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Abstract

This work addresses tough challenges of sensor network applications with Quality

of Service requirements. That is, nodes must work with batteries for a long time,

support short end-to-end delays and robust communication in multi-hop networks.

It starts with presenting previous research e�orts that address such challenges. For

instance, many Medium Access Control (MAC) protocols keep nodes mostly sleeping

to save energy and synchronize wake-up times for communication. Although such

protocols o�er short end-to-end delays, they still su�er from long idle listening and

shortened lifetimes. The main reasons are the long time needed to detect an idle

channel and ine�cient ways of dealing with clock drift. This work introduces novel

solutions to these problems, mainly at Layer 2 of the OSI model, that signi�cantly

reduce idle listening. First, nodes predict future drift and reduce the time needed to

compensate clock uncertainty among neighbors. Second, they quickly detect an idle

channel and power down the transceiver. In some scenarios, nodes work 30% longer

owing to these solutions.

To tackle problems with unreliable wireless links, sensor nodes may apply various

solutions at Layer 2. For example, with Automatic Repeat reQuest (ARQ) protocol

they send retries on frame losses, resulting in extra energy consumption. This work

examines the impact of ARQ on the lifetime and on the reception rate. Several indoor

and outdoor experiments showed that with only 1-2 retries nodes can handle many

communication problems. Besides, owing to the idle-listening reduction, mentioned

previously, ARQ shortens the lifetime by 10% only.

Although this work addresses particular applications, the solutions presented here

can be used in other scenarios and with di�erent protocols. For instance, the energy-

e�cient drift compensation approach can be directly used in any schedule-based

MAC protocols, like the one based on the IEEE 802.15.4 standard. Besides, any

protocol can bene�t from the solution to the idle-listening reduction based on the

early detection of idle channel. Finally, owing to the analytical model that estimates

the lifetime of nodes, researches and developers can early evaluate MAC protocols

running on various hardware platforms.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit den Herausforderungen von Sensornetzanwendungen

mit Quality-of-Service-Anforderungen. Die Sensorknoten in einer solchen Anwen-

dung müssen über einen langen Zeitraum mit Batterien auskommen und gleichzeitig

kurze Ende-zu-Ende-Verzögerungen und zuverlässigen Datenversand in einem Multi-

Hop-Netzwerk unterstützen.

Zunächst werden bisherige Forschungsarbeiten zu diesem Thema vorgestellt. Viele

Medienzugri�sprotokolle (MAC) lassen die Knoten die meiste Zeit "schlafen", um

Energie zu sparen, und synchronisieren die Wachzeiten, um Kommunikation zwi-

schen den Knoten zu ermöglichen. Solche Protokolle unterstützen zwar kurze Ende-

zu-Ende-Verzögerungen, jedoch wird aufgrund von sogenanntem Idle Listening (Ab-

hören des Funkkanals und Warten auf Nachrichten) nur eine kurze Lebensdauer

erreicht. Dies liegt zum einen daran, dass zuviel Zeit benötigt wird um festzustellen,

dass das Medium inaktiv ist und zum anderen an ine�zienten Verfahren für die Kom-

pensation der Uhrendrift. Diese Arbeit stellt neue Lösungen für diese Probleme vor,

die das Idle Listening erheblich reduzieren und hauptsächlich auf der Schicht 2 des

OSI-Modells implementiert werden. Erstens berechnen die Knoten die zukünftige

Uhrendrift ihrer Nachbarn, wodurch Unsicherheiten bzgl. der Drift beseitigt werden.

Zweitens wird die nötige Zeit für die Erkennung eines inaktiven Mediums und dem

Abschalten des Transceivers verringert. Die Lebensdauer der Knoten kann damit

um bis zu 30% gesteigert werden.

Es gibt unterschiedliche Ansätze - implementiert in der OSI-Schicht 2 - um mit der

Unzuverlässigkeit der drahtlosen Kommunikation umgehen. Bei Automatic Repeat

reQuest (ARQ) z.B. werden Pakete bei Verlust noch einmal gesendet. Dies erhöht

jedoch den Energieverbrauch. Die Auswirkungen von ARQ auf die Lebensdauer

und die Empfangsrate wird daher in dieser Arbeit untersucht. Experimente haben

gezeigt, dass schon ein bis zwei Wiederholungen ausreichen, um die meisten Kom-

munikationsprobleme zu beseitigen. Aufgrund der Verkürzung des Idle Listenings

durch die oben genannten Lösungen verkürzt ARQ die Lebensdauer nur um 10%.

Obwohl diese Arbeit nur bestimmte Anwendungen betrachtet, können die hier

vorgestellten Lösungen auch in anderen Szenarieren und auf andere Protokolle an-

gewandt werden. Zum Beispiel kann das energiee�ziente Verfahren zur Kompen-
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sation der Uhrendrift direkt in vielen MAC-Protokollen verwendet werden, z.B. im

IEEE 802.15.4 MAC. Zudem kann jedes Protokoll von der Lösung für die schnelle

Erkennung eines inaktiven Mediums und der daraus resultierenden Reduktion des

Idle Listenings pro�tieren. Schlieÿlich können Forscher und Entwickler das vor-

gestellte analytische Modell nutzen, um die Lebensdauer eines Sensornetzes beim

Einsatz verschiedener MAC-Protokolle zu berechnen.
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1 Introduction

1.1 Challenges of Long-Living Sensor Networks

Recent development in the electronic industry, especially miniaturization, allowed

the use of tiny wireless devices with sensing abilities, referred to as sensor nodes.

Sensor nodes are usually the size of a matchbox, work with batteries and send data

wirelessly. Since they work for several months or years, and do not need wires at

all, sensor nodes provide a new set of applications. Nodes usually form a wireless

network, monitor a speci�c area by reading sensors and send sensor readings to a

sink. Ref. [22] lists several sensor network applications, for example:

� Disaster relief applications, like wild�re detection. Sensor nodes equipped with

thermometers produce a �temperature map� of a forest. Then, areas with a

high temperature are accessed from outside in advance to prevent �re.

� Intelligent buildings. Sensor nodes can provide real-time, high-resolution mon-

itoring of temperature, air�ow or humidity. In this way, they can increase the

comfort level and reduce the energy consumption. According to [39] such a

technology could reduce energy consumption by two quadrillion British Ther-

mal Units in the US alone, that is, $55 billion a year and 35 million metric

tons of reduced carbon emissions. Besides, sensor nodes can check mechanical

stress levels of buildings in seismically active zones. By doing so, they provide

information about building condition after an earthquake.

� Precision agriculture. Sensor nodes placed in soil allow precise irrigation and

fertilizing. Also, attaching a sensor node to an animal, for example, to a pig or

to a cow, allows controlling its health status and raises alarms early enough.

� Logistics. Individual parcels with sensors allow an easy tracking during trans-

port or in stores

� Critical Infrastructure Protection (CIP). Nodes check an area for speci�c events,

and on detection they must inform the sink within a prede�ned time. For ex-

ample, sensor networks monitor gas leakage on factory facilities. When they
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1 Introduction

detect it, they send notices to the sink. However, to prevent explosion danger,

the sink must receive the information about leakage within a few seconds after

detection.

This work addresses mainly CIP and similar scenarios. They are most challenging,

since nodes must achieve two opposing goals: ensuring long lifetimes and supporting

various Quality of Service features, mainly short end-to-end delays and reliable data

transfer. These challenges are introduced brie�y in the following.

Long Lifetime of Sensor Nodes

In CIP applications, sensor nodes should work reliably for a long time, month or

years, without human intervention. Besides, nodes cannot usually be mains-powered,

as laying new cables to each node is not feasible. Therefore, they are powered by

batteries, which should provide energy for a long time. To ensure long lifetimes,

nodes apply protocols that support a low duty cycle (LDC). Such protocols keep

nodes mostly in the sleep state. As the current consumption in the sleep state is

smaller by three orders of magnitude than in the active state, sensor nodes increase

the lifetime signi�cantly. For example, Tmote Sky [33] nodes work only a few days

in the active state. If the duty cycle is reduced to 0.1%, the lifetime increases to

several years.

Short End-to-End Delays

Nodes with LDC protocols wake-up rarely to check for potential transmissions. Thus,

on event detection the source node cannot send data immediately to the next node,

but waits until it becomes active. In multi-hop networks, each node waits until the

next node wakes up before sending data towards the sink. Apparently, it can result

in signi�cant end-to-end delays, and the sink may receive event notices too late.

Therefore, nodes should wake up more often, but this increases the duty cycle and

shortens the lifetime. Clearly, there is a tradeo� between these two goals, that is, a

long lifetime and short end-to-end delays.

Packet Losses

Since wireless communication is prone to errors [40], sensor nodes often su�er from

packet losses. For example, experiments introduced in ref [54] show that some wire-

less links su�ered from a packet error rate of 50%. Thus, in CIP applications the

sink may miss some event notices, e.g., gas leakage detection, and can fail to prevent

the danger.

2



1.2 Solutions

Obviously, many solutions tackle the problems of packet losses in wireless net-

works. However, they result in extra energy consumption, for example, because of

transmissions of additional frames. On one hand, nodes should apply such solutions

to recover from packet losses. On the other hand, the use of these remedies must be

limited to achieve long lifetimes.

1.2 Solutions

Reduction of Idle Listening

To guarantee two opposing goals, that is, short end-to-end delays and long life-

times, several approaches (DMAC [29] and Q-MAC [50]) maintain wake-up slots in

a staggered schedule, a type of TDMA (Time Division Multiple Access) approach.

The idea resembles the common practice of synchronizing tra�c lights to turn green

(wake up) just in time of the arrival of vehicles (packets) from previous intersections

(hops). Although the staggered schedule supports short end-to-end delays, it su�ers

from the idle-listening problem. That is, nodes keep transceivers in the receive state,

consume energy, but do not get any frames. The main reasons for idle listening of

the staggered schedule are the following:

� Clock drift

� Because of clock drift, a sensor node may wake up too soon to receive a

message.

� To solve this problem, sensor nodes wake up earlier by a guard time.

� Common solutions to guard times consider worst drift. That is, based on

the crystal oscillator parameter, neighbors estimate the worst-case time

their clocks may drift away over a sleep period.

� Run-time drift is a few times smaller than the worst case and such solu-

tions cause unnecessary long idle listening.

� Useless wake-ups

� To support short end-to-end delays nodes wake up often.

� Since events seldom occur in CIP applications, most wake-up periods are

useless, that is, nodes do not receive data but only waste energy.

To cope with these problems, this work introduces the LETED (Limiting End-to-End

Delays) protocol that shortens the wake-up periods and saves energy by applying the

following means:

3



1 Introduction

1. It applies energy-e�cient approaches that deal with clock drift, based on drift

prediction. By doing so, nodes reduce idle listening caused by clock drift by

95% against common solutions.

2. With the ILA (Idle Listening Avoidance) approach, nodes detect idle wake-up

periods in about 100 µs and early power down the transceiver. In this way, they

reduce idle listening by 15x, prolonging the lifetime by 30% and even more.

Link-Layer Means to Packet Loss Problem

The major groups of means that deal with unreliable communication are hop-by-

hop and end-to-end. The former recovers from packet losses at each node on the

multi-hop paths. For example, each intermediate node sends retries on a frame loss.

The latter is applied only to the source and the destination and not to intermediate

nodes. That is, only the source node repeats transmissions and expects a response

from the destination.

Because of unreliable wireless communication, sensor nodes should primarily re-

cover from packet losses on the hop-by-hop basis. Even small-scale experiments

show that hop-by-hop solutions outperform end-to-end means [2]. According to

ref. [22], link layer retransmissions (i.e., hop-by-hop) keep energy costs within reason-

able bounds whereas costs for end-to-end approach explode from a certain threshold

of the bit error rate.

The main hop-by-hop means are ARQ (Automatic Repeat reQuest) and CSMA/CA

(Carrier Sense Multiple Access With Collision Avoidance). The former can recover

from all types of transmission errors, as senders repeat transmissions on frame losses.

The latter deals only with the collision problem by postponing transmissions on a

busy channel. Since both solutions need extra energy, mainly because of longer idle-

listening times and more transmissions, they a�ect the lifetime of sensor nodes. This

work examines the tradeo� between a long lifetime of nodes and reliable data trans-

fer, provided by ARQ and CSMA/CA, which are applied separately or together.

Real-world experiments presented in this work show that nodes ensure a reliable

communication with 1-2 ARQ retries. By doing so, they improve the reception rate

by 20% and shorten the lifetime by 10% only. However, such a minor impact on the

lifetime stems from the reduction of idle listening mentioned previously. As expected,

CSMA/CA does not improve the connection quality in applications with a low duty

cycle, as the collision risk is low. Besides, it signi�cantly reduces the lifetime of nodes

and therefore should not be applied to CIP scenarios.
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1.3 Structure of the Thesis

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the archi-

tecture of sensor networks and main Medium Access Control (MAC) protocols that

support the long lifetime of nodes, owing to low duty cycles.

In Chapter 3 the main challenges addressed in this work are explained, i.e., ensur-

ing long lifetime, short end-to-end delays and reliable communication. This chapter

also introduces potential solutions and argues the selection of approaches considered

in this work.

Chapter 4 presents Distributed Low Duty Cycle MAC (DLDC-MAC) protocol for

low power. The protocol provides long lifetimes of nodes and serves as a basis for

LETED. This chapter also evaluates DLDC-MAC in a real-world experiment.

Chapter 5 introduces the LETED approach, which supports short end-to-end de-

lays in multi-hop networks. Besides, this chapter explains and evaluates ILA (Idle

Listening Avoidance), i.e., the main solution that reduces idle listening of the stag-

gered schedule. Finally, this chapter presents results of small- and large-scale simu-

lations with nodes based on LETED and DLDC-MAC protocols.

Chapter 6 presents a drift experiment with sensor nodes places indoors and out-

doors. Based on the empirical results, it provides energy-e�cient solutions to the

drift problem of schedule-based MAC protocols. Furthermore, it estimates potential

gains in lifetime provided by these solutions.

Chapter 7 provides a model that estimates the lifetime and energy consumption

of sensor nodes. The model is used to evaluate the solutions of this work against

other state-of-the-art protocols. The evaluation results are discussed in this chapter

as well.

Chapter 8 presents the results of indoor and outdoor experiments with ARQ and

CSMA/CA approaches. Besides, it examines the impact of both solutions on the

lifetime, based on the model introduced in the previous chapter.

Chapter 9 summarizes the achievements of this thesis and presents intended future

research e�orts.
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2 Sensor Networks

This chapter introduces the architecture of sensor nodes and the main challenges of

sensor networks. Main problems of such networks stem from a limited power source,

as nodes usually work only with batteries that cannot be easily recharged. Thus,

many protocols, presented later in this chapter, support low duty cycles and save

energy in this way. Since such protocols keep nodes mostly in the sleep state, they

may not support certain features of the Quality of Service (QoS), like short end-to-

end delays in multi-hop networks. The main QoS aspects are brie�y introduced at

the end of this chapter.

2.1 Overview

2.1.1 Single Node

Transceiver

Sensors

ADCMicrocontroller

External Memory

Power

Source

TXRX

Write

Read

Figure 2.1.1: Sensor node architecture; External memory is optional; ADC means
analog-to-digital converter

Figure 2.1.1 depicts the main parts of sensor nodes. A central processing unit

(CPU) is the heart of sensor nodes. To save energy, however, sensor nodes use CPUs

not as powerful as Personal Computers (PCs). Usually, nodes have a 16-bit CPU

with a frequency of a few MHz, referred to as a microcontroller (µC or MCU). A
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2 Sensor Networks

typical µC draws current of a few mA while running and 1000x less in the sleep state.

Table 2.1 compares the energy consumed by PC processors and a microcontroller used

in sensor nodes. For instance, in the active state, the microcontroller needs about 5

orders of magnitude less energy than the Intel Core i7 processor.

Table 2.1: Energy consumption and achieved lifetime of desktop processors (In-
tel Core i7, Intel 386) and a microcontroller used in sensor networks
(MSP430) with standard rechargeable 2x AA batteries (1.2V and 2700
mAh each)

Processor Energy consumption Lifetime

Intel Core i7 130 W 4 min

Intel 386 2 W 4 hours

MSP430 (active) 0.015 W 22.5 days

MSP430 (sleep) 0.000005 W 184 years

Table 2.2: Current consumption of the ChipCon CC2420 transceiver used in sensor
nodes

Mode Current consumption

TX with 0 dBm 17.4 mA

TX with -25 dBm 8.5 mA

RX 19.7 mA

Sleep (Power Down) 1 µA

Table 2.3: Current consumption of WLAN transceivers; Orinoco 11b is a PCMCIA
card used in laptops; OWLAN211g is a transceiver designed for low power

Orinoco 11b OWLAN211g

TX 285 mA 170 mA

RX 185 mA 170 mA

Sleep 9 mA 0.8 mA

Sensor nodes send and receive data wirelessly. Common transceivers used in

sensor nodes have a low data rate and consume little energy. For example, Chip-

Con CC2420 [47] transceiver, based on the IEEE 802.15.4 [20] standard, supports

data rates up 250 kbit/s and draws 20 mA current when sending or receiving (see

Table 2.2). Besides, to preserve energy, sensor nodes keep mainly the radio in the

sleep state. Therefore, transceivers must provide an energy-e�cient sleep state as

well. On the contrary, a typical WLAN transceiver supports data rate of a dozen of

8



2.1 Overview

Mbit/s, but draws much more current than radios of sensor nodes. Table 2.3 presents

current consumption of two WLAN transceivers. The �rst module, Orinoco 11b PC

Card[38], is a standard wireless PCMCIA card. The second, OWLAN211g[11], is a

WLAN transceiver designed for low power. For example, OWLAN211g draws almost

8x more current than CC2420 when sending data and 800x more in the sleep (idle)

state.

Sensor nodes usually use batteries as a power supply. In many applications, bat-

teries cannot be easily replaced or recharged, but nodes must work several months or

longer. In some applications, nodes can get part of its energy from the environment,

for example, with solar cells. Finally, in other applications, especially indoors, oper-

ators can easily replace or recharge batteries. In addition, some nodes can be mains-

powered. This work considers the worst case, that is, nodes use non-rechargeable

batteries only.

Nodes monitor the environment with various sensors, for example, temperature,

humidity, noise level, vibrations. Such sensors are usually analog devices and provide

various voltage levels for di�erent readings. An analog-to-digital converter (ADC)

translates an analog voltage level to a digital value, expected by the µC.

A basic sensor node does not need any external memory, as presented in Fig-

ure 2.1.1, since the microcontroller has on-chip memory available. For example,

MSP430 can have up to 256 kB of Flash memory and 16 kB of volatile memory.

However, in some applications, an external memory is necessary, for example, to

store important data in nonvolatile memory.

2.1.2 Sensor Network

Sensor nodes usually monitor a speci�c area and send sensor readings to a sink. As

the area is typically larger than the radio range, nodes transmit data over multi-hop

paths. Sensor nodes forward data in the store-and-forward fashion, that is, they

receive whole frames, store them in the RX bu�er and send to the next node.

Even when the radio range covers the area, nodes may bene�t from multi-hop

networks by using a smaller TX power. In this case, they decrease the collision

risk because of a smaller radio interference range. Besides, the loss of the signal

strength is proportional to at least the square of the sender-to-receiver distance.

Therefore, nodes on a multi-hop path may consume in total less energy than a direct

transmission with full power. However, the authors in [32] contradict this statement

and show that a direct transmission of a Bluetooth transceiver (2.4 GHz frequency)

is mostly more energy e�cient than sending data in multi-hop networks.

Since sensor nodes form a multi-hop network, they must �nd a route towards the

9
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sink. Although the topology of sensor networks resembles a centralized approach,

with a powerful sink available, the nodes usually work in a decentralized, ad-hoc

fashion. Therefore, even when some nodes break down, the network adapts quickly

to the new topology.

Sensor networks resemble ad-hoc networks, as nodes send data wirelessly and

organize themselves in a distributed way. The main di�erences between these two

network types are the following:

� Scalability

The number of nodes is usually signi�cantly larger in sensor networks. For

example, some works introduce applications with sensor networks of hundreds

or thousands nodes [15]. On the contrary, ad-hoc networks commonly consider

dozens of wireless nodes.

� Limited energy

Sensor nodes have a limited power source available, for example only two AA

batteries on Tmote Sky node, but they must work for a long time. On the

contrary, ad-hoc nodes do not usually su�er from such a limited power sup-

ply. Besides, users can easily recharge ad-hoc devices or connect them to the

electricity.

� Limited memory

Despite of a limited memory available on sensor nodes, sometimes less than

64 kB, the software with all protocols must �t into it. Therefore, the software

includes only necessary parts. Ad-hoc nodes, on the contrary, have much more

memory available, e.g., a few GB in case of laptops.

� Failures

Sensor nodes are prone to failures, especially when working in harsh environ-

ments, for example, in hot or wet conditions. In addition, if sensor nodes stop

working, it is often impossible to reset them manually. Ad hoc devices, like

laptops or PDAs, work more reliably than nodes placed outdoors. Even when

there is a problem with ad-hoc nodes, users can �x it quickly, e.g., start nodes

again, etc.

Although sensor nodes di�er from ad-hoc networks, they can apply some ad-hoc

protocols. Sometimes the protocols need just small adaptations to consider the

constraints of sensor nodes. For instance, many ad-hoc routing protocols, like Dy-

namic Source Routing (DSR) [21] or Ad hoc On-Demand Distance Vector Routing

(AODV) [35], work well in sensor network applications.
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2.1.3 Wireless Communication

Sensor nodes send and receive data wirelessly and therefore su�er from common

wireless problems introduced in the following.

Collisions

Should two or more nodes send data at the same time, see Figure 2.1.2, the electro-

magnetic waves interfere, and the receiver does not get any frame correctly. Clearly,

the collision risk depends on the data rate in the network. That is, the higher the

data rate is, the higher is the collision risk. Since sensor nodes rarely send data, the

collision risk should be low. However, even in sensor networks with a low data rate,

collisions may frequently occur on certain periods. For example, in several applica-

tions nodes monitor the same area. If they detect an event, like a gas leakage, all

nodes try to notify the sink about it and send out immediately frames. Obviously,

in this case, the collision risk is high, although the data rate is low on average.

Figure 2.1.2: Collision problem: two nodes send frames at the same time, the frames
�collide� at the receiver, and it cannot receive anything

Idle listening

Figure 2.1.3 depicts the idle-listening problem of wireless communication. The prob-

lem arises when a node keeps the radio in the RX state but no frame arrives. For

example, as nodes cannot predict when an event, like a gas leakage, occurs, they

expect to receive data from neighbors at any time. In order not to miss data, nodes

keep the transceiver often in the RX state and cause excessive idle listening. To limit

idle listening sensor nodes apply LDC (low duty cycle) protocols, introduced in the

next paragraph, which keep the transceiver mainly powered down.
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Figure 2.1.3: Idle Listening: a receiver keeps its radio in the receive state for a time
longer than it is needed to receive a frame

Overhearing

When a node receives a frame addressed to another node (see Figure 2.1.4), it wastes

the energy, as it discards the packet anyway. To save the energy the node should not

receive such packets at all. Because of a broadcast feature of wireless communication,

however, all nodes in the transmission range of a source receive frames and su�er

from the overhearing problem.

Figure 2.1.4: Overhearing: ReceiverB gets a frame addressed to ReceiverA because
of a broadcast feature of wireless communication

Protocol overhead

Each communication layer, like Network Layer or Data Link Layer, adds its header to

the frames before transmissions. As a result, each node sends application data with

protocol headers (see Figure 2.1.5). For example, the MAC header of IEEE 802.15.4

can occupy about 10% of the frame or more. Obviously, sending protocol headers

results in extra TX energy consumption. Besides, large protocol headers need frame

fragmentation, as application data does not �t into the frame. First, it leads to

even more protocol overhead, since every fragmented frame needs extra protocol

headers. Second, it makes the protocols complicate and needs extra memory for the

implementation.
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Figure 2.1.5: Protocol overhead: nodes send not only the payload, i.e. application
data, but also control data of underlying protocols

MAC protocols

To solve the problems with wireless communication, nodes apply Medium Access

Control (MAC) protocols, a sublayer of the Data Link Layer according to the 7-layer

OSI (Open Systems Interconnection) model. MAC protocols grant or deny an access

to the wireless channel. That is, before a transmission each node �asks� its MAC

protocol, whether it is allowed to send a frame. For instance, before sending data,

nodes check whether the channel is idle by performing so called channel sense. Should

they detect any transmissions, they wait a certain time in order not to interfere and

check the channel again.

As there are many di�erent sensor network applications, there is no MAC proto-

col �one-size-�ts-all�. For instance, in indoor scenarios, nodes get the energy from

power outlets and do not su�er from energy problems, like idle listening. Because of

interference with other wireless networks inside a building, however, they must deal

with a high collision risk. On the contrary, the main concern of nodes that work

outdoors is the limited energy. Thus, they use di�erent MAC approaches, designed

mainly for low power, than nodes placed indoors.

2.2 Low Duty Cycle (LDC) and Rendezvous

The main concern of many sensor network applications is a limited power source. An

o�-the-shelf sensor node Tmote Sky [33] with standard two AA batteries works only

few days, if it keeps the transceiver and the microcontroller permanently powered up.

However, nodes must provide longer lifetimes, several months or years. To achieve

such long lifetimes, sensor nodes apply LDC protocols. Such protocols keep the nodes

sleeping most of the time and wake them up for a short time only, for instance, to get

sensor readings or to receive data. However, to send and to receive data, nodes must

be awake at the same time, referred to as rendezvous [26]. Obviously, each node on

a multi-hop route needs rendezvous with the next node towards the destination.

Figure 2.2.1 introduces the idea of rendezvous in multi-hop networks. In this case,

nodes mostly sleep to save energy. When the source detects an event, e.g., a gas
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leakage, it must inform the sink about it. However, as the next node towards the

sink (node A) still sleeps, it cannot receive data from the source just after event

detection. Both nodes must synchronize their wake-up times: rendezvous. Then the

source sends a frame to node A. Immediately after the frame reception, node A tries

to send it to node B, but it needs to wait for rendezvous. The process continues until

the last node delivers data to the sink.

Figure 2.2.1: Rendezvous in multi-hop networks: each node pair (sender and receiver)
synchronize wake-up times

The ideal solution does not cause any rendezvous overhead. In this case, nodes on

the path to the sink wake up just in time to receive data from the previous node.

However, as nodes cannot predict when events occur, they cannot just wake up at the

right time to get frames. Thus, nodes have to apply underlying rendezvous solutions,

which synchronize wake-up time between senders and receivers. Ref. [26] groups such

solutions into three categories:

� asynchronous

Nodes can wake up other nodes with a dedicated hardware, for example,

wakeup radios [55]. When a node wants to send data to its neighbor, it wakes

up the neighbor and sends data.

� pseudo-asynchronous

Since nodes cannot wake-up other nodes like in the asynchronous approach,

they apply a software solution that tries to work like a wakeup radio. For

example, nodes may periodically listen for potential transmissions and stay

awake, if they detect a transmission wish.
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Table 2.4: Low Duty Cycle protocols for sensor networks and types of rendezvous

Name
Rendezvous

Synchronous Pseudo-Asynchronous

S-MAC x

T-MAC x

IEEE 802.15.4 with
beacons

x

DMAC x

FPS x

Twinkle x

Dozer x

STEM x

Preamble Sampling x

B-MAC x

WiseMAC x

TICER / RICER x

Koala x

� synchronous

Nodes agree on speci�c communication time slots: they send and receive data

only during such slots. Senders and receivers usually arrange a common sched-

ule and wake up at the same time to communicate.

Table 2.4 lists several MAC protocols with LDC support, which are presented shortly

in the following.

S-MAC

Sensor-MAC (S-MAC) [53] alternates between two states: listen (active) and sleep

(see Figure 2.2.2), like usual low duty cycle protocols. S-MAC provides a wake-up

schedule, that is, nodes are in the active state at the same time and therefore can

communicate. Figure 2.2.3 (top) presents the active period of a receiver; it consists

of two phases: SYNC and RTS. In the SYNC phase, nodes send and receive synchro-

nization frames to deal with longtime clock drift. In this case, Sender1 and Sender3

send such frames to the receiver, as they intend to transmit data afterwards. On
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receiving SYNC frames, nodes adapt their timers and compensate clock drift. Ac-

cording to [53], S-MAC does not need a tight synchronization, since the SYNC phase

is longer than typical clock drift. For example, the listening period of 0.5 second,

mentioned in ref. [53], is more than 106 times longer than typical clock drift rates.

Figure 2.2.2: S-MAC alternates between two states, Listen (nodes send data) and
Sleep (nodes save energy), like other protocols that support low duty
cycles

During the RTS phase (see Figure 2.2.3) nodes send data with the approach (Re-

quest to Send / Clear to Send) based on MACAW [1]. In short, a node sends a RTS

frame to the destination, and it replies with a CTS frame. In this way, the node

gains permission to send frames. Other nodes receive the CTS frame as well and

postpone transmissions.

Figure 2.2.3: Listen state of S-MAC protocol consist of two phases SYNC and RTS.
In SYNC nodes synchronize their clocks and compensate drift. In RTS
they send data with the RTS/CTS approach
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T-MAC

Figure 2.2.4: T-MAC adapts the active time according to the tra�c load; it shortens
active periods when the tra�c is low and prolongs them on a heavy
tra�c load

Timeout-MAC (T-MAC) [48] attacks the idle-listening problem of S-MAC [53] and

adapts the active period length according to the tra�c load. Figure 2.2.4 shows the

basic scheme of the T-MAC. Each node alternates between active and sleep states,

like in S-MAC, and applies the RTS/CTS approach. However, in T-MAC nodes

�nish the active period when no event occurs for a time TA (see Figure 2.2.4). Thus,

T-MAC adapts its duty cycle according to the network load, i.e., nodes shorten active

periods on idle channel and prolong them under a heavy tra�c load.

IEEE 802.15.4 MAC

The standard IEEE 802.15.4[20] de�nes the physical and the Medium Access Control

(MAC) layers, but this work considers MAC only.

There are two device types in IEEE 802.15.4: full-function device (FFD) and

reduced-function device (RFD). The latter ones do not provide several features, e.g.,

RFDs cannot serve as network coordinators. Besides, RFDs cannot send data direct

to another RFD. They communicate only with the coordinator, which is always a

FFD. Thus, a network of RFDs forms a star topology with a FFD in the center

(see Figure 2.2.5). On the contrary, FFDs can send data to any other device and

therefore can form other topologies, like peer-to-peer (see Figure 2.2.5).

IEEE 802.15.4 networks work in two modes: with and without superframes. In the

�rst case, the network coordinator periodically sends beacons. Nodes use beacons

mainly to synchronize wake-up times and to de�ne the following timeslots. Figure

2.2.6 depicts the superframe. To save energy, nodes can switch o� their transceivers

between the successive beacons.

In networks without superframes, coordinators are always powered on, and nodes

use CSMA/CA (Carrier Sense Multiple Access With Collision Avoidance) to avoid
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collisions. An RFD receives messages from the coordinator by occasionally polling

it.

Figure 2.2.5: IEEE 802.15.4 topology: start and peer-to-peer
Reduced Function Devices send data to a network coordinator (Full
Function Device) only

Figure 2.2.6: Superframe of IEEE 802.15.4 MAC; on beacon reception, nodes ac-
cess the channel in the contention mode (CSMA/CA) followed by the
contention-free period with timeslots; after that, nodes power down the
radio and sleep till the next beacon

DMAC

DMAC [29] addresses the problem of low-latency data gathering in duty-cycled sensor

networks. It considers a network with a tree topology, that is, the nodes form a tree

rooted at the sink (see Figure 2.2.7). To preserve energy, nodes mostly sleep and

wake up for a short time according to the schedule.

Each node alternates among three states: sleep, send (TX), and receive (RX). In

the RX state, nodes expect packets and send corresponding ACKs to the sender. In

18



2.2 Low Duty Cycle (LDC) and Rendezvous

Figure 2.2.7: DMAC creates the staggered wake-up schedule; each intermediate node
forwards data just after reception, and in this way DMAC shortens end-
to-end delays

the TX state, nodes try to send packets to the next hop and receive ACKs. In the

sleep state, nodes power down the radio to save energy

Figure 2.2.7 depicts the tree topology and the corresponding wake-up schedule,

referred to as the staggered active/sleep schedule. That is, TX slots to the next node

follow immediately RX slots from the previous hop. With such a schedule, nodes

receive frames and forward them almost immediately to the next node. Clearly, the

TX slot of the previous node and the RX slot of the next node must overlap to allow

rendezvous. Owing to the fast data forwarding, DMAC reduces end-to-end delays.

Should nodes have multiple packets to send, they increase the duty cycle and

prolong TX slots. Next nodes towards the sink increase their duty cycle too. In this

way, DMAC adapts the duty cycle to the network load.

Clearly, DMAC must align wake-up times between neighbors to compensate clock

drift. However, the wake-up slot alignment is not a part of DMAC, since it applies

an existing time synchronization protocol.

Flexible Power Scheduling

Flexible power scheduling [19] (FPS) introduces two-level scheduling: coarse-grain

and �ne-grain. The former is applied to the network layer to plan radio on/o� times.

The latter controls the channel access on the MAC layer.

FPS creates a schedule tree rooted at the sink according to nodes demands, i.e.,
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data waiting for transmission. FPS spreads the schedule without a global control

and without a network-wide initialization phase.

Although the coarse-grain schedule reduces contention, it cannot guarantee the

medium is contention free. Thus, FPS needs an underlying MAC layer to handle

channel access.

Twinkle

Twinkle [18] improves the Flexible Power Scheduling [19] and introduces partial �ows,

i.e., they end at any node and not at the root only as in FPS. Thus, Twinkle is not

limited to the tree topology and supports a wider range of applications.

Dozer

Figure 2.2.8: Dozer: parents send periodically beacons (B) to children in order to
synchronize clocks; parents �x upload slots from children; in this ex-
ample, the parent receives messages (D) from two children and sends
acknowledgments (A)

Dozer [9], presented in Figure 2.2.8, is a low duty cycle protocol aimed at the

communication from many sensor nodes to a sink. Dozer maintains a forwarding

tree rooted at the sink. Each node plays two roles: a parent and a child. Parents

periodically send beacons, and children wake up to receive beacons. On beacon

reception, nodes synchronize wake-up with the parent and estimate the next beacon

time. To compensate clock drift, child nodes wake up earlier by a guard time than

the expected beacon time. To estimate guard times, nodes consider worst-case drift.
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Beacons are mainly used for two purposes. They compensate clock drift and allow

new children to join the network. In the latter case, after sending a beacon, each

parent listens shortly for connection requests from new children.

Collisions may arise between nodes, if their schedules overlap. Therefore, parents

extend the beacon period by a randomly chosen amount of time. The children must

be aware of that random time, or they miss beacons otherwise. As the seed value

of the random number generator is included in each beacon, parents and children

estimate the same random number.

STEM

Figure 2.2.9: Receivers with STEM wake up every T period to get wake-up signals,
beacons or busy tone

In STEM (Sparse Topology and Energy Management) [44] nodes wake up period-

ically after T time to receive potential wake-up signals (of Trx length) from senders

(see Figure 2.2.9). Because of T � Trx STEM results in a low duty cycle and reduces

idle listening.

If a source node wishes to send data to a destination (a neighbor), it sends contin-

uously beacons to wake up the neighbor. In the worst case, the source sends beacons

over a period T . On receiving a beacon, the destination sends back an acknowledg-

ment, keeps its transceiver in the receive state, and the source sends data.

Nodes with STEM use radios with two frequency bands: one for wake-up signals

(beacons) and another for data transmission. If the transmitter allow busy tones,

source nodes use them instead of beacons.

Preamble Sampling

The Preamble Sampling[12, 13] technique resembles STEM [44] but applies neither

beacons nor busy tones. Figure 2.2.10 presents the solution to rendezvous of Pream-

ble Sampling. Sources send preambles of size Tp in the front of every message. Since

nodes wake up every Tp time, they detect the preamble transmission and keep on
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listening. Sources send data after the preamble and wait for acknowledgments from

receivers.

Figure 2.2.10: In Preamble Sampling nodes send a long preamble in front of every
message; receivers check the channel periodically and stay awake on
preamble detection

B-MAC

Berkeley Media Access Control (B-MAC) [37] resembles Preamble Sampling [12, 13]

but addresses di�erent radio characteristics. B-MAC duty cycles the radio through

periodic channel sampling, referred to as Low Power Listening (LPL). Each time

the node wakes up, it turns on the radio and checks for transmissions. If the node

detected a transmission, it stays awake for the time needed to receive the incoming

packet. After reception, the node returns to sleep. If no packet is received, a time-out

forces the node back to sleep.

The activity detection, i.e., channel assessment (CCA), is critical to achieve low

power. Because of false positives of CCA, a node keeps its transceiver to get potential

frames, but it receives nothing, causing idle listening. Thus, B-MAC uses the noise

�oor estimation for both �nding a clear channel on transmission and for discovering

if the channel is active during LPL.

WiseMAC

Wireless Sensor MAC (WiseMAC) [14] extends Preamble Sampling [12, 13] for infras-

tructure networks. Such a network consists of access points with unlimited energy

and of sensor nodes. Access points learn the sampling schedule of all nodes and start

transmissions just at the right time with a wake-up preamble of minimized length

Tp (see Figure 2.2.11). The preamble length must be long enough to compensate

drift between access points and sensor nodes. Such a preamble is generally much

shorter than the sampling period duration used in the Preamble Sampling (TW in
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Figure 2.2.11: WiseMAC reduces the preamble length of the Preamble Sampling so-
lution by learning nodes schedules; WiseMAC sends data just before
receivers wake up, the preamble is long enough to compensate drift

Figure 2.2.11). In this way, WiseMAC shortens the preamble, reduces idle listening

and saves energy.

TICER and RICER

TICER (Transmitter Initiated CyclEd Receiver) and RICER (Receiver Initiated Cy-

clEd Receiver) [26] belong to the group of pseudo-asynchronous rendezvous schemes.

The following paragraphs introduce both solutions.

TICER

Figure 2.2.12: TICER resembles STEM and Preamble Sampling; sources send peri-
odically wake up frames to synchronize with receivers
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TICER resembles STEM [44] and Preamble Sampling [12, 13], as nodes mostly

sleep and check periodically for wake-up signals.

Before sending data a source synchronizes with a destination (receiver) by sending

Request-to-Send (RTS) frames in a sequence (see Figure 2.2.12). Such frequent

sending of RTS may disturb other data transmissions. To solve this problem, the

source node checks the channel for duration of Ton before sending RTS signals. If

the channel is idle, the source sends RTS to the receiver. Then, the source listens

for a time Tl to receive CTS (Clear to Send) responses.

On waking up, the receiver immediately gets an RTS frame and responds with a

CTS signal (see Figure 2.2.12). On receiving the CTS signal, the source node sends

the data packet. After correctly receiving the data packet, the destination node ends

the session by sending an acknowledgment (ACK) signal to the source.

RICER

Figure 2.2.13: In RICER receivers carry the synchronization burden by sending wake-
up beacons periodically

In RICER receivers synchronize wake-up times with sources by periodically sending

wake-up beacons Tb (see Figure 2.2.13). A source node wanting to send data checks

the channel for wake-up beacons from the receiver. On beacon reception, the source

sends the data packet. The session ends with the ACK signal from the receiver to

the source node.

Koala

Koala [34] addresses low duty cycle applications (less than 0.1 %) and introduces

rendezvous based on the on the Low Power Probing (LPP). Figure 2.2.14 presents
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Koala and compares it with the Lower Power Listening (LPL) of B-MAC [37] or

TICER [26].

LPP resembles RICER [26], as receivers periodically send short probe messages.

Nodes wishing to send data listen continuously for probe messages. On probe message

reception, a source sends an acknowledgment and data to the receiver.

Apart from MAC, Koala also considers data distribution. It introduces a simple

routing protocol: the gateway collects neighbor-data from all nodes, calculates the

routes and spreads them to the network.

Figure 2.2.14: Koala uses Low Power Probing (LPP), which resembles RICER:
senders wait for probe messages from receivers and send data after-
wards; Low Power Listening (LPL) is the opposite: senders transmit
probe packets

2.3 Quality of Service in This Thesis

2.3.1 Overview

The term Quality of Service (QoS) refers to a group of mechanisms that guarantee a

certain performance. For example, some approaches guarantee speci�c transmission

reliability expressed in a packet reception rate. Streaming multimedia services often

need delays limited to a certain threshold. Some sensor network applications also

need QoS guarantee.

A sensor network should provide an accurate view of monitored events. In the

best case, nodes should detect all events and provide accurate sensor readings to a

sink, referred to as detection reliability in ref. [22]. Any failure in event detection

or false sensor reading violate QoS guarantee. However, there are several reasons
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for violating QoS. For example, if sensors do not cover certain locations, they will

miss some events. Besides, hardware problems with sensors result in false readings.

Similarly, any network problems, like congestion or a high packet error rate, cause

packet losses, and the sink may miss notices about events.

QoS of sensor networks di�ers from QoS of traditional networks. Usually, several

sensor nodes watch a certain location, resulting in information redundancy. Obvi-

ously, when several sensors send notice about the same event to the sink, there is a

higher chance the sink receives at least one frame. In addition, when several sensor

nodes watch the same area, they can early detect false readings, for instance, by

comparison of sensor readings. In this way, they can improve the quality of sensor

readings and achieve information accuracy.

This work considers the following QoS aspects. Should nodes detect an event,

they must inform the sink about it within a certain time. Several applications, e.g.,

critical infrastructure protection, need exactly such QoS requirements. For example,

if sensor networks check factory facilities for gas leakage, they must inform the sink

within a few seconds after detection to reduce the explosion danger. Such QoS

requirements involve also remedies to unreliable wireless communication, as the sink

must not miss event notices.

2.3.2 Reliable Data Transfer

Wireless communication su�ers from various problems that a�ect reliability of data

transfer, for instance, re�ection, di�raction, path loss, attenuation, collisions [40].

Thus, sensor nodes may su�er from high bit error rates (BERs). Wireless nodes do

not receive frames correctly mainly because of the following problems:

1. On getting the preamble, receivers failed to synchronize with the sender. Thus,

they cannot receive frames correctly.

2. The frame exhibit bit errors, i.e., the header or payload checksum is incorrect

and the frame is discarded.

Congestion

Apart from bit errors, nodes discards also frames because of congestion. In this case,

nodes receive frames correctly, but they do not have enough free space in the RX

bu�er. As nodes cannot store frames, they discard them. Many research e�orts

addressed the problem of congestion in sensor networks. For example, Event-to-Sink

Reliable Transport (ESRT) [41] detects congestion in the network and adjusts the

reporting rate of sensors. COngestion Detection and Avoidance (CODA) [52] detects
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congestion additionally through the past and the present channel load. CODA esti-

mates the channel load by sampling it or creating a histogram of received packets.

On congestion, nodes broadcast messages towards the sources to alter their sending

rates. The congestion problem, however, is not addressed in this work mainly be-

cause of the nature of CIP applications. In such scenarios, nodes rarely send data to

the sink, and the congestion risk is low. Clearly, several nodes can detect the same

event, transmit data towards the sink and pose a congestion risk. However, since the

data size is rather small, there should not be congestion problems. Besides, inter-

mediate nodes should discover they received data about the same event and discard

redundant frames.

Remedies to Bit Errors

The common remedies to bit errors include:

� Retransmissions

Senders expects a response from receivers, i.e., whether a frame was correctly

received. Should they get a negative acknowledgment or no response, senders

transmit the frame again. This group of solutions is dubbed as Automatic

Repeat reQuest (ARQ) [28, 27].

� Redundancy in frames

Senders accept a block of user data and add redundancy to it. Then, they

transmit frames with redundancy but do not expect any response from re-

ceivers. Owing to redundancy, receivers are able to repair some bit errors.

This technique is often referred to as Forward Error Correction (FEC) [27, 28].

The ARQ protocol can be applied either on a hop-by-hop or end-to-end basis. In the

�rst case, ARQ is implemented in the Data Link Layer, and each intermediate node

uses acknowledgments and retransmissions. With the end-to-end technique, nodes

implement ARQ usually in the Transport Layer, and only sources and destination

apply it. That is, source nodes expect ACKs from destination nodes, which are

usually located a few hops away. In this case, intermediate nodes on multi-hop paths

do not check if the next node receives frames correctly. Clearly, in multi-hop networks

with unreliable links the end-to-end approach may not recover from packet losses.

Ref. [2] evaluates link layer and end-to-end retransmissions in sensor networks: even

in small networks (a few hops only) hop-by-hop outperforms end-to-end. According

to ref. [22], link layer retransmissions keep energy costs within reasonable bounds

whereas costs for end-to-end approach explode from a certain threshold of the bit
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error rate. Therefore, this work examines the ARQ protocol at the Data Link Layer

and neglects end-to-end solutions.

Some works examined the problem of packet loss in WSN. In [54] the authors

present the empirical RX rate results of nodes using CSMA/CA together with link-

layer retransmissions. They considered various tra�c loads, from 0.5 frames per

second (fps) to approx. 4 fps. The authors present a very pessimistic view of com-

munication in sensor networks. For example, more than 35% of the links exhibit

50% PER and more. Moreover, in such scenarios, ARQ at the link layer does not

only improve the RX rate considerably (nearly 50% of links had an RX rate of only

70% at the load 1 fps), but also consumes plenty of energy: anywhere between half

and 80% of the communication energy is wasted on repairing lost transmissions.

However, ref. [24] and experiments presented in this work show that the RX rate

is not as pessimistic as in [54]. According to [24] link-level retransmissions handle

approx. 99% of errors. To achieve the remaining 1% nodes should use additional

techniques, like erasure codes - a generalization of FEC. Since ARQ recovers from

many more packet errors than FEC, the latter is not considered in this work.

Multiple Paths

Another way to provide reliable data transfer over unreliable link is sending data over

several paths. In this case, source nodes send the same frames to the destination

over di�erent paths. In this way, the destination should receive frames even when

some links su�er from connection problems. Nonetheless, although such an approach

can provide reliable data transfer, it is not considered in this work, which addresses

mainly solutions at the Data Link Layer.

Collisions

Some bit errors in wireless networks stem from collisions. Should two or more nodes

transmit frames at the same time, receivers get corrupted data. As previously men-

tioned, even in applications with a low duty cycle there is a risk of collisions, as

many source nodes detect the same event and try to send data towards the sink. To

tackle the collision problem, nodes use various remedies. For example, CSMA/CA

(Carrier Sense Multiple Access With Collision Avoidance) reduces the collision risk,

as nodes postpone transmissions, if the channel is busy. RTS/CTS (Request to Send

/ Clear to Send) approach based on the MACAW [1] protocol avoids collisions by

sending RTS frame before transmission of user data. In this case, the destination

replies with a CTS frame, and the source gains permission to send frames. Other

nodes receive the CTS frame as well, and postpone transmissions. Since nodes in
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CIP scenarios usually send one or a few frames only, the RTS/CTS approach results

in a signi�cant overhead and will not provide notable bene�ts. Therefore, it is not

examined in this work.
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This work addresses sensor network applications that run several years with non-

rechargeable batteries. Besides, nodes support certain QoS features, i.e., after event

detection they deliver a notice to the sink within a prede�ned time. Such needs stem

mainly from scenarios of critical infrastructure protection. For example, sensor nodes

check for gas leakage in factories and notify the sink about it within a few seconds

to prevent explosion danger. In addition, similar features must be supported in

surveillance applications. For instance, when nodes detect a movable object, they

inform the base station in a short time.

The need of a long lifetime with fast and reliable data transfer poses di�cult

challenges to sensor networks. This chapter introduces the main challenges and

brie�y introduces solutions to them. The rest of this work explains the solutions

presented here in detail and evaluates them.

3.1 Tradeo�: Lifetime vs. End-to-End Delays

On the one hand, nodes reduce the duty cycle and mostly sleep to achieve long

lifetimes. On the other hand, they need to wake up often in order to take part

in potential data transfer and support short end-to-end delays. Clearly, there is a

tradeo� between these two goals, i.e., short delays and long lifetimes.

To preserve energy, sensor nodes monitor the covered area periodically, i.e., they

keep sensors switched o� for a long time. Clearly, it may result in a large event

detection time (EDT), if an event occurs when all sensors are powered down. Ref.

[10] examines various schedule approaches of sensors that cover the same sensing

area in order to minimize the average EDT. However, the duty cycle of sensors is

not addressed in this work.

The previous chapter introduced two main groups of protocols that support low

duty cycles (LDCs): pseudo-asynchronous and synchronous. The �rst ones apply

either long preambles or wake-up beacons in front of transmitted data. They are

referred to as Preamble Sampling. Synchronous protocols, dubbed TDMA here,

maintain a wake-up schedule and in this way synchronize active times of nodes.
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Owing to long sleep periods they support low duty cycles. The following paragraphs

explain how both protocol groups support short end-to-end delays.

3.1.1 Preamble Sampling

The following protocols belong to the Preamble Sampling group: B-MAC, TICER,

STEM, and WiseMAC. They were introduced previously in Chapter 2.

With Preamble Sampling, nodes wake up periodically to listen for potential trans-

missions (see Figure 3.1.1). Nodes send a long preamble or many short frames in

front of data. In the worst case, the preamble length equals the sleep period of

receivers. After getting the preamble, the receiver stays awake and gets the data

frame.

Figure 3.1.1: Preamble sampling (cycled receiver) results in signi�cant end-to-end
delays, since each intermediate node waits on average a half of the
sleep period before sending data to the next node

Although these protocols were not designed to primarily support short end-to-end

delays, they reduce delays by adapting the sleep period. In this case, end-to-end

delays dEtE consist of single forwarding delays along the path:

dEtE =
n∑
i=i

(tn + tframe)

where tn is the forwarding delay on node i and tframe the frame length. As the

average forwarding delay equals the half of the sleep period Tsleep, which is the
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worst-case preamble length, the average end-to-end delay of n-hop path is estimated

as:

dEtE = n · (
Tsleep

2
+ tframe)

3.1.2 Duty-Cycled TDMA

Nodes support a long lifetime by applying TDMA protocols with a low duty cycle.

Such protocols keep nodes mostly in the sleep state. If source nodes detect events,

they cannot send data immediately to the next node. They wait until the next node

is awake before forwarding frames (see Figure 3.1.2). Similarly, each node on the

path to the sink waits until the next node wakes up.

To support short end-to-end delays, nodes wake up often to take part in potential

transmissions, like in Preamble Sampling. End-to-end delays dEtE depends on the

sleep period Tsleep and equal on average:

dEtE = n · (
Tsleep

2
+ tframe)

where n is the number of hops to the sink, and tframe is the frame length. Therefore,

to support certain end-to-end delays, nodes adapt the sleep period in the following

way:

Tsleep =
dEtE
n
− tframe

Figure 3.1.4 shows sleep periods needed to achieve certain end-to-end delays.

Nodes wake up after the period equal to the supported delay divided by the num-

ber of hops. That is, to support 5-second delays in 2-hop networks, nodes wake up

every 2.5 seconds. Consequently, in larger networks, nodes wake up more often to

support the same delay. For instance, in 10-hop networks, nodes wake up every half

a second to support delays of 5 seconds. Thus, if nodes apply LDC protocols but

keep end-to-end delays short, they increase the duty cycle and shorten the lifetime

signi�cantly, especially in large networks.

Several protocols, e.g., DMAC [29] and Q-MAC [50] improved the TDMA solution

and introduced the staggered schedule (see Figure 3.1.3). It resembles the common

practice of synchronizing tra�c lights to turn green (wake up) just in time of the

arrival of cars, i.e., packets, from previous intersections (hops). Nodes on the path

arrange slots in a way that TX slots follow almost immediately RX slots. In that way,

nodes forward messages just after the reception and keep the forwarding delay short.

Therefore, the number of hops only slightly in�uences end-to-end delays. Obviously,
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Figure 3.1.2: By applying low duty cycle protocols based on TDMA, nodes mostly
sleep and cannot forward data immediately but wait until the next node
is awake. It causes signi�cant end-to-end delays

Figure 3.1.3: Nodes with the staggered (aligned) schedule forward frames just after
reception and reduce end-to-end delays

the shorter the needed end-to-end delay is, the more often nodes have to wake up to

take part in potential data transmissions.

Only the source node waits a long time for the next node to wake up (see Fig-

ure 3.1.3). Average end-to-end delays equals to:

dEtE =
Tsleep

2
+ tframe + (n− 1) · (tframe + toffset) (3.1.1)

where toffset is the time between the RX slot and the corresponding TX slot on each
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Figure 3.1.4: To support short end-to-end delays nodes with common low duty cycle
(LDC) protocols (Preamble Sampling, TDMA) wake up often, espe-
cially when the distance between sources and the sink is long
DMAC introduces the staggered schedule and lowers the duty cycle,
i.e., nodes wake up more rarely than in common LDC protocols to sup-
port short delays; besides, with DMAC the distance to the sink only
slightly impacts the duty cycle

node. If the sink does not apply a wake-up schedule, as it is in Figure 3.1.3, the

number of hops n is reduced by 2 in Eq. 3.1.1.

Nodes adapt the sleep period Tsleep to support certain end-to-end delays dEtE :

Tsleep = dEtE − tframe − (n− 1) · (tframe + toffset) (3.1.2)

Figure 3.1.4 compares the duty cycle, i.e., the sleep period, of the staggered sched-

ule and of common LDC protocols: Preamble Sampling and TDMA. As previously

mentioned, the distance between sources and the sink only slightly a�ects the duty

cycle of the staggered schedule. For example, to support 5-second delays, nodes

wake up 4.9 seconds in 2-hop networks. Should the path to the sink be 10-hop long,

nodes wake up every 4.5 seconds. As expected, the staggered schedule outperforms

common LDC protocols in such scenarios, especially in large networks. With 10-hop

distance to the sink it reduces the duty cycle about 10x.

3.1.3 Evaluation and Protocol Selection

Table 3.1 summarizes the main bene�ts and drawbacks of the solutions that reduce

end-to-end delays and provide long lifetimes of sensor nodes. That is, it includes

protocols based on Preamble Sampling and on a schedule: a generic TDMA schedule

and the staggered schedule.

The main advantage of protocols based on Preamble Sampling stems from their
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Table 3.1: Main bene�ts and drawbacks of solutions that reduce short end-to-end
delays at the Data Link Layer

Preamble sampling TDMA Staggered schedule

Bene�ts

Small code size

Not a�ected by clock
drift

Solves the collision
problem

Reasonable wake-up
frequency even in
multi-hop networks and
short end-to-end delays

Solves the collision
problem

Drawbacks

Signi�cant energy
consumption on senders
because of long
preambles

Collision problem

Frequent wake-ups to
support short delays
(idle listening)

Clock drift problem

Large code size

Frequent wake-ups to
support short delays
(idle listening)

Idle listening because of
a long time (a few ms)
during wake-ups

Clock drift problem

Large code size

Idle listening because of
a long time (a few ms)
during wake-ups

simplicity. First, the tiny code size �ts into the memory of sensor nodes. For example,

B-MAC needs only 4 kB of ROM (Read Only Memory). Second, these protocols

do not su�er from the clock drift problem, as they solve it implicitly with long

preambles. On the contrary, schedule-based solutions must deal with the clock drift

problem. First, it results in idle listening, since nodes wake up earlier than expected

transmissions. Second, nodes need extra software to deal with this problem. Besides,

schedule-based approaches set up and maintain wake-up schedules. Clearly, it also

increases the total software size. Therefore, schedule-based protocols need more

memory than the ones based on Preamble Sampling.

Nodes with Preamble Sampling and generic TDMA approaches wake up frequently

to support short delays in multi-hop networks. Clearly, it results in excessive idle

listening. However, nodes with Preamble Sampling wake up only for a time needed
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to detect ongoing transmissions. For instance, since B-MAC adapts the preamble, it

needs about 350 µs to detect transmissions. As only a few hardware platforms allow

changes in the preamble, most protocols need longer times. They wait a time needed

to receive a frame.

As previously introduced, nodes with the staggered schedule wake-up more rarely

than other solutions and consequently reduce idle listening. However, all TDMA

protocols su�er from idle listening when supporting end-to-end delays, as nodes

need a signi�cant time to detect idle channel. Nodes wait a time needed to receive

a frame before powering down the radio. It may take even 12 ms, as presented in

Chapter 5.

Preamble Sampling causes senders to waste plenty of energy because of transmis-

sions of long preambles in front of each frame. Such preambles are few times longer

than data frames. Besides, in some applications (e.g., Critical Infrastructure Protec-

tion) many sources detect the same event and send data towards the sink. In this

case, long preamble poses a high collision risk, since many nodes try to transmit at

the same time. Schedule-based solutions, however, do not su�er from the collision

problems, as each node sends data during its timeslots only, and slots of neighbors

do not overlap.

Since Preamble Sampling protocols pose a high risk of collisions in CIP applica-

tions, they are not considered in this work. Although they provide many bene�ts,

mainly small code size and reasonable lifetimes (see Chapter 7), they may not support

reliable communication because of collisions. This work applies also the staggered

schedule, since it avoids collisions and does not involve frequent wake-ups when sup-

porting short delays in multi-hop networks. Nonetheless, the staggered schedule

su�ers from various idle-listening problems, which signi�cantly shorter the lifetime

of nodes. The main goal of this work is to examine these drawbacks and provide

e�cient solutions.

3.2 Idle Listening of Staggered Schedule

This work applies the staggered schedule to support short end-to-end delays and long

lifetimes of nodes in multi-hop networks. This section introduces main drawbacks of

the staggered schedule.

With TDMA-like protocols, nodes on multi-hop paths to the sink wake up peri-

odically to receive potential data (see Figure 3.2.1). As stated before, the wake-up

period of nodes with the staggered schedule equals the supported end-to-end delay

(see Eq. 3.1.2). In common applications, nodes rarely detect events and send data
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Figure 3.2.1: To support end-to-end delays, each node on a path to the sink wakes
up periodically and listens for potential transmissions

to the sink. However, as nodes are not aware when events occur, they keep waking

up periodically, even when no data is transmitted. In such cases, nodes wake up to

receive data, but no frame arrives. Such slots are referred to as passive slots. When

sources detect events, they send notices to the sink along the path. Intermediate

nodes receive and send such frames in active slots.

Frequent wake-ups result in excessive idle listening, as nodes waste energy in pas-

sive slots. Clearly, nodes cannot reduce idle listening by applying longer wake-up

periods, as it would result in too long end-to-end delays (see Eq. 3.1.2). Common

solutions result in unnecessary long idle listening of active and passive slots. Thus,

there is still a room for optimization of single wake-up times. That is, nodes can

apply shorter active and passive slots.

Figure 3.2.2 presents a typical RX slot of scheduled MAC protocols. First, nodes

listen for the guard time to compensate clock drift. Then, they receive a preamble

and detect the Start Frame Delimiter (SFD). The frame follows the SFD and is

stored in the RX bu�er. After that, the transceiver triggers the microcontroller (µC)

to handle the received frame by raising the RX interrupt. The µC gets the frame

from the RX bu�er and reads the contents. Should no frame follow the one just

received, the µC powers down the transceiver. Figure 3.2.2 shows also idle listening

of both active and passive slots, explained in the following paragraphs.

Long Guard Times

Sensor nodes derive time usually from crystal oscillators, which have certain pre-

cision δ, expressed in parts per million (ppm), according to the crystal cut. That
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Figure 3.2.2: Idle listening of the staggered schedule in active and passive slots; du-
ration of each phase is based on Tmote Sky nodes

is, such oscillators provide the system time that di�ers from the perfect clock by δ.

Therefore, in the worst case, clocks of two sensor nodes move apart by 2δ. Mainly

changes of temperature and air pressure cause short-term drift variations.

Figure 3.2.3: To compensate clock drift, receivers wake up earlier by guard times

Each scheduled MAC protocol su�ers from the drift problem illustrated in Fig-

ure 3.2.3. According to the schedule, receivers wake up at speci�c times to get data

from neighbors. However, as clocks of senders and receivers may run at di�erent

speeds, referred to as clock drift, there is a risk that receivers wake up too late and

39



3 Problem Statement and Solutions

miss frames. To solve this problem, they wake up earlier by guard times and com-

pensate drift in this way. Clearly, as guard times result in extra idle listening, nodes

should keep them short. However, short guard times may not compensate drift, and

nodes miss some frames. A common solution estimates guard times for worst-case

drift. For example, with a sleep period of 1 minute, Tmote Sky nodes use guard

times of 2.4 ms. Such long guard times are about as long as the time needed to

send a frame. Clearly, it causes long idle listening and wastes energy. This problem

a�ects active and passive slots of the staggered schedule (see Figure 3.2.2). If nodes

apply shorter guard times, they reduce idle listening of both slot types, save energy

and prolong the lifetime.

Idle Listening of Passive Slots

As already mentioned, nodes must wake-up periodically to check for potential trans-

missions and therefore cannot avoid passive slots. Nodes usually detect passive slots

indirectly, i.e., they wait the normal time it takes to receive frames (see Figure 3.2.2).

However, the time needed to receive a single frame and deliver it to the application

is even 14 ms on the Tmote Sky node (see Chapter 5). In other words, nodes wait

such a long time in passive slots before powering down the transceiver. It results in

excessive idle listening, wastes energy and shortens the lifetime. Besides, in common

scenarios there are many more passive than active slots. Thus, the passive slots con-

sume a huge amount of energy, even more than 50% of the total energy (see DMAC

results in Chapter 7). It shows that nodes can reduce idle listening and prolong the

lifetime, if they early detect passive slots and power down the transceiver.

Idle Listening of Active Slots

In active slots idle listening stems from guard times and the time needed to detect

that no frame follows the one just received (see Figure 3.2.2). For instance, protocol

headers may contain information about following frames. Thus, MAC protocols get

frames from the RX bu�er, read headers and decide whether it can power down the

transceiver. However, as reading data from the RX bu�er can take even a few ms (see

Chapter 5), it results in signi�cant idle listening. Nonetheless, it only slightly a�ects

energy consumption, as there are only a few active slots in common applications.

Impact on Lifetime

This paragraph introduces an example application to illustrate the impact of idle

listening on the lifetime of sensor nodes. In this scenario, Tmote Sky nodes monitor
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an environment, for example, intrusion detection in a security area or a gas leakage

risk in a factory. On event detection, nodes must notify the sink within 5 seconds by

sending a notice over multi-hop paths. They apply the staggered schedule and wake

up about every �ve seconds (see Eq. 3.1.2). Clearly, the amount of transmitted data

a�ects energy consumption and depends on the event frequency. This evaluation

considers three scenarios that di�er in the average event period: 1 minute, 1 hour,

and 12 hours. To counter the clock drift problem, nodes synchronize wake-up times

every 60 seconds and apply guard times. This evaluation considers the slot length

of 11 ms (see Figure 3.2.2). The time to get the frame from the RX bu�er (RX

interrupt handling) was obtained empirically (see Chapter 5).
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Figure 3.2.4 presents the idle-listening time Tidle of both active and passive slots

in this application. Besides, it also shows the total reception time Trx, i.e., the time

that each node needs to receive data frames. As there are more passive slots in

all scenarios and such slots are the main reason for idle listening, Tidle is always

signi�cantly longer than Trx. In the worst case, nodes send data every 12 hours, and

the number of passive slots is about 8000 larger than of active ones. Therefore, Tidle
is longer by four orders of magnitude than Trx, i.e., 189.45 s and 0.01 s respectively.

There are only minor di�erences in the total idle-listening time among all scenarios,

and Tidle is always longer than 180 seconds. This small variation stems from the

di�erent number of active and passive slots in all scenarios. That is, the number of

passive slots is higher in scenarios with rare events, since nodes rarely send data.

As passive slots cause more idle listening than active ones (see Figure 3.2.2), Tidle is

longer in scenarios with rare events. Nonetheless, the total energy wasted because

of idle listening is similar in all cases, i.e., from 1.12 mAh in a day to 1.16 mAh.
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According to the lifetime model introduced in Chapter 7, nodes need about 0.5 mAh

a day for other activities in similar scenarios1. Thus, nodes waste about 2
3 of the

total energy in idle listening caused by frequent wake-ups. Clearly, it shortens the

lifetime of sensor nodes signi�cantly.

These observations show clearly that the reduction of idle listening is crucial to

achieve longer lifetimes in applications that support short end-to-end delays. As idle

listening wastes about 2
3 of the total energy, even small improvements can signi�-

cantly prolong the lifetime.

3.3 Link-Layer Reliability

By applying hop-by-hop solutions to communication reliability, nodes reduce the risk

of frame loss in the wireless channel. This paragraph brie�y presents CSMA/CA

(Carrier Sense Multiple Access / Collision Avoidance) and ARQ (Automatic Repeat

reQuest) approaches, and their impact on the energy consumption and lifetime.

CSMA/CA

Several MAC protocols, e.g., IEEE 802.15.4 [20], apply CSMA/CA to deal with

collisions. In short, each sender performs the following steps:

1. The node tests, if the channel is free (Carrier Sense).

2. If the channel is free, the node sends the frame after a random time (the lower

and upper bounds of the wait time depend on the protocol).

3. Otherwise (channel is busy) the node waits a back-o� time (BOT), which is

a random value within the prede�ned bounds and checks the channel again

(step 1). For example, the BOT can be longer than 100 ms in IEEE 802.15.4.

Receivers do not know the current BOT estimated by the sender. Therefore, espe-

cially in scheduled MAC protocols, like the staggered schedule of DMAC, they must

listen for potential transmissions during the BOT and cause idle listening.

ARQ

Nodes with the ARQ approach send back an acknowledgment (ACK) on frame re-

ception. If senders do not receive an ACK in a prede�ned time, they assume the

frame was lost and repeat the transmission. Another version of ARQ uses negative

1The energy wasted because of self-discharge of batteries is neglected here.
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acknowledgments (NACK) instead of ACKs. In this case, receivers detect a frame

loss in a packet stream and send NACK to senders. To detect a missing frame,

senders include consecutive sequence numbers in each frame transmitted. Receivers

detect a frame loss on a missing number.

Idle-Listening with Staggered Schedule

To transfer data reliably to the sink, nodes should apply CSMA/CA and ARQ solu-

tions. However, it results in an extra overhead and increases the energy consumption.

The main reason for the extra overhead is idle listening caused by both approaches:

Figure 3.3.1: CSMA/CA and ARQ increase the idle-listening time; with CSMA/CA
receivers waits additional back-o� time; with ARQ receivers listen dur-
ing potential retries

� Receivers with CSMA/CA cannot �nd out during the listen state whether

senders do not intend to send data, or they wait BOT before starting a trans-

mission (see Figure 3.3.1). Therefore, CSMA/CA prolongs the idle-listening

time of passive slots by the worst-case BOT, i.e., the longest BOT multiplied

by the highest number of back-o� tries.

� ARQ results in longer idle listening in passive slots as well. Receivers in the

listen state cannot �nd out whether a frame was lost, or senders did not send

anything. Thus, receivers listen the time needed to get all retries (see Fig-

ure 3.3.1). It increases idle listening of passive slots signi�cantly. Besides,

nodes consume extra energy for sending acknowledgments and retries.
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3.4 Solutions

This section brie�y introduces solutions, explained in detail later in this work, that

support short end-to-end delays and reliable link-layer communication in long-living

applications. Figure 3.4.1 pictures the solutions in the Open Systems Interconnection

(OSI) model.

Figure 3.4.1: Solutions to the problem of long lifetime with short end-to-end delays
introduced this work

Solutions implemented on many OSI layers in�uence the lifetime of nodes. PHY

speci�es the technology used for transmissions, e.g., carrier frequency and modula-

tion, which obviously a�ects energy consumption. Many approaches of the Medium

Access Control (MAC), a sublayer of the Data Link layer, support low duty cycles

and prolong the lifetime, as presented previously. The Network layer decides which

paths are used for transmissions. For example, to save energy, it can select paths

that consume least energy. Nonetheless, e�ective remedies for long lifetimes of nodes

and short end-to-end delays lie in proper wake-up times (see the staggered schedules

introduced previously). Therefore, this work addresses mainly the Data Link layer

and does not consider solutions at other OSI layers.

There are two major protocol groups that support long lifetimes of nodes and short

end-to-end delays, that is, Preamble Sampling and TDMA. This work applies the

latter approach and provides solutions that reduce idle listening of TDMA. Although

Preamble Sampling is not examined in this work, Chapter 7 evaluates it against the

solutions presented here.
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To support long lifetimes of sensor nodes, this work introduces a distributed low

duty cycle MAC (DLDC-MAC) protocol. As DLDC-MAC does not provide short

end-to-end delays, this work applies also LETED (Limiting End-to-End Delays),

which is based on the staggered schedule. In short, LETED maintains wake-up

schedules along multi-hop paths from sources to the sink. Therefore, it works to-

gether with routing protocols implemented at the network layer.

As introduced earlier in this chapter, the staggered schedule results in excessive

idle listening in active and passive slots. Therefore, DLDC-MAC and LETED su�er

from common idle-listening problems, which waste plenty of energy and signi�cantly

shorten the lifetime of nodes. This work addresses this problem and introduces

novel solutions that reduce idle listening, mainly at the MAC level (Idle Listening

Reduction in Figure 3.4.1). First, sensor nodes collect drift samples and predict

future drift to neighbors. By doing so, they estimate guard times based on run-time

drift and not on worst-case drift. In this way, nodes use short guard times and reduce

idle listening. Second, some commercial transceivers provide a feature that noti�es

the microcontroller just after they started frame reception, i.e., after receiving the

preamble and discovering the Start Frame Delimiter (SFD) �eld. Since it needs

cooperation with the PHY layer, Figure 3.4.1 places Idle Listening Reduction at the

border between Data Link and PHY layers. This work exploits the SFD-discovery

feature and introduces a solution that early discovers passive slots, powers down the

transceiver and signi�cantly reduces idle listening.

Since this work considers the Data Link layer, it also examines the impact of

reliability mechanisms implemented in this layer on the lifetime: CSMA/CA and

ARQ. The empirical and analytical results show that CSMA/CA causes mainly en-

ergy waste in applications with a low duty cycle but does not increase signi�cantly

the communication quality. On the contrary, nodes with ARQ bene�t from reliable

communication and still work for a long time. However, ARQ achieves such good

results in the lifetime owing to the solution that early detects passive slots.

The following sections explain the above-mentioned solutions to long lifetimes

of nodes, short end-to-end delays and reliable link-layer communication in sensor

networks.

3.4.1 Low Duty Cycle Protocol with Staggered Schedule

This work introduces a distributed low duty cycle MAC (DLDC-MAC) protocol

to support long lifetimes. In short, nodes with DLDC-MAC periodically transmit

beacons and wake up to receive beacons that are sent by neighbors (see Figure 3.4.2).

Obviously, this protocol resembles other TDMA approaches, e.g., S-MAC, Dozer or
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Figure 3.4.2: DLDC-MAC: nodes wake up to send beacons and to receive beacons
from neighbors. Data is included in beacons or sent shortly thereafter

IEEE 802.15.4 in beacon-enabled networks. As none of these protocols provided

all features needed for LDC applications with fast and reliable data transfer, the

DLDC-MAC solution was designed. The main di�erences from other protocols are:

� Dozer is the closest relative of DLDC-MAC, as it uses beacons in a similar

way and supports short active times. However, the main drawback of Dozer is

that it supports only the tree topology. That is, children receive only parent's

beacons. If communication problems on the link to the parent arise, the routing

protocol discovers a new route to the sink. However, as nodes receive parent's

beacon only they do not learn about neighbors, and the routing cannot easily

�nd alternative paths.

� S-MAC reduces duty cycle, but the active periods are still long. First, it does

not provide e�cient way to deal with clock drift. According to ref. [53], it may

use guard times as long as 0.5 second, i.e., longer by two orders of magnitude

than the time needed to send a single frame. Second, S-MAC prolongs the

active period with extra RTS and CTS frames. Third, S-MAC neglects im-

portant TDMA protocol problems, like the overlap problem of two separate

wake-up schedules.

� The IEEE 802.15.4 standard does not allow multi-hop communication with

beacons. It supports multi-hop networks only without beacons.

In addition, DLDC-MAC supports data replication in sensor networks and handles

several TDMA problems. Chapter 4 introduces DLDC-MAC thoroughly and presents

the results of a real-world experiment.
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Figure 3.4.3: DLDC-MAC with LETED provide low duty cycles and short end-to-
end delays

Obviously, if nodes use only DLDC-MAC to support short end-to-end delays, it

will result in often wake-up times and energy waste, as previously introduced in

Section 3.1.2. Thus, apart from DLDC-MAC nodes use an extra staggered schedule

to provide short delays to the sink. Such a schedule is named in this work LETED

(Limiting End-to-End Delays). In this case, nodes wake up to send and to receive

DLDC-MAC beacons and for LETED slots (see Figure 3.4.3).

Nodes use DLDC-MAC to send non-time-critical data, e.g., route discovery frames

or to set up a new LETED schedule. Therefore, DLDC-MAC works with a low duty

cycle and consumes only a fraction of energy. According to the evaluation presented

in Chapter 7, in such a con�guration DLDC-MAC needs the energy amount that

nodes consume in the sleep state. Besides, the DLDC-MAC energy consumption is

less than the self-discharge of batteries.

To support short delays, nodes set up an extra LETED wake-up schedule on paths

towards the sink. However, nodes create such schedules on demand and only on

selected paths. Clearly, if each node sets up a separate wake-up schedule to the sink,

it will result in an excessive overhead. Especially nodes close to the sink wake up

often, as they keep up schedules of several sources. To avoid such risks, nodes limit

the number of schedules. For example, intermediate nodes that maintain schedules

of other sources should use them for transmissions of their own data. However, this
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work does not examine e�cient solutions to set up many wake-up schedules. It is a

part of future research e�orts.

The LETED approach is discussed thoroughly in Chapter 5.

3.4.2 Idle Listening Reduction

In some applications, the staggered schedule wastes even 2
3 of energy on idle listening.

Therefore, this work addresses this problem and provides solutions that signi�cantly

reduce idle listening, save energy and prolong the lifetime. The following paragraphs

shortly introduce the major solutions.

Short Guard Times

As previously mentioned, nodes use guard times to counter the drift problem (see

Figure 3.2.3). Long guard times used to compensate worst-case drift, e.g., in the

Dozer [9] protocol, result in energy waste because of idle listening. Ref. [43] combines

hardware and software solutions to achieve accurate times. In short, sensor nodes

equipped with two oscillators estimate the local time precisely, that is, with frequency

stability of ±1.2 parts per million (ppm). However, the approach needs dedicated

hardware with two oscillators and the calibration of both oscillators. Clearly, such a

solution is not feasible in large-scale networks.

There are also other hardware solutions that address the clock drift problem. For

example, sensor nodes can use oscillators with higher precision and use short guard

times. Such oscillators draw typically too much current or/and are expensive. There-

fore, they are not widely used in sensor networks. However, the Maxim DC32kHz [31]

oscillator �ts well to sensor nodes. It is a temperature-compensated crystal oscilla-

tor (TCXO), that is, it measures periodically the temperature and adjust the crystal

frequency according to it. By doing so, it provides frequency stability of ±2 ppm

and draws only 1 µA current. In this case, nodes need about 0.24 ms guard times to

compensate drift of 1-minute period. Although this TCXO costs only about $3, i.e.,

a few times more than common oscillators used in sensor nodes, it is rarely used in

sensor networks. This TCXO is also a few times larger than common oscillators of

sensor nodes. It might be the main reason why Maxim DC32kHz is not widely used

in sensor networks.

This work introduces only software solutions to the drift problem, since they can

be applied to any hardware platform. Besides, the solution introduced in Chapter 6

results in about 120 µs idle listening for a sleep period of 1-minute. Approaches based

on worst-case drift but with accurate TCXO (Maxim DC32kHz) cause 2x longer idle
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listening. Nonetheless, this TCXO is a good alternative to the software solution,

since it signi�cantly reduces idle listening and does not need extra software.

To deal with the problem of long guard times and idle listening, nodes can apply

time synchronization protocols (TSPs). Should a TSP provide accurate time syn-

chronization between neighbors, they can use guard times shorter than the worst

case. However, TSPs send extra synchronization (SYNC) frames, consume more en-

ergy and shorten the lifetime. Besides, since node must not miss SYNC frames, they

use long guard times in this case. Short guard times are used only with data frames.

Clearly, because of the overhead of SYNC frames, TSPs are not energy-e�cient

means to reduce idle listening in applications with a low duty cycle.

Since clock drift is stable over a short time, nodes can estimate future drift precisely

and use shorter guard times. For example, Rate Adaptive Time Synchronization

(RATS) [16] predicts future drift by applying LR (linear regression). Although it

signi�cantly shortens guard times, it needs an emulation of �oating-point arithmetic

on microcontrollers. When using single precision the truncation error can vary from

±17us to ±17.7ms. When using more accurate, i.e., double-precision operations,

OLS may take even 120ms. Besides, �oating-point module and operations need

extra memory, which is limited on sensor nodes. Thus, these drawbacks limit the

use of linear regression approach on sensor nodes.

Several time synchronization protocols address the drift prediction problem. Al-

though they do not refer to it explicitly, nodes can bene�t from their drift prediction

methods to prolong the lifetime of LDC protocols. Flooding Time Synchronization

Protocol (FTSP) [30] introduces the drift prediction based on LR to increase syn-

chronization accuracy. Symmetric Clock Synchronization [46] estimates the relative

drift to the reference clock with the weighted moving average �lter. The authors

use the drift estimation mainly to increase accuracy of the time synchronization pro-

tocol. It resembles slightly the approach based on the moving average exploited in

this work. However, there are many open issues when adapting the approach [46]

to LDC protocols, mainly how to estimate the length of guard times. Sensor nodes

using Gradient Clock Synchronization [45] protocol repeatedly collect drift samples

from their neighbors. Then, each node updates its logical clock according to the

received drift samples. In that way, all nodes converge into a common clock and can

predict future drift of this clock.

In this work, nodes predict drift by applying the moving average �lter on previous

drift samples. First, they need only a few samples for accurate estimations. Sec-

ond, such prediction works with simple mathematical operations and does not need

�oating point arithmetic. This work shows that such a solution achieves results as
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good as predictions based on linear regression. Therefore, it �ts resource-constrained

sensor networks.

The experiments presented in Chapter 6 revealed that receivers compensate drift

of 98-99% frames with short guard times. To cover drift of all frames, they need

guard times longer than the oscillator worst case, as other factors in�uence drift as

well, e.g., jitters in radio start time.

Both approaches, that is, drift prediction and short guard times needed to com-

pensate drift of most frames, shorten guard times 18x when compared to the solution

based on worst-case drift. Chapter 6 explains the solution to guard times in detail

and provides evaluation results.

Early Detection of Passive Slots

Figure 3.4.4: Owing to early SFD detection, nodes shorten passive slots and save
energy

This work introduces solutions that signi�cantly shorten passive slots. First, they

reduce the guard times by applying solutions presented in the previous paragraph.

Second, nodes detect passive slots early and power down transceiver immediately af-

ter. In this case, they exploit the feature provided by some commercial transceivers,

e.g., ChipCon CC2420. On SFD reception, the transceiver raises the SFD interrupt

on microcontrollers. Thus, should the SFD interrupt not be raised in the expected

time, nodes assume no frame arrives and powers down the transceiver (see Fig-

ure 3.4.4). Thus, nodes shorten passive slots tpassive to:

tpassive = tguard + tpreamble + tSFD + tSFD_detect

where tguard is the guard time, tpreamble and tSFD are the RX times of preamble and

SFD, and tSFD_detect is the time the µC needs to detect SFD reception, i.e., the
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SFD interrupt delay. As nodes need only 100 µs to detect the SFD reception and

use short guard times, they reduce passive slots about 13x. Chapter 5 provides more

details about the solution.

3.4.3 Reliable and E�cient Link-Layer Communication

The solution presented in this work uses the ARQ protocol to deal with unreliable

wireless links. However, nodes apply ARQ to LETED slots only and not for sending

beacons. When nodes send data in LETED slots, they expect an acknowledgment

(ACK) from the receiver. If they do not receive the ACK, they send frames again.

The evaluation of ARQ presented in Chapter 8 revealed that retries only slightly

a�ect the lifetime. For example, ARQ shortens the lifetime by 10% but may improve

the reception rate by 20% and more. Such good lifetime results of ARQ stem from

the solutions that keep passive slots short, introduced in the previous paragraph.

Therefore, although ARQ increases the energy consumption of passive slots four

times, it is still relatively small.

As LETED is a TDMA protocol, it does not su�er from the collision risk. However,

should slot and beacons overlap because of clock drift, LETED does not prevent

collisions in this case. Thus, nodes might use CSMA/CA to reduce the collision risk,

but it results in excessive idle listening. Besides, the real-world experiments revealed

that nodes should not apply CSMA/CA, if they already use ARQ. In this case, the

extra CSMA/CA approach does not signi�cantly increase the reception rate.

Chapter 8 introduces the experiment results of ARQ and CSMA/CA and presents

the impact of both solutions on the lifetime.
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(DLDC-MAC)

Despite many research e�orts in duty-cycled sensor networks there are no protocols

that meet three following needs:

1. Low duty cycle with rendezvous

2. Support for decentralized networks

3. Limited end-to-end delays

This chapter introduces DLDC-MAC protocol, presented in works [3, 6], that meets

�rst two needs and serves as a basis for the last one. Next chapter introduces LETED

approach for limiting end-to-end delays. Only DLDC-MAC coupled with LETED

meet all three needs.

DLDC-MAC resembles other protocols for sensor networks with a low duty cycle.

The closest relative of DLDC-MAC is Dozer [9], as it uses beacons and deals with the

clock drift problem is a similar way. Since Dozer is limited to tree networks rooted

at the sink, it does support decentralized networks. Besides, nodes communicate

with parents and children only but not with all neighbors. Therefore, in case of

connectivity problems, nodes cannot easily discover alternative paths to the sink,

since they are not aware of other neighbors. DLDC-MAC, on the contrary, also

supports decentralized networks, i.e., without a permanent sink. Nodes learn about

all neighbors and can send data to them any time, provided they are not in the sleep

state.

A reliable data storage tinyDSM [36] is an example of decentralized networks.

To provide a fast and reliable access to data stored in sensor networks, tinyDSM

mirrors sensor readings on several nodes. First, tinyDSM ensures that information is

available even if nodes are exhausted. Second, nodes process mirrored data directly

and do not need to ask the data owner. For example, such nodes reply to the sink

immediately, and in this way support a fast access to the information. Owing to

DLDC-MAC, tinyDSM can mirror sensor readings throughout the network and still

achieve good results in lifetime.
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4.1 Protocol Description

4.1.1 Rendezvous with Beacons

DLDC-MAC solves the rendezvous problems, i.e., the synchronization of wake-up

times between senders and receivers, with beacons. Nodes send beacons periodically

and wake up to receive the beacons of neighbors, like in Dozer. All nodes have the

same beacon period. Even when nodes do not have data (e.g., sensor readings) to

send, they still send beacons. Clearly, it results in extra energy overhead. However,

the evaluation presented in Chapter 7 reveals that nodes with DLDC-MAC consume

only a fraction of energy for sending and receiving beacons.

Nodes mostly sleep and wake up only to receive beacons from neighbors and to

send their own beacons (see Figure 4.1.1). In this way, DLDC-MAC synchronizes

wake-up times between neighbors, and nodes can send data throughout the network,

although they mostly sleep. On receiving beacons, nodes estimate the time of the

next beacon by adding the beacon period to the RX time.

Each beacon transmission consists of three phases (see Figure 4.1.2). First, nodes

send a beacon, that is, a single broadcast frame to all neighbors. After that, they

stay in the RX state shortly. During this time, other nodes can send control frames

(e.g., network join, new timeslots). Finally, nodes send awaiting application data to

neighbors.

4.1.2 Beacon Schedule Setup

Figure 4.1.1 presents the schedule setup. After powering on, a node is not aware

of its neighbors and their beacon times. Therefore, the node listens for the whole

beacon period, receives beacons and stores the RX times. Then, the node informs

the neighbors it wishes to join the network. The node sends join-network frames

to each neighbor separately just after they sent their beacons and entered the RX

state (see Figure 4.1.2). If two or more nodes send such frames at the same time, the

receiver does not get any frame because of collision. Therefore, a node that wishes

to join the network sends frames as long as it does not get an acknowledgment from

the neighbor. To tackle the collision problem, it does not send frames on every

neighbor's beacon. Since join-network frames contain the beacon time of the new

node, neighbors learn about new wake-up times to receive beacons.

If nodes miss beacons during the schedule setup, they do not detect some neighbors.

To solve this problem, nodes may repeat the neighbor discovery a few times a day.

However, it results in a signi�cant energy penalty, as evaluated in ref. [3].

Nodes can tackle the above-said problem by collecting the neighbor lists of their

54



4.1 Protocol Description

Figure 4.1.1: Nodes send periodically beacons and stay in the RX state to get po-
tential frames from neighbors
Network join: after powering up, nodes listen the beacon period and
discover neighbors; after that, they send network join commands to the
neighbors

neighbors. By doing so, nodes learn about beacon times in 2-hop neighborhood.

Then, nodes try to receive beacons from any two-hop neighbor. If they receive such

a beacon, they add the corresponding node as a new neighbor.

Nonetheless, this work does not examine the problem of missing beacons during

the neighbor discovery. It is a part of future research e�orts.

4.1.3 Data Transmission

With Beacons

Nodes include in beacons data of upper layers that is not time-critical. The largest

beacon size depends on the underlying physical layer, e.g., 128 bytes for IEEE 802.15.4.

If the data exceeds the largest beacon size, the node sends data in separate frames,

after sending the beacon and �nishing the RX state (see Figure 4.1.2).
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Figure 4.1.2: Single beacon; after sending a beacon, nodes wait a certain time for
incoming frames, e.g., network join frames; if awaiting data (from upper
layers) do not �t into beacons, nodes send it after the receive slot

Extra Time Slots

Sending data with beacons result in data forwarding delays in multi-hop networks, as

nodes cannot forward data immediately after receiving. Nodes wait for their beacon

time to forward data. In the worst case, nodes wait almost the whole beacon period

before forwarding. If the network should support short delays, nodes arrange extra

data slots. Next chapter presents the details of limiting end-to-end delays (LETED).

4.2 Solutions to Wireless Problems and Clock Drift

4.2.1 Clock Drift and Missed Beacons

Because of clock drift, nodes may wake up too soon or too late to receive beacons.

In that case, they miss beacons, and lose wake-up synchronization with neighbors.

To avoid such a risk, nodes compensate clock drift by waking up earlier than the

expected beacon time (see Figure 4.2.1). The waiting time for the beacon is referred

to as a guard time. Chapter 6 introduces main solutions to the guard time estimation

and evaluates their impact on the lifetime.

Sensor nodes calculate guard times for each neighbor separately, according to

clock drift and the last successfully received beacon of this neighbor. If nodes miss

a beacon, they prolong the guard time for the next RX try. Obviously, such an

approach causes a longer idle-listening time and increases the energy consumption.

However, by doing so, the synchronization of wake-up times works even when nodes

miss several beacons, e.g., because of short-term connection problems.
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Figure 4.2.1: Solution to the clock drift problem; each node calculates drift since the
last received beacon (guard time), starts listening for the next beacon
earlier and stays awake longer by the guard time

4.2.2 Asymmetric Links

With asymmetric links, nodes send data to neighbors but do not receive anything.

Ref. [54] empirically evaluates the performance of packet delivery in dense sensor

networks. For example, more than 10% of link pairs have signi�cant asymmetry. By

default, DLDC-MAC ignores links that are permanent asymmetric. However, when

links are asymmetric only temporarily, DLDC-MAC does not discard them. In this

case, it just prolongs guard times in order to receive beacons after the connection

becomes symmetric again.

4.2.3 Link Failures

Nodes detect broken links, when they do not receive several consecutive beacons from

a neighbor. However, after detecting a broken link, nodes do not mark the neighbor

as not-working immediately, since the link may su�er from short-term problems.

For example, this section introduces experiment results with sensor nodes deployed

indoors. Because of a high interference rate with other wireless devices, some links

stopped working for a short time, but were available again afterwards. Therefore,

DLDC-MAC marks such neighbors as not working temporarily. To preserve energy,

nodes stop waking up to receive beacons from such neighbors. After some time, they

try to receive beacons again. If they still do not receive beacons, they assume the

neighbors as permanent not-working. Clearly, after nodes did not receive several
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beacons, they use long guard times to receive beacons again. However, with the drift

prediction approach, presented in Chapter 6, they keep guard times relatively short

in this case.

The number of missed beacons after neighbors are marked as not-working depends

on the scenario, on transmission conditions, etc. This holds also true for the number

of beacon periods that need to pass before trying to reconnect to a temporarily not

working neighbor.

4.2.4 Beacon Overlap Prevention

Because of clock drift, beacons of di�erent nodes move relatively to each other.

Finally, the beacons overlap leading to collisions. To deal with this problem, nodes

monitor times of their own beacon and of neighbors. When the time di�erence

between any two beacons is smaller than a threshold, the a�ected node shifts its

beacon. To prevent frequent beacon changes, nodes �nd the longest unoccupied

period in the beacon schedule of 2-hop neighborhood.

Nodes notify neighbors about beacon shift in advance. Because of unreliable links,

however, some neighbors may miss such notices. Therefore, nodes shift beacons a

few periods after they started announcing it. In this time, they expect to receive

acknowledgments from neighbors.

4.2.5 Hidden Terminal Problem

The solution to beacon overlap prevents the hidden terminal problem as well. The

problem arises if two or more nodes are out of their communication range, meaning

they are unaware of their transmissions. These nodes, referred to as hidden terminals,

may send data at the same time and cause collisions on receivers.

A similar problem arises in DLDC-MAC, if any two neighbors of a node send

beacons at the same time. However, as nodes monitor beacon times of all neighbors,

they discover the risk of hidden terminals. In this case, the time di�erence between

two beacons is smaller than a threshold. The node prevents the risk by requesting

one of the neighbors to shift its beacon time.

4.2.6 Collision Avoidance

Collisions might occur only if the times of beacons overlap. Nodes avoid such risks

by shifting beacons, as introduced previously. Therefore, DLDC-MAC does not need

approaches to collision avoidance, like CSMA/CA.
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4.3 Experiment

The goal of the experiment was to test whether the DLDC-MAC works on a real

hardware platform, and deals with the unreliable wireless channel. The following

paragraphs give more details about the experiment.

4.3.1 Implementation

Hardware and Operating System

The DLDC-MAC version considered in this experiment runs on the TinyOS [25]

operating system and Tmote Sky sensor nodes. Later on the protocol was designed

again in a cross-platform manner and works with various operating systems [8].

Table 4.1 presents the size of DLDC-MAC implementation, which �ts into a limited

memory of Tmote Sky. DLDC-MAC uses only 14 kB of �ash memory, leaving more

than 30 kB for an operating system, other protocols and applications. Besides, it

uses more than 2 kB of RAM for transmit and receive queues. Should it be necessary,

DLDC-MAC can use smaller queues and occupy less memory.

Table 4.1: The size of DLDC-MAC implementation for TinyOS

Flash RAM

DLDC-MAC with TinyOS 25.8 kB 4.9 kB

TinyOS alone with radio driver 11.5 kB 0.4 kB

DLDC-MAC alone 14.3 kB 4.5 kB

Precise Estimation of RX Time

To calculate next wake-up times DLDC-MAC needs RX times of beacons. The more

precise RX times are, the shorter are guard times, and the less energy is consumed

while listening for beacons. An obvious way to determine RX times is to read the

timer register after a frame was received. However, such a solution may cause non-

deterministic delays, as it involves raising an interrupt and handling it.

The DLDC-MAC implementation exploits the opportunity provided by the Tmote

Sky design. When the transceiver receives the Start Frame Delimiter (SFD) of a new

message, it sets a microcontroller pin to one. The microcontroller stores the current

timer counter in a register. Then, the software reads the register after receiving the

complete message and determines the RX time. In that way, it does not have any
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delays caused by software execution. As Tmote Sky uses a 32 kHz oscillator, the

reception time is estimated with precision of about 30 microseconds.

In this experiment, DLDC-MAC compensates drift by applying guard times based

on worst-case drift between neighbors.

4.3.2 Experiment Setup

In this evaluation, ten Tmote Sky nodes were placed in an o�ce environment (see

Figure 4.3.1). To allow a multi-hop experiment, and resemble a more realistic sce-

nario, the transmitter output power was reduced to -25 dBm, decreasing the radio

range to a few meters. Node 1 served as a sink and was permanently connected

to a logging computer. Other nodes periodically sent statistics to the sink, and it

forwarded them to the computer.

Some nodes, e.g., nodes 6 and 7, could not reach the sink directly and sent frames

over multi-hop paths. All nodes applied a simple routing protocol to support multi-

hop communication. The protocol resembles Greedy Perimeter Stateless Routing

(GPSR) [23]. That is, only nodes closer to the sink forwarded received frames.

However, GPSR uses position information to decide whether nodes are closer to

the sink and should forward frames. In this scenario, nodes used the hop count as

position information, i.e., only nodes with the hop count smaller than the hop count

of the previous sender forwarded frames towards the sink. Since the network topology

may have changed, the sink issued topology-update frames every 10 minutes. Such

frames contained the hop count from the sink. Each node that received such a frame

incremented the hop count value, updated its distance to the sink and forwarded the

frame.

In this scenario, nodes used the DLDC-MAC protocol with a beacon period of one

minute.

4.3.3 Results

Beacon Overlap and Clock Drift

Figure 4.3.2 shows beacon times observed by node 3. The beacon of node 3 is always

at 0 seconds. As expected, beacon times of neighbors were not constant and changed

according to relative drift between nodes. Therefore, nodes shifted beacons to avoid

the overlap risk. For example, after two days, the beacon time of node 2 was close

to the beacon of node 3. Thus, node 3 shifted its beacon and prevented the collision

risk.

Although nodes shifted beacons and avoided the overlap risk, it does not prove
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Figure 4.3.1: Topology of the sensor network after 14 days of the o�ce experiment
(node 4 and node 8 broke down during the experiment, probably be-
cause of a loose contact with batteries)

the solution will always work without problems. The evaluation considered only ten

nodes that worked a short time. In common scenarios there are many more nodes,

and they work months or years. Nonetheless, the experiment shows that DLDC-MAC

code run on Tmote Sky nodes without problems. Besides, the DLDC-MAC imple-

mentation was coupled with LETED solution and tested on the OMNeT++ network

simulator (see Chapter 5). This large-scale experiment considered 155 nodes, which

worked about 3 months. During this time nodes did not encounter any problems

with DLDC-MAC.
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Figure 4.3.2: Relative beacon times observed by node 3, i.e., the beacon time of node
3 is always at 0 seconds;
Because of clock drift, the beacon times were changing, and nodes
shifted their beacons to avoid the overlap risk
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Robustness Against Link Failures

The nodes used the IEEE 802.15.4 standard with 2.4 GHz frequency band. As there

were other wireless devices using the same frequency band during the experiment,

like WLAN access points, laptops, and other sensor nodes, they interfered with the

sensor network.

Figure 4.3.3 presents the amount of received beacons by node 3 during the exper-

iment, separately for each neighbor. As expected, at weekends and during nights,

when there was almost no WLAN communication, node 3 received almost all bea-

cons. However, during weekdays, node 3 missed many beacons, especially from node

9, because other wireless devices in�uenced transmissions. However, communication

with node 2 was always reliable, even during the day, and was not a�ected by WLAN

interference. The distance between nodes 2 and 3 was much smaller than between

nodes 3 and 9. Therefore, the received signal from node 2 was much stronger and

not a�ected considerably by other transmissions. The RX signal strength of node

9 was much smaller that from node 2, as node 9 was located far away. Therefore,

WLAN a�ected the RX signal of node 9, leading to missed beacons.

The amount of received beacons from node 4 and node 9 was sometimes 0% during

the day. Such poor results stem from the way DLDC-MAC handles link failures.

Nodes assume a neighbor as not working temporarily, if they miss 10 successive

beacons. In that case, they stop receiving beacons from this neighbor and try again

after an hour. Thus, after missing 10 beacons, node 3 stopped receiving beacons

from nodes 4 and 9 for an hour, presented as 0% of received beacons in Figure 4.3.3.

After this time, node 3 reconnected to nodes 4 and 9, and received beacons again.

Although node 3 missed plenty of beacons during the interference periods, it stayed

synchronized with the neighbors. That is, node 3 still received beacons from the af-

fected nodes after the interference periods. It shows that DLDC-MAC synchroniza-

tion of wake-up times works even in the presence of unreliable links. However, since

nodes consider worst-case drift in this experiment, node 3 used long guard times to

compensate clock drift for 1-hour period. As it results in excessive idle listening,

nodes ought to exploit the clock prediction approaches presented in Chapter 6. In

this way, they shorten guard times and reduce idle listening.

Direct vs. Multi-Hop Communication

Direct communication over long distances may lead to a high packet loss rate, as

the RX power decreases with the distance from the transmitter. Thus, frames trans-

mitted over long distances are not received correctly, if the noise level is higher

than the reception power. In such cases, a multi-hop communication can result in a
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higher reception rate than direct transmission. Such a case was observed during the

experiment.

Communication between nodes between nodes 3 and 9 exhibits the problem stated

above. Node 3 missed many beacons from node 9 during the daytime (see Fig-

ure 4.3.3). The following analysis presents what would happen, if node 9 did not

send directly data to node 3 but through node 1. First, node 1 received almost

all beacons from node 9, even during the day (see Figure 4.3.4)1. Second, node 3

received almost all messages from node 1, apart from the last two days of the exper-

iment (see Figure 4.3.3). Therefore, node 3 would receive almost all messages from

node 9, if they were sent not directly but through node 1. In that case, multi-hop

communication achieved a higher packet delivery rate than direct communication.

In addition, the example of node 10 con�rms that direct communication over a

long distance may result in a high packet loss rate. Figure 4.3.4 shows that many

frames of node 10 did not reach the sink. Since node 8 stopped working at the

beginning of the experiment, node 10 sent data directly to the sink. Obviously, the

reception signal from node 10 at the sink was very weak and WLAN devices a�ected

transmissions.

Node 7 could reach node 1 with a multi-hop communication only. Although node 7

was at least three hops away from node 1, its end-to-end reliability was higher than

reliability of node 10, which could directly reach node 1. The reasons for that are

obvious. First, node 1 received several copies of data from node 7, as the packets

were forwarded through multiple paths. Second, the links on the way from node 7

to node 1 were reliable, since the distances between forwarding nodes were relatively

small. As a result, a multi-hop communication from node 7 to the sink was more

reliable than a direct communication from node 10.

The above observations reveal a need of cooperation between layers, especially

Layer-2 (Data Link Layer) and Layer-3 (Network Layer) to achieve good results in

a packet delivery rate. That is, both layers can reject weak direct links, if there

is a multi-hop connection available. In this case, L2 may send control frames to a

neighbor over a multi-hop path and not directly as is the custom. By doing so, L2

can increase reliability of communication with neighbors.

1The �gure presents the results of end-to-end communication, typically multi-hop; however, in the
case of node 9 it was direct communication because of the small distance between nodes 1 and
9
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Lost Synchronization

After ten days, node 1 did receive data from node 10 (see Figure 4.3.4), as they lost

the synchronization of wake-up times. The reason for this problem is the following.

As previously mentioned, on missing a beacon, nodes prolong the guard time in order

not to miss following beacons because of not compensated clock drift. Communi-

cation with node 10 resulted in a high beacon miss rate. Such a high rate was not

expected before the experiment, and therefore guard times were limited to 40 ms.

However, clock drift to node 10 was exactly 40 ms after 2.2 hours. Therefore, when

node 1 did not receive any beacons from node 10 after 2.2 hours and more, it used

the longest guard time (40 ms). However, in this case, node 1 needed a longer guard

time to compensate drift of such long periods. Clearly, because of too short guard

times, node 1 could not reconnect to node 10 and lost the synchronization.

These observations show that this version of DLDC-MAC needs further adapta-

tions, if it should support scenarios with links that are unavailable for several hours

but need to be used anyway. DLDC-MAC currently discards such links, because of

the following reasons. First, if a link was not working over a long period, it should

be discarded so that routing protocols �nd an alternative path w/o the a�ected link.

Second, if a node keeps waking-up to receive potential beacons from a not-working

neighbor, it consumes a signi�cant amount of energy.

However, owing to the drift prediction approaches, introduced in Chapter 6, nodes

use short guard times to compensate drift. Therefore, they can reconnect to neigh-

bors after long periods of unreliable communication and do not su�er from excessive

idle listening.
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5 Limiting End-to-End Delays

(LETED)

This chapter introduces LETED, i.e., a set of solutions that limit end-to-end delays in

sensor networks. LETED adapts the staggered schedule provided by DMAC [29], Q-

MAC [50] and ref. [10]. The staggered schedule was introduced brie�y in Chapter 3.

LETED handles also drift problems neglected in previous works. As LETED needs

an underlying MAC protocol, this work couples it with DLDC-MAC. Nonetheless,

LETED works with other MAC approaches as well.

LETED was partly introduced in ref. [7] but later simulative evaluations revealed

some drawbacks of this protocol. This chapter presents LETED with novel improve-

ments, and the solutions to idle listening avoidance (ILA) [4].

5.1 Overview

As already mentioned, LETED adapts the staggered schedule, i.e., nodes on the

path to the sink settle a wake-up schedule in a way that it limits end-to-end delays

(see Figure 5.1.1). In short, each TX slot follows immediately the RX slot from the

previous node. Therefore, nodes send messages just after reception.

In applications with a low duty cycle most wake-ups are idle. That is, nodes wake

up but do not receive anything. However, they must wake up to take part in potential

data forwarding. Otherwise, they cannot support short end-to-end delays. Such idle

slots are referred to as passive in this work (see Figure 5.1.1).

Nodes with LETED start transmissions exactly at TX slots, i.e., they do not

apply CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) or similar

solutions, which may postpone transmissions. Because of the scheduling approach

presented here, nodes usually do not need such means, since the schedule is a TDMA

approach and inherently avoids contention. However, because of clock drift, slots may

overlap and cause a collision risk, as introduced in Section 5.5. Nonetheless, extra

medium access means result in longer guard times and cause excessive idle listening.

Chapter 8 evaluates CSMA/CA and con�rms that it results in a signi�cant energy

penalty in low duty cycled networks. Therefore, LETED does not use such medium
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Figure 5.1.1: LETED is based on the staggered schedule; in applications with low
duty cycles, most slots are passive, i.e., nodes do not send anything but
listen for potential transmissions

access means.

To deal with unreliable wireless links, nodes use the ARQ [27] protocol. That

is, receivers send an acknowledgment (ACK) to senders on frame reception. Should

senders do not receive ACKs, they assume the frame was lost and send it again.

The number of TX attempts and the delay between successive retries depends on

the application. Chapter 8 presents the ARQ performance in duty-cycled wireless

networks.

5.2 Schedule Setup

The schedule setup involves cross-layer cooperation among the application, the net-

work, and the MAC layer (LETED and DLDC-MAC in this case), as depicted in

Figure 5.2.1. First, the application triggers the network layer to set up a new sched-

ule on the path towards the sink. The application speci�es the longest acceptable

end-to-end delay dEtE . Second, the network layer triggers LETED, and it sets up

new time slots with the next node. If the routing protocol does not have a route to

the sink, it discovers a new path and triggers LETED.

Considering the hop distance to the sink, provided by the routing, LETED calcu-
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Figure 5.2.1: Setup of a new wake-up schedule; cross-layer approach among the ap-
plication, the network layer (Routing) and the data link layer (LETED
coupled with DLDC-MAC)

lates how often nodes must wake up to support dEtE . As presented in Figure 5.1.1,

on event detection, the source does not send a notice at once but waits for the next

TX slot. To support dEtE the source node needs TX slots every Tslot time, as previ-

ously introduced in Chapter 3. That is, since intermediate nodes cause extra delays,

the source estimates the total forwarding delay dforwarding and the slot period Tslot
as:

Tslot = dEtE − tframe − dforwarding (5.2.1)

dforwarding = (n− 1) · (tframe + ttx_offset) (5.2.2)

where n is the number of hops to the sink, tframe is the expected frame size, and

ttx_offset is the time between RX and TX slots on intermediate nodes. All nodes on

the path apply the same value for ttx_offset, explained later in Section 5.6.

After the source estimated the slot period, it adds new TX slots to the schedule.

Then, the source sends a frame with the new TX times to the next node. On receiving

it, the next node adds RX slots to its schedule and sends back an acknowledgment. If

the new slots overlap with existing ones, the node answers with a negative acknowl-

edgment (NACK). The node includes preferred time slots in the NACK. In this case,

the source shifts the TX slots and sends a frame with the new times again.

In next steps, each node on the path sets up time slots to the next node in a
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similar way (see Figure 5.2.1). Since the source already discovered the route to the

sink, nodes �nd next hops immediately, for example, they look up the routing table.

In this work, LETED bene�ts from the underlying DLDC-MAC and sends control

frames, i.e., new TX times and ACKs, piggybacked in beacons.

5.3 Guard Times

Since LETED is a TDMA protocol, it su�ers from the drift problem (see Chapter 3).

That is, receivers may wake up too late because of clock drift and miss frames.

Therefore, LETED applies the same solution as DLDC-MAC, i.e., based on drift

prediction introduced in Chapter 6, referred to as MADC (Moving Average Drift

Compensation). In short, nodes estimate run-time drift to neighbors by applying

the moving average �lter. Then, nodes calculate the time di�erence (drift) to the

sender arisen since the last synchronization, that is, beacon reception in this work.

Finally, they use guard times long enough to compensate drift.

With MADC nodes miss about 1% frames because of not compensated drift. How-

ever, since LETED uses the ARQ protocol, the number of frames missed because of

clock drift is smaller. That is, if nodes apply too short guard times and miss a frame,

they can still receive it owing to ARQ retries.

5.4 Slot Synchronization

5.4.1 Problem Statement

Because of clock drift, timeslots of di�erent nodes move relatively to each other (see

Figure 5.4.1). If slots move towards each other, they �nally overlap and pose a

collision risk. For example, if relative drift between nodes A and B is 3 ppm (parts

per million), and slot B follows slot A after 50 ms, the slots overlap after about 3.5

hours.

If slots drift away, the forwarding delay increases. Besides, if slots keep moving

relatively to each other, they become unorganized and cannot support short end-

to-end delays. Therefore, nodes need to apply a solution that prevents slots from

moving or synchronizes them again.

5.4.2 Primary Solution

This solution demands an accurate estimation of multi-hop drift. Nodes adapt re-

peatedly the schedule according to relative drift to the source, i.e., the timeslots
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Figure 5.4.1: Because of clock drift, slots of di�erent nodes move relatively to each
other; in this example drift(A) < drift(source) < drift(B)

remain stable relatively to the source TX slots. As a result, the end-to-end delay

remains constant, and timeslots do not overlap.

Obviously, each node must �nd relative drift to the source in order to shift the

time slots. In this example, DLDC-MAC provides estimated run-time drift.1 Each

node with a schedule sends to the next node its relative drift to the source repeatedly,

piggybacked in DLDC-MAC beacons. On receiving relative drift to the source of the

previous hop, nodes add to it drift of the sender (neighbor). In that way, each node

estimates relative drift to the source.

Nodes shift LETED slots in the following way:

1. After an RX timeslot �nishes, nodes calculate the time of this slot rxnext in

the next beacon period as:

rxnext = rxnow + Tbeacon + δsrc · Tbeacon − g (5.4.1)

where Tbeacon is the beacon period and, g is the guard time to the sender

(neighbor). Clearly, nodes adapt the schedule according to relative drift to the

source δsrc. The estimation of guard times is based on the MADC solution

introduced in Chapter 6.

2. Nodes handle TX slot shifts in a similar way, i.e., they estimate the slot time

in the next beacon period as:

txnext = txnow + Tbeacon + δsrc · Tbeacon (5.4.2)

1DLDC-MAC measures run-time drift to neighbors each time a beacon is received
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where txnow is the time of the slot just �nished.

5.4.3 Improvement

Risks of Previous Approach

The solution introduced in the previous paragraph works as long as nodes estimate

exact drift to the source. However, drift estimation may su�er from various errors.

For example, because of limited memory nodes should not store high precision values,

leading to truncation errors.

Figure 5.4.2: Nodes shift slots according to relative drift to the source. Because of
errors in multi-hop drift estimation, they shift slots by di�erent times.
Thus, slots of senders and receivers drift away.

Because of potential errors in drift estimation, nodes may still su�er from the

drift problem (see Figure 5.4.2). Nodes on multi-hop paths shift slots according to

relative drift to the source, i.e., to node A in this case. Because of errors in multi-

hop drift estimation, however, slots of senders and receivers move apart. Minor time

di�erences between TX and RX slots are compensated with guard times. However,

since slots keep moving apart, the time di�erence becomes larger than guard times.

In this case, slots are not synchronized and receivers miss frames (see slots on the

right in Figure 5.4.2).
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Solution

To solve this problem, nodes adapt the previous solution as follows. Sources send

extra synchronization (SYNC) frames along paths, and nodes synchronize all slots

of the corresponding schedule. In other words, receivers calculate the time tdiff the

slot drifted from the expected time texpected:

tdiff = texpected − trx

where ttx is the frame reception time. Then, receivers shift all slots of this schedule

by tdiff . In this way, slots are synchronized again.

To deal with the packet loss problem, nodes apply the ARQ protocol when sending

SYNC frames. That is, if senders do not receive an RX acknowledgment, they

send the SYNC frame again. Moreover, only on ACK reception senders shift the

corresponding TX slots. Otherwise, upon a SYNC frame loss only senders would

shift TX slots, but RX slots of receivers would not be changed, leading to loss of

wake-up synchronization.

The simulations with the LETED protocol con�rmed that the solution based on

SYNC frames solves the problem of slot synchronization. Nonetheless, nodes may

still lost wake-up time synchronization in unlikely cases, e.g., after long periods with

broken links or when clock drift signi�cantly changed. Therefore, it may be necessary

to use slightly longer guard times for sending SYNC frames. However, the theoretical

possibility of such risks and potential improvements will be examined in future work.
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Figure 5.4.3: LETED slots move by 1 ms, because of errors in drift estimation, after
the time depicted here

Clearly, the frequency of frame transmission depends on the scenario, e.g., the

accuracy of drift estimation or changes in external conditions that a�ect drift. Fig-

ure 5.4.3 depicts the time after LETED slots move by 1 ms for various precision of
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drift estimation. For example, with the drift estimation accuracy of 1 ppm, nodes

should synchronize slots every 16 minutes to keep slots not drifted by more than

1 ms.

Another reason for errors in drift estimation are postponed transmissions of SYNC

frames, e.g., because of variable delays in software execution and on transceivers.

Since delayed transmissions result in drift estimation errors, nodes should include

TX timestamps in SYNC frames. By doing so, such delays would not result in drift

estimation errors. For example, ChipCon CC2420 transceiver and MSP430 MCU on

Tmote Sky nodes provide accurate hardware timestamps. On hardware events, like

transmissions of the Start Frame Delimiter (SFD), MSP430 stores the current timer

register. As it takes less than 100 µs to handle the timer interrupt, nodes manage to

add the exact TX time to the frame that is being transmitted.

5.5 Overlap Risk

The previous paragraph introduced the solution to the problem of timeslot syn-

chronization. That is, nodes shift the schedule repeatedly and keep the slot times

unchanged relatively to the source. However, two independent schedules drift rel-

atively to each other and cause an overlap risk (see Figure 5.5.1. Besides, because

of clock drift, LETED slots overlap with beacons of DLDC-MAC as well. Clearly,

on timeslot overlap nodes may not receive data because of collisions. Therefore,

nodes with LETED need to apply a new solution that tackles the overlap problem

of LETED slots and beacons.

5.5.1 Overlap Detection

To detect an overlap risk, nodes look up the local slot table, which contains LETED

slots and beacons with their start and �nish times. However, nodes do not detect all

overlap cases, since they do not learn about LETED schedules of neighbors that are

on di�erent routes. Figure 5.5.2 presents the problem. There are two independent

routes to a sink, i.e., A-B and C-D. Both paths set up separate wake-up schedules

to support certain end-to-end delays. However, nodes A and B do not learn about

LETED slots of nodes C and D, and vice versa. Therefore, if their slots overlap,

as depicted in Figure 5.5.4, they do not detect it, and collisions occur. A similar

case presents Figure 5.5.3 but both paths, i.e., A-B and C-D, are not within their

transmission range. Nonetheless, they still a�ect one another, as the transmission

signal from another path increases the noise level on receivers.

When a collision occurs and nodes do not send a�ected frames again, the sink does
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Figure 5.5.1: In LETED, schedules of di�erent sources may move relatively to each
other; in the case of overlap risk, one of the schedules is shifted

not receive data. Besides, if nodes send frames again in the next TX slot, the sink

receives data too late. Clearly, frequent collisions, and indirectly a huge number of

overlap cases, increase the packet error rate. Figure 5.5.5 depicts the average time

to an overlap case of nodes that support 10-second end-to-end delays and receive

beacons from 4 neighbors. For example, with relative drift among nodes of 8 ppm

slots overlap after less than an hour.

The following paragraph presents a solution to the overlap problem, previously

introduced in ref. [7]. However, simulation runs revealed some drawbacks of this

approach. Therefore, this work introduces a simpler but a robust solution to the

overlap problem based on the ARQ protocol.
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Figure 5.5.2: Two independent LETED paths are within their transmission
range. As nodes do not learn about wake-up schedules of other
paths, they cannot detect overlap risks between independent
paths

Figure 5.5.3: Although both paths are out of their transmission range, they
are within their interference range and a�ect each other

5.5.2 Previous Solution

Timeslot - Timeslot Overlap

Nodes repeatedly collect information about LETED slots and beacons from nodes

in two-hop neighborhood. By doing so, they should detect all overlaps within their

transmission range. If they detect an overlap risk, they trigger the source node of

the shorter path2 to change its schedule by sending a shift request. The schedule

change of the shorter path involves less e�ort. The request contains the time o�set

2the network layer may provide the path length; otherwise, the node sends a path-length query to
the source nodes.
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Figure 5.5.4: Schedule of paths A-B and C-D. Since nodes A and C transmit at the
same time, there is a collision risk on receivers, on nodes B and D
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Figure 5.5.5: Average time to slot overlap, beacons or LETED slots, of nodes having
four neighbors and a schedule supporting 10-second delays for di�erent
clock drift values

and relative drift of both a�ected schedules so the source can estimate the needed

shift time.

On receiving the request, the source shifts the a�ected TX slot only, and not the

whole schedule, by the shift time. After that, it sends shift requests, which includes

the shift time, along the path. Then, each node shifts only the a�ected slot by the

same shift time. Depending on relative drift of the colliding schedules, the nodes

move the slot shortly after or before the other colliding slot. Figure 5.5.1 presents

the case when the nodes shift the a�ected slots to a later time.
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Timeslot - Beacon Overlap

Beacons and timeslots may move relatively towards each other because of clock drift.

If a node discovers that a beacon and a timeslot may overlap, it triggers the beacon

sender to change its beacon time. Obviously, the beacon sender can be the node

itself. Nodes shift beacons and not timeslots, since it results in less overhead.

Drawbacks

Although the solution solves the overlap problem, it su�ers from the following draw-

backs:

� Nodes may detect an overlap risk too late. First, slot shift takes a signi�cant

time, even several beacon periods, as a shift request must reach the source,

but there is no wake-up schedule in this direction. Therefore, each node that

forwards the request waits on average half a beacon period before sending

the request. Second, if the slot shift would cause another overlap risk, nodes

send back a negative acknowledgment, as introduced in Section 5.2. Clearly,

it increases the total shift time as well. As a result, nodes may shift slots too

late and do not prevent the overlap risk.

� To detect an overlap risk, nodes use a threshold time toverlap. That is, if the gap

between two slots is smaller than toverlap, nodes start shifting slots. On the one

hand, toverlap should be long enough to start slot shifts early enough. On the

other hand, if nodes use too long toverlap, they shift slots too often. To estimate

a reasonable toverlap, nodes need an exact time of slot shift. Unfortunately,

nodes cannot estimate it exactly because of unpredictable delays in sending

shift requests, as previously mentioned.

� With this solution nodes collect repeatedly wake-up schedules from 2-hop

neighborhood. Clearly, dense networks or frequent updates results in many

transmissions and waste energy.

5.5.3 ARQ-Based Solution

This approach aims to deal reasonably well with the overlap risk but remain simple

to occupy only a fraction of sensor node memory. It exploits the nature of low

duty cycle applications: nodes rarely send data. Therefore, even when LETED slots

overlap with other slots, they probably will not cause collisions, as they are mostly

idle. For that reason, nodes do not shift LETED slots, if they overlap with other
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LETED slots or with beacons. On the contrary, on the beacon overlap risk, nodes

shift one of them, as introduced Chapter 4.

Each node detects an overlap by comparing start and �nish times of slots stored

in the slot table. As stated above, nodes do not shift LETED slots, if they cause the

overlap risk. Nonetheless, nodes must react to this, either skip or use the a�ected

slots. The rule is to use the slot with a higher priority and skip other slots. However,

before skipping a slot, nodes check if the slot can be partly used. For example, nodes

skip the beginning of an RX slot, as it overlaps with a beacon, but tries to receive

ARQ retries afterwards. Besides, if all a�ected slots are RX slots, the node switches

the transceiver into the listening state for the time of both slots.

Table 5.1 depicts slot priorities used in this work. Nodes favor beacons over

LETED slots, as they use beacons for the wake-up synchronization and any missed

beacons result in longer guard times. Besides, nodes use the ARQ protocol to LETED

slots in order to deal with unreliable wireless links. Thus, if a node skips a part of

LETED slot, it can still send or receive ARQ retries.

Table 5.1: Priority of slots in the ARQ-based solution to the overlap problem; in the
case of overlap nodes skip or shorten the slot with a lower priority

Slot type Priority

Beacon TX 4

Beacon RX 3

LETED TX 2

LETED RX 1

Figure 5.5.6 illustrates handling of slot overlap. In this case, node A detects

an overlap of TX beacon and LETED RX slot. According to the slot priorities

(see Table 5.1), nodes favor beacons over LETED slots. However, in this case, the

beacon covers only the beginning of the LETED slot, the remaining ARQ retries

are not a�ected (see Figure 5.5.6a). Therefore, the nodes do not skip the LETED

slots but only shorten it (see Figure 5.5.6b). As a result, node A can receive data,

although a LETED slot overlaps with a beacon.

5.6 O�set Between RX-TX Slots

As already stated, on intermediate nodes TX slots should follow almost immediately

the corresponding RX slots to keep forwarding delay small (see Figure 5.1.1 and
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(a) Slot overlap risk: TX beacon of node A overlaps with LETED slot from B to A

(b) Joined slots: after beacon �nishes, nodes A and B use the rest of the LETED slot

Figure 5.5.6: Joining and shortening of slots on overlap risk

Eq. 5.2.2). However, the o�set between TX and RX slots ttx_offset must not be

too small, as it may cause slot overlap. As each node shifts its slots repeatedly to

prevent the overlap (see Section 5.4), the smallest ttx_offset must compensate drift

arisen between two consecutive slot shifts, i.e. during the beacon period Tbeacon of

DLDC-MAC. Thus, the smallest ttx_offset is estimated as:

ttx_offset = Tbeacon · δworst (5.6.1)
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where δworst is worst-case drift to the next node, speci�ed for each oscillator type

(e.g. ±20 ppm for Tmote Sky nodes). For example, Tmote Sky using DLDC-MAC

with 1-minute beacon period needs ttx_offset of at least 3 ms.

5.7 Topology Change

A routing protocol may change a source-sink path, referred to as re-routing, e.g.,

because of link failures. In that case, new nodes on the path do not maintain LETED

schedules yet and cannot guarantee end-to-end delays. Thus, a node that discovers

a new path creates a new schedule on the following nodes, like the schedule setup in

Section 5.2. Clearly, if there are more nodes on the new path than on the previous

one, the end-to-end delay may increase (see Eq. 5.2.1 and 5.2.2). Therefore, the

application with rigid end-to-end delay requirements sets up a new schedule for the

new path, i.e., starting from the source.

5.8 Energy Savings: Idle Listening Avoidance

This paragraph introduces a solution to the idle-listening problem of LETED. The

solution exploits features of available transceivers, reduces the idle-listening time and

prolongs the lifetime signi�cantly.

5.8.1 Idle Listening of Software Solution

To support end-to-end delays, nodes must wake up at each RX slot. After waking

up nodes listen for a time needed to receive a frame from the previous node. If no

frame arrives, nodes power down the transceiver and continue sleeping. Such slots

are referred to as passive slots. However, if nodes receive a frame from the previous

node, they send it to the next node towards the sink in the following TX slot. Such

slots are referred to as active in this work.

Figure 5.8.1a shows an active RX slot with a common software approach. After

getting the preamble3 and the following Start Frame Delimiter (SFD), nodes receive

the payload. Then, the payload is delivered to the application, i.e., usually the

transceiver drives the RX pin high, and the microcontroller (µC) triggers the RX

interrupt (RxINT). After that, an interrupt service routine (ISR) of the operating

system (OS) reads the payload from the RX bu�er of the transceiver and delivers

3Receivers use preambles to detect a new frame, the start and the end of frames and to synchronize
bits and symbols

81



5 Limiting End-to-End Delays (LETED)

Figure 5.8.1: a) General receive slot slot (software only);
b) Shortened passive slot with ILA and ASIC
c) Active slots with reduced idle listening (ASIC only)

it to the application. Finally, the application calls an OS function to switch o� the

transceiver.

Figure 5.8.2 depicts the current consumption of various RX slot phases measured

with an oscilloscope connected to a Tmote Sky sensor node. In this example, the

node receives a 62-byte long MAC frame of IEEE 802.15.4 standard. To compensate

clock drift, the node wakes up 2 ms earlier than the expected time of incoming frame.

In this case, the node consumes an unnecessarily huge amount of energy, i.e., it draws

about 22 mA of current for a time 3x longer than the frame itself, leading to the

following problems in passive and active slots:
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Figure 5.8.2: RX slot of Tmote Sky sensor node (oscilloscope output: average from
2 samples); MAC frame 62 bytes, data rate 250 kbps

� Passive slots

Applications running on sensor nodes detect that a packet is received, when the

operating system (OS) calls an RX routine, i.e., after getting the message from

the RX bu�er. If no frame is received, the application will not know about it.

The only indirect means to detect frame reception is to wait the normal time

it takes from waking up until the OS calls the RX routine. The application

powers down the transceiver, when this time interval has expired w/o any

RX interrupt (see Figure 5.8.1a). However, handling of RxINT and getting

a frame from the RX bu�er may last much longer than the frame reception

(see Figure 5.8.2). Besides, if the underlying protocols use frames of various

lengths, the application considers the longest frame when waiting for RxINT.

Obviously, indirect detection of idle RX slots causes excessive idle listening.

� Active slots

After frame reception, the transceiver stays in the receive state until the µC

powers it down, e.g., with ChipCon CC2420 transceiver [47] the µC writes

a special command to a strobe register. Before software powers down the

transceiver, it reads and handles the frame payload during ISR to learn whether

other frames will follow. After that, it signals the µC to power down the
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transceiver (see Figure 5.8.1a). Of course, if no frames follow the one just

received, the transceiver should be powered down immediately, after receiving

the last byte of the incoming frame, to reduce idle listening. However, a node

using a software-based solution handles RxINT, reads the whole message and

powers down the transceiver. Thus, the software solution causes idle listening

also in active slots.

5.8.2 Experiments

Some commercial transceivers o�er extra features that can be exploited with LETED.

For instance, ChipCon CC2420 [47], used in Tmote Sky [33] sensor nodes, captures

the exact time of SFD and raises an interrupt when SFD is received.4. Nodes with

LETED can exploit this feature to detect passive slots in an early stage and shorten

idle listening. Next paragraphs present the solution in detail. This section presents

the empirical results of Tmote Sky. First, it evaluates the time needed to handle

SFD interrupt in the operating system. Second, it examines the frame reception

handler.

The experiments were carried out on Tmote Sky sensor nodes running TinyOS [25]

operating system. Tmote Sky consists of CC2420 transceiver (compliant to IEEE

802.15.4 standard) and MSP430 microcontroller (running with a frequency of 1 MHz

in the experiments).

In the following experiments the times of SFD and of the RX interrupt are es-

timated by reading the timer register. However, reading the register takes some

time as well and therefore can in�uence the measurements. Thus, the delay caused

by reading of the timer register was estimated before other experiments. First, the

initial value of the timer register tstart was saved. The sensor node read the timer

register 1000x in a loop (a TinyOS function). The average time tread_timer needed

to read the timer register was estimated as:

tread_timer =
tend − tstart

n
(5.8.1)

where tstart is the timer register value before the loop, tend the value just after the

loop, and n equals to the number of timer read operations (n = 1000 in this example).

On the evaluated hardware, the average time needed to read the timer register

equals to about 26 µs, which is less than a timer tick (the timer runs with 32 768 kHz

frequency, i.e., with a tick speed of 30.518 µs). Thus, the following experiments

4CC2420 just sets SFD pin to high/low. In Tmote Sky SFD pin is connected to a µC pin that is
con�gured to raise an interrupt either on a falling or on a rising edge
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neglect the timer read delay, as it does not in�uence the measurements considerably.

SFD Detection Interrupt

This experiment measured the time TINT_SFD needed from the SFD reception to

the SFD interrupt handling in TinyOS (see SFD detect time in Figure 5.8.1b). The

examined node received 1000 messages and collected as many TINT_SFD samples.

When CC2420 receives SFD of a new frame, it drives SFD pin high. Then, the µC

captures the current timer value tSFD and stores it in a register. In that way, the

µC captures the SFD reception time precisely, that is, without any delay caused by

software execution. Moreover, after SFD reception, the µC raises an SFD interrupt,

and TinyOS executes the appropriate handler. The time tint was captured in this

handler. In that way, for each received frame the pair of timestamps <tSFD, tint>

was collected, and the time needed to raise SFD interrupt TINT_SFD estimated as:

TINT_SFD = tint − tSFD (5.8.2)

In this experiment, the time needed to raise the SFD interrupt was 3 ticks (approx.

91 µs ) for all 1000 received messages.

As stated before, Tmote Sky raises another interrupt after the transceiver received

the last byte of the frame. However, Tmote Sky uses the same pin and the same

interrupt for SFD detection and for frame reception. In the �rst case, it detects a

rising edge of the pin, and a falling edge in the latter case. Thus, raising a frame

reception interrupt takes as long as SFD detection, i.e., about 91 µs.

RX Interrupt Overhead

This experiment estimated the time TRxINT of the RX interrupt handler. It it the

time that elapsed from the frame reception on CC2420 transceiver to the function

call of TinyOS (see rx interrupt handling in Figure 5.8.1a). As the time needed to

retrieve frame from the RX bu�er depends on the frame size, two frame sizes were

evaluated: 42 and 127 bytes. In this experiment 400 TRxINT samples were collected

for each payload size.

Like in the previous experiment, the µC captured the SFD reception time tSFD for

each frame. Moreover, the time trx_TinyOS was captured each time TinyOS executed

the function for handling of received frames. TinyOS calls this function after it

handles RxINT and reads the frame payload from CC24205. The RX interrupt

5the µC raises an interrupt after receiving the �rst payload byte and not the whole payload. Thus,
TinyOS starts reading payload bytes, while the payload is still being received. In that way, the
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Figure 5.8.3: Frame reception delay on Tmote Sky with TinyOS with di�erent pay-
load size: 42 bytes (top) and 127 bytes (bottom)

handler overhead TRxINT was estimated as:

TRxINT = trx_T inyOS − tSFD − Tframe (5.8.3)

where Tframe is the frame length in time units (about 44 and 133 ticks by 250 kbps

data rate for both frame lengths).

Figure 5.8.3 depicts the experiment results. For the payload of 42 bytes, the

shortest RxINT handler took 104 ticks (3.17 ms) and the longest 106 ticks (3.23 ms).

However, the time was signi�cantly longer for 127-byte payload: from 271 ticks to

274 ticks (8.29 to 8.35 ms). The reason for this is the time the µC needs to read

data from the RX bu�er of the transceiver. On Tmote Sky the µC gets frames from

the transceiver using SPI (Serial Peripheral Interface Bus) with 510 kHz SPI clock.

With such a clock frequency, the µC may receive 127 bytes in 2 ms, if the bytes are

read one after another. However, the µC on Tmote Sky waits from 50 µs to 170 µs

before getting another byte, which causes such long reading from the RX bu�er, i.e.,

time needed for delivering frame to the software is shortened.
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more than 8 ms for 127-byte frame instead of 2 ms.

5.8.3 Idle Listening Avoidance (ILA) Solution

The previous paragraphs introduced the experiments with Tmote Sky sensor nodes.

It turned out that Tmote Sky handles the SFD interrupt in about 91µs. Moreover,

handling the RX interrupt can take more than 8 ms. It is caused mainly because of a

long time needed to read received frames from the RX bu�er with SPI. Considering

these results, this work introduces a solution that reduces idle listening of passive and

active slots, referred to as Idle Listening Avoidance (ILA). Obviously, reduced idle

listening prolongs the lifetime of nodes. The solution is presented in the following.

Passive Slots

To reduce idle listening of passive slots, nodes need an indicator that determines as

early as possible whether a frame arrives. Receiving a preamble and SFD indicates

that a frame is to be received. Thus, if the node does not receive SFD in the

expected time, it assumes that no frame arrives in this slot (see Figure 5.8.1b). The

SFD detection time includes guard time, preamble, SFD itself, and the SFD interrupt

handler. Since the detection time is short on Tmote Sky, less than 100 µs, nodes

quickly power down the transceiver and shorten idle listening during passive slots

considerably.

Active Slots

After receiving a payload, nodes should power down the transceiver quickly, if no

frames follow the one just received (see Figure 5.8.1c). When Tmote Sky receives a

frame, it raises two interrupts: the �rst after SFD detection and the second when it

receives the whole frame. The second interrupt means only that the transceiver stored

the frame in RX bu�er, and the µC must retrieve it, which takes a few ms. Clearly,

the node can already switch the transceiver to the idle state in the RX interrupt

handler. Then, it will get the frame from RX bu�er while the main transceiver parts

are powered o�, resulting in energy savings. However, if another frame follows the

one just received, the node needs to power up the transceiver again. Since it takes

a few ms to start the transceiver, the node may miss the frame. Therefore, in this

work nodes do not apply the solution to active slots.
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5.8.4 ASIC Solution

The optimal solution for idle-listening reduction involves the use of an application-

speci�c integrated circuit (ASIC), which causes the shortest delay in SFD detection

and switching o� the transceiver. Such a circuit shortens idle listening in the following

way:

1. Passive slots

Like in the ILA solution, ASIC should switch o� the transceiver immediately if

SFD is not received within a desired time (see Figure 5.8.1b). Clearly, the SFD

detection time is shorter on ASIC than the time of SFD detection on CC2420

transceiver.

2. Active slots

After receiving a frame, ASIC reads and evaluates the payload quickly, i.e., a

few of microseconds, in order to check whether another frame follows the one

just received. Therefore, ASIC must be aware of the message format to deter-

mine whether another frame follows the one received. If no frames follow, ASIC

powers down the transceiver almost immediately after the frame reception (see

min. overhead in Figure 5.8.1c). In this case, nodes with ASIC solution switch

o� the transceiver a few ms earlier than the software or ILA solution.

This work does not consider an ASIC solution in detail but only introduces it as the

optimal solution for comparison reasons, neglecting open issues.

5.8.5 Evaluation

This section examines the solution to Idle Listening Avoidance based on CC2420

transceiver and compares it with software and ASIC approaches. As stated before,

LETED causes idle listening both in active and passive slots. The following formulas

estimate idle listening according to the solution applied, i.e., ILA, software or ASIC.

Passive slots

Idle listening of nodes with LETED based on the software solution Tidle_software

equals:

Tidle_software = tguard + tpreamble + tSFD + tmax_frame_len + trxINT

where tguard is the average guard time used to compensate drift, tpreamble and tSFD
are the times needed to receive the preamble (4 bytes in IEEE 802.15.4) and the SFD
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�eld (1 byte). Moreover, nodes cannot usually determine the length of the potential

frame and therefore listen for the time needed to receive longest frame supported

tmax_frame_len (127 bytes in IEEE 802.15.4). Finally, nodes wait the time trxINT
needed to retrieve the frame from the bu�er, approx. 8 ms for 127-byte frame.

With the ILA solution, nodes still have to wait the time needed to receive a

preamble and SFD. However, after that, they switch o� the transceiver after the

time needed to detect SFD tSFD_detect (about 91 µs on Tmote Sky node). In this

case, idle listening equals:

Tidle_ILA = tguard + tpreamble + tSFD + tSFD_detect

ASIC solution cause similar idle listening to ILA, but the SFD detection time

tSFD_detect is shorter than the time of CC2420 transceiver.

Active slots

In active slots, nodes should switch o� the transceiver immediately after they received

and examined a frame. However, it takes time trx_post to get a frame from the RX

bu�er and thus idle listening of active slots equals trx_post: about 8 ms with software

or ILA solutions, and a few µs with ASIC.

Results

To determine idle listening caused by LETED, this evaluation uses the energy con-

sumption model introduced later in this work in Chapter 7. Besides, the evaluation

also uses the hardware and scenario parameters, like energy consumption, from Chap-

ter 7. For example, in this scenario an event occurs once an hour, which determines

the number of active slots.

Figures 5.8.4 depicts the results of three solutions (Software, ILA, and ASIC)

applied to LETED for various end-to-end delays. Clearly, the shorter is the guaran-

teed end-to-end delay, the more receive slots are needed, and the longer is the total

idle-listening time. For example, with end-to-end delay of 5 seconds, the software

approach causes 163 seconds of idle listening a day. In this case, the ASIC solution

decrease idle listening 18x (9 sec) and ILA 15x (11 sec). Obviously, as both ASIC

and ILA shorten passive slots, they reduce idle listening in this way.

Figures 5.8.5 present the corresponding energy gain of ILA and ASIC against the

software solution owing to idle listening reduction. For example, nodes with ILA

consume approx. 0.9 mAh/day less energy than the software solution with 5-second

delays. According to the lifetime evaluation presented in Chapter 7, nodes w/o ILA
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Figure 5.8.4: Idle Listening caused by LETED of three various solutions: Software,
ILA (Idle Listening Avoidance) based on ChipCon 2420 and with a
dedicated hardware (ASIC);
The diagram at the bottom zooms the results of ILA and ASIC

(DMAC approach there) consume approx. 2.5 mAh/day for 5-sec delay. Therefore,

the energy gain of 0.9 mAh/day prolongs the lifetime by about 37%. For shorter

delays ILA achieves even better results.

As expected, the ASIC solution reduces idle listening more than ILA, since it has

shorter detection times. However, it results only in a minor di�erence in energy

gain. For example, with end-to-end delays of 5 seconds, the energy gain of ASIC is

larger by only 0.008 mAh/day than ILA gain, which is less than 1% of total energy

consumption.

5.9 LETED Evaluation

LETED with DLDC-MAC was implemented as cross-platform software and tested

with OMNeT++ [49] simulator. This section introduces the simulation environment

and discusses the results.
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5.9.1 Simulation Environment

All simulations introduced in this paragraph were carried out with OMNeT++, a

discrete event simulator, which gained in popularity in the last several years. OM-

NeT++ consists of modules written in C++. Owing to the modular design, the

simulator can be easily extended with new models and features. For example, Mo-

bility Framework (MF) provides several models for mobile wireless communication.

For example, it simulates wireless channel at the physical level by considering signal

strength, noise level, etc. In this way, it determines whether a data packet will be

processed or is treated as noise. This evaluation applies MF to simulate the wireless

channel. Besides, MF supports moving hosts as well. However, this evaluation con-

siders a static scenario, i.e., sensor nodes do not move. Another extension (INET)

provides protocol models for TCP, IPv4, IPv6, Ethernet, IEEE 802.11 b/g, OSPFv4

and other protocols. Thus, OMNeT++ allows also simulations of complex hetero-

geneous networks, e.g., a sensor network connected with gateways to a Local Area
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Network (LAN) or to the Internet.

This work utilizes another extension [17] that integrates Re�ex [51] operating

system (OS) with OMNeT++. Owing to this extension, all applications implemented

for Re�ex OS run in OMNeT++ simulator and on platforms provided by Re�ex, for

example Tmote Sky or Mica2. In this way, developers can test their applications with

OMNeT++ before deploying them on sensor nodes. However, LETED and DLDC-

MAC implementation goes even one step further. It runs not only in OMNeT++

and Re�ex OS but also on any other OS, if they provide suitable adapters. Such a

cross-platform design for sensor networks was introduced previously in [8].

The following paragraphs give an overview about major features of the simulation

environment.

Integration with Re�ex OS

Re�ex OS is integrated with OMNeT++ with a coroutine-based model, i.e., the

module code runs in its own thread and usually consist of an in�nite loop with

send and receive calls. Each time an event associated with the Re�ex module needs

handling, like a message reception or a timer, the simulation kernel triggers the

module to handle the event. From the Re�ex OS perspective, each event is an

interrupt. Therefore, each time the simulator triggers Re�ex, an interrupt service

routine is executed.

To simulate the system clock, OMNeT++ triggers the Re�ex module every tick

period. The tick value is set to a millisecond by default. Thus, OMNeT++ raises

the system timer interrupt every 1 ms on each node separately. Although such

a practice allows exact simulations at a low operating system level, it results in a

signi�cant processing overhead. Therefore, OMNeT++ simulations take quite a long

time, especially when simulating networks of many sensor nodes. To overcome this

drawback, the Re�ex module was slightly adapted. Instead of simulating each clock

tick, OMNeT++ triggers the system timer interrupt only when the timer was set by

the application previously. For example, if the MAC layer sets timer to �re in 30

seconds to send a beacon, OMNeT++ raises the timer interrupt after this time, and

not on every clock tick as previously. It reduces the processing overhead and allows

running long-term simulations with many sensor nodes in a reasonable time.

Bit Error Simulation

Mobility Framework (MF) takes the following steps to decide whether a frame was

correctly received. First, it estimates the received power Prx according to the Friis

free-space equation [40]:
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Prx =
Ptx · λ2

16 ·Π2 · rα

where Ptx is the transmission power, λ is the wavelength, r is the distance between

the transmitter and the receiver, and α is the path loss coe�cient with typically

α ≥ 2. The coe�cient α equals 2 for free-space path loss and 5 to 6 for shadowed

areas or indoor scenarios [40]. Then, it estimates the Signal to Interference and

Noise Ratio (SINR). The model considers the constant thermal noise parameter,

de�ned in a con�guration �le, and the noise caused by consecutive transmissions of

other nodes. It this way, MF discards frames upon collision, as consecutive frame

transmissions result in noise levels higher than the frame RX power. Considering

the SINR, the simulator estimates the bit error rate (BER) of the frame, according

to the modulation used. For instance, the BER of binary phase-shift keying (BPSK)

equals:

BER =
eS

2

S =
−SNIR · bandwidth

bitrate

Next, MF estimates the probability Pok that the received frame was not corrupted:

Pok = (1−BER)l

where l is the frame length. Finally, MF gets a random value in the range from 0 to

1 and discards the frame, if the value was higher than Pok.

Clock Drift

The OMNeT++ simulator does not consider clock drift by default. The simulator

provides only the current simulation time tsim. Therefore, to test the drift impact

on LETED and DLDC-MAC, OMNeT++ was extended to change the local time

of nodes according to their clock drift. In short, before starting a simulation, OM-

NeT++ reads a con�guration �le and sets the drift parameter δ to each node sepa-

rately. Then, each time a node reads the system time, the simulator calculates the

local time tlocal of nodes according to their drift parameter:

tlocal =
tsim

1− δ · 10−6
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Clearly, if nodes have di�erent drift parameters, their clocks run at di�erent speeds

and cause the overlap risk of DLDC-MAC beacons and LETED slots.

5.9.2 Network Setup

Table 5.2: Simulation parameters that a�ect the Packet Error Rate (PER)

Parameter name Value

Carrier frequency 2.4 GHz

Bitrate 250 kbps

Channel bandwidth 2 MHz

Transceiver TX power 1 mW

Transceiver sensitivity -94 dBm

Thermal noise -84.5 dBm

Modulation BPSK

Path loss coe�cient α 3

The protocol stack of evaluated nodes depicts Figure 5.9.1. The application used

services of the routing, mostly sending data over a multi-hop network. In this sce-

nario, nodes used the AODV [35] routing protocol. As stated above, nodes used

LETED and DLDC-MAC to limit end-to-end delays. All layers were implemented

as a cross-platform application in ANSI C. Owing to the adaptation layer, software

was tested and evaluated with OMNeT++.

In this scenario, the application was running only on the sources and on the

sink. The intermediate nodes used only communication protocols, i.e., DLDC-MAC,

LETED, and AODV.

On sources, the system timer triggered the application to send data to the sink

once an hour. Each timer trigger corresponds to an event detected by the source.

However, to examine various delays from event detection to the �rst TX slot, the

source nodes added a random time, within the margin of beacon period, to the next

trigger time. Each frame included the current simulation time, which the sink used

to estimate the total delay of multi-hop communication.

The LETED implementation used two new approaches to the overlap problem.

First, it used extra synchronization frames to keep LETED slots arranged along the

path (see Section 5.4.3). Second, it allowed that LETED slot overlap but reduced the
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5.9 LETED Evaluation

Figure 5.9.1: Protocol stack of evaluated nodes; owing to the cross-platform design,
it runs on various operating systems; the OMNeT++ adapter allows
the execution in the simulator

risk of frame loss in overlaps case by applying the ARQ protocol (see Section 5.5.3).

As stated above, OMNeT++ simulates frame loss according to the path loss model.

Table 5.2 presents the parameters applied to the simulations.

This evaluation considers the physical layer (PHY) of IEEE 802.15.4 standard

with 2.4 GHz carrier frequency. Thus, the characteristics of this PHY and of the

corresponding transceiver, ChipCon CC2420 [47], were con�gured at the beginning.

However, the con�gured Binary Phase-Shift Keying (BPSK) modulation is used in

the 868 MHz and 915 MHz bands only. The 2.4 GHz band uses O�set Quadrature

Phase-Shift Keying (OQPSK) modulation. As OQPSK was not available, BPSK was

selected.

Two networks were evaluated with OMNeT++ simulator. Both setups are intro-

duced in the following paragraphs.

Small Network

Figure 5.9.2a presents the small network evaluated with OMNeT++ simulator. Nodes

0 and 6 served as sources, they sent data to the sink, to node 5. As the nodes had

to guarantee 10-second end-to-end delays, they applied a LETED schedule depicted

in Figure 5.9.2b. Since nodes 3, 4 and 5 were on two gathering paths, i.e., from

sources 0 and 6, they set up two schedules, for each path separately. In this scenario,

the o�set between RX and TX slots on intermediate nodes was set to 100 ms. It

resulted in approx. 100 ms forwarding delay of a single hop. Thus, with a 5-hop
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5 Limiting End-to-End Delays (LETED)

Table 5.3: Packet Error Rate (PER) and ARQ parameters of three small-network
simulations performed with OMNeT++

Acronym PER parameter max. ARQ retries

S1 0% 1

S2 approx. 10% 1

S3 approx. 10% 2

path to the sink, the nodes had to wake-up every 9.5 seconds to guarantee 10-second

delays (details in Section 5.2).

The thermal-noise parameter was adapted to get a PER of approx. 10%, which

is higher than the PER of 4% observed in the outdoor experiment presented in

Chapter 8. The reason for a higher PER is to test whether LETED works in worse

conditions than expected. However, with such a PER the LETED protocol did not

work correctly without the ARQ protocol. The problem stems from the way the slot

synchronization works. In multi-hop networks, synchronization frames do not reach

the sink because of bit errors. As a result, nodes close to the sink are not synchronized

and miss frames transmitted in LETED slots (details in Section 5.4.3). Therefore,

the evaluation considers only the protocol stack with ARQ applied. Three various

simulations were performed with OMNeT++, di�ering in PER and ARQ parameters

(see Table 5.3). Each scenario was simulated 3 months.

Figure 5.9.3 shows the graphical user interface of OMNeT++ simulator with the

network topology used in the evaluation.

Large Network

The small network introduced previously considers a high PER, but the number of

nodes is small. In such a setup, beacons and slots rarely overlap, and nodes do

not handle it as often as in common scenarios. Besides, in larger networks there is

a higher risk of sending frames concurrently, as DLDC-MAC avoids it only among

neighbors. In such cases, nodes a�ect each other's transmissions and cause collisions.

However, the previous scenario does not su�er from this problem, as the number of

nodes is small.

To evaluate LETED in more realistic conditions, another simulation was carried

out. Figure 5.9.4 presents the network topology of 155 nodes deployed randomly

in a square area of length 250 meters. The sink was placed in the middle and four

sources at the corners. Sources set up routes and wake-up schedules to the sink (see
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(a) Two sources (nodes 0 and 6) send data periodically to the sink
(node 5)

(b) Nodes repeat the depicted schedule every 9.5 seconds to guar-
antee 10-second end-to-end delay

Figure 5.9.2: Topology and wake-up schedule of the evaluated network

Figure 5.9.4). As previously mentioned, nodes applied the AODV to �nd routes to

the sink. They did not care about route metrics, like hop count, and selected the

�rst available path.

In this scenario only 4 out of 155 nodes sent data to the sink, as LETED does

not yet e�ciently support communication from many sources. In the current ver-

sion, each source sets up a separate wake-up schedule to the sink. Obviously, it

causes frequent wake-up times in larger networks. An e�ective way to handle data

dissemination from many sources is a part of future research.

97



5 Limiting End-to-End Delays (LETED)

Figure 5.9.3: Screenshot of OMNeT++ simulator running the small-network exper-
iment; the circles show the transmission ranges of nodes

In this case, nodes also support 10-second end-to-end delays, like in the small

network. To counter the frame loss problem, nodes use the ARQ protocol with 1

retry.

5.9.3 Results

Packet Error Rate

This paragraph presents the average packet error rate (PER) in all simulations. As

stated above, OMNeT++ calculates the PER from several parameters, for example,

the TX power or distance between nodes. Nodes with DLDC-MAC do not apply any

solutions to unreliable communication, for instance, CSMA/CA or ARQ. Therefore,

the average PER is equal to the number of missed beacons. However, such a PER

does not include LETED frames that nodes missed because of slot overlap.

Figure 5.9.5 presents PER values of three scenarios in the small network. As

expected, the nodes did not su�er from the frame loss risk in S1, i.e., with a PER of

0%. In two other scenarios the PER was close to 10%.

Figure 5.9.6 shows the PER results of the large network for each route separately.

It is the average PER of all neighbors and not the PER of the previous or next node

to the sink. As nodes were deployed randomly, distance among them varied and

resulted in di�erent RX power and PER, i.e., from 0% to 3.35%. In this scenario, links
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Sink

Source 2 Source 3

Source 4
Source 5

Figure 5.9.4: Evaluated network of 155 nodes
Four sources send data to the sink along the routes depicted in the
�gure

worked more reliably than in the real-world experiments introduced in Chapter 8.

For example, node 50 had the worst-case PER of 3.35%, but the average PER of the

outdoor experiment was about 5%. Thus, the LETED results of the large-network

experiment are slightly better that in the real world.

Small Network

To estimate end-to-end delays, source nodes included event and transmission times

in frames. Each time the sink received a frame, it captured the reception time. Then,

it calculated the time passed from event detection.

During all simulations, sources had to deliver event notices to the sink within 10

seconds. Figure 5.9.7 shows the results of the small-network experiments: the sink

received more than 99% frames within this time. Only less than 0.5% frames reached

the sink too late. There are two reasons for frames reaching the sink too late. First,

if there is an overlap risk, nodes skipped a�ected slots. Should a node skip a TX

slot and have awaiting frames, it sends them in the next slot, i.e., in approx. 10

seconds in this case. Bit errors are the second reason for frames reaching the sink

too late. In this case, nodes use the ARQ protocol and send frames again, if they

do not receive ACK. It a�ects end-to-end delays only if nodes send retries in the

next TX slot. However, in this experiment, nodes sent retries in the same slot and
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Figure 5.9.5: Small network: the total number of missed beacons among all nodes in
three scenarios; as nodes did not apply ARQ for beacon transmission,
it shows the average PER of links

ARQ did not in�uence end-to-end delays. Therefore, the sink received some frames

too late because of skipped slots. This observation explains the results presented in

Figure 5.9.7. That is, in all simulations a similar number of frames achieved the sink

on time, although they di�er in the PER values and ARQ parameters.

Figure 5.9.7 includes only frames received by the sink. However, here the success

rate means the number of event notices received on time. Therefore, the success

rate must exclude missed frames. Figure 5.9.8 presents the number of missed frames

in all simulations. To obtain the success rate, the number of frames on time (see

Figure 5.9.7) must be reduced by missed frames. In S1 and S3 scenarios it a�ects

slightly the success rate. For example, in S3 the success rate is still higher than 99%,

as the sink missed less than 0.5% frames.

Although transmissions were not a�ected by bit errors in S1, the sink missed

0.25% packets (see Figure 5.9.8). As stated above, the sink missed some frames, as

nodes skipped some slots to reduce the overlap risk. It shows the performance of the

ARQ-based solution to the overlap problem: it resulted in 0.25% frame loss.

As expected, in the S3 scenario the sink missed more frames than in S1, i.e., 0.46%

and 0.25% respectively for source 0. However, the number of missed frames from

node 7 is equal in both scenarios. Theoretically, the sink should miss more frames in

S3 because of a higher bit error rate. This phenomenon can be explained as follows.

More retries in S3 resulted in longer slots, which could be used partly instead of

skipped like in S1. Figure 5.9.9 shows that nodes in S3 skipped fewer slots than in

S1 and used more slots partly. In addition, more ARQ retries in S3 recovered from

some bit errors. Thus, the number of missed frames is equal in both runs.

Figure 5.9.9 shows the average number of slots skipped, partly used and joined,
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Figure 5.9.6: Large network: the average number of missed beacons (corresponds to
the PER of links) for each route separately

in the small network scenario. These numbers depend on the total slot count and

their length. The �rst one stems from end-to-end delays nodes have to support. In

this scenario it was 10 seconds. The slot length depends mainly on the frame length

and the number of ARQ retries. Since in S1 and S2 nodes applied 1 ARQ retry, it

resulted it a similar number of slots skipped, partly used and joined. However, S3

applied more retries and resulted in longer slots. In this case, nodes used such long

slots partly more often than in previous runs, when they were skipped. Therefore,

the number of partly used slots in S3 is higher than in S1 and S2, 0.34% vs. 0.20%.

Clearly, if more slots were used partly in S3 than in the previous runs, fewer slots

were skipped: 0.14% and 0.20% skipped slots respectively. Besides, with longer slots

there was less free space between them, causing slots to join more often: 0.88% slots

in S3 vs. 0.72% in S1 and S2.
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Large Network

Although nodes in the large network (LN) scenario su�ered from a smaller PER than

in the small network (SN), the sink received fewer frames on time. For example, in

SN more than 99% frames reached the sink on time. In LN, however, the sink got

fewer than 99% frames on time from all routes, that is, within 10 seconds and less

(see Figure 5.9.10). In the worst case, it received 96% frames on time. Clearly, the

main reason for worse PER results of LN is the higher overlap risk because of more

neighbors than in SN. Besides, as nodes applied only one ARQ retry, it resulted

in short LETED slots. Should beacons and LETED slots overlap, nodes skipped

the latter ones and did not use them partly (details in Section 5.5.3). In this case,

nodes send awaiting frames in the next slot, i.e., after about 10 seconds, and the sink

received it too late. In the SN scenario, nodes skipped about 0.20% slots because
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of overlap (see Figure 5.9.9). However, in LN nodes skipped more slots than in SN,

i.e., from 0.45 to 0.65%.

Short LETED slots and a higher overlap risk a�ected also the total number of

missed events. In the worst case, the sink missed 1.53% frames (see Figure 5.9.11),

which is similar to the number of events missed in SN with one retry. However, in

the latter case nodes su�ered from a higher PER, i.e., 10% instead of 1-2%. As in

LN nodes missed more slots because of overlap than is SN, it caused a higher frame

loss rate. For instance, nodes in LN missed even 5x more frames because of overlap

than in SN, i.e., 0.72% (see source 4 in Figure 5.9.12) and 0.13% (see Figure 5.9.9)

respectively.

To achieve better performance, nodes might use the following solution. Should

nodes use only a few ARQ retries, they prolong LETED slots by sending ARQ

retries later and not consecutively. In overlap cases, nodes can use such slots partly

and prevent sending frames too late or discarding them.

Nonetheless, LETED achieved good results in the LN scenario even without the

improvement mentioned above: the success rate of all routes is more than 95%, i.e.,

the total number of frames received on time and not missed.
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Problem

Sensor nodes estimate the current time with crystal oscillators. The frequency of

oscillators is time variable. Changes of temperature, air pressure, or electric supply

voltage cause short-term variations of the oscillator frequency. Long-term variations

are caused by oscillator aging. Besides, the same oscillator type may run with dif-

ferent frequencies. Thus, clocks of sensor nodes run at di�erent speeds, referred to

as clock drift.

Clearly, clock drift may lead to several problems in communication protocols. For

example, nodes with TDMA approach may send and receive data at di�erent times

because of clock drift. Sensor nodes deal with the clock drift problem in scheduled

protocols by applying guard times, e.g., they wake up earlier than the expected

RX time to compensate drift to the sender. For example, nodes with DLDC-MAC

wake up earlier by the guard time each time they expect to receive a beacon (see

Chapter 4).

Since guard times result in idle listening, and shorten the lifetime, this chapter

examines clock drift in sensor networks. First, it presents the results of a long-term

drift experiment with sensor nodes running indoors and outdoors. Second, based on

the experiment results, it provides solutions that keep guard times short. In this

way, sensor nodes reduce idle listening, and work for a long time. Major parts of this

chapter were introduced previously in [5].

6.1 Drift Experiment

6.1.1 Overview

The main goal of the experiment was to collect enough clock drift samples to evaluate

various solutions to the drift problem. The experiment considered relative drift

between sensor nodes, including all causes a�ecting it. For example, it included the

time needed to power up the transceiver, which may not be constant, and the varying

time of software execution. As clock drift depends on environmental conditions, e.g.,
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temperature, pressure, the evaluation considered two types of nodes: with constant

and with changing temperatures. That is, some nodes were placed indoors, and

others outdoors. The latter ones were exposed to sunlight and varying temperatures.

However, the sink temperature was constant throughout the experiment. In this way,

drift measurements for various temperature di�erences between the sensor nodes and

the sink were collected.

In this experiment, ten Tmote Sky nodes periodically sent beacons to the sink,

once a minute, with the current temperature. A half of nodes were placed indoors,

and another half outdoors. The sink was connected to a logging computer. On

receiving a beacon, the sink recorded the RX time using its local hardware clock to

get precise results. The sink delivered the RX time, with the sender address and the

temperature, to the logging computer.

The sink was constantly powered up, and all nodes were located in a close vicinity

of the sink (i.e., one-hop network). In this way, the sink could receive beacons of all

nodes. Since the sink forwarded RX times to the computer, it did not have problems

with the limited storage capacity, and recorded measurements for two weeks with a

high frequency. The sink recorded drift samples with a frequency once a minute for

each node, resulting in about 200,000 drift samples.

6.1.2 Results

Tmote Sky nodes use crystal oscillators of 32.768 kHz frequency with drift of±20 ppm.
Thus, theoretically nodes need a guard time of approx. 80 ticks (2.4 ms) to com-

pensate worst drift of a 1-minute period. However, the sink received some frames

(less than 1%) with drift few times worse (more than 300 ticks) than the theoretical

worst case. It shows that not only the inaccuracy of crystal oscillator a�ects relative

drift, but also other factors (e.g., jitter in times needed to power up radio, software

execution time, etc.).

As expected, the drift distribution of nodes working indoors appears Gaussian

(see Figure 6.1.1). However, it does not hold true for outdoor environments (see

Figure 6.1.2). The reason for that is the in�uence of the changing temperature on

clock drift. The temperature of indoor nodes was constant, about 25 °C. However, the

temperature of outdoor nodes changed from about 20 °C (during nights) to more than

50 °C (during daytime). As the sink was not exposed to sunlight, its temperature was

constant, about 25 °C. Because of temperature variation, drift among the nodes and

the sink changed. Therefore, the drift distribution of outdoor nodes is not symmetric

and wider than the distribution of the indoor environment (compare Figures 6.1.1

and 6.1.2).
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Figure 6.1.1: Drift distribution among indoor nodes; magni�cation in the right upper
corners; 1 clock tick = 30.5 µs

The experiment revealed that nodes receive most messages in a small drift window.

For example, the sink received on average 98% frames of indoor nodes in a window

of 10 ticks. It is 30x smaller than the worst case including all factors a�ecting

drift. Besides, worst-case oscillator drift results in 8x longer guard times. This

holds true also for outdoor environments with changing temperature. In that case,

99% messages were received within a drift window of 40 ticks (see Figure 6.1.3).

However, to receive the remaining frames (less than 1%) nodes needed much longer

guard times, i.e., more than 300 ticks.

6.2 Solutions to Guard Times

Figure 6.2.1 shows a general TDMA approach with receivers responsible for dealing

with clock drift. That is, sender and receivers agree on the next communication time,

and keep their radios powered down until then. To compensate drift, receivers wake
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Figure 6.1.2: Drift distribution among outdoor nodes; magni�cation in the right up-
per corners

up earlier by the guard time, and listen until the frame arrives. Figure 6.2.1 also

presents three major solutions to the drift problem based on guard times, introduced

in the following.

6.2.1 Worst-Case Guard Time

With this solution, nodes use guard times that compensate worst-case drift since the

last synchronization. For example, the crystal oscillator used in Tmote Sky [33] has

the drift parameter of 20 ppm (parts per million). In the worst case, the oscillator

drifts ±20 microseconds in a second against the perfect clock, and 40 microseconds

between senders and receivers. In order not to miss frames because of clock drift,

receivers estimate worst-case drift of the sleep period, and use it as a guard time.

That is, they wake up earlier by this time. Some LDC protocols, like Dozer, use this

approach. Since drift to senders should not be worse than the worst case, receivers
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Figure 6.1.3: Amount of received frames in various drift windows, i.e. with guard
times of various length; indoors (top) and outdoors (bottom)

will not probably miss frames because of clock drift. As depicted in Figure 6.2.1,

the receiver expects the frame at a wrong time, shifted by the drift, and uses a long

guard time to compensate drift. Tmote Sky needs about 24 ms guard time for a

10-minute sleep period, which is 8x longer than the frame length.

Despite long guard times, receivers can still miss some frames because of other

factors that in�uence drift, e.g., jitters in the transceiver, and not only inaccuracy of

the oscillator. The drift experiments revealed that some frames were received with

drift larger than the theoretical worst case. Therefore, even when nodes consider the

worst case drift parameter of the oscillator, there is no guarantee that such guard

times compensate drift of all frames. Besides, guard times based on worst-case drift

are typically unnecessarily long, and cause excessive idle listening (see the evaluation

in Section 6.3).

6.2.2 Static (Short) Guard Time

As previously mentioned (see experiment results in Section 6.1.2), nodes receive most

frames within a short drift window. It provides a new solution to the guard time
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Figure 6.2.1: Three various solutions that estimate guard times

estimation. Should nodes deliberately give up the reception of some frames, they

shorten guard times signi�cantly. In this case, nodes estimate the length of guard

times before deployment. For instance, Tmote Sky nodes need 10 ticks guard times

to compensate drift of 98% frames indoors. Such guard times are 30x shorter than

with the approach based on worst-case drift of oscillator. In this way, nodes reduce

idle listening and prolong the lifetime. Figure 6.2.1 compares this solution to the

approach based on worst-case drift. In both cases the expected RX frame is shifted

by drift. However, with this solution guard times are shorter.

The solution works well in 10 out of 10 examined Tmote Sky nodes, indoors

and outdoors. It would probably work well with other node types, since they use

similar oscillators. However, as other oscillators may have slightly di�erent drift

characteristics, there is a need to �nd the static value of guard times needed to

receive the desired number of frames, but still keeping guard times short. In addition,

large-scale drift experiments should be carried out to evaluate the solution on more

than 10 nodes, and on di�erent hardware platforms.

6.2.3 Drift Prediction: Linear Regression

With solutions based on drift prediction, nodes estimate future drift to senders. To

compensate prediction errors, nodes use guard times, which are shorter than the
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6.2 Solutions to Guard Times

solution based on worst-case drift (see the evaluation in Section 6.3).

Since clock drift is stable over a short time [30, 16], nodes predict drift by using

linear regression. For example, with beacon-based protocols, they apply the ordinary

least squares (OLS) method on previous drift samples and beacons. Nodes store n

previous samples < b, rx >; b is the beacon sequence number (included in the beacon)

and rx the beacon RX time. The next beacon reception time, based on the prediction

of future drift, equals:

tnext = β1 · b+ β0 (6.2.1)

where b is the expected beacon sequence number, β1 and β0 OLS parameters:

β1 =
n
∑n

i=1 birxi −
∑n

i=1 bi
∑n

i=1 rxi

n
∑n

i=1 b
2
i − (

∑n
i=1 bi)

2 (6.2.2)

β0 = r̄x− β1b̄ (6.2.3)

where b̄, r̄x are the average values of the beacon sequence numbers, and the corre-

sponding RX times of n previous beacons.

Clearly, tnext may not be accurate enough, and nodes miss beacons. Thus, ref.

[16] introduces con�dence bands (guard times) around tnext:

tnext ± [∆ · SE(tnext)] (6.2.4)

where SE(tnext) is the standard error of the predicted value, and ∆ the scaling factor

obtained empirically, e.g., during an initialization phase, to compensate prediction

and estimation errors.

This work extends the OLS approach by de�ning ∆ as the factor needed to com-

pensate drift of a prede�ned number of frames, referred to as RX rate. The rationale

behind this is the fact the majority of frames are compensated with short guard

times, i.e., with small ∆. On the contrary, drift compensation of all frames needs

excessive long guard times, and increases idle listening. Therefore, nodes using OLS

can deliberately give up the reception of some frames, and use short guard times,

reducing idle listening. The experiments revealed that ∆ does not vary among sensor

nodes, and can be either discovered during the initialization phase, or estimated be-

fore deploying the nodes. For example, the value of ∆ needed to receive 99% frames

varied from 2.7 to 3.1 among outdoor nodes.

To achieve high OLS precision, nodes collect previous drift samples, and must

not miss any beacon. Thus, they use the worst-case guard times for some beacons,

and cause signi�cant idle listening. However, evaluation based on the empirical drift

samples revealed that OLS still predicts future drift accurately, if it uses short guard
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6 E�cient Solution to Clock Drift Problem

times and misses some beacons. For example, if nodes miss 1% beacons, the standard

deviation of drift prediction was approx. 1 clock tick (30.5 µs) for 1-minute sleep

period.

Although the adapted OLS shortens guard times, it causes several problems when

applied on sensor nodes. OLS needs an emulation of �oating-point arithmetic on

microcontrollers. When using single precision, the truncation error can vary from

±17 µs to ±17.7 ms, according to [16]. When using more accurate, i.e., double-

precision operations, OLS may take even 120 ms [16]. Besides, �oating-point module

and operations need extra memory, which is limited on sensor nodes. Thus, these

drawbacks limit the use of linear regression approach on sensor nodes.

6.2.4 Moving Average Drift Compensation (MADC)

This paragraph introduces a novel approach to drift compensation for low duty cycle

(LDC) protocols. Although some works applied the moving average �lter to oscillator

drift, e.g., Symmetric Clock Synchronization [46], they use it for di�erent purposes,

and do not address the problem of LDC protocols.

The main goal of this solution is to predict drift accurately, but with a small

overhead in calculations, storage capacity, etc. MADC (Moving Average Drift Com-

pensation) resembles the linear regression approach, but uses simpler mathematical

operations to estimate future drift.

Drift Compensation

Nodes with MADC estimate future drift and its uncertainty in order to calculate

guard times for the following beacon, like the approach based on linear regression

(see the previous paragraph).

Nodes predict future drift δavg to senders by applying the moving average �lter on

the previous n beacon RX times rxi:

δavg =

∑n
i=1(rxi+1 − rxi)
n · Tbeacon

(6.2.5)

where i denotes the sample index starting from the oldest one. In this work, sensor

nodes approximate Eq. 6.2.5 using 32-bit integers, which are accurate enough for

MADC. Then, nodes estimate the next wake up time tnext to receive a beacon:

tnext = tlast + Tbeacon · δavg (6.2.6)

As run-time drift may vary from the predicted value δavg, nodes compensate it by
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using guard times based on the drift jitter κ (expressed in ppm) as:

tnext ± (m+ 1) · κ · Tbeacon (6.2.7)

where m is the number of consecutive missed beacons. According to Eq. 6.2.7, nodes

use longer guard times after they miss a beacon.

Initialization Phase

If the drift jitter κ does not vary among nodes, as in the drift experiment presented

previously, nodes estimate it before deployment. Otherwise, nodes must discover

empirically the jitter needed to receive a prede�ned number of frames, e.g., during

the initialization phase. An algorithm for the jitter discovery that does not need

storing previous drift samples consists of the following steps:

1. Γ-array contains RX counters for prede�ned jitter values from κmin to κmax;

each node �lls the array with zeros at the beginning.

2. Nodes use the worst-case guard time to receive as many beacons as possible.

On beacon reception, nodes increment the counter for all jitters κ that com-

pensated current drift according to Eq. 6.2.7., i.e., Γ[κ]++

3. After receiving the prede�ned number of beacons Φ, each node �nds

min(κ) :Γ[κ]
Φ ≥ ψ, where ψ is the desired RX rate.

6.2.5 Evaluation of Drift Prediction Approaches

The evaluation considers the indoor and outdoor drift samples collected during the

experiment. Both approaches, linear regression and moving average, were imple-

mented as a standalone program. It iterated through drift samples, and provided

the results.

Precision of Drift Prediction

This paragraph evaluates precision of both prediction approaches: MADC and OLS.

It compares the standard deviation σ of drift prediction, i.e., the di�erence from real

drift to the predicted one.

In the indoor environment, there were only minor di�erences between MADC and

OLS (see Figure 6.2.2). On nodes A, C and D both approaches achieved similar

results. OLS predicted drift more accurate on node E, whereas MADC was better
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Figure 6.2.2: The prediction accuracy of moving average (MADC) and ordinary least
squares (OLS) on indoor nodes

on node B. However, these di�erences are negligible, i.e., σ di�erence was smaller

than a clock tick.

For small sample windows, MADC and OLS achieved similar results in the outdoor

environment (see Figure 6.2.3). However, on 3 out of 5 nodes, accuracy of OLS

prediction was worse with the increasing number of considered drift samples. For

example, σ on node E with 7 previous samples was 2 ticks. Changing the number of

previous samples to 20 resulted in almost 5 ticks σ. Since clock drift is stable over a

short time [30, 16], nodes predict it precisely using linear regression. In other words,

linear regression achieves precise results, if drift was stable in the past. In some cases

(nodes A, D, E), however, since drift was not stable over long periods (10 minutes

and more), OLS did not predict drift precisely. On the contrary, the moving average

�lter does not su�er from this problem. Therefore, MADC achieved high prediction

accuracy on all examined nodes, indoors and outdoors. Besides, on some outdoor

nodes, MADC predicted drift more accurate than OLS. For example, on node D σ
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Figure 6.2.3: The prediction accuracy of moving average (MADC) and ordinary least
squares (OLS) on outdoor nodes

of MADC was approx. 1 tick with 17 and more previous samples, whereas σ of OLS

was 3 ticks and more (see Figure 6.2.3).

Although MADC achieves similar results to OLS indoors, and even better re-

sults on some nodes outdoors, it works with fewer resources and operations than

OLS. Table 6.1 depicts the number of operations needed for a single drift prediction.

MADC works well with integer values, whereas OLS needs �oating-point arguments

for mathematical operations, causing longer computations.

Impact of Samples History

Ref. [16] claims there is the best history window size of OLS that provides the

most accurate drift prediction, i.e., the history window size of 8 previous samples

(1-minute sampling period). However, the drift experiment presented in this work

did not con�rm the statement. On the contrary, there is no best history window in
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6 E�cient Solution to Clock Drift Problem

Table 6.1: Complexity of a single drift prediction with n previous drift samples.
MADC works with integer values, whereas OLS needs �oating-point (FP)
operation, i.e., it takes longer, consumes more energy and needs FP arith-
metic module.

ADD SUB MUL DIV SQRT

MADC n+1 n-1 4 1 0

OLS 7n-2 3n+4 5n+5 4 1

indoor environments (see Figure 6.2.2). In general, the more samples nodes consider,

the more accurate the prediction is. For example, on node B σ of OLS with 3 previous

samples was 5 ticks. Doubling the number of previous samples decreased σ by a half.

Only on some outdoor nodes there was the best sample window. For example, node

A achieved the best result with 10 previous samples, but node E with 7 samples (see

Figure 6.2.3).

Prediction accuracy is higher with the increasing number of past drift samples.

However, there is a limit of prediction accuracy, i.e., any increase in the number

does not improve the prediction. For example, the indoor node A predicted drift

accurately (σ of approx. 1 tick) with only 6 previous samples (see Figure 6.2.2). Any

increase in the number of considered samples did not improve prediction accuracy.

Initialization Phase

Table 6.2 presents the values of jitter windows (MADC) and scaling factors (OLS)

that compensate drift of 99% messages. These values were obtained by considering

all drift samples.

After 10 hours of initialization phase, MADC and OLS discovered jitter win-

dows/scaling factors precisely, i.e., within ±1 tick margin (see Figure 6.2.4). How-

ever, after 20 hours the estimated jitter windows of MADC got worse. This sudden

change is caused by large clock drift on some nodes during 20-25 hours. It shows

that nodes may overestimate the jitter windows, which leads to longer guard times.

However, this problem is not addressed in this work.

Idle Listening

The longer guard times are, the fewer messages are missed because of not compen-

sated drift. However, long guard times increase idle listening. Figure 6.2.5 presents

the relation between the RX rate and idle listening of all indoor and outdoor nodes.
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Figure 6.2.4: Time needed to estimate jitter windows/scaling factor; average among
5 outdoor nodes

Table 6.2: Jitter windows (MADC) and scaling factors (OLS) in ticks of Tmote Sky
needed to compensate drift of 99% messages; 1 tick is approx. 30.5 µs;
the table shows integer values rounded up

node
1 2 3 4 5

indoor MADC 2 2 4 3 4
outdoor MADC 5 6 4 4 4
indoor OLS 1.7 1.4 1.8 1.1 2.2
outdoor OLS 3.1 3.0 3.0 2.9 2.7

Both approaches cause less than 1.5 tick (45 us) idle listening per frame when

supporting 80% RX rate and less. Nodes achieve higher RX rates when using longer

guard times, and it results in a slightly longer idle-listening time. For example,

MADC achieves 99% RX rate and causes only 3 ticks of idle listening indoors. The

approach based on the worst-case guard times causes on average 150 ticks of idle

listening. However, it compensates drift of all frames.

OLS causes shorter idle listening than MADC. For instance, with 99% RX rate

OLS causes 1.8 ticks idle listening indoors (MADC 3 ticks), and 3.6 ticks outdoors

(MADC 4.3 ticks). Thus, although MADC may predict future drift more accurately

than OLS, especially outdoors, it causes longer idle listening. The reason for that is

the estimation of guard times. OLS uses guard times of various lengths, according to

the standard error of prediction (see Eq. 6.2.4). In other words, if nodes predicted

drift accurately in the past, they use short guard times. On the contrary, MADC

uses guard times of �xed-length, even when the prediction was accurate. As a result,

it uses longer guard times than OLS for some frames, and causes longer idle listening.
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However, such small di�erences in idle listening have almost no impact on the lifetime.

The next paragraph presents the lifetime results in detail.

6.3 Evaluation

This paragraph evaluates idle listening caused by guard times (GTs) needed to com-

pensate drift of 1-minute sleep period. The following approaches are evaluated (the

number in brackets are theoretical drift values between senders and receivers based

on the length of guard times):

� Worst-case (152.5 ppm); nodes estimate GTs based on very worst-case drift,

i.e., including not only oscillator drift, but also other factors, like jitters in code

execution. According to the drift experiment, this drift is at least 300 ticks on

Tmote Sky nodes.

� Oscillator Worst (40 ppm); for the GT estimation nodes consider only the

worst-case drift parameter of the oscillator, 40 ppm for a Tmote Sky node

pair.

� Static (20.3 ppm); guard times compensate drift of approx. 98% frames, ac-

cording to the drift experiment outdoors. The remaining 1% frames is lost

because of not compensated drift.

� MADC (2.18 ppm); nodes compensate drift with MADC (Moving Average Drift

Compensation), i.e., they predict future drift based on previous drift samples.

In this case, MADC does not compensate drift of less than 1% frames.
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� OLS (1.83 ppm); like MADC, nodes predict future drift and estimate GT. Here

they use linear regression based on the ordinary least squares method. In this

case, OLS misses 1% of frames because of not compensated drift.

Obviously, idle listening wastes energy, and therefore shortens the lifetime. Since

guard times result in idle listening, their reduction a�ects the lifetime. That is, the

shorter are guard times, the longer is the lifetime. To estimate the lifetime gain

of various solutions to guard times, this evaluation uses the energy consumption

model presented in Chapter 7. Besides, it considers the same scenario with the

corresponding hardware and software parameters. In short, nodes form a multi-hop

network and monitor the environment. When an event occurs, once an hour in this

case, they have to notice the sink within 5 seconds. To support such an end-to-end

delay, they wake up frequently according to the LETED approach. As they use

guard times each time they wake up, the nodes consume a signi�cant amount of

energy to compensate drift. Therefore, shorter guard time can signi�cantly prolong

the lifetime.
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Figure 6.3.1: Idle Listening caused by guard times (various solutions to guard times
compared) needed to compensate drift of 1-minute period

Should nodes compensate drift of all frames, i.e., Worst-case approach, they need

GTs of more than 9 ms for 1-minute sleep period (see Figure 6.3.1). Such long

GTs are more than 2x longer than the longest frame supported by IEEE 802.15.4

standard. Nodes with such an approach achieve a lifetime at least 2x shorter than

other solutions (see Figure 6.3.2). It shows the GT estimation based on worst-case

drift results mainly in enormous energy waste. Thus, it should not be applied to

energy-e�cient applications.

A common way to estimate GTs considers the worst-case drift parameter of the

crystal oscillator. In this case, it results in 2.4 ms guard time. However, although

this approach shortens GTs almost 4x against the very worst case, it still results in
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signi�cant idle listening, i.e., 2.4 ms per frame.

The drift experiment revealed that nodes receive most frames in a short drift

window. Thus, when nodes use shorter guard times, they prolong the lifetime, and

still receive most frames. In this scenario, nodes used GTs of 1.4 ms and received

98% frames, depicted as Static in Figure 6.3.1. By doing so, they shortened GTs by a

half against the approach based on worst-case oscillator drift. Since it decreased idle

listening, the solution prolonged the lifetime from 2.19 to 2.56 years (see Figure 6.3.2).

The solutions to the drift problem based on drift prediction, linear regression or

moving average in this case, outperforms other approaches. They shorten GTs almost

20x against the solution based on worst-case oscillator drift. It results in a lifetime

gain of about 40%. It is because of short GTs provided by these solutions. On

average, nodes need 0.1 ms long GTs to compensate drift, i.e., GTs are approx. 3%

of the longest frame in IEEE 802.15.4 standard.

Although this evaluation use the model introduced in Chapter 7, MADC achieved

a lifetime 3% longer than the results presented in that chapter. The evaluation of

chapter 7 applied extra solutions to deal with multi-hop drift, and nodes consumed

slightly more energy.

Clearly, the solutions based on drift prediction are not tailored to LETED only,

but works with other MAC protocols as well. For example, the previous work [5] uses

the MADC approach to nodes with the IEEE 802.15.4 MAC. Should nodes wake-

up every minute to receive beacons, they prolong the lifetime 5% by using MADC

instead of common solutions to the drift problem. Thus, any schedule-based MAC

bene�ts from new approaches to drift compensation.
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6.4 Summary

This chapter presented various solutions to drift compensation. It introduced MADC

(Moving Average Drift Compensation), a drift prediction method that can be applied

to sensor nodes owing to its simplicity. MADC shortens idle listening 20x against the

usual solutions to drift compensation. Besides, it is not limited to DLDC-MAC and

LETED. Any protocol that deals with the clock drift problem, like IEEE 802.15.4,

can bene�t from reduced idle listening provided by MADC.
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7 Lifetime Evaluation

This chapter evaluates various solutions to short end-to-end delays. It introduces an

analytical model for estimating the lifetime of nodes and compares the performance

of LETED and DLDC-MAC with other duty-cycled protocols.

7.1 Overview

7.1.1 Scenario

Table 7.1: Parameters of the considered scenario

Parameter Description Value

λframe data frame length 128 bytes

Tevent how often events occur variable

n hop count: source to sink 2, 5, and 10

dEtE maximum end-to-end delay variable

Tmcuactive
how long the µC is active a day when

radio is powered down
10 minutes

This evaluation considers sensor nodes that monitor some events, e.g., gas leakage.

After source nodes detect such events, they send notice frames to the sink. Tables

7.1, 7.2 and 7.3 present the parameters of the scenario described below.

The lifetime of nodes depends on needed end-to-end delays, since it in�uences the

duty cycle. Thus, the evaluation considers variable end-to-end delays, starting from

less than a second. Since end-to-end delays depend on the hop distance between the

source and the sink, three scenarios are di�erentiated: with 2, 5 and 10 hops to the

sink.

In this scenario, nodes send small frames, only 128 bytes, after they detect an event.

The frequency of events determines the number of transmissions. The more events

sources detect, the more frames they send. Variable event periods are considered,

ranging from 60 seconds to 12 hours.
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Table 7.2: LETED and DLDC-MAC parameters

Parameter Description Value

ttx_offset
the time a TX slot follows the

corresponding RX slot in LETED
50 ms

trx_post

the time to get a frame in the
application layer after it was received

by the transceiver
4.5 ms

tSFD SFD detection time 100 µs

Tsync

the period of sending SYNC frames
to align wake-up schedule along the

path
5 minutes

Parameters of the underlying DLDC-MAC protocol:

Tbeacon beacon period 120 secs

λbeacon beacon length 128 bytes

λbeacon_after
how long (bytes) the node waits in
listening after sending a beacon

128 bytes

nbours the number of neighbors 4

MBR the average missed beacon rate 1%

After nodes with LETED received a frame, they wait for the time ttx_offset before

sending it to the next node. The smallest ttx_offset must compensate drift arisen

between the sender and the receiver over the sleep period. Therefore, ttx_offset
should be long enough to counter the drift problem. However, ttx_offset a�ects end-

to-end delay and duty cycle (see Eq. 5.2.2), and therefore it should be short enough.

In this scenario nodes apply ttx_offset of 50 ms.

To cope with errors occurring in multi-hop drift estimation, nodes send extra

SYNC frames (details in Chapter 5). The SYNC period should be short enough

to recover from multi-hop drift changes, caused mainly by temperature variation.

In this scenario nodes send SYNC frames every 5 minutes. The value has been

estimated during simulations with the LETED protocol introduced in Chapter 5,

and it guaranteed slot synchronization with common clock drift rates.

Table 7.2 presents DLDC-MAC parameters too. Although the beacon period

Tbeacon equals 2 minutes, it does not a�ect end-to-end delays, since nodes use LETED

slots for transmissions of event notices. As nodes with DLDC-MAC receive beacons

from all neighbors, the number of neighbors a�ects duty cycle and the lifetime. In
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Table 7.3: Hardware parameters of the energy consumption model together with val-
ues used for evaluation

Parameter Description Value

Q available energy 1800 mAh

Imcuactive
current consumption when the µC is

active
2 mA

Itx
Irx

current consumption when sending
and receiving

20 mA
22 mA

Isleep
current consumption when the node

sleeps
0.01 mA

ϑ transceiver data rate 250 kbps

Eselfdischarge daily self-discharge rate of batteries 0.74 mAh

Estartup
Eshutdown

energy needed to power the
transceiver up and to power it down

7.2 nAh
4.2 nAh

Etxrxswitch

energy needed to change the
transceiver mode from sending to

receiving
4 nAh

δ
relative clock drift between two

nodes when MADC (Moving Average
Drift Compensation) is applied

2.18 ppm

λpreamble preamble length 4 bytes

λSFD
the length of SFD (Start Frame

Delimiter) �eld
1 byte

this scenario, nodes have four neighbors on average. When a beacon is missed, nodes

apply a double-length guard time for receiving the following beacon. It results in

longer idle listening, shortening the lifetime. The average missed beacon rate is as

high as 1%, that is, the bit error rate (BER) equals about 10−6.

Nodes can miss beacons and data frames in this scenario, as approaches for han-

dling the frame loss problem are not adopted. These include ARQ and CSMA/CA,

which are evaluated separately in Chapter 8.

Finally, Table 7.3 lists the hardware parameters of the Tmote Sky sensor platform.

The parameters come from the datasheet [33] and from measurements. The values

of current and energy consumption are given in mA and mAh units, and not in W

and Ws, as hardware datasheets usually provide the former.
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Tmote Sky nodes use two AA batteries as the energy source. Here they have 2x

rechargeable batteries Sanyo eneloop [42], each with the total capacity of 2000 mAh.

However, Tmote Sky uses about 80% of the available energy, as these batteries pro-

vide 80% of capacity with required 1.2V voltage. Besides, the scenario also considers

the self-discharge of the batteries. Sanyo eneloop batteries lose about 15% of the

capacity in a year, resulting in a day loss of about 0.74 mAh.

To reduce idle listening stemming from guard times, nodes use the drift prediction

solution based on moving average (MADC), introduced in Chapter 6. This way

relative drift among two nodes can decrease to approx. 2.18 ppm.

7.1.2 Evaluated MAC approaches

This analysis compares LETED and DLDC-MAC with the following approaches,

which support low duty cycles:

1. Staggered schedule

2. Schedule based TDMA (Time Division Multiple Access)

3. Preamble Sampling

These approaches were previously discussed in Chapter 3, and therefore they are

brie�y introduced here.

Staggered Schedule

This chapter discusses the main idea of the staggered schedule independently of

LETED, although the latter is based on the same method. By doing so, energy sav-

ings of LETED can be calculated and compared with the generic staggered schedule

approach.

By applying the staggered schedule, nodes arrange their wake-up times to limit

end-to-end delays. Shortly after receiving a frame, the node forwards it immediately

to the next hop, as the next node is already in the listening state (see Chapter 3).

Average end-to-end delays dEtE equal to:

dEtE =
Tsleep

2
+ tframe + (n− 1) · (tframe + toffset) (7.1.1)

where Tsleep is the sleep period, n the number of hops on the path to the sink, tframe
the frame length, and toffset is the time between the RX slot and the corresponding

TX slot on each node.
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Apart from the staggered schedule, nodes need an underlying MAC protocol, since

such a schedule does not provide rendezvous with all neighbors. This assessment

focuses on the staggered schedule coupled with DLDC-MAC. Since LETED is based

on DLDC-MAC as well, it provides an accurate estimation of the energy saved by

LETED against the generic staggered schedule.

To estimate energy consumption and the lifetime of nodes with the staggered

schedule, LETED energy consumption was considered, but without the improve-

ments of idle-listening avoidance (ILA).

Scheduled MAC

In schedule-based approaches, for instance, IEEE 802.15.4, Dozer, S-MAC or DLDC-

MAC, nodes mostly sleep and agree on speci�c short wake-up times. Thus, nodes do

not send data immediately after they detect an event, but wait till the next wake-up

period (details in Chapter 3). It causes average end-to-end delays de2e equal to:

de2e = n · (
Tsleep

2
+ tframe)

where n is the number of hops to the sink, Tsleep is the sleep period, and tframe is

the frame length. To limit end-to-end delays, nodes adapt the sleep period:

Tsleep =
de2e
n
− tframe

However, by doing so, the duty cycle of nodes increases, energy consumption rises,

and the lifetime is shortened. Based on the DLDC-MAC, which is an example of

schedule-based approach, this chapter examines the results of scheduled MAC pro-

tocols. Section 7.2.3 introduces DLDC-MAC energy consumption model. There

are only minor di�erences in the energy model between DLDC-MAC and other

scheduled-based MACs. Therefore, these protocols achieve similar lifetime results

as DLDC-MAC.

Preamble Sampling

As already introduced in Chapter 3, protocols based on Preamble Sampling shorten

delays by adapting the sleep period, although they were not designed to primarily

support end-to-end delays. As the average forwarding delay equals the half of the

sleep period Tsleep, which is the worst-case preamble length, the average end-to-end

delay dEtE of a n-hop path is estimated as:

dEtE = n · (
Tsleep

2
+ tframe)
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where tframe is the frame length.

Preamble sampling causes idle listening on both senders because of long preambles,

and on receivers because of periodic checks of the channel activity. Besides, if nodes

detect a preamble on the channel, they remain in the RX state until the frame arrives,

and it increases idle listening as well. Clearly, to prolong the lifetime nodes need to

reduce idle listening by adapting the preamble length.

There is a tradeo� in preamble length. On the one hand, short preambles reduce

idle listening of transmissions. On the other hand, the idle-listening time at receivers

can be made longer with short preambles, as they need to often wake up. However,

this might decrease idle listening too, as receivers do not wait long for data once a

preamble is detected.
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(a) B-MAC generates long preambles and receivers need approx. 350 µs to detect it;
B-MAC runs only on radios supporting a low-level access to individual frame bits
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(b) TICER emulates long preambles by sending consecutive beacon frames; nodes
require about a millisecond to receive a beacon and detect channel activity.
Although TICER does not perform better than B-MAC, it works with all
transceivers

Figure 7.1.1: There is the optimal preamble length in solutions based on Preamble
Sampling; the results show the lifetime for various duty cycle, i.e., nodes
send frames once a minute, once an hour and every 12 hours.
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7.2 Energy Consumption Model

To �nd the optimal preamble length, the formulas introduced in the lifetime model

were applied to the scenario mentioned previously. In short, sources in a 5-hop

network send data frames to the sink with a di�erent frequency: once a minute,

once an hour, and every 12 hours. Figure 7.1.1 presents the lifetime of B-MAC and

TICER protocols. By adapting the preamble length, nodes balance idle listening in

TX and RX states, so they �nd the optimal preamble. With an average TX period

of a minute, B-MAC achieves the longest lifetime with a preamble of 120 ms (see

Figure 7.1.1 and Table 7.4). Should nodes rarely send data, idle listening on senders

becomes smaller. In this case, to balance idle listening in TX and RX states, nodes

apply longer preambles. Thus, the optimal preamble length is longer in scenarios with

lower duty cycles. For example, the optimal preamble with the average TX period

of an hour is about 8x longer than in the scenario with 1-minute TX frequency.

The main di�erence between TICER and B-MAC is the longer time that the

former needs to discover channel activity. In this scenario, nodes with TICER expect

�preamble beacons� of 30 bytes, and therefore they need about 960 ms to detect it.

With a longer channel check time, TICER achieves worse results than B-MAC. For

instance, with an average TX period of 1 hour, the lifetime is reduced by 15%, if

nodes apply TICER instead of B-MAC. However, the main advantage of TICER is

that it works with every transceiver, as it sends ordinary frames. On the contrary, B-

MAC needs a low-level access to individual bits of preambles. Besides, the transceiver

supporting B-MAC must be able to transmit preambles of any length.

Table 7.4: The optimal preamble length and the lifetime (in brackets) for B-MAC
and TICER

Average TX time
1 minute 1 hour 12 hours

B-MAC 120 ms 0.94 s 3.27 s
(1.1 years) (2.76 years) (3.27 years)

TICER 200 ms 1.56 s 5.42 s
(0.76 years) (2.41 years) (3.12 years)

7.2 Energy Consumption Model

This section introduces the energy consumption model of nodes using LETED cou-

pled with DLDC-MAC. Moreover, it provides a model for protocols based on Pream-
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ble Sampling. Table 7.5 lists the symbols used in the model. The parameters related

to the scenario were introduced previously (see Tables 7.1, 7.2 and 7.3).

7.2.1 Lifetime and Daily Energy Consumption

The lifetime of sensor nodes with LETED and DLDC-MAC is estimated as:

Lifetime =
Q

Eday
(7.2.1)

where Q is the available battery capacity, and Eday is the total energy consumption

a day, that is, the sum of energy consumed by all activities:

Eday = ELETED + ELDC (7.2.2)

Emcu + Eselfdischarge

where ELETED and ELDC is the energy consumed by LETED and DLDC-MAC

respectively, Emcu is energy consumed by the microcontroller in both active and

sleep states, and Eselfdischarge is the self-discharge rate of batteries.

7.2.2 LETED Energy Consumption

LETED consumes energy when sending and receiving data in active slots, and while

listening for potential transmissions in passive slots. For the sake of simplicity,

listening in passive slots is only keeping the transceiver in the RX state. Therefore,

LETED consumes energy while sending frames Etx_slots, or when keeping the radio

in the RX state Erx_slots:

ELETED = Etx_slots + Erx_slots

The number of active slots Nactive depends on the average event period Tevent:

Nactive =
Tday
Tevent

(7.2.3)

The number of passive slots depends on end-to-end delays dEtE the network sup-

port. In other words, each node wakes up every Tslot period to receive and to send

potential data:

Tslot = dEtE − n · (tframe + ttx_offset)
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where tframe is the expected frame length, and ttx_offset is the gap between receiving

a frame and sending it to the next node. Then, the total number of passive slots a

day Npassive is:

Npassive =
Tday
Tslot

−Nactive

As nodes send during active slots only, the total TX energy is estimated as:

Etx_slots = Nactive · (tframe · Itx + Estartup + Eshutdown) (7.2.4)

where Itx is the transceiver current consumption while sending, Estartup andEshutdown
energy consumed to power up and down the transceiver. The expected frame length

tframe in time units is calculated as follows:

tframe =
λframe + λpreamble + λSFD

ϑ
(7.2.5)

where λframe is the expected data length, and ϑ is the transceiver data rate. tframe
also includes the preamble λpreamble and the Start Frame Delimiter λSFD.

The single reception time during active and passive slots, trx_active and trx_passive,

is necessary to estimate energy consumption of frame reception:

trx_active = tguard + tframe + trx_post (7.2.6)

where tguard is the guard time, tframe is the average frame length, and trx_post is the

extra time needed to detect that no frames follow the current one.

Nodes apply the Moving Average Drift Compensation (MADC) to deal with clock

drift and estimate tguard in the same way as DLDC-MAC does (see Eq. 7.2.16).

By applying the Idle Listening Avoidance (ILA) solution, introduced in Chapter 5,

nodes can shorten passive slots to:

trx_passive = tguard + tpreamble + tSFD (7.2.7)

where tSFD is the time needed to detect the Start Frame Delimiter of incoming

frames, and tpreamble is the preamble reception time together with the SFD �eld.

tpreamble is estimated like tframe (see Eq. 7.2.5).

As stated before, nodes with LETED consume energy Erx_slots while receiving in

both active and passive slots:
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Erx_slots = Nactive · (trx_active · Irx) +Npassive · (trx_passive · Irx) +

(Nactive +Npassive) · (Estartup + Eshutdown) (7.2.8)

Erx_slots = Irx · (Nactivetrx_active +Npassivetpassive) + (7.2.9)

(Nactive +Npassive) · (Estartup + Eshutdown)

where Irx is the current drawn in the RX state.

7.2.3 Energy Consumption of DLDC-MAC

DLDC-MAC protocol consumes energy when sendingEtxbeacon and receivingErxbeacon
beacons:

ELDC = Etxbeacon + Erxbeacon (7.2.10)

Thus, to estimate the energy consumption of DLDC-MAC, the total number of

beacons a day B is estimated:

B =
Tday
Tbeacon

(7.2.11)

where Tbeacon is the beacon period, i.e., the time between two successive beacons.

Beacon Transmission

Nodes with DLDC-MAC send beacons periodically every Tbeacon time. After sending

a beacon, nodes stay trxbeaconafter time in the RX state to receive potential network

control frames, like network join requests. Clearly, as nodes switch from the TX to

the RX state, they consume extra Etxrxswitch energy. The total energy consumed for

sending beacons equals:

Etxbeacon = B · (ttxbeacon · Itx + (7.2.12)

trxbeaconafter · Irx +

Etxrxswitch + Estartup + Eshutdown)

Both parameters beacon length λbeacon and the listening time after beacons λbeacon_after
are expressed in bytes. The following formulas express them in time units, according
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to the transceiver data rate ϑ:

ttxbeacon =
λbeacon
ϑ

(7.2.13)

trxbeaconafter =
λbeacon_after

ϑ
(7.2.14)

Beacon Reception

Nodes with DLDC-MAC receive beacons from all neighbors and consume energy

Erxbeacon:

Erxbeacon = B · nbours · (trxbeacon · Irx + Estartup + Eshutdown)

where nbours is the number of neighbors, and trxbeacon is the time needed to receive

a single beacon. As nodes compensate clock drift, they apply guard times tguard to

each beacon. Therefore, the time to receive a single beacon equals:

trxbeacon = tguard + ttxbeacon (7.2.15)

For the sake of simplicity, ttxbeacon includes the preamble and the SFD �eld as well.

Obviously, guard times depend on the beacon period Tbeacon, i.e., on the last time

when nodes synchronized their times by receiving beacons. Besides, if nodes miss a

beacon, they double the guard time for the next reception try. The average guard

time tguard over a beacon period Tbeacon is estimated as:

tguard =
δ · Tbeacon
1−MBR

(7.2.16)

where δ is relative drift among neighbors, and MBR is the average missed beacon

rate. In this scenario, nodes use the MADC (Moving Average Drift Compensation)

solution for guard times (details in Chapter 6).

7.2.4 Preamble Sampling

Total energy consumption of Preamble Sampling Epreamble consists of energy needed

for sending data Etx and the reception energy Erx:

Epreamble = Etx + Erx

Nodes with Preamble Sampling send data only when they detect an event. Thus,

the total number of transmission slots Ntx depends on the event frequency Tevent:
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Ntx =
Tday
Tevent

where Tday is �the amount of time units a day�, like in the LETED model. As

stated above, nodes may send a series of short frames that imitate a long preamble.

However, for the sake of simplicity, this model assumes that nodes send continuous

preambles. Then, TX energy is estimated as:

Etx = Ntx · (Tsleep + tframe) · Itx + Estartup + Eshutdown

where Tsleep is the sleep time of receivers and also the preamble length.

With the Preamble Sampling approach, nodes repeatedly check the channel activ-

ity. The number of such check operations a day Nrx is:

Nrx =
Tday
Tsleep

On average, nodes receive a half of the preamble before receiving data frames, and

the total reception energy equals:

Erx = [Nrx · trx +Ntx · (
Tsleep

2
+ tframe] · Irx

where trx is the sampling channel duration, i.e., the time nodes need to discover

whether other nodes send a long preamble. If nodes use bit-streaming radios, like

CC1000, they have a low-level access to individual bits while sending or receiving. In

this case, nodes send long and continuous preambles, and receivers use short times

trx to detect channel activities. For example, Low Power Listening introduced in

B-MAC [37] needs approx. 350 µs to detect a preamble. However, nodes with pack-

etizing radios, for example, CC2420, cannot control the preamble length. Therefore,

they imitate a long preamble by sending short wake-up frames in a sequence, like

in TICER. In this case, trx is a few times longer than in B-MAC. For instance, if

wake-up frames are 30 bytes long with the preamble included, nodes receive such

frames in about 1 ms in the best case. However, trx is usually longer, as nodes need

an extra time to get frames from the RX bu�er. Experiments presented in Chapter 5

revealed that nodes need a few ms to read data from the RX bu�er.

7.2.5 Microcontroller Energy Consumption

Although microcontrollers (µCs) exhibit several power consumption states, this eval-

uation considers only two: active Emcuactive (executing code, reading sensors, send-

ing, receiving, etc.) and sleep Esleep (only a low rate clock is running). Thus, the
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microcontroller consumes Emcu energy a day:

Emcu = Emcuactive + Esleep (7.2.17)

Emcuactive = Tmcuactive · Imcuactive (7.2.18)

where Tmcuactive is the time the µC is active a day, and Imcuactive is the µC current

consumption in the active state. The energy in the sleep state is estimated as:

Esleep = Tsleep · Isleep (7.2.19)

where Tsleep is the total µC sleep time a day, and Isleep is the current consumption

in the sleep state. In other words, Tsleep is the period when sensor nodes do not

perform any task, i.e., they sleep to save energy. Clearly, Tsleep is calculated as a

complement of other activities, i.e., sending and receiving data, listening for potential

transmissions, code execution, etc.

7.3 Results

7.3.1 LETED and Preamble Sampling

This paragraph compares LETED against B-MAC and TICER, which are state-

of-the-art MAC protocols for sensor networks. As previously mentioned, both B-

MAC and TICER apply the Preamble Sampling approach. However, only B-MAC

sends long continuous preambles and bene�ts from a short time needed to detect

the channel activity. On the contrary, TICER emulates long preambles by sending

successive wake-up beacons.

This evaluation considers three scenarios with a di�erent event frequency: 1 minute,

1 hour, and 12 hours. As nodes send notices to the sink on event detection, all cases

di�er in the average data rate. The scenarios are referred to as S-1, S-2, and S-3

respectively.

Section 7.1.2 introduced the tradeo� in the preamble length of B-MAC and TICER.

In short, there is the optimal preamble length that o�ers the longest lifetime. Ta-

ble 7.4 illustrates the best preambles of B-MAC and TICER, which are applied in

all scenarios. By doing so, this evaluation presents the best cases of B-MAC and

TICER.

137



7 Lifetime Evaluation

Comparison

In the S-1 scenario, LETED outperforms Preamble Sampling and achieves signif-

icantly longer lifetimes. For example, nodes with LETED work 2x or 3x longer

than with B-MAC or TICER (see Figure 7.3.1a). Such a huge di�erence originates

from the energy consumed for transmissions. LETED needs only 0.033 mAh a day for

transmissions and 0.078 mAh to receive (see Figure 7.3.2). Nodes with B-MAC, how-

ever, consume an order of magnitude more energy, i.e., 0.992 mAh and 0.564 mAh for

sending and receiving. As LETED applies short TX and RX slots, nodes consume

little energy in total when sending or receiving data. On the contrary, Preamble

Sampling sends a long preamble in front of each frame. In this case, nodes apply

a preamble of 120 ms, but the frames are only 4 ms long. Clearly, it results in a

signi�cant B-MAC and TICER overhead. Besides, on frame reception, nodes listen

for a half of the sleep period on average, resulting in extra energy waste. Therefore,

Preamble Sampling su�ers from huge idle listening, especially in scenarios with high

data rates.

LETED and Preamble Sampling achieve similar results in S-2 and S-3. The lifetime

of LETED is 5% to 10% better than of B-MAC in S-2, i.e., 2.96 and 2.76 years

respectively for end-to-end delays of 5 seconds (see Figure 7.3.1b). In this case, B-

MAC uses preambles of 940 ms and consumes slightly more energy for communication

than LETED (see Figure 7.3.2). That is, B-MAC needs 0.126 mAh TX and 0.07 mAh

RX energy, whereas LETED consumes 0.007 mAh and 0.016 mAh respectively. As

expected, nodes with TICER work shorter than B-MAC, as they need a longer time

to check the channel activity (see Figure 7.3.1b).

In the S-3 scenario, B-MAC achieves the best result in lifetime, among three ex-

amined approaches, for delays longer than 2.4 seconds (see Figure 7.3.1c). In this

case, it consumes only 0.056 mAh a day in total for TX and RX (see Figure 7.3.2).

Although LETED consumes even less energy for transmissions than B-MAC (see Fig-

ure 7.3.2), it needs extra energy for the underlying DLDC-MAC protocol. Therefore,

nodes with LETED work slightly shorter than with B-MAC. However, there are only

minor di�erences in lifetime between these two solutions. For example, nodes with

LETED operate 5% shorter than B-MAC for 5-second end-to-end delays. However,

LETED still achieves better results than TICER for delays shorter than 13 seconds.

As stated above, TICER results in long idle-listening time because of longer periods

needed to check the channel activity.
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(a) S-1 Scenario: event notices sent once a minute
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(b) S-2 Scenario: event notices sent once an hour
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(c) S-3 Scenario: event notices sent every 12 hours

Figure 7.3.1: The lifetime of nodes with LETED and with Preamble Sampling (B-
MAC and TICER).

Preamble Sampling

The lifetime of nodes with B-MAC and TICER depends mainly on the data rate. For

example, nodes with B-MAC show a lifetime of 2.76 years when supporting 5-second

delays and sending data rarely, i.e., once an hour (see Figure 7.3.1b). Should nodes
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(a) LETED results. Nodes consume the same amount of energy with TX frequency
1 hour and 12 hours, since they send SYNC frame every 5 minutes in these cases
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Figure 7.3.2: Energy of data transmission and reception for various data rates (a
frame sent every 1 minute, 1 hour and 12 hours) when supporting 5-
second end-to-end delays

send frames once a minute, the lifetime is reduced to 1.1 years (see Figure 7.3.1a).

TICER works in a similar way, that is, nodes work signi�cantly shorter when send-

ing data often. As stated above, nodes send long preambles in front of every data

frame. Therefore, they consume a huge amount of energy for preamble transmissions

with high data rates. For example, with a TX frequency of 1 hour, nodes with B-

MAC consume the TX energy of about 0.126 mAh a day (see Figure 7.3.2). Should

they send frames once a minute, they increase the energy consumption 8 times, to

0.992 mAh. Besides, with each frame, nodes receive also a half of the preamble on av-

erage. Thus, energy consumption is increased at the receiver too, when transmitting

high data rates (see Figure 7.3.2).
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LETED

There are only minor di�erences in the lifetime of nodes based on LETED supporting

various data rates. For example, with an event frequency of 1 minute, i.e., data rate

is one frame a minute, nodes are operational 2.82 years and support 5-second delays

(see Figure 7.3.1a). If events occur once an hour, the lifetime is longer by 4% only.

Such minor di�erences for various data rates stem from a tiny amount of energy

consumed for communication in general. For instance, transmissions with 1-minute

period need only 0.033 mAh a day (see Figure 7.3.2). Thus, energy consumption

cannot be reduced signi�cantly by transmitting at lower rates.

Two LETED scenarios with an event period of 1 hour and 12 hours achieve the

same results. That is, nodes work equally long and consume the same amount of

energy. In both cases, nodes apply the same 5-minute period for SYNC frames to

cope with multi-hop drift (details in Chapter 5). Therefore, although events rarely

occur, that is, every 1 and 12 hours respectively, nodes send SYNC frames every 5

minutes. As they transmit the same number of frames in both cases, the results do

not di�er.

Summary

The above observations show that LETED �ts better than Preamble Sampling (PS)

for scenarios with moderate data rates, i.e., about one frame a minute. In these

cases, nodes with LETED can achieve signi�cantly longer lifetimes. With lower duty

cycles, PS achieves similar results as LETED.

The main advantage of PS over LETED is the small code size. For example, B-

MAC needs 4 kB of ROM [37], whereas LETED with DLDC-MAC occupy about 10x

more memory. Besides, PS does not rely on time synchronization and works with

imprecise clock oscillators as well. Nonetheless, some PS features lead to various

problems in sensor networks:

1. As several sources detect the same event in normal cases, multiple notices

are forwarded to the sink. In this case, PS poses a high collision risk, since

many sources send long preambles at the same time. Clearly, by applying

the CSMA/CA approach, PS postpones transmissions on busy channels and

reduces the collision risk. However, it causes extra end-to-end delays.

2. Receivers wake up periodically to check shortly for the channel activity. The

best scenario was considered, i.e., nodes reliably detected channel activities.

However, receivers can wrongly sense the channel. That is, they either miss an

activity, or detect an idle channel as active (false positive):
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a) With B-MAC, nodes sample the channel for detecting the activity. How-

ever, there is a risk of false positives, that is, the receivers can detect an

activity on idle channels. In this case, they wait for the time needed to get

the long preamble, does not receive a frame and power down the radio.

Obviously, it increases idle listening and causes energy waste.

b) Receivers with TICER expect wake-up beacons before data frames. Should

receivers miss beacons, the sender must send them for another sleep pe-

riod to wake up the receivers. It results in extra energy consumption and

shortens the lifetime.

LETED should perform better in dense networks or/and with higher data rates.

Owing to the TDMA approach, LETED solves the collision problem. Besides, even

with low data rates, LETED achieves as good results as B-MAC. Although the

LETED size is 10x bigger than B-MAC, it �ts into the limited memory of sensor

nodes. In addition, as with recent development sensor nodes have more memory,

they do not su�er from large LETED size.

Unfortunately, LETED poses the risk that nodes lose the synchronization and do

not wake up at the same time. For example, should crystal oscillators start running

imprecisely, nodes with LETED cannot handle it, and the protocol does not work.

Although nodes did not encounter such oscillator problems with drift experiments

discussed in Chapter 6, such risks cannot be excluded.

7.3.2 LETED and Schedule-Based MAC
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Figure 7.3.3: Sleep period of LETED and schedule-based MAC for various end-to-end
delays in 5-hop networks: the longer the sleep period, the better

This section compares LETED with schedule-based MAC (S-B) protocols, that is,

they use a wake-up schedule, and are represented by DLDC-MAC in this case. Since
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Figure 7.3.4: Lifetime of nodes with LETED and with schedule-based MAC protocols

schedules of S-B approaches are not aligned along the path, nodes wake up often

to support short delays. As introduced in Chapter 3, the sleep period equals to the

delay time divided by the number of hops to the sink. Figure 7.3.3 presents sleep

periods of LETED and S-B. Owing to the staggered schedule, nodes with LETED

sleep long, nearly the time equal to supported delays. For example, to support 5-

second delays, nodes wake up every 4.7 seconds in this case. On the contrary, S-B

bring down the sleep period to a second. Thus, nodes with S-B wake up often,

consequently consume more energy, shortening the lifetime.

As expected, LETED outperforms S-B protocols in scenarios with short end-to-

end delays. Figure 7.3.4 shows that LETED achieves 8x longer lifetimes than S-B for

delays of 5 seconds and shorter. For example, nodes with LETED can work almost

3 years and support 5-second delays. In this case, the S-B lifetime is only 0.35 years.

For longer delays, i.e., from 5 to 10 seconds, LETED achieves lifetimes 6x longer

than S-B.
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Figure 7.3.5 presents energy consumption of DLDC-MAC. As above stated, nodes

wake up often to send or receive beacons. A huge amount of energy is therefore

consumed only for preparing to data transmissions. That is, nodes need about

13 mAh for beacons altogether (see Figure 7.3.5), which is larger by four orders

of magnitude from the energy consumed on data transmission. Other S-B protocols

may achieve even worse results. For example, Dozer [9] applies beacons too, but uses

longer guard times than DLDC-MAC. Therefore, it needs more energy for beacons.

Besides, S-MAC [53] requires longer times in the active state than DLDC-MAC, as it

uses extra RTS and CTS frames apart from guard times. Thus, DLDC-MAC o�ers

a similar performance to the best case of S-B protocols.

LETED keeps nodes ready for transmissions in passive slots, i.e., nodes listen

periodically for incoming data. The energy of keeping nodes ready is depicted in

Figure 7.3.6 as Rx passive. In this case, nodes spent 0.06 mAh a day to be ready

for transmissions. It is about 200x less than DLDC-MAC needs for the same. As

already mentioned, it stems from longer sleep periods of LETED. Besides, owing to

the Idle Listening Avoidance (see Chapter 5) and the drift prediction approach (see

Chapter 6), nodes wake up for about 0.5 ms only in passive slots. Therefore, LETED

consumes signi�cantly less energy than S-B protocols.

Nodes with LETED apply DLDC-MAC as the underlying protocol. However, in

this case, DLDC-MAC consumes less energy (0.19 mAh a day) than DLDC-MAC

working as a standalone protocol (13 mAh / day) that supports short delays. In the

�rst case, nodes do not need to send beacons often, since LETED takes care of fast

transmissions along the path. They use beacons to send control frames only, e.g.,

to set up a new schedule. Therefore, they choose a beacon period to be 2 minutes.

In the latter case, nodes with DLDC-MAC send beacons every second to support
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5-second delays. Therefore, DLDC-MAC consumes a di�erent amount of energy in

both cases (see Figures 7.3.5 and 7.3.6).

7.3.3 Staggered Schedule

LETED applies new solutions, which reduce idle listening, to the staggered schedule,

introduced in DMAC [29]. First, it minimizes passive slots and therefore powers

down the transceiver early, referred to as ILA (see Chapter 5). Second, LETED

shortens guard times by applying the MADC drift prediction approach (details in

Chapter 6). Since DMAC does not suggest a way to detect and to shorten passive

slots, this work assumes it uses the generic software solution (see Chapter 5). Besides,

DMAC adopts an external time synchronization protocol to cope with clock drift.

In this evaluation, however, DMAC applies the same solution to the drift problem

as LETED.
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Figure 7.3.7: Lifetime of LETED and DMAC; owing to Idle Listening Avoidance
(ILA) LETED shortens signi�cantly passive slots, saves the energy and
prolongs the lifetime

Figure 7.3.7 presents the lifetime of nodes working with LETED and DMAC.

Owing to the energy-saving solutions, LETED can prolong the lifetime by more

than 50% for delays of 5 seconds and shorter. For example, with 5-second delays

nodes with LETED work almost 3 years and with DMAC 2 years. LETED achieves

such good results, as it reduces signi�cantly the energy consumption of passive slots

(see Figure 7.3.8). That is, nodes with DMAC need 16x more energy in passive slots

than LETED.

In this scenario, LETED shortens passive slots by more than 10x, that is, from

9 ms to 500 µs (see Figure 7.3.9). Each passive slot consists of two parts: a guard

time and the time tdetect needed to detect that no frame arrives in the current slot.

In this case, tdetect of LETED equals 250 µs, as nodes need about 150 µs to receive
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a preamble, including the Start Frame Delimiter (SFD), and about 100 µs to handle

the SFD interrupt. If the transceiver does not raise the SFD interrupt within this

time, the node powers down the radio. DMAC, however, uses a generic software

approach. That is, it usually needs long times to get frames from the RX bu�er,

almost 9 ms in this case. Clearly, such a huge di�erence in tdetect, that is, 0.25 ms

vs. 8.76 ms, is the main reason for the improved performance of LETED.

In this consideration, LETED and DMAC applied the same method to compensate

drift and thus do not di�er in the length of guard times (see Figure 7.3.9). However,

DMAC should use an external time synchronization protocol and not the energy-

e�cient solution to guard times based on the moving average. This can lead to a

degraded performance of DMAC.
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Table 7.5: Symbols used in the model

Symbol Description

Eday daily energy consumption

ELETED LETED energy consumption

ELDC energy consumption of the underlying low duty cycle
protocol

Etxbeacon,
Erxbeacon

energy consumed to send and to receive beacons during a
day

Etx_slots,
Erx_slots

energy consumed a day for sending and receiving

Emcu daily energy consumption of µC

Emcuactive daily energy consumption of µC in active mode when
radio is powered down

Esleep daily energy consumption in the sleep state

trx_active,
trx_passive

length of RX active/passive slot

ttxbeacon transmission time of a single beacon

trxbeacon average reception time of a single beacon

trxbeaconafter listening time after sending a beacon

tguard guard time for clock drift compensation

tframe transmission time of single data frame

tpreamble time to send or receive the preamble with the Start Frame
Delimiter �eld

Tsleep total sleep time a day

Tslot LETED slot period needed to support certain end-to-end
delays

Tday the number of time units (e.g. seconds) a day that the
beacon period Tbeacon is expressed (e.g. Tday equals 86 400
seconds a day, when Tbeacon is expressed in seconds)

Nactive, Npassive number of active/passive slots a day (LETED solution)

B the number of beacons a node sends during a day
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8 Increasing Link-Layer Reliability in

Sensor Networks: ARQ and

CSMA/CA

This chapter examines the ARQ (Automatic Repeat reQuest) and CSMA/CA (Car-

rier Sense Multiple Access With Collision Avoidance) protocols in sensor networks

with a low duty cycle (LDC). It presents empirical results and discusses potential

gains of both solutions. Since ARQ and CSMA/CA cause extra energy consumption,

this chapter evaluates their impact on the lifetime of sensor nodes.

8.1 Empirical Evaluation

8.1.1 Overview

To evaluate the performance of ARQ and CSMA/CA in sensor networks, indoor and

outdoor experiments were carried out. The nodes were grouped into pairs: one node

applied CSMA/CA with ARQ and another used ARQ only. In this way, nodes with

and without CSMA/CA worked under similar conditions. It allowed a reasonable

comparison.

Nodes with CSMA/CA applied the default TinyOS con�guration, that is:

� They waited from 300 µs to 10 ms before starting to sense the channel.

� On idle channel, they started the transmission after a random time, up to

200 µs.

� If nodes detect a channel activity, they waited a random time, from 300 µs to

2.4 ms, and sensed the channel again.

To evaluate the impact of ARQ retries on the RX rate, nodes sent each frame 10

times. Since each frame included the current retry counter, the sink estimated the

RX rate for various number of ARQ retries.

After powering up, nodes selected randomly the TX time of the �rst frame. Then,

they sent frames periodically to the sink. Because of clock drift, however, TX times
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8 Increasing Link-Layer Reliability in Sensor Networks: ARQ and CSMA/CA

of source nodes moved relatively to each other and posed an overlap risk. Since

overlap cases a�ect the results, nodes added a random time (up to 250 ms) to each

TX time and minimized such risks.

Indoor Experiments

Table 8.1: Three indoor experiments with various transmit frequencies f and addi-
tional tra�c generators (TG); fpm (frames per minute):

Acronym Data tra�c parameters Channel duty cycle

E1 f = 1 fpm, no TG 0.01%

E2 f = 2 fpm; 1x TG with f = 300 fpm 0.52%

E3
f = 7.5 fpm; 2x TG with f = 1200 fpm

each
4.08%

These experiments evaluated three pairs of Tmote Sky nodes placed in an o�ce

environment. Each experiment lasted a week. The nodes periodically sent frames to

the sink with a di�erent frequency (see Table 8.1). In experiments E2 and E3, some

nodes served as tra�c generators, i.e., they sent extra frames to increase the duty

cycle.

The experiment E1 resembles common scenarios with a low duty cycle. The E2 and

E3 experiments consider higher data rates, for example, dense networks or frequent

transmissions. Clearly, in the latter two scenarios, there is a higher collision risk,

and nodes may bene�t from CSMA/CA.

Since the o�ce is only 15 meters long, the Signal-to-Noise Ratio (SNR) of the

default TX power is high. In this case, nodes do not su�er from unreliable wireless

communication and receive almost all frames. Thus, to consider common scenarios

with a lower SNR, e.g., because of larger distances between sensor nodes, the TX

output power was reduced to -25 dBm.

Nodes were placed in an occupied o�ce, that is, employees were present in work-

ing hours and used wireless devices. Tmote Sky nodes use transceivers based on

IEEE 802.15.4 standard on the frequency band of 2.4 GHz. Since there were wireless

LAN devices working on the same frequency in the o�ce, they a�ected communica-

tion between nodes.
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8.1 Empirical Evaluation

Outdoor Experiment

Ten pairs of Tmote Sky nodes, with and without CSMA/CA, were divided into 5

groups, placed outdoors, and ran 2 months. The average distance from nodes to

the sink was about 40 meters. To cover such a distance, nodes needed the full TX

power (0 dBm). Only the sink worked indoors, as it delivered experimental data to a

logging computer with USB connection. In such a scenario, however, indoor wireless

devices could a�ect the sensor network. To evaluate an outdoor environment, i.e.,

without other wireless devices, the antenna of the sink was placed outdoors, behind

the window, and connected to the sink with a cable. As the window had metal blinds

pulled down during the experiment, it prevented that wireless indoor devices a�ected

signi�cantly the communication from nodes to the sink.

In this scenario, nodes sent frames periodically to the sink every 8 seconds. As

each frame was about 4 ms long, it resulted in the channel duty cycle of about 1%.

Two out of twenty sensor nodes stopped working at the beginning, probably be-

cause of a loose contact to batteries. Nonetheless, the experiment was carried out

with the remaining 18 nodes.

8.1.2 Results
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Figure 8.1.1: Indoor E1 Experiment (4.08% duty cycle): Reception rate without
ARQ, either with CSMA/CA or without it

Because of a low tra�c load, CSMA/CA did not improve signi�cantly the RX

rate in common LDC scenarios, i.e., in the E1 experiment. The sink rarely missed

frames, apart from the node group A (see Figure 8.1.1). Therefore, the average PER
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was almost the same for nodes with CSMA/CA and w/o it (see Figure 8.1.2a). For

example, nodes with CSMA/CA of the group B had a PER lower by 0.1% than

nodes without it. Although such a small number of nodes does not provide accurate

results, it shows a general tendency of CSMA/CA: it hardly improves the RX rate

in applications with a low duty cycle.

During the E1 experiment, the node group A su�ered from communication prob-

lems. For example, during the third day, the sink missed almost all frames from the

node without CSMA/CA (see the top plot in Figure 8.1.1). Later on, the node with

CSMA/CA su�ered from similar problems, and the sink missed about 90% frames.

Therefore, the average PER of these nodes, 20.5% and 42.8% respectively (see Fig-

ure 8.1.2a), was much higher than the PER of other nodes. Since the node group

A was far away from the sink, the SNR at the sink was low, and it caused such

poor results. The sink received more frames from the node with CSMA/CA than

from the node without it. However, the former node did not achieve better results

owing to CSMA/CA, as the di�erence in the RX rate is too large. For example,

during the third day, the sink received all frames from the node with CSMA/CA,

but missed everything from the node w/o it (see Figure 8.1.1 top). Theoretically,

CSMA/CA could recover from collisions and provide such good results. In this case,

however, the collision risk was low, since nodes rarely send frames. Moreover, as

other nodes without CSMA/CA achieved good results (see middle and bottom plots

in Figure 8.1.1), other wireless devices did not cause collisions as well. Besides, dur-

ing the �fth day, the sink received more frames from the node without CSMA/CA

than from the node with collision avoidance. Therefore, such poor results of the node

group A stem probably from a low SNR and not because of a high collision risk.

In the E2 experiment, CSMA/CA improved slightly the RX rate. The sink received

96% to 98% frames from nodes with CSMA/CA and 92%-96% from nodes without

it (see Figure 8.1.3). Therefore, the average PER of nodes with CSMA/CA was

higher by 2-3% from the PER of nodes without it (see Figure 8.1.2b). Clearly, in

this experiment, collisions occurred more often than in E1, and therefore CSMA/CA

improved the RX rate. However, if nodes already applied ARQ protocol, the extra

CSMA/CA did not improve the RX rate signi�cantly. For example, nodes using

ARQ with 1-2 retries achieved an RX rate of almost 100% (details introduced in the

next paragraph). Clearly, CSMA/CA cannot improve the results signi�cantly in this

case.

Because of a higher collision risk, the sink missed more frames in the experiment

E3 than in E1 and E2 (see Figures 8.1.1, 8.1.3 and 8.1.4). Thus, the average PER

in E3 was higher than in previous runs, and nodes with CSMA/CA achieved better
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Figure 8.1.2: Measured packet error rate among all nodes in 3 indoor experi-
ments; nodes a/b/c used CSMA/CA; nodes A/B/C worked without
CSMA/CA

results. For example, the sink missed more than 16% frames from nodes without

CSMA/CA in E3 and about 5% in E2 (see Figure 8.1.2). On average, CSMA/CA

improved the reception rate by about 7%, apart from the node group A. In this case,
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Figure 8.1.3: Indoor E2 Experiment (0.52% duty cycle): Reception rate without
ARQ, either with CSMA/CA or without it

the di�erence between nodes with and without CSMA/CA was only 1.6%, probably

because of a low SNR of the node with collision avoidance.
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Figure 8.1.4: Indoor E3 Experiment (4.08% duty cycle): Reception rate without
ARQ, either with CSMA/CA or without it

CSMA/CA improved the reception rate in the E3 experiment from 81.9% to 89.3%,

when nodes did not apply the ARQ solution (see Figure 8.1.5). However, when nodes

send retries on frame loss, the CSMA/CA approach improves only slightly the RX

rate. For example, with 2 ARQ retries, the sink received 98.3% frames from nodes

w/o CSMA/CA and 99% from nodes with collision avoidance (see Figure 8.1.5).

With more ARQ retries, the sink received almost all frames, and CSMA/CA could

not improve the performance.

In the outdoor experiment, nodes with CSMA/CA sometimes achieved slightly bet-
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ter RX rates than without applying collision avoidance. For example, CSMA/CA im-

proved the RX rate from 93.4% to 95.9% in the node group B (see Figure 8.1.6). How-

ever, in some cases, the sink received more frames from nodes without CSMA/CA.

For example, nodes in the group C achieved 95.1% RX rate without CSMA/CA and

93.7% with the solution applied. Obviously, CSMA/CA did not decrease the recep-

tion rate, and such results stem from the estimation errors caused by a small number

of nodes in each group. On average, CSMA/CA recovered from some collisions and

slightly improved the RX rate, from 94% to 94.9% (see Figure 8.1.6). Clearly, these

results are rather rough, as the evaluation considered a few nodes only. For instance,

the sink received fewer frames from two nodes without CSMA/CA (nodes 17 and

20) than from others. If the results do not include both nodes, there is no di�erence

in the reception rate between nodes with CSMA/CA and without it. Therefore,

these observations show only that CSMA/CA might slightly improve the RX rate
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in applications with a low duty cycle, but does not provide accurate estimations of

CSMA/CA gain.
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(a) E1 indoor experiment; the results exclude the node group A, since it was placed too far from the
sink
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Figure 8.1.7: ARQ impact on the reception rate for various retry count; the plots
shows average reception rate gain (and standard deviation, min/max
values) for each indoor experiment; CSMA/CA with ARQ in top dia-
grams, ARQ w/o CSMA/CA in bottom plots
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During the indoor E3 experiment, the sink received up to 92% frames without

ARQ applied (see Figure 8.1.4). ARQ improved the RX rate to more than 95% with

1 retry and to 97% with 2 retries. Figures 8.1.7 show the average gain of ARQ in

indoor experiments. For example, in the E3 experiment, ARQ improved the RX rate

by 14% with just 1 retry for nodes w/o CSMA/CA and by 17% with 3 retries (see

Figure 8.1.7c). Any further increase in the retry number did not improve the RX

rate signi�cantly, as the sink received almost all frames with 3 retries.

In the E2 experiment, ARQ with 1 retry improved the RX rate to 99%, i.e., by 5%

for nodes w/o CSMA/CA (see Figure 8.1.7b). As the sink received almost all frames

with 1 retry only, further increase in applying ARQ retries did not signi�cantly

improve the RX rate.

As nodes did not su�er from a high PER in E1 (see Figure 8.1.2a), apart from

the node group A, the ARQ solution did not a�ect the RX rate signi�cantly. On

both node types, i.e., with and without CSMA/CA, ARQ increased the RX rate by

0.5% in the best case (see Figure 8.1.7a). As already mentioned, the sink missed

many frames from the node group A, as the long distance and a low SNR caused a

high packet error rate. In this case, ARQ did not improve the RX rate signi�cantly,

as the SNR of retries was also too low to receive them. It shows that ARQ should

not be applied at all with a low SNR, as it does not improve the RX rate, but only

wastes energy.
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Figure 8.1.8: Average reception rate (together with standard deviation and min/max
values) of all nodes evaluated outdoors, with collision avoidance (top)
and w/o it (bottom), for various number of ARQ retries

In the outdoor experiment ARQ improved the RX rate only to a certain retry

number as well (see Figure 8.1.8). With two retries nodes increased the RX rate by

3.5% (with CSMA/CA) and by 4% (ARQ only). Further increase in ARQ retries
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improved the RX rate slightly, as the sink received 98% frames and more with 2

retries.
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Figure 8.1.9: Reception rate of groups 2 w/o ARQ throughout the outdoor experi-
ment; nodes 6,7 applied CSMA/CA approach; nodes 16 and 17 trans-
mitted frames immediately without collision avoidance

Figures 8.1.9 and 8.1.10 present the reception rate of eight out of twenty nodes

throughout the outdoor experiment. Even when the nodes did not apply the ARQ

approach, the sink usually received most frames, i.e., the average reception rate was

approx 94.6%. The evaluation shows that the reception rate varies over time but the

RX rate dropped rarely below 90%. Nodes recover from unreliable communication

in these short periods by applying the ARQ solution. As above said, they increase

the RX rate to 98% and more with 2 retries only.

8.2 Lifetime Evaluation

Chapter 7 introduced the energy consumption model, which estimates the lifetime of

sensor nodes. This section adds the ARQ and CSMA/CA solutions to the model and

evaluates their impact on the lifetime. Table 8.2 presents the parameters of ARQ and

of collision avoidance applied here. The evaluation considers the scenario presented

in Chapter 7. That is, nodes send data to the sink and support 5-second end-to-end

delays with LETED and DLDC-MAC. In this evaluation, they apply extra solutions

to communication reliability: ARQ and CSMA/CA. However, both solutions are
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Figure 8.1.10: Reception rate of groups 3 w/o ARQ throughout the outdoor experi-
ment; nodes 8,9 applied CSMA/CA approach; nodes 18 and 19 trans-
mitted frames immediately without collision avoidance

used with LETED only, and not with DLDC-MAC, because of the following reasons:

� By applying CSMA/CA, node may postpone beacon transmissions to avoid

collisions. However, as DLDC-MAC uses beacons to estimate clock drift, post-

poned beacons would in�uence the drift estimation.

� With ARQ, neighbors should send an acknowledgment (ACK) upon beacon

reception. However, as there are usually several neighbors, they all send ACKs.

Thus, they need to synchronize transmit times to avoid ACK collisions. Clearly,

it results in an extra protocol overhead, but does not provide notable bene�ts.

8.2.1 Model Adaptation

TX Energy

The packet error rate (PER) depends on the frame length, i.e., the longer the frame

is, the higher is the PER:

PER = 1− (1−BER)8∗λframe

where BER in the bit error rate, and λframe is the frame length expressed in

bytes.
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The number of retries ηretries_tx nodes send on average, i.e., for each frame, de-

pends on the PERframe (packet error rate of the frame). In addition, if nodes miss

ACKs, they send frames again. Thus, the PER of acknowledgments PERACK a�ects

ηretries_tx as well:

ηretries_tx =

Rmax∑
i=1

[PERframe + (1− PERframe) · PERACK ]n

whereRmax is the highest retry count. Thus, the average number of frames ηframes_tx
sent in a single active slot equals:

ηframes_tx = 1 + ηretries_tx

Since nodes may miss ACKs as well, the number of received ACKs ηACK_rx in a

single active slot equals:

ηACK_rx = ηframes_tx · (1− PERframe) · (1− PERACK)

As above said, nodes expect an ACK for each sent frame. They do not receive ACKs

in two cases. First, the frame was lost, and neighbors did not send ACK. Second,

neighbors received the frame, but the ACK was lost. Thus, the number of expected

but missed ACKs is estimated as:

ηACK_missed = (ηframes_tx) · [1− (1− PERframe) (1− PERACK)]

If nodes apply CSMA/CA, they check the channel activity for tCCA_listen time

before each transmission. On idle channel, they switch the transceiver from RX to

TX state, and it consumes Erxtx_switch energy.

When nodes do not receive an ACK, they wait for a few ms before sending frames

again. Such a solution stems from the assumption the channel does not change

signi�cantly in a short time, i.e., a few milliseconds in this case. Thus, retries send

immediately su�er from the same poor channel quality as the lost frames. To save

energy, nodes keep the transceiver powered down between successive retries.

Nodes expect to receive ACKs with a length of tACK after the time speci�ed o�ine

before the deployment. Should nodes apply CSMA/CA, they wait for tCCA_avg on

each ACK, since neighbors may postpone ACK transmissions. However, nodes wait

the worst-case back-o� time tCCA_max, if ACK is lost. The adapted equation to

estimate TX energy, based on Eq. 7.2.4, is:
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Etxslots = Ntxslots · {ηframes_tx · [Estartup + tCCA_listen · Irx + Erxtx_switch +

tframe · Itx + Eshutdown + Etxrx_switch] +

[(ηACK_rx · tCCA_avg + ηACK_missed · tCCA_max
+ηframes · tACK) · Irx]}

Rx Energy

In this evaluation, nodes miss frames with a certain packet error rate PERframe and

do not send ACKs. The average number of sent ACKs ηACK in a single active slot

equals:

ηACK = ηframe_tx · (1− PERframe) (8.2.1)

Nodes send ACKs almost immediately after frame reception. With CSMA/CA,

they wait for only tCCA_avg to counter the collision risk. The total energy consumed

for ACK transmissions equals:

Etx_ack = Nactive · ηACK ·
(
tCCA_avg · Irx + Erxtx_switch + tACK · Itx

)
In general, nodes detect missing frame indirectly, i.e., they listen for incoming

data, and after a timeout they assume the frame was lost. Thus, they listen the time

needed to receive a frame. The average number of lost frames ηlost in a single active

slot equals:

ηlost = ηframe_tx · PERframe

Since nodes send ACKs for each frame received, the number of received packets

ηreceived equals the number of sent ACKs ηACK , which was estimated previously (see

Eq. 8.2.1):

ηreceived = ηACK

In passive slots, nodes wait the maximal back-o� time tCCA_max before assum-

ing the slot is passive. Thus, the passive slot length from Eq. 7.2.7 with applied

CSMA/CA equals:

trx_passive = tguard + tCCA_max + tpreamble + tSFD
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There are two reasons for the idle channel in passive slots: neighbors did not

send frames, or the frame was lost. However, nodes cannot determine it and wait

the highest retries count Rmax before giving up the reception try. The total energy

consumed for reception in both active and passive slots equals:

Erx_slots = Irx · [Nactive · ηreceived · (tCCA_avg + trx_active) +

Nactive · ηlost · (tCCA_max+trx_active) +

Npassive · (1 +Rmax) · trx_passive] +

[Nactive · (ηreceived + ηlost) +Npassive · (1 +Rmax)]

·(Estartup + Eshutdown)

Erx_slots = Nactive · (trx_active · Irx) +Npassive · (trx_passive · Irx) +

(Nactive +Npassive) · (Estartup + Eshutdown)

8.2.2 Results

Table 8.2: Model parameters used for the lifetime evaluation

Symbol Description Value

BER Bit error rate (a�ects the average number of ARQ
retries)

10−4

Rmax ARQ maximal retries count 3

tCCA_listen Time to perform CCA before transmission 1 ms

tCCA_avg Average back-o� time 5 ms

tCCA_max Worst-case back-o� time 100 ms

The experiment results, previously introduced in this chapter, presented RX rates

of single links. However, common sensor networks need a multi-hop communication.

In this case, frames may be corrupted on each hop on the path to the sink. Hence,

the probability Prx the sink receive a frame, called the RX rate in this work, depends

on the PER of each link:
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Figure 8.2.1: Packet reception rate (RX rate) in a multi-hop network for various
average link packet error rate (PER)

Prx =
n∏
i=o

(1− PERi)

where n is the number of hops to the sink, and PERi is the packet error rate of i-th

link (hop) on the path to the sink. For the sake of simplicity, Prx is estimated from

the average packet error rate PERavg of a single link:

Prx = (1− PERavg)n (8.2.2)

Figure 8.2.1 depicts the RX rate in multi-hop networks for various PER of a single

link, according to Eq. 8.2.2. As stated above, the average PER of the outdoor

experiment w/o any reliable mechanisms was approx. 5%. In other words, the sink

misses 5% frames in single-hop communication. However, in 5-hop networks the sink

misses more than 20% frames with such a PER (see Figure 8.2.1). Besides, during

some periods in the outdoor experiment, the nodes missed 10% frames and more

in a single-hop network. Should all links of 5-hop paths have a similar PER, the

sink receives less than 60% frames. The above examples demonstrate the need of

solutions to reliable communication, like ARQ or CSMA/CA, in multi-hop networks.

Figure 8.2.2a shows the potential performance of ARQ and CSMA/CA in 5-hop

networks, discussed in the following paragraphs. It was estimated by applying empir-

ical single-hop PER values to Eq. 8.2.2. The lifetime results of ARQ and CSMA/CA,

presented in Figure 8.2.2b, were estimated with the model introduced previously.
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ARQ Performance

As expected, since ARQ increases the communication overhead, it shortens the life-

time of sensor nodes. Therefore, nodes w/o reliability solutions achieve the best life-

time, for instance, almost 3 years for 5-second end-to-end delays (see Figure 8.2.2b).

However, they su�er from high packet loss rates in multi-hop networks. For example,

with the average single-hop RX rate of 93.9%, the sink receives only 72.9% frames

in 5-hop networks (see Figure 8.2.2a).

If nodes apply the ARQ protocol, they improve the RX rate by approx. 20%

in the same scenario. By doing so, they shorten the lifetime by 10% only, that is,

from 2.96 years to 2.67. However, such good lifetime results do not stem from the

ARQ protocol itself, but from the way LETED deals with passive slots. ARQ with

3 retries increases a few times the energy consumed in passive slots, as nodes try to
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receive each potential retry (see Chapter 3). However, owing to the Idle Listening

Avoidance ILA (see Chapter 5), LETED consumes only a tiny amount of energy

in passive slots. Therefore, although ARQ increases 4x the energy consumption of

passive slots, it is still relatively small (see Figure 8.2.5). For instance, the energy

consumed in passive slots with ARQ (0.25 mAh a day) is almost the same as the

sleep energy, about 0.24 mAh a day.

Apart from passive slots, ARQ also a�ects energy consumed for sending and re-

ceiving data, as it involves transmissions of retries and acknowledgments. However,

with BER of 10−4, which results in approx. 10% PER, the average number of retries

per frame is small. Thus, it only slightly a�ects the energy consumed for sending or

receiving data (see Figures 8.2.3 and 8.2.4). That is, nodes with ARQ need extra

0.002 mAh energy a day for ACK transmissions,and 0.003 mAh to receive ACKs.

The example above reveals that nodes with LETED and ILA solutions bene�t from

ARQ protocol in low duty cycle networks. It improves the RX rate signi�cantly, but

impacts only slightly the lifetime.

CSMA/CA Results

Nodes should not apply CSMA/CA with LETED, as the latter reduces the collision

risk owing to the transmission schedule (TDMA). In addition, CSMA/CA shortens

the lifetime signi�cantly, but does not improve the communication quality with low

duty cycles. According to the experiments, CSMA/CA improved the single-hop RX

rate by 1% on average in low duty cycle scenarios. Thus, nodes improve the RX rate

about 5% in 5-hop networks, that is, from 72.9% to 76.4% (see Figure 8.2.2a). In

this case, CSMA/CA shortens the lifetime 8x, i.e., from 3 years to 4.5 months.

Such poor lifetime results of CSMA/CA stem mainly from excessive energy con-

sumption of passive slots. Nodes listen the worst-case back-o� time in a single passive

slot. Thus, although a single frame reception needs a few ms, nodes wait 100 ms in

this scenario. By doing so, they consume almost 200x more energy in passive slots

than LETED w/o CSMA/CA, that is, 11.1 mAh a day vs. 0.06 mAh (see Figure

8.2.5).

Since nodes with CSMA/CA check the channel activity before sending data, the

approach a�ects the TX energy too. In this scenario, nodes check the channel for

1 ms before transmissions. In this case, nodes with CSMA/CA consume 0.001 mAh

more energy for transmissions in a day (see Figure 8.2.3).

Nodes need about 9 ms to receive a single frame without CSMA/CA. When they

apply CSMA/CA, nodes increase the RX time 1.5x (to 14 ms) to compensate trans-

missions postponed by CSMA/CA. It results in a similar energy penalty. Nodes with

165



8 Increasing Link-Layer Reliability in Sensor Networks: ARQ and CSMA/CA

CSMA/CA need about 1.5x more RX energy, that is, 0.024 mAh a day instead of

0.016 mAh (see Figure 8.2.4).

The results con�rm the assumption that CSMA/CA should not be used with low

duty-cycled applications. It does not signi�cantly improve the RX rate, but mainly

shortens the lifetime.

CSMA/CA with ARQ

Nodes with ARQ and CSMA/CA achieved the best performance during the exper-

iments presented previously. On average, they improved the single-hop RX rate

from 93.9% to 98.7% (see Figure 8.2.2a). However, it results in a signi�cant lifetime

penalty, as nodes work almost 30x shorter: 1.5 months instead of 3 years (see Fig-

ure 8.2.2b). Clearly, such disastrous results stem mainly from the poor CSMA/CA

performance. In this case, nodes apply CSMA/CA to each retry and increase idle lis-

tening even more than CSMA/CA without ARQ. Thus, it results in excessive energy

consumption. For example, nodes with CSMA/CA and ARQ consume 700x energy

more in passive slots than nodes without any solution to reliability (see Figure 8.2.5).

Obviously, nodes must not use ARQ with CSMA/CA in low duty-cycled networks,

although it achieves the best result in the RX rate. Since it shortens the lifetime

signi�cantly, nodes should apply other solutions to deal with unreliable links. For

example, if nodes use ARQ only, they increase the performance signi�cantly and only

slightly a�ect the lifetime.
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9 Conclusions

This work addressed tough challenges of particular sensor network applications with

Quality of Service needs. That is, nodes must work for a long time, support short

end-to-end delays and send data reliably in multi-hop networks.

Firstly, Distributed Low Duty Cycle MAC (DLDC-MAC) was presented, which

serves as a basis for the remaining solutions to the challenges mentioned previously.

In short, DLDC-MAC keeps nodes mostly in the sleep state and synchronizes wake-

up times between neighbors. Secondly, based on the staggered schedule, introduced

in DMAC and Q-MAC protocols, this work presented the LETED (Limiting End-to-

End Delays) approach that achieves good results in lifetime and delays. For example,

sensor nodes support end-to-end delays of 5 seconds and work almost 3 years with o�-

the-shelf hardware platforms. Other approaches cannot support such long lifetimes

in similar scenarios.

Such good results of LETED stem from the novel solutions that reduce idle listen-

ing:

1. ILA (Idle Listening Avoidance) exploits features of commercially available trans-

ceivers, quickly detects an idle channel, and powers down the radio with almost

no delay.

2. Owing to prediction of future drift based on the moving average �lter, nodes

use short guard times to compensate drift between neighbors.

Apart from solutions to the above-said challenges, this work introduced a variety

of empirical and simulative results. These results may serve as a basis for further

research of protocols for wireless sensor networks:

� Indoor and outdoor drift experiments con�rmed that not only the drift pa-

rameter of oscillators, but also other factors can in�uence relative drift among

nodes. Nonetheless, nodes receive most frames within a small drift window.

For example, about 98% frames were a�ected by drift 8x smaller than the worst

case, which is based on the oscillator parameter.

� This work presented the results of experiments with ARQ and CSMA/CA.

They con�rm that applying CSMA/CA in sensor networks is not advantageous,
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as it mainly results in energy waste and does not provide any signi�cant gain

in the connection quality. On the contrary, ARQ improves the reception rate

and slightly a�ects energy consumption.

� A two-week test of DLDC-MAC in an o�ce experiment provides results relevant

for other protocols too, mainly at the Data Link and Network layers. For

example, the experiment con�rmed that communication over long distance

may su�er from high packet losses. In this case, multi-hop paths should be

applied. Therefore, MAC protocols should deliberately abandon such poor

links, if there are multi-hop paths available.

DLDC-MAC and LETED were compared with other state-of-the-art protocols by

using the lifetime estimation model, which considers 27 hardware and software pa-

rameters. The model can be applied to examine end-to-end delays and lifetime

of various MAC protocols, which are based either on a schedule or on Preamble

Sampling. By doing so, researchers can quickly obtain lifetime results for di�erent

scenario parameters and hardware platforms.

Although the solutions presented here achieve better results than other protocols,

they possess drawbacks as follows:

1. Since LETED and DLDC-MAC are based on TDMA, they must synchronize

their wake-up times and therefore rely on the crystal oscillator. Should oscil-

lators not work properly, these protocols cannot provide wake-up synchroniza-

tion, and the communication is impossible. On the contrary, protocols based

on Preamble Sampling work well even with non-functioning oscillators.

2. As LETED and DLDC-MAC handles various problems, which stem mainly

from unreliable communication and clock drift, they need extra memory to im-

plement remedies to them. On the Tmote Sky hardware platform, they occupy

together with the TinyOS operating system more than 40 kB of �ash mem-

ory, leaving less than 8 kB to other software. Simpler protocols, like Preamble

Sampling, need about 10x less memory. However, with current development

in embedded hardware, sensor nodes are equipped with more memory than

previous generations. It solves partly the problem of the large code size.

9.1 Future Work

Since this work focused mainly on ensuring long lifetimes of nodes and short end-

to-end delays, it did not consider thoroughly the aspects of reliable communica-

tion. Besides, it evaluated only major solutions of the Data Link Layer: ARQ and
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CSMA/CA. Thus, it neglected solutions of other layers and potential gains of cross-

layer cooperation. For instance, an obvious way to solve the problem of packet losses

is to transmit data over di�erent paths simultaneously. In the simplest case, source

nodes send the same frames over various paths, resulting in redundancy. Obviously,

it involves extra transmissions and increase energy consumption but can improve

the communication quality. Although such means were addressed in other research

works, they did not consider applications with a low duty cycle. Therefore, future

work will focus on reliable communication, provided by several communication lay-

ers, and their impact on lifetime in sensor network applications with a low duty

cycle.

The idea of load balancing was not considered, that is, alternating routes from

sources to the sink. Thus, the same routes are used for a long time, exhausting energy

of some nodes in an early stage. In this case, the network may partition, and some

sources cannot reach the sink. Therefore, routing protocols should alternate paths

to prevent such risks. However, if nodes maintain a wake-up schedule along paths,

like LETED does, they need to set up a new schedule on route change. It results in

an extra communication overhead, and nodes may fail to support short end-to-end

delays after the source changed the route. These challenges will be investigated in

future work.

Sensor nodes can also provide load balancing by using multiple paths to the sink

in parallel. In this case, the wake-up times alternate between paths. For example, if

nodes with LETED have to support 5-second delays, they wake up every 5 seconds.

However, if there are two paths to the sink available, intermediate nodes wake-up

every 10 seconds, provided sources can select any of two paths for transmissions. In

this case, sources can send data using the path that has earlier wake ups. Owing to

this solution, the network spreads the wake-up load to multiple nodes and prevents

early partitioning.

Another aspect of load balancing addresses the problem of nodes that are on many

gathering paths, e.g., as they are close to the sink, and gathering paths converge

towards them. Obviously, if such nodes frequently wake up, they quickly exhaust

energy and stop working. Thus, future work will consider solutions that reduce the

duty cycle of such nodes without a�ecting end-to-end delays. For example, these

nodes can wake up more rarely and save energy, as previous nodes send some frames

with full TX power and directly reach the sink.

The solutions presented in this work achieved good results in the lifetime of nodes

and end-to-end delays. However, these solutions can be improved and many open

issues should still be addressed in future research e�orts:
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� Currently, the support of wake-up schedules from di�erent nodes is not e�cient,

as LETED sets up a separate schedule for each source. As a result, intermediate

nodes maintain schedules of several sources and wake up frequently. To save

energy, LETED should limit the number of wake-up schedules. For example,

there should be only a few global schedules in the network, and nodes should

use common wake-up slots instead of separate ones.

� DLDC-MAC neglects the problem of missing beacons when discovering neigh-

bors. As a result, nodes may not learn about some neighbors, leading to various

problems. For example, since routing protocols rely on the neighbor list pro-

vided by the MAC layer, they will not �nd the best path to the sink. Besides, if

nodes with DLDC-MAC are not aware of some neighbors, they cannot prevent

collisions with them. Therefore, future work will investigate energy-e�cient

solutions that tackle the problem of neighbor discovery.

� Crystal oscillators considered in this work have precision of ±20 ppm. There

are, however, cheap temperature-compensated crystal oscillators (TCXOs) that

provide frequency stability of ±2 ppm and are designed for low power. By ap-

plying drift prediction approaches to TCXOs, nodes can use guard times shorter

than presented in this work and achieve better results in lifetime. Therefore,

the solutions to guard times based on TCXO need empirical evaluations.
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µC Microcontroller

ACK ACKnowledgment

ADC Analog-to-Digital Converter

ARQ Automatic Repeat reQuest

ASIC Application-Speci�c Integrated Circuit

B-MAC Berkeley MAC

BER Bit Error Rate

BOT Back-O� Time

BPSK Binary Phase-Shift Keying

CCA Clear Channel Assessment

CIP Critical Infrastructure Protection

CODA COngestion Detection and Avoidance

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access With Collision Avoidance

CTS Clear-To-Send

DLDC-MAC Distributed Low Duty Cycle MAC

EDT Event Detection Time

ESRT Event-to-Sink Reliable Transport

FEC Forward Error Correction

FFD Full-Function Device
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Nomenclature

FPS Flexible Power Scheduling

FTSP Flooding Time Synchronization Protocol

GPSR Greedy Perimeter Stateless Routing

GT Guard Time

ILA Idle Listening Avoidance

ISR Interrupt Service Routine

LAN Local Area Network

LDC Low Duty Cycle

LPL Low Power Listening

LPP Low Power Probing

LR Linear Regression

MAC Medium Access Control

MADC Moving Average Drift Compensation

MCU Microcontroller

MF Mobility Framework

NACK Negative ACKnowledgment

OLS Ordinary Least Squares

OQPSK O�set Quadrature Phase-Shift Keying

OS Operating System

OSI Open Systems Interconnection

PER Packet Error Rate

PHY Physical Layer

PS Preamble Sampling

QoS Quality of Service

RAM Random-Access Memory
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Nomenclature

RATS Rate Adaptive Time Synchronization

RFD Reduced-Function Device

RICER Receiver Initiated CyclEd Receiver

ROM Read Only Memory

RTS Request-To-Send

RTS/CTS Request-To-Send / Clear-To-Send

RX Receive

RxINT Receive Interrupt

S-B Schedule-Based

S-MAC Sensor-MAC

SFD Start Frame Delimiter

SINR Signal to Interference and Noise Ratio

SNR Signal to Noise Ratio

STEM Sparse Topology and Energy Management

SYNC Synchronization

T-MAC Timeout-MAC

TCXO Temperature-Compensated Crystal Oscillator

TDMA Time Division Multiple Access

TICER Transmitter Initiated CyclEd Receiver

TSP Time Synchronization Protocol

TX Transmit

WiseMAC Wireless Sensor MAC

WLAN Wireless LAN
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