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Abstract

We formulate a generalization of the time-dependent Gutzwiller theory for

the application to multi-band Hubbard models. Our approach allows for the

computation of general momentum- and frequency-dependent two-particle

response functions. The in-depth knowledge of them is crucial for the un-

derstanding and interpretation of experiments in solid-state physics. In the

calculation of ground-state properties of Hubbard models, the Gutzwiller

approach is known to overcome the main shortcomings of the Hartree–Fock

approximation, whose time-dependent generalization is the standard text-

book method for the calculation of response functions. We therefore expect

that the time-dependent Gutzwiller theory, that has been formulated only

for the single-band Hubbard model so far, will offer a technique yielding new

insight into the dynamics of strongly-correlated multi-orbital systems.

In this thesis, we motivate the employment of multi-orbital Hubbard

models and give an introduction to multi-band Hubbard models in Chap-

ters 1 and 2. Their treatment within the Gutzwiller variational approach is

subject of Chapter 3, where it is supplemented by investigations that connect

our new approach to previous results. We derive the random-phase approx-

imation as the time-dependent Hartree–Fock theory in Chapter 4, followed

by the derivation of the corresponding time-dependent Gutzwiller theory in

Chapter 5. We demonstrate the applicability of our new approach in Chap-

ter 6, where we calculate the transversal spin susceptibility of a Hubbard

model with two degenerate bands and present numerical results for systems

in infinite and three spatial dimensions. A summary and conclusion is given

in the final Chapter. Mathematical details of our derivations are presented

in several appendices.
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Chapter 1

Introduction

The investigation of materials with medium to strong Coulomb interaction

effects has been a long-standing subject in solid-state physics. Besides nu-

merically exact techniques (like exact diagonalization or quantum Monte-

Carlo methods) that are limited to systems of only a few lattice sites, the

Density-Functional Theory (DFT) in combination with the Local-Density

Approximation (LDA) has established as the standard tool for the inves-

tigation of metallic systems. For transition metals and their compounds,

however, the LDA becomes insufficient. The reasons for the shortcomings of

the LDA are believed to be due to an inadequate treatment of the Coulomb

interaction effects.

For the investigation of transition-metal compounds, e.g., manganites,

pnictides and cobaltates, more reliable many-particle techniques are desir-

able. A realistic model for the description of the aforementioned compounds

requires the treatment of multi-orbital systems since their constituents pos-

sess partially-filled d-shells.

The single-band Hubbard model has become the standard model for the

investigation of systems with short-range interactions. Within the Hartree–

Fock (HF) approximation it allows for a relatively simple calculation of

ground-state properties and of one-particle excitations within the Fermi-

liquid theory. The HF approximation covers the weak-coupling limit only,

therefore its application to strongly correlated electron systems is question-

able.

A big progress in the treatment of many-particle systems was achieved

by the limit of infinite spatial dimensions or infinite coordinate numbers,

respectively. In this limit, the Hubbard model can be evaluated exactly

leading to the Dynamical Mean-Field Theory (DMFT), in which the orig-

inal lattice model is mapped onto an effective single-impurity system that

9



10 CHAPTER 1. INTRODUCTION

has to be solved numerically [1, 2, 3, 4, 5]. In recent years, sophisticated

numerical techniques have been developed for the solution of the DMFT

equations. However, it is quite challenging from a numerical point of view,

and difficulties arise in the investigation of multi-band systems when the full

local Coulomb and exchange interaction is taken into account.

Another approach that becomes exact in the limit of infinite spatial di-

mensions is the Gutzwiller approximation (GA) applied to Gutzwiller vari-

ational wave functions. Exact statements on the evaluation of Gutzwiller

wave functions in the limit of infinite spatial dimensions have been reported

in [1] for the single-band Hubbard model and in [6, 7] for multi-band Hub-

bard models. Systematic improvements have been achieved by calculating

first-order corrections for finite dimensions [8]. The Gutzwiller variational

method allows for an investigation of ground-state properties with much less

computational effort compared to the DMFT. Originally developed for the

investigation of ferromagnetism in the one-band Hubbard model [9, 10, 11],

Gutzwiller wave functions provided a starting point for the investigation

of (orbital selective) metal-to-insulator transitions [7, 12, 13, 14, 15, 16],

quasi-particle properties within a Landau-Gutzwiller approach for Fermi

liquids [17, 8, 18], magnetic properties of nickel and pnictides [19, 20, 21, 22]

and ground-state properties of plutonium [23]. Specially the quasi-particle

dispersion relation of nickel obtained within the Gutzwiller variational ap-

proach exhibits good accordance with results from ARPES experiments [17]

and overcomes the shortcomings from other theoretical approaches. Fur-

thermore, significant improvements in DFT calculations were achieved when

Gutzwiller-correlated interacting electron systems were taken as reference

systems [24, 25, 26, 27].

The Gutzwiller variational method yields an energy functional depend-

ing on the single-particle density matrix of the non-interacting system and a

set of variational parameters. Another approach leading to an equivalent en-

ergy functional is the mean-field approximation of the slave-boson formalism

originally introduced by Kotliar and Ruckenstein for the single-band Hub-

bard model [28]. It has been applied successfully to the single-band Hubbard

model in two dimensions as approach to cuprate superconductors [29, 30].

The slave-boson formalism was generalized to multi-band Hubbard models

[31, 32] and has been applied to several systems [33, 34, 35]. The equiva-

lence of the Gutzwiller variational method and the slave-boson mean-field

formalism has been proven in [36].

For the interpretation of experimental results, a profound knowledge of

two-particle excitations is required. For example, magnetic neutron scatter-
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ing experiments allow for the measurement of the frequency- and momen-

tum-dependent magnetic susceptibility. The standard textbook method for

the theoretical investigation of two-particle excitations is the Random-Phase

Approximation (RPA), which can be interpreted as a time-dependent gen-

eralization of the HF approximation in the small-amplitude limit, i.e., as

long as the external perturbations are sufficiently small. As the ground-

state description within the HF approximation is known to be inaccurate

for moderately to strongly correlated electron systems, its time-dependent

generalization is also questionable.

A time-dependent generalization of the Gutzwiller approximation (in the

following labelled as ‘TDGA’) within the slave-boson formalism has been

developed by Seibold et al for the investigation of two-particle response

functions in the single-band Hubbard model [37, 38]. Their approach has

been applied to a number of systems where inhomogeneous solutions in high-

Tc superconductors were investigated [39, 40, 41, 42, 43, 44, 45, 46]. The

TDGA turned out to be in astonishing good agreement with exact results

[47] and DMFT results [48] for the calculation of magnetic phase boundaries

[49]. Another topic investigated by means of the TDGA is the influence

of the electron-phonon coupling on two-particle response functions in the

single-band Hubbard model [50].

As pointed out, the investigation of transition-metal compounds requires

a description by multi-orbital Hubbard models. The success of the TDGA

for the single-band model and its quite low computational effort compared

to the DMFT encouraged us to investigate to what extent the TDGA can be

generalized to such multi-band systems. That is the subject of this thesis.

We achieved to derive RPA-like equations for two-particle response functions

for Hubbard models with an arbitrary number of orbitals. The method was

implemented for numerical calculations of spin-excitations on the Hubbard

model with two degenerate electron bands as the simplest multi-band model.

The calculations were carried out in finite and infinite spatial dimensions. By

means of the two-band model, we were able to study multi-orbital effects like

phase transitions towards spin-symmetry broken states as well as orbitally

ordered phases. The results differ both qualitatively and quantitatively from

the corresponding quantities obtained within the HF approximation.





Chapter 2

Multi-Band Hubbard Models

We summarize the derivation of a Hamiltonian that describes correlated

electrons in a crystal. The interaction between the electrons and the lat-

tice atoms is neglected, and so are any spin-orbit coupling effects. The

electrons’ interactions are reduced to the purely local Coulomb interactions.

We present the single- and two-band Hubbard models and briefly sketch two

common approximations.

2.1 Many-Body Description of Solids

Solid state physics aims for deducing electronic, magnetic and optical prop-

erties of matter from the microscopic properties of its constituents and their

interaction. Based on the picture of Ns atomic nuclei occupying the sites

of a regular lattice with Ne electrons in between them, one can define the

basic solid state Hamilton operator as [51]

Ĥss =
∑

i

P̂2
i

2Mi
+

e2

2

∑

i 6=j

ZiZj∣∣R̂i − R̂j

∣∣+

+
∑

k

p̂2
k

2me
+

e2

2

∑

k 6=l

1∣∣r̂k − r̂l
∣∣+

− e2

2

∑

i,k

Zi∣∣R̂i − r̂k
∣∣ .

(2.1.1)

The first line of Eq. (2.1.1) describes the dynamics and Coulomb interaction

of the atomic nuclei, characterized by the set of momentum operators P̂i,

position operators R̂i, masses Mi and charge number Zi, while the second

line does the same for the electrons which are characterized by the set of

momentum operators p̂k and position operators r̂k. Their charge and mass

13



14 CHAPTER 2. MULTI-BAND HUBBARD MODELS

are standard e and me, respectively. The last line counts for the (attractive)

interaction between the nuclei and the electrons.

Equation (2.1.1) is given in first quantization. Atomic radii are of the

order of a few Å. The natural length scale in solid state physics is therefore

the Bohr radius a0 = ~
2/mee

2 ≈ 0.5Å. Energies are measured in units of

E0 = a0/e
2. In real space representation, we find P̂i ≡ −ı∇Ri , R̂i ≡ Ri,

p̂k ≡ −ı∇rk and r̂k ≡ rk. Introducing the scaled position vectors R = a0R̃

and replacing ∇R = 1
a0
∇

R̃
, one finds the dimensionless Hamiltonian

Ĥss/E0 = − 1

2

∑

i

me

Mi

∂2

∂R̃2
i

+
1

2

∑

i 6=j

ZiZk∣∣R̃i − R̃j

∣∣+

− 1

2

∑

k

∂2

∂r̃k
+

1

2

∑

k 6=l

1∣∣r̃k − r̃l
∣∣+

+
1

2

∑

i,k

Zi∣∣R̃i − r̃k
∣∣

(2.1.2)

which depends on the charge numbers and the ratio of electron and nucleus

mass only. For alkaline or transition metals, the ratio is of the order of

me/Mi = O(10−4). Born and Oppenheimer proved in [52] that the kinetic

energy of the nuclei is smaller than the electrons’ kinetic energy by a factor

of 4
√

me/M where M is some mean value of all core masses. Within the

‘Born-Oppenheimer’ or ‘adiabatic’ approximation, one therefore neglects the

motion of the cores. One is then left with the description of an (interacting)

electron gas in front of the background of the nuclei. At sufficiently low

temperatures, the nuclei will usually occupy the sites of a regular lattice

leading to a periodic effective one-particle potential for the electrons. In this

limit, the interaction between the nuclei is a constant and can be neglected.

Small deviations of the nuclei from their equilibrium positions can be

treated as coupled harmonic oscillators. Perturbation theory then leads

to effective electron-phonon coupling models, which may expose qualita-

tively new physics, e.g., an attractive electron-electron interaction as in the

Fröhlich model. As we are interested in electronic properties only, we will

not go into detail here.

With the aforementioned assumptions, the class of Hamiltonians that

will be subject of this thesis finally reads

Ĥel =
∑

k

[
p̂2
k

2me
+ V (rk)

]
+

e2

2

∑

k 6=l

1

|rk − rl|

≡ Ĥ0 + Ĥint ,

(2.1.3)
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where Ĥ0 describes the motion of single electrons in the effective periodic

potential caused by the static distribution of the nuclei V (r), while the

Coulomb interaction is expressed in Ĥint.

2.2 Lattice Electrons

For the description of crystal electrons, one would like to consider infinite,

perfect crystals in order to ensure translational invariance. As real crys-

tals are never infinite in space, one rather assumes finite crystals that are

sufficiently large, supplemented with periodic boundary conditions. This as-

sumption is not applicable for the investigation of surface properties, but it

is justified for the investigation of bulk properties. Non-interacting electrons

on a lattice are described by the one-particle Hamiltonian Ĥ0:

Ĥ0 =
∑

l

[
p̂2
l

2me
+ V̂ (rl)

]
. (2.2.1)

The effective one-particle potential of the cores V̂ is determined by the core

positions. It therefore exhibits the same periodicity as the lattice itself,

V̂ (r + R) = V̂ (r) , (2.2.2)

where R is a vector of the underlying Bravais lattice.

A wave function describing the motion of non-interacting electrons in a

periodic potential is a Bloch function Ψn,k(r). Bloch functions are solutions

to the eigenvalue equation

Ĥ0Ψn,k(r) = εn,kΨn,k(r) , (2.2.3)

with n as an abbreviation for a complete set of quantum numbers. As

derived in [53], these solutions must obey the relation

Ψn,k(r + R) = eıkRΨn,k(r) , (2.2.4)

with a wave vector k in the first Brillouin zone. Bloch functions can therefore

be written as a product of a plane wave with a periodic amplitude function

un,k(r), the so-called Bloch factor:

Ψn,k(r) = eıkrun,k(r) with un,k(r + R) = un,k(r) . (2.2.5)

The Bloch factor is the solution of the Schrödinger equation

1

2me

[
(k− ı∇)2 + V̂ (r)

]
un,k(r) = εn,kun,k(r) (2.2.6)
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and thus fully determined by the core potential V̂ (r).

Bloch functions describe delocalized electrons. Their Fourier transforms

yield the ‘Wannier functions’ wn(r) as

wn(r−R) =
1√
N s

∑

k

e−ıkRΨn,k(r) , (2.2.7)

which–under certain circumstances–describe an electron state localized in

the vicinity of lattice site R.

2.3 Second Quantization

Due to the Pauli principle, the wave function for the electrons must obey

the antisymmetry condition for indistinguishable fermions. The easiest way

to take the Pauli principle into consideration is the framework of second

quantization where the antisymmetry of the wave function is introduced au-

tomatically via the anticommutator relations for fermionic annihilation and

creation operators. In order to derive the representation of the Hamilto-

nian (2.1.3) in second quantization, one usually starts from the field opera-

tors in real space:

Ψ̂s(r) =

Ns∑

i=1

∑

a

wa,s(r−Ri) ĉi,a,s (2.3.1)

Ψ̂†
s(r) =

Ns∑

i=1

∑

a

w∗
a,s(r−Ri) ĉ

†
i,a,s . (2.3.2)

The Wannier states wa,s(r−Ri) are localized in the vicinity of the lattice site

Ri. The ĉ
(†)
i,a,s are the usual annihilation (creation) operators for an electron

on lattice site Ri in the state (a, s). The field operators Ψ̂
(†)
s annihilate

(create) an electron with spin s at the position r. The sum runs over all Ns

lattice sites and the discrete index a counts the Wannier states at each lattice

site. As the Hamiltonian (2.1.3) does not depend on the electrons’ spin, one

can split the state wa,s(r) into a spatial state wa(r) and a two-dimensional

spinor χs for the two spin projections s =↑, ↓.

The effective electronic Hamiltonian (2.1.3) is then expressed via the

field operators (2.3.1) and (2.3.2) as

Ĥ0 =
∑

s1s2

∫
dr Ψ̂†

s1(r)
[ p̂2

2me
+ V (r)

]
Ψ̂s2(r) (2.3.3)

Ĥint =
1

2

∑

s1s2
s3s4

∫∫
drdr′ Ψ̂†

s1(r)Ψ̂†
s2(r′)

e2

|r− r′|Ψ̂s3(r′)Ψ̂s4(r) , (2.3.4)
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leading to the result

Ĥ0 =
∑

ij

∑

σ1σ2

tσ1σ2
ij ĉ†i,σ1

ĉj,σ2
(2.3.5)

Ĥint =
1

2

∑

ij
kl

∑

σ1σ2
σ3σ4

Uσ1σ2σ3σ4
ijkl ĉ†i,σ1

ĉ†j,σ2
ĉk,σ3

ĉl,σ4
, (2.3.6)

where the abbreviations

tσ1σ2
ij = δχσ1χσ2

∫
drw∗

σ1
(r−Ri)

[
− ∆

2me
+ V (r)

]
wσ2(r−Rj) (2.3.7)

and

Uσ1σ2σ3σ4
ijkl = δχσ1χσ4

δχσ2χσ3
×

× e2
∫∫

drdr′
w∗
σ1

(r−Ri)w
∗
σ2

(r′ −Rj)wσ3(r′ −Rk)wσ4(r−Rl)

|r− r′|
(2.3.8)

were introduced using the combined spin-orbit index σ ≡ (a, s).

The representation Eqs. (2.3.5) and (2.3.6) of the Hamiltonian (2.1.3)

is still exact. One can see from Eqs. (2.3.7) and (2.3.8) that these matrix

elements depend on the spatial overlap of the Wannier states. This fact will

be the starting point for crucial approximations in the next section.

2.4 Hubbard Models

The Hubbard model was proposed for the description of electrons in narrow

bands where the model of a gas of free electrons fails both qualitatively

and quantitatively. The low mobility of the electrons is a consequence of

the small overlap of two Wannier states localized around different lattice

sites. The effective potential V (r) in the domain where the Wannier state

wσ(r − Ri) has not yet tended to zero will be dominated by the spherical

atomic potential of the nuclei at lattice site Ri. Hubbard thus suggested to

replace the exact Wannier states by the solution of the Schrödinger equation

of the isolated atoms. The field operators then read

Ψ̂s(r) ≈
∑

i,a

χsφa(r−Ri)ĉi,a,s (2.4.1)

Ψ̂†
s(r) ≈

∑

i,a

χsφ
∗
a(r−Ri)ĉ

†
i,a,s , (2.4.2)

where the index a is now identified with the orbital index.

Due to the small overlap of the atomic orbitals, the hopping amplitudes

will decrease fast with increasing distance |Ri−Rj|. Thus, one will limit the
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finite hopping amplitudes (2.3.7) only to a certain number of neighboring

sites. This is the basic idea of the ‘tight-binding’ or Bloch approximation

[53]. In order to derive suitable hopping amplitudes, one has to take the spe-

cial geometry of the underlying lattice and the anisotropy of atomic orbitals’

spatial distribution into account. Slater and Koster developed a systematic

scheme that allows for the determination of hopping amplitudes that expose

the correct symmetries for the most common crystal structures [54].

The interaction matrix element (2.3.8) is simplified analogously by ne-

glecting all contributions that arise from electron states that are localized

around at least two different lattice sites. Taking Coulomb interactions be-

tween electrons on different lattices sites into account would lead to the class

of ‘extended Hubbard models’ that are not subject of this thesis.

One is then left with the multi-orbital tight-binding Hamiltonian and

the purely local interaction Hamiltonian

Ĥel =
∑

i 6=j
σ1σ2

tσ1σ2
ij ĉ†i,σ1

ĉj,σ2
+
∑

i
σ1σ2

ǫσ1σ2
i ĉ†i,σ1

ĉi,σ2

+
1

2

∑

i

∑

σ1σ2
σ3σ4

Uσ1σ2σ3σ4
i ĉ†i,σ1

ĉ†i,σ2
ĉi,σ3

ĉi,σ4
,

(2.4.3)

with the matrix element (2.3.8) evaluated for i = j = k = l. Here, we

split the one-particle Hamiltonian into the inter-site hopping part and the

site-diagonal part with the orbital energies ǫσ1σ2
i ≡ tσ1σ2

ii .

The orbital index has no upper boundary. We transform the Hamilto-

nian (2.4.3) into momentum space via

ĉ
(†)
k,σ =

1√
Ns

∑

i

e∓ıkRi ĉ
(†)
i,σ (2.4.4)

εσ1σ2
k =

1

Ns

∑

i,j

eık(Ri−Rj) tσ1σ2
ij , (2.4.5)

leading to band states |kσ〉. We diagonalize the resulting Hamiltonian via

some unitary transformation

ĥ†k,α =
∑

σ

[
uσ,α(k)

]∗
ĉ†k,σ . (2.4.6)

At T = 0, the lowest energy band states are occupied up to the Fermi energy

EF which must be determined from

Ne =
∑

k,α

Θ[EF −Ek,α] . (2.4.7)
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Orbital states that are energetically far below or above the Fermi energy

will be either fully occupied or unoccupied, respectively. If one is interested

in low-energy excitations only, one can restrict oneself to a small (finite)

number of orbitals that are energetically close to EF.

2.5 Examples

We briefly present the one-band Hubbard model as the standard model in

the theory of correlated electrons. Furthermore, we sketch the two-band

Hubbard model to enter the universe of multi-band Hubbard models.

2.5.1 The One-Band Hubbard Model

The one-band Hubbard model was introduced independently by Gutzwiller

[9], Hubbard [55] and Kanamori [56] in 1963. The simplest Hubbard model

contains only one orbital per lattice site and arises if one considers the con-

duction band of a solid as totally separated from the valence band and any

higher energy bands. This assumption may be justified to a certain degree

if the electronic structure ensures that the Fermi energy crosses exactly one

electron band. On the one hand, this picture holds for Na, Mg, K and Ca,

for example. On the other hand, the three-orbital Emery model–describing

the dynamics in the copper-oxide planes in high-Tc superconductors–at half-

filling can be mapped onto an effective single-band Hubbard model for holes

in Cu-d-orbitals [57].

The electronic Hamiltonian reads

Ĥel
1B = Ĥ0

1B + Ĥ int
1B =

∑

i 6=j,s

tij ĉ
†
i,sĉj,s +

∑

i,s

ǫin̂i,s +
∑

i

Ui n̂i,↑n̂i,↓ . (2.5.1)

Note that we do not have to indicate the specific orbital. Thus, the electrons’

spin projection s is the only degree of freedom. The only contributions to

the interaction energy arise from doubly occupied lattice sites. For many

systems, one can assume that the lattice sites are occupied with equivalent

atoms. If the number of electrons is fixed, the site-diagonal one-particle

term leads to a constant energy contribution which can be dropped.

2.5.2 The Two-Band Hubbard Model

The two-band Hubbard model is the simplest non-trivial multi-band Hub-

bard model. As sketched in the introduction, the participation of transition

metals in pnictides, manganites and cobaltates requires an adequate de-

scription of d-orbitals. In a cubic environment, the fivefold degeneracy of
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RiRi RjRj

↑ ↓ ↑↓

E = 2ǫ E = 2ǫ + U

t

Figure 2.5.1: Sketch of the single-band Hubbard model. Left: neutral con-
figuration with singly occupied sites; Right: charge fluctuations (hopping
amplitude t) between lattice sites Ri and Rj induce doubly occupied sites
leading to an increase of the system’s energy by the local interaction U .

the atomic d-orbitals is partially lifted. The orbitals are split into three t2g-

orbitals (usually labelled as dxy-, dxz- and dyz-orbitals) and two eg-orbitals

(usually labelled as dx2−y2- and d3r2−z2-orbitals). If the central atom, i.e.,

the one contributing the d-orbitals, is surrounded by six negatively charged

ions (each one sitting on a corner of a regular octahedron), the eg-orbitals

are shifted towards higher energies due to their spatial orientation along the

crystal axes. For an illustrative description of crystal field effects, see [58].

The multi-orbital character leads to inter-orbital hopping processes and

thus increases the number of finite hopping amplitudes tσ1σ2
ij . As the struc-

ture of the hopping amplitudes strongly depends on the lattice geometry

(e.g., its dimension and symmetry), we skip the detailed specification of the

one-particle Hamiltonian here.

In the numerical application of the TDGA in Chapter 6, we consider two

degenerate eg-orbitals on a simple cubic and a hyper-cubic lattice. The local

interaction Hamiltonian (2.3.8) for two eg-orbitals on a three-dimensional

cubic lattice reads [7]

Ĥint = U
∑

b=1,2

n̂b,↑n̂b,↓ + U ′ ∑

s,s′=↑,↓
n̂1,sn̂2,s′ − J

∑

s=↑,↓
n̂1,sn̂2,s

+ J
∑

s=↑,↓
ĉ†1,sĉ

†
2,s̄ĉ1,s̄ĉ2,s + JC

[
ĉ†1,↑ĉ

†
1,↓ĉ2,↓ĉ2,↑ + ĉ†2,↑ĉ

†
2,↓ĉ1,↓ĉ1,↑

]
,

(2.5.2)

where we used the convention ↑̄ =↓ and ↓̄ =↑. For simplicity, we skipped

the site index on both the interaction parameters (U , U ′, J and JC) and the

operators. The eigenstates and eigenenergies of Ĥint are listed in Table 2.5.1,

supplemented by their spin quantum numbers. All interaction parameters

have positive values. Only two of them can be chosen independently as the

cubic symmetry in three dimensions requires U −U ′ = 2J and J = JC . The

ratio of J and U is thus limited to J
U < 1

3 . Otherwise an unphysical attractive
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interaction U ′ < 0 for electrons occupying different orbitals on the same

lattice site would arise, which may lead to a superconducting ground state.

We use the same interaction Hamiltonian and the same symmetry conditions

also in the case of the hyper-cubic lattice, although, strictly speaking, it does

not make sense to define a cubic environment in infinite spatial dimensions.

No. |Γ〉 E|Γ〉 Sat Sz
at

1 |◦, ◦〉 0 0 0

2 |↑, ◦〉 0 1
2

1
2

3 |◦, ↑〉 0 1
2

1
2

4 |↓, ◦〉 0 1
2 −1

2

5 |◦, ↓〉 0 1
2 −1

2

6 |↑, ↑〉 U ′ − J 1 1

7 1√
2

[
|↑, ↓〉 + |↓, ↑〉

]
U ′ − J 1 0

8 |↓, ↓〉 U ′ − J 1 −1

9 1√
2

[
|↑, ↓〉 − |↓, ↑〉

]
U ′ + J 0 0

10 1√
2

[
|↑↓, ◦〉 − |◦, ↑↓〉

]
U − JC 0 0

11 1√
2

[
|↑↓, ◦〉 + |◦, ↑↓〉

]
U + JC 0 0

12 |↑, ↑↓〉 U + 2U ′ − J 1
2

1
2

13 |↑↓, ↑〉 U + 2U ′ − J 1
2

1
2

14 |↓, ↑↓〉 U + 2U ′ − J 1
2 −1

2

15 |↑↓, ↓〉 U + 2U ′ − J 1
2 −1

2

16 |↑↓, ↑↓〉 2U + 4U ′ − 2J 0 0

Table 2.5.1: The 16 atomic eigenstates |Γ〉 of the two-band Hubbard inter-
action Hamiltonian (2.5.2). The eigenenergies E|Γ〉, the total spin Sat and
its z-component for each eigenstate are listed. The three triplet states with
Sat = 1 possess the lowest energy among the two-electron states, in accor-
dance with Hund’s first rule. A representation of the eigenstates and their
symmetry properties can be found in [7].

2.6 Simplifications

In spite of the crucial simplifications, Hubbard models cannot be solved

analytically without further assumptions. Exact solutions exist for the one-

band Hubbard model in one dimension and for systems with a small number
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of lattice sites, where the diagonalization of Eq. (2.1.3) can be carried out

explicitly. For any other system, further approximation techniques are re-

quired that are shortly discussed in the following.

2.6.1 Hartree–Fock Approximation I

The HF approximation is the standard textbook method to deal with corre-

lated-electron systems. It can be derived in various ways, all leading to

equivalent results. In Chapter 4.2, we derive the HF equations variation-

ally by minimizing the ground-state energy of the Hamiltonian (2.1.3) with

respect to the one-particle density matrix of a trial wave function.

An equivalent result is obtained if the Hamiltonian itself is approximated

by an effective one-particle Hamiltonian

ĤHF =
∑

γ

Eγĥ
†
γ ĥγ . (2.6.1)

The one-particle energies Eγ and operators ĥ
(†)
γ will be specified later. Its

ground-state wave function is a Slater determinant

|ΦHF
0 〉 =

∏

γ
Eγ≤EF

ĥ†γ |0〉 , (2.6.2)

where certain one-particle states γ are occupied. The Fermi energy EF was

introduced as a variational parameter in order to conserve the total number

of electrons,

Ne =
∑

γ
occ.

1 =
∑

γ

Θ
[
EF − Eγ

]
. (2.6.3)

The creation operators ĥ†γ and ĉ†σ are connected via the unitary transforma-

tion

ĥ†γ =
∑

σ

uσ,γ ĉ
†
σ (2.6.4)

ĉ†σ =
∑

γ

[
uσ,γ

]∗
ĥ†γ (2.6.5)

that must be determined self-consistently.

Based on the operator identity

ÂB̂ =
[
Â− 〈Â〉

][
B̂ − 〈B̂ 〉

]
+ Â 〈B̂〉 + B̂〈Â〉 − 〈Â〉〈B̂〉 , (2.6.6)

the HF approximation neglects the fluctuation around the expectation value,

i.e., the first two brackets in Eq. (2.6.6),

ÂB̂
HFA−−−→ Â 〈B̂〉 + B̂〈Â〉 − 〈Â〉〈B̂〉 , (2.6.7)
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and only one-operator expressions and c-numbers remain. If each of the

operators Â or B̂ is an operator product itself, the decoupling procedure

has to be repeated until one is left with one-particle operators only. In the

latter case, each possible pairing of operators has to be taken into account.

For fermionic systems, each interchange of two operators leads to a factor

of −1.

For the product of four fermionic operators as they appear in two-particle

interaction Hamiltonians, the aforementioned decoupling scheme leads to

ĉ†σ1
ĉ†σ2

ĉσ3
ĉσ4

= ĉ†σ1
ĉσ4

〈ĉ†σ2
ĉσ3

〉 + ĉ†σ2
ĉσ3

〈ĉ†σ1
ĉσ4

〉 − 〈ĉ†σ1
ĉσ4

〉〈ĉ†σ2
ĉσ3

〉
− ĉ†σ1

ĉσ3
〈ĉ†σ2

ĉσ4
〉 − ĉ†σ2

ĉσ4
〈ĉ†σ1

ĉσ3
〉 + 〈ĉ†σ2

ĉσ4
〉〈ĉ†σ1

ĉσ3
〉

+ ĉ†σ1
ĉ†σ2

〈ĉσ3
ĉσ4

〉 + ĉσ3
ĉσ4

〈ĉ†σ1
ĉ†σ2

〉 − 〈ĉσ3
ĉσ4

〉〈ĉ†σ1
ĉ†σ2

〉 .
(2.6.8)

Note that the last line contributes for superconducting systems only and is

mentioned here only for the sake of completeness. The expectation values

that appear in Eq. (2.6.8) are to be taken with respect to the HF ground-

state wave function (2.6.2).

Applied to the multi-band Hubbard Hamiltonian (2.5.2), the effective

one-particle Hamiltonian in its general form reads

ĤHF =
∑

ij

∑

σ1σ2

[
tσ1σ2
ij + δij

∑

σ3σ4

Ũσ1σ2,σ3σ4

i

〈
ĉ†iσ3

ĉiσ4

〉
ΦHF

0

]
ĉ†iσ1

ĉjσ2
(2.6.9)

and must be diagonalized via the unitary transformations (2.6.4) and (2.6.5).

The one-particle energies depend implicitly on the Slater determinant (2.6.2)

through the expectation values 〈ĉ†iσ3
ĉiσ4

〉ΦHF
0

. With a certain starting wave

function |ΦHF
0 〉, one calculates the particle densities 〈ĉ†iσ ĉiσ′〉ΦHF

0
defining

new one-particle energies in ĤHF. This procedure is continued until self-

consistency is reached.

2.6.2 Limit of Large U and the t− J-Model

The t− J-model evolves from the one-band Hubbard model perturbatively

in the limit of infinite local interactions (U → ∞). For band-fillings below

or equal to 1
2 , the system will avoid any double occupancies. Via a canonical

transformation, the Hamiltonian (2.5.1) can be transformed into an effective

Hamiltonian

Ĥaux
tJ =

∑

i 6=j

∑

s=↑,↓
tij
[
1 − n̂i,s̄

]
ĉ†i,s
[
1 − n̂j,s̄

]
ĉj,s +

1

2

∑

i 6=j

4t2ij
U

[
ŜiŜj − 1

4 n̂in̂j

]
,

(2.6.10)
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in which high-energy excitations (induced by doubly occupied sites) are

eliminated to order O(
t2ij
U ). The unconstrained hopping processes of the

Hamiltonian (2.4.3) are replaced by projected hopping events in the sense

that an electron can reach lattice site Rj only if that is not covered by an

electron of opposite spin yet. The formerly local density-like interaction is

now represented by a spin-spin interaction between electrons on neighboring

lattice sites. For exactly half-filled systems, the Hamiltonian (2.6.10) turns

into the Heisenberg Hamiltonian for the description of localized spins

ĤHB =
∑

i 6=j

JijŜiŜj , (2.6.11)

with the anti-ferromagnetic coupling constant Jij =
4t2ij
U . For an overview

of the development of the t− J-model, cf., [59].



Chapter 3

Gutzwiller Wave Functions

We briefly summarize some basic definitions and expressions that are very

useful to develop the multi-band Gutzwiller theory. An overview of the

basic ideas leading to the class of Gutzwiller wave functions as they were

developed in order to examine the single-band Hubbard model is given.

We present a symmetric formulation that allows for a straight-forward

generalization to multi-band systems. We recapitulate the results that arise

from the limit of infinite spatial dimensions, known as the ‘Gutzwiller ap-

proximation’ (GA).

3.1 Definitions and Notations

In order to formulate the general multi-band Gutzwiller formalism, we set

up some definitions that will remain valid for the rest of this thesis. We

follow the ideas of Bünemann, Weber and Gebhard in [7]. Each lattice site

with N orbitals allows for an occupation with up to 2N electrons. Thus, the

dimension of the atomic Hilbert space is 22N . For a given set of combined

spin-orbit indices σ = (a, s), we introduce some arbitrary, but fixed, order

σ1 < σ2 < · · · < σ2N .

Each atomic configuration I is characterized by its occupied spin-orbit

states. If the configuration I contains the occupied spin-orbit states σα1 ,

σα2 , . . . , σα|I|
, the corresponding state |I〉 is defined as

|I〉 = ĉ†σα1
ĉ†σα2

· · · ĉ†σα|I|
|0〉 , (3.1.1)

where the creation operators are in ascending order. Sequences of annihila-

tion operators, as in

[
|I〉
]† ≡ 〈I| = 〈0|ĉσα|I|

· · · ĉσ2 ĉσ1 , (3.1.2)

25
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always appear in descending order. Here, we also introduced |I| as the total

number of electrons within the configuration I.

Configurations I are treated as sets in the common mathematical sense.

This allows for the usual set operations. For example, the configuration

J = I \I ′ will contain all occupied states as I except the occupied ones from

I ′. Analogously, the state J = I ∪ I ′ is made of those spin-orbit states that

are occupied within I or I ′, respectively, while the state J = I ∩ I ′ only

contains states that are occupied in both states I and I ′ simultaneously.

The complement to a given state I is defined as I = (σ1, σ2, . . . , σ2N ) \ I.

If an additional electron is added to a given configuration I by ĉ†σ|I〉, the

result will be finite only if σ /∈ I. We define the sign function

sign(σ, I) ≡ 〈I ∪ σ|ĉ†σ |I〉 , (3.1.3)

which is 1 (−1) if an even (odd) number of anti-commutations are required

in order to move ĉ†σ to its proper position in the state |I ∪ σ〉 and zero if

σ ∈ I.

The transfer operators m̂I,I′ = |I〉〈I ′| are expressed as

m̂I,I′ =
∏

σ∈I
ĉ†σ
∏

σ′∈I′
ĉσ′

∏

σ′′∈J
[1 − n̂σ′′ ] , (3.1.4)

with the overall complement J = I ∪ I ′. A special case of transfer operators

is the projector m̂I,I = |I〉〈I|, which is written as

m̂I,I =
∏

σ∈I
n̂σ

∏

σ′ /∈I
[1 − n̂σ′ ] . (3.1.5)

The Fock states |I〉 provide a basis of the local Hilbert space. The

eigenstates |Γ〉 of the local interaction Hamiltonian can be written as

|Γ〉 =
∑

I

TI,Γ|I〉 , (3.1.6)

where the coefficients TI,Γ are obtained from a diagonalization of

HI,I′

int = 〈I|Ĥint|I ′〉 . (3.1.7)

As long as the particle number on each lattice site is conserved by Ĥint, we

have TI,Γ ∼ δ|I|,|Γ|. The set of local eigenstates |Γ〉 and eigenenergies EΓ

will be used to set up the generalized Gutzwiller correlator in the following

sections.



3.2. MULTI-BAND GUTZWILLER WAVE FUNCTIONS 27

3.2 Multi-Band Gutzwiller Wave Functions

Uncorrelated many-electron systems are described by a product of one-

particle states, i.e., a Slater determinant. For example, the ground state

of an infinite system is usually described by the non-interacting ‘Fermi sea’

|FS〉 defined as

|Φ0〉 = |FS〉 ≡
∏

σ
Eσ≤EF

ĉ†σ|0〉 . (3.2.1)

For interacting electrons, such a description is insufficient since the local

occupancies in |Φ0〉 are independent of the local interaction energies. Nev-

ertheless, product states as defined in Eq. (3.2.1) provide a starting point

for a variational approach to interacting electron systems. In the one-orbital

model, the interaction energy can be reduced by optimizing variationally the

number of doubly occupied lattice sites. A more general approach applicable

for multi-orbital Hubbard models has been developed by Bünemann et al

[6, 7]. The product-state |Φ0〉 is multiplied with the ‘Gutzwiller correlation

operator’ P̂G in order to obtain the Gutzwiller wave function |ΨG〉:

|ΨG〉 = P̂G|Φ0〉 . (3.2.2)

The Gutzwiller correlator for multi-band Hubbard models with purely local

interactions has the special form

P̂G =
∏

i

P̂i,G =
∏

i

∑

ΓΓ′

λi,ΓΓ′ |Γ〉ii〈Γ′| . (3.2.3)

It is a product of local correlation operators which, on each lattice site Ri,

are set up by the 22N eigenstates |Γ〉i of the local interaction Hamiltonian.

The local parameters λi,ΓΓ′ allow for the variation of the weight of the local

eigenstates, i.e., of the local electron configurations. The energy expectation

value 〈ΨG|Ĥ|ΨG〉/〈ΨG|ΨG〉 must be minimized with respect to all {λΓΓ′}
in order to obtain the variational ground state.

Throughout this thesis, we work with Hermitian Gutzwiller correlators

only, which implies that

λi,Γ′Γ = λ∗
i,ΓΓ′ (3.2.4)

must hold for all non-diagonal variational parameters. Due to Eq. (3.2.4),

we have to choose the diagonal parameters λi,ΓΓ to be real. The necessity

of non-diagonal and non-Hermitian projectors in the context of symmetry-

broken phases has been discussed in [12].

Usually, the interaction Hamiltonian does not change the total number

of electrons. Thus, the Gutzwiller wave function should be an eigenstate of
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the total electron number operator N̂e =
∑

i,σ n̂i,σ. The disappearance of

the commutator
[
P̂G, N̂e

]
leads to

∑

ΓΓ′

λi,ΓΓ′

(
|Γ| − |Γ′|

)
|Γ〉ii〈Γ′| = 0 . (3.2.5)

From Eq. (3.2.5) one can conclude that only those variational parameters

for states |Γ〉, |Γ′〉 with the same particle number can be finite.

The situation is different if one deals with superconducting systems.

One then usually chooses |Φ0〉 as an BCS ground state instead of a non-

interacting Fermi sea. As we are not interested in superconductivity in this

thesis, we refer the reader to the literature [60].

Finally we state that, in the following, expectation values with respect

to |ΨG〉 will be denoted as ‘correlated’ expectation values while those with

respect to |Φ0〉 will be denoted as ‘uncorrelated’ expectation values.

3.3 Limit of Infinite Spatial Dimensions

In general, Gutzwiller wave functions cannot be evaluated without approx-

imations. Analytically exact results were derived for the single-band Hub-

bard model in one dimension [1], that are in good agreement with the exact

solution. Another strategy to evaluate Gutzwiller wave functions is based

on combinatorial counting arguments [11, 61, 62] known as the ‘Gutzwiller

approximation’.

Gutzwiller wave functions can be evaluated exactly in the limit of infinite

spatial dimensions. The exact solvability in this limit originates from the

fact that all expectation values turn out to be purely local. Metzner and

Vollhard proved that the evaluation of Gutzwiller wave functions in the

limit of infinite spatial dimensions yields the same results as the GA [63] for

paramagnetic systems. Corrections for finite-dimensional systems can be

obtained by an expansion of expectation values with respect to the inverse

of the dimensionality D. The resulting corrections are small [8, 63, 64, 65]

and the limit of infinite spatial dimensions turns out to be a good starting

point for the investigation of finite-dimensional systems.

As pointed out in the introduction, the single-band Hubbard model can

also be evaluated within the mean-field approximation of the slave-boson

formalism. Both the variational approach and the slave-boson formalism

have been generalized to multi-band systems [31, 7] and the equivalence of

both approaches has been proved [36].

In this section, we summarize the results of the diagrammatic approach

for multi-band Hubbard models as reported in [7]. The limit D → ∞ affects
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both the kinetic and interaction energy, i.e., both Ĥ0 and Ĥint, and both will

be investigated separately. Furthermore, it leads to a set of constraints that

the local variational parameters have to obey and that will be discussed.

3.3.1 Local Constraints

The D → ∞-limit leads to a set of physical constraints that the local vari-

ational parameters λi,ΓΓ′ have to obey on each lattice site [7]. These are

1 = 〈P̂ †
i P̂i〉Φ0 (3.3.1)

C0
i,σσ′ = 〈ĉ†i,σP̂

†
i P̂iĉi,σ′〉Φ0 . (3.3.2)

Within this subsection, we re-introduced the lattice site index i in order to

emphasize the local character of Eqs. (3.3.1) and (3.3.2). Using the expan-

sion of P̂i from Eq. (3.5.1), the constraints can be explicitly written as

1 =
∑

ΓΓ1Γ2

λ∗
i,ΓΓ1

λi,ΓΓ2
m0

Γ1,Γ2
(3.3.3)

C0
i,σσ′ =

∑

ΓΓ′

Γ1Γ2Γ3

λ∗
i,Γ2Γ1

λi,Γ2Γ3
〈Γ|ĉ†σ |Γ1〉 × 〈Γ3|ĉσ′ |Γ′〉m0

Γ,Γ′ . (3.3.4)

One must not conclude from Eq. (3.3.2) that the correlated and the un-

correlated local density matrix have to coincide. In particular, the occu-

pancy of orbitals in the correlated local density matrix

Cc
i,σσ′ =

〈
ĉ†i,σ ĉi,σ′

〉
ΨG

=

〈
P̂ †
Gĉ

†
i,σĉi,σ′ P̂G

〉
Φ0〈

P̂ †
GP̂G

〉
Φ0

(3.3.5)

may be different from the uncorrelated local density matrix. Nevertheless,

as long as the Gutzwiller correlator P̂G commutes with the total number

operator N̂e =
∑

i,σ n̂i,σ, the total numbers of electrons in |Φ0〉 and |ΨG〉
are the same

Ne =
∑

i,σ

〈n̂i,σ〉ΨG
=
∑

i,σ

〈n̂i,σ〉Φ0 . (3.3.6)

A detailed study of the diagrammatic evaluation of expectation values

in infinite spatial dimensions has been published in [6]. The main result is

that expectation values of local and non-local operators Ôi and Ôij = ĉ†iσ ĉjσ′ ,

respectively, are simplified to

〈
Ôi

〉
ΨG

=

〈
Φ0

∣∣P̂ †
GÔiP̂G

∣∣Φ0

〉
〈
Φ0

∣∣P̂ †
GP̂G

∣∣Φ0

〉 =

〈
Φ0

∣∣∏
m6=i P̂

†
mP̂m

[
P̂ †
i ÔiP̂i

]∣∣Φ0

〉
〈
Φ0

∣∣∏
m P̂ †

mP̂m

∣∣Φ0

〉

D→∞
=

〈
Φ0

∣∣P̂ †
i ÔiP̂i

∣∣Φ0

〉
(3.3.7)
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and

〈
Ôij

〉
ΨG

=

〈
Φ0

∣∣P̂ †
GÔijP̂G

∣∣Φ0

〉
〈
Φ0

∣∣P̂ †
GP̂G

∣∣Φ0

〉 =

〈
Φ0

∣∣∏
m6=i,j P̂

†
mP̂m

[
P̂ †
i P̂

†
j ÔijP̂jP̂i

]∣∣Φ0

〉
〈
Φ0

∣∣∏
m P̂ †

mP̂m

∣∣Φ0

〉

D→∞
=

〈
Φ0

∣∣P̂ †
i P̂

†
j ÔijP̂jP̂i

∣∣Φ0

〉
,

(3.3.8)

respectively, if the constraints (3.3.1) and (3.3.2) are taken into account.

Note that the local Gutzwiller correlators P̂i and P̂j always commute for

i 6= j (cf., Eq. (3.1.4) in combination with Eq. (3.2.5)), which leads to the

simplification in the numerator of Eqs. (3.3.7) and (3.3.8). Equation (3.3.7)

holds for both one- and two-particle local operators while Eq. (3.3.8) is valid

for non-local one-particle operators only.

3.3.2 Local Energy

Due to the local character of the interaction energy, one can diagonalize Ĥint

in Eq. (2.4.3) on each lattice site,

Ĥi,int|Γ〉i = Eloc
Γi

|Γ〉i , (3.3.9)

which yields the eigenstates |Γ〉i and eigenenergies Eloc
Γi

. We drop the lattice

site index i in the following. For the expectation value Eloc of the interaction

energy with respect to the Gutzwiller trial wave function |ΨG〉 we find

〈
Ĥint

〉
ΨG

≡ Eloc =

〈
ΨG

∣∣Ĥint

∣∣ΨG

〉
〈
ΨG

∣∣ΨG

〉 =

〈
Φ0

∣∣P̂ †
GĤintP̂G

∣∣Φ0

〉
〈
Φ0

∣∣P̂ †
GP̂G

∣∣Φ0

〉

D→∞
=

∑

Γ

Eloc
Γ 〈m̂Γ,Γ〉ΨG

,

(3.3.10)

where the expectation value of the transfer operators

〈m̂Γ,Γ′〉ΨG
=
∑

Γ̃Γ̃′

λ∗
ΓΓ̃

λ
Γ′Γ̃′ m

0
Γ̃,Γ̃′ (3.3.11)

is a weighted sum of the uncorrelated expectation values m0
Γ̃,Γ̃′ = 〈m̂Γ̃,Γ̃′〉Φ0 .

The states |Γ〉 are set up by the Fock states |I〉 via a unitary transformation

|Γ〉 =
∑

I

TI,Γ|I〉 , (3.3.12)

which allows us to express m0
Γ̃,Γ̃′ as

m0
Γ̃,Γ̃′ =

∑

II′

T
I,Γ̃

T ∗
I′,Γ̃′m

0
I,I′ (3.3.13)
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my means of the uncorrelated expectation values of the transfer operators

m0
I,I′ = 〈|I〉〈I ′|〉Φ0 . Using the uncorrelated local density-matrix elements

C0
i,σσ′ =

〈
ĉ†i,σ ĉi,σ′

〉
Φ0

, (3.3.14)

the expectation value m0
I,I′ can be written as

m0
I,I′ =

∣∣∣∣∣
Ω̃I,I′ −Ω̃I,J

Ω̃J,I′ ˜̄Ω
J,J

∣∣∣∣∣ , (3.3.15)

with the matrices Ω̃I,I′ defined as

Ω̃I,I′ =




C0
σ1σ′

1
C0
σ1σ′

2
· · · C0

σ1σ′
|I′|

C0
σ2σ′

1
C0
σ2σ′

2
· · · C0

σ2σ′
|I′|

...
...

. . .
...

C0
σ|I|σ

′
1

C0
σ|I|σ

′
2

· · · C0
σ|I|σ

′
|I′|




(3.3.16)

for the electronic configurations I = (σ1, . . . , σ|I|) and I ′ = (σ′
1, . . . , σ

′
|I′|),

respectively, and

˜̄Ω
J,J

=




1 − C0
σ1σ1

− C0
σ1σ2

· · · − C0
σ1σ|J|

− C0
σ2σ1

1 − C0
σ2σ2

· · · − C0
σ2σ|J|

...
...

. . .
...

− C0
σ|J|σ1

−C0
σ|J|σ2

· · · 1 −C0
σ|J|σ|J|




(3.3.17)

for states σα ∈ J ≡ I ∪ I ′.

3.3.3 Kinetic Energy

As sketched in Eq. (3.3.8), hopping expectation values factorize according to

〈
ĉ†i,σ1

ĉj,σ2

〉
ΨG

D→∞
=

〈[
P̂ †
i ĉ

†
i,σ2

P̂i

][
P̂ †
j ĉj,σ2

P̂j

]〉
Φ0

(3.3.18)

in infinite spatial dimensions. This leads to the expression

〈
ĉ†i,σ1

ĉj,σ2

〉
ΨG

=
∑

σ′
1σ

′
2

q
σ′
1

i,σ1

[
q
σ′
2

j,σ2

]∗ 〈
ĉ†i,σ′

1
ĉj,σ′

2

〉
Φ0

, (3.3.19)

where the ‘renormalization matrix’ qσ
′

σ with

qσ
′

σ =
∑

Γ1Γ2
Γ3Γ4

λ∗
Γ2Γ1

λΓ3Γ4

〈
Γ2

∣∣ĉ†σ
∣∣Γ3

〉∑

I1I4

TI1,Γ1
T ∗
I4,Γ4

Hσ′

I1,I4 (3.3.20)
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was introduced. The matrix H̃σ′
contains three different contributions de-

pending on whether the index σ′ is an element of I1 ∩ I4, I4 \ (I1 ∩ I4) or

I1 ∪ I4. H̃σ′
can be written as

Hσ′

I1,I4 =
(
1 − fσ′,I1

)〈
I4
∣∣ĉσ′

∣∣I4 ∪ σ′〉m0
I1,I4∪σ′

+
〈
I1 \ σ′∣∣ĉσ′

∣∣I1
〉[
fσ′,I4 m

0
I1\σ′,I4

+
(
1 − fσ′,I4

)
m0;σ′

I1\σ′,I4

]
,

(3.3.21)

with the abbreviation fσ,I ≡ 〈I|ĉ†σ ĉσ|I〉. The expectation value m0;σ′

I1\σ′,I4
is

determined from Eq. (3.3.15), except that the subset J has to be replaced

by J \ σ′.

For homogeneous systems, the expectation value of the kinetic energy

can explicitly written as

〈
Ĥ0

〉
ΨG

= Ns

∑

σ1σ2
σ′
1σ

′
2

q
σ′
1

σ1

[
q
σ′
2

σ2

]∗
Eσ1σ2,σ

′
1σ

′
2
, (3.3.22)

where we used Eq. (3.3.19) and introduced the tensor

Eσ1σ2,σ
′
1σ

′
2

=
1

Ns

∑

i 6=j

t
σ1σ2
ij

〈
ĉ†i,σ′

1
ĉj,σ′

2

〉
Φ0

, (3.3.23)

whose elements are the expectation value of the kinetic energy for the un-

correlated system.

3.4 Energy Functional in Infinite Dimensions

We summarize the results of the previous section that lead to the expres-

sion for the Gutzwiller energy functional. We sketch how its minimization

(adopted from [66]) yields both the ground-state energy and an effective

one-particle Gutzwiller Hamiltonian whose eigenenergies will be interpreted

as quasi-particle energies in the TDGA in Chapters 5 and 6.

The correlated expectation value 〈Ĥ〉ΨG
can be split into the kinetic

energy and the local interaction energy:

EGA ≡
〈
Ĥ
〉
ΨG

=
〈
Ĥ0

〉
ΨG

+
〈
Ĥint

〉
ΨG

= E0

(
{λ̃i}, {C̃0

i }, |Φ0〉
)

+
∑

i

Eloc
i

(
λ̃i, C̃

0
i

)
.

(3.4.1)

Both the kinetic and the interaction energy are functionals of the variational

parameter matrices λ̃ and the uncorrelated local density matrix C̃0, where
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the kinetic energy

E0

(
{λ̃i}, {C̃0

i }, |Φ0〉
)

=
∑

i 6=j

∑

σ1σ2
σ′
1σ

′
2

tσ1σ2
ij q

σ′
1

i,σ1

[
q
σ′
2

j,σ2

]∗ 〈
ĉ†
i,σ′

1
ĉ
j,σ′

2

〉
Φ0

=
∑

i 6=j

∑

σσ′

t̃σσ
′

ij

〈
ĉ†i,σ ĉj,σ′

〉
Φ0

(3.4.2)

is additionally a functional of the uncorrelated one-particle wave function

|Φ0〉. In the second line of Eq. (3.4.2) the abbreviation

t̃σσ
′

ij =
∑

σ1σ2

tσ1σ2
ij qσi,σ1

[
qσ

′

j,σ2

]∗
(3.4.3)

for the effective hopping-parameter matrix elements has been introduced.

The variational ground-state energy is found by minimizing EGA with

respect to all variational parameters {λ̃} and the one-particle states |Φ0〉,
where the nc constraints (3.3.1) and (3.3.2) must be fulfilled. As this section

is meant to treat the Gutzwiller scheme on a formal level, we assume from

now on–without loss of generality–that the constraints are fulfilled explic-

itly, i.e., we assume that we can resolve the constraints and eliminate nc

dependent variational parameters and are left with npar − nc independent

variational parameters λi
i,ΓΓ′ .

When one minimizes the energy with respect to the one-particle states

|Φ0〉, the additional constraints

1 =
〈
Φ0|Φ0

〉
(3.4.4)

C0
σσ′ =

〈
ĉ†σ ĉσ′

〉
Φ0

(3.4.5)

Ne =
∑

i,σ

〈
n̂i,σ

〉
Φ0

(3.4.6)

have to be fulfilled. For the last two constraints, see Eqs. (3.3.6) and (3.3.14).

The constraints are taken into account by Lagrange multipliers ESP, ηi,σσ′

and EF, respectively. The resulting constricted energy functional Ec then

reads

Ec

(
{λ̃i

i}, {C̃0
i }, |Φ0〉, ESP, {η̃i}, EF

)

= EGA
(
{λ̃i

i}, {C̃0
i }, |Φ0〉

)
− ESP

[
〈Φ0|Φ0〉 − 1

]
+

+
∑

i,σσ′

ηi,σσ′

[
C0
i,σσ′ −

〈
Φ0

∣∣ĉ†i,σ ĉi,σ′

∣∣Φ0

〉]
+ EF

[
Ne −

∑

i,σ

〈
Φ0

∣∣ĉ†i,σ ĉi,σ
∣∣Φ0

〉]
.

(3.4.7)

The variational ground-state energy is then found as the overall minimum

EGA
0 = Minimum

{λ̃i
i},{C̃0

i },|Φ0〉
ESP,{η̃i},EF

Ec

(
{λ̃i

i}, {C̃0
i }, |Φ0〉, ESP, {η̃i}, EF

)
. (3.4.8)
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As shown in [67], the minimization with respect to |Φ0〉 can be carried out

analytically leading to an effective one-particle Schrödinger equation

Ĥeff
0 |Φ0〉 = ESP

(
{λ̃i

i}, {C̃0
i }, {η̃i}

)
|Φ0〉 , (3.4.9)

with the effective one-particle Hamiltonian

Ĥeff
0 =

∑

i 6=j

∑

σσ′

t̃σσ
′

ij ĉ†
i,σ′

1
ĉ
j,σ′

2
−
∑

i

∑

σσ′

[
ηi,σσ′ + δσσ′EF

]
ĉ†i,σ ĉi,σ′ . (3.4.10)

For translationally invariant systems, the effective Hamiltonian (3.4.10) has

the rather simple form

Ĥeff
0 =

∑

k,σσ′

[∑

σ̃σ̃′

qσσ̃
[
qσ

′

σ̃′

]∗
εσ̃σ̃

′

k − ησσ′ − δσσ′EF

]
ĉ†k,σ ĉk,σ′ , (3.4.11)

where the operators ĉ
(†)
k,σ and the dispersion relation εσ̃σ̃

′

k have been defined

in Eqs. (2.4.4) and (2.4.5), respectively. The Hamiltonian (3.4.11) can be

diagonalized easily by a proper unitary transformation

ĥ†k,γ =
∑

σ

uγ,σ(k)ĉ†k,σ , (3.4.12)

leading to

Ĥeff
0 =

∑

k,γ

[
Ek,γ − EF

]
ĥ†
k,γĥk,γ , (3.4.13)

where the eigenenergies Ek,γ of Ĥeff
0 and the dispersion relation εσ̃σ̃

′

k are

related through the elements of the transformation matrix ũ:

Ek,γ =
∑

σσ′

[∑

σ̃σ̃′

qσσ̃
[
qσ

′

σ̃′

]∗
εσ̃σ̃

′

k − ησσ′

]
uγ,σ(k)u∗γ,σ′(k) . (3.4.14)

Motivated by the corresponding HF results [68], we assume that |Φ0〉 can

be written as ∣∣Φ0

〉
=

∏

k,γ
E

k,γ≤EF

ĥ†
k,γ

∣∣0
〉
, (3.4.15)

which still is a functional of {λ̃i
i}, {C̃0

i } and {η̃i}. The variational ground-

state energy is then found as

EGA
0 = Minimum

{λ̃i
i},{C̃0

i }
{η̃i},EF

Eeff
c

(
{λ̃i

i}, {C̃0
i }, {η̃i}, EF

)
(3.4.16)
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of the function

Eeff
c

(
{λ̃i

i}, {C̃0
i }, {η̃i}, EF

)
= ESP

(
{λ̃i

i}, {C̃0
i }, {η̃i}

)
+ Eloc

(
{λ̃i

i}, {C̃0
i }
)

+

+
∑

i,σσ′

ηi,σσ′C0
i,σσ′ + EFNe .

(3.4.17)

Up to now, Ĥeff
0 has been introduced as an auxiliary object without phys-

ical counterpart. The effective one-particle Hamiltonian (3.4.10) yields the

eigenenergies Ek,γ that will be interpreted as quasi-particle energies within

a Fermi-liquid scheme. Ĥeff
0 is thus of great importance for both obtaining

the variational ground-state energy and deriving the time-dependent theory

as well.

Note that the aforementioned scheme has to be seen as a a formal treat-

ment only. A more sophisticated algorithm for the minimization with respect

to the variational parameters has been developed by Bünemann et al and

will be published elsewhere [69].

3.5 Examples

In this section, we apply the Gutzwiller theory to the single- and the two-

band Hubbard model. With the help of the one-band model, we illustrate

the essential steps derived in the previous sections leading to the ground-

state energy functional. In case of the two-band model, we decouple the

orbitals and prove that in the limit of vanishing inter-orbital correlations

the results of the single-band model are reproduced.

3.5.1 The One-Band Hubbard Model and the Brinkman–

Rice Transition

We illustrate the Gutzwiller formalism for the one-band Hubbard model.

We assume translational invariance and therefore drop the lattice site index

i in most expressions. M. C. Gutzwiller proposed a variational approach in

order to deal with correlated electron systems [9]. The aim of [9] and the

consecutive works [10, 11] was the investigation of ferromagnetism in the

single-band Hubbard model. The ansatz is based on the picture that hopping

processes between two lattice sites become more and more improbable with

increasing on-site interaction if the site is already occupied by an electron

of opposite spin.

Starting from a single-particle product state |Φ0〉, the number of doubly

occupied sites is Nd = 〈Φ0|
∑

i n̂i,↑n̂i,↓|Φ0〉, each one contributing the energy
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U . Gutzwiller introduced a local variational parameter gi to reduce the

weight of doubly occupied sites in a Slater determinant by means of the

Gutzwiller correlator

P̂ 1b
G =

∏

i

[
1 − (1 − gi)n̂i,↑n̂i,↓

]
(3.5.1)

acting on the uncorrelated ground state:

|ΨG〉 = P̂ 1b
G |Φ0〉 . (3.5.2)

The local variational parameters gi ∈ [0, 1] adjust the weight of the local

double occupancies. For gi ≡ 0, the Gutzwiller correlator P̂ 1b
G is the projec-

tor onto the subspace without any double occupancies that already appeared

in the t − J-model. The Gutzwiller wave function |ΨG〉 allows for the in-

terpolation between the two limiting cases of uncorrelated electrons (U → 0

and g = 1) and the atomic limit (t → 0 and g = 0) describing isolated

atoms. The energy expectation value must be varied with respect to all gi
to obtain the variational ground-state energy, i.e., an upper bound for the

exact ground-state energy.

The correlator P̂ 1b
G (3.5.1) focusses on the doubly occupied state and its

energy contribution U . One can set up a more symmetric correlator based

on the whole set of local eigenstates as

P̂G =
∏

i

P̂i,G =
∏

i

∑

ΓΓ′

λi,ΓΓ′ |Γ〉ii〈Γ′| , (3.5.3)

allowing to vary the weight of all local eigenstates |Γi〉 by means of the

elements of a local variational parameter matrix λ̃i,ΓΓ′ . For the one-band

model, the local correlator reads

P̂ 1b
i,G = λi,◦|◦〉ii〈◦| + λi,↑|↑〉ii〈↑| + λi,↑↓|↑〉ii〈↓| +

+ λi,↓↑|↓〉ii〈↑| + λi,↓|↓〉ii〈↓| + λi,d|↑↓〉ii〈↑↓| ,
(3.5.4)

which is the most general ansatz for the one-band correlator for systems

without superconductivity. Superconductivity would lead to contributions

∼ |◦〉ii〈↑↓| and |↑↓〉ii〈◦| in Eq. (3.5.4). It has been proven that both corre-

lators (3.5.1) and (3.5.3) define the same variational space [70].

The interaction Hamiltonian reads

Ĥ1b
int = U

∑

i

n̂i,↑n̂i,↓ = U
∑

i

|↑↓〉ii〈↑↓| (3.5.5)

and leads to the four local eigenstates |◦〉i, |↑〉i, |↓〉i and |↑↓〉i. The most

general local density matrix

C̃0 =

(
〈ĉ†↑ĉ↑〉Φ0 〈ĉ†↑ĉ↓〉Φ0

〈ĉ†↓ĉ↑〉Φ0 〈ĉ†↓ĉ↓〉Φ0

)
=

(
n0
↑ ∆0

↑↓
∆0

↓↑ n0
↓

)
(3.5.6)
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with ∆0
↓↑ =

[
∆0

↑↓
]∗ ≡ ∆0 and the one-band Gutzwiller correlator (3.5.4)

lead to the uncorrelated expectation values

m0
◦ =

[
1 − n0

↑
][

1 − n0
↓
]
− |∆0|2 (3.5.7)

m0
s = n0

s

[
1 − n0

s̄

]
+ |∆0|2 (3.5.8)

m0
ss̄ = ∆0

ss̄ (3.5.9)

m0
d = n0

↑n
0
↓ − |∆0|2 (3.5.10)

of transfer operators. The interaction energy Eloc thus reads

Eloc =
∑

i

U
〈
|↑↓〉ii〈↑↓|

〉
ΦG

= NsU |λd|2m0
d . (3.5.11)

The evaluation of Eq. (3.3.20) yields the explicit expressions

qss = λ∗
sλ◦
[
1 − n0

s̄

]
+ λ∗

dλs̄n
0
s̄ +

[
λ∗
dλs̄s + λ∗

ss̄λ◦
]
∆0

s̄s (3.5.12)

qs̄s =
[
λ∗
sλ◦ − λ∗

dλs̄

]
∆0

ss̄ (3.5.13)

for the elements of the renormalization matrix. The constraints concerning

the variational parameters are given by the expressions

1 = |λ◦|2m0
◦ + |λd|2 +

[
|λ↑|2 + |λ↑↓|2

]
m0

↑ +
[
|λ↓|2 + |λ↑↓|2

]
m0

↓ (3.5.14)

n0
s =

[
|λs̄|2 + |λss̄|2

]
m0

d + |λ◦|2m0
s (3.5.15)

∆0
ss̄ = −

[
λ∗
ss̄λs + λ∗

s̄λs̄s

]
m0

d + |λ◦|2∆0
ss̄ . (3.5.16)

As we are free in the choice of the local basis, we can diagonalize C̃0 via the

unitary transformation

ĥ†γ =
∑

s

us,γ ĉ
†
s , (3.5.17)

leading to

C̃0
h =

(
〈ĥ†1ĥ1〉Φ0 〈ĥ†1ĥ2〉Φ0

〈ĥ†2ĥ1〉Φ0 〈ĥ†2ĥ2〉Φ0

)
≡
(
ñ0
1 0

0 ñ0
2

)
. (3.5.18)

With the diagonal local density matrix, the transfer operators are written

as

m̃◦ = λ̃2
◦m

0
◦ = 1 − ñ0

1 − ñ0
2 + m̃d (3.5.19)

m̃γ = λ̃2
γm

0
γ = ñ0

γ − m̃d (3.5.20)

m̃d = λ̃2
dm

0
d . (3.5.21)

The renormalization matrix becomes diagonal and has the well-known form

[9, 10, 11]

qγγ = λ̃◦λ̃γ

[
1−ñ0

γ̄

]
+λ̃dλ̃γ̄ ñ

0
γ̄ =

1√
ñ0
γ [1 − ñ0

γ ]

[√
m̃◦m̃γ+

√
m̃dm̃γ̄

]
. (3.5.22)
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Finally, the constraints concerning the completeness and the local occupa-

tion numbers are expressed as

1 = λ̃2
◦m

0
◦ + λ̃2

1m
0
1 + λ̃2

2m
0
2 + λ̃2

dm
0
d (3.5.23)

ñ0
γ = λ̃2

γm
0
γ + λ̃2

dm
0
d , (3.5.24)

while the constraints for the previously off-diagonal elements ∆0
ss̄ are auto-

matically fulfilled if the Gutzwiller correlator in the new basis ĥ
(†)
γ contains

only diagonal variational parameters, i.e., λ̃γγ̄ = 0. Consequently, all varia-

tional parameters λ̃
Γ̃Γ̃′ and renormalization factors qγγ are real.

For a given diagonal local density matrix C̃0
h, the minimization of the

energy functional

EGA
1b =

∑

i 6=j

∑

γ

[
qγγ
]2
tij
〈
ĥ†i,γĥj,γ

〉
Φ0

+ NsUm̃d (3.5.25)

with respect to m̃d can be carried out analytically.

We define the uncorrelated ground-state energy ǫ0 per lattice site as

ǭ =
1

Ns

∑

i 6=j
γ

tij
〈
ĥ†i,γĥj,γ

〉
Φ0

=
1

Ns

∑

k
γ

εk
〈
n̂k

〉
Φ0

=
2

Ns

∑

k

εkΘ
[
EF − εk

]
.

(3.5.26)

Especially for a half-filled paramagnet, i.e., ñ0
1 = ñ0

2 ≡ 1
2 , we express the

ground-state energy per lattice site (3.5.25) as

ēGA
1b = 8

[
1 − 2m̃d

]
m̃dǭ + Um̃d , (3.5.27)

whose minimization with respect to m̃d leads to

[qγγ ]2 = 1 −
[ U

UBR

]2
(3.5.28)

and

m̃d =
1

4

[
1 − U

UBR

]
, (3.5.29)

with the critical interaction strength UBR = 8|ǭ|. From Eq. (3.5.21) we

conclude that the variational parameter λ̃d vanishes if U approaches UBR

from below. The average number of doubly occupied sites in |ΨG〉 tends

to zero. Consequently, the renormalization factors also decrease and the

system becomes insulating when U = UBR.

For one-dimensional systems, these findings are in contrast to both exact

results of the single-band Hubbard model [71] and the exact evaluation of

the Gutzwiller-correlated wave function [1, 65]. In Fig. 3.5.1 we plot the
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Figure 3.5.1: Mean double occupancy md for the one-dimensional single-
band Hubbard model as a function of the on-site interaction U for a half-
filled paramagnet (n↑ = n↓ = 1

2). The circles mark the exact result in the
thermodynamic limit (Ns → ∞) while the solid lines are the results obtained
within the GA (black) and of the two-site model (red). The exact results
are excerpt from [65].

average number of doubly occupied sites of the one-dimensional single-band

Hubbard model. We recognize that the linear decrease of m̃d with increasing

U reproduces the results from the exact evaluation of the Gutzwiller wave

function for U up to U ≈ 0.8UBR quantitatively well. For larger values

of U , the exact evaluation of the Gutzwiller wave function yields a finite

number of doubly occupied sites. For comparison, we also plot the mean

double occupancy of the exact solution of the two-site model of the half-filled

one-band Hubbard model, see Appendix A.1.

Brinkman and Rice predicted that, within the GA, this localization tran-

sition will occur for half-filled systems in arbitrary spatial dimensions [72].

In [73] it was shown that the Brinkman–Rice (BR) transition is an artefact

of the limit of infinite spatial dimensions. Hence, corrections in leading or-

der of 1
D may yield quantitatively better results [65], but the BR transition

cannot be overcome by finite-order corrections in 1
D .

The single-band Hubbard model was also applied to inhomogeneous

states. It was shown that the single-band Hubbard model within the slave-

boson mean-field formalism possesses solutions with various inhomogeneous

solutions like spin polarons, domain walls [37] and vortex-antivortex and

Skyrmion structures [29]. Later, the time-dependent generalization of the

slave-boson formalism was applied in order to investigate the dynamic prop-

erties of inhomogeneous superconductors [30, 39, 42, 43, 44].
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3.5.2 Two Decoupled Orbitals

The one-band Hubbard model has been extensively studied both within the

Gutzwiller variational approach and the time-dependent Gutzwiller theory.

It is therefore interesting to check to what extent the numerous one-band

results are reproduced by the multi-band Gutzwiller scheme. In order to

address this question, we consider the Hubbard model with two completely

decoupled orbitals per lattice site. We talk about ‘decoupled’ orbitals if both

the one-particle Hamiltonian Ĥ0 and the local interaction Hamiltonian Ĥint

are ‘orbital-diagonal’ in the sense that the Hamiltonian can be written as

Ĥ2b
dec =

2∑

b=1

Ĥ2b,b
dec =

2∑

b=1

[∑

i 6=j

∑

σ

tij ĉ
†
i,bσ ĉj,bσ + U

∑

i

n̂i,b↑n̂i,b↓

]
, (3.5.30)

where only the intra-orbital Coulomb interaction parameter U remains. We

assume an orbital-independent hopping amplitude tij.

The local density matrix C̃0 consists of two block matrices for the two

orbitals:

C̃0 =




n0
1,↑ ∆0

1,↑↓ 0 0

∆0
1,↓↑ n0

1,↓ 0 0

0 0 n0
2,↑ ∆0

2,↑↓
0 0 ∆0

2,↓↑ n0
2,↓


 . (3.5.31)

The atomic two-orbital eigenstates are simple product states

|Γ〉 = |γ〉1 ⊗ |γ′〉2 ≡ |γ〉1|γ′〉2 (3.5.32)

of the one-orbital eigenstates, i.e., |γ(′)〉1,2 ∈ {|◦〉, |↑〉, |↓〉, |↑↓〉}.

Due to the block structure of the local density matrix (3.5.31), the un-

correlated expectation values of transfer operators m̂Γ,Γ′ with respect to the

two-orbital eigenstates

〈
m̂

Γ,Γ̃

〉
≡
〈
(|γ〉1|γ′〉2)(2〈γ̃′|1〈γ̃ |)

〉
=
〈
|γ〉11〈γ̃ |

〉
×
〈
|γ〉22〈γ̃′|

〉
(3.5.33)

can be expressed as the product of two expectation values of one-orbital

transfer operators m̂γ,γ′ .

The factorization of the atomic eigenstates and the expectation values

of transfer operators into the respective one-band quantities suggests the

following decomposition for the elements of the Gutzwiller correlator (3.5.1):

λ
ΓΓ̃

|Γ〉〈Γ̃| ≡ λ
ΓΓ̃

|γ〉1|γ′〉2 2〈γ̃′|1〈γ̃ |
= λγγ̃ |γ〉11〈γ̃ | × λγ′γ̃′ |γ′〉22〈γ̃′| .

(3.5.34)
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In order to check the validity of this assumption, we first state that the

relation ∑

Γ

λ∗
ΓΓλΓΓ =

∑

γγ̃

λ∗
γγλγγ × λ∗

γ̃γ̃λγ̃γ̃ = 1 (3.5.35)

holds after the minimization. Here, the λΓΓ are the diagonal variational

parameters for the two-band model while the λγγ are the variational param-

eters from the one-band model. Furthermore, a comparison of the single

values λΓΓ to the products λγγλγ̃γ̃ yields a one-to-one correspondence of

two-orbital states |Γ〉 and one-orbital product states |γ〉|γ̃〉. In this way, the

validity of our assumption has been checked for both para- and ferromag-

netic systems.

By replacing each sum over the multi-orbital states |Γ〉 by multiple sums

over one-orbital states |γ〉, one derives the following results:

• The local completeness relation (3.3.1) factorizes into the completeness

relations for the completeness within each orbital:

1 =
∑

ΓΓ1Γ2

λ∗
ΓΓ1

λΓΓ2m
0
Γ1,Γ2

=
∑

γγ1γ2

λ∗
γγ1λγγ2m

0
γ1,γ2 ×

∑

γ′γ′
1γ

′
2

λ∗
γ′γ′

1
λγ′γ′

2
m0

γ′
1,γ

′
2

= 1(1) × 1(2) .

(3.5.36)

The superscript denotes the orbitals.

• The constraint concerning the element C0
as,as′ of the local density ma-

trix can be cast into the corresponding constraint for C0
s,s′ from the

one-orbital model and the completeness relation within the other or-

bital:

C0
as,as′ =

∑

ΓΓ′

Γ1Γ2Γ3

λ∗
Γ2Γ1

λΓ2Γ3

〈
Γ
∣∣ĉ†as

∣∣Γ1

〉
×
〈
Γ3

∣∣ĉas′
∣∣Γ′〉m0

Γ,Γ′

=
∑

γγ′

γ1γ2γ3

λ∗
γ2γ1λγ2γ3

〈
γ
∣∣ĉ†as

∣∣γ1
〉
×
〈
γ3
∣∣ĉas′

∣∣γ′
〉
m0

γ,γ′×

×
∑

γ′γ′
1γ

′
2

λ∗
γ′γ′

1
λγ′γ′

2
m0

γ′
1,γ

′
2

= C0
s,s′ × 1(ā) ,

(3.5.37)

where we used 1̄ = 2 and 2̄ = 1, respectively.
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• The elements of the renormalization matrix qas
′

as can also be cast into

the corresponding one-band renormalization factor qs
′

s and the com-

pleteness relation within the other orbital:

qas
′

as =
∑

Γ1Γ2
Γ3Γ4

λ∗
Γ2Γ1

λΓ3Γ4
〈Γ2|ĉ†as|Γ3〉Has′

Γ1Γ4

=
∑

γ′
1γ

′
2

γ′
3γ

′
4

λ∗
γ′
3γ

′
4
〈γ′2|ĉ†s|γ′3〉Hs′

γ′
1γ

′
4
×
∑

γγ1γ2

λ∗
γγ1λγγ2m

0
γ1,γ2

= qs
′

s × 1(ā)

(3.5.38)

• The local interaction energy splits into the sum of the one-orbital

interaction energies, multiplied by the completeness relation of the

opposite orbital:

Eloc =
∑

Γ

Eloc
Γ

∑

Γ1Γ2

λ∗
ΓΓ1

λΓΓ2
m0

Γ1,Γ2

=
∑

γγ′

[
Eloc

γ + Eloc
γ′

]∑

γ1γ2
γ′
1γ

′
2

λ∗
γγ1

λ∗
γ′γ′

1
λγγ′

2
λγ′γ′

2
m0

γ1,γ2
m0

γ′
1,γ

′
2

= E1,loc × 1(2) + E2,loc × 1(1)

(3.5.39)

These findings have also been checked and been confirmed numerically. They

provided useful criteria for consistency checks in the development of the

TDGA.



Chapter 4

Time-Dependent

Hartree–Fock Approximation

The HF approximation as sketched Section 2.6.1 yields a decoupled Hamilto-

nian allowing for simple calculations of ground-state properties. The stabil-

ity of the ground state can be checked by calculating the response functions

for the charge, spin and pair channel by applying time-dependent exter-

nal fields to the system. In the limit of small fluctuation amplitudes, the

so-called RPA allows for the calculation of two-particle response functions.

The RPA was developed by Pines [74] based on the equation of motion

for the one-electron density matrix. Here, the RPA will be derived as a

time-dependent generalization of the HF approximation in Section 4.2.

The HF ground-state wave function is included in the Gutzwiller varia-

tional space if we set λi,ΓΓ′ = δΓΓ′ . The derivation of the TDGA will thus

go along the same lines in certain aspects. We start this chapter with a list

of abbreviations that will be used both for the RPA and the TDGA.

4.1 Definitions and Notations

The HF theory aims for an effective one-particle description of the interact-

ing electron system. The trial ground state is therefore written as a product

state of non-interacting particles, i.e., the ground-state wave function |ΦHF
0 〉

is approximated by a Slater determinant:

|ΦHF
0 〉 =

∏

γ

ĥ†γ |0〉 . (4.1.1)

The evaluation of expectation values with respect to one-particle product

states is a simple task by means of Wick’s theorem. It its time-independent

43
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version, Wick’s theorem states that expectation values of many-particle op-

erators can be obtained by calculating all possible pairings of creation and

annihilation operators. Expectation values with respect to Slater determi-

nants thus become functionals of the one-particle density matrix ρ̃. We label

the elements of ρ̃ as

ρjσ′,iσ ≡
〈
ĉ†iσ ĉjσ′

〉
Φ0

. (4.1.2)

Note that the order of the indices as introduced in Eq. (4.1.2) is more useful

than the one used in Chapter 3. For i = j, ρjσ′,iσ just recovers the elements

of the local density matrix C̃.

We introduce the abbreviations

υ ≡ (iσ) (4.1.3)

for local one-particle states and

Y = (υ, υ′) (4.1.4)

for pairs of these indices. The elements of ρ̃ can then be written as

ρjσ1,iσ2
= ρ(υ1,υ2) = ρY , (4.1.5)

which allows us to interpret them as elements of a matrix ρ̃ (with respect to

(υ1, υ2)) or as elements of a vector ~ρ (with respect to Y ). To a given index

pair Y = (υ1, υ2) we define the ‘inverse’ index Ȳ = (υ2, υ1).

4.2 Hartree–Fock Approximation II

The expectation value of a many-particle Hamiltonian with respect to a

single-particle product state is a function of the single-particle density ma-

trix. For example, for the Hamiltonian (2.4.3) it reads

EHF(ρ̃) ≡
〈
Ĥ
〉
Φ0

=
∑

i 6=j
σσ′

tσσ
′

ij ρjσ′,iσ +
∑

i
σσ′

ǫσσ
′

i ρiσ′,iσ +
∑

i

EHF
loc,i(ρ̃) , (4.2.1)

where ρjσ′,iσ are the elements of the previously defined density matrix and

EHF
loc,i(ρ̃) =

1

2

∑

σ1σ2
σ3σ4

Uσ1σ2,σ3σ4
i

[
ρiσ4,iσ1ρiσ3,iσ2 − ρiσ3,iσ1ρiσ4,iσ2

]
(4.2.2)

is the expectation value of the two-particle interaction term in the Hamil-

tonian (2.4.3).
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With the abbreviations (4.1.5), the HF energy (4.2.1) reads

EHF(ρ̃) =
∑

υ1υ2

ευ1υ2ρυ2,υ1 +
1

2

∑

υ1υ2
υ3υ4

ρυ4,υ1Wυ1υ4,υ3υ2ρυ3,υ2

=
∑

Y

εY ρȲ +
1

2

∑

Y Y ′

ρȲ WY Y ′ρY ′ ,

(4.2.3)

where

εiσ1,jσ2 ≡ tσ1σ2
ij + δijǫ

σ1σ2
i (4.2.4)

denotes the one-particle energies and

Wυ1υ4,υ3υ2 ≡ Uσ1σ2,σ3σ4
i − Uσ1σ2,σ4σ3

i (4.2.5)

for indices υk = (i, σk) that belong to the same lattice site i. Note the

symmetries

Wυ1υ4,υ3υ2 = Wυ2υ3,υ4υ1 = −Wυ1υ3,υ4υ2 , (4.2.6)

which will be employed in the following section.

The energy functional (4.2.3) has to be minimized with respect to all

density matrices which belong to a single-particle product state. Such ma-

trices are idempotent, i.e., they obey the matrix equation

ρ̃2 = ρ̃ , (4.2.7)

which must be imposed as a constraint via a Lagrange parameter matrix η̃

with elements ηυυ′ . The resulting equation

∂

∂ρυ,υ′

[
EHF(ρ̃) − tr

(
η̃
(
ρ̃2 − ρ̃

))]
= 0 (4.2.8)

has to be solved, leading to

h̃(ρ̃) + η̃ − η̃ρ̃− ρ̃η̃ = 0 , (4.2.9)

where we introduced the matrix h̃(ρ̃) with the elements

hY (ρ̃) =
∂

∂ρȲ
EHF(ρ̃) = εY +

∑

Y ′

WY Y ′ρY ′ . (4.2.10)

Equation (4.2.9) is solved if ρ̃ satisfies both Eq. (4.2.7) and

[
h̃(ρ̃), ρ̃

]
= 0 . (4.2.11)

Starting with a certain density matrix ρ̃, we can introduce the single-particle

basis

|α〉 =
∑

υ

uυ,α|υ〉 (4.2.12)
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of states which diagonalize the Hamilton matrix h̃(ρ̃), i.e.,
∑

υ′

hυ,υ′(ρ̃)uυ′,α = Eαuυ,α . (4.2.13)

Equation (4.2.11) is then solved by setting

ρα,α′ = δαα′Θ
[
EF − Eα

]
, (4.2.14)

where the Fermi energy EF is determined by the total number of electrons

Ne =
∑

α

Θ
[
EF − Eα

]
. (4.2.15)

The density matrix (4.2.14) has to be reinserted into Eqs. (4.2.3) and (4.2.10)

until self-consistency is reached. We denote the self-consistent solution of

these equations as ρ̃0 and introduce the corresponding Hamilton matrix

h̃0 ≡ h̃(ρ̃0) . (4.2.16)

4.3 Equation of Motion for the Density Matrix

We consider two-particle Green’s functions of the form

Gυ2υ1,υ3υ4(t − t′) ≡
〈〈
ĉ†υ1(t)ĉυ2(t); ĉ†υ3(t′)ĉυ4(t′)

〉〉

≡ −ıΘ(t − t′)
〈
Φ
∣∣[ĉ†υ1(t)ĉυ2(t), ĉ†υ3(t′)ĉυ4(t′)

]∣∣Φ
〉
,

(4.3.1)

where |Φ〉 is the exact ground state of the multi-band Hubbard Hamilto-

nian (2.4.3), and ĉ
(†)
υ (t) is the Heisenberg representation of the operator ĉ

(†)
υ

with respect to Ĥ. As shown in most textbooks on many-particle physics,

the Green’s functions (4.3.1) naturally arise in ‘linear-response theory’ be-

cause they describe the time-dependent changes

δ
〈
ĉ†υ1 ĉυ2

〉
t
≡
〈
ĉ†υ1 ĉυ2

〉
t
−
〈
ĉ†υ1 ĉυ2

〉
−∞ ≡ δρυ2,υ1(t)

=
∑

υ3υ4

∞∫

−∞

dt′Gυ2υ1,υ3υ4(t − t′)fυ3υ4(t′)
(4.3.2)

of the density matrix ρ̃ in the presence of a small time-dependent perturba-

tion

V̂f (t) =
∑

υυ′

fυυ′(t)ĉ†υ ĉυ′ (4.3.3)

added to Ĥ [75, 76, 77]. After a Fourier transformation and using again the

abbreviation Y = (υ, υ′), Eq. (4.3.2) reads

δρY (ω) =
∑

Y ′

GY Y ′(ω)fY ′(ω) , (4.3.4)
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with

GY Y ′(ω) ≡
∞∫

−∞

dτ GY Y ′(τ) eıωτ , (4.3.5)

and fY (ω) and δρY (ω) defined accordingly.

Ideally, we would like to calculate the time dependence of the density

matrix

ρυ′,υ (t) ≡
〈
Φ(t)

∣∣ĉ†υ ĉυ′

∣∣Φ(t)
〉
, (4.3.6)

where |Φ(t)〉 is the exact solution of the time-dependent Schrödinger equa-

tion for the full Hamiltonian

Ĥ(t) = Ĥ + V̂f (t) . (4.3.7)

The expectation value (4.3.6) obeys the Heisenberg equation

ıρ̇υ′,υ (t) =
〈
Ψ(t)

∣∣[Ĥ, ĉ†υ ĉυ′

]∣∣Ψ(t)
〉
, (4.3.8)

which contains the commutator

[
Ĥ(t),ĉ†υ ĉυ′

]
=
∑

υ1

[
ευ1υ + fυ1υ (t)

]
ĉ†υ1 ĉυ′ −

∑

υ1

[
ευ′υ1

+ fυ′υ1
(t)
]
ĉ†υ ĉυ1

+
1

2

∑

υ1υ2υ3

(
Wυ1υ3,υυ2

ĉ†υ1 ĉ
†
υ2
ĉυ′ ĉυ3 + Wυ1υ2,υ3υ

′ ĉ†υ1 ĉ
†
υ ĉυ2 ĉυ3

)
.

(4.3.9)

In the time-dependent HF approximation, it is assumed that the solution

|Φ(t)〉 of the Schrödinger equation at any time t is approximately given by a

single-particle product wave function. In this case, the expectation value of

the commutator (4.3.9) can be evaluated by means of Wick’s theorem. This

leads to the equation of motion

ı ˙̃ρ(t) =
[
h̃(ρ̃(t)) + f̃(t), ρ̃(t)

]
(4.3.10)

for ρ̃(t), where the matrix h̃(ρ̃) has been introduced in Eq. (4.2.10). Equa-

tions (4.2.10) and (4.3.10) will be crucial also for our formulation of the

TDGA in Chapter 5.

4.3.1 Expansion for Weak Perturbations

We are only interested in cases where

V̂f (t) → δV̂f (t) =
∑

υυ′

δfυυ′(t)ĉ†υ ĉυ′ (4.3.11)
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is a weak perturbation to the time-independent Hamiltonian Ĥ. In this case,

the density matrix ρ̃(t) and the Hamilton matrix h̃(t) are given as

ρ̃(t) ≈ ρ̃0 + δρ̃(t) (4.3.12)

h̃(t) ≈ h̃0 + δh̃(t) , (4.3.13)

where δρ̃(t) describes a ‘small’ time-dependent perturbation around the

ground-state density matrix ρ̃0, and

h0Y = εY +
∑

Y ′

WY Y ′ρ0Y ′ (4.3.14)

δhY (t) =
∑

Y ′

WY Y ′δρY ′(t) . (4.3.15)

With the expansion (4.3.12) and (4.3.13), the equation of motion for the

time-dependent density matrix (4.3.10) becomes

0 =
[
h̃0, ρ̃0

]
(4.3.16)

ıδ ˙̃ρ(t) =
[
h̃0, δρ̃(t)

]
+
[
δh̃(t) + δf̃(t), ρ̃0

]
. (4.3.17)

These equations have to be solved for density matrices ρ̃(t) that fulfill

Eq. (4.2.7). After applying the expansion Eq. (4.3.12), Eq. (4.2.7) reads

(to leading order in δρ̃(t))

ρ̃0 =
[
ρ̃0
]2

(4.3.18)

δρ̃(t) = ρ̃0δρ̃(t) + δρ̃(t)ρ̃0 . (4.3.19)

Note that Eqs. (4.3.16) and (4.3.18) just recover the time-independent HF

equations (4.2.7) and (4.2.11) derived in Section 4.2.

4.3.2 RPA Equations

Mathematically, the density matrix is a projector onto ‘hole’-states, ρ̃h ≡ ρ̃0.

In addition, we define the projector onto ‘particle’-states as

ρ̃p ≡ 1 − ρ̃0 . (4.3.20)

With these two operators, we can decompose all matrices into their four

components

δρ̃vw(t) ≡ ρ̃vδρ̃(t)ρ̃w (4.3.21)

δf̃ vw(t) ≡ ρ̃vδf̃ (t)ρ̃w (4.3.22)

h̃0;vw ≡ ρ̃vh̃
0ρ̃w , (4.3.23)
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where v,w ∈ {p,h} denotes the particle and hole channel, respectively. Note

that h̃0;vw has the elements

h0;vwα,α′ = δvwδαα′Eα . (4.3.24)

An evaluation of the condition (4.3.19) for the components δρ̃vw(t) yields

δρ̃vw(t) = δρ̃vw(t) + δρ̃vv(t)δρ̃vw(t) + δρ̃vw(t)δρ̃ww(t) (4.3.25)

and

δρ̃ww(t) = 0 , (4.3.26)

where v 6= w. Hence, the components δρ̃pp(t) and δρ̃hh(t) can be neglected

in the following compared to the leading fluctuations δρ̃hp(t) and δρ̃ph(t).

We express the time-dependent quantities δρ̃vw(t) and δf̃ vw(t) by their

respective Fourier transforms δρ̃vw(ω) and δf̃ vw(ω). The equation of mo-

tion (4.3.17) then leads to

+ωδρvwα1,α2
(ω) =

[
Eα1−Eα2

]
δρvwα1,α2

(ω)±
[
δhvwα1 ,α2

(ω)+δf vw
α1,α2

(ω)
]
, (4.3.27)

where the plus and minus signs correspond to vw = ph and vw = hp,

respectively. With the abbreviation A = (α1, α2) for pairs of indices α we

find

δhvwA (ω) = −
∑

A′

UAA′

[
δρvwA′ (ω) + δρwv

A′ (ω)
]
. (4.3.28)

Here, the elements of the matrix Ũ are given as

UAA′ = Uα1α2,α
′
1α

′
2
≡ −

∑

υ1υ2
υ′
1υ

′
2

u∗υ1,α1
uυ2,α2

Wυ1υ2,υ
′
1υ

′
2
uυ′

1,α
′
1
u∗υ′

2,α
′
2
. (4.3.29)

The coefficients uυ,α in Eq. (4.3.29) have been introduced in Eq. (4.2.12)

and determine the solutions |α〉 of the HF equations. Equations (4.3.27)

and (4.3.28) then yield

[(
ω − Ẽ

)(1 0
0 −1

)
+ Ũ

](
δρ̃ph(ω)
δρ̃hp(ω)

)
=

(
δf̃ph(ω)

δf̃hp(ω)

)
, (4.3.30)

with a matrix Ẽ defined as

EAA′ = Eα1α2,α
′
1α

′
2

= δα1α
′
1
δα2α

′
2

[
Eα1

−Eα2

]
. (4.3.31)

By comparing Eqs. (4.3.30) and (4.3.4) we find

G̃−1(ω) =

[(
ω + ıδ − Ẽ

)(1 0
0 −1

)
+ Ũ

]
(4.3.32)
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for the inverse of the two-particle Green’s function

GAA′(ω) = Gα1α2,α
′
1α

′
2
(ω)

=
∑

υ1υ2
υ′
1υ

′
2

uυ1,α1
u∗υ2,α2

Gυ1υ2,υ
′
1υ

′
2
(ω)u∗υ′

1,α
′
1
uυ′

2,α
′
2
. (4.3.33)

In Eq. (4.3.32) we added an infinitesimal increment ıδ with δ = 0+ in order

to ensure the correct boundary conditions of a retarded Green’s function.

For Ũ = 0, the inverse Green’s function (4.3.32) reads

Γ̃−1(ω) ≡ ±
[
ω + ıδ − Ẽ

]
, (4.3.34)

which leads to

ΓAA′(ω) = Γα1α2,α
′
1α

′
2
(ω) = δα1α

′
1
δα2α

′
2

ρ0α2,α2
− ρ0α1,α1

ω −
[
Eα1

− Eα2

]
+ ıδ

. (4.3.35)

Note that Γ̃ is not the exact Green’s function for the single-particle Hamil-

tonian Ĥ0 since we just set Ũ = 0 in Eq. (4.3.32), but kept finite the ‘HF

self-energy’ contributions

ΣA ≡
∑

A′

WAA′ρ0A′ , (4.3.36)

which usually change the ‘eigenvalues’ Eα in Eq. (4.3.35); cf., Eqs. (4.2.10)

and (4.2.13).

With the Green’s function (4.3.35) we can write Eq. (4.3.32) as

G̃(ω) = Γ̃(ω)[1 + Ũ Γ̃(ω)]−1 (4.3.37)

= Γ̃(ω) + Γ̃(ω)Ũ G̃(ω) , (4.3.38)

where, in the second line, we expanded [1 + Ũ Γ̃(ω)]−1 into a power series

with respect to Ũ Γ̃. Both Eqs. (4.3.37) and (4.3.38) are familiar expressions

for the two-particle Green’s function in the RPA.



Chapter 5

Time-Dependent Gutzwiller

Approximation

Based on the slave-boson mean-field formalism, Seibold et al developed the

TDGA for the single-band Hubbard model [37, 38]. In later works, the

TDGA yielded results that were in both qualitatively and quantitatively

good agreement with DMFT and exact results [47, 48, 49].

In this chapter, we generalize this approach for the investigation of multi-

band models. To this end, we set up an effective energy functional of the

density matrix in Section 5.2, which is used in Sections 5.3 and 5.5 to derive

the Gutzwiller RPA equations. We first present a list of abbreviations that

will be used in the following sections.

5.1 Definitions and Notations

As in the previous chapter, we start with a list of definitions and abbrevia-

tions. The elements of the density matrix will be denoted as

ρjσ′,iσ = ρυ′υ = ρY =
〈
ĉ†iσ ĉjσ′

〉
Φ0

, (5.1.1)

with the abbreviation Y = (υ′, υ) for a pair of local spin-orbit states (iσ)

and (jσ′) already defined in Eqs. (4.1.3) and (4.1.4). We further introduce

the abbreviation

X ≡ (i,ΓΓ′) or Z ≡ (i,ΓΓ′) (5.1.2)

to label the elements of the variational parameter matrix, see below.

5.2 Effective Energy Functional

As summarized in Chapter 3, the expectation value of the multi-band Hamil-

tonian (2.4.3) in the Gutzwiller theory is a function of the variational param-

51
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eters λΓΓ′ and of the one-particle wave function |Φ0〉. As in the HF theory,

the single-particle wave function |Φ0〉 enters the energy functional solely

through the elements of the non-interacting density matrix ρ̃, Eq. (4.1.2). It

is therefore possible to consider the energy

EGA = EGA
(
~λ, ρ̃

)
≡
〈
ΨG

∣∣Ĥ
∣∣ΨG

〉
〈
ΨG

∣∣ΨG

〉 (5.2.1)

as a function of the density matrix ρ̃ and of the ‘vector’

~λ =
(
{λ∗

ΓΓ′}, {λΓΓ′}
)

= (λ1, . . . , λnvar) (5.2.2)

of nvar variational parameters λΓΓ′ (and λ∗
ΓΓ′ for Γ 6= Γ′). The density

matrix in the energy functional (5.2.1) must be derived from a single-particle

wave function and, therefore, it has to obey the condition (4.2.7).

The constraints (3.3.1) and (3.3.2) are also functions of ~λ and ~ρ and will

be denoted as

gn
(
~λ, ~ρ
)

= 0, 1 ≤ n ≤ nc . (5.2.3)

The dependence on ~λ is given in Eqs. (3.3.3) and (3.3.4). Here, nc is the

(maximum) number of independent constraints, which, due to symmetries,

is usually smaller than its maximum value N2
so + 1, where Nso is the number

of spin-orbital states per lattice site. We assume that the functions (5.2.3)

are real, i.e., in case of complex expressions in Eqs. (3.3.3) and (3.3.4) their

real and imaginary parts are treated separately.

By solving Eqs. (5.2.3) we can, at least in principle, express nc of the vari-

ational parameters (≡ λd
X) through the density matrix ρ̃ and the remaining

‘independent’ parameters (≡ λi
Z),

λd
X = λd

X (~λi,~ρ) . (5.2.4)

In this way, we obtain an energy functional

EGA
(
~λi, ~ρ

)
≡ EGA

(
~λd

(~λi,~ρ), ~λi, ~ρ
)

(5.2.5)

which has to be minimized without constraints apart from Eq. (4.2.7) and

the condition that the total electron number

Ne =
∑

υ

ρυυ (5.2.6)

is conserved.

For a fixed density matrix ρ̃, the minimization of Eq. (5.2.5) with respect

to the parameters λi
Z ,

∂

∂λi
Z

EGA
(
~λi, ~ρ

)
= 0 , (5.2.7)
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determines these parameters

~λi = ~λi
(~ρ) (5.2.8)

as a function of ~ρ. This allows us to define the ‘effective’ energy functional

Eeff(~ρ) = EGA
(
~λi

(~ρ), ~ρ
)
, (5.2.9)

which, for a fixed density matrix ~ρ, is given as the minimum of EGA with

respect to ~λi. With this effective functional we will formulate the time-

dependent Gutzwiller theory in the following section.

Using a Lagrange-parameter matrix η̃ as in Chapter 4, we find

∂
[
Eeff(ρ̃) − tr

(
η̃
(
ρ̃2 − ρ̃

))]

∂ρυυ′

∣∣∣∣∣∣
ρ̃=ρ̃0

= 0 , (5.2.10)

which leads to [
h̃(ρ̃), ρ̃

]
= 0 . (5.2.11)

Here we introduced the matrix h̃(ρ̃) with the elements

hY (ρ̃) =
∂Eeff(ρ̃)

∂ρȲ
(5.2.12)

and used again the notation Ȳ ≡ (jσ′, iσ) for Y = (iσ, jσ′). The self-

consistent solution of Eqs. (5.2.11) and (5.2.12) then yields the ground-state

density matrix ρ̃0, the matrix h̃0 ≡ h̃(ρ̃0), and the corresponding single-

particle ‘Gutzwiller-Hamiltonian’

ĥ0 ≡
∑

ij
σσ′

h0iσ,jσ′ ĉ
†
i,σ ĉj,σ′ . (5.2.13)

5.3 Gutzwiller RPA Equations

The derivation of RPA-type equations within the time-dependent Gutzwiller

theory goes along the same lines as discussed in Chapter 4 for the time-

dependent HF theory. We add a small time-dependent field

δV̂f (t) =
∑

ij
σσ′

δf0
iσ,jσ′(t)ĉ

†
i,σ ĉj,σ′ + h.c. (5.3.1)

to our multi-band Hamiltonian (2.4.3). With the particular time dependence

δf0
iσ,jσ′(t) = δf̃0

iσ,jσ′(ω)e−ıωt , (5.3.2)
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the expectation value of δV̂ (t) reads

Ef (ρ̃) =
∑

ij
σσ′

δf̃iσ,jσ′(ω)e−ıωtρjσ′,iσ + c.c. , (5.3.3)

where

δf̃iσ1,jσ2(ω) = δijδf̃
0
iσ1,iσ2

(ω)
Cc
iσ1,iσ2

ρiσ2,iσ1

+
[
1 − δij

]∑

σ′
1σ

′
2

δf0
iσ′

1,jσ
′
2
(ω)qσ1

σ′
1

[
qσ2

σ′
2

]∗
.

(5.3.4)

The (correlated) local density matrix C̃c and the renormalization matrix q̃

are defined in Eqs. (3.3.5) and (3.3.20), respectively. With Eq. (5.2.8) they

can both be considered as functions of ρ̃.

The time-dependent field induces small fluctuations of the density matrix

elements,

ρY = ρ0Y + δρY (t) . (5.3.5)

Our main assumption is now that δρY (t) obeys the same equation of motion,

ıδ ˙̃ρ(t) =
[
h̃0, δρ̃(t)

]
+
[
δh̃(t) + δf̃(t), ρ̃0

]
, (5.3.6)

as the density matrix in the time-dependent HF theory; cf., Eq. (4.3.17).

Here, however, the Hamilton matrix

h̃(t) ≈ h̃0(t) + δh̃(t) (5.3.7)

is not derived from the HF energy functional (4.2.3), but from the effective

energy functional (5.2.9),

hY (t) =
∂

∂ρȲ
Eeff(ρ̃) ≈ h0Y +

∑

Y ′

KY Y ′δρY ′(t) ≡ h0Y + δhY (t) , (5.3.8)

where the matrix K̃ is given as

K̃Y Y ′ ≡ ∂2Eeff

∂ρȲ ∂ρY ′

∣∣∣∣
ρ̃=ρ̃0

. (5.3.9)

The diagonalization of h̃0 (or equivalently of the Gutzwiller Hamiltonian

ĥ0) yields a basis |α〉 with

h0αα′ = h0A = δαα′Eα (5.3.10)
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and a ground-state density matrix that is given as

ρ0αα′ = ρ0A = δαα′ Θ
[
EF − Eα

]
. (5.3.11)

With the projectors ρ̃h ≡ ρ̃0 and ρ̃p ≡ 1− ρ̃0, we define the particle and hole

components of all matrices, as we did in Eqs. (4.3.21)–(4.3.23). The com-

ponents δρ̃vw(t) of the density-matrix fluctuations obey Eqs. (4.3.25) and

(4.3.26), i.e., to leading order we can neglect δρ̃hh(t) and δρ̃pp(t). Hence,

after a Fourier transformation we end up with the same form of RPA equa-

tions,

[(
ω − Ẽ

)(1 0
0 −1

)
+ K̃

](
δρ̃ph(ω)
δρ̃hp(ω)

)
=

(
δf̃ph(ω)

δf̃hp(ω)

)
, (5.3.12)

as in Eq. (4.3.30). Here, however, the bare matrix of Coulomb parameters

Ũ is replaced by the matrix K̃, defined in Eq. (5.3.9), and the energies Eα

in the matrix Ẽ, Eq. (4.3.31), are the eigenvalues of the Gutzwiller Hamil-

tonian (5.2.13). The comparison with Eq. (4.3.4) leads to the final result

G̃(ω) ≡
[(
ω + ıδ − Ẽ

)(1 0
0 −1

)
+ K̃

]−1

(5.3.13)

for the two-particle response functions matrix within the TDGA.

5.4 Saddle-Point Expansion of the Energy Func-

tional

For an evaluation of the Gutzwiller RPA equations (5.3.12), we need to

determine the matrix K̃ which is given by the second derivatives (5.3.9) of

the effective energy functional (5.2.9). To this end, we expand EGA up to

second order around the ground-state values ~ρ 0 and ~λi;0 ≡ ~λi(~ρ 0),

EGA
(
~λi, ρ̃

)
= E0 + tr

(
h̃0δρ̃

)
+

1

2

[∑

Y Y ′

δρY M
ρρ
Y Y ′δρY ′ +

∑

ZZ′

δλi
ZM

λλ
ZZ′δλi

Z′

+
∑

ZY

(
δλi

ZM
λρ
ZY δρY + δρY M

ρλ
Y Zδλ

i
Z

)]

≡ E0 + tr
(
h̃0δρ̃

)
+ δE(2) .

(5.4.1)
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Here, we introduced the matrices M̃ρρ, M̃λρ, M̃ρλ and M̃λλ with the ele-

ments

Mρρ
Y Y ′ =

∂2EGA

∂ρY ∂ρY ′
(5.4.2)

Mλρ
ZY =

∂2EGA

∂λi
Z∂ρY

= Mρλ
Y Z (5.4.3)

Mλλ
ZZ′ =

∂2EGA

∂λi
Z∂λ

i
Z′

, (5.4.4)

where the second derivatives on the r.h.s. are evaluated for ρ̃ = ρ̃0 and
~λi = ~λi;0. Note that there is no linear term ∼ λi

Z in Eq. (5.4.1) because of

the minimization condition (5.2.7). For our further evaluation, it is useful

to write the second-order terms in Eq. (5.4.1) in a more compact form by

means of matrix-vector products, i.e.,

δE(2) =
1

2

[(
δ~ρ
)T

M̃ρρδ~ρ + 2
(
δ~λi
)T

M̃λρδ~ρ +
(
δ~λi
)T

M̃λλδ~λi
]
. (5.4.5)

Here we used the symmetry

M̃λρ =
[
M̃ρλ

]T
. (5.4.6)

In the effective energy functional (5.2.9) the parameters ~λi are deter-

mined by the minimization condition (5.2.7). Applied to our second-order

expansion (5.4.5), this condition yields

∂

∂δλi
Z

δE(2)
(
δ~λi, δ~ρ

)
= 0 , (5.4.7)

which provides us the multiplet-amplitudes

δ~λi = −
[
M̃λλ

]−1
M̃λρδ~ρ (5.4.8)

as a linear function of the densities δ~ρ. This result leads to the quadratic

expansion

Eeff
(
~ρ 0 + δ~ρ

)
= E0 + tr

(
h̃0δρ̃

)
+

1

2

(
δ~ρ
)T

K̃δ~ρ , (5.4.9)

with

K̃ ≡ M̃ρρ − M̃ρλ
[
M̃λλ

]−1
M̃λρ , (5.4.10)

of the effective energy functional as a function of the density fluctuations δ~ρ.

In earlier work on the TDGA, Eqs. (5.4.7) and (5.4.8) have been denoted as



5.5. LAGRANGE-FUNCTIONAL EXPANSION 57

the ‘anti-adiabaticity assumption’. In fact, these equations have the physical

meaning that the local multiplet dynamics, described by fluctuations δλi
Z(t),

are fast compared to those of the density-matrix fluctuations δρY (t).

With the functional (5.4.9), we could now proceed with our evaluation of

the Gutzwiller RPA equations (5.3.12). For practical applications, however,

it is more convenient to determine the ‘interaction kernel’ (5.4.10) in a way

that avoids the explicit solution of the constraints (5.2.3). This alternative

procedure is the subject of the following section.

5.5 Lagrange-Functional Expansion

In the second-order expansion, described in Section 5.4, we implemented the

constraints (5.2.3) by explicitly eliminating a certain set of nc variational

parameters. Although such a procedure can, at least in principle, always be

applied, for the numerical implementation it is more convenient to impose

the constraints by means of Lagrange parameters. To this end, we define

the ‘Lagrange functional’

LGA
(
~λ, ~ρ, ~Λ

)
≡ EGA

(
~λ, ~ρ

)
+

nc∑

n

Λngn
(
~λ, ~ρ

)
, (5.5.1)

which depends on all variational parameters ~λ, the density matrix ρ̃(=̂~ρ)

and the nc Lagrange parameters Λn. The optimum variational parameters

λ0
Z , density-matrix elements ρ0Y , and Lagrange parameters Λ0

n are then de-

termined by the equations

∂LGA

∂λZ

∣∣∣∣
~λ=~λ0,~Λ=~Λ0,~ρ=~ρ 0

=
∂LGA

∂Λn

∣∣∣∣
~λ=~λ0,~Λ=~Λ0,~ρ=~ρ 0

=
∂LGA

∂ρY

∣∣∣∣
~λ=~λ0,~Λ=~Λ0,~ρ=~ρ 0

= 0 ,

(5.5.2)

which have to be solved simultaneously.

We expand the Lagrange functional to leading order with respect to

parameter (δλZ , δΛn) and density fluctuations (δρY ). The second-order

contribution has the form

δL(2) =
1

2

∑

Y Y ′

δρY L
ρρ
Y Y ′δρY ′ +

∑

ZY

δλZL
λρ
ZY δρY +

1

2

∑

ZZ′

δλZL
λλ
ZZ′δλZ′

+
∑

n

δΛn

{
∑

Z

∂gn
∂λZ

δλZ +
∑

Y

∂gn
∂ρY

δρY

}
,

(5.5.3)

with matrices L̃ρρ, L̃λρ and L̃λλ defined as in Eqs. (5.4.2)–(5.4.4) only with
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EGA replaced by LGA. The anti-adiabaticity conditions

∂

∂δλZ
δL(2) = 0 (5.5.4)

∂

∂δΛn
δL(2) = 0 (5.5.5)

yield the nc equations

∑

Z

∂gn
∂λZ

δλZ +
∑

Y

∂gn
∂ρY

δρY = 0 (5.5.6)

and the nvar equations

∑

Z′

Lλλ
ZZ′δλZ′ +

∑

Y

Lλρ
ZY δρY +

∑

n

∂gn
∂λZ

δΛn = 0 . (5.5.7)

Together, these equations allow us to express the nvar + nc parameter fluc-

tuations δΛn, δλZ in terms of the density fluctuations δρY . These can be

reinserted into Eq. (5.5.3) to obtain the desired quadratic functional solely

of the density fluctuations,

δL(2) =
1

2

∑

Y Y ′

δρY K̄Y Y ′δρY ′ . (5.5.8)

In Appendix C, we prove that the interaction matrix K̄Y Y ′ (5.5.8) is, in

fact, identical to KY Y ′ in Eqs. (5.4.9) and (5.4.10).

5.6 Response Functions for Lattice Models

In the previous section, we have developed the general formalism of the

TDGA for the calculation of two-particle Green’s functions. We will be more

specific in this section and explain in detail how the response functions which

are of interest in solid-state physics can be calculated within our approach.

5.6.1 Two-Particle Response Functions

In solid-state physics one is usually not interested in the full two-particle

Green’s function G̃ as it has been defined in Eq. (4.3.1). The properties,

relevant for experiments, are certain linear combinations of elements of G̃.

For our translationally invariant model Hamiltonians (2.4.3), these are in

particular the two-particle response functions

Gσ2σ1,σ3σ4(Ri −Rj , t − t′) ≡
〈〈
ĉ†i,σ1

(t)ĉi,σ2
(t); ĉ†j,σ3

(t′)ĉj,σ4
(t′)
〉〉
, (5.6.1)
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or, more importantly, their Fourier transforms

Gσ2σ1,σ3σ4(q, ω) =
1

Ns

∞∫

−∞

dτ eıωτ
∑

ij

eı(Ri−Rj)·q Gσ2σ1,σ3σ4(Ri −Rj , τ)

=
1

Ns

∑

kk′

〈〈
ĉ†k,σ1

ĉk+q,σ2
; ĉ†

k′+q,σ3
ĉ
k′,σ4

〉〉
ω
.

(5.6.2)

Here, we introduced the fermionic operators

ĉ
(†)
k,σ =

1√
Ns

∑

i

e∓ıRi·kĉ(†)i,σ (5.6.3)

and the usual notation

〈〈
Ô; Ô′〉〉

ω
=

∞∫

−∞

dτ
〈〈
Ô(τ); Ô′(0)

〉〉
eıωτ (5.6.4)

for the Fourier transform of a Green’s function with arbitrary operators

Ô, Ô′. With the abbreviation υ = (σ, σ′) for spin-orbit indices and the

operators

Âq
v ≡ Âq

σ2,σ1
≡ 1√

Ns

∑

k

ĉ†k,σ1
ĉk+q,σ2

, (5.6.5)

we can write Eq. (5.6.2) as

Gvv′(q, ω) =
〈〈
Âq

v ; (Âq

v′)
†〉〉

ω
. (5.6.6)

The Green’s functions (5.6.2) are still quite general since they include all

possible channels of local coupling σ1 ↔ σ2, σ3 ↔ σ4. In experiments one

usually measures response functions which are certain linear combinations

Ge(q, ω) =
∑

vv′

κvGvv′(q, ω)κv′ (5.6.7)

of some of the Green’s functions (5.6.2), defined by the matrix κv = κσ,σ′ .

For example, the transversal spin susceptibility χ(q, ω) is given as

χ(q, ω) =
1

Ns

〈〈
Ŝ+
q ; Ŝ−

−q

〉〉
ω
, (5.6.8)

where

Ŝ+
q =

∑

i

e−ıRi·qŜ+
i =

∑

k

∑

b

ĉ†k,b↑ĉq+k,b↓ (5.6.9)

Ŝ−
−q =

∑

i

eıRi·qŜ−
i =

∑

k

∑

b

ĉ†
k+q,b↓ĉk,b↑ ≡

(
Ŝ+
q

)†
(5.6.10)

Ŝ+
i =

∑

b

ĉ†i,b↑ĉi,b↓ , Ŝ−
i =

∑

b

ĉ†i,b↓ĉi,b↑ (5.6.11)
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are the usual spin-flip operators. The spin susceptibility of a two-band

Hubbard model will be investigated in Chapter 6.

5.6.2 Response Functions in the TDGA

In order to apply the TDGA, as developed in Section 5.2, we have to expand

the Lagrange functional (5.5.1) up to second order with respect to density-

matrix δρ̃ and variational-parameter fluctuations δλΓΓ′ . This means that

we need an expansion of the constraints (3.3.1) and (3.3.2), of the local en-

ergies (3.3.10) and (3.3.11), and of the kinetic energy (3.3.22) and (3.3.23).

The second-order expansion of the kinetic energy is more involved than that

of the local energies and of the constraints. In the latter there are only con-

tributions from fluctuations at same lattice sites while in the kinetic energy

local and non-local fluctuations (such as δ〈ĉ†i,σ ĉj,σ′〉Φ0) couple. Nevertheless,

the calculation of the second-order Lagrange functional is tedious but oth-

erwise straightforward. We therefore refer to Appendix D where the details

of this derivation are presented. As shown in that Appendix, it is useful to

introduce the operators

B̂q
w ≡ B̂q

σ1σ2,σ
′
1σ

′
2
≡ 1√

Ns

∑

k

ǫσ2σ1
k ĉ†

k,σ′
2
ĉ
k+q,σ′

1
(5.6.12)

ˆ̄Bq
w ≡ ˆ̄Bq

σ1σ2,σ
′
1σ

′
2
≡ 1√

Ns

∑

k

ǫσ2σ1
k+q ĉ

†
k,σ′

2
ĉ
k+q,σ′

1
, (5.6.13)

and to define the auxiliary Green’s function matrix Π̃(q, ω) with the elements

Π v
(w)

v′
(w′)

(q, ω) =




〈〈
Âq

v ;
(
Âq

v′

)†〉〉
ω

〈〈
Âq

v ;
(
B̂q

w′

)†〉〉
ω

〈〈
Âq

v ;
( ˆ̄Bq

w′

)†〉〉
ω〈〈

B̂q
w;
(
Âq

v′

)†〉〉
ω

〈〈
B̂q

w;
(
B̂q

w′

)†〉〉
ω

〈〈
B̂q

w;
( ˆ̄Bq

w′

)†〉〉
ω〈〈 ˆ̄Bq

w;
(
Âq

v′

)†〉〉
ω

〈〈 ˆ̄Bq
w;
(
B̂q

w′

)†〉〉
ω

〈〈 ˆ̄Bq
w;
( ˆ̄Bq

w′

)†〉〉
ω


 .

(5.6.14)

We are actually interested only in the first ‘element’ of this matrix, i.e.,

the Green’s functions (5.6.6), since they allow us to determine any response

function of the form Eq. (5.6.7). As shown in Appendix E, however, the

TDGA leads to the following equation for the entire matrix (5.6.14) from

which Eq. (5.6.6) can be extracted,

Π̃(q, ω) =
[
1 + Π̃0(q, ω)Ṽ q

]−1
Π̃0(q, ω) . (5.6.15)

Here, Ṽ q is the effective second-order interaction matrix, introduced in

Eq. (D.2.19), and Π̃0(q, ω) is the Green’s function matrix (5.6.14) evalu-

ated for the single-particle Gutzwiller Hamiltonian (5.2.13). As shown in
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Refs. [8, 66], this Gutzwiller Hamiltonian ĥ0 ≡ Ĥeff
0 for our lattice Hamilto-

nian (2.4.3) has the form

Ĥeff
0 =

∑

k

∑

σ1σ2

(
ǭ σ1σ2
k + ησ1σ2

)
ĉ†k,σ1

ĉk,σ2
≡
∑

k

∑

α

Ek,αĥ
†
k,αĥk,α , (5.6.16)

where the Lagrange parameters ησ1σ2 are determined by the minimization

of the variational ground-state energy and ǭ σ1σ2
k

is defined as

ǭ σ1σ2
k ≡

∑

σ′
1σ

′
2

qσ1

σ′
1

[
qσ2

σ′
2

]∗
ǫ
σ′
1σ

′
2

k . (5.6.17)

The creation and annihilation operators ĥ
(†)
k,α of the effective single-particle

Hamiltonian (5.6.16) can be written as

ĥ†k,α =
∑

σ

ukσ,α ĉ
†
k,σ (5.6.18)

ĥk,α =
∑

σ

(
ukσ,α

)∗
ĉk,σ , (5.6.19)

where the coefficients of the transformation matrix ũ are determined from

a diagonalization of Eq. (5.6.16). With these eigenstates, the calculation of

Π̃0(q, ω) is now a simple task. For example, the first element
〈〈
Âq

v ;
(
Âq

v′

)†〉〉0
ω

is given as
〈〈
Âq

σ1σ2
;
(
Âq

σ′
1σ

′
2

)†〉〉0
ω

=
1

Ns

∑

kk′

∑

α1α2
α′
1α

′
2

〈〈
ĥ†k,α2

ĥk+q,α1
; ĥ†

k′+q,α′
1
ĥ
k′,α′

2

〉〉0
ω

[
ukσ2,α2

]∗
uk+q
σ1α1

[
uk

′+q

σ′
1,α

′
1

]∗
uk

′

σ′
2,α

′
2

=
1

Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
1,α1

]∗
ukσ′

2,α2

ω − (Ek+q,α1 − Ek,α2) + ıδ

[
n0
k,α2

− n0
k+q,α1

]
,

(5.6.20)

where

n0
k,α = Θ

[
EF − Ek,α

]
(5.6.21)

is the ground-state distribution function (5.3.11). In the same way, we can

calculate all other elements of Π̃0(q, ω). The result is always the same as

in Eq. (5.6.20) only with additional factors ∼ ǫσσ
′

k or ∼ ǫσσ
′

k+q due to the

definition of the operators (5.6.12) and (5.6.13). For example, the second

element in Eq. (5.6.14) leads to
〈〈
Âq

σ1σ2
; (B̂q

σ3σ4,σ
′
3σ

′
4
)†
〉〉0
ω

=
1

Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
3,α1

]∗
ukσ′

4,α2

ω − (Ek+q,α1 − Ek,α2) + ıδ

[
n0
k,α2

− n0
k+q,α1

]
×ǫσ3σ4

k
.

(5.6.22)
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To summarize, with Eqs. (5.6.15), (5.6.20) and (5.6.22) and the inter-

action matrix (D.2.19) we are now in the position to investigate any two-

particle response function for our general class of multi-band models (2.4.3).

As a first example, we study the magnetic susceptibility for a two-band

model in the following chapter.



Chapter 6

Spin Susceptibility in the

Time-Dependent Gutzwiller

Approximation

As a first application, we calculate the frequency- and momentum-dependent

transversal spin susceptibility for the translationally invariant two-band

Hubbard model. Based on the spin susceptibility, we calculate the mag-

netic phase diagrams for different interaction parameters. We calculate

the instability of the homogeneous paramagnet towards magnetically and

orbitally ordered phases. While the instability of the paramagnet in com-

parison to a ferro- or anti-ferromagnetic state could in principle also be

obtained from ground-state calculations, we are now also in the position to

investigate the stability of the magnetically ordered phases by means of the

TDGA. To this end, we prepare a ferromagnetic state and calculate the low-

energy excitation spectrum, i.e., the magnon dispersion. We also calculate

the high-energy excitation spectrum. The calculations are carried out both

in three and infinite spatial dimensions. The results are compared to the

corresponding results obtained in the HF approximation.

The results presented in Sections 6.3 and 6.4 shall illustrate the applica-

bility of the TDGA in the context of strongly correlated multi-band systems.

They are not meant to reproduce any experimental results in a quantitative

manner.

6.1 Interaction Kernel

We consider two degenerate orbitals in a cubic environment. The cubic

symmetry affects both the kinetic energy, since the hopping amplitudes are

not independent from each other for equivalent directions, and the atomic

63
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Hamiltonian, because the degrees of freedom for the interaction parame-

ters are reduced. We skip the details of the cubic symmetry’s influence

to Section 6.3 and begin with the symmetry- and dimension-independent

second-order expansion of the Lagrange functional.

6.1.1 Specification of Fluctuations

The formalism derived in Chapter 5 and Appendix D is still quite general.

In this section, we re-derive the interaction kernels K̃ and Ṽ for the two-

band Hubbard model. We explicitly take the symmetries of two degenerated

orbitals into account.

Since we are interested in magnetic excitations in this chapter, it is useful

to classify the elements of the local density matrix by their spin components.

To this end, we define the three categories

{
C0,s
i,ab

}
=
{
C0
(i,as)(i,ab)

}
, a, b = 1, 2 and s =↑, ↓ (6.1.1)

{
C0,+
i,ab

}
=
{
C0
(i,a↑)(i,b↓)

}
, a, b = 1, 2 (6.1.2)

{
C0,−
i,ab

}
=
{
C0
(i,a↓)(i,b↑)

}
, a, b = 1, 2 (6.1.3)

of local density-matrix elements. We introduce the respective categories of

fluctuations

{
δC0,s

i,ab

}
=
{
δ
〈
ĉ†i,asĉi,bs

〉}
(6.1.4)

{
δC0,+

i,ab

}
=
{
δ
〈
ĉ†i,a↑ĉi,b↓

〉}
≡
{
δS+

i,ab

}
(6.1.5)

{
δC0,−

i,ab

}
=
{
δ
〈
ĉ†i,a↓ĉi,b↑

〉}
≡
{
δS−

i,ab

}
, (6.1.6)

with the abbreviation δS+
i,ab = δ〈ĉ†i,a↑ ĉi,b↓〉 and δS−

i,ab = δ〈ĉ†i,a↓ĉi,b↑〉 for the

spin-flip components.

Each element of the local density matrix corresponds to a constraint of

the form

gi,σσ′ ≡ C0
iσ,iσ′ −

〈
ĉ†i,σ P̂

†
i P̂iĉi,σ′

〉
Φ0

= 0 . (6.1.7)

Classifying the constraints by the same criteria as in Eqs. (6.1.4)–(6.1.6), we

divide the constraints (3.3.2) into the three sets

gsi,ab ≡ C0
i,(as)(bs) −

〈
ĉ†i,asP̂

†
i P̂iĉi,bs

〉
Φ0

= 0 (6.1.8)

g+i,ab ≡ C0
i,(a↑),(b↓) −

〈
ĉ†i,a↑P̂

†
i P̂iĉi,b↓

〉
Φ0

= 0 (6.1.9)

g−i,ab ≡ C0
i,(a↓),(b↑) −

〈
ĉ†i,a↓P̂

†
i P̂iĉi,b↑

〉
Φ0

= 0 , (6.1.10)

while the local completeness relation is written as

g
(1)
i ≡ 1 −

〈
P̂ †
i P̂i

〉
Φ0

= 0 . (6.1.11)
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As each constraint is multiplied by a Lagrange multiplier Λ, we introduce

three respective sets of Lagrange parameters

{
Λi,s
ab

}
for the

{
gsi,ab

}
(6.1.12)

{
Λi,+
ab

}
for the

{
g+i,ab

}
(6.1.13)

{
Λi,−
ab

}
for the

{
g−i,ab

}
. (6.1.14)

For the expansion of the Lagrange functional, we denote the fluctuations of

the Lagrange multipliers as {δΛi,0}, {δΛi,+} and {δΛi,−}.

As can be seen from Table 2.5.1, the atomic eigenstates can be classified

by the z-component of the total spin (see the last column of Table 2.5.1).

We introduce the three classes of local variational parameters λi,ΓΓ′

{
λ0
i,ΓΓ′

}
for Sz

at,Γ − Sz
at,Γ′ = 0 (6.1.15)

{
λ±
i,ΓΓ′

}
for Sz

at,Γ − Sz
at,Γ′ = ±1 (6.1.16)

for the different contributions in the Gutzwiller correlator (3.5.1). The fluc-

tuations {δλ0
i,ΓΓ′}, {δλ+

i,ΓΓ′} and {δλ−
i,ΓΓ′} corresponding to the aforemen-

tioned sets of variational parameters are defined in the same way as for the

Lagrange-multiplier fluctuations.

In the following, we introduce one single index γ for index pairs like ab

and ΓΓ′, respectively. We then summarize the fluctuations of local den-

sity matrix elements and variational parameter fluctuations within the joint

variable fluctuations

{
δAi,0

γ

}
=
{
δC0,s

i,γ , δλ
0
i,γ

}
(6.1.17)

{
δAi,+

γ

}
=
{
δC0,+

i,γ , δλ+
i,γ

}
(6.1.18)

{
δAi,−

γ

}
=
{
δC0,−

i,γ , δλ−
i,γ

}
. (6.1.19)

Together with the {δΛi,0}, {δΛi,+} and {δΛi,−}, these are all local fluctua-

tions that enter the expansion of the Lagrange functional.

The local density matrix is Hermitian, and so is the matrix of local

variational parameters if we assume a Hermitian Gutzwiller correlator. With

the inverse index γ̄, we can express the Hermiticity of Eq. (3.5.1) as

λ∗
i,γ = λi,γ̄ , (6.1.20)

while the Hermiticity of C̃0 implies that the constraints gi,σσ′ can also be

regarded as elements of a Hermitian matrix g̃i and we therefore find

[
Λi
γ

]∗
= Λi

γ̄ . (6.1.21)
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All in all, we obtain the useful relations

[
δAi,±

γ

]∗
= δAi,∓

γ̄ and
[
δΛi,±

γ

]∗
= δΛi,∓

γ̄ (6.1.22)

for fluctuations of local quantities which will be crucial for the derivation of

the interaction kernel in a compact form, see below.

6.1.2 Second-Order Expansion in the Spin-Channel

We start with the Lagrange functional in its general form

LGA =
∑

i 6=j

∑

ab
s

∑

a′b′
s1s2

tabij q
a′s1
i,as

[
qb

′s2
j,bs

]∗ 〈
ĉ†i,a′s1 ĉj,b′s2

〉
+
∑

i

Ei,loc

+
∑

i

[
Λi,1g

(1)
i +

∑

s,γ

Λi,s
γ gsi,γ +

∑

i,γ

Λi,+
γ g+i,γ +

∑

γ

Λi,−
γ g−i,γ

]

≡ T + Lloc

(6.1.23)

and allow for fluctuations of both the local quantities defined in the previ-

ous section and the expectation values of the non-local hopping processes

〈ĉ†i,a′s1 ĉj,b′s2〉.
The Lagrange functional contains the Lagrange multipliers {Λ} which

must be determined. In Appendix B we derive a scheme to deal with the

system of equations
dLGA

dλ0,±
!
= 0 , (6.1.24)

whose solution yields the saddle-point values of the Lagrange multipliers.

We find that only the {Λi,0} and Λi,1 are finite, while the {Λi,±} vanish.

Since we assume a spin- and orbital-diagonal local density matrix, we

have C0
iσ,iσ′ = δσσ′n0

i,σ. Bünemann et al stated that a spontaneous local

hybridization may only occur for very small Hund’s exchange coupling con-

stants J [15], which justifies the assumption of a diagonal local density

matrix for the studies of this chapter. Our numerical calculations then show

that the diagonality of C̃0 leads to a both spin- and orbital-diagonal renor-

malization matrix q̃ at the saddle point. In order to keep the derivation of

the interaction kernel well-structured, we expand the constraints (3.3.1) and

(3.3.2), the local interaction energy (3.3.10) and (3.3.11), and the kinetic en-

ergy (3.3.22) and (3.3.23) separately. We explicitly show how the diagonality

of C̃0 and q̃ simplifies the general expressions derived in Appendix D.

The expansion of the local interaction energy and the local constraints

only involve the derivatives with respect to variables on the same lattice site.

It is therefore a straight forward task to expand Lloc. The second derivatives
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of the local interaction energy with respect to spin-flipping fluctuations are

of the form

∂2Ei,loc

∂Ai,±
γ̄ ∂Ai,∓

γ′

6= 0 . (6.1.25)

For the completeness relation (3.3.1), we find that the diagonality of C̃0

yields

∂2g
(1)
i

∂Ai,±
γ̄ ∂Ai,∓

γ′

6= 0 (6.1.26)

for derivatives with respect to the {Ai,±}. The derivatives of the constraints

concerning the local density matrix elements, Eq. (3.3.2), with respect to the

{Ai,±} turn out to be of the form

∂g±i,ab

∂Ai,±
γ

6= 0 and
∂2gsi,ab

∂Ai,±
γ̄ ∂Ai,∓

γ

6= 0 . (6.1.27)

Although there are also finite derivatives of the form

∂2g±i,ab

∂Ai,0
γ ∂Ai,±

γ

6= 0 (6.1.28)

mixing spin-conserving and spin-flipping fluctuations, we do not need to

take them into account in our expansion, since the corresponding Lagrange

multipliers are zero. Any derivatives of the form

∂2Ei,loc

∂Ai,0
γ ∂Ai,±

γ′

or
∂2Ei,loc

∂Ai,±
γ ∂Ai,±

γ′

and
∂2g

(1)
i

∂Ai,0
γ ∂Ai,±

γ′

or
∂2g

(1)
i

∂Ai,±
γ̄ ∂Ai,±

γ′

(6.1.29)

also turn out to be zero.

One must also include the mixed terms ∼ δAi
γδΛi,ab in order to ensure

that the expansion fulfills the constraints. As only the sets {g±i,ab} yield finite

first derivatives with respect to the {Ai,±}, it is sufficient to consider the

fluctuations of the {Λi,±} in the expansion of L.

The expansion of the kinetic energy is more complicated because it con-

tains contributions which couple fluctuations of local variables on different

lattice sites. Nevertheless, we still can split the expansion into a charge-

and a spin-channel due to the diagonality of the renormalization matrix q̃,

which is a direct consequence of the diagonality of C̃0.
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We start with the derivatives of the renormalization factors qa
′s′

i,as with

respect to the local quantities {Ai,±}. We find that–at the saddle point–

derivatives of the form

∂qa
′↓

i,a↑

∂Ai,+
γ

6= 0 and
∂qa

′↑
i,a↓

∂Ai,−
γ

6= 0 and
∂2qa

′s
i,as

∂Ai,±
γ ∂Ai,∓

γ′

6= 0 (6.1.30)

yield finite contributions, but there are also finite derivatives of the form

∂2qa
′s̄

i,as

∂Ai,0
γ ∂Ai,±

γ′

6= 0 (6.1.31)

mixing the charge- and spin-channel. Fortunately, the diagonality of C̃0

and q̃ leads to δ-relations that make all derivatives (6.1.31) dispensable and

conserve the partition into the spin- and charge-channel. To address this

point, we consider a typical term in the expansion of the kinetic energy

tabij δA
i
γ

∂2qa
′s1

i,as

∂Ai
γ∂A

i
γ′

δAi
γ′

[
qb

′s2
j,bs

]∗ 〈
ĉ†i,a′s1 ĉj,b′s2

〉
(6.1.32)

and figure out that the diagonality of q̃ yields the factor δss2 while the

hopping expectation value yields δs1s2 , resulting in δss1 .

We additionally allow for non-local fluctuations of the one-particle den-

sity matrix ρ̃. A typical term of this kind reads

tabij δA
i,+
γ

∂qa
′s1

i,as

∂Ai,+
γ

[
qb

′s2
j,bs

]∗
δ
〈
ĉ†i,a′s1 ĉj,b′s2

〉
, (6.1.33)

cf., the first line of Eq. (6.1.23). The diagonality of q̃ yields the factor

δbb′ δss2 , the derivative of the renormalization factor on lattice site Ri yields

the factor δs↑ δs1↓. Altogether, Eq. (6.1.33) can be written in the simplified

form

tabij δA
i,+
γ

∂qa
′↓

i,a↑

∂Ai,+
γ

[
qb↑j,b↑

]∗
δ
〈
ĉ†i,a′↓ĉj,b↑

〉
× δbb′δss2δs↑δs1↓ , (6.1.34)

where we now see that the term δ〈ĉ†i,a′↓ĉj,b↑〉 induces a ‘transitive’ spin-flip

process with a ‘negative’ sign because the hopping process annihilates the

electron with spin s =↑ on lattice site Rj and creates it on lattice site Ri

with spin s =↓. An analog analysis for couplings to the {δAi,−} yields

tabij δA
i,−
γ

∂qa
′s1

i,as

∂Ai,−
γ

[
qb

′s2
j,bs

]∗
δ
〈
ĉ†i,a′s1 ĉj,b′s2

〉

=tabij δA
i,−
γ

∂qa
′↑

i,a↓

∂Ai,−
γ

[
qb↓j,b↓

]∗
δ
〈
ĉ†i,a′↑ĉj,b↓

〉
× δbb′δss2δs↓δs1↑ ,

(6.1.35)
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leading to a coupling to transitive spin-flip processes with a positive sign.

As we consider translationally invariant systems, all calculations are car-

ried out in momentum space. Applying the Fourier transformation to the

local fluctuations, we find for the local fluctuations {δAi,±} and {δΛi,±}

δAi,±
γ =

1√
Ns

∑

q

e−ıRi·q δAq,±
γ (6.1.36)

δΛi,±
γ =

1√
Ns

∑

q

e−ıRi·q δΛq,±
γ . (6.1.37)

With the ‘local’ part of the Lagrange functional

Lloc =
∑

i

Ei,loc +
∑

i

[
Λi,1g

(1)
i +

∑

γ

Λi,+
γ gi,+γ + Λi,−

γ gi,−γ
]
, (6.1.38)

Eq. (D.1.6) becomes

δL
(2)
loc =

∑

q

∑

γγ′

δAq,+
γ K loc

γγ′δA
−q,−
γ′ (6.1.39)

with the interaction matrix elements

K loc
γγ′ =

∂2Lloc

∂Ai,+
γ ∂Ai,−

γ′

(6.1.40)

and the Fourier transforms of the local fluctuations as they were defined in

Eq. (6.1.36). The mixed terms connecting fluctuations {δAi,±} and {δΛi,±}
arising from the first-order expansion of the constraints (cf., Eq. (D.1.11))

are written as

δL(2)
c =

∑

q

∑

γγ′

[
δΛq,−

γ Kc
γγ′δA

−q,−
γ′ + δAq,+

γ

[
Kc

γ̄′γ̄

]∗
δΛ−q,+

γ′

]
, (6.1.41)

with the interaction matrix elements

Kc
γγ′ =

∂gi,−γ

∂Ai,−
γ′

=
[ ∂gi,+γ̄
∂Ai,+

γ̄

]∗
, (6.1.42)

where the index γ now counts the constraints (6.1.9) and (6.1.10), respec-

tively.

For the expansion of the kinetic energy, we have to address the question

how derivatives of renormalization factors qb
′s2
j,bs and their complex conjugated

ones
[
qb

′s2
j,bs

]∗
are related to each other. From the explicit expression for the

renormalization factors (3.3.21) we conclude that

∂
[
qb

′s2
j,bs

]∗

∂Ai
γ

=
∂qb

′s2
j,bs

∂
[
Ai

γ

]∗ =
∂qb

′s2
j,bs

∂Ai
γ̄

, (6.1.43)
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and we can therefore write the local part δT
(2)
l in Eq. (D.1.13) as

δT
(2)
l =

∑

q

∑

γγ′

δAq,+
γ K l

q,γγ′δA
−q,−
γ′ , (6.1.44)

with the q-dependent interaction-matrix element

K l
q,γγ′ =

∑

aa′

bb′

∑

s

E s̄
ab,a′b′(q)

[∂qa′s̄as

∂A+
γ

∂qb
′s̄
bs

∂A+
γ̄′

+
∂qa

′s̄
as

∂A−
γ′

∂qb
′s̄
bs

∂A−
γ̄

]

+
∑

ab

∑

s

Es
ab,ab

[ ∂2qasas
∂A+

γ ∂A
−
γ′

[
qbsbs
]∗

+ qasas
∂2qbsbs

∂A−
γ̄ ∂A

+
γ̄′

]
(6.1.45)

and the tensor

Es
ab,a′b′(q) =

1

Ns

∑

k

εabk+q

〈
ĉ†k,a′sĉk,b′s

〉
Φ0

, (6.1.46)

which is equivalent to the tensor defined in Eq. (D.1.21). Here, we decom-

posed the combined spin-orbit indices σ = (as) again and kept only the

relevant spin-index. The tensor (6.1.46) possesses the symmetry properties

Es
ab,a′b′(q) = Es

ab,a′b′(−q) (6.1.47)

Es
ab,a′b′(0) ≡ Es

ab,ab × δaa′δbb′ , (6.1.48)

which were explicitly used to derive K l
q,γγ′ in the compact form Eq. (6.1.45).

Note that Eq. (6.1.48) does not hold necessarily if systems of lower symmetry

are investigated.

The expansion with respect to local and transitive fluctuations has al-

ready been sketched in Eq. (6.1.33) and has been carried out explicitly in

Eq. (D.1.15). In Eq. (D.2.4), we define two auxiliary fluctuations

δBq,+
w ≡ δBq,+

ab,a′b′ ≡
1√
Ns

∑

k

εbak δ
〈
ĉ†
k,b′↑ĉk+q,a′↓

〉
(6.1.49)

δB̄q,+
w ≡ δB̄q,+

ab,a′b′ ≡
1√
Ns

∑

k

εbak+q

〈
ĉ†
k,b′↑ĉk+q,a′↓

〉
(6.1.50)

with their Hermitian conjugated counterparts

[
δBq,+

ab,a′b′

]†
=

1√
Ns

∑

k

εabk δ
〈
ĉ†
k+q,a′↓ĉk,b′↑

〉
≡ δB̄−q,−

ba,b′a′ (6.1.51)

[
δB̄q,+

ab,a′b′

]†
=

1√
Ns

∑

k

εabk+q

〈
ĉ†
k+q,a′↓ĉk,b′↑

〉
≡ δB−q,−

ba,b′a′ . (6.1.52)
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The index w = (ab, a′b′) now contains only the orbital indices since we

classified the fluctuations δBq and δB̄q by their spin-flipping behavior. The

expansion δT
(2)
t of Eq. (D.1.13) then becomes

δT
(2)
l =

∑

q

∑

γ,w

[
δBq,+

w Kt,1
γwδA

−q,−
γ + δB̄q,+

w Kt,2
γwδA

−q,−
γ

+δAq,+
γ

[
Kt,2

γw

]∗
δB−q,−

w + δAq,+
γ

[
Kt,1

γw

]∗
δB̄−q,−

w

]
,

(6.1.53)

with the interaction-matrix elements

Kt,1
γw ≡ Kt,1

γ,(ab,a′b′) = qa↑a↑
∂
[
qb

′↓
b↑
]∗

∂A+
γ

δaa′ = qa↑a↑
∂qb

′↓
b↑

∂A−
γ̄

δaa′ (6.1.54)

Kt,2
γw ≡ Kt,2

γ,(ab,a′b′) =
[
qb↓b↓
]∗∂q

a′↑
a↓

∂A−
γ
δbb′ . (6.1.55)

We finally obtain the second-order expansion in the spin-channel as

δL(2),sc =
1

Ns

∑

q

(
δAq,+ δBq,+ δB̄q,+ δΛq,−) K̃q




δA−q,−

δB̄−q,−

δB−q,−

δΛ−q,+


 ,

(6.1.56)

where the interaction kernel

K̃q =




K̃AA K̃AB K̃AB̄ K̃AΛ

[
K̃AB̄

]†
0 0 0[

K̃AB
]†

0 0 0[
K̃AΛ

]†
0 0 0


 (6.1.57)

is composed by the block matrices

K̃AA = K̃ loc + K̃ l
q (6.1.58)

K̃AB = K̃t,1 K̃AB̄ = K̃t,2 (6.1.59)

K̃AΛ = K̃c . (6.1.60)

Note that, due to the relation
[
δBq,+

w

]∗
= δB̄−q,−

w′ , we had to interchange the

order of δB−q,−
w′ and δB̄−q,−

w′ in order to ensure that the interaction kernel

can be written as a Hermitian matrix.

The representation of the Lagrange-functional expansion (6.1.56) re-

quires that the fluctuations for the two spin-flip signs appear in a fixed

order, since we had to interchange derivatives with respect to A+
γ by deriva-

tives with respect to A−
γ̄ . To this end, we define the index γ′ counting the

local fluctuations with negative sign by demanding that the relation
[
δAq,+

γ

]∗ ≡ δA−q,−
γ̄

!
= δA−q,−

γ′ (6.1.61)
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holds. In the same manner, we require that the index w′ counting the

transitive fluctuations with negative signs fulfills the relations

[
δBq,+

w

]∗
=
[
δBq,+

ab,a′b′

]∗ ≡ δB̄−q,−
ba,b′a′

!
= δB̄−q,−

w′ (6.1.62)
[
δB̄q,+

w

]∗
=
[
δB̄q,+

ab,a′b′

]∗ ≡ δB−q,−
ba,b′a′

!
= δB−q,−

w′ . (6.1.63)

6.1.3 Anti-Adiabaticity and Effective Interaction Kernel

The anti-adiabaticity can now be applied for the δλq,+, δΛq,− and the

δλ−q,−, δΛ−q,+ separately. As in Eqs. (D.2.16) and (D.2.17), we decompose

the matrices K̃AA, K̃AB, K̃AB̄ and K̃AΛ into their components coupling the

local density-matrix fluctuations δS±q,±
γ and the local variational-parameter

fluctuations δλ±q,±
γ . Requiring

∂δL(2),sc

∂δλq,+
γ

!
= 0

∂δL(2),sc

∂δΛq,−
γ

!
= 0 (6.1.64)

∂δL(2),sc

∂δλ−q,−
γ

!
= 0

∂δL(2),sc

∂δΛ−q,+
γ

!
= 0 (6.1.65)

yields the two independent systems of equations

(
K̃AA

λλ K̃AΛ
λ[

K̃AΛ
λ

]†
0

)(
δλ−q,−

δΛ−q,+

)
= −

(
K̃AA

λS K̃AB
λ K̃AB̄

λ[
K̃AΛ

S

]†
0 0

)

δS−q,−

δB̄−q,−

δB−q,−




(6.1.66)

and

(
K̃AA

λλ K̃AΛ
λ[

K̃AΛ
λ

]†
0

)(
δλq,+

δΛq,−

)
= −

(
K̃AA

λS K̃AB
λ K̃AB̄

λ[
K̃AΛ

S

]†
0 0

)

δSq,+

δBq,+

δB̄q,+


 ,

(6.1.67)

where we used the index S instead of ρ in order to emphasize the spin-

channel. The correction ∆Ṽ q in Eq. (D.2.20) then reads

∆Ṽ q =




[
K̃AA

λS

]†
K̃AΛ

S[
K̃AB

λ

]†
0[

K̃AB̄
λ

]†
0


×

(
K̃AA

λλ K̃AΛ
λ[

ÃΛλ

]†
0

)−1

×
(

K̃AA
λS K̃AB

λ K̃AB̄
λ[

K̃AΛ
S

]†
0

)
.

(6.1.68)

Finally, the effective interaction kernel is written as

Ṽ q =




K̃AA
S K̃AB

S K̃AB̄
S[

K̃AB
S

]†
0 0[

K̃AB̄
S

]†
0 0


− ∆Ṽ q . (6.1.69)
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6.2 Transversal Spin Susceptibility

We define the transversal spin-susceptibility for the two-band model with

degenerate orbitals. Explicit expressions for the different response functions

are derived. The expressions derived in this section remain general, and

we will point out which simplifications arise in the limit of infinite spatial

dimensions.

6.2.1 Response Functions

In order to calculate response functions for fluctuations in the spin-channel,

we define the reduced Green’s function matrix as

Π γ
(w)

, γ′

(w′)

(q, ω) =




〈〈
Ŝq,+
γ ; Ŝ−q,−

γ′

〉〉
ω

〈〈
Ŝq,+
γ ; ˆ̄B−q,−

w′

〉〉
ω

〈〈
Ŝq,+
γ ; B̂−q,−

w′

〉〉
ω〈〈

B̂q,+
w ; Ŝ−q,−

γ′

〉〉
ω

〈〈
B̂q,+

w ; ˆ̄B−q,−
w′

〉〉
ω

〈〈
B̂q,+

w ; B̂−q,−
w′

〉〉
ω〈〈 ˆ̄Bq,+

w ; Ŝ−q,−
γ′

〉〉
ω

〈〈 ˆ̄Bq,+
w ; ˆ̄B−q,−

w′

〉〉
ω

〈〈 ˆ̄Bq,+
w ; B̂−q,−

w′

〉〉
ω


 .

(6.2.1)

As in the derivation of the interaction kernel, we interchanged the order of

B̂−q,−
w′ and ˆ̄B−q,−

w′ .

The sets of local operators consist of the intra-orbital and inter-orbital

spin-flip operators Ŝq,+

Ŝq,+
aa =

1√
Ns

∑

k

ĉ†k,a↑ĉk+q,a↓ (6.2.2)

Ŝq,+
aā =

1√
Ns

∑

k

ĉ†k,ā↑ĉk+q,a↓ (6.2.3)

for a = 1, 2. The coupling to transitive fluctuations δBq,+
ab,a′b′ and δB̄q,+

ab,a′b′

yields a δ-relation for two of their indices, cf., Eqs. (6.1.54) and (6.1.55). The

remaining sixteen transitive spin-flip operators are

B̂q,+
ab,a′b =

1√
Ns

∑

k

εbak ĉ†k,b↑ĉk+q,a′↓ (6.2.4)

ˆ̄B
q,+

ab,ab′ =
1√
Ns

∑

k

εbak+qĉ
†
k,b′↑ĉk+q,a↓ , (6.2.5)

with a(′), b(′) = 1, 2. The Hermitian conjugates of Eqs. (6.2.2)–(6.2.5) yield

the corresponding operators with the opposite spin-flip sign.

The diagonalization of the effective one-particle Gutzwiller Hamiltonian

Ĥeff
0 =

∑

k

∑

ab
s

[
ε̄abk +δabηss

]
ĉ†k,asĉk,bs ≡

∑

k

∑

α,s

[
Ek,αs+ηs

]
ĥ†k,αsĥk,αs (6.2.6)
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can be carried out analytically for the two-band model. Due to both the

diagonality of the local density matrix C̃0 and the orbital degeneracy, we

introduce the orbital-independent variational parameter ηs to ensure the

conservation of the particle number. Introducing the new parameters

η± = η↑ ± η↓ , (6.2.7)

we re-write the spin-dependent part of Eq. (6.2.6)

Ĥeff
0 =

∑

k

∑

α,s

[
Ek,αs + 1

2s η
−]ĥ†k,αsĥk,αs . (6.2.8)

According to Eqs. (5.6.18) and (5.6.19), the new creation operators are writ-

ten as

h†k,1s =
∑

a

uk,sa1 ĉ†k,as = cosφk ĉ
†
k,1s + sinφk ĉ

†
k,2s (6.2.9)

h†
k,2s =

∑

a

uk,sa2 ĉ
k,as = − sinφk ĉ

†
k,1s + cosφk ĉ

†
k,2s (6.2.10)

by means of the real 2×2 rotation matrix ũk. The ‘mixing angle’ is obtained

from

tan 2φk =
ε̄12k + ε̄21k
ε̄1k − ε̄2k

=
ε12k + ε21k
ε1k − ε2k

. (6.2.11)

Here, we made use of the orbital degeneracy (leading to q1s1s ≡ q2s2s) and the

diagonality of C̃0.

In our calculations, we take the viewpoint of the canonical ensemble. The

zero of energy is kept fixed for all band fillings and the Fermi energy becomes

a function of doping and (in case of ferromagnetism) of the spin-projection s.

We calculate the Fermi energies independently for the two spin-projections

s by means of the total electron density ne and the magnetization m per

lattice site. The fact that the diagonalization matrix is independent from

the renormalization matrix (cf., Eq. (6.2.11)) and therefore independent from

the actual interaction parameters, we define a ‘renormalized’ Fermi energy

Ẽs
F = Es

F · q2s and calculate it from

ns =
1

Ns

∑

k

∑

α

Θ
[
Ẽs

F − Ek,αs

]
=

1

Ns

∑

k

∑

α

Θ
[
Es

F − Ek,α

]
, (6.2.12)

where the relations

ne = n↑ + n↓ and m = n↑ − n↓ (6.2.13)

must be fulfilled. We then obtain η− as

η− = Ẽ↑
F − Ẽ↓

F . (6.2.14)
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The renormalized Fermi energy depends on the band filling only. The actual

Fermi energy that depends on the interaction parameters is then easily cal-

culated by a single minimization with respect to the variational parameters,

but not within a self-consistency cycle which would increase the numerical

effort.

With the ground state of Eq. (5.6.16), the elements of Π̃0 explicitly read
〈〈
Ŝq,+
ab ; Ŝ−q,−

a′b′

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑bβ uk,↑a′β

] [
uk+q,↓
aα uk+q,↓

b′α

] n0
k,β↑ − n0

k+q,α↓
ω −

[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

(6.2.15)

〈〈
Ŝq,+
ab ; B̂−q,−

a′b′,c′b′

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑bβ uk,↑c′β

] [
uk+q,↓
aα uk+q,↓

b′α

]
[
n0
k,β↑ − n0

k+q,α↓
]
× εb

′a′

k+q

ω −
[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

(6.2.16)

〈〈
Ŝq,+
ab ; ˆ̄B

−q,−
a′b′,a′c′

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑bβ uk,↑c′β

] [
uk+q,↓
aα uk+q,↓

c′α

]
[
n0
k,β↑ − n0

k+q,α↓
]
× εb

′a′

k

ω −
[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

(6.2.17)

〈〈
B̂q,+

ab,a′b; B̂
−q,−
ãb̃,ã′ b̃

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑bβ uk,↑ã′β

] [
uk+q,↓
a′α uk+q,↓

b̃α

]
[
n0
k,β↑ − n0

k+q,α↓
]
× εbak εb̃ãk+q

ω −
[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

(6.2.18)
〈〈
B̂q,+

ab,a′b;
ˆ̄B
−q,−
ãb̃,ãb̃′

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑bβ uk,↑ãβ

] [
uk+q,↓
a′α uk+q,↓

b̃′α

]
[
n0
k,β↑ − n0

k+q,α↓
]
× εbak εb̃ãk

ω −
[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

(6.2.19)

〈〈 ˆ̄B
q,+

ab,ab′ ;
ˆ̄B
−q,−
ãb̃,ãb̃′

〉〉0
ω

=
1

Ns

∑

k

∑

αβ

[
uk,↑b′βu

k,↑
ãβ

] [
uk+q,↓
aα uk+q,↓

b̃′α

]
[
n0
k,β↑ − n0

k+q,α↓
]
× εbak+qε

b̃ã
k

ω −
[
Ek+q,α↓ − Ek,β↑

]
+ ıδ

.

(6.2.20)
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The remaining non-diagonal blocks can be obtained from symmetry consid-

erations.

6.2.2 Phase Diagram

In the first step, we look for instabilities of the homogeneous paramagnet.

To reach this goal, one could evaluate the ground-state energy functional for

different magnetizations m. As long as only second-order phase transitions

are expected, one can alternatively find the instability line also by means of

our TDGA.

In general, instabilities are indicated by a divergence of the real part

of the response function or–equivalently–as a peak in the imaginary part.

Instabilities of the homogeneous paramagnet towards magnetically ordered

states are indicated by a divergence of the transversal spin susceptibility

χ(q, ω) =
〈〈
Ŝq,+
1 + Ŝq,+

2 ; Ŝ−q,−
1 + Ŝ−q,−

2

〉〉
ω
. (6.2.21)

We can extract χ(q, ω) as the sum of elements of the first ‘block’ of the

Green’s function matrix (6.2.1). From Eq. (5.6.15), we conclude that the

divergence of Π̃(q, ω) corresponds to the non-invertibility of the matrix
[
1+

Π̃0(q, ω)Ṽ q
]
. Thus, we can alternatively obtain the instabilities if we solve

DET
[
1 + Π̃0(q, ω)Ṽ q

] !
= 0 (6.2.22)

in dependence of the interaction parameters U , U ′ and J . The advantage

of solving Eq. (6.2.22) instead of calculating the correlated Green’s function

matrix is that the numerical effort of the matrix inversion is avoided. For the

instability of the homogeneous paramagnet towards a homogeneous ferro-

magnet, we set q = 0 and, since we are looking for spontaneous symmetry

breaking, we additionally set ω = 0. The imaginary part of Π̃0 vanishes

then. In order to examine the instability towards incommensurate ordered

phases, we solve Eq. (6.2.22) for finite momenta q 6= 0 and q 6= (π, π, . . . ).

For the investigation of the anti-ferromagnetically ordered system, we set

q = (π, π, . . . ). In this way, we look for the minimal interaction strength U

that yields an instability towards any magnetically ordered phase.

The formation of an orbitally ordered phase is–besides breaking the

spin symmetry–another possibility to lower the system’s energy. This phe-

nomenon can also be observed in the two-site limit of the two-band model,

cf., Appendix A.2. Mapping to a Kugel-Khomskii Hamiltonian [78] suggests

the formation of an orbitally ordered ferromagnet at quarter filling. We

therefore calculate the ground-state energy of the para- and ferromagnetic
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Figure 6.2.1: Schematic sketch of the ferromagnet with ‘anti-ferromagnetic’
orbital order. The gross magnetization is positive on each lattice site, the size
of the arrows is proportional to the charge-density in each orbital. From site
to site, each orbital takes turn as majority and minority orbital, respectively.

state with an additional ‘anti-ferromagnetic’ orbital order, cf., Fig. 6.2.1.

Orbital ordering is a well-known phenomenon in multi-band systems and is

already covered within a mean-field treatment [79, 80], with the known short-

coming that the stability of the orbitally ordered phases is over-estimated

in comparison to results from the Gutzwiller approach [14]. DMFT calcula-

tions on this issue remain ambiguous [81, 82].

6.2.3 Magnon Dispersion and Excitation Spectrum

In the second step, we fix the interaction parameters to some values beyond

the instability line of the paramagnet. We fix the elements of the local

density matrix C̃0 such that the ground-state energy functional is minimal

with respect to the magnetization m = n0
↑ − n0

↓. To address the question

of stability, we calculate the ferromagnetic magnon dispersion. To this end,

we solve the equation

DET
[
1 + Π̃0(q, εq)Ṽ q

] !
= 0 (6.2.23)

and thus obtain the magnon dispersion εq. This approach is valid for finite

excitation energies as long as the imaginary part of the uncorrelated response

functions is small compared to their real parts. This is the case as long as εq
is small. The ferromagnetic state is considered to be stable if the curvature

of the dispersion relation is positive. Magnon dispersions can be measured

by neutron-scattering experiments. The quality of the choice of interaction

parameters can thus be judged by comparison to experimental results.

Furthermore, we are interested in the calculation of high-energy excita-

tion spectra. To this end, we calculate the correlated Green’s function ma-

trix Π̃(q, ω) and extract the imaginary part of the Green’s function (6.2.21)

for a wide frequency and momentum range.
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6.3 Spin Susceptibility in Infinite Dimensions

6.3.1 Model System

We begin our investigations with a two-band model on a hyper-cubic lattice.

We keep all terms in the (cubic) interaction Hamiltonian and decouple the

two orbitals by introducing the spin- and orbital-diagonal hopping amplitude

tσσ
′

ij ≡ t
(bs)(b′s′)
ij = δbb′δss′ t (6.3.1)

for nearest-neighbor sites Ri and Rj . The band energies then read

εbk =
2t√
2D

D∑

n=1

cos kn (6.3.2)

for the two orbitals b = 1, 2.

Due to the diagonality of the hopping amplitudes, the effective one-

particle Gutzwiller Hamiltonian is already diagonal. The number of fluctu-

ations that have to be taken into account in the calculation of the response

functions are therefore reduced. We consider the four local and eight tran-

sitive intra-orbital spin-flips only. The effective interaction kernel and the

response functions are therefore represented by 6 × 6 matrices.

The hopping amplitude is scaled ∼ 1√
D

in order to keep the energy

expectation values finite in the limit D → ∞. The limit D → ∞ requires a

special treatment of the k-space summation. In Appendix F we show how

any sum over the first Brillouin zone is replaced by a frequency integral by

means of the density of states.

The momentum dependence in infinite spatial dimensions is included in

a single scalar quantity ηq, which is defined as

ηq = η = lim
D→∞

1

D

D∑

n=1

cos qn (6.3.3)

and lies within the interval [−1, 1]. ηq = +1 corresponds to q = 0 while ηq =

−1 corresponds to the vector q = (π, π, . . . ). If ηq is used to characterize

the ‘ordering vector’ of the system, ηq = +1 corresponds to a homogeneous

para- or ferromagnetic phase while ηq = −1 indicates an anti-ferromagnetic

ordering. Any states with an ordering vector −1 < ηq < +1 will be denoted

as incommensurate phases.

6.3.2 Results

We present numerical results for the models and susceptibilities introduced

in the previous sections. Our findings have already been published and
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discussed in [83]. First, we present the magnetic phase diagrams for four

different ratios of interaction parameters in Fig. 6.3.1. We fix the ratio of

J/U to 0.0, 0.1, 0.2 and 0.3, respectively, and carry out the calculations for

the second-order phase transitions for different dopings δ. Due to particle-

hole symmetry, we restrict ourselves to hole-doping only. We find that,

for any J , the half-filled system (δ = 0) undergoes a spontaneous phase

transition towards a homogeneous anti-ferromagnet for U = 0. For small

doping, the homogeneous paramagnet tends to incommensurate phases.

The phase diagram for J = 0 is shown in Fig. 6.3.1 a). It does not ex-

hibit a ferromagnetic regime. This result is not surprising since previous

variational calculations stated the existence of a critical J to favor itin-

erant ferromagnetism [7]. The existence of a critical J in a degenerate

two-band model was also derived by means of quantum Monte-Carlo simu-

lations within the DMFT [81]. The occurrence of incommensurate phases is

restricted to a range of small doping δ . 0.07 only. At half-filling (δ = 0),

previous calculations yield a metal-to-insulator transition (Brinkman–Rice

transition) at a critical interaction UBR which is now masked by the anti-

ferromagnetic phase. Another localization transition appears for exactly

quarter-filled systems, marked by the full square at δ = 0.25. Both metal-

to-insulator transitions are of second order for J = 0. The transition from

the homogeneous paramagnet towards the orbitally ordered phase turns out

to be of first order.

For J/U = 0.1, the range of incommensurate phases extends over the

range from half- to quarter-filling, cf., Fig. 6.3.1 b). The ordering vector

increases monotonically from ηq = −1 to ηq = −0.3. Within this range, we

find also stable ferromagnetism (marked by the dashed line) if the interaction

strengths U and J are further increased. The BR transition at half-filling

if of first order for all finite J whereas the one at quarter-filling remains

continuous also for finite J .

As expected, the boundary of stable ferromagnetism tends to smaller

interaction strengths U if the ratio J/U is further increased. The regime of

incommensurate ordered phases is restricted to a smaller doping range as

illustrated in Fig. 6.3.1 c) for J/U = 0.2. At δ ≈ 0.22, the borders of the

instability of the ferromagnetic phase and the stability of the ferromagnetic

phase merge in a Quantum-Lifshitz-Point (QLP), similar to results obtained

for the single-band model [84]. For larger doping, the two boundaries co-

incide until the BR transition sets in. We find an orbitally-ordered phase

also for finite J/U masking the BR transition at quarter filling. Within the

ferromagnetic state, the transition towards the orbitally ordered phase is
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second order for J/U = 0.2.

For a ratio J/U = 0.3, the boundary of the stable ferromagnet is further

shifted to smaller interaction strengths, cf., Fig. 6.3.1 d). The phase diagram

exhibits also a QLP where the paramagnetic, the ferromagnetic and the

incommensurate phases merge. The large value of J/U leads to the existence

of a ferromagnetically ordered phase even for system below quarter-filling.

A metal-to-insulator transition has not been found for interaction strengths

U/|t| < 45. Although not shown in Fig. 6.3.1 d), a transition from the

ferromagnetic state towards the orbitally ordered phase is found also for

J/U = 0.3, and it is found to be of first order in contrast to the result for

J/U = 0.2.

From Fig. 6.3.1 c) and d) we conclude that the ferromagnet is always sta-

ble if the critical interaction strength for q = 0 is smaller than the critical

interaction for a phase transition towards incommensurate phases. Further-

more, we find that the occurrence of a paramagnetic insulating phase both

at δ = 0 and δ = 0.25 is prevented by either an anti-ferromagnetic or an

orbitally ordered phase, similar to DMFT results for a three-band model

[85].

For comparison, we present the same phase diagram obtained within HF

approximation. In Fig. 6.3.2, we present the boundaries of the paramagnetic,

the ferromagnetic and the incommensurate phases for the same interaction

parameters as in Fig. 6.3.1. We find that the size of the Hund’s exchange

coupling influences the phase diagram only quantitatively. The HF approx-

imation predicts phase transitions towards a stable ferromagnetic phase for

all values J/U . This result confirms the overestimation of ferromagnetism in

mean-field theories which is a known shortcoming of the HF approximation,

since it cannot cover the multiplet structure of local electron configurations

properly.

In Fig. 6.3.3, we present an example of a momentum- and frequency-

dependent excitation spectrum for a ferromagnetic ground state with a mag-

netization of n↑−n↓ = 0.677 per lattice site, and the doping is set to δ = 0.15.

The interaction parameters are U/|t| = 10.5 and J/U = 0.2, respectively.

The spectrum consists of the low-energy magnon and the high-energy Stoner

continuum. For η → 1, the magnon excitation consists of a δ-peak at ω → 0

carrying the whole spectral weight, i.e., our calculations recover a Goldstone

mode which serves as another consistency check of our formalism, cf., the

inset of Fig. 6.3.3. For finite momenta q (i.e., for ηq < +1), the peaks appear

at positive energies indicating the stability of the ferromagnetic state. The

peaks are broadened with increasing momenta and their spectral weights
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a) J/U = 0 b) J/U = 0.1

c) J/U = 0.2 d) J/U = 0.3

0.00.0

0.00.0

0.10.1

0.10.1

0.20.2

0.20.2

0.30.3

0.30.3

0.40.4

0.40.4

00

00

55

55

1010

1010

1515

1515

2020

2020

2525

2525

−1<
η<

1

−1<
η<

1

−
1
<
η
<
1

−1
<
η<

1

η=1η
=
1

η=−0.3

U
/|
t|

U
/|
t|

δδ

IC

IC

IC

IC
PM

PMPM

PM

FM
FM

FM

O
O

O
O

Figure 6.3.1: TDGA magnetic phase diagram for the two-band Hubbard
model in infinite spatial dimensions as a function of doping. The solid
lines mark second-order transitions from the homogeneous paramagnet (PM)
to incommensurate (IC) and ferromagnetic (FM) phases, the thick lines
mark the insulating phase due to the BR transition (black) and the anti-
ferromagnetic phase (green). The dashed lines mark the boundary of stable
ferromagnetism. The dash-dotted lines mark the orbitally ordered (OO)
phases.
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decrease rapidly. The spectral weight is shifted to the higher energies where

the Stoner continuum evolves with increasing momenta. Its mean position

moves to smaller energies with increasing q and merges with the broadened

magnon peaks. The abrupt drop of the spin-wave intensity is also seen in

inelastic neutron-scattering experiments and is usually interpreted as the

intersection of the spin-wave excitation curve with the excitation continuum

[86]. The magnon dispersion is a linear function of 1− η, i.e., it is quadratic

in |q| for small momenta (cf., Eq. (F.1.11)) as expected for ferromagnetic

magnons.

ℑχ
(η
,ω

)

ℑ
χ
(η
,ω
)

ω/|t|

ω/|t|

0

0 2 4

0 2·10−3 4·10−3 6·10−3 8·10−3
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η=0.6

η=0.6

Figure 6.3.3: TDGA excitation spectrum for the stable ferromagnet. The
plot displays the imaginary part of the transverse spin-susceptibility χ(η, ω)
obtained within the TDGA in a wide frequency range (main panel) and
for small frequencies (input) for various ‘wave vectors’ η. The spectrum
consist of the low-energy magnon and the high-energy Stoner continuum
excitations. U/|t| = 10.5, J/U = 0.2, δ = 0.15, m = 0.677.

6.4 Spin Susceptibility in Three Dimensions

6.4.1 Model System

We use a tight-binding Hamiltonian with nearest- and next-nearest neighbor

hopping as it was already used in [7, 87, 88]. The diagonal hopping matrix

elements between the d3z2−r2-orbital (b = 1) and the dx2−y2-orbital (b = 2)
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Figure 6.4.1: Density of states at the Fermi edge as a function of band
filling ns for uncorrelated electrons with the hopping parameters given in
Table 6.4.1. The half-filled state (one electron per lattice site per orbital per
spin direction) corresponds to ns = 0.5.

in momentum space are given as [54]

ε11k ≡ ε1k = t
(1)
ddσ

[
1
2 cos kx + 1

2 cos ky + 2 cos kz
]

+ 3
2t

(1)
ddδ

[
cos kx + cos ky

]

+ t
(2)
ddσ cos kx cos ky +

[
1
4 t

(2)
ddσ + 3t

(2)
ddπ

][
cos kx + cos ky

]
cos kz

+ 3t
(2)
ddδ

[
cos kx cos ky + 1

4 cos kx cos kz + 1
4 cos ky cos kz

]

(6.4.1)

ε22k ≡ ε2k = 3
2 t

(1)
ddσ

[
cos kx + cos ky

]
+ t

(1)
ddδ

[
1
2 cos kx + 1

2 cos ky + 2 cos kz
]

+ 4t
(2)
ddπ cos kx cos ky +

[
3
4t

(2)
ddσ + t

(2)
ddπ + 9

4t
(2)
ddδ

][
cos kx + cos ky

]
cos kz ,

(6.4.2)

while the band mixing (hybridization) reads

ε12k = ε21k =
√
3
2

[
−t

(1)
ddσ + t

(1)
ddδ

][
cos kx − cos ky

]

+
[√

3
4 t

(2)
ddσ −

√
3t

(2)
ddπ + 3

√
3

4 t
(2)
ddδ

][
cos kx − cos ky

]
cos kz .

(6.4.3)

The values for the hopping amplitudes are listed in Table 6.4.1. This spe-

cial choice of parameters avoids perfect nesting at half-filling and yields a

density of states at the Fermi energy that exposes a peak at finite doping.

The resulting density of states for electrons without correlation is shown in

Fig. 6.4.1.

The local interaction Hamiltonian was introduced in Section 2.5.2, cf.,

Eq. (2.5.2). The eigenstates and eigenenergies of Eq. (2.5.2) have been listed

in Table 2.5.1.
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t
(1)
ddσ [eV] t

(1)
ddπ [eV] t

(1)
ddδ [eV] t

(2)
ddσ [eV] t

(2)
ddπ [eV] t

(2)
ddδ [eV]

−1.0 0.3 −0.1 −0.25 0.075 −0.025

Table 6.4.1: Hopping amplitudes for nearest- ((1)) and next-nearest ((2))
neighbors. The values are taken from [7] according to general experiences
for energy bands in transition metals.
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Figure 6.4.2: Left: generic dispersion relation for the two-band model
in three dimensions along the usual symmetry axis. The zero of energy
coincides with the one-particle on-site energies. The total bandwidth is
W = 6.875 eV. Note the degeneracy along the (ξ, ξ, ξ)-direction. Right:

sketch of the 1. Brillouin zone with symmetry points.

With the abbreviation q1s1s = q2s2s ≡ qs, we can write the resulting eigenen-

ergies as

Ek,1s =
[
qs
]2[

cos2 φk ε
1
k + sin2 φk ε

2
k + 2 sinφk cosφk ε

12
k

]
=
[
qs
]2
Ek,1

(6.4.4)

Ek,2s =
[
qs
]2[

sin2 φk ε
1
k + cos2 φk ε

2
k − 2 sinφk cosφk ε

12
k

]
=
[
qs
]2
Ek,2 .

(6.4.5)

We plot the eigenenergies Ek,α of the Hamiltonian along the usual symmetry

axis of a cubic Brillouin zone in Fig. 6.4.2.

Due to the finite hybridization, we must now take inter-orbital spin-flip

processes into account in our calculation of the interaction kernel. The set

of local spin-flip operators that enter the transversal spin-susceptibility thus

are the four intra-orbital operators Ŝ±
bb and the four inter-orbital ones Ŝ±

ab,
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Figure 6.4.3: Borders of stability of the paramagnetic state for the two-band
Hubbard model on a three-dimensional simple cubic lattice.

a, b = 1, 2. The hybridization also enlarges the number of transitive spin-flip

operators B̂q,± and ˆ̄B
q,±

that must be taken into account in order to set

up the full Green’s function matrix Π̃. All in all, 32 transversal fluctuations

yield finite contributions in the Lagrange-functional expansion. Hence, the

effective interaction kernel and the Green’s functions are included into 20×20

matrices.

6.4.2 Results

As can be seen from Fig. 6.4.1, the density of states at the Fermi level exhibits

a peak at ns ≈ 0.30. The tendency to a spontaneous symmetry breaking

towards a ferromagnetic phase is expected to be strongest at that peak. Due

to the higher numerical effort, we did not scan the whole doping range. Note

that our results have recently been published in [89].

We fix the doping to ns = 0.2975 and calculate the borders of stability of

the homogeneous paramagnet both within our TDGA and–for comparison–

within HF theory. The curves are plotted in Fig. 6.4.3, where, for fixed ns

and J/U , we calculated the instability as a function of U . The same re-

sults have been obtained from ground-state calculations by Bünemann [7]

and serve as consistency check here. It were these results that yielded the

existence of a critical Hund’s exchange coupling J for the occurrence of ferro-

magnetism within the Gutzwiller theory. In contrast, the HF approximation

predicts an instability towards ferromagnetic ordering for all values of J . In

addition, the J-dependence of the critical U in the HF treatment is almost

negligible.
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The instability towards the homogeneous ferromagnet is the first second-

order phase transition that occurs in our TDGA calculations. In order to

investigate the instability towards incommensurate phases, we scanned the

q-space around q = 0 in certain directions, not only along the symmetry

lines indicated in Fig. 6.4.2. There were no indicators of a second-order tran-

sition towards incommensurate phases before the homogeneous ferromagnet

becomes energetically favored. Nevertheless, the ferromagnetic state just

beyond the instability of the paramagnet is not stable yet, see below. One

possible explanation is that our calculations do not cover possible first-order

transitions with finite ordering vectors q. Another reason for the absence of

second-order transitions towards incommensurate phases might result from

the finite discretization of the Brillouin zone in three dimensions. We cannot

exclude that there are incommensurate phases with a finite ordering vector

q with |q| ≪ 1 that could not be resolved within our numerical implemen-

tation.

For a comparison of our TDGA to the commonly used HF approxima-

tion, we calculate the excitation spectrum of the ferromagnet. In general,

both approaches lead to significantly different ground states for a common

set of interaction parameters. For a meaningful comparison, we therefore

adjust the interaction parameters to values that lead to an almost fully

spin-polarized ground state within both techniques. We calculate the spec-

trum for the two directions q = (ξ, 0, 0) and q = (ξ, ξ, ξ), respectively. The

spectra are plotted in Figs. 6.4.4 and 6.4.5.

All spectra are composed of the low-energy magnon peaks and the high-

energy Stoner continuums. We find that our TDGA yields a Goldstone

mode also in finite-dimensional systems. A first difference between the two

methods concerns the excitation gap between the magnon and the Stoner

excitations. This gap arises from the magnetic band splitting η− = E↑
F−E↓

F

which in HF theory is given analytically as η−HF = (U + J)m. Within the

TDGA, the band splitting η−GA is reduced by a factor of ∼ 4. The clear sep-

aration of the high-energy Stoner continuum from the low-energy magnon

spectrum is therefore lifted, and both parts rapidly merge with increasing

momentum transfer within the Gutzwiller approach. Consequently, the peak

at ω ∼ Jm corresponding to an inter-orbital spin-flip can only be seen in

the time-dependent HF theory while it is covered by the broadening Stoner

continuum in the Gutzwiller theory. Note that the overestimation of the ex-

citation gap within time-dependent HF theory is a longstanding shortcoming

in solid state theory. For a discussion about it, cf., [90].

In the insets of Figs. 6.4.4 and 6.4.5, we present the magnon dispersion
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Figure 6.4.4: Gutzwiller excitation spectrum for a ferromagnet with U/|t| =
10.0 and J/U = 0.30. The ground-state magnetization is m = 0.5728 (close

to maximum polarization), the excitation gap is η−GA = E↑
F − E↓

F ≈ 2.13 |t|.
The spin-wave stiffness is D100 = 1.34 × 10−3 |t| in (ξ, 0, 0)-direction and
D111 = 1.30×10−3 |t| in (ξ, ξ, ξ)-direction, respectively. The lattice constant

is set to unity, thus qx,y,z ∈ [−π, π], the scaling is t = t
(1)
ddσ.
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Figure 6.4.5: HF excitations with the same interaction parameters as in
Fig. 6.4.4. The resulting ground-state magnetization is m = 0.5975 (fully
polarized), the excitation gap is η−HF ≈ 7.77 |t|. The isotropic spin-wave
stiffness turns out to be D100 ≈ D111 = 100 × 10−3 |t|. The lattice constant

is set to unity, thus qx,y,z ∈ [−π, π], the scaling is again t = t
(1)
ddσ.
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as a function of the absolute value of q for both the HF theory and the

TDGA. The positive curvature indicates the stability of the ferromagnetic

phase with respect to the fluctuations. The magnon dispersion in the TDGA

exhibits a slight anisotropy. For a quantitative investigation, we calculate

the ‘spin-wave stiffness’ D by fitting our numerical results according to

εmag
q = D|q|2

[
1 + β|q|2

]
. (6.4.6)

Within HF theory, the magnon dispersion seems to be totally isotropic.

The magnon excitation energies obtained within the HF theory are larger

by nearly two orders of magnitude compared to those from the TDGA. To

some extent, this large difference is probably due to the instability towards

an incommensurate phase which we found for interaction parameters slightly

smaller than those that we used in Fig. 6.4.4 .



Chapter 7

Conclusions

7.1 Summary

In this work, we derived the TDGA for multi-band Hubbard models. The

importance of the investigation of such models for a proper description of

strongly correlated electron systems was motivated in the introduction in

Chapter 1. The class of multi-band Hubbard models was derived in Chap-

ter 2. Especially the local interaction Hamiltonian is affected by the multi-

orbital character, since the amount of different local electron configurations

yields a complex eigenvalue spectrum. We gave a short overview about

Gutzwiller wave functions and the minimization scheme of the Gutzwiller

energy functional in Chapter 3. In order to prepare the derivation of our new

TDGA for multi-band Hubbard models, we derived the conventional RPA

as a time-dependent generalization of the HF approximation in Chapter 4.

There, we found an effective one-particle Hamiltonian whose ground-state

one-particle density matrix obeys the RPA equations for small external per-

turbations.

In Chapter 5, we gave a detailed derivation of the TDGA for multi-

band Hubbard models. To this end, we derived the ‘Gutzwiller Hamilto-

nian’ as the (first) derivative of the Gutzwiller energy functional with re-

spect to density-matrix elements. In the following, the derivation of the

time-dependent Gutzwiller approximation was based on three assumptions:

Firstly, we assumed that the dynamics of the Slater determinant, used as

starting ansatz for the Gutzwiller wave function, is determined by the effec-

tive one-particle ‘Gutzwiller’ Hamiltonian. Secondly, the dynamics of the

variational parameters was determined from the assumption that the sys-

tem is at any instant of time in its minimum with respect to all variational

parameters. These assumptions lead to a linear dependence of the varia-

tional parameters on density-matrix fluctuations. In the effective interaction
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kernel, i. e., the second derivatives of the Gutzwiller energy functional, the

variational parameter fluctuations can be re-expressed by the density-matrix

fluctuations. Thirdly it was assumed that the external perturbations and

the thereby induced fluctuations of the single-particle density matrix are

sufficiently small.

In general, the constraints arising from the evaluation of Gutzwiller wave

functions in infinite dimensions cannot be fulfilled explicitly. We were thus

faced with the question whether the expansion of the corresponding La-

grange functional instead of the Gutzwiller energy functional yields the same

interaction kernel. We proved the validity of the Lagrange-functional expan-

sion and presented a simple method how the Lagrange parameters at the

saddle point can be calculated from the second-order expansion.

We showed that the resulting theory is consistent in several aspects. A

second-order phase transition obtained from pure ground-state calculations

is also signalled as instability in our Gutzwiller-RPA approach. Further-

more, we checked that the previous single-band results can be reproduced

if we consider two totally decoupled electron bands. In Chapter 6, we ap-

plied our formalism to a two-band Hubbard model with two degenerate

bands. We calculated magnetic phase diagrams and excitation spectra for

various interaction parameters and dopings. In comparison with HF-RPA,

our Gutzwiller-RPA approach leads to a more complex interaction kernel

and thus to phase diagrams that exhibit a strong interaction dependence.

We could further demonstrate that the application of the Gutzwiller-RPA

scheme to ferromagnetic ground states leads to the appearance of a Gold-

stone mode, as expected for systems that break continuous spin symmetry.

We think that we could make plausible that the multi-band TDGA offers

a valuable tool for the investigation of the dynamics of strongly correlated

multi-band systems.

7.2 Outlook

The formalism derived in this work can straightforwardly be generalized to

calculate pair and charge correlation functions for multi-band systems. The

knowledge of pair correlation functions is important for the interpretation of

Auger spectra, while charge correlations allow for the calculation of optical

conductivity and polarizability, for example. Another issue of interest is the

application of the TDGA to substances with non-collinear spin structures.

In this case, the charge and spin channel are mixed in the second-order

expansion, which enlarges the involved matrices and thus increases the nu-

merical effort. Nevertheless, we expect that the resulting RPA equations
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remain solvable.

The elimination of the variational parameter fluctuations via the ‘anti-

adiabaticity’ condition has recently become obsolete. Schiró and Fabrizio

recently developed a fully time-dependent generalization of the Gutzwiller

approximation for the single-band model by deriving separate equations of

motion for the variational parameters [91, 92]. Their approach allowed for

the investigation of quantum quenches, for which the assumption of small

amplitudes does not hold anymore. In this context, it will be interesting to

study to what extent a fully time-dependent generalization to multi-band

Hubbard models can be carried out and whether their approach recovers the

previous results in the small-amplitude limit.





Appendix A

Two-Site Hubbard Models

We present exact results on the two-site Hubbard model with one and two

orbitals per site, respectively. While the computational effort for the one-

orbital model is manageable for all fillings, it exceeds the acceptable frame-

work of this section in the two-orbital case. We thus limit ourselves to the

quarter-filled two-orbital model.

A.1 The One-Orbital Model

The local one-band interaction Hamiltonian possesses four local eigenstates.

Thus, the Hilbert space associated with the two-site model is 16-dimensional.

The Hubbard Hamiltonian for the two-site model with one orbital per

lattice site reads

Ĥ1b
2s = t

∑

s=↑,↓

[
ĉ†1,sĉ2,s + ĉ†2,sĉ1,s

]
+ U

∑

i=1,2

n̂i,↑n̂i,↓ . (A.1.1)

We denote the vacuum state with no electrons as |0〉 = |◦〉1|◦〉2.

The four local eigenstates of the interaction Hamiltonian |◦〉i, |↑〉i, |↓〉i
and |↑↓〉i for empty sites, singly and doubly occupied sites, respectively,

are used to span the Hilbert space of two-site product states. Multi-particle

states are generated by creation operators ĉ†i,s acting on |0〉. In the following,

two-site states will be denoted as | · · · 〉1| · · · 〉2, where the subscript at the

ket-vectors labels the lattice site. Table A.1.1 shows the sixteen eigenstates

of Eq. (A.1.1).

For U > 0 and half-filling, the ground state is a paramagnet described

by

|Ψ1b
0 〉 = cosφ√

2

[
|↑〉1|↓〉2 − |↓〉1|↑〉2

]
− sinφ√

2

[
|↑↓〉1|◦〉2 + |◦〉1|↑↓〉2

]
, (A.1.2)
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with the mixing angle φ explained in the caption of Table A.1.1. In the

large-coupling limit, the ground-state energy E0 = U−
√
U2+16t2

2 tends to

−4t2

U as expected from perturbation theory.

No. |Γ〉 E|Γ〉
1 |◦〉1|◦〉2 0

2 1√
2

[
|↑〉1 + |↑〉2

]
+t

3 1√
2

[
|↓〉1 + |↓〉2

]
+t

4 1√
2

[
|↑〉1 − |↑〉2

]
−t

5 1√
2

[
|↓〉1 − |↓〉2

]
−t

6 |↑〉1|↑〉2 0

7 1√
2

[
|↑〉1|↓〉2 + |↓〉1|↑〉2

]
0

8 |↓〉1|↓〉2 0

9 1√
2

[
|↑↓〉1 − |↑↓〉2

]
U

10 cosφ√
2

[
|↑〉1|↓〉2 − |↓〉1|↑〉2

]
+ sinφ√

2

[
|↑↓〉1 + |↑↓〉2

]
U+

√
U2+16t2

2

11 cosφ√
2

[
|↑〉1|↓〉2 − |↓〉1|↑〉2

]
− sinφ√

2

[
|↑↓〉1 + |↑↓〉2

]
U−

√
U2+16t2

2

12 1√
2

[
|↑↓〉1|↑〉2 + |↑〉1|↑↓〉2

]
U − t

13 1√
2

[
|↑↓〉1|↓〉2 + |↓〉1|↑↓〉2

]
U − t

14 1√
2

[
|↑↓〉1|↑〉2 − |↑〉1|↑↓〉2

]
U + t

15 1√
2

[
|↑↓〉1|↓〉2 − |↓〉1|↑↓〉2

]
U + t

16 |↑↓〉1|↑↓〉2 2U

Table A.1.1: The 16 eigenstates |Γ〉 and the corresponding eigenenergies
E|Γ〉 of the Hamiltonian (A.1.1) for the two-site model with one orbital per
site. The mixing angle φ for the last pair of two-electron states is obtained
from tan 2φ = 4t

U .

A.2 The Two-Orbital Model

A.2.1 Exact Solution

We calculate the exact eigenstates and eigenenergies of the quarter-filled

two-site Hubbard model with two orbitals per lattice site. The Hilbert

space of local eigenstates of Eq. (2.5.2) containing zero, one or two electrons
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is 11-dimensional. The two-site Hubbard model with two eg-orbitals per site

is described by the Hamiltonian

Ĥ2b
2s = t

∑

a=1,2
s=↑↓

[
ĉ†1,asĉ2,as + ĉ†2,asĉ1,as

]
+
∑

i=1,2

Ĥi,int , (A.2.1)

where we assumed an orbital-diagonal hopping amplitude tσ1σ2
12 = tσ1σ2

21 ≡
t δσ1σ2 . Following the notation of the previous section, we denote the two-

site state with no electrons as |0〉 = |◦, ◦〉1|◦, ◦〉2, where the two states within

each ket-vector represent the electronic configuration for the first and the

second orbital, respectively, separated by a comma.

There are 28 two-electron eigenstates. They are listed in Table A.2.1

with their corresponding energies. Note that we dropped the ket-vector for

empty sites in the product states to keep the notations as clear as possible.

The six mixing angles are obtained from

tan 2φ1 = tan 2φ2 = tan 2φ5 =
4t

U ′ − J
(A.2.2)

tan 2φ3 =
4t

U + JC
(A.2.3)

tan 2φ4 =
4t

U − JC
(A.2.4)

tan 2φ6 =
4t

U ′ + J
. (A.2.5)

Although a two-site model has no cubic symmetry, we restrict to the same

interaction parameters that will be used in the calculations on higher-di-

mensional systems. In particular, we employ the relations U −U ′ = 2J and

JC = J .

With these restrictions, we find for the ground-state energy

E0 =
U ′ − J −

√
(U ′ − J)2 + 16t2

2
, (A.2.6)

which turns out to be three-fold degenerate (for finite on-site interactions).

The three states associated with E0 are highlighted with an asterisk. The

most general expression for the ground-state wave function at finite interac-

tions is

|Ψ0〉 = α1

[
cosφ1√

2

[
|↑, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↑, ◦〉2

]
− sinφ1√

2

[
|↑, ↑〉1 + |↑, ↑〉2

]]

+ α2

[
cosφ2√

2

[
|↓, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↓, ◦〉2

]
− sinφ2√

2

[
|↓, ↓〉1 + |↓, ↓〉2

]]

+ α5

[
cosφ5

2

[
|↑, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↑, ◦〉2 + |↓, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↓, ◦〉2

]
+

− sinφ5

2

[
|↑, ↓〉1 + |↓, ↑〉1 + |↑, ↓〉2 + |↓, ↑〉2

]]
,

(A.2.7)
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with the constraint |α1|2 + |α2|2 + |α5|2 = 1. Due to the degeneracy, the

resulting ground state can be either para- or ferromagnetic.

No. |Γ〉 E|Γ〉
1 |↑, ◦〉1|↑, ◦〉2 0

2 |↓, ◦〉1|↓, ◦〉2 0

3 |◦, ↑〉1|◦, ↑〉2 0

4 |◦, ↓〉1|◦, ↓〉2 0

5 1√
2

[
|↑, ◦〉1|◦, ↑〉2 + |◦, ↑〉1|↑, ◦〉2

]
0

6 1√
2

[
|↓, ◦〉1|◦, ↓〉2 + |◦, ↓〉1|↓, ◦〉2

]
0

7 1√
2

[
|↑, ◦〉1|◦, ↓〉2 + |◦, ↓〉1|↑, ◦〉2

]
0

8 1√
2

[
|↓, ◦〉1|◦, ↑〉2 + |◦, ↑〉1|↓, ◦〉2

]
0

9 1√
2

[
|↑, ◦〉1|↓, ◦〉2 + |↓, ◦〉1|↑, ◦〉2

]
0

10 1√
2

[
|◦, ↓〉1|◦, ↑〉2 + |◦, ↑〉1|◦, ↓〉2

]
0

11 1√
2

[
|↑, ↑〉1|◦, ◦〉2 − |◦, ◦〉1|↑, ↑〉2

]
U ′ − J

12 1√
2

[
|↓, ↓〉1|◦, ◦〉2 − |◦, ◦〉1|↓, ↓〉2

]
U ′ − J

13 1
2

[
|↑, ↓〉1 + |↓, ↑〉1 − |↑, ↓〉2 − |↓, ↑〉2

]
U ′ − J

14 1
2

[
|↑, ↓〉1 − |↓, ↑〉1 − |↑, ↓〉2 + |↓, ↑〉2

]
U ′ + J

15 1
2

[
|↑↓, ◦〉1 + |◦, ↑↓〉1 − |↑↓, ◦〉2 + |◦, ↑↓〉2

]
U + JC

16 1
2

[
|↑↓, ◦〉1 − |◦, ↑↓〉1 − |↑↓, ◦〉2 − |◦, ↑↓〉2

]
U − JC

17 cosφ1√
2

[
|↑, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↑, ◦〉2

]
+

+ sinφ1√
2

[
|↑, ↑〉1 + |↑, ↑〉2

]
U ′−J

2 +

+

√
(U ′−J)2+16t2

2

18∗ cosφ1√
2

[
|↑, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↑, ◦〉2

]
+

− sinφ1√
2

[
|↑, ↑〉1 + |↑, ↑〉2

]
U ′−J

2 +

−
√

(U ′−J)2+16t2

2

19 cosφ2√
2

[
|↓, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↓, ◦〉2

]
+

+ sinφ2√
2

[
|↓, ↓〉1 + |↓, ↓〉2

]
U ′−J

2 +

+

√
(U ′−J)2+16t2

2

20∗ cosφ2√
2

[
|↓, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↓, ◦〉2

]
+

− sinφ2√
2

[
|↓, ↓〉1 + |↓, ↓〉2

]
U ′−J

2 +

−
√

(U ′−J)2+16t2

2

21 cosφ3

2

[
|↑, ◦〉1|↓, ◦〉2 − |↓, ◦〉1|↑, ◦〉2 +

+ |◦, ↑〉1|◦, ↓〉2 − |◦, ↓〉1|◦, ↑〉2
]

+

+ sinφ3

2

[
|↑↓, ◦〉1 + |◦, ↑↓〉1 + |↑↓, ◦〉2 + |◦, ↑↓〉2

]

U+JC

2 +

+

√
(U+JC)2+16t2

2

22 cosφ3

2

[
|↑, ◦〉1|↓, ◦〉2 − |↓, ◦〉1|↑, ◦〉2 +

+ |◦, ↑〉1|◦, ↓〉2 − |◦, ↓〉1|◦, ↑〉2
]

+

− sinφ3

2

[
|↑↓, ◦〉1 + |◦, ↑↓〉1 + |↑↓, ◦〉2 + |◦, ↑↓〉2

]

U+JC

2 +

−
√

(U+JC)2+16t2

2

23 cosφ4

2

[
|↑, ◦〉1|↓, ◦〉2 − |↓, ◦〉1|↑, ◦〉2 +

− |◦, ↑〉1|◦, ↓〉2 + |◦, ↓〉1|◦, ↑〉2
]

+

+ sinφ4

2

[
|↑↓, ◦〉1 − |◦, ↑↓〉1 + |↑↓, ◦〉2 − |◦, ↑↓〉2

]

U−JC

2 +

+

√
(U−JC)2+16t2

2
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No. |Γ〉 E|Γ〉

24 cosφ4

2

[
|↑, ◦〉1|↓, ◦〉2 − |↓, ◦〉1|↑, ◦〉2 +

− |◦, ↑〉1|◦, ↓〉2 + |◦, ↓〉1|◦, ↑〉2
]

+

− sin φ4

2

[
|↑↓, ◦〉1 − |◦, ↑↓〉1 + |↑↓, ◦〉2 − |◦, ↑↓〉2

]

U−JC

2 +

−
√

(U−JC)2+16t2

2

25 cosφ5

2

[
|↑, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↑, ◦〉2 +

+ |↓, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↓, ◦〉2
]

+

+ sin φ5

2

[
|↑, ↓〉1 + |↓, ↑〉1 + |↑, ↓〉2 + |↓, ↑〉2

]

U ′−J
2 +

+

√
(U ′−J)2+16t2

2

26∗ cosφ5

2

[
|↑, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↑, ◦〉2 +

+ |↓, ◦〉1|◦, ↑〉2 − |◦, ↑〉1|↓, ◦〉2
]

+

− sin φ5

2

[
|↑, ↓〉1 + |↓, ↑〉1 + |↑, ↓〉2 + |↓, ↑〉2

]

U ′−J
2 +

−
√

(U ′−J)2+16t2

2

27 cosφ6

2

[
|↑, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↑, ◦〉2 +

− |↓, ◦〉1|◦, ↑〉2 + |◦, ↑〉1|↓, ◦〉2
]

+

+ sin φ6

2

[
|↑, ↓〉1 − |↓, ↑〉1 + |↑, ↓〉2 − |↓, ↑〉2

]

U ′+J
2 +

+

√
(U ′+J)2+16t2

2

28 cosφ6

2

[
|↑, ◦〉1|◦, ↓〉2 − |◦, ↓〉1|↑, ◦〉2 +

− |↓, ◦〉1|◦, ↑〉2 + |◦, ↑〉1|↓, ◦〉2
]

+

− sin φ6

2

[
|↑, ↓〉1 − |↓, ↑〉1 + |↑, ↓〉2 − |↓, ↑〉2

]

U ′+J
2 +

−
√

(U ′+J)2+16t2

2

Table A.2.1: The 28 two-electron eigenstates |Γ〉 of the two-site model with
two orbitals per site and the corresponding eigenenergies E|Γ〉. The states
highlighted with an asterisk mark the three-fold degenerate ground-state
energy.

A.2.2 Exact Evaluation of the GW Wave Function

We demonstrate the Gutzwiller scheme for the two-site model of the two-

band Hubbard model at quarter-filling. The local interaction Hamiltonian

for the two-band model was introduced in Section 2.5.2. Its eigenstates are

listed in Table A.2.2.

We will prove now that the Gutzwiller variational scheme yields the

exact ground state if the one-particle product state |Φ0〉 is chosen properly.

In Appendix A.2.1 we calculated the eigenenergies and eigenstates for the

two-site model with a spin- and orbital-diagonal hopping matrix element t

analytically. For U = 0, it follows U ′ = J = JC = 0, and the ground state

wave function is a linear combination of the states No. 17–28, see Table A.2.1.

At finite U , the ground-state wave function is a linear combination of only

three states, see Eq. (A.2.7). In the exact solution, the paramagnetic and

the ferromagnetic states both have the same energy.

Only the states No. 18 and 20 can be written as one-particle product

states, and both states are fully polarized ferromagnets. Without loss of

generality, we choose the two-particle state

|Φfm
0 〉 = ĥ†1↑ĥ

†
2↑|◦〉 (A.2.8)
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with the one-particle states

ĥ†1↑ = 1√
2

[
ĉ†1,1↑ − ĉ†2,1↑

]
(A.2.9)

ĥ†2↑ = 1√
2

[
ĉ†1,2↑ − ĉ†2,2↑

]
. (A.2.10)

Here, the spin-symmetry is broken, but the orbital degeneracy is conserved.

For the Gutzwiller correlator P̂G ≡ P̂1,GP̂2,G, we make the simplified

ansatz

P̂i,G = λ◦|◦, ◦〉ii〈◦, ◦| + λ1↑|↑, ◦〉ii〈↑, ◦| + λ2↑|◦, ↑〉ii〈↑, ◦| + λ↑↑|↑, ↑〉ii〈↑, ↑|
(A.2.11)

with lattice-site independent variational parameters.

A straightforward calculation yields that |ΨG〉 = P̂G|Φfm
0 〉 leads to the

exact ground state if we set

λ1↑ = λ2↑ =

√√
2 cosφ and λ◦◦ = λd =

√√
2| sinφ| , (A.2.12)

with the mixing angle φ = φ1 = φ2 = φ5 defined in Eq. (A.2.2). Hence, |ΨG〉
yields the same energy expectation value

EGA
0 =

U ′ − J −
√

(U ′ − J)2 + 16t2

2
(A.2.13)

for all interactions.

A.2.3 Comparison of the Exact Solution to the GA

As we have seen in the previous section, the exact evaluation of the Gutz-

willer wave function for the two-site two-band model at quarter filling yields

the exact ground state. In this section we compare the exact ground-state

energy to the energy that we obtain within the GA. From Eq. (A.2.13) we

see that the relevant interaction parameter is U ′−J = Ũ . We introduce the

one-particle states

ĥ†bs = 1√
2

[
ĉ†1,bs − ĉ†2,bs

]
(A.2.14)

and define the two product states

|Φpm
0 〉 = ĥ†1↑ĥ

†
2↓|◦〉 (A.2.15)

|Φfm
0 〉 = ĥ†1↑ĥ

†
2↑|◦〉 (A.2.16)

(A.2.17)

in order to set up the para- and ferromagnetic Gutzwiller wave functions

|Ψpm/fm
G 〉.
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No. |Γ〉 EΓ λΓΓ

1 |◦, ◦〉 0 λ◦

2 |↑, ◦〉 0 λ1↑

3 |◦, ↑〉 0 λ2↑

4 |↓, ◦〉 0 λ1↓

5 |◦, ↓〉 0 λ2↓

6 |↑, ↑〉 U ′ − J λ↑↑

7 1√
2

[
|↑, ↓〉 + |↓, ↑〉

]
U ′ − J λ↑↓,+

8 |↓, ↓〉 U ′ − J λ↓↓

9 1√
2

[
|↑, ↓〉 − |↓, ↑〉

]
U ′ + J λ↑↓,−

10 1√
2

[
|↑↓, ◦〉 − |◦, ↑↓〉

]
U − JC λd,−

11 1√
2

[
|↑↓, ◦〉 + |◦, ↑↓〉

]
U + JC λd,+

Table A.2.2: The zero-, one- and two-particle eigenstates |Γ〉 and their en-
ergies EΓ. The last column contains the diagonal variational parameters
associated with the corresponding states as they are used to set up the
Gutzwiller correlator.

For J = 0, the paramagnetic and the ferromagnetic state are degenerate.

In contrast to the exact solution, an infinitesimal Hund’s exchange coupling

J favors the formation of the ferromagnetic state in the GA. The energy of

the system maybe lowered if we lift the orbital degeneracy, depending on

the size of U ′ and J . To this end, we introduce the one-particle states

ˆ̃h
†
1↑ =

[
cos θ ĉ†1,1↑ + sin θ ĉ†2,1↑

]
(A.2.18)

ˆ̃h
†
2↑ =

[
sin θ ĉ†1,2↑ + cos θ ĉ†2,2↑

]
(A.2.19)

and define the orbitally-ordered ferromagnetic state

|Φfm,o
0 〉 = ˆ̃h

†
1↑

ˆ̃h
†
2↑|◦〉 . (A.2.20)

The ‘sublattice magnetization’ ∆ is defined as

∆ =
〈
n̂1,1↑ − n̂2,1↑

〉
Φfm,o

0
= −

〈
n̂1,2↑ − n̂2,2↑

〉
Φfm,o

0
= cos 2θ . (A.2.21)

The minimization of the Gutzwiller ground-state energy functional with

respect to ∆ then allows for the determination of the occurrence of the

orbitally-ordered state. In Fig. A.2.1 we plot the exact ground-state energy,
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Figure A.2.1: Exact ground-state energy (black) and the GA energy (red)
of the quarter-filled two-site model. The dashed line shows the sublattice
magnetization ∆.

the GA energy and the sublattice magnetization in a common plot. The

critical interaction strength Ũc for the occurrence of the orbitally-ordered

state is about a factor ∼ 1.6 larger than the corresponding value in HF

approximation, where the same orbital order is observed.



Appendix B

Determination of Lagrange

parameters

B.1 Pseudo-Inverse Matrix

Since we expand the Lagrange functional LGA instead of the energy func-

tional in Section 5.5, we must determine the values of the Lagrange param-

eters Λn at the saddle point from the requirement

dLGA

dλγ

!
= 0 ∀ γ = 1 . . . nλ (B.1.1)

or (in matrix notation)

G̃Λ = −e , (B.1.2)

where Λ contains the ncon Lagrange parameters. The nλ×ncon matrix G̃ is

set up by the derivatives of the constraints and the r.h.s. vector e contains

the derivatives of the energy.

The existence of a stable ground state implies that Eq. (B.1.2) has at

least one solution. There are two difficulties in solving Eq. (B.1.2):

• In general, there are more equations than constraints/Lagrange pa-

rameters: nλ > ncon or even nλ ≫ ncon .

• Round-off errors from the numerical minimization might lead to (an-

alytically) unsolvable systems of equations.

To deal with these problems, we do not solve Eq. (B.1.2), but the–in case of

unique resolvability–equivalent equation

G̃T G̃Λ = −G̃Te (B.1.3)
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which is known to be solvable in any cases (not necessarily uniquely). If

the matrix G̃ has full rank (which can be checked easily by calculating its

singular values), one can define the so-called ‘Moore–Penrose matrix inverse’

G̃† according to

G̃† =
[
G̃T G̃

]−1
G̃T , (B.1.4)

which is known to yield the best approximation Λ+ to Eq. (B.1.2) via

Λ+ = −G̃†e . (B.1.5)

The term ‘best approximation’ means that the error ∆x defined as

∆x =
∣∣x + G̃e

∣∣ (B.1.6)

takes its minimal value for x = Λ+. In the special case that Eq. (B.1.2)

possesses a unique solution (which we expect physically), the solution Λ+

of Eq. (B.1.4) coincides with the one of Eq. (B.1.2). If Eq. (B.1.2) is not re-

solvable exactly due to numerical uncertainties of a certain order, the error

of Λ is expected to be in the same order of magnitude. Hence, the strat-

egy sketched here offers an appropriate and easy-to-use method to obtain

the Lagrange parameters. For more profound statements on pseudo-inverse

matrices, cf., [93].



Appendix C

Invariance of the

Second-Order Expansions

C.1 Equivalence of the Lagrange-Functional Ex-

pansion

In this section, we show that the interaction kernel K̄ρρ
Y Y ′ in Eq. (5.5.8) ob-

tained from the second-order expansion of the Lagrange functional (LF) is

identical to Kρρ
Y Y ′ in Eqs. (5.4.9) and (5.4.10). To this end, we choose again

some arbitrary independent and dependent variational parameters λi
Z and

λd
X , cf., Eq. (5.2.4). By construction, the constraints (5.2.3) are automati-

cally fulfilled as a function of ~λi and ~ρ, i.e., we have

gn
(
~λd

(~λi,~ρ), ~λi, ~ρ
)

= 0 . (C.1.1)

Consequently, all first or higher-order derivatives of Eq. (C.1.1) with respect

to λi
Z and ρY vanish. For example, the first-order derivatives lead to

dgn
dλi

Z

=
∂gn
∂λi

Z

+
∑

X

∂gn

∂λd
X

∂λd
X

∂λi
Z

= 0 (C.1.2)

dgn
dρY

=
∂gn
∂ρY

+
∑

X

∂gn

∂λd
X

∂λd
X

∂ρY
= 0 . (C.1.3)

Using the matrices

GnX ≡ ∂gn

∂λd
X

, RXZ ≡ ∂λd
X

∂λi
Z

and QXY ≡ ∂λd
X

∂ρY
, (C.1.4)
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we can write Eqs. (C.1.2) and (C.1.3) as

∂gn

∂λi
Z

= −
[
G̃R̃
]
nZ

(C.1.5)

∂gn
∂ρY

= −
[
G̃Q̃

]
nY

. (C.1.6)

With the classification of dependent and independent variables we are in

the position to evaluate the anti-adiabaticity conditions (5.5.6) and (5.5.7).

First, Eq. (5.5.6) leads to

∑

X

∂gn

∂λd
X

δλd
X +

∑

Z

∂gn
∂λi

Z

δλi
Z +

∑

Y

∂gn
∂ρY

δρY = 0 (C.1.7)

which, together with Eqs. (C.1.5) and (C.1.6), yields

G̃
[
δ~λd − R̃δ~λi − Q̃δ~ρ

]
= ~0 . (C.1.8)

Since the square matrix G̃ should be invertible, the bracket in Eq. (C.1.8)

must vanish, and we find the relation

δ~λd = R̃δ~λi + Q̃δ~ρ , (C.1.9)

which determines the dependent-parameters fluctuations δ~λd as a function

of δ~λi and δ~ρ.

Applying the separation of dependent and independent parameter fluc-

tuations to the Eqs. (5.5.7) yields

(
ÃT

G̃T

)
δ~Λ = −

(
L̃ii L̃id

L̃di L̃dd

)(
δ~λi

δ~λd

)(
L̃iρ

L̃dρ

)
δ~ρ , (C.1.10)

with Ã = −G̃R̃. Here we introduced the six matrices

Lii
ZZ′ ≡ ∂2LGA

∂λi
Z∂λ

i
Z′

Lid
ZX ≡ ∂2LGA

∂λi
Z∂λ

d
X

Ldi
XZ ≡ ∂2LGA

∂λd
X∂λi

Z

(C.1.11)

Ldd
XX′ ≡ ∂2LGA

∂λd
X∂λd

X′

Liρ
ZY ≡ ∂2LGA

∂λi
Z∂ρY

Ldρ
XY ≡ ∂2LGA

∂λd
X∂ρY

(C.1.12)

of second derivatives. With Eq. (C.1.9) and the second ‘row’ of Eqs. (C.1.10)

one can write the Lagrange-parameter fluctuations as a function of δ~λi and

δ~ρ,

δ~Λ = −
[
G̃T
]−1 [[

L̃di + L̃ddR̃
]
δ~λi +

[
L̃ddQ̃ + L̃dρ

]
δ~ρ
]
. (C.1.13)
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Inserting this expression into the first row of Eqs. (C.1.10) we eventually find

δ~λi = −
[
L̃ii + L̃idR̃ + R̃T + R̃T L̃ddR̃

]−1

×
[
L̃iρ + L̃idQ̃ + R̃T L̃dρ + R̃T L̃ddQ̃

]
δ~ρ .

(C.1.14)

Equations (C.1.9), (C.1.13) and (C.1.14) now enable us to write all fluc-

tuations δ~λi, δ~λd and δ~Λ as functions of the density fluctuations δ~ρ. These

relations can be inserted into the second-order expansion of the Lagrange

functional

2δL(2) = (δ~ρ)T L̃ρρδ~ρ + (δ~λi)T L̃iiδ~λi + (δ~λd)T L̃ddδ~λd

+ (δ~ρ)T L̃ρdδ~λd + (δ~ρ)T L̃ρiδ~λi + (δ~λi)T L̃idδ~λd

+ (δ~λd)T L̃diδ~λi + (δ~λd)T L̃dρδ~ρ + (δ~λi)T L̃iρδ~ρ

+ 2(δ~Λ)T G̃
[
δ~λd − R̃δ~λi − Q̃δ~ρ

]
(C.1.15)

in order to calculate K̄ρρ
Y Y ′ in Eq. (5.5.8). However, to prove just the identity

of K̄ρρ
Y Y ′ and Kρρ

Y Y ′ in Eq. (5.4.9) it is sufficient to apply only Eq. (C.1.9) to

the expansion (C.1.15). This leads to

2δL(2) = (δ~ρ)T
[
L̃ρρ + Q̃T L̃dρ + L̃ρdQ̃ + Q̃T L̃ddQ̃

]
δ~ρ

+ (δ~λi)T
[
L̃ii + L̃idR̃ + R̃T L̃di + R̃T L̃ddR̃

]
δ~λi

+ (δ~ρ)T
[
L̃ρi + L̃ρiR̃ + Q̃T L̃di + Q̃T L̃ddR̃

]
δ~λi

+ (δ~λi)T
[
L̃iρ + R̃T L̃iρ + L̃idQ̃ + R̃T L̃ddQ̃

]
δ~ρ .

(C.1.16)

As we will show below, the matrices (5.4.2)–(5.4.4) which determine the

second-order expansion (5.4.5) are the same as the corresponding matrices

in Eq. (C.1.16). Hence, we have

δE(2) = δL(2) . (C.1.17)

Since the anti-adiabaticity condition

∂δE(2)

∂δλi
Z

=
∂δL(2)

∂δλi
Z

= 0 (C.1.18)

for δE(2) reproduces Eq. (C.1.14), the identity of K̄ρρ
Y Y ′ and Kρρ

Y Y ′ is then

finally demonstrated.

It remains to be shown that the matrices (5.4.2)–(5.4.4) agree with those

in Eq. (C.1.16). To this end, we use the explicit form Eq. (5.2.5) of the en-

ergy functional (5.2.1) that appears in the definition of the matrices (5.4.2)–

(5.4.4). As an example, we consider the matrix M̃ρρ and show that it is
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identical to the matrix in the first line of Eq. (C.1.16). With similar deriva-

tions one can prove the same for the other matrices (5.4.3), (5.4.4) and their

counterparts in Eq. (C.1.16).

Using Eqs. (5.2.5) and (5.4.2) we find

Mρρ
Y Y ′ =

[
Ẽρρ + Q̃T Ẽdρ + ẼρdQ̃ + Q̃T ẼddQ̃

]
Y Y ′ + 2

∑

X

∂E

∂λd
X

∂2λd
X

∂ρY ∂ρY ′
.

(C.1.19)

Here, the matrices

Ẽαβ = L̃αβ −
∑

n

Λng̃
αβ
n and g̃αβn (C.1.20)

with αβ ∈ {ρρ,dρ, ρd,dd} are defined as in Eq. (C.1.11) only with LGA

replaced by E or gn, respectively. Obviously, the matrix in the first line of

Eq. (C.1.16) is identical to M̃ρρ if

2
∑

X

∂E

∂λd
X

∂2λd
X

∂ρY ∂ρY ′
= −

∑

n

Λn

[
g̃ρρn + Q̃T g̃dρn + g̃ρdn Q̃ + Q̃T g̃ddn Q̃

]
Y Y ′ .

(C.1.21)

To prove Eq. (C.1.21), we use the fact that the second (total) derivatives of

Eq. (C.1.1) with respect to the densities ρY vanish:

d2gn
dρY dρY ′

=
[
g̃ρρn + Q̃T g̃dρn + g̃ρdn Q̃+ Q̃T g̃ddn Q̃

]
Y Y ′ + 2

∑

X

∂gn

∂λd
X

∂2λd
X

∂ρY ∂ρY ′
= 0 .

(C.1.22)

Equation (C.1.21) is therefore fulfilled if

∑

X

[
∂E

∂λd
X

+
∑

n

Λn
∂gn

∂λd
X

]
∂2λd

X

∂ρY ∂ρY ′
= 0 . (C.1.23)

This equation, however, holds trivially, since Eq. (5.5.2) leads to

∂LGA

∂λZ
=

∂E

∂λZ
+
∑

n

Λn
∂gn
∂λZ

= 0 (C.1.24)

for all parameters λZ and in particular for λZ = λd
X as it appears in

Eq. (C.1.24).

C.2 Linear Transformations of the Density Matrix

In investigations of our translationally invariant lattice systems Eq. (2.4.3),

it turns out to be more convenient to work with fluctuations δ~µ which are

linearly related to the density-matrix fluctuations,

δ~ρ = Ξ̃ · δ~µ , (C.2.1)
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cf., Eqs. (D.2.4) and (D.2.5) and the resulting Green’s function matrix in

Eq. (5.6.14). The effective second-order functional (5.4.9) and (5.4.10) in

terms of the fluctuations δ~µ is then given as

δE(2)(δ~µ) =
1

2
(δ~µ)T Ξ̃T K̃ρρΞ̃ δ~µ , (C.2.2)

with K̃ρρ as defined in Eq. (5.4.10). For numerical calculations it is impor-

tant to show that one obtains the same kernel

K̃µµ ≡ Ξ̃T K̃ρρΞ̃ (C.2.3)

as in Eq. (C.2.2) if the transformation Eq. (C.2.1) and the anti-adiabaticity

condition are applied in the reverse order: If we apply Eq. (C.2.1) first to

Eq. (5.4.5), we obtain

δE(2) =
1

2

[
(δ~µ)T Ξ̃TM̃ρρΞ̃δ~µ + 2(δ~λi)T M̃λρΞ̃δ~µ + (δ~λi)T M̃λλδ~λi

]
. (C.2.4)

The anti-adiabaticity condition for δ~µ then reads

δ~λi = −
[
M̃λλ

]−1
M̃λρΞ̃δ~µ . (C.2.5)

Inserted into Eq. (C.2.4) this equation yields

δE(2)(δ~µ) = E0 +
1

2
(δ~µ)T K̃µµδ~µ

K̃µµ = Ξ̃TM̃ρρΞ̃ − Ξ̃T M̃ρλ
[
M̃λλ

]−1
M̃λρΞ̃ = Ξ̃T K̃ρρΞ̃ ,

(C.2.6)

as claimed above.





Appendix D

Explicit Form of the

Second-Order Expansion

We calculate the second-order expansion of the Lagrange functional with

respect to the variational parameters λi,ΓΓ′ and the density matrix (4.1.2).

For the general consideration in Chapter 5 and Appendix C it was convenient

to subsume the parameters λΓΓ′ and their conjugates λ∗
ΓΓ′ in a set of np

parameters λZ , cf., Eq. (5.2.2). In this appendix, where we aim to resolve

the explicit structure of the second-order expansion, it is better to take the

difference between λΓΓ′ and λ∗
ΓΓ′ into account.

D.1 Local Fluctuations

The constraints (3.3.1) and (3.3.2), the local energy (3.3.10) and (3.3.11),

and the renormalization matrix (3.3.20) are all functions only of λ∗
i,ΓΓ′ , λi,ΓΓ′

and of the local density matrix elements C0
iσ,iσ′ . For simplicity, we use the

joint variables Ai
v and (Ai

v)∗ for all these local variables, i.e., it is either

Ai
v = Ai

σ1,σ2
=
〈
ĉ†i,σ2

ĉi,σ1

〉
or Ai

v = Ai
ΓΓ′ = λi,ΓΓ′ . (D.1.1)

With respect to the parameters λ∗
i,ΓΓ′ and λi,ΓΓ′ , the second derivatives of

Eqs. (3.3.1), (3.3.2), (3.3.10), (3.3.11) and (3.3.20) are quadratic functions

of the form ∼ (Ai
v )∗Ai

v′ . Due to the Hermiticity of the density matrix the

same can be achieved for derivatives with respect to the local density matrix.

Then the only finite second derivatives of the Lagrange functional

LGA = T +
∑

i

Ei,loc

(
{(Ai

v)∗}, {Ai
v}
)

+
∑

i,n

Λi,ngi,n
(
{(Ai

v)∗}, {Ai
v}
)

≡ T + Lloc ,

(D.1.2)
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with the kinetic energy

T =
∑

i 6=j

∑

σ1σ2
σ′
1σ

′
2

t
σ1σ2
ij q

σ′
1

i,σ1

[
q
σ′
2

j,σ2

]∗ 〈
ĉ†
iσ′

1
ĉjσ′

2

〉
Φ0

, (D.1.3)

are
∂2LGA

∂ (Ai
v )∗ ∂Ai

v′
6= 0 , (D.1.4)

whereas
∂2LGA

∂ (Ai
v )∗ ∂

(
Ai

v′

)∗ =
∂2LGA

∂Ai
v∂A

i
v′

= 0 . (D.1.5)

Since only local fluctuations δAi
v couple in the expressions for the local

energy and the constraints, their second-order expansion is a straightforward

task leading to

δL
(2)
loc =

∑

q

∑

vv′

(δAq
v )∗K loc

vv′δA
q

v′ , (D.1.6)

where we introduced

K loc
vv′ =

∂2Lloc

∂ (Ai
v )∗ ∂Ai

v′
(D.1.7)

and the Fourier transforms of the local fluctuations

δAi
v =

1√
Ns

∑

q

e−ıRi·qδAq
v . (D.1.8)

All derivatives in this section (e.g., Eq. (D.1.7)) have to be evaluated for the

ground-state values of the variational parameters λi,ΓΓ′ , the density matrix ρ̃

and the Lagrange parameters Λi,n. Note that the density-matrix fluctuations

δAq
σ2,σ1

can be written as

δAq
σ2,σ1

=
1√
Ns

∑

i

eıRi·qδ
〈
ĉ†i,σ1

ĉi,σ2

〉
=

1√
Ns

∑

k

δ
〈
ĉ†k,σ1

ĉk+q,σ2

〉

= δ
〈
Âq

σ2,σ1

〉
,

(D.1.9)

where the operator Âq
v has been defined in Eq. (5.6.5).

In addition to Eq. (D.1.6), we need to take into account the mixed terms

∼ δAi
vδΛi,n. In real space, their contribution is given as

δL(2)
c =

∑

i,n,v

(
∂gi,n

∂ (Ai
v)∗

δ
(
Ai

v

)∗
+

∂gi,n
∂Ai

v

δAi
v

)
δΛi,n . (D.1.10)

If we introduce the Fourier transforms δΛq
n of the fluctuations δΛi,n, we can

write Eq. (D.1.10) as

δL(2)
c =

∑

q

∑

n,v

(δAq
v )∗ Kc

vnδΛq
n + (δΛq

n)∗ (Kc
vn)∗ δAq

v . (D.1.11)



D.1. LOCAL FLUCTUATIONS 111

Here, we used that the constraints gi,n are assumed to be real and lattice-site

independent such that

Kc
vn ≡ ∂gi,n

∂ (Ai
v)∗

=

[
∂gi,n
∂Ai

v

]∗
. (D.1.12)

More involved than the calculation of Eq. (D.1.6) is the expansion of the

kinetic energy. Here we find

δT (2) = δT
(2)
l + δT

(2)
t , (D.1.13)

with

δT
(2)
l =

∑

i 6=j

∑

σ1σ2
σ′
1σ

′
2

t
σ1σ2
ij

〈
ĉ†
iσ′

1
ĉjσ′

2

〉∑

vv′

[
∂2q

σ′
1

i,σ1

∂ (Ai
v )∗ ∂Ai

v′

[
q
σ′
2

j,σ2

]∗ (
δAi

v

)∗
δAi

v′

+
1

2

(
∂q

σ′
1

i,σ1

∂ (Ai
v )∗

∂
[
q
σ′
2

j,σ2

]∗

∂Aj
v′

(
δAi

v

)∗
δAj

v′ +
∂q

σ′
1

i,σ1

∂Ai
v

∂
[
q
σ′
2

j,σ2

]∗

∂
(
Aj

v′

)∗ δAi
v

(
δAj

v′

)∗
)]

+ c.c.

(D.1.14)

and

δT
(2)
t =

∑

i 6=j

∑

σ1σ2
σ′
1σ

′
2

t
σ1σ2
ij δ

〈
ĉ†
iσ′

1
ĉjσ′

2

〉

×
∑

v

[
∂q

σ′
1

i,σ1

∂
(
Ai

v

)∗
[
q
σ′
2

j,σ2

]∗(
δAi

v

)∗
+ q

σ′
1

i,σ1

∂
[
q
σ′
2

j,σ2

]∗

∂
(
Aj

v

)∗
(
δAj

v

)∗
]

+ c.c. .

(D.1.15)

The fact that the complex conjugates yield the terms not explicitly shown

in Eqs. (D.1.14) and (D.1.15) follows from the relations
[
∂qσ

′

σ

∂Av

]∗
=

∂
[
qσ

′

σ

]∗

∂ (Av)∗
(D.1.16)

[
∂2qσ

′

σ

∂ (Av )∗ ∂Av′

]∗
=

∂2
[
qσ

′

σ

]∗

∂
(
Av′
)∗
∂Av

(D.1.17)

[
tσσ

′

ij

]∗
= tσ

′σ
ji . (D.1.18)

For our translationally invariant ground state it is more convenient to

write Eqs. (D.1.14) and (D.1.15) in momentum space. With the Fourier

transforms of the local fluctuations the term (D.1.14) reads

δT
(2)
l =

∑

q

∑

vv′

(
δAq

v

)∗[
K l

q,vv′ +
(
K l

q,v′v

)∗]
δAq

v , (D.1.19)
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where

K l
q,vv′ ≡

∑

σ1σ2
σ′
1σ

′
2

[
1

2
Eσ1σ2,σ

′
1σ

′
2
(q)

(
∂q

σ′
1

σ1

∂
(
Av

)∗
∂
[
q
σ′
2

σ2

]∗

∂Av′
+

∂q
σ′
1

σ1

∂Av′

∂
[
q
σ′
2

σ2

]∗

∂
(
Av

)∗

)

+Eσ1σ2,σ
′
1σ

′
2

∂2q
σ′
1

σ1

∂
(
Av

)∗
∂Av′

[
q
σ′
2

σ2

]∗
]
.

(D.1.20)

Here we assumed that the renormalization matrix is lattice-site independent

and introduced the tensor

Eσ1σ2,σ
′
1σ

′
2
(q) =

1

Ns

∑

k

ǫ
σ1σ2
k+q

〈
ĉ†
k,σ′

1
ĉ
k,σ′

2

〉
(D.1.21)

with

ǫσ1σ2
k =

1

Ns

∑

i 6=j

tσ1σ2
ij eık(Ri−Rj) . (D.1.22)

Note that for q = 0 the tensor (D.1.21),

Eσ1σ2,σ
′
1σ

′
2

= Eσ1σ2,σ
′
1σ

′
2
(0) , (D.1.23)

has already been defined in Eq. (3.3.23).

D.2 Transitive Fluctuations

For the evaluation of the ‘transitive’ term (D.1.15) we write the non-local

density-matrix fluctuations as

δ
〈
ĉ†
iσ′

1
ĉ
jσ′

2

〉
=

1

Ns

∑

kk′

eı(Ri·k−Rj ·k′) δ
〈
ĉ†
k,σ′

1
ĉ
k′,σ′

2

〉
. (D.2.1)

Together with Eq. (D.1.8) this yields

δT
(2)
t =

1

Ns

∑

qk

∑

v,σ′
1σ

′
2

(
δAq

v

)∗
K̄t

kq,v,σ′
1σ

′
2
δ
〈
ĉ†
k,σ′

1
ĉ
k+q,σ′

2

〉
+ c.c. , (D.2.2)

with

K̄t
kq,v,σ′

1σ
′
2

=
∑

σ1σ2

[ ∂q
σ′
1

σ1

∂
(
Av

)∗
[
q
σ′
2

σ2

]∗
ǫσ1σ2
k+q + q

σ′
1

σ1

∂
[
q
σ′
2

σ2

]∗

∂
(
Av

)∗ ǫσ1σ2
k

]
. (D.2.3)

In principle, Eqs. (D.2.2) and (D.2.3) allow us to calculate all second-

order couplings of density-matrix and parameter fluctuations that arise from

δT
(2)
t . For numerical calculations, however, these equations are not very
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useful due to the explicit k-dependence of Eq. (D.2.3). It is much easier to

introduce the two auxiliary fluctuations

δBq
w ≡ δBq

σ2σ1,σ
′
2σ

′
1
≡ 1√

Ns

∑

k

ǫ
σ1σ2
k δ

〈
ĉ†
k,σ′

1
ĉ
k+q,σ′

2

〉
(D.2.4)

δB̄q
w ≡ δB̄q

σ2σ1,σ
′
2σ

′
1
≡ 1√

Ns

∑

k

ǫσ1σ2
k+q

δ
〈
ĉ†
k,σ′

1
ĉ
k+q,σ′

2

〉
, (D.2.5)

where w ≡ (σ2σ1, σ
′
2σ

′
1) is an abbreviation for quadruples of indices σ. With

these definitions we can write Eq. (D.2.2) as

δT
(2)
t =

∑

q

∑

v,w

[(
δAq

v

)∗
Kt(1)

vw δBq
w +

(
δAq

v

)∗
Kt(2)

vw δB̄q
w

+
(
δBq

w

)∗(
Kt(1)

vw

)∗
δAq

v +
(
δB̄q

w

)∗(
Kt(2)

vw

)∗
δAq

v

]
,

(D.2.6)

where

K
t(1)
v,(σ2σ1,σ

′
2σ

′
1)

≡ q
σ′
1

σ1

∂
[
q
σ′
2

σ2

]∗

∂
(
Av

)∗ (D.2.7)

K
t(2)
v,(σ2σ1,σ

′
2σ

′
1)

≡ ∂q
σ′
1

σ1

∂
(
Av

)∗
[
q
σ′
2

σ2

]∗
. (D.2.8)

Note that we introduced the two different fluctuations (D.2.4) and (D.2.5)

only because they allow us to write the second-order expansion in a relatively

simple form. In fact, these fluctuations are not independent but related

through

δB̄q

σ1σ2,σ
′
1σ

′
2

=
[
δB−q

σ2σ1,σ
′
2σ

′
1

]∗
. (D.2.9)

Altogether we end up with the following second-order expansion of the

Lagrange functional

δL(2) =
1

Ns

∑

q

(
δAq δBq δB̄q δΛq

)∗
K̃q




δAq

δBq

δB̄q

δΛq


 , (D.2.10)

where

K̃q ≡




K̃AA K̃AB K̃AB̄ K̃AΛ

[
K̃AB

]†
0 0 0[

K̃AB̄
]†

0 0 0[
K̃AΛ

]†
0 0 0


 (D.2.11)
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and

K̃AA ≡ K̃ loc + K̃ l
q +

[
K̃ l

q

]†
(D.2.12)

K̃AB ≡ K̃t(1) (D.2.13)

K̃AB̄ ≡ K̃t(2) (D.2.14)

K̃AΛ ≡ K̃c . (D.2.15)

As described in Section 5.5, the anti-adiabaticity condition leads an effective

second-order functional only of the density matrix. This condition can be

evaluated directly for the second-order expansion (D.2.10) since the fluc-

tuations δAq, δBq, δB̄q are some linear functions of the density-matrix

fluctuations δ〈ĉ†
k,σ1

ĉ
k+q,σ2

〉, cf., Appendix C.2. To this end, we distinguish

the fluctuations of the local density matrix δAq
ρ and of the variational pa-

rameters δAq

λ as well as the corresponding blocks in the matrix (D.2.11),

K̃AA =

(
K̃AA

λλ K̃AA
λρ[

K̃AA
λρ

]†
K̃AA

ρρ

)
K̃AB =

(
K̃AB

λ

K̃AB
ρ

)
(D.2.16)

K̃AB̄ =

(
K̃AB̄

λ

K̃AB̄
ρ

)
K̃AΛ =

(
K̃AΛ

λ

K̃AΛ
ρ

)
. (D.2.17)

The resulting expansion of the Lagrange functional is then given as

δL̄(2) =
1

Ns

∑

q

(
δAq

ρ δBq δB̄q
)∗

Ṽ q



δAq

ρ

δBq

δB̄q


 (D.2.18)

with the new kernel

Ṽ q ≡



Ṽ AA Ṽ AB Ṽ AB̄

Ṽ BA Ṽ BB Ṽ BB̄

Ṽ B̄A Ṽ B̄B Ṽ B̄B̄


 =




K̃AA
ρρ K̃AB

ρ K̃AB̄
ρ[

K̃AB
ρ

]†
0 0[

K̃AB̄
ρ

]†
0 0


− ∆Ṽ q ,

(D.2.19)

where

∆Ṽ q ≡




[
K̃AA

λρ

]†
K̃AΛ

ρ[
K̃AB

λ

]†
0[

K̃AB̄
λ

]†
0


×

(
K̃AA

λλ K̃AΛ
λ[

K̃AΛ
λ

]†
0

)−1

×
(

K̃AA
λρ K̃AB

λ K̃AB̄
λ[

K̃AΛ
ρ

]†
0 0

)
.

(D.2.20)

Note that Ṽ q (unlike K̃q) includes finite couplings also between the fluctu-

ations δBq and δB̄q. The calculation of Ṽ q (for fixed q) only involves the

handling of finite-dimensional matrices. In contrast, the evaluation of the

functional (D.2.2) (instead of (D.2.6)) would have led to significantly more

complicated equations.



Appendix E

Explicit Form of the

Gutzwiller RPA Equations

In this appendix, we prove that the general Gutzwiller-RPA equations given

in Eqs. (5.3.12) lead to the Green’s function matrix (5.6.15) if applied to our

multi-band Hamiltonian (2.4.3).

E.1 Gutzwiller-RPA Equations

With the abbreviations δDq
µ , D̂q

µ for the three fluctuations δAq
v , δBq

w and

δB̄q
w and the corresponding operators Âq

v , B̂q
w and ˆ̄Bq

w, we have to show that

the Green’s function matrix

Πµµ′(q, ω) =
〈〈
D̂q

µ ; (D̂q

µ′)
†〉〉

ω
, (E.1.1)

as given in Eq. (5.6.15), obeys the equation

δDq
µ =

∑

µ′

〈〈
D̂q

µ ; (D̂q

µ′)
†〉〉

ω
δfq

µ′ . (E.1.2)

Using the explicit form Eq. (5.6.15) of Π̃(q, ω), this equation can also be

written as
∑

µ′

[1 + Π̃0(q, ω)Ṽ q]µµ′δDq

µ′ =
∑

µ′

Π0
µµ′(q, ω)δfq

µ′ . (E.1.3)

Note that the excitation amplitudes δfq
µ enter the problem through the

perturbation operator

δV̂f ≡
∑

µ

δfq
µ (D̂q

µ)† ≡ 1√
Ns

∑

k

∑

σ1σ2
σ′
1σ

′
2

ĉ†
k+q,σ′

1
ĉ
k,σ′

2

[
δfA;q

σ1σ2
δσ1σ

′
1
δσ2σ

′
2

+ δfB;q
σ1σ2,σ

′
1σ

′
2
ǫσ1σ2
k

+ δf B̄;q
σ1σ2,σ

′
1σ

′
2
ǫσ1σ2
k+q

]
,

(E.1.4)
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which is needed to define the general Green’s functions (5.6.14).

E.2 Decoupled Fluctuations

Before we prove Eq. (E.1.3), it is instructive to consider the case Ṽ q = 0

in which the three fluctuations δAq
v , δBq

w and δB̄q
w are decoupled and we

can set fB;q
w = f B̄;q

w = 0. We start this derivation in the eigenbasis of the

Gutzwiller Hamiltonian (5.6.16). It leads to the simplest form of the matrix

Ẽ in Eq. (5.3.12) which then reads

[
ω − (Ek+q,α1 − Ek,α2)

]
δ
〈
ĥ†k,α2

ĥk+q,α1

〉hp/ph

=
1√
Ns

(n0
k,α2

− n0
k+q,α1

)δf(k+q,α1)(k,α2) .
(E.2.1)

Here, the excitation amplitude is given as

δf(k+q,α1)(k,α2) =
∑

σ1σ2

δfA;q
σ1σ2

[
uk+q
σ1,α1

]∗
ukσ2,α2

. (E.2.2)

Note that the factor n0
k,α2

− n0
k+q,α1

= ±1 in Eq. (E.2.1) represents the

particle-hole and the hole-particle channels in Eq. (5.3.12). For simplicity,

we will drop the corresponding labels hp/ph in the following.

With the transformations (5.6.18) and (5.6.19), Eq. (E.2.1) leads to

δAq
σ1,σ2

=
1√
Ns

∑

k

δ
〈
ĉ†k,σ2

ĉk+q,σ1

〉

=
1√
Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

δ
〈
ĥ†k,α2

ĥk+q,α1

〉

=
1

Ns

∑

k

∑

α1α2
σ′
1σ

′
2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
1,α1

]∗
ukσ′

2,α2

ω − (Ek+q,α1 − Ek,α2)

[
n0
k,α2

− n0
k+q,α1

]
δfq

σ′
1σ

′
2
.

(E.2.3)

As expected, we therefore find

δAq
σ1,σ2

=
∑

σ′
1σ

′
2

〈〈
Âq

σ1,σ2
; (Âq

σ′
1,σ

′
2
)†
〉〉0
ω
δfq

σ′
1σ

′
2
, (E.2.4)

with the (‘retarded’) Green’s function
〈〈
Âq

σ1,σ2
; (Âq

σ′
1,σ

′
2
)†
〉〉0
ω

=
1

Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
1,α1

]∗
ukσ′

2,α2

ω − (Ek+q,α1 − Ek,α2) + ıδ

[
n0
k,α2

− n0
k+q,α1

] (E.2.5)

as introduced in Eq. (5.6.20).
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E.3 Coupled Fluctuations

Now we consider the case of a finite interaction matrix Ṽ q. Using our abbre-

viation δDµ for the amplitudes δAv , δBw and δB̄w the Lagrange functional

δL̄(2) has the form

δL̄(2) =
∑

q

∑

µµ′

(δDq
µ)∗V q

µµ′(δD
q

µ′) . (E.3.1)

With this additional interaction term, Eq. (E.2.1) reads

[
ω − (Ek+q,α1 − Ek,α2)

]
δ
〈
ĥ†
k,α2

ĥk+q,α1

〉

+
[
n0
k,α2

− n0
k+q,α1

]
×
∑

k′

∑

α3α4

Uk′,α3α4

k,α1α2
(q) δ

〈
ĥ†
k′,α4

ĥk′+q,α3

〉

=
1√
Ns

[
n0
k,α2

− n0
k+q,α1

]
δf(k+q,α1)(k,α2) ,

(E.3.2)

where

Uk′,α3α4

k,α1α2
(q) =

∂

∂δ
〈
ĥ†k+q,α1

ĉk,α2

〉 ∂

∂δ
〈
ĥ†
k′,α4

ĥ
k′+q,α3

〉δL̄(2) (E.3.3)

=
∑

µµ′

V q

µµ′

∂(δDq
µ)∗

∂δ
〈
ĥ†
k+q,α1

ĥ
k,α2

〉
∂δDq

µ′

∂δ
〈
ĥ†
k′,α4

ĥ
k′+q,α3

〉 (E.3.4)

and

δf(k+q,α1)(k,α2) =
∑

σ1σ2
σ′
1σ

′
2

[
uk+q

σ′
1,α1

]∗
ukσ′

2,α2

(
δfA;q

σ1,σ2
δσ1σ

′
1
δσ2σ

′
2

+δfB;q
σ1σ2,σ′

1σ
′
2
ǫσ1σ2
k + δf B̄;q

σ1σ2,σ
′
1σ

′
2
ǫσ1σ2
k+q

)
.

(E.3.5)

The derivatives in Eq. (E.3.4) can be further evaluated using the transfor-

mations (5.6.18) and (5.6.19),

∂(δDq
µ)∗

∂δ
〈
ĥ†k+q,α1

ĥk,α2

〉 =
∑

σ1σ2

∂(δDq
µ)∗

∂δ
〈
ĉ†k+q,σ1

ĉk,σ2

〉
[
uk+q
σ1,α1

]∗
ukσ2,α2

(E.3.6)

∂δDq

µ′

∂δ
〈
ĥ†
k′,α4

ĥ
k′+q,α3

〉 =
∑

σ3σ4

∂δDqµ′

∂δ
〈
ĉ†
k′,σ4

ĉ
k′+q,σ3

〉
[
uk

′

σ4,α4

]∗
uk

′+q
σ3,α3

. (E.3.7)
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Depending on the particular fluctuations δDq
µ , the remaining derivatives on

the r.h.s. of Eqs. (E.3.6) and (E.3.7) are given as

δDq
µ = δAq

v :
∂δAq

σ2,σ1

∂δ
〈
ĉ†k,σ ĉk+q,σ′

〉 =
∂
(
δAq

σ1,σ2

)∗

∂δ
〈
ĉ†k+q,σ ĉk,σ′

〉 =
δσσ1δσ′σ2√

Ns
(E.3.8)

δDq
µ = δBq

w :
∂δBq

σ2σ1,σ
′
2σ

′
1

∂δ
〈
ĉ†
k,σ ĉk+q,σ′

〉 =
∂
(
Bq

σ1σ2,σ
′
1σ

′
2

)∗

∂δ
〈
ĉ†
k+q,σ ĉk,σ′

〉 =
δσσ′

1
δσ′σ′

2√
Ns

ǫσ1σ2
k (E.3.9)

δDq
µ = δB̄q

w :
∂δB̄q

σ2σ1,σ
′
2σ

′
1

∂δ
〈
ĉ†k,σ ĉk+q,σ′

〉 =
∂
(
B̄q

σ1σ2,σ
′
1σ

′
2

)∗

∂δ
〈
ĉ†k+q,σ ĉk,σ′

〉 =
δσσ′

1
δσ′σ′

2√
Ns

ǫσ1σ2
k+q

.

(E.3.10)

With Eqs. (E.3.3)–(E.3.10), we are now in the position to evaluate the

Gutzwiller-RPA equation (E.3.2). To this end, we proceed as in Eq. (E.2.3),

δAq
σ1,σ2

=
1√
Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

δ
〈
ĥ†k,α2

ĥk+q,α1

〉

= −
∑

µµ′

V q

µµ′

{[
1√
Ns

∑

k

∑

α1α2
σ′
1σ

′
2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
1,α1

]∗
ukσ′

2,α2

ω − (Ek+q,α1 − Ek,α2)

×
[
n0
k,α2

− n0
k+q,α1

] ∂(δDq
µ)∗

∂δ
〈
ĉ†
k+q,σ′

1
ĉ
k,σ′

2

〉
]

×
∑

k′

∑

σ3σ4

∂δDq

µ′

∂δ
〈
ĉ†
k′,σ4

ĉ
k′+q,σ3

〉δ
〈
ĉ†
k′,σ4

ĉk′+q,σ3

〉
}

+
∑

µ

〈〈
Âq

σ1,σ2
; (D̂q

µ)†
〉〉0
ω
δfq

µ .

(E.3.11)

The sums over µ and µ′ lead to nine contributions which can all be evaluated

using Eqs. (E.3.8)–(E.3.10). As a result we find

δAq
v +

∑

µµ′

〈〈
Âq

v ; (D̂q
µ)†
〉〉0
ω
V q

µµ′δD
q

µ′ =
∑

µ

〈〈
Âq

v ; (D̂q
µ)†
〉〉0
ω
δfq

µ , (E.3.12)

where the ‘non-interacting’ Green’s functions 〈〈Âq
v ; (D̂q

µ)†〉〉0ω in Eq. (E.3.12)

are given as in Eq. (E.2.5), apart from additional factors ǫσ3σ4
k or ǫσ3σ4

k+q :


〈〈
Âq

σ1,σ2 ; (B̂q

σ3σ4,σ
′
3σ

′
4
)†
〉〉0
ω〈〈

Âq
σ1,σ2 ; ( ˆ̄Bq

σ3σ4,σ
′
3σ

′
4
)†
〉〉0
ω




=
1

Ns

∑

k

∑

α1α2

[
ukσ2,α2

]∗
uk+q
σ1,α1

[
uk+q

σ′
3,α1

]∗
ukσ′

4,α2

ω − (Ek+q,α1 − Ek,α2) + ıδ

(
ǫσ3σ4
k

ǫσ3σ4
k+q

)
.

(E.3.13)
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With Eq. (E.3.12), we have proven the ‘first’ set of Eqs. (E.1.3), i.e., those

with µ = v = (σ, σ′). If we replace δAσ1,σ2 in the first line of Eq. (E.3.11)

by

δBσ1σ2,σ
′
1σ

′
2

=
1√
Ns

∑

k

∑

α1α2

[
ukσ′

2,α2

]∗
uk+q

σ′
1,α1

δ
〈
ĥ†k,α2

ĥk+q,α1

〉
ǫσ2σ1
k (E.3.14)

or by

δB̄σ1σ2,σ
′
1σ

′
2

=
1√
Ns

∑

k

∑

α1α2

[
ukσ′

2,α2

]∗
uk+q

σ′
1,α1

δ
〈
ĥ†k,α2

ĥk+q,α1

〉
ǫσ2σ1
k+q , (E.3.15)

the remaining Eqs. (E.1.3) are derived in the very same way as Eq. (E.3.12).

This closes our proof of Eq. (5.6.15).





Appendix F

Kinetic Energy in Infinite

Dimensions

The limit of infinite spatial dimensions, D → ∞, was first introduced by

Metzner and Vollhardt [63] and was adopted by Müller-Hartmann [94]. Since

the GA turned out to yield the exact result for expectation values of the

single-band Hubbard model in D = ∞, their works provided a starting point

for a systematic calculations of corrections to the GA for finite-dimensional

systems.

F.1 Simplification of momentum-space sums

For a single-band Hubbard model with nearest-neighbor-hopping (hopping

amplitude t) on a simple cubic lattice, the authors point out that the density

of states in the limit of large D reads

ρ(ε) =
1√

2πt2
e−

ε2

2t2 . (F.1.1)

In the limit D = ∞, the number of particles per band and per spin-direction

is given by

nbs =

Es
F∫

−∞

dερ(ε) =
1

2

[
1 + ERF(

Es
F√
2
)
]
, (F.1.2)

from which the Fermi energy Es
F for s-electrons must be determined. ERF(ε)

denotes the error function. The k-sum of one-particle energies is then writ-

ten as

1

Ns

∑

k

εk
〈
n̂k

〉 D→∞
=

EF∫

−∞

dε ερ(ε) . (F.1.3)
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For the calculation of response functions, momentum-space summations

of the form
1

Ns

∑

k

n0
k,α − n0

k+q,α

ω − [Ek+q,α − Ek,α]
(F.1.4)

must be evaluated. To this end, we write Eq. (F.1.4) as

1

Ns

∑

k

n0
k,α − n0

k+q,α

ω − [Ek+q,α −Ek,α]
=

1

Ns

∑

kk′

n0
k,α − n0

k′,α

ω − [Ek′,α − Ek,α]
δk′,k+q (F.1.5)

and express the one-particle energies as

Ek,α =

+∞∫

−∞

dΩ Ω · δ[Ω − Ek,α] , (F.1.6)

leading to the final expression

1

Ns

∑

k

n0
k,α − n0

k+q,α

ω − [Ek+q,α − Ek,α]
=

+∞∫∫

−∞

dΩdΩ̃
Θ[EF − Ω] − Θ[EF − Ω̃]

ω − [Ω̃ − Ω]
Λq(Ω, Ω̃) ,

(F.1.7)

where the information about the transferred momentum is contained in the

function

Λq(Ω, Ω̃) =
1

2πt2
1√

1 − η2q

e
− 1
4t2

[
[Ω−Ω̃]2

1−ηq
+

[Ω+Ω̃]2

1+ηq

]
, (F.1.8)

with the scalar quantity ηq defined in Eq. (6.3.3). In the limit η → ±1, Λq

takes the form

Λq(Ω, Ω̃) →
{

ρ(Ω) · δ[Ω − Ω̃] for ηq → +1

ρ(Ω) · δ[Ω + Ω̃] for ηq → −1
, (F.1.9)

and one of the frequency integrations can be carried out analytically.

The momentum dependence described by ηq can be evaluated for small

momenta leading to

ηq = lim
D→∞

1

D

D∑

n=1

cos qn
|q|≪1
≈ lim

D→∞
1

D

D∑

n=1

[
1 − 1

2q
2
n

]
= 1 − 1

2q
2 , (F.1.10)

where the last relation holds for ‘diagonal’ wave vectors q ∼ (q, q, · · · ). We

can then write

|q|
|q|≪1
≈

√
2[1 − ηq] . (F.1.11)
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