the photocatalyst play a significant 

role. Gorska et al. [18] have reported that the photocatalytic activity of a series of TiO2 samples 

increased as the ratio between TiO2 crystal lattice oxygen to surface oxygen species decreased. 

The morphology of the photocatalyst is other decisive parameter. High crystallinity 

predominantly increases the lifetime of electron-hole pairs, which consequently leads to an 

enhancement in the performance of oxidation [16]. The content of triple phases of TiO2 in the 

crystalline structure mainly indicates its band gap energy, which defines the light absorption 

properties of the semiconductor as a result. Another significant structural factor is the BET 

surface area, which represents the porosity of the catalyst. Any increase in the TiO2 specific 

surface area increases the adsorption capacity of the pollutant on the catalyst [62]. In addition to 

the properties of the photocatalyst, its content in the reaction medium has also been found to be 

important in treatments dealing with photocatalysts. Unlike the efficiency of fixed-bed 

photocatalyst applications, that of suspended systems has been reported as being dependent on 

the load of the photocatalyst, such that increasing the concentration of the photocatalyst in the 

suspension increases the degradation rate of pollutants in slurry utilisations. However, this 

ascending trend for degradation rate versus catalyst load reaches a maximum point at an 

adequate amount of catalyst. After this point, increasing the catalyst concentration will not affect 

the degradation rate or will even show a negative influence on it. Dijkstra et al. [63] have 
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explained this process by increased light adsorption with increasing catalyst concentration. The 

maximum point appears when all wavelengths are adsorbed. Any further catalyst load in the 

reaction medium will result in an increase in light scattering and will consequently cause a 

decrease in the penetration depth of light. 

 

1.3.1.3. The effect of light intensity 

The light intensity of the irradiation source is a principal parameter in photocatalytic processes. It 

has been reported by Piera et al. [6] that for a photocatalytic oxidation system at intensities less 

than one sun UVA equivalent (1 mW.cm-2 ≈  4.1·1015 photons.cm-2.s-1), the reaction rate is a 

linear function of light intensity according to first-order kinetics, indicating that the number of 

photons is a limiting factor for the generation of hole-electron pairs to initiate oxidation. Above 

one sun UVA equivalent, half-order kinetics apply, which indicates that a higher concentration 

of hole-electron pairs under greater light intensities leads to increased hole-electron 

recombination; this becomes the limiting factor for photocatalysis processes under these 

conditions. At high intensities (> 20 mW.cm-2), the reaction rate is independent of intensity [64]. 

 

1.3.1.4. The effect of solution pH value 

The pH level affects the performance of photocatalytic oxidation in two ways: first, in alkaline 

media, high levels of hydroxide anions (OH−) induce the generation of hydroxyl radicals, which 

come from the reaction of OH− with holes on the TiO2 surface. Since hydroxyl radicals are the 

dominant oxidising species in the photocatalytic process, photocatalytic oxidation is therefore 

accelerated at solutions with higher pH and vice versa [65]. The second aspect is the electrostatic 

attractive effects between the charged surface of TiO2 and pollutant molecules which influence 

both the adsorption level of these molecules on the catalyst surface and interfacial electron 

transfer. The most significant factor is the isoelectric point (pHiep) or point of zero charge (pzc). 

The isoelectric point for any form of TiO2 is defined as the pH level at which the surface of the 

catalyst carries neither a negative nor a positive charge. This point for anatase and rutile ranges 

from 2 to 8.9 as reported by Kosmulski [66]. However, the average pzc of anatase is 5.9 which is 

slightly higher than that of rutile (5.4) [18]. It is evident that, according to pzc, the surface of the 

photocatalyst is negatively or positively charged under different pH conditions. As a result, the 

adsorption of cationic pollutants is accelerated when the surface is negatively charged and, on 
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the contrary, a positively-charged catalyst surface has a greater tendency to attract anionic 

compounds. 

 

1.3.2. Ozonation 

Reactions of ozone with organic substances mainly lead to the formation of alcohols, aldehydes 

and carboxylic acids. Due to the low reaction rate of these oxidation by-products with ozone, 

very slow further oxidation toward total mineralisation by ozone is considered to be the most 

significant disadvantage of ozonation processes [67]. For this reason, ozonation processes are 

sometimes considered as pre-treatment oxidation techniques followed by photocatalysis [68], or 

they are modified by adding other elements (which will be described later), introducing a new 

method known as catalytic ozonation. In the absence of elements, at pH < 3, ozone molecules 

mainly attack their nucleophilic target (R) directly (Reactions 1.17 and 1.18), but they gradually 

and via a chain of reactions (Reactions 1.7 and 1.19 to 1.25) decompose to generate hydroxyl 

radicals and indirectly oxidise substances under conditions of pH > 3. Under these conditions 

(pH > 3), the existence of hydroxyl radicals accelerates the decomposition of ozone molecules 

(Reaction 1.26) [32, 33]. 

Direct oxidation mechanisms: 

O3 + R → R-O + O2 (1.17) 

or  

O3 + R → R+• + •O3¯ (1.18) 

Indirect oxidation mechanisms: 

O3 + OH¯ → •O2¯ + HO2
•  (or)  O2 + HO2¯ k  = 70 M-1s-1 (1.7) 

O3 + HO2¯ → •O2¯ + O2 + OH• k = 2.8·106 M-1s-1 (1.19) 

O3 + HO2
• ⇄ 2O2 + OH• k  = 1.6·109 M-1s-1 (1.20) 

O3 + •O2¯ → •O3¯ + O2 k  = 1.6·109 M-1s-1 (1.21) 

pH < 8:          •O3¯ + H+ ⇄ HO3
• k+  = 5·1010 M-1s-1 and k−  = 3.3·102 s-1 (1.22) 

                     HO3
• → O2 + OH• k  = 1.4·105 s-1 (1.23) 

pH > 8:          •O3¯ ⇄ O•¯ + O2 k+  = 2.1·103 s-1s-1 and k−  = 3.3·109 s-1 (1.24) 

                      O•¯ + H2O → OH¯ + OH• k  = 108 s-1 (1.25) 

O3 + OH• → O2 + HO2
• k  = 108 M-1s-1 - 2·109 M-1s-1 (1.26) 
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By comparing the reaction rate constants for ozone decomposition chain reactions, it is 

evident that the first attack of ozone molecules on hydroxyl ions is the rate-controlling step in 

this process. 

 

1.3.2.1. The effect of ozone concentration 

Based on Henry’s law, in equilibrium between a gaseous mixture containing ozone and a liquid, 

the ozone concentration in the liquid phase is directly proportional to the concentration of ozone 

in the gas phase. Therefore, the ozone concentration in both phases is thought to influence the 

efficiency of an ozonation process. Since the reactions take place in the liquid phase, the 

concentration therein will be mainly discussed. On one hand, regardless of the direct or indirect 

attack of ozone on target molecules, Gunten [33] demonstrated that the kinetics of ozone 

reactions with organic compounds in the liquid phase are typically first-order with respect to 

ozone, first-order with respect to the compound and second-order overall. Therefore, the 

decomposition rate of substances is simply demonstrated by Equation 1.4 as follows: 

 

3

p
p O

dC
r kC C

dt
= =                           (Equation 1.4) 

 

where k  is the ozonation reaction constant, pC  is the concentration of the organic compound and 

3OC  is the ozone concentration in the liquid phase. On the other hand, Beltran et al. [69] have 

reported that ozone rapidly accumulates in water and reaches the saturation level in a few 

minutes, indicating that all ozonation processes in the liquid phase develop in a slow kinetic 

regime. To conclude, increasing the ozone concentration will cause an increase in the ozonation 

rate of organic substances [70], but depending on the reactor conditions, after reaching an 

adequate concentration of ozone, the degradation rate by ozone is assumed to be independent of 

the ozone concentration in the liquid phase. Volk et al. [71] and Wu et al. [72] observed similar 

effects of ozone concentration on the degradation of fulvic acid and the decolourisation of textile 

reactive dye, respectively. Chu et al. [73] observed that the existence of low concentrations of 

surfactant in the solution medium increases ozone dissolution and, as a consequence, the 

saturation level of ozone in the solution as well as the indirect generation of hydroxyl radicals is 

increased. 
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1.3.2.2. The effect of solution pH on the ozonation rate 

The pH value is a key factor for ozone stability in aqueous solutions and also determines the 

manner in which the ozonation process occurs. A critical pH value is defined for each chemical 

composition in the liquid phase and is expected to be variable for different solutions. Below the 

critical pH, oxidation reactions develop via molecular ozone, while above this critical level of 

pH, hydroxyl radicals mainly handle the oxidation process as the predominant oxidising species. 

In other words, compared with acidic regimes, under alkaline conditions, hydroxyl anions react 

as initiators to accelerate ozone decomposition, yielding OH radicals more rapidly; this is why 

the oxidation process at basic pH proceeds at a faster rate but with relatively low selectivity [73]. 

However, it should be noted that in special wastewaters, probably due to the presence of traces of 

impurities in the starting materials, even at pH 2 oxidation mainly develops through indirect 

oxidation by means of radicals [74]. 

 

1.3.2.3. The effect of temperature 

Temperature variations influence ozonation systems in two ways, which are usually considered 

to be opposite to each other. On one hand, with any temperature increase in the solution, the 

solubility of ozone in the liquid phase decreases, such that negligible ozone solubility in water 

under conventional conditions has been reported above 43°C. On the other hand, any 

temperature increase should result in higher reaction rates [75]. Therefore, the observed 

influence of temperature on ozonation is a consequence of these two effects. However, the 

existence of other factors (homogeneous and heterogeneous catalysts, illumination, initiators, 

inhibitors, etc.) in the reaction flux will determine the temperature dependency in a highly 

complex fashion. In general, the correlation between the reaction rate constant and the 

temperature is presented by Arrhenius’ law (Equation 1.5), where k is the reaction rate, A is the 

frequency factor, EA is the activation energy (J.mol-1), R is the ideal gas law constant (8.314 

J.mol-1.K-1) and T is the temperature in K [11]. The frequency factor depends on how often 

molecules collide and on whether the molecules are properly oriented when they collide [76]. 

 

exp AEk A
RT

 = − 
 

                        (Equation 1.5) 
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For all reactions following Arrhenius’ law, a straight line with a slope equal to –EA/R will 

be presented by plotting of ln k  versus T-1. 

 

1.3.3. Catalytic ozonation 

The modification of oxidative properties of ozone in the presence of various types of catalysts is 

considered to be one of the most effective AOPs for the removal of a wide variety of organic 

compounds [77, 78]. Catalytic ozonation can increase the efficiency and decrease the reaction 

time with respect to separate ozonation and catalytic treatments by affecting the reaction 

mechanisms [79]. Gracia et al. [80] have reported that the application of catalysts combined with 

ozone results in a noticeable decrease in ozone consumption by decreasing the reaction time and 

increasing the efficiency of ozonation. 

 

1.3.3.1. Homogeneous catalytic ozonation 

In this process, hydroxyl radicals are usually produced by the decomposition of ozone molecules 

in the presence of transition metal ions which are available in the bulk solution [81]. Fe(II), 

Mn(II), Ni(II), Zn(II), Cu(II), Co(II), Cd(II), Ag(I) and Cr(III) are the most commonly used 

metal ions as catalysts for ozonation [82]. Hordern et al. [32] have reported that the nature of the 

metal ion used determines the reaction rate, selectivity and the consumption of ozone. Despite 

the introduction of new catalysts in recent years, the mechanisms of catalytic ozonation are still 

not clear [67]. However, two major mechanisms are generally described for homogeneous 

catalytic ozonation; the first is the decomposition of ozone by means of metal ions, followed by 

the generation of hydroxyl or other free radicals (Reactions 1.27 and 1.28) [6, 81] and the second 

is the formation of a complex between metal ions and the organic compounds and further 

oxidation of this complex by ozone which leads to the final products [83, 84]. 

 

Men+ + O3 → Me-On+ + O2 (1.27) 

Me-On+ + H2O → Men+1 + OH• + OH¯ (1.28) 

 

Catalytic ozonation of oxalic acid via complex formation between ozone and metal ions 

was proposed by Beltran et al. [85] to proceed as indicated below (Reactions 1.29 to 1.31).  
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Men+ + C2O4
2¯ → [Me- C2O4]n-2 + 2O3 → Me n+ + 2CO2 + 2•O3¯ (1.29) 

[Me- C2O4]n-2 + C2O4
2¯ → [Me- (C2O4)2]n-4 + 2O3 → 

[Me- C2O4]n-2 + 2CO2 + 2•O3¯ 
(1.30) 

[Me- (C2O4)2]n-4 + C2O4
2¯ → [Me- (C2O4)3]n-6 + 2O3 → 

[Me- (C2O4)2]n-4 + 2CO2 + 2•O3¯ 
(1.31) 

 

The evidence for this mechanism is that the degradation rate was increased with 

decreasing pH, indicating that the formation of hydroxyl radicals did not play an important role 

under these conditions. In addition, adding radical scavenger reagents like tert-butanol did not 

affect the efficiency of decomposition, further suggesting no responsibility for hydroxyl radicals 

in this process. 

 

1.3.3.2. Heterogeneous catalytic ozonation 

The decomposition of ozone on the surface of metal oxides such as TiO2, Al2O3 and MnO2 or 

supported metals and metal oxides such as Cu-TiO2, Fe2O3/Al2O3, Ru-CeO2, etc. is commonly 

known as heterogeneous catalytic ozonation. Reports have also been published utilising activated 

carbons [86] and soils modified with a catalyst [7] combined with ozone as heterogeneous 

catalysts in recent years. The efficiency of this kind of ozonation depends mainly on the physical 

and chemical properties (surface area, porosity, density, pore volume, purity, chemical stability, 

mechanical strength, presence of active surface sites, etc.) of the surface of the metal oxide and 

the pH of the solution. As mentioned before, pH is one of the most significant variables in the 

reaction medium which influences the charge and active sites of the catalyst surface and, 

consequently, its adsorption capacity as well as the mechanisms of ozone decomposition in 

aqueous solutions [32]. Adsorption of ozone and/or organic compounds on the surface of a 

catalyst is considered to be a key step for heterogeneous catalytic ozonation. The ability of ozone 

adsorption on the surface of catalysts and its decomposition to generate active hydroxyl radicals 

is usually given as a factor determining the activity of catalyst [67]. Based on the type of catalyst 

used in this process, various mechanisms have been described. Faria et al. [87] have proposed 

that the adsorption and reaction of ozone on the surface of activated carbons leads to the 

generation of surface free radicals which are responsible for the degradation of contaminant 

molecules. Zhang et al. [88] have suggested that the non-associated catalyst surface hydroxyl 
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groups are active sites for promoting hydroxyl radical generation. Roscoe and Abbatt [89] 

assumed that ozone molecules are decomposed at the Lewis acid sites of the catalyst. Therefore, 

higher amounts of Lewis centres on the catalyst surface lead to a higher level of ozone 

decomposition. To summarise, two major mechanisms have been reported for heterogeneous 

catalytic ozonation in the literature. The first is the production of hydroxyl radicals by the 

adsorption of ozone molecules on the catalyst surface and the decomposition of these molecules 

[90, 91], and the second is the adsorption and decomposition of ozone molecules on the surface 

of the catalyst, leading to the generation of active oxidative surface-bound O radicals [92, 93]. 

 

1.3.4. Photocatalytic ozonation 

Because of the electron affinity of ozone compared to oxygen, it can clearly be concluded that 

photocatalytic ozonation is a different process from photocatalysis in the presence of oxygen and 

from ozonation in the absence of a photocatalyst. Gilbert [94] have demonstrated that, compared 

with ozone, a disadvantage of oxygen as an oxidising agent combined with TiO2 is the slow 

electron transfer from this photocatalyst to oxygen. In addition, Addamo et al. [95] quantitatively 

showed that one electron must be trapped by ozone to generate a hydroxyl radical (Reaction 

1.32), while three electrons are necessary for the generation of one hydroxyl radical when 

oxygen acts as the electron acceptor (Reactions 1.10 and 1.13 to 1.15). The major chain reactions 

of ozone with photogenerated electrons over the surface of a photocatalyst are given in Reactions 

1.32 to 1.34. Hydroxyl radicals produced in these chain reactions non-selectively attack target 

contaminant molecules (R-H) and decompose them. 

 

O3 + e¯ → •O3¯ (1.32) 
•O3¯ + H+ → HO3

• (1.33) 

HO3
• → O2 + OH• (1.34) 

OH• + R-H → R• + H2O multistep→CO2 (1.16) 

 

Many studies have discussed the synergistic effects of the combination of TiO2/UV/O3 on 

the degradation and removal of various substances from aqueous solutions. Ye et al. [96] showed 

that among six different advanced oxidation processes, TiO2/UV/O3 was the most efficient for 

complete mineralisation of 4-chloronitrobenzene. Li et al. [97] and Rajeswari and Kanmani [98] 
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have also reported similar results for the mineralisation of dibutyl phthalate and carbaryl, 

respectively, where photocatalytic ozonation was compared with two other advanced oxidation 

techniques. 

As with the previously discussed oxidation processes, many parameters such as pH, 

solution temperature, ozone content in the gaseous mixture, light intensity, etc. affect the 

efficiency of photocatalytic ozonation. However, taking into account the different possible setup 

conditions of photocatalytic ozonation runs, such as reactor design, photocatalyst properties, etc., 

the effect of variation of these factors might differ slightly in some respects. For example, Müller 

et al. [99] reported that the best results for the photocatalysis of 2,4-dichlorophenoxyacetic acid 

were observed under acidic (pH 3) conditions, whereas non-catalytic ozonation of this compound 

under alkaline (pH 11) conditions delivered the best degradation rates. The degradation rate of 

this compound by photocatalytic ozonation at pH 7 was 1.5 times faster than the best result of 

ozonation at pH 11 and more than 3 times faster than that of photocatalysis (i.e. without O3) at 

pH 3.  

Concerning the effect of ozone concentration on photocatalytic ozonation treatments, 

Jing et al. [43] showed that increasing the ozone dosage from 20 mg.h-1 to 100 mg.h-1 reduced 

the duration of the removal process of dimethyl phthalate by photocatalytic ozonation from 1 h 

to 30 min and increased the TOC removal by about 20%. It was clearly observed that the effect 

of an increased ozone dosage on TOC removal was much higher for photocatalytic ozonation 

compared to ozonation and photo-ozonation. Sanchez et al. [68] also reported that enhancing the 

ozone flow bubbling through the suspension of TiO2 in a photocatalytic ozonation setup 

effectively increased the TOC removal rate of an aniline solution. A similar trend was observed 

for the effect of the amount of the photocatalyst in the suspension on TOC removal, where 

tripling the catalyst amount decreased the TOC level by about 15%. 

Regarding the influence of temperature, Mehrjouei et al. [44] observed that an increase in 

temperature from 10oC to 55oC increased the degradation rate of oxalic acid as well as the ozone 

consumption level in a TiO2/UVA/O3 system, while even higher temperatures of up to 70oC had 

a negative effect and reduced both the degradation rate and ozone consumption level compared 

to that observed at 55oC. 
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1.4. General purposes 
This study had two main goals. The first goal was the design, construction and characterisation 

of a multiphase falling film reactor on the laboratory scale capable of combining 1) immobilised 

TiO2 particles as the solid phase, 2) ozone or oxygen molecules as the gaseous phase and 3) the 

wastewater in the form of a falling film as the liquid phase under optimised conditions. The 

second goal was the evaluation of the performance of this falling film reactor by determining the 

synergistic effects between ozone, immobilised TiO2 and near-UV light in the degradation of 

special compounds as contaminants in water by means of different advanced oxidation 

processes. Finally, the application of this modular reactor for colour removal and treatment of a 

real wastewater sample produced in a plastic pyrolysis process was performed as a case study. 

 

1.4.1. Characteristics of the falling film reactor 
Despite many investigations reporting numerous variable reactor designs for the degradation and 

removal of a wide range of chemicals existing in water as contaminant substances, coupling the 

oxidative properties of immobilised titanium dioxide particles irradiated with near-UV light and 

ozone/oxygen in a modified falling film reactor is a new idea. The benefits of the application of 

this reactor are explained as: 

• The polluted water falls at certain falling rates on the reactor walls which are coated with 

TiO2 particles and irradiated with near-UV light in the presence of ozone or oxygen, generating 

appropriate thin liquid layers adequate for bringing the three important functions involved (the 

photo-induced semiconductor surface, wastewater and ozone/oxygen molecules) very close to 

each other. In this way, optimised and yet uncomplicated conditions will be available for the 

synergistic oxidation of target pollutant molecules existing in water. 

• The ratio of the active photocatalyst surface to wastewater volume for this design is 

estimated to be around 20000 m2.m-3. This high ratio indicates that the mass transfer properties 

for this type of reactor are well-modified compared to those of other oxidation systems 

employing the immobilisation and utilisation of TiO2 particles as a photocatalyst. The obtained 

results confirm this claim. 

• The design of the falling film reactor provides the possibility of applying and evaluating 

different advanced oxidation processes, such as catalytic ozonation, photocatalytic oxidation, 
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photo-ozonation, photocatalytic ozonation and even photo-Fenton oxidation, etc., on demand, 

thus providing this reactor with multiple functions.  

• Enhancement of the contact time between ozone molecules and polluted water in addition 

to the possible reuse of ozone consequently leads to significant efficiencies in ozone 

consumption and decreases ozone production costs. 

• Oxidation of pollutants even at very low concentrations (removal of volatile organic 

compounds and odours). 

• Movement of falling aqueous films over a fixed-bed photocatalyst improves two factors 

at the same time; first, it provides better conditions from the mass transfer point of view and 

second, oxidation by-products are dissolved and washed from the surface of the photocatalyst to 

avoid its poisoning. 

• The unique design of this reactor provides the preliminaries for conjunction to other 

advanced preparations called dielectric-barrier-discharge (DBD) systems for in situ production of 

ozone using plasma, which have been described in detail by Obradovic et al. [100] and Kuraica 

et al. [101]. 

• Solving the problem of the separation of photocatalyst particles after treatment by 

immobilisation and at the same time diminishing the mass transfer problems which almost all 

immobilised photocatalyst systems suffer from was done using a modified design in construction 

which allows using this reactor for more practical and industrial applications. 

 

The capability of the falling film reactor was evaluated in the oxidation and 

decomposition of a set of organic chemicals as model compounds. The reasons for the selection 

of these compounds which are generally categorised in three groups in this study are explained 

individually below. 

 

1.4.2. Characteristics of the chosen model compounds 

 

1.4.2.1. Group A: aliphatic dicarboxylic and tricarboxylic acids 

Oxalic acid 

This dicarboxylic acid has been reported by Xiao [102] and Kosanic [103] to be one of the toxic 

pollutants existing in alumina processing liquors and textile industrial wastewaters, respectively. 
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Furthermore, oxalate is a detectable intermediate in the mineralisation of many pesticides and 

other organic compounds [104-106] and, at the same time, it is oxidised directly to CO2 without 

the formation of any stable intermediate products [57, 95]. This compound was described by 

Hoigne and Bader [107] to be recalcitrant to the direct attack of ozone alone, especially at acidic 

pH. Moreover, this compound was chosen as a model compound in many studies [44, 53, 57, 87, 

103]; therefore, it could be considered a good choice to show the benefits of advanced oxidation 

processes in the falling film reactor. 

 

Dichloroacetic acid (DCAA) 

This carcinogenic haloacetic acid [108, 109] is one of the typically disfavoured by-products 

produced in water disinfection during the chlorination process [110]. The provisional guideline 

value for announced by the WHO is 0.05 mg.L-1 [111]. Dichloroacetic acid is a non-volatile 

compound [112] and is often found in industrial liquid wastes as a consequence of the 

destruction of various chlorinated organic compounds such as trichloroacetic acid, 

trichloroethylene and perchloroethylene [113]. Dichloroacetate also has pharmaceutical 

applications as an enzyme inhibitor in cancer remediation [114, 115]; therefore, it likely exists in 

wastewaters produced by some pharmaceutical plants or hospitals [116]. Wang et al. [117] have 

reported imperceptible decomposition of dichloroacetic acid by ozonation, and it has already 

described by Volk et al. [71] that saturated aliphatic carboxylic acids are refractory to the direct 

action of ozone. On this basis, dichloroacetic acid was introduced and investigated as the next 

model compound in this study by the evaluation of its oxidation behaviours in the falling film 

reactor under various oxidative conditions. 

 

Citric acid 

This tricarboxylic aliphatic acid is mainly used as a natural flavouring and preservative additive 

in foods and soft drinks. It is also used as an industrial chelating agent in the detergent and food 

industries [118] to capture metal ions which hinder various processes. New technology was 

recently developed to use citric acid as a more environmental friendly alternative to nitric acid in 

the passivation process of stainless steel surfaces. Mazzarino and Piccinini [119] claimed that 

wastewaters produced by the cleaning process of boilers in power plants contain concentrations 

of several grams per litre of this carboxylic acid. Many researchers [120, 121] have employed 
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citric acid as a hole scavenger in the photocatalytic reduction of some toxic metal ions such as 

Cu(II), Ni(II), Zn(II), Pb(II) and Cr(VI). Furthermore, since citric acid has a saturated aliphatic 

chemical structure, it is assumed to be highly resistant to electrophilic assault by ozone. It will be 

presented later that the experimental results are in good agreement with this assumption. 

 
Table 1.2. Basic identifiers of the chosen aliphatic carboxylic acids 

Compounds CAS No. Chemical structure Molecular weight, 

g.mol-1 

pKa 

Oxalic acid dihydrate 144-62-7 HOOC-COOH.2H2O 126.07 1.23 – 4.27 

Dichloroacetic acid 79-43-6 Cl2HC-COOH 128.94 1.48 

Citric acid monohydrate 77-92-9 
HOOC-CH2-C(COOH)(OH)-

CH2-COOH.H2O 
210.14 

3.14  – 4.75 – 

6.41 

 

1.4.2.2. Group B: Aromatic mono- and dicarboxylic acids 

In general, organic substances that do not have strong nucleophilic sites in their chemical 

structures are oxidised and decomposed slowly by common ozonation processes. In this section, 

two well-known ozone-recalcitrant aromatic structures [122, 123] were chosen in order to 

examine the performance of the falling film reactor in the degradation of these compounds by 

AOPs. Table 1.3 briefly shows some selected physicochemical specifications of these two 

aromatic carboxylic acids. 

 

p-chlorobenzoic acid (pCBA) 

pCBA is not typically present in natural water, but since it is used in the manufacture of dyes, 

adhesives, fungicides and pharmaceuticals, it is present excessively in the wastewater of these 

industries. It is a common contaminant in the paper mill industry [124]. It was observed by 

Magara et al. [125] that pCBA is an intermediate product during the chlorination of pesticides. 

This halo-aromatic acid was chosen as a model compound for the AOPs because of its low 

reactivity with ozone (
3
,O pCBAk  ≤ 0.5 M-1s-1) but high reactivity with hydroxyl radicals ( ,OH pCBAk  

= 5·109 M-1s-1) [126, 127]. Jing et al. [43] have reported pseudo first-order reaction behaviour for 

pCBA reacting with OH radicals using the UV chlorine process. 
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Terephthalic acid (TPA)  

One billion kilograms of this aromatic dicarboxylic acid are produced annually and applied as 

raw materials in the production of polyester fibres and films, polyethylene terephthalate (PET) 

bottles, dyes, medicines, pesticides, perfumes, etc. The toxicity of terephthalic acid as a 

carcinogenic substance in the urinary bladder and as an endocrine disrupting factor have been 

reported by Cui et al. [128] and Dai et al. [129]. Although TPA wastewater is traditionally 

treated by biological processes, new studies investigating AOPs for the degradation of this 

compound have been published [130, 131]. 

 
Table 1.3. Identifiers and properties of the chosen aromatic carboxylic acids 

Compounds CAS No. Chemical 

structure 

Molecular weight, 

g.mol-1 

Solubility in water, 

g.L-1 

pKa 

p-chlorobenzoic acid 74-11-3 Cl-C6H4-COOH 156.57 0.08 (20° C) 3.98 

Terephthalic acid 100-21-0 HOOC-C6H4-

COOH 

166.13 0.017 (25° C) 3.51 – 4.82 

 

1.4.2.3. Group C: Ethers and their by-products 

Chemicals of this group are used as oxygenating fuel additives in the formulation of gasoline to 

raise its octane number by decreasing the aromatic content in the fuel [78]. Nowadays, due to 

large-scale fuel production and considering that these toxic compounds have been detected in 

surface and groundwater, increasing interest in effective removal methods for these substances 

from water are clearly needed. Some physical and chemical characteristics of the compounds in 

this group are summarised in Table 1.4. 

 
Table 1.4. Some physicochemical properties of the chosen ethers and TBA 

Ethers CAS No. Chemical structure Molecular weight, 

g.mol-1 

Boiling point, 

°C 

Henry’s law constant 

(at 25° C) [132] 

MTBE 1634-04-4 (CH3)3-C-O-CH3 88.15 55 1.23·10-1 – 2.40∙10-2 

ETBE 637-92-3 (CH3)3-C-O-CH2-

CH3 

102.17 70 
1.09∙10-1 

TAEE 919-94-8 CH3-CH2-C(CH3)-O-

CH2-CH3 

116.20 102 
N.A. 

TBA 75-65-0 (CH3)3-C-OH 74.12 82 4.25·10-4 – 5.93·10-4 
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Methyl tert-butyl ether (MTBE) 

Among other oxygenates, MTBE is chosen often mainly because of its relatively high cost-

effectiveness and better mixing properties with gasoline [133]. MTBE has been determined to be 

an animal carcinogen [134] and its suspected human carcinogenic potential has been described 

by Kane and Newton [135]. In 1995, the U.S. Geological Survey reported that MTBE had been 

detected in shallow urban groundwater [136], and since that time, many efforts have been 

initiated to investigate possibilities for the removal of this compound from water. Hordern et al. 

[78] proposed that the slow biodegradation rate of MTBE in aqueous solutions leads to its 

persistence in water supplies. Acero et al. [137] and Baus et al. [138] reported that the reaction 

rate of ozone molecules with MTBE is considered to be very low. Based on this information, 

conventional ozonation cannot effectively remove this compound from water. Therefore, AOPs 

have been extensively evaluated to improve the degradation process of MTBE [139, 140]. 

 

Ethyl tert-butyl ether (ETBE) 

This substance is manufactured from ethanol and isobutene. Since ethanol is more expensive 

than methanol, which is one of raw materials for the production of MTBE, the higher production 

costs of ETBE have generally inhibited its widespread use [141]. Nevertheless, environmental 

considerations limit the use of MTBE and attention has been diverted to ethanol-based 

oxygenates like ETBE and TAEE in recent years. 

 

Tert-amyl ethyl ether (TAEE) 

One advantage of ethanol-based oxygenates for gasoline like TAEE compared to MTBE is that 

ethanol can be produced by fermentation from renewable resources like sugarcane, sugar beet, 

corn or molasses and also from crop and sugar wastes [142]. For this reason and due to the health 

risk of using of MTBE as a gasoline additive, it seems that TAEE will be a good alternative to 

MTBE in the near future [143]. Compared to MTBE, there is more limited information about the 

degradation properties of TAEE by means of advanced oxidation processes. 

 

Tert-butyl alcohol (TBA) 

This compound has been reported as a by-product of the oxidation processes of MTBE and 

ETBE [13, 137, 138]. Stupp et al. [144] reported that the toxicity and health risks of TBA are as 
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high as those of MTBE. TBA is a well-known scavenger of OH radicals, since it reacts very 

rapidly with hydroxyl radicals (bimolecular rate constant, ,OH TBAk  = 3.6·1010 M-1.min-1), but very 

slowly with ozone (
3
,O TBAk  = 0.18 M-1.min-1) [131]. 
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2. Experimental 
The present work was carried out in six phases: 1) the design and construction of the falling film 

reactor, 2) immobilisation of photocatalyst nanoparticles on the reactor walls, 3) characterisation 

of the reactor to determine the optimum working conditions, 4) selection of appropriate organic 

chemicals to be studied as model compounds, 5) an elementary assessment of the selected model 

compounds properties and their behaviour under different oxidation conditions using the planar 

reactor which was prepared for this aim and 6) an intensive and complete study on the 

degradation of model compounds, including the mechanisms, kinetics, details on the 

intermediates, behavioural studies and mass transport properties. 

 

2.1. Materials 
The most commonly utilised Degussa P-25 TiO2 nanoparticles consisting of 70% photoactive 

anatase and 30% thermodynamically stable rutile modified with a BET surface area of 50 m2.g-1 

and crystalline size of 30 nm in 0.1 µm diameter aggregates was used as the photocatalyst in this 

work. This type of TiO2 was chosen for two reasons: 

1) Despite the fact that Degussa P-25 is considered to be non-porous product of TiO2, it has 

been determined to be a highly crystalline photocatalyst. Hufschmidt et al. [16] have 

postulated that high crystallinity enhances the lifetime of electron-hole pairs in the 

semiconductor and consequently increases the production rate of hydroxyl radicals. 

2) Notwithstanding the fact that anatase is the most photoactive form of TiO2, Bakardjieva et al. 

[145] and Kawahara et al. [146] have reported that controlling the content of crystalline rutile 

in the photocatalyst composition improves the photocatalytic decomposition of                     

4-chlorophenol and acetaldehyde, respectively, compared with experiments in which a pure 
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anatase phase of TiO2 was employed for treatment. This development was explained by 

increasing the charge separation efficiencies due to photo-induced interfacial electron 

transfer from anatase to rutile [21]. 

 

Analytical grades of all model compounds were employed for these experiments. All model 

compounds investigated in this work were used without any additional pre-treatment or 

purification. More details and specifications on the selected model compounds are given in Table 

2.1. 

 
Table 2.1. Experimental specifications of model compounds 

Model compound Molar mass, g/mol Purity, % producer 

Oxalic acid 126.07 99.5 Merck , Germany 

Dichloroacetic acid 128.94 > 98 Merck , Germany 

Citric acid 210.14 99.5 Chem solute, Germany 

p-chlorobenzoic acid 156.57 > 97 Fluka, Germany 

Terephthalic acid 166.13 > 98 Merck, Germany 

MTBE 88.15 > 99 Merck, Germany 

ETBE 102.18 > 95 Merck, Germany 

TAEE 116.2 98 ABCR, Germany 

TBA 74.12 > 99.5 Merck, Germany 

 

Absolute ethanol (C2H5OH), M = 46.07 g.mol-1 with a purity of > 99.8 % (provided by Chem 

solute, Germany) was used as the solvent in the preparation of the TiO2 suspension, while 65% 

nitric acid (HNO3; MW = 63.01), which was added after dilution (to 6.5 %) to the TiO2 slurry for 

better dispersion conditions was produced by Merck, Germany. Triton X-100 and a 

phenylmethylpolysiloxane emulsion (Silikophen P 40W), which were employed as a surfactant 

and binding reagent in the composition of the polysiloxane suspension were manufactured by 

Merck and Tego Chemie, Germany, respectively.  

Two components of KASI R-GL which were employed as binders in the immobilisation 

process of TiO2 nanoparticles on polymethylmethacrylate surfaces were provided by KRD 

Coatings GmbH, Germany, and added to the composition of the suspension without any 
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preliminary treatment. In this procedure, 1-methoxy-2-propanol (CH3OCH2CH(OH)CH3), 

supplied by Merck, Germany, was used as the solvent for slurry preparation. 

Solutions of 5,5,7-Indigotrisulfonic acid tripotassium salt produced by Sigma-Aldrich 

GmbH, Germany was used as model compound on demand as well as for the measurement of 

ozone concentration in the liquid phase. 

NaOH (Lachema, Czech Republic) was added to adjust the pH value when required. 

Pure dry oxygen specified as > 99.5 vol.% and H2O < 200 ppmv was delivered by Air 

Liquide to be used as the feed gas for the ozone generator; pure dry nitrogen, 99.99 vol.%, was 

prepared by the same company and used on demand. The input gas flow rate in all runs was 

fixed at 10 mL.h-1. 

The deionised water used for the preparation of solutions and for washing the reactors was 

provided by a Seradest SD-2000 deionising column (Seral, Germany) with a conductivity of       

< 0.1 µS.cm-1 in the outlet. 

 

2.2. The design and structure of reactors 
Two different designs of reactors were used in the present work. Some preliminary investigations 

concerning immobilisation techniques for TiO2 as well as the behaviour of model compounds 

under different oxidation conditions were performed by means of a planar reactor. A 

polymethylmethacrylate box with a special interior structure and transparent window was used as 

the planar reactor (Fig. 2.1). 

In this design, the photocatalyst particles were immobilised on borosilicate glass sheets, 

and these sheets were embedded and fixed inside the reactor. The solutions were injected 

through the bottom inlet to generate a thin liquid layer on the photocatalyst surface and left the 

reactor from the outlet on the top of the reactor. An optical window allowed UV light irradiation 

of the photocatalyst surface. 

The majority of experiments were carried out using an annular falling-film reactor. In this 

design, a cylindrical tube with internal and external diameters of 26 mm and 30 mm, 

respectively, was placed and fixed vertically inside another bigger tube with an internal diameter 

of 64 mm and external diameter of 68 mm to form an annular space between the two tubes along 

the length of the reactor (Fig. 2.2).  
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Fig. 2.1. Structure of the planar reactor 

 

The space between the two tubes was used as the reaction medium. Two special caps at 

the bottom and top of the structure fixed the tubes and closed the system. TiO2 particles were 

immobilised on the inner side of the outer tube and the outer side of the inner tube such that all 

surfaces of the annular space were covered with semiconductor particles. A UV light lamp was 

located inside the inner tube vertically, thus uniformly irradiating all surfaces of the tube around 

the source. 

 

2.3. Instruments and devices 
In all experiments which needed illumination, UV lamps produced by Narva Lichtquellen GmbH 

& Co. KG, Germany, model LT 30 W/009, were used as the UV irradiation source. Fig. 2.3 

presents the illumination spectrum of this type of lamp with a range of wavelengths from 300 nm 

to 420 nm and a maximum wavelength at about 360 nm. The incident light intensity of these 

sources is about 1 mW.cm-2. The maintenance of radiation was reported by the manufacturer as 

being about 85% after 2000 hours. 
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Fig. 2.2. Structure of the annular falling film reactor 
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Fig. 2.3. Illumination spectrum of the UVA irradiation source 

 

The ozone generator used in this work was manufactured by Fischer, Germany, model 

OZ 502/10. This device was able to produce ozone from either pure oxygen or compressed air. By 

changing the oxygen content of the feed gas, input flow rates and the selected power range of the 

device, the ozone concentration in the input gaseous mixture was programmable. 

An ozone analyser produced by Anseros Ozomat GM, Germany, model RT1 measured 

the ozone concentration in the gas. This device was also used to determine the steady state 

conditions of ozone generation after the ozone generator was started. 

The solution temperature was fixed at the required temperatures in all treatments, using a 

thermostatic bath produced by LAUDA, Germany, model B. The solution pH was measured by a 

pH-196 Microprocessor pH meter supplied by WTW, Germany. 

 

2.4. Installation and setup details 
Fig. 2.4 demonstrates the installation details of all equipment involved in experiments carried out 

by means of (a) the planar reactor and (b) the falling film reactor. In the case of the planar 

reactor, the solution was ozonised or oxygenised on demand in the ozonation chamber and then 

recycled through the reactor. The recycling of solutions was performed using a Micropump 

75211-15 gear pump. The ozone generator was connected to the inlet of the ozonation chamber, 
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where the gas mixture bubbled through the liquid and left the chamber from the top outlet. An 

ozone analyser with the capability of switching between the inlet and outlet of the ozonation 

chamber was included to continuously detect ozone concentration in the gas phase. 

Similar in principle but different in implementation, the falling-film reactor was designed 

to provide a wide area of photoactivated catalyst in a small space, as well as to bring the three 

different phases (photocatalyst as the solid, wastewater as the liquid and ozone as the gas) close 

to each other more effectively. In this way, whilst the stream of liquid was injected into the 

reactor through small apertures in the top cap to generate falling, thus generating thin layers over 

the immobilised semiconductor nanoparticles on the vertical walls of the reactor, the direction of 

gas flow through the reactor could be set in co-current or counter-current form with regard to the 

liquid stream by replacing the gas inlet and outlet. After passing through the reactor by falling, 

the solution was transferred to a vessel held in a thermostatic bath to be prepared for injection 

into the reactor again by means of two membrane pumps. In order to obtain a similar falling rate 

and similar falling film thickness for both tubes, which were different in size, the first pump 

recycled the solution for the outer (bigger) tube at relatively higher rates, while recycling of the 

solution over the inner (smaller) tube was performed separately by the second pump at lower 

rates.  

However, as far as the gas stream was concerned, experiments were done under two 

conditions. In the case of volatile compounds (ethers), experiments were performed in a closed 

gaseous system to minimise evaporation influences, while other compounds were investigated 

under open gaseous systems. 

 

2.5. Immobilisation of the photocatalyst 
In order to avoid practical problems which have already been mentioned for slurry applications, 

TiO2 nanoparticles were used as immobilised thin films of the photocatalyst. For the planar 

reactor runs, TiO2 was deposited and fixed on borosilicate glass plates while for the falling film 

reactor experiments, the catalyst was immobilised on the interior surfaces of the reactor walls. 

Associated with catalyst immobilisation on falling film tubes, the deposition of P-25 Degussa 

powder was carried out on two types of support materials, borosilicate glass and Plexiglas, by 

means of two different technical procedures. 
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Fig. 2.4. Setup details for a) the planar reactor and b) the falling film reactor 
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2.5.1. Immobilisation on borosilicate glass 

The coating process on the surface of borosilicate glass tubes was performed by an efficient and 

simple method in which a suspension of titanium dioxide nanoparticles in a mixture of ethanol 

and nitric acid was used to cover the glass surface. This technique was originally developed by 

scientists at the Netherlands Energy Research Foundation (ECN) for the deposition of titanium 

dioxide particles on quartz sheets of solar cells and was applied later with slight modifications 

for the immobilisation of this semiconductor on glass and fibreglass substrates [147], steel plates 

[148] and perlite granules [149]. 

The details of the preparation process of suspension and immobilisation using this 

method are given below: 

First, the borosilicate glass tubes and plates were washed with acetone in order to remove 

organic and inorganic contaminants, then rinsed with deionised water and dried at 100°C for 30 

min. After cooling, the tubes were fixed between two simple caps in a special structure similar to 

that of the falling film reactor. This facility (Fig. 2.5) was produced for coating purposes. The 

space between the two tubes was filled with the TiO2 suspension, then the suspension was drawn 

out of the instrument at a rate of 10 cm.min-1 to generate a thin film of photocatalyst 

nanoparticles on the surface of the tubes. In the case of coating on plates for the planar reactor, 

the plates were simply dipped and fixed in a special vessel containing the suspension and the 

slurry was purged from the bottom at a constant rate of 10 cm.min-1. 

A slurry of 1% solid TiO2 content by mass was provided by dispersing 15 g of P-25 

Degussa powder into 1125 g (1424 mL) of absolute ethanol and 375 g (357 mL) of diluted (10%) 

nitric acid. Acidification of the suspension by adding nitric acid has been described by many 

researchers [150, 151], and is necessary in order to obtain adequate dispersion with stabilised 

TiO2 colloids. The suspension was processed in an ultrasonic device for 15 minutes and then 

immediately injected into the coating facility for the immobilisation process. After each loading 

(injection and suction) of the suspension into the instrument, the output slurry was re-

ultrasonicated for 15 min to maintain the colloidal dispersion properties for the next loading. The 

loading process was repeated five times in order to obtain a proper thin film of the photocatalyst 

with a uniform surface capable for handling further photocatalytic activities. 
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Fig. 2.5. Immobilisation (coating) facility 

 

After the immobilised photocatalyst films were touch-dry (a few hours under laboratory 

temperature conditions), the tubes/plates were annealed at 450°C for 30 min, leading to the 

generation of hard and stable thin coatings of TiO2 deposited on the wall of the glass tubes or 

plate surfaces. It is worth mentioning that, since only the anatase form is photocatalytically 

active and is transformed into rutile at about 600°C, any fixing process must be performed below 

this temperature.  

In addition to this procedure, another relatively more complicated and long-process 

approach was also applied and assessed to generate more stable TiO2 coatings on borosilicate 

glass plates using polysiloxane binder reagents, where 1 g of P-25 Degussa in addition to 

different amounts (1-10 g) of a polysiloxane reagent and 2 droplets of Triton X-100 as a non-

ionic surfactant were added to 20 g of deionised water and processed ultrasonically for 15 

minutes, then poured on borosilicate glass plates which were washed with a KOH/ethanol (5% 

KOH in ethanol) solution and dried prior to use. The coated plates were left in the laboratory air 

for 15 hours and then annealed at 200°C for 30 min. Due to low wettability, these coatings 

should pass an etching process using a KOH/ethanol solution before being used for treatment. 



2. Experimental 

43 

 

The immobilised coatings produced using this technique were assumed to be thicker, 

firmer and showed more adherence to their substrates compared with the coatings produced by 

applying the first method; however, the uniformity of these coatings was relatively worse and 

their photocatalytic activity was highly dependent on the content of the photocatalyst in 

suspension. The photocatalytic activities of these two types of catalytic coatings will be 

described later in the results and discussion section. 

 

2.5.2. Immobilisation on Plexiglas (polymethylmethacrylate, PMMA) 

Considering that the glass transition temperature (Tg) of polymethylmethacrylate ranges from 

85°C to 165°C, the employment of methods dealing with high temperatures to prepare fixed TiO2 

thin films on Plexiglas surfaces was confined. Therefore, in order to achieve sticky thin layers 

with good adherence on the walls of the Plexiglas tubes and at the same time with a high level of 

photoactivity, the following procedure was used. 

In the first step, 15 g of TiO2 P-25 Degussa powder was added to 700 g of 1-methoxy-2-

propanol as the solvent and ultrasonicated for 15 min. Later, 100 g of KASI R-GL component 1 

and 50 g of KASI R-GL component 2 were added to the suspension, which was prepared in the 

first step and the complex was shaken well for 1-2 min. The PMMA tubes were rinsed with tap 

water, then deionised water and dried at a temperature of 80°C for 30 min. Next, the clean and 

dry tubes were fixed in the same structure described for immobilisation on borosilicate glass 

tubes. The coating was performed by the injection of the prepared suspension inside the structure 

and sucking it out at a rate of 10 cm.min-1. The coating process was repeated until reaching a 

sufficient deposition of nanoparticles on the tube walls. After coating, the tubes were baked at 

80°C for 2 h. Finally, after the PMMA tubes were cold, the surface of the deposited photocatalyst 

was washed with a solution of 5% KOH in ethanol for 5 min. The etching treatment with 

KOH/ethanol solution plays significant role in providing improved wettability of the surface of 

immobilised TiO2. 

 

2.6. Characterisation of the falling film reactor 
In order to describe the quality and performance of the falling film reactor and to determine the 

optimised working conditions for it, elaborate assessments were performed with respect to some 

aspects involved in dealing with this kind of reactor. The following paragraphs present more 
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details about the operation of the membrane pumps engaged in recycling fluids through the 

reactor, the uniformity of the thickness of liquid falling films under different conditions, the gas 

washing effects of the falling films, ozone decomposition and adsorption of ozone in the liquid 

falling films, adsorption of model compound molecules on the surface of the photocatalyst and 

the influence of the movement direction of the gaseous stream through the reactor on the 

efficiency of the oxidation process and other practical aspects. 

 

2.6.1. Evaluation of membrane pumps performance 

A simple assessment was performed with the aim of plotting a correlation between the operation 

voltage of the membrane pumps and the solution recycling rates obtained at different pump 

voltages. The pumps did not work at voltages lower than 7 volts and their performance seemed 

to be constant at voltages higher than 22 volts. Fig. 2.6 shows how the solution recycling rate 

was enhanced as a result of pump voltage progress. 

The persistency of membrane pumps was re-evaluated after about 300 working hours of 

recycling various ozonised solutions in order to check their suitability for further experiments. 

Their performance was found to be constant with deviations not more than 5% after this period 

of time.  
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Fig. 2.6. Solution recycling rate vs. pump voltage for inner (■) and outer (▲) tubes  
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2.6.2. Distribution patterns of falling films 

A simple technique was employed to determine the distribution patterns of liquid falling films or, 

in other words, to evaluate the thickness uniformity of falling films. In the beginning, a thin 

hypothetical transect (profile) was chosen in the middle of the falling film reactor to be the 

region of measurements. Four positions with similar distances from each other were determined 

and set on this transect around the outer tube from the outside. A particular sensor for UV light 

detection was connected to a volt meter fixed at each of these four positions at a right angle to 

the reactor wall. The sensor detected and reported the decrease in voltage when the falling film 

was running compared to the case when no falling film was present. The process was separately 

repeated for each of the four positions around the hypothetical transect. An ozonized saturated 

potassium iodide solution was used as falling liquid in this investigation. The colour of this 

solution was dark brown. 

Data recording was performed three times for each tube separately by applying two 

different falling rates. The average numeric values of three repeated readings for each position 

were calculated and are presented in Fig. 2.7. In this figure, each point shows the decreased 

percentage of UV light intensity at each position after running the falling film. The farthest point 

from the graph centre reflects the thickest falling film at that point. It is clear that higher falling 

rates created thicker and more uniform films. 

It is noteworthy that the first measurements exhibited improper thickness distributions for 

the falling films. Therefore, some basic modifications were made on the cap structure of the 

reactor, especially with regard to the quantity and orifice size of inputs in order to improve the 

quality of the falling films. Fig. 2.8 represents a simple comparison between the thickness 

distribution before and after the modification. According to this figure, the distribution pattern of 

falling films after this modification was considered to be satisfactory for handling the treatments.  
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Fig. 2.7. Distribution pattern of liquid falling films on the outer tube (white) and inner tube (black) at solution 

recycling rates of 100 mL/min (○) and 200 mL/min (□) 
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Fig. 2.8. Simple comparison between the distribution patterns of falling films before and after the modification 
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2.6.3. Thickness of falling films  

The laminar thickness of liquid falling films was not constant along the horizontal tubes; this was 

described by Rogers [152] to be a function of the Reynolds number (Re) and Archimedes 

number (Ar) at any position on the tube. In this work, the average thickness of aqueous falling 

films formed on both the external wall of the inner tube and the internal wall of the outer tube 

were calculated roughly as follows: 

a) Water recycling through the reactor was maintained for 5 minutes for each recycling rate 

(pump voltage) to reach steady state conditions of membrane pump performance. 

b) After this time, the pump was switched off to interrupt solution injection into the reactor and, 

as soon as the pump was off, the out-coming water from the output point of the reactor was 

collected and its volume was determined by weighing. 

c) This procedure was repeated three times for each recycling rate setup and the average volume 

was used as a result in the calculations of the next steps. 

d) By plotting the average volumes vs. recycling rates, intercepts were computed and subtracted 

as remaining amounts of water in the connection pipes. 

e) The average falling film thickness was obtained by dividing the average volumes of water 

which were calculated in step c by the appropriate active surface area (tubes walls) for each 

condition. 
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Fig. 2.9. The thickness of falling films in average vs. solution recycling rate over the wall of inner tube (light) and 

outer tube (dark)  
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The results are represented in Fig. 2.9 and were fitted to be used as a standard curve for the 

next experimental setup. The numerical data shown in the bars are the recycling rates for each 

pump individually and the sum of these is reported as the total recycling rate for each case. 

Considering the greater diameter of the outer tube, higher recycling rates were calculated and 

chosen for the pump connected to this tube compared to the inner tube to achieve almost similar 

thicknesses of falling films over the walls of both tubes. 

 

2.6.4. Gas washing effect of falling films 

Since the gas flow inside the reactor was considered to move from bottom to top, countering the 

falling liquid films, ozone molecules in the gaseous mixture would be absorbed into the liquid or 

be decomposed by the falling liquid streams. This investigation was planned in order to evaluate 

this effect for different falling rates. For this aim, the falling film reactor was first filled with an 

oxygen-ozone mixture with an ozone concentration of 130±5 mg.L-1. The gas output of the 

reactor was connected to the ozone analyser to constantly measure the ozone concentration in the 

gas phase. After reaching a steady level of ozone at the output, the membrane pumps were 

switched on to recycle the deionised water through the reactor. Four different recycling rates 

between 100 mL.min-1 and 400 mL.min-1 were chosen for this investigation. The injection of the 

gaseous mixture of oxygen-ozone was maintained during water recycling. The experimental 

results illustrated in Fig. 2.10 show that an increase in the recycling rate of deionised water from 

100 mL.min-1 to 400 mL.min-1 led to a decrease of about 16.5% in the ozone concentration in the 

gaseous phase after reaching equilibrium conditions. 

These results could imply that increasing the recycling rate of water might lead to an 

increase in the absorption level of ozone in water. However, it will be clearly presented in the 

next section that increasing the recycling rate causes no considerable enhancement in the 

absorption level of ozone into the liquid phase. Therefore, other assumptions could be suggested, 

such that under recycling mode conditions, higher liquid recycling rates increase ozone 

decomposition by increasing turbulence. In other words, since the whole system is closed and fed 

continuously by a constant level of ozone under these conditions, a reduction in the ozone 

concentration in the gas phase, despite the lack of a reaction, could be explained only by the 

decomposition of ozone molecules because of shear stress of the falling liquid films. 
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Fig. 2.10. Ozone content in the gas output of the reactor over the recycling time of deionized water at rates of 100 

mL.min-1 (♦), 200 mL.min-1 (■), 300 mL.min-1 (▲) and 400 mL.min-1 (●), gas flow rate = 10 L.h-1, T = 25° C 

 

To summarise, it seems that applying lower falling rates during recycling-mode runs 

reduces the decomposition rate of ozone molecules. However, in the case of wastewater 

treatment by ozone or other advanced oxidation processes based on ozonation, since in addition 

to ozone decomposition there will be a reaction between ozone molecules and water pollutants, 

determining the optimum recycling rate for treatment is not easy. In order to assess this 

parameter when dealing with single-pass treatments, ozonation of three kinds of solutions was 

performed (Fig. 2.11). 

The circumstances for the measurement of ozone concentrations were largely similar to 

those for the recycling mode with the difference that the falling liquids passed the reactor once 

and were not recycled again, which means that the gas stream was always affected by fresh 

falling liquids. 

Fig. 2.11 shows that, not unexpectedly, the decreasing level of ozone in the gaseous 

mixture after contact with the falling liquid film mainly depended on the variety and 

concentration of substances in the falling liquid films as well as the reactivity of each substance 

inside the solution with ozone. While falling deionised water and an indigo solution over the 

reactor walls only caused a decrease in the ozone content of about 5 mg.L-1 and 22 mg.L-1 in the 
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gaseous mixtures, respectively, passing real pyrolysis wastewater through the reactor decreased 

the ozone content by about 100 mg.L-1. This type of wastewater contained more than 30 organic 

and inorganic compounds. These behaviours, especially in the case of wastewater, indicate 

sufficient contact between the falling liquid films and ozone molecules for desirable treatment. 
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Fig. 2.11. Catalytic ozonation of deionized water (♦), Indigo solution, 0.03 M (■) and, pyrolysis wastewater (▲), 

falling film reactor, single-pass mode, falling rate = 100 mL.min-1, gas flow rate = 10 L.h-1, T = 25° C 

 

2.6.5. Ozone absorption in the falling liquid films 

The absorption level of ozone in the liquid phase was investigated under different process 

conditions. The indigo method [153] was employed for the measurement of ozone concentrations 

in water. Two initial attempts were arranged to assess the influence of the recycling rate on the 

ozone absorption level. For this purpose, 500 mL of deionised water were constantly recycled 

through the reactor, producing falling films in the presence of a counter-current flow of an 

ozone-oxygen gas mixture (CO3 = 135 mg.L-1
O2) using two different recycling rates. The results 

presented in Fig. 2.12 show that increasing the recycling rate from 100 mL.min-1 to 400 mL.min-

1 caused no remarkable enhancement in ozone absorption on average. Under these conditions, the 

ozone concentration in the liquid phase reaches a nearly constant value after a short period of 

time; however, it is clear that in the case of lower recycling rates, a relatively longer period of 
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time was expected to achieve the saturation level of ozone in water. The next two attempts were 

carried out under single-pass mode conditions such that appropriate amounts of fresh deionised 

water were injected into the reactor at similar rates mentioned above during the investigation. 

The ozone concentration in the output ozonised water was measured periodically and reported in 

Fig. 2.12. In the single-pass mode, a falling rate of 100 mL.min-1 increased the ozone 

concentration in the liquid phase by about 3 mg.L-1 compared with a rate of 400 mL.min-1. 
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Fig. 2.12. Absorption level of ozone in the liquid falling films, recycling mode (black) and single-pass mode (white) 

for falling rates of 100 mL/min (□) and 400 mL/min (○), gas flow rate = 10 L/h, T = 25° C 

 

Summarising, a high level of ozone absorption was observed in the single-pass mode and 

a slight difference was seen compared with the recycling mode, indicating that gas absorption in 

the falling liquid films occurs and rapidly reaches the saturation level under the setup conditions 

of the present study. 

 

2.6.6. The effect of illumination on ozone decomposition 

This set of experiments was performed in order to determine the influence of irradiation on the 

decomposition of different concentrations of ozone inside the falling film reactor. For this aim, 
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an ozone-oxygen gaseous mixture was injected continuously into the reactor and the ozone 

concentration in the gas phase was measured at the output of the reactor. After reaching steady 

state conditions of the gas phase ozone concentration, UVA irradiation was started. The 

measurement of the ozone concentration was done over a time period of 70 min under irradiation 

conditions, then the measurement was maintained in the dark. According to the results presented 

in Fig. 2.13, the decomposition of ozone molecules inside the reactor was accelerated by 

irradiation with UVA light. Fig. 2.13 shows that the level of ozone decomposition had a 

correlation with the initial content of ozone in the gas mixture entering the reactor such that a 

higher initial concentration led to higher ozone decomposition. However, for all concentrations 

of ozone, an almost constant ratio of the initial concentration (about 37±2%) was decomposed 

during illumination. 
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Fig. 2.13. The effect of UVA irradiation on ozone decomposition over TiO2 surface, gas flow rate = 10 L.h-1,           

T =25°C 

 

The adsorption of ozone molecules on the surface of TiO2 and their reaction with the 

photogenerated electrons thereon is the main reason for the decrease of ozone concentration in 

the gas phase during the irradiation time. 
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2.6.7. Adsorption of model pollutants on the photocatalyst surface 

The adsorption level of pollutant molecules on immobilised TiO2 nanoparticles in the falling film 

reactor was evaluated by applying two model compounds. For this aim, solutions of oxalic acid 

and dichloroacetic acid at two different concentrations (0.5 mM and 2.5 mM) were prepared at 

acidic pH (3-3.5) at 25°C. For these experiments, the surfaces of the falling film reactor were 

washed with 2 L of deionised water and dried using a hairdryer. After cooling down to ambient 

temperature, 500 mL of the appropriate solution were injected into the reactor and recycled for a 

duration of 4 h. The first sample was taken before the injection of the solution and subsequent 

samples were taken after 1, 2, 3 and 4 h of recycling. The adsorption level of each model 

compound for any situation was calculated by subtracting the concentration in the solution 

before and after the recycling process. All measurements were repeated three times and average 

values are reported as results in Table 2.2. 

 
Table 2.2. Adsorption level of model compounds on the immobilized TiO2 in the falling film reactor (μg.cm-2) 

 Oxalic acid Dichloroacetic acid 

 
0C  = 0.5 mM 0C  = 2.5 mM 0C  = 0.5 mM 0C  = 2.5 mM 

After 1st hour 6.19 14.77 3.49 14.92  

After 2nd hour 6.80 15.46 3.87 14.42 

After 3rd hour 7.37 16.59 4.06 14.80 

After 4th hour 7.85 17.64 4.43 15.55 

 

Considering the results in Table 2.2, three points have to be highlighted. The first is that 

any enhancement in the concentration of model compounds will increase the level of their 

adsorption on the surface of the photocatalyst. The second point is that a simple comparison 

between the adsorption levels of these two model compounds at each concentration shows that 

the adsorbed amounts of oxalic acid were higher than those of dichloroacetic acid; however, the 

difference was relatively low at the concentration of 2.5 mM. This observation could be 

explained by the molecular size difference between these two carboxylic acids; compared to 

oxalic acid, the space occupied by bigger molecules of dichloroacetic acid could hinder the 

adsorption of more molecules on the surface of the photocatalyst. However, at a concentration of 

2.5 mM, this effect seemed to be minimised by increasing the presence of molecules close to the 
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photocatalyst surface. The third point is the increase in the adsorbed amounts of model 

compounds over the process time. Two assumptions can explain this trend: 

a) The first theory is that the descending trend of concentrations of model compounds in the 

solution over the duration of the process was simultaneous to the ascending concentration on the 

catalyst surface. In other words, the equilibrium between the adsorbed molecules on the 

photocatalyst surface and the molecules in the diffusion layer after 4 hours was not yet 

established, and a longer period of time was required to reach the equilibrium point. 

b) The second theory is that equilibrium was established after the first hour and the further 

increase in the adsorbed amount of model compounds was due to the degradation of adsorbed 

molecules on the catalyst surface and the adsorption of new molecules of model compounds 

from the solution. 

According to Fig. 2.14, plotting the adsorbed amounts of dichloroacetic acid versus 

chloride ions produced during the adsorption of this compound shows that a small increase in 

chloride ions as a degradation product was observed during the adsorption of dichloroacetic acid. 

These results indicate that some of the adsorbed dichloroacetic acid molecules decomposed 

slightly over the catalyst surface during the adsorption process. 
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Fig. 2.14. Adsorption of dichloroacetic acid vs. generation of chlorine ions (inset graph: DCAA (♦) and Cl¯ (●)) 
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To conclude, a combination of both theories mentioned above seems to be reasonable, 

which means that the establishment of equilibrium between the molecules of model compounds 

in the solution and on the surface of the catalyst needs a longer period of time due to the slight 

degradation of model compounds on the surface of the catalyst. 

 

2.6.8. The effect of direction of gas flow 

This section of the present study was included in order to investigate the influence of the 

direction of movement of the gas stream beside the falling liquid films on the efficiency of the 

treatment process. For this aim, catalytic ozonation of a real sample of pyrolysis wastewater was 

performed under two different conditions related to gas flow. In the first setup condition, the gas 

flow was injected from the bottom inlet of the falling film reactor to move upward, countering 

the falling liquid films (counter-current) and exited at the top outlet of reactor, while in the 

second setup, the gas flow was inserted from the top inlet to move through the reactor with the 

same movement direction as the falling liquid films (co-current) and exited the reactor at the 

bottom outlet. 
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Fig. 2.15. Catalytic ozonation of pyrolysis wastewater in the falling film reactor with co-current (●) and counter -

current (■) of ozone flow, wastewater recycling rate = 400 mL.min-1, wastewater volume = 400 mL, gas flow rate = 

10 L.h-1, T = 25° C, pH = 8 
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Fig. 2.15 shows that, compared with the co-current setup conditions, under counter-

current conditions, the concentration of ozone in the gaseous mixture at the output of reactor 

decreased by about 10% during the first 10 min of treatment, although the level of ozone 

consumption was similar for both setup conditions after 20 min. At the same time, the inset 

graph of Fig. 2.15 compares the colour removal of wastewater under these two conditions. It was 

clearly demonstrated that there was no significant difference between the efficiencies of colour 

removal under these two setup conditions. Therefore, in spite of the fact that counter-current gas 

flow caused slightly a greater decrease in ozone in the beginning due to more effective contact 

with the falling films, both setup conditions were in general considered to be similarly effective 

in the oxidation process. 

 

2.7. Analytical methods 
Based on need, different analytical methods were applied for the measurement of concentrations 

of the model compounds and for the evaluation of some other aspects of aqueous solutions or 

wastewaters. 

 

2.7.1. Ion chromatography (IC) 

Oxalic acid, dichloroacetic acid and citric acid concentration analyses as well as chloride ion 

concentration measurements in the case of dichloroacetic acid treatment were performed by ionic 

chromatography using a Dionex DX 500 apparatus with conductivity detection connected to an 

Ion Pac AG4A (guard column) and an AS14 anion exchange column with a 4 mm format 

(Dionex). The samples were pumped through a sample loop at a volume of 100 µL. The flow 

rate of the mobile phase, NaHCO3 (1.7 mM)/Na2CO3 (1.8 mM), was fixed at 1.2 mL.min-1. 

 

2.7.2. High-performance liquid chromatography (HPLC) 

The concentrations of p-benzoic acid and terephthalic acid were measured by the HPLC-MS 

technique. An Agilent 1100 HPLC series (Agilent Technologies, Germany) coupled to an 

Extended Capacity Trap (XCT) mass spectrometer were used for this purpose. Other parameters 

are briefly given in Table 2.3. 
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Table 2.3. HPLC and MS parameters 

A. HPLC parameters 

Column 
Wicon Prontosil ACE-EPS column, 300x4.6 mm, 3-μm particle size (Heppenheim, 

Germany) 

Column temperature 30° C 

Mobile phase 
A:Water and, B: Methanol both modified with formic acid, 0.1%; Gradient:0 min, 

A/B 10/90 (v/v); 20 min, A/B 0:100 (v/v); 30 min, A/B 0:100 (v/v) 

Flow rate 0.7 mL.min-1 

Injection volume 10 μL 

 

B. MS parameters 

Source ESI ion source; operating in positive and negative mode (alternating) 

Nebulizer pressure 60 psi 

Dry gas flow (N2) 11 L.min-1 

Drying gas temperature 350° C 

 

2.7.3. Headspace technique 

This method was employed to measure the concentration of ethers and tert-butanol as model 

compounds on the basis of DIN 38407-F9-1. The heated headspace technique connected to gas 

chromatography or gas chromatography/mass spectrometry is a conventional measurement 

technique for oxygenates and their by-products [154]. The technical specifications of this 

determination technique are given in Table 2.4. 

 

2.7.4. Total organic carbon analyses (TOC) 

The evaluation of the mineralisation of model compounds was performed by means of a TOC-

5000 Shimadzu (total organic carbon) analyser (Japan). 

 

2.7.5. Chemical oxygen demand measurements (COD) 

This analytical method was employed to quantify the quality of the real wastewater over the 

duration of treatment (DIN 38409-H41). 
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2.7.6. Spectrophotometery 

A spectrophotometer (model Spekol 11, Carl Zeiss Jena) was used to determine the colour of the 

real pyrolysis wastewater. All samples were filtered using an E0 syringe filter (0.2 μm, Sartorius 

Stedim) before measurement to avoid light adsorption by the probable presence of suspended 

particles in the wastewater. This analytical method was also applied for measurements of the 

concentration of indigo solutions.  

 
Table 2.4. Headspace and gas chromatography parameters 

Combustion gases  Hydrogen 5.0 0.3bar 

 Air (hydrocarbon-free)  0.3 bar 

Injector splitless  

Injector temperature 280° C  

Detector FID (flame ionization detector)  

Detector temperature 310° C  

Mobile Phase Helium 5.0 1bar 

 Nitrogen 5.0 1bar 

Stationary phase SGE BP-624(Ciano-Methyl-Phenylsilicon) 
30m x 0.32 mm 
3µm film thickness 

 

Temperature program 5 min. at 40° C then, 10° C/min. up to 150° C, 0 min. then, 30° C/min. up 
to 180° C, 1 min. 

 

Injection volume 100 µL  
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3. Results and discussion 
An intensive study on a wide range of aspects relating to the oxidation and degradation of 

specific organic compounds as contaminants in water by means of different advanced oxidation 

processes is presented in this section. Immobilisation techniques used for fixing TiO2 on 

borosilicate glass and Plexiglas are evaluated. The influences of some experimental variables 

such as solution temperature and pH, the initial concentration of model compounds, 

water/wastewater recycling rates, ozone content in the input gas mixture, the flow rate of the 

feed gas, as well as reactor design concepts and impact patterns on the efficiency of oxidation 

treatment are demonstrated. Appropriate results are illustrated in detail and discussed separately 

for each part. Moreover, an assessment of the performance of the falling film reactor in terms of 

colour removal and the treatment of a real wastewater sample produced by a thermal pyrolysis 

process is presented as a case study in this work. 

 

3.1. Evaluation of immobilised photocatalysts 

 
3.1.1. The photoactivity of immobilised photocatalysts 

It was already mentioned that two techniques using suspensions of ethanol/nitric acid and 

polysiloxane/Triton X-100 were applied for the immobilisation of the photocatalyst on 

borosilicate glass. In terms of appearance, the surface of photocatalyst samples fixed by 

polysiloxane/Triton X-100 was non-uniform, but due to the existence of polysiloxane as a 

binder, the immobilised photocatalysts using this method were thicker and more stable than those 

produced by the ethanol/nitric acid method. The photocatalytic activity of fixed TiO2 
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nanoparticles was assessed by photocatalytic degradation of indigo using the planar reactor. Fig. 

3.1 shows that the efficiency of both photocatalyst samples in the photocatalytic oxidation of 

indigo seemed to be nearly equal. About 85%-90% of the initial concentration of indigo was 

similarly oxidised after 100 min of oxidation time using these two different photocatalysts. The 

trend of indigo degradation in the absence of the photocatalyst is also shown in Fig. 3.1. 

Concerning the polysiloxane/Triton X-100 method, it is noteworthy that the ratio of TiO2 

to polysiloxane in the suspension used for the immobilisation procedure played an important role 

in the photoactivity of the prepared TiO2 surfaces. It was observed that a ten-fold decrease in the 

TiO2/polysiloxane ratio by maintaining the content of TiO2 and increasing the polysiloxane 

content, led to a decrease in the photoactivity of the immobilised photocatalyst by about 50% 

(Fig. 3.2). 

Polysiloxane was used as a binder to stabilise TiO2 nanoparticles on the surface of 

borosilicate glass. Therefore, any excess of this material in the suspension will cover the fixed 

nanoparticles of TiO2 and will consequently limit their availability for oxidation reactions. 
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Fig. 3.1. Photocatalytic oxidation of indigo (0.01 mM) using immobilised TiO2 by ethanol/nitric acid method (▲) 

and polysiloxane/triton X-100 method (■), as well as photolysis on borosilicate glass (●), planar reactor, recycling 

rate = 1 L.min-1, solution volume = 400 mL, T = 25° C, pH = 2, , λ = 600 nm  
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Fig. 3.2. Photocatalytic oxidation of indigo (0.01 mM) using immobilized TiO2 by polysiloxane/triton X-100 

method, TiO2/polysiloxane ratios: 1 (♦), 0.5 (■) and 0.1 (▲), planar reactor, recycling rate = 1 L.min-1, solution 

volume = 400 mL, T = 25° C, pH = 2, λ = 600 nm  

 

To conclude, because of implementation difficulties with the polysiloxane/Triton X-100 

method, especially for the immobilisation of TiO2 on the surface of tubes in the falling film 

reactor on one hand, and due to the similar photoactive properties observed for samples obtained 

from both approaches on the other hand, the simple ethanol/nitric acid method was chosen for 

fixing the photocatalyst on the borosilicate glass tubes of the falling film reactor. 

In this work, two different materials were selected as substrates for immobilised TiO2 in 

the initial design of the falling film reactor: borosilicate glass (BSG) and polymethylmethacrylate 

(PMMA; Plexiglas). Considering the different physicochemical properties of these substrates, 

two different immobilisation techniques were applied for fixing TiO2 on the surface of BSG and 

PMMA. The procedure of immobilisation was presented in detail in the experimental section. 

Despite the similar appearance of the two samples, an investigation of the photoactivity of 

photocatalysts immobilised on BSG and PMMA showed that the performance of TiO2 particles 

fixed on BSG by means of the ethanol/nitric acid method using photocatalytic oxidation and 

photocatalytic ozonation was much better than that of immobilised TiO2 on PMMA using the 

KASIR-GL sol-gel method. Conversely, no difference was observed in the efficiencies of 
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catalytic ozonation for both photocatalysts (Fig. 3.3). According to the results in Fig. 3.3, the 

degradation of oxalic acid by photocatalytic ozonation over TiO2-BSG was almost complete after 

50 min, while it took 100 min to be complete over TiO2-PMMA. Photocatalytic oxidation on 

TiO2-BSG decomposed 76% of the initial concentration of oxalic acid after 100 min, but only 

49% was decomposed on TiO2-PMMA using the same oxidation method under similar 

conditions. This behaviour can be rationalised considering the low surface wettability of 

immobilised TiO2 on PMMA. This effect decreases the effective contact between molecules of 

pollutants in the water and the surface of the photocatalyst and, as a consequence, it negatively 

influences the efficiency of oxidation. 

The catalytic ozonation results in Fig. 3.3 indicate that the presence of a fixed catalyst in 

the ozonation medium and the adsorption of contaminant molecules on the catalyst surface 

provided no improvement in the efficiency of the ozonation process. Otherwise, the more 

hydrophilic surface properties of TiO2-BSG compared to those of TiO2-PMMA could lead to 

more effective catalytic ozonation treatment on TiO2-BSG. 
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Fig. 3.3. Degradation of oxalic acid (1mM) by TiO2/O3 (○), TiO2/UVA/O2 (∆) and TiO2/UVA/O3 (□) systems using 

immobilised TiO2 on borosilicate glass (black) and polymethylmethacrylate (white), falling-film reactor, recycling 

rate = 150 mL.min-1, solution volume = 500 mL, T = 25° C, pH = 2.8 
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However, the wettability in this case was modified by etching treatment, but it was 

significantly lower than that for the surface of the photocatalyst on borosilicate glass. This is 

considered as a significant disadvantage, thus hindering the utilisation of PMMA tubes for the 

falling film reactor. In order to overcome this issue, many advanced immobilisation approaches 

are suggested such as chemical vapour deposition (CVD), electron cyclotron resonance (ECR) 

plasma and chemical sputtering, which are outside the scope of this discussion.  

Considering the observed results, the majority of the subsequent experiments on the 

falling film reactor were performed using TiO2 immobilised on borosilicate glass by means of 

the ethanol/nitric acid method. 

Looking back at Fig. 3.3, it is evident that the efficiency of TiO2-based oxidation systems 

decreases over the duration of oxidation. This fact, which was observed for immobilised TiO2 on 

borosilicate glass and Plexiglas, was probably due to two issues; first, the gradual poisoning of 

the catalyst surface [68] and second, the generation of some organic and inorganic substances 

over the duration of oxidation which react with hydroxyl radicals, forming secondary radicals 

which do not proceed in the oxidation process [11]. These substances, known as inhibitors or 

scavengers, terminate the chain reactions and reduce the efficiency of all oxidation processes 

involving hydroxyl radicals. Carbonate and hydrocarbonate are two well-known scavengers 

which react with OH radicals as described below (Reactions 3.1 and 3.2): 

 

OH• + CO3
2- → OH¯ + CO3

•¯ k  = 4.2·108 M-1s-1 (3.1) 

OH• + HCO3¯ → OH¯ + HCO3
• k  = 1.5·107 M-1s-1 (3.2) 

 

3.1.2. The durability of immobilised photocatalysts 

Abrasion and gradual removal of fixed TiO2 nanoparticles in addition to poisoning events likely 

occurred during the treatment of various types of polluted waters in the falling film reactor. The 

durability of the immobilised photocatalyst on the reactor walls was assessed by a comparison of 

the photoactivity of these photocatalysts before and after a certain period of time. For this aim, 

the performance of two different advanced oxidation processes in the decomposition of oxalic 

acid was investigated on a freshly immobilised photocatalyst (Fig. 3.4, t = 0). Later, after 10 

months and handling approximately 200 h of several oxidation processes dealing with many 

compounds on the same immobilised photocatalyst, the oxidation of oxalic acid was repeated 
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under similar experimental conditions (Fig. 3.4, t = 200 h). The results in Fig. 3.4 indicate that 

after 200 h of fixed photocatalyst life, a decrease of about 17% on average was observed for the 

efficiency of the photocatalytic oxidation of oxalic acid. This reduction can be attributed to the 

removal and washing off of poorly fixed nanoparticles of TiO2 from the surface as well as to the 

poisoning of fixed nanoparticles over time. However, this decrease in efficiency was much lower 

for photocatalytic ozonation, highlighting the considerable influence of ozone in the oxidation 

process which can effectively compensate for fatigue. 
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Fig. 3.4. Degradation of oxalic acid (1mM) using TiO2/UVA/O2 (□) and TiO2/UVA/O3 (○) oxidation systems at t= 0 

(white) and t = 200 h (black) of the age of immobilised catalyst, falling film reactor, recycling rate = 100 mL.min-1, 

solution volume = 400 mL, T = 25° C, pH = 2.8 

 

3.2. The influence of reactor design 
As far as TiO2-based advanced oxidation processes are concerned, despite all the advantages 

mentioned for the immobilisation of photocatalysts on fixed beds for water and wastewater 

treatment, a great disadvantage of utilising fixed TiO2 nanoparticles is the mass transfer problem 

which arises during the oxidation process, especially when the performance is compared with 

that of slurry applications. One important factor to solve this issue or at least to modify the 

conditions for better operation is the design of a reactor in which the fixed photocatalyst is 
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involved and can act under optimum conditions. The most significant parameter in this aspect is 

the ratio between the active surface of the photocatalyst and the volume of wastewater available 

on the surface for treatment. In order to evaluate this parameter, a simple comparison was 

performed between the efficiencies of two different reactors, the planar reactor and the falling 

film reactor in the oxidation of oxalic acid, dichloroacetic acid and citric acid. The results are 

presented in Fig. 3.5. 
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Fig. 3.5. Photocatalytic oxidation of oxalic acid, 1 mM (□), dichloroacetic acid, 1 mM (∆) and, citric acid, 1 mM 

(○) in the falling film reactor (black) and planar reactor (white), solution volume = 400 mL, T = 25° C 

 

It was clearly observed that increasing the surface to volume ratio from 500 m2.m-3 in the 

planar reactor to about 20000 m2.m-3 in the falling film reactor increased the oxidation rate of all 

model compounds; however, the increase in the oxidation rate in the falling film reactor 

compared with that of the planar reactor was highly dependent on the chemical structure and 

properties of the compounds.  

 

 

 

 



3. Results and discussion 

66 

 

3.3. Oxidation of model compounds 

 
3.3.1. Oxidation of aliphatic carboxylic acids 

In this section, the degradation of three aliphatic carboxylic acids, oxalic acid, dichloroacetic 

acid and citric acid as model compounds were evaluated under various oxidative atmospheres in 

the falling film reactor. For this aim, their decomposition rates were determined using simple 

ozonation and other five different advanced oxidation processes: catalytic ozonation, photo-

ozonation, photo-oxidation (photolysis), photocatalytic oxidation and photocatalytic ozonation. 

Figs. 3.6-3.8 present a series of results in a comparative assessment for each model compound 

individually. It must be noted that besides all experimental variables, which can highly influence 

the oxidation rates, the chemical properties of model compounds which determine their reactivity 

with oxidising reagents as well as the adsorption level of their molecules on the catalyst surface 

are two fundamental aspects in TiO2-based advanced oxidation processes that also play an 

important role in the manner of their degradation. Thus, due to the distinct chemical structures of 

these three carboxylic acids, their decomposition behaviours under oxidation conditions were 

expectedly different. 

Photocatalytic ozonation (TiO2/O3/UVA) of oxalic acid in the falling film reactor led to a 

rapid decrease in the concentration of oxalic acid, such that about 90% of the initial 

concentration was removed after 40 min and complete degradation was achieved after 100 min 

(Fig. 3.6). Photocatalytic oxidation (TiO2/O2/UVA) as well as ozonation in the absence and 

presence of TiO2 (O3 and O3/TiO2) similarly caused a decrease of about 65% of the initial 

concentration of oxalic acid over the oxidation time, while UVA irradiation slightly increased the 

efficiency of ozonation (O3/UVA) (Fig. 3.6). Photolysis (O2/UVA) of oxalic acid was negligible 

over the duration of treatment. 

Fig. 3.7 shows that dichloroacetic acid is more resistant than oxalic acid to ozone. Simple 

ozonation of this compound in the falling film reactor only decomposed 9% of the initial 

concentration over a similar treatment time; however, a combination of TiO2 with ozone and 

UVA with ozone almost doubled the efficiency of ozonation. Like oxalic acid, the best 

degradation rate of dichloroacetic acid was observed using the TiO2/O3/UVA system, where no 

dichloroacetic acid molecules were detected in the reaction medium after 60 min of oxidation 

time. The TiO2/O2/UVA oxidation system also demonstrated effective performance in the 
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degradation of dichloroacetic acid, where about 75% of the initial concentration was removed 

after 100 min of treatment by this technique. Photolysis of dichloroacetic acid was very minor. 
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Fig. 3.6. Degradation of oxalic acid, 10 mM by ozonation, O3 (♦), catalytic ozonation, TiO2/ O3 (■), photo-

ozonation, O3/UVA (▲), photo-oxidation, O2/UVA (x), photocatalytic oxidation, TiO2/UVA/O2 (+) and 

photocatalytic ozonation, TiO2/UVA/O3 (●) in the falling film reactor, recycling rate = 100 mL.min-1, solution 

volume = 500 mL, T= 25° C, initial pH = 2.5 

 

Similar to the previous model compounds, photocatalytic ozonation was observed to be 

the most powerful oxidation method among all the investigated techniques for the decomposition 

of citric acid. Photocatalytic ozonation oxidised about 56 % of the initial concentration of citric 

acid after 100 min, almost twice the efficiency of the other advanced oxidation processes such as 

photocatalytic oxidation, catalytic ozonation and photo-ozonation (Fig. 3.8). In this case, no 

considerable differences were observed between ozonation, catalytic ozonation and photo-

ozonation. Once again, compared with other techniques, simple UVA irradiation of citric acid 

solutions in the absence of TiO2 (photolysis) could not remove this model pollutant to a 

considerable degree (Fig. 3.8). 
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Fig. 3.7. Degradation of dichloroacetic acid, 1mM by ozonation (♦), catalytic ozonation (■), photo-ozonation (▲), 

photo-oxidation (x), photocatalytic oxidation (+) and photocatalytic ozonation (●) in the falling film reactor, 

recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, initial pH = 3 
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Fig. 3.8. Degradation of citric acid, 7 mM by ozonation (♦), catalytic ozonation (■), photo-ozonation (▲), photo-

oxidation (x), photocatalytic oxidation (+) and photocatalytic ozonation (●) in the falling film reactor, recycling rate 

= 100 mL.min-1, solution volume = 500 mL, T = 25° C, initial pH = 3.2 
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To summarise, some points must be highlighted. 1) The high rates of degradation of these 

aliphatic carboxylic acids by the TiO2/UVA/O3 oxidation system can be explained by a 

remarkable increase in the generation of free hydroxyl radicals using a combination of ozone and 

photoexcited TiO2 particles. Considering the higher reaction rates between the molecules of the 

model compounds and hydroxyl radicals as the oxidising reagent compared to those of oxygen 

and ozone, these radicals handle the oxidation treatment more effectively. Thus, greater 

formation of hydroxyl radicals during the oxidation processes led to improved efficiency in the 

degradation of model compounds. 2) In the presence of TiO2 and irradiation, oxygen and ozone 

can both act as traps for photogenerated electrons in order to avoid recombination. However, 

ESR studies by Hernandez-Alonso et al. [155] showed that ozone is more electrophilic than 

oxygen. Moreover, according to the mechanisms described by Addamo et al. [95], each electron 

trapped by ozone can proceed to generate a hydroxyl radical, while when oxygen acts as the 

electron trap, three photogenerated electrons are needed for the generation of a hydroxyl radical. 

For this reason, photocatalytic ozonation is more efficient than photocatalytic oxidation. 3) 

Under the setup conditions of the falling film reactor, the existence of TiO2 in the dark reaction 

medium could not obviously improve the ozonation rate of these model compounds, although a 

poor effect was determined for the catalytic ozonation of dichloroacetic acid. 4) With the 

exception of citric acid, irradiation of ozonation media in the falling film reactor by near-UV 

wavelengths slightly increased the performance of ozonation. The effect of UVA could be 

attributed to the higher amount of hydroxyl radicals produced during the direct reaction of ozone 

with hydrogen peroxide molecules. Hydrogen peroxide molecules are generated as an 

intermediate in ozone decomposition chain reactions. 

 

3.3.2. Oxidation of aromatic carboxylic acids  

Decomposition of terephthalic acid (TFA) and p-chlorobenzoic acid (pCBA) using the falling 

film reactor was performed under two different advanced oxidation conditions, TiO2/O3 and 

TiO2/O2/UVA. Due to the poor solubility of these two substances in water, aqueous solutions 

with lower concentrations were prepared for the oxidation treatments. The heterogeneous 

catalytic ozonation of both compounds led to very fast degradation, such that neither TFA nor 

pCBA were detected in the reaction medium after the first sampling which was carried out 25 

min after the treatment was started (Fig. 3.9). Meanwhile, the rate of photocatalytic oxidation 
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was found to be different for these substances. It can be seen in Fig. 3.9 that photocatalytic 

oxidation of p-chlorobenzoic acid decreased the initial concentration by about 78% after 100 min 

of treatment duration, while the same oxidation process completely removed terephthalic acid 

after 75 min. 
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Fig. 3.9. Photocatalytic oxidation (black) and catalytic ozonation (white) of p-chloro benzoic acid, 0.1 mM (□) and 

terephthalic acid, 0.1 mM (∆) in the falling -film reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, 

T = 25° C, initial pH = 4 (pCBA) and pH = 3.5 (TFA) 

 

It has been reported by Yao and Haag [126], Elovitz and Gunten [156] and Zang et al. 

[123] that the reaction rates between hydroxyl radicals and p-chlorobenzoic acid and terephthalic 

acid are 5·10 9 M-1s-1 and 2.28·109 M-1s-1, respectively, whereas the oxidation rates of these two 

aromatic carboxylic acids by ozone molecules are considered to be negligible (≤0.2 M-1s-1). The 

rapid removal of TFA and pCBA under conditions of catalytic ozonation in the falling film 

reactor can be justified by three factors: 1) the low concentrations of these substances in the 

aqueous solution, 2) increased contact time between the contaminants and ozone molecules 

provided by the more effective design of the falling film reactor and 3) the generation of 

hydroxyl radicals which is promoted by presence of TiO2 in an ozone atmosphere . It was clearly 

observed that under the operating conditions of the falling film reactor, the combination of TiO2 
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and ozone in the dark could not increase the ozonation rate of the aliphatic oxalic acid model 

compounds. Therefore, it is assumed that the third factor mentioned above is not a major one 

causing the high degradation rates. 

Even though similar initial concentrations were used for both model compounds, the 

decomposition of terephthalic acid using the photocatalytic oxidation system in the falling film 

reactor was faster than the decomposition of p-chlorobenzoic (Fig. 3.9). This observation could 

be explained by the characteristics of the chemical structures of these two molecules. The 

adsorption of contaminants on the surface of a photocatalyst is a fundamental step for 

photocatalytic oxidation treatments. Therefore, any repulsive event that inhibits adsorption can 

negatively affect the efficiency of treatment and vice versa. Compared with terephthalic acid 

which has two carboxylic acid groups, p-chlorobenzoic acid has just one carboxylic acid group 

and a larger chloro group as a substitution instead of the second carboxylic acid group. It seems 

that the greater steric hindrance of the chloro group in the pCBA molecule inhibits the adsorption 

of these molecules on the catalyst surface. Furthermore, if we accept that the acidic functional 

groups are the adsorption sites for this type of molecule, TFA has the ability to absorb at twice 

the rate of pCBA. Since the photocatalytic oxidation of TFA and pCBA was performed at 

slightly different pH levels, pH TFA = 3.5 and pH pCBA = 4, this difference in pH could also 

influence the isoelectric character of the immobilised photocatalyst and, as a consequence, could 

be a reason for the increased degradation rate of TFA under more acidic conditions.  

 

3.3.3. Oxidation of ethers and their by-products 

The low Henry’s law constants reported in Table 1.4 for MTBE, ETBE and TBA indicate that 

even small amounts of these chemicals dissolved in water will evaporate. This feature caused 

some problems in precisely detecting these compounds during the treatment of their aqueous 

solutions in an open oxidation system where the gas stream passed the falling film reactor 

continuously. Therefore, unlike other model compounds, the degradation of this group of 

substances was investigated under conditions of a closed system by employing different 

advanced oxidation processes in the falling film reactor. To clarify, before the oxidation was 

initiated, the internal space of the falling film reactor was filled with oxygen and/or ozone on 

demand. At the same time, appropriate volumes of deionised water were recycled through the 

reactor and saturated with these gases. After 1 h, the gas flow was switched off and the model 
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compound (MTBE, ETBE, TAEE or TBA) was injected into the solution inside the reactor and 

mixed by a stirrer. The system was completely closed throughout the oxidation period. 

Fig. 3.10 shows that the evaporation rate of MTBE while recycling the solution in the 

closed system was considered minor. Although ozonation, catalytic ozonation and photocatalytic 

oxidation gently decomposed 85%-90% of the initial concentration of MTBE in the aqueous 

solution after 50 min of oxidation, photocatalytic ozonation sharply decreased the initial 

concentration by about 91% after 10 min, and after 20 min, it was completely removed. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50

C
on

ce
nt

ra
tio

n,
 C

/C
0

Oxidation time, min
 

Fig. 3.10. Degradation of MTBE (0.01 mM) by means of different oxidation systems, simple recycling (●), 

Ozonation (♦), Catalytic ozonation (■), Photocatalytic oxidation (x), Photocatalytic ozonation (▲), falling film 

reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, pH = 6-7 

 

It must be noted that, despite the fact that the reaction rate of ozone with MTBE has been 

reported by many researchers [137, 138] as being low, the high ozonation efficiencies observed 

in this study could be attributed to the design of the falling film reactor which provides better and 

longer contact time between molecules of ozone and MTBE in both the aqueous and gaseous 

phases. 

According to the results reported in Fig. 3.11, compared with MTBE ozonation, catalytic 

ozonation of ETBE proceeded faster to complete removal after 50 min of oxidation time, 
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indicating that ETBE was less resistant than MTBE against the attack of ozone. At the same 

time, the efficiency of photocatalytic oxidation of ETBE was a little lower than that of MTBE. 

This effect can be explained by the larger size of ETBE molecules, such that less adsorption of 

these molecules occurred on the surface of the photocatalyst and, as a consequence, less 

photocatalytic oxidation occurred due to the steric hindrance of these larger molecules. Among 

all advanced oxidation techniques assessed for the degradation of ETBE, photocatalytic 

ozonation was again the most effective. This method almost removed ETBE from aqueous 

solution after just 10 min of treatment time. 
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Fig. 3.11. Degradation of ETBE (0.01 mM) by means of different oxidation systems, simple recycling (●), 

Ozonation (♦), Catalytic ozonation (■), Photocatalytic oxidation (x), Photocatalytic ozonation (▲), falling film 

reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, pH = 6-7 

 

The behaviour of TAEE under the conditions of different oxidation systems was very 

similar to that of ETBE (Figs. 3.11 and 3.12). However, the rate of photocatalytic oxidation of 

TAEE was slightly lower than that of ETBE, highlighting again the influence of the molecular 

structure of the pollutant on the level of its adsorption on the photocatalyst surface. In general, 

smaller and simpler molecular structures are adsorbed more readily on the surface and are 

consequently decomposed faster. In photocatalytic ozonation, the existence of ozone instead of 
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oxygen as the trap for photogenerated electrons and further generation of hydroxyl radicals will 

compensate for this difference in molecular structure. For this reason, the rates of photocatalytic 

ozonation of these ethers in the falling film reactor were nearly equal. 
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Fig. 3.12. Degradation of TAEE (0.01 mM) by means of different oxidation systems, simple recycling (●), 

Ozonation (♦), Catalytic ozonation (■), Photocatalytic oxidation (x), Photocatalytic ozonation (▲), falling film 

reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, pH = 6-7 

 

3.3.3.1.Mineralisation of ethers: degradation of by-products 

One of the major by-products identified during the degradation of MTBE and ETBE is TBA. It 

was noted that the toxicity of this substrate is not less than that of MTBE [144]. For this reason, 

the oxidation of TBA as an example of decomposition products of MTBE and ETBE was 

investigated using advanced oxidation processes in the falling film reactor. Fig. 3.13 shows that 

the photocatalytic oxidation system poorly decreased the initial concentration of TBA by 35% 

after 50 min of oxidation time, while the photocatalytic ozonation approach attained almost 

complete degradation after about 20 min. Expectedly, ozonation and catalytic ozonation showed 

a more or less similar influence on the degradation of TBA, where about 80% of the TBA on 

average was oxidised using these methods after 50 min of treatment time. Therefore, it can be 
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concluded that photocatalytic ozonation is the best oxidation method among all the assessed 

advanced oxidation methods, not just in the decomposition of model compounds, but it was also 

the most effective method for the mineralisation of these compounds. 
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Fig. 3.13. Degradation of TBA (0.01 mM) by means of different oxidation systems, Ozonation (♦), Catalytic 

ozonation (■), Photocatalytic oxidation (x), Photocatalytic ozonation (▲), falling film reactor, recycling rate = 

100mL.min-1, solution volume = 500 mL, T = 25° C, pH = 6-7 

 

In addition to TBA, tert-butyl formate (TBF) is another degradation product of MTBE 

and ETBE which was also highly decomposed by photocatalytic ozonation in the falling film 

reactor (Fig. 3.14). In this figure, it can be seen that over the degradation time of MTBE, the 

concentrations of by-products first increased because of the massive oxidation of MTBE and 

then the content in the reaction medium gradually decreased due to decomposition under these 

oxidative conditions. 

Finally, in order to evaluate the potential of photocatalytic ozonation in the mineralisation 

of ether model compounds, a series of experiments was performed and the results are 

demonstrated in Fig. 3.15. It was clearly observed that the mineralisation rates of these ethers 

were nearly equal and that slight differences could be assigned to analytical mistakes. 
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Fig. 3.14. Photocatalytic ozonation of MTBE (●) and its by-products TBA (■) and TBF (♦), in the falling film 

reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, pH = 6-7 
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Fig. 3.15. Mineralisation of TAEE (●), ETBE (▲) and MTBE (■) by photocatalytic ozonation in the falling film 

reactor, initial concentration = 0.1 ±0.01 mM, recycling rate = 100 mL.min-1, solution volume = 500 mL, T = 25° C, 

pH = 6-7 
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3.4. The influence of experimental variables on the oxidation process 
In this section, the effects of variations in the experimental parameters on the degradation rate of 

model compounds in the falling film reactor are introduced and the results are discussed. Oxalic 

acid and dichloroacetic acid were chosen as the model compounds. Three TiO2-based advanced 

oxidation processes were included in this investigation, TiO2/UVA/O2, TiO2/UVA/O3 and 

TiO2/O3. The influence of the initial concentration of model compounds, pH of the aqueous 

solution, solution temperature, ozone concentration and recycling rate of the solution inside the 

reactor were determined. 

 

3.4.1. The importance of the presence of oxidants  

As was already mentioned, the most significant disadvantage of photocatalytic treatments is the 

recombination of photogenerated electrons and holes. This event decreases the photonic 

efficiency and as a result it reduces the performance of photocatalytic oxidation methods. One 

solution for this problem is the utilisation of oxidant reagents as electron traps close to the 

surface of the photocatalyst. These electron traps react with photoexcited electrons, hindering the 

recombination process. In order to clarify the importance of the presence of oxidants for the 

promotion of photocatalyst-based oxidation processes, the photocatalytic decomposition of 

oxalic acid and dichloroacetic acid was studied in the presence of ozone, oxygen and nitrogen. 

The results in Fig. 3.16 indicate that the efficiency of photocatalytic oxidation of both model 

compounds in the presence of ozone as the electron trap was expectedly much higher than that in 

the presence of oxygen. The reason for this effect was extensively discussed in previous sections. 

In this section, the results of photocatalytic oxidation in the absence of ozone and oxygen 

are shown. The two upper curves in Fig. 3.16 show that photocatalytic oxidation treatment in a 

nitrogen atmosphere inside the falling film reactor decreased the initial concentrations of 

dichloroacetic acid and oxalic acid by 6% and 12%, respectively, after 100 min of treatment 

time. Since the reactivity between an inert reagent like nitrogen and photogenerated electrons is 

considered negligible, this level of oxidation in the presence of nitrogen could be explained by 

the role of photogenerated holes in the formation of hydroxyl radicals. Depending on the solution 

pH, holes mostly react with adsorbed molecules of H2O or OH— anions on the catalyst surface to 

form free hydroxyl radicals; these radicals initiate the oxidation process. In fact, under conditions 

with the absence of ozone and oxygen in the falling film reactor, photo-produced holes are the 
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main initiator oxidant substances handling the degradation of oxalic acid and dichloroacetic acid. 

However, due to the high rate of hole-electron recombination under these conditions, the 

decomposition efficiency is very low. 
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Fig. 3.16. Photocatalytic treatment of oxalic acid, 1 mM (black) and dichloroacetic acid, 1mM (white) in presence of 

nitrogen (□), oxygen (∆) and ozone (○), falling-film reactor, recycling rate = 100 mL.min-1, solution volume = 500 

mL, T = 25° C, pH ≈ 3 
 

3.4.2. The effect of the initial concentration of model compounds 

For this investigation, oxalic acid was chosen as the model compound and was oxidised by three 

different advanced oxidation techniques. The relationship between the initial concentration of 

this substrate and its degradation rate over the range of 0.1 mM to 10 mM was studied. 

According to the results presented in Table 3.1, the oxidation rate increased with the 

concentration of oxalic acid. This increase was observed for all three oxidation methods. 

As was already expressed in detail, the Langmuir-Hinshelwood (L-H) expression 

(Equation 1.1) can be used to describe the relationship between the degradation behaviour of 

many organic compounds and their concentrations in the solution under oxidation conditions. 

The decomposition of oxalic acid in the falling film reactor using photocatalytic oxidation and 
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photocatalytic ozonation systems was also represented well by the Langmuir-Hinshelwood (L-H) 

kinetic mechanism; the initial degradation rate increased almost linearly with an increase in the 

initial concentration of oxalic acid. This indicates that, over the range of concentrations chosen 

for this assessment, the degradation rate is assumed to be first-order with respect to the 

concentration of oxalic acid (Fig. 3.17). Nevertheless, the ascending slope of both graphs in Fig. 

3.17 seems to be moderately decreased at concentrations higher than 5 mM, predicting that with 

higher initial concentrations of oxalic acid, after reaching a certain concentration, the degradation 

rate of oxalic acid will become independent of its initial concentration. The explanation for this 

event is that a saturation level is defined for each catalyst-based oxidation system, proportional 

to its circumstances, where all active sites on the surface of the catalyst are occupied by 

molecules of the degradable contaminant. After achieving this saturation level, any further 

increase in the concentration of the contaminant will not affect the adsorption of molecules on 

the surface of the catalyst and, as a result, will not increase the decomposition rate of the 

contaminants therein. 

 
Table 3.1. Initial degradation rates of oxalic acid at different oxidation conditions and different initial concentrations 

Concentration, mM pH 
Temperature, 

°C 

Initial degradation rate, μM/min 

TiO2/UVA/O2 TiO2/O3 TiO2/UVA/O3 

0.1 3.7 25 1.65 0.15 6.15 

0.5 3.1 25 5.50 5.45 19.70 

1 2.8 25 9.05 6.20 40.15 

5 2.1 25 41.70 29.65 182.10 

10 1.8 25 70.45 88.3 301.3 

1 5 25 1.75 6.95 17.40 

1 7.5 25 <0.05 12.25 19.10 

1 9.5 25 <0.05 12.55 16.00 

1 2.8 40 13.70 13.05 37.25 

1 2.8 55 17.45 16.35 32.40 

1 2.8 70 20.10 24.60 30.90 

 

A similar ascending trend was observed for the decomposition rate versus the initial 

concentration of oxalic acid using a catalytic ozonation system; however, the trend was not as 

regular as those of photocatalytic oxidation and photocatalytic ozonation (Table 3.1). It was 
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previously discussed that under the operating conditions of the falling film reactor, the presence 

of TiO2 could not significantly improve the efficiency of ozonation of almost all model 

compounds investigated in this study. Therefore, photocatalytic ozonation of oxalic acid in the 

falling film reactor could be rewritten and discussed in terms of the ozonation of oxalic acid, 

where electrophilic attack of ozone or other oxidative substances, especially hydroxyl radicals 

produced during ozone decomposition, are responsible for the degradation of contaminants in 

water. Thus, under the condition of an excess of ozone in the reactor medium of the falling film 

reactor, any increase in the concentration of oxalic acid would simply increase the possibility of 

an efficient reaction between ozone or hydroxyl radicals and molecules of oxalic acid, which 

would consequently increase the degradation rate of oxalic acid.  
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Fig. 3.17. Effect of concentration of oxalic acid on its initial degradation rate by photocatalytic oxidation (■) and 

photocatalytic ozonation (▲) systems, falling film reactor, recycling rate = 100 mL.min-1, solution volume=500 mL, 

T = 25° C 

 

3.4.3. The effect of solution pH 

In order to understand the influence of solution pH on the degradation rate of oxalic acid as a 

model compound, a set of oxidation treatments using three TiO2-based advanced oxidation 
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techniques was performed in the falling film reactor at four different pH levels. The results are 

presented in Fig. 3.18. It can be seen that, depending on the oxidation method, variation in the 

pH of the aqueous solution caused distinct influences on the rate of oxidation. 

Fig. 3.18a shows that any increase in the pH level considerably decreases the rate of 

photocatalytic oxidation of oxalic acid; at the natural pH of the oxalic acid solution (C = 1 mM, 

pH 2.8), about half of the initial concentration of oxalic acid was decomposed after 1 h of 

treatment time, while only about 6% of the initial concentration was decomposed after 1 h when 

the same treatment was performed at pH 5. It must be added that shifting to pH values greater 

than pH 7 almost stopped the photocatalytic oxidation of oxalic acid under the setup conditions 

of the falling film reactor (Table 3.1). In order to determine the reason for this behaviour, the 

chemical properties of oxalic acid as well as the characteristics of the photocatalyst must be 

considered. Despite the fact that oxalic acid is a carboxylic acid, it is categorised among some 

relatively strong acids due to its pKa value. 

 

C2O4H2 ⇄ C2O4H- + H+ 
1apK  = 1.27     (3.3) 

C2O4H- ⇄ C2O4
2- + H+ 

2apK  = 4.28       (3.4) 

 

On one hand, according to reactions 3.3 and 3.4, the pH value of an aqueous solution of a 

relatively powerful dicarboxylic acid determines the predominantly existing chemical species 

present therein. In this case, depending on the solution pH, oxalic acid could be present as a 

neutral molecule, as a hydrogen oxalate anion or as an oxalate anion. Under the experimental 

conditions of the present study, oxalic acid was mainly comprised of C2O4H— at pH 2.8, 

although C2O4
2- was the main form of oxalic acid in solution at pH ≥5. On the other hand, the 

adsorption of oxalic acid molecules on the photocatalyst surface, as an essential step in 

photocatalytic oxidation treatment, is highly dependent on the interactions between the existing 

forms of these molecules in solution and the surface groups on the photocatalyst. In addition to 

the mentioned effect, proportional to the isoelectric point (pHiep) of the photocatalyst used in this 

study, at different pH values, the surface of the photocatalyst can carry either a negative or 

positive charge. This parameter will also determine the interaction between the predominant 
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species of oxalic acid in the reaction medium and the active sites on the photocatalyst surface at 

each pH level. 

To conclude, the low rate of photocatalytic oxidation of oxalic acid at pH ≥ 5 can be 

explained by the weaker adsorption of C2O4
2-, which is the main form of oxalic acid on the 

photocatalyst surface in this pH range. 

As far as the influence of pH on catalytic ozonation of oxalic acid is concerned (Fig. 

3.18b), the rates of degradation were definitely different for the two pH ranges, pH > 7 and      

pH < 7. Even though catalytic ozonation was generally observed as being poorly efficient for the 

decomposition of oxalic acid, alkalinising the reaction environment approximately doubled the 

initial degradation rate of this compound (Table 3.1) and increased on average the efficiency of 

degradation by about 20% over a treatment duration of 1 h. This enhancement in performance 

was attributed to the higher ozone decomposition rate and greater generation of hydroxyl radicals 

under alkaline conditions. 

Fig. 3.18c shows that the pH of the aqueous solution significantly affects the degradation 

rate of oxalic acid using photocatalytic ozonation systems; at pH 2.8, about 90% of the initial 

concentration of oxalic acid was removed after 20 min of oxidation time, whilst at pH 9.5, only 

about 16% of the initial concentration was degraded. Between these two rates, moderate trends 

were similarly observed for the results of photocatalytic ozonation of oxalic acid at pH 5 and pH 

7.5. 
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Fig. 3.18. The influence of solution pH on the degradation of oxalic acid (1 mM) using (a) photocatalytic oxidation, 

(b) catalytic ozonation and (c) photocatalytic ozonation at pH = 2.8 (●), pH = 5 (■), pH = 7.5 (x), pH = 9.5 (▲), 

falling-film reactor, recycling rate = 150 mL.min-1, solution volume = 500 mL, T = 25° C 
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Reconsideration of the three sections of Fig. 3.18 indicates that, in the case of 

photocatalytic ozonation, the degradation rate at each pH level more or less equals the 

summation of the degradation rates of catalytic ozonation and photocatalytic oxidation. For 

example, at pH 9.5 where no adsorption of C2O4
2- on the photocatalyst surface and no 

photocatalytic oxidation was consequently observed, the trend of photocatalytic ozonation was 

very similar to that of catalytic ozonation. This means that at pH 9.5, for both catalytic ozonation 

and photocatalytic ozonation, degradation of oxalic acid was initiated in the solution, not on the 

surface of the photocatalyst by OH radicals generated from ozone decomposition. The same 

pattern was established at pH 7.5; however, in this case, the rate of photocatalytic ozonation was 

a bit greater than that of catalytic ozonation (Table 3.1). Generally, due to the possibility of the 

adsorption of oxalic acid molecules on the catalyst surface at lower pH values and their reaction 

with hydroxyl radicals and other oxidising reagents therein, as we move to lower pH levels, the 

efficiency of photocatalytic ozonation seems to be more than the sum of the efficiencies of 

catalytic ozonation and photocatalytic oxidation. Considerable results highlighting the strong 

influence of photocatalytic ozonation on the degradation of oxalic acid were observed at pH 2.8. 

Under these pH conditions, the initial degradation rate of oxalic acid using photocatalytic 

ozonation was 40.1 μM.min-1, while it was 6.2 μM.min-1 and 9.0 μM.min-1 using catalytic 

ozonation and photocatalytic oxidation, respectively (Table 3.1). 

 

3.4.4. The effect of solution temperature 

Another series of oxidation experiments were planned with the aim of studying the influence of 

the temperature of the aqueous solution in the falling film reactor on the degradation rate of 

pollutant molecules therein. Oxalic acid was chosen as the model compound in this section and 

the effect of temperature was studied for similar TiO2-based advanced oxidation processes over 

the range of 25°C to 70°C. The results are shown in Fig. 3.19. 

Fig. 3.19a and the information presented in Table 3.1 show that an increase in the 

temperature from 25°C to 70°C increased the initial degradation rate of oxalic acid by 

photocatalytic oxidation from 9.0 μM.min-1 to 20.1 μM.min-1, although this temperature increase 

could not affect the overall efficiency of oxalic acid degradation to a significant degree. This 

oxidation method removed 70%-75% of the initial concentration of oxalic acid at 25°C and 70°C, 

respectively, after 1 h of treatment time. 



3. Results and discussion 

85 

 

As with photocatalytic oxidation, a temperature increase from 25°C to 70°C led to a four-

fold increase in the initial degradation rate of oxalic acid from 6.2 μM.min-1 to 24.6 μM.min-1 

using catalytic ozonation (Table 3.1). However, unlike the case of photocatalytic oxidation, the 

overall treatment efficiency of this oxidation method at different temperatures was clearly 

different; the higher the solution temperature employed, the higher the observed overall 

oxidation efficiency. The overall oxidation efficiency in this series of experiments ranged from 

about 29% at 25°C to 66% at 70°C after 1 h of treatment (Fig. 3.19b). 

Fig. 3.19c shows that the influence of increased temperature on the efficiency of the 

photocatalytic ozonation of oxalic acid was very small. Nonetheless, the initial degradation rate 

of oxalic acid using this technique decreased slightly with an increase in temperature from 25°C 

to 70°C (Table 3.1). After 1 h of treatment, about 97% and 92% of the initial concentration of 

oxalic acid was decomposed at 25°C and 70°C, respectively. 

From a general point of view, temperature variations affect chemical oxidation systems in 

several ways, which are usually considered to be opposite to each other and act either to 

accelerate or to hinder the treatment. In other words, the observed influence of temperature in 

this study could be explained as a consequence of many co-current and/or counter-current 

functions. For instance, increasing temperature should lead to higher rates for all the chemical 

reactions involved in such heterogeneous oxidations and, moreover, it should decrease the 

thickness of the diffusion layer around the photocatalyst, providing better mass transfer 

conditions. On the other hand, increased temperature reduces the solubility of oxygen and ozone 

in an aqueous solution. It is obvious that any shortage in the concentration of these two important 

factors will negatively affect the output of advanced oxidation processes. Furthermore, according 

to the Freundlich adsorption isotherm (Equation 3.1), as the temperature increases at a constant 

pressure (or concentration), the adsorption rate is negatively reduced and the quantity adsorbed 

increases more slowly, leading, as a result, to a decrease in the degradation of adsorbed particles 

on the photocatalyst surface. 
1
nx kP

m
=           (Equation 3.1) 

In this equation, x is the quantity adsorbed, m is the mass of the adsorbent, P is the 

pressure (or concentration) and k and n are empirical constants for each adsorbent-adsorbate pair 

at a given temperature. 
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Fig. 3.19. The temperature effect on the degradation of oxalic acid (1 mM) using (a) photocatalytic oxidation, (b) 

catalytic ozonation and (c) photocatalytic ozonation at T = 25° C (●), T = 40° C (■), T = 55° C (▲), T = 70° C (x), 

falling-film reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, pH = 2.8 
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To summarise, it seems that under the operating conditions of the falling film reactor, 

except for the case of catalytic ozonation, the performance of other advanced oxidation methods 

in the removal of oxalic acid from water was not significantly influenced by temperature 

variations. However, in such heterogeneous oxidation systems, where various simultaneous 

events occur, such as electron-hole pair generation on the irradiated semiconductor surface, their 

transfer and reaction with adsorbed molecules (ozone, oxygen and/or oxalic acid) or further 

recombination with each other, diffusion of oxalic acid, ozone and oxygen molecules into 

solution and their adsorption on the photocatalyst surface, ozone decomposition by irradiation, 

the direct attack of ozone on oxalic acid in the bulk of the solution or on the photocatalyst 

surface and the formation of hydroxyl radicals as stronger oxidants for indirectly attacking 

pollutants, to present a comprehensive and precise description of all events is very difficult. But, 

according to the observed results, it could be assumed that the inhibiting factor of increased 

temperature mentioned in the previous paragraph seemed to govern the photocatalytic ozonation 

runs, while photocatalytic oxidation and catalytic ozonation runs were mainly controlled by the 

promoting factor of increased temperature.  

The overall activation energy of oxidation reactions in the falling film reactor is generally 

a reflection of both a homogeneous solute dissociation step and heterogeneous surface reaction 

steps. Many studies have reported that the activation energy of photocatalytic reactions is 

categorised by low activation energy values [157]. In order to evaluate this parameter under 

different oxidation conditions in the falling film reactor, Arrhenius plots were made for the three 

investigated oxidation techniques and presented in Fig. 3.20. 

Considering the Arrhenius plot, the activation energies related to the degradation of 

oxalic acid using catalytic ozonation, photocatalytic oxidation and photocatalytic ozonation 

systems were 28.85 kJ.mol-1, 13.55 kJ.mol-1 and -6.07 kJ.mol-1, respectively. 
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Fig. 3.20. Arrhenius’ plot, photocatalytic oxidation (▲), catalytic ozonation (●), and photocatalytic ozonation (■) of 

oxalic acid (1 mM), falling-film reactor, recycling rate = 100 mL.min-1, solution volume = 500 mL, pH = 2.8 

 

3.4.5. The effect of ozone concentration 

The ozone concentration is an important experimental variable in ozone-based advanced 

oxidation processes. A set of experiments was performed in order to investigate the influence of 

ozone concentration on the degradation of oxalic acid as a model compound using catalytic 

ozonation and photocatalytic ozonation in the falling film reactor. The degradation of oxalic acid 

was studied over a range of ozone concentrations from 0 mg.L-1 to 135 mg.L-1; the results are 

presented in Figs. 3.21 and 3.22. Fig. 3.21 shows that an increase in the ozone concentration led 

to a tangible increase in the efficiency of the catalytic ozonation of oxalic acid. About 33% of the 

initial concentration of oxalic acid was removed after 1 h of treatment at [O3] = 135 mg.L-1, 

while within the same period of time, the removal efficiencies were 19%, 11% and < 1% at    

[O3] = 70 mg.L-1, 25 mg.L-1 and 0 mg.L-1, respectively. Moreover, the internal diagram of Fig. 

3.21 shows a linear trend for the initial degradation rate versus ozone concentration, indicating 

that the oxidation rate can be assumed to be first-order with respect to the ozone concentration 

under the conditions of catalytic ozonation. Table 3.2 shows that, under the operating conditions 

of the falling film reactor during the catalytic ozonation of oxalic acid, where a gaseous stream 
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of an ozone/oxygen mixture continuously passed through the reactor, the ozone concentration in 

the liquid phase was proportional to that in the gas phase. The numerical values reported in Table 

3.2 are an average of values measured over the oxidation time. It was observed that the 

concentration of ozone in the gas phase decreased by about 5 mg/l after passing through the 

reactor. 

Similar to the case of catalytic ozonation, the initial degradation rate and the efficiency of 

the photocatalytic ozonation of oxalic acid increased with an increased ozone content in the 

gaseous stream entering the falling film reactor. Due to the possibility of the photocatalytic 

oxidation process occurring even in the absence of ozone, about 56% of the initial concentration 

of oxalic acid was decomposed at [O3] = 0 mg.L-1 after 1 h (Fig. 3.22). However, the overall 

efficiency of degradation in the presence of ozone was determined as being between 86% and 

97%, depending on the ozone concentration. Fig. 3.22 also shows that at [O3] = 25 mg.L-1, the 

initial degradation rate was more sharply increased compared with that at [O3] = 0 mg.L-1, 

highlighting the role of ozone in increasing the formation rate of hydroxyl radicals. 
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Fig. 3.21. Catalytic ozonation of oxalic acid, 1 mM using different ozone concentration; 0 mg.L-1 (●), 25±5 mg.L-1 

(♦), 70±5 mg.L-1 (■) and 135±5 mg.L-1 (▲), falling film reactor, recycling rate = 100 mL.min-1, solution volume = 

500 mL, T = 25° C, pH = 2.8 (inside graph: initial degradation rate vs. ozone concentration) 
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For each concentration of ozone in the input gas phase, the relevant ozone concentration 

in the liquid phase inside the reactor over the time of photocatalytic ozonation was much less 

than that of catalytic ozonation (Table 3.2, a and b). In other words, the consumption rate of 

dissolved ozone under the conditions of photocatalytic ozonation was higher than the 

decomposition rate of dissolved ozone under catalytic ozonation conditions. Thus, the ozone 

concentration in the liquid phase was always lower in photocatalytic ozonation. This result again 

indicates the significantly higher rate of ozone decomposition and OH• formation in 

TiO2/O3/UVA systems compared with those of TiO2/O3 systems. 
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Fig. 3.22. Photocatalytic ozonation of oxalic acid, 1 mM using different ozone concentration; 0 mg.L-1 (●), 25±5 

mg.L-1 (♦), 70±5 mg.L-1 (■) and 135±5 mg.L-1 (▲), falling film reactor, recycling rate = 100 mL.min-1, solution 

volume = 500 mL, T = 25° C, pH = 2.8 

 

For the same reason, the difference between the concentration of ozone in the gas phase 

at the input and output of the reactor was relatively higher under conditions of photocatalytic 

ozonation (Table 3.2). 
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Table 3.2. Variation of ozone concentration during degradation of oxalic acid, 1 mM using (a) catalytic ozonation 

and (b) photocatalytic ozonation 

(a) Catalytic ozonation 

CO3 in gas phase, mg.L-1 
CO3 in liquid phase, mg.L-1 

input output 

25±5 20±5 9±0.5 

70±5 65±5 18.5±0.5 

135±5 130±5 29.5±0.5 

 

(b) Photocatalytic ozonation 

CO3 in gas phase, mg.L-1 
CO3 in liquid phase, mg.L-1 

input output 

25±5 15±5 < 0.5 

70±5 45±5 6.5±1 

135±5 70±5 8.5±1 

 

3.4.6. The influence of solution recycling rate (falling rate) 

Regarding the effect of the recycling rate of the solution inside the reactor on the degradation 

rate, the photocatalytic oxidation of dichloroacetic acid as a model compound was performed in 

the falling film reactor at different recycling rates. The results are shown in Fig. 3.23. These 

results show that an increase in the recycling rate from 100 mL.min-1 to 300 mL.min-1 caused an 

increase in the initial degradation rate by about 32% from 11.58 μM.min-1 to 15.30 μM.min-1. At 

the same time, the overall degradation efficiency of dichloroacetic acid was increased 

moderately from 80.6% at 100 mL.min-1 to 92.6% at 300 mL.min-1. But, at recycling rates higher 

than 300 mL.min-1, both the initial degradation rate and the degradation efficiency of 

dichloroacetic acid were negatively influenced; increasing the recycling rate from 300 mL.min-1 

to 400 mL.min-1 led to small decreases in the initial degradation rate and degradation efficiency 

by about 4% and 3%, respectively (Fig. 3.23). 

Generally, any enhancement in the recycling rate of the solution inside the falling film 

reactor is assumed to improve mass transfer in the bulk solution and to increase the thickness of 

the diffusion boundary layer associated with the surface of the catalyst. This effect should lead to 

an increase in the oxidation rate. On the contrary, due to existing liquid turbulence at high falling 

rates, increased recycling rates will negatively affect the adsorption of contaminant molecules on 
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the catalyst surface and their interaction with oxidising reagents therein. Moreover, as was 

described already in Fig. 2.9, increasing the recycling rate will increase the thickness of the 

falling liquid films over the walls of the reactor. Thickening of falling films at higher recycling 

rates could also be considered as a controlling parameter for oxidation rates.  

To summarise, it seems that a gradual increase in the degradation rate of dichloroacetic 

acid in the falling film reactor at recycling rates from 100 mL.min-1 to 300 mL.min-1 could be 

attributed to improved mass transfer properties at 300 mL.min-1 compared with those at 100 

mL.min-1. The slight decrease in the degradation rate of dichloroacetic acid which was observed 

at 400 mL.min-1 in comparison with that at 300 mL.min-1 can be explained by the influence of 

turbulence caused by faster and thicker falling films at 400 mL.min-1. 
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Fig. 3.23. Photocatalytic oxidation of dichloroacetic acid (1mM) under different recycling rates; initial degradation 

rate (column) and degradation efficiency (line), falling film reactor, volume = 400 mL, T = 25° C, initial pH = 3 

 

3.5. Treatment and colour removal of pyrolysis wastewater (case study) 
Treatment of a real wastewater sample produced in a thermal pyrolysis plant for plastic waste 

disposal was chosen as a case study for the assessment of the performance of the falling film 

reactor. In this study, a reduction in the level of chemical oxygen demand (COD) as well as 
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colour removal of this type of wastewater was evaluated by means of three different TiO2-based 

advanced oxidation methods using the falling film reactor. In addition, the effect of acidification 

of this type of wastewater as well as the influence of the content of phosphate anions existing in 

the wastewater for biological treatment purposes on several treatment aspects were investigated 

and are discussed in subsequent sections. 

As with most industrial sites, pyrolysis processes produce wastewaters. The wastewater 

was initially brown and shifted to darker brown over time until it became black after about three 

months. More than 30 organic and inorganic compounds were detected in these slightly basic 

(pH 7-8) wastewater samples [158], in addition to fine and mainly black particles, as a product of 

the combustion process, leading to an unfavourable appearance and odour with respect to the 

wastewater.  

A quick check of the quality of water or wastewater is possible by an evaluation of colour 

and odour. Therefore, a first step in water and wastewater treatment is the removal of colour and 

odour. Depending on the characteristics of the wastewater, many contamination criteria or 

standards are defined for the quality of wastewaters, such as chemical oxygen demand (COD), 

biological oxygen demand (BOD), total organic carbon (TOC), total suspended solids (TSS), etc. 

The capability of any method for the treatment of wastewater is usually quantified by a decrease 

in the level of one or more of the criteria mentioned above by that method. In this study, the 

effectiveness of photocatalytic oxidation, catalytic ozonation and photocatalytic ozonation as 

three different oxidation methods on decreasing the level of COD and on the removal of colour 

and odour in pyrolysis wastewater was investigated. Light extinction measurements utilising a 

spectrophotometer were performed in order to determine colour removal in the wastewater. From 

our experience in dealing with such pyrolysis wastewaters, it has been shown that when the 

extinction value decreases to 20% over the process time, the wastewater is colourless. 

 

3.5.1. Photocatalytic oxidation of wastewater 

Fig. 3.24 shows that the photocatalytic oxidation of pyrolysis wastewater led to a slight decrease 

in colour extinction by about 31% after 5 h of treatment, while the decrease in the COD of this 

wastewater was negligible during the oxidation process, even after such a long treatment time. 

This indicates that photocatalytic oxidation of pyrolysis wastewater in the falling film reactor did 

not seem to be effective neither in improving the quality standards of this wastewater nor in 
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removing colour. It must be noted that the unpleasant odour of the wastewater was still 

detectable after treatment. 

There are several reasons for the observed insufficient photocatalytic oxidation, such as 

the presence of different organic compounds in the wastewater which disturb the adsorption of 

each other on the photocatalyst surface, the existence of some inorganic ions blocking the active 

sites of the photocatalyst or scavenging the hydroxyl radicals produced over the photocatalyst 

surface, as well as the alkaline pH of the wastewater which reduces the effective adsorption of 

contaminants on the surface of the catalyst and consequently cause a decrease in the efficiency of 

the oxidation process. 
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Fig. 3.24. Photocatalytic oxidation of pyrolysis wastewater; Extinction (●) and COD (■), falling film reactor, 

wastewater volume = 200 mL, initial COD level = 1900±100 mg.L-1, recycling rate = 100 mL.min-1, T = 25° C,     

pH = 7-8, λ = 340 nm 

 

To better understanding the limiting parameters of the photocatalytic oxidation of 

pyrolysis wastewater, dichloroacetic acid was added to the wastewater and the degradation of 

this compound was investigated as a component of the wastewater. Two series of experiments 

were carried out. First, by adding nitric acid to the wastewater, the pH of the wastewater was 

decreased to pH 2-3. Then, dichloroacetic acid was mixed with the wastewater so that the 
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concentration of dichloroacetic acid in the wastewater was adjusted at 1 mM. Finally, the 

mixture of wastewater and dichloroacetic acid was treated by using the photocatalytic oxidation 

system in the falling film reactor. The degradation rate of dichloroacetic acid under these 

circumstances was individually determined over the treatment time. The obtained results of this 

treatment were compared with those of the degradation of pure solutions of dichloroacetic acid 

under similar conditions and are shown in Fig. 3.25. 
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Fig. 3.25. Photocatalytic oxidation of pure dichloroacetic acid (■) and dichloroacetic acid as a component of 

pyrolysis wastewater (●) in the falling film reactor, solution volume = 200 mL, initial concentration of 

dichloroacetic acid = 1 mM, recycling rate = 100 mL.min-1, T = 25° C, pH = 2-3 

 

The second series of experiments was performed by adding dichloroacetic acid to the 

pyrolysis wastewater to prepare an initial concentration of 1 mM of dichloroacetic acid in the 

wastewater. The photocatalytic oxidation of this mixture was started at its natural pH (pH 7-8) 

and, after 1 h of treatment, nitric acid was added to the wastewater inside the reactor in order to 

decrease its pH value to about pH 2-3. Thus, the second hour of treatment was carried out at 

more acidic pH values. The degradation rate of dichloroacetic acid was continuously measured 

over the duration of treatment at different pH values and the results are shown in Fig. 3.26. 
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Fig. 3.26. Photocatalytic oxidation of dichloroacetic acid as a component of pyrolysis wastewater at pH = 7-8 (left 

side) and pH = 2-3 (right side), falling film reactor, wastewater volume = 200 mL, initial concentration of 

dichloroacetic acid = 1 mM, recycling rate = 100 mL.min-1, T = 25° C 

 

It is clearly shown in Fig. 3.25 that the degradation rate of dichloroacetic acid in clean 

water was significantly greater than that in wastewater. Likewise, according to the information 

presented in Fig. 3.26, the degradation rate of dichloroacetic acid as a constituent of pyrolysis 

wastewater was highly increased at acidic pH values, while it was very low at the natural 

alkaline pH of the wastewater. These observations indicate that the existence of various organic 

and inorganic compounds in the composition of pyrolysis wastewater, as well as the alkaline pH 

of the wastewater, could be responsible for decreasing the efficiency of the photocatalytic 

oxidation of this type of wastewater. 

 

3.5.2. Catalytic and photocatalytic ozonation of wastewater 

Although photocatalytic oxidation (TiO2/O2/UVA) was observed as being an unsuccessful 

procedure in the treatment of pyrolysis wastewater, the application of ozone as a more powerful 

oxidant instead of oxygen in the atmosphere of the falling film reactor combined with UVA 

irradiation as photocatalytic ozonation (TiO2/O3/UVA) and in the dark as catalytic ozonation 

(TiO2/O3) almost similarly led to considerable colour removal as well as a decrease in the COD 

level of the wastewater.  
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Fig. 3.27 shows that the COD level of pyrolysis wastewater was decreased by about 32% 

and 38% after 1 h of treatment using the catalytic ozonation and photocatalytic ozonation 

approaches, respectively. At the same time, the spectrophotometric measurements of colour 

extinction of wastewater, presented in the inset graph of Fig. 3.27, show that the dark colour of 

the wastewater was completely removed after 40 min of treatment under both oxidation 

conditions. The improved efficiencies of these oxidation methods for the treatment of pyrolysis 

wastewater were directly associated with the presence of ozone in the reaction medium and can 

be explained by the acceleration of ozone decomposition and the promotion of the generation of 

OH radicals at the alkaline pH of the wastewater.  
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Fig. 3.27. Catalytic ozonation (●) and photocatalytic ozonation (■) of pyrolysis wastewater, falling film reactor, 

wastewater volume = 400 mL, recycling rate = 100 mL.min-1, T = 25° C, pH = 7-8, (inset graph: colour removal 

over the time of treatment, λ = 340 nm) 

 

3.5.3. The effect of acidification on the treatment of pyrolysis wastewater 

As was already briefly described, the acidification of wastewater caused a remarkable increase in 

the degradation rate of dichloroacetic acid as a constituent of pyrolysis wastewater using the 

photocatalytic oxidation system. On the contrary, the positive influence of the natural alkaline 
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pH of pyrolysis wastewater in terms of increasing the efficiency of catalytic ozonation and 

photocatalytic ozonation was clearly shown in the previous section. In order to clarify the effect 

of acidification on the remediation conditions of pyrolysis wastewater, the treatment of this type 

of wastewater was performed at acidic pH conditions by means of three advanced oxidation 

processes in the falling film reactor; the results were compared with those under alkaline pH 

conditions. Nitric acid was added to the wastewater in order to decrease its pH level to pH 2.  

On one hand, according to the results presented in Fig. 3.28, the acidification of pyrolysis 

wastewater led to an increase in the overall efficiency of colour removal by photocatalytic 

oxidation from about 12% to 26% after 1 h of oxidation time, while it was not effective in 

increasing the overall efficiency of catalytic ozonation and photocatalytic ozonation. The 

efficiencies of colour removal in pyrolysis wastewater by catalytic ozonation and photocatalytic 

ozonation were determined as being in the range of 85% to 92% under both pH conditions. 

However, the initial colour removal under acidic pH conditions was a bit higher than under 

alkaline pH conditions. 
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Fig. 3.28. Colour removal of pyrolysis wastewater using photocatalytic oxidation (∆), catalytic ozonation (○) and 

photocatalytic ozonation (□) systems in the falling film reactor at pH = 2 (black) and pH = 8 (white), wastewater 

volume = 400 mL, recycling rate = 100 mL.min-1, T = 25° C, λ = 340 nm 
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On the other hand, the treatment of pyrolysis wastewater at acidic pH levels caused no 

considerable change in the decrease of the COD level of the wastewater using photocatalytic 

oxidation and photocatalytic ozonation systems in the falling film reactor, while the acidification 

of wastewater led to a decrease in the efficiency of the catalytic ozonation system (Fig. 3.29). 

As already explained, the higher performance of catalytic ozonation at alkaline pH values 

is attributed to the higher rate of ozone decomposition under these pH conditions (Fig. 3.29, 

middle graph). 
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Fig. 3.29. Photocatalytic oxidation (∆), catalytic ozonation (○) and photocatalytic ozonation (□) of pyrolysis 

wastewater at pH = 2 (black) and pH = 8 (white), falling film reactor, wastewater volume = 400 mL, recycling rate = 

100 mL.min-1, Initial COD level = 1800 ± 200 mg.L-1, T = 25° C 

 

In the case of photocatalytic ozonation of wastewater (Fig. 3.29, right graph), as was 

observed in the degradation of dichloroacetic acid as a component of wastewater (Fig. 3.26), it is 

generally supposed that the adsorption of contaminant molecules on the catalyst surface and 

consequently their degradation rate under acidic pH conditions are better than under alkaline 

conditions. On the other hand, ozone decomposition and the generation of OH radicals are 

reduced at low pH values which should conversely result in a decrease in the degradation rate 

under acidic conditions. Thus, the performance of the photocatalytic ozonation system in 
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decreasing the COD level of wastewater was not greatly improved at pH 2 compared with that at 

pH 8. Nevertheless, considering the complexity of the composition of this type of wastewater, to 

present a comprehensive and precise description of all the involved events is a complicated task 

that is beyond of the scope of the present study.  

 

3.5.4. The effect of phosphate ions on the treatment of pyrolysis wastewater 

As an elementary biological pre-treatment, mixed chemical substances which are commercially 

called “superphosphate” were added to the wastewater on the order of 1-2 g.L-1 as nutritious 

additives for the microorganisms existing therein. This additive consisted of 34.7% phosphate 

and 17% sulphate anions. Therefore, all wastewater samples delivered for oxidation experiments 

contained lower or higher amounts of these inorganic ions. 

Hordern et al. [32] have postulated that the great adsorption ability of metal oxides 

towards some inorganic ions such as phosphate or carbonate can cause permanent blockage of 

catalyst active surface sites and a decrease in their catalytic activity. In addition, Gottschalk et al. 

[11] have emphasised that phosphate, which is known to react slowly with hydroxyl radicals, can 

act as an efficient scavenger for these radicals when used in concentrations typically found in 

buffer solutions. These scavenging and inhibition effects were reported also by other researchers 

such as Liang et al. [159] and Chen et al. [160] in the photocatalytic degradation of 

dichlorophenol and dichloroethane, respectively. 

In order to visualise and estimate the effect of superphosphate on the treatment of 

wastewater, photocatalytic oxidation of an indigo solution as a model compound was performed 

under more controlled conditions in the presence of superphosphate at two different 

concentrations of superphosphate in the planar reactor. The results in Fig. 3.30 show that the 

overall degradation efficiency of indigo by the photocatalytic oxidation system was decreased by 

about 20% and 60% in the presence of 0.01 g.L-1 and 1 g.L-1 of phosphate ions, respectively, 

highlighting the remarkable influence of these inorganic ions in hindering photocatalytic 

treatment. Therefore, the concentration of phosphate and other inorganic ions (sulphate, 

carbonate, chloride, etc.) could be considered as an important factor which disturbs the effective 

photocatalytic treatment of pyrolysis wastewater. 
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Fig. 3.30. Photocatalytic oxidation of indigo solution, 0.01 mM in the presence of 1 g.L-1 (▲), 0.01 g.L-1 (●) and 0 

g.L-1 (■) of superphosphate, planar reactor, solution volume = 400 mL, recycling rate = 1 L.min-1, T = 25° C, pH =6 
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4. Conclusions and perspectives 
The falling film reactor combines an immobilised photocatalyst as the solid phase, wastewater as 

the liquid phase and ozone/oxygen as the gas phase in an optimum design, providing various 

application possibilities for different oxidation systems. The unique design of the multi-phase 

falling film reactor greatly increased the ratio of active photocatalyst surface to wastewater 

volume. The increase in this ratio caused an improvement in the mass transfer properties inside 

the reactor. 

The falling film reactor showed great potential and considerable benefits in the 

degradation of model compounds as contaminants in water as well as in the treatment of a real 

wastewater sample. Among the different investigated advanced oxidation methods, the highest 

degradation efficiencies were observed for photocatalytic ozonation systems where a 

combination of ozone, immobilised TiO2 nanoparticles and UVA irradiation was employed for 

this aim. The photocatalytic ozonation systems were not only able to oxidise the model 

compounds, but they were also very effective in the mineralisation of these compounds. The 

photocatalytic oxidation systems were also able to sufficiently decompose some of the model 

compounds, but no considerable difference was observed between the performance of ozonation 

and catalytic ozonation systems under the setup conditions of this study. The significant effects 

of these advanced oxidation methods on the degradation of a wide range of organic and 

inorganic chemicals were mainly attributed to the formation of hydroxyl radicals. Unlike ozone, 

these powerful oxidising radicals attack and oxidise target molecules non-selectively. Therefore, 

advanced oxidation methods are especially considered as an important new approach for the 

decomposition of ozone-resistant compounds. 
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The TiO2 immobilisation techniques used in this study were simple but adequate; the 

photoactivity of immobilised photocatalysts did not decrease greatly after about 10 months of 

handling approximately 200 h of various oxidation processes. However, the performance of fixed 

TiO2 nanoparticles on borosilicate glass tubes was better than on polymethylmethacrylate tubes. 

Due to the physicochemical properties of oxalic acid, it was chosen as one of the model 

compounds for investigating the influence of experimental parameters on the degradation rate of 

pollutants in water. It was observed that any increase in the initial concentrations of oxalic acid 

(over the range between 0.1 mM and 10 mM) and ozone (from 0 mg.L-1 to 135 mg.L-1) increased 

the initial rate of catalytic and photocatalytic ozonation of this model compound. Similarly, the 

initial rate of photocatalytic oxidation was increased by increasing the initial concentration of 

oxalic acid.  

The solution pH was an important parameter for controlling the efficiency of advanced 

oxidation processes on the degradation of oxalic acid in the falling film reactor. The pH level 

affects the charge of both the photocatalyst surface and the pollutant molecules as well as the rate 

of ozone decomposition in the reaction medium. The efficiency of photocatalytic oxidation and 

photocatalytic ozonation was decreased by increasing the solution pH. Inversely, any increase in 

pH caused an increase in the efficiency of catalytic ozonation. 

The temperature also influences the oxidation rate of oxalic acid. The initial 

decomposition rate of oxalic acid by photocatalytic oxidation and catalytic ozonation was higher 

at high temperatures, while increased temperatures did not have a remarkable influence on the 

degradation rate and the efficiency of photocatalytic ozonation under the setup conditions of the 

falling film reactor. 

Based on the results of this study and considering the high photoactivity of self-cleaning 

glasses, this kind of glass can be used as an active wall for the next generation of falling films. 

These glasses have a thin and stable layer of TiO2 nanoparticles on their surface. Various 

trademarks of self-cleaning glasses are commercially available. A set of preliminary experiments 

were performed on one of these products called Pilkington ActiveTM Glass (PAG) in order to 

investigate the ability of this material to handle the photocatalytic oxidation of contaminants in 

water. The results were promising. In addition to this type of immobilised photocatalyst, other 

commercial products of TiO2 fixed on fibres or polymer granules are considered to be suitable 

alternatives for this aim. 
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In situ production of ozone using another advanced technique called dielectric barrier 

discharge (DBD) inside the falling film reactor could be considered as another source of ozone 

for ozone-based advanced oxidation processes. 

The falling film reactor can be employed for the treatment of real wastewater samples 

such as agricultural wastewaters, pharmaceutical wastewaters, etc. For example, lindane is used 

as a pesticide worldwide. Therefore, this chemical is frequently found in agricultural 

wastewaters. The falling film reactor showed high performance in the removal of this compound 

from aqueous solutions.  

To summarise, the application of advanced oxidation processes, especially photocatalytic 

ozonation using the falling film reactor, showed brilliant results in water treatment. Therefore, 

we believe that the new design of the falling film reactor introduced in this study can 

considerably promote the commercialisation process of advanced oxidation technologies. 
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