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Abstract 

Regular electricity access is a key element for the economic development and social welfare 

of rural areas. Decentralized energy generation has the advantage of using local resources, 

increasing employment and reducing transmission and distribution losses. Brazil is a tropical 

country, endowed with vast arable land, plentiful precipitation levels, and a large supply of 

human labour. Furthermore, it has strong regional distinctions with geographical, cultural and 

economical differences. Forestry and agriculture, important activities in the Brazilian 

economy, are dependent on local people and are deeply connected to traditions, nature and 

culture. Furthermore, these activities generate a significant amount of residues that could be 

used in conversion technologies for biomass, based on type, availability and market demand. 

When biomass were used to generate energy locally, community members could have 

business opportunities, improving local economy and life quality of individuals while 

diversifying the Brazilian energy matrix, which is mostly based on hydropower. Alternatives 

for implementing small-scale decentralized biomass schemes are dependent on the screening 

of the existing biomass supply chains, the implementation of adapted technologies for local 

conditions and the exploration of local resources. The present research carried out a detailed 

field work in order to evaluate the potential of Brazilian biomass in different regions. The 

author identified crucial needs, usual constraints and possible challenges of rural 

electrification and economic development in Brazil. Several case studies and social groups 

were investigated in the Federal States of Minas Gerais, São Paulo and Pará to identify 

different resource management strategies, which biomass technology was applied and the 

needs of the local population. It was concluded that the compaction of biomass to generate 

solid biofuels with uniform properties could be a cost-effective alternative for communities 

taking advantage of the resources available in the region to produce energy. Nevertheless, 

each case has to be considered on its own.  It was concluded that energy supply and 

consumption should be addressed through integrated research. Scientific research should be 

focused on technological solutions for improving living standards and socio-economic 

development in rural areas. The implementation of new regulatory arrangements and a 

constant revision of the Brazilian energy policies are crucial for encouraging a national 

industry for renewables. It was also concluded that the cultural, geographical and socio-

economic discrepancies of Brazil could involve challenges for the implementation of future 

projects, even when their development would provide benefits for Brazil as a whole. 
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1 Introduction 
 

One of the great challenges facing humanity during the twenty-first century must surely be 

that of supplying populations with safe and clean energy. Energy is a vital ingredient for 

economic growth, but energy production and use contribute to global warming. The majority 

of the gases which contribute to the greenhouse effect is directly associated to the production, 

conversion and consumption of fossil fuel energy. Hence, the question is how to meet rising 

energy demand and at the same time reduce environmental impacts. 

The foreseen increase in energy demand is demonstrated in consumption trends. According to 

the International Energy Agency, energy consumption will have increased by 60% by 2030 

(IEA, 2008). This increasing demand will have to be met by a mix of energy resources in 

order to supply energy needs, whilst considering environmental and socio-economic 

constraints. 

In Brazil, hydropower accounts for approximately 77% of the energy supply (MME, 2009). 

However, the drastic changes in precipitation regimes during the last years are responsible for 

electricity shortages throughout the country. Moreover, energy consumption in Brazil 

increased considerably (MME, 2009). Hence, to guarantee the supply of electricity, a 

diversification of energy generation is necessary, prioritising technologies that use regional 

energy resources at a viable cost. In February 2010, a decree was issued to promote the 

generation of electricity from biomass through auction schemes (MME, 2010). The aim of 

this legislation is to include the electricity produced at decentralized biomass power plants in 

the distribution grids.  

In Brazil, electricity consumption is concentrated in urban areas. During the last decades, the 

government has been implementing measures in order to extend rural electrification and 

diversify the energy matrix, which is mainly based on hydropower (ANEEL, 2009). Rural 

population in Brazil is located in remote areas, making the extension of the grid costly. In 

these areas, diesel generators often supply household electricity. This type of conversion is 

costly, sporadic and inefficient, hindering the utilization of energy for productive purposes or 

for vital tasks (Zerrifi, 2008).  

Brazil is the world’s largest exporter of sugar, ethanol, wood, coffee, orange juice and 

tobacco. The country's availability of land, water, and labour has increased production and 
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exports during the last decades. Continuing expansion of trade and diversification of markets 

remain at the core of Brazil’s agricultural growth strategy (Valdez et al., 2006). Brazil is a 

tropical country that produces a considerable volume of residues associated with large-scale 

agricultural activities. These biomass residues have the potential to influence positively the 

existing energy schemes if used as solid biofuels for energy generation. Energy use efficiency 

increase and co-generation of heat and electricity from local biomass residues could have a 

broad effect on the Brazilian environment and economy.  

There are several conversion technologies for biomass, based on the type and availability of 

residues, as well as market demand. Various methods are used to turn raw materials into 

liquid, solid or gaseous energy sources. Biomass can be burned in a power plant to produce 

heat, fermented in an anaerobic digester to make biogas and then electricity and heat, or 

converted into a synthetic gas and fuel by thermo-chemical gasification. Which variant should 

be applied depends not only on the cost and expenses involved but also on the prevailing 

political conditions, priorities, needs and aspirations (FNR, 2009).  

Fostering renewable energy handling and marketing is of vital importance. In many European 

countries, biomass residues have a consolidated market chain, which involves several 

stakeholders and processes. Nowadays, wood residues are more commercialized than crop 

residues due to the properties of the biofuel and the available industry norms.  

Countries with broader experience in conversion technologies for biomass could encourage 

and support developing countries. Hence, the author found it relevant to investigate how 

agricultural and forestry residues could be used for decentralized energy generation in Brazil. 

Biomass samples of some agricultural crops were collected in Brazil and transported to 

Germany. Experiments at the BTU Cottbus were performed in order to investigate residues 

like rice and coffee husks, sugar cane bagasse and sawdust. Data based on the processing, 

compaction, combustion technologies and economic feasibility of Brazilian biomass residues 

are available in this thesis.  

One of the challenges of this work was to reach reliable data in all stages of the production 

chain of biomass residues, in a branch where most residues have no commercial value and 

only scarce energetic use. Even possessing a flourishing ethanol industry and an extensive 

potential to obtain raw material from agricultural residues, Brazil has still little research on the 

establishment of supply chains of biomass. Moreover, a practical application of technology 

into rural areas is needed. Prior studies have concentrated on specific cases, mostly scoped in 
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technology or end-use. This study proposes a set of variables and views in order to draw a 

realistic scenario for Brazil. To this end, the author visited several farmers and crop 

processing enterprises. In order to collect real data and understand how biomass residues 

could be included in the market, interviews were performed.  

Energy supply and consumption should be addressed through integrated research. In this 

work, the author investigated issues related to resource management, environmental impacts, 

economic growth, energy security, climate change, employment, social welfare, investments 

and trade of Brazilian biomass residues. It was discovered that the implementation of biomass 

technologies and the improvement of socio-economic conditions in Brazil is mostly 

depending on energy policies, education and the promotion of innovation in further projects. 

 

1.1 Developments in biomass research 

Climate change issues have been fostering research and technological developments towards 

renewable energy sources. After the environmentalism wave of the 1970, most of European 

countries began to concentrate efforts in the development and implementation of so-called 

“green energy” technologies. Lately, scientists from various countries have been seriously 

engaging themselves in the promotion of energy generation from solid biomass.  

The conversion of biomass into electricity has been studied in small-scale decentralized 

power plants (Thek and Obernberger, 2002). There have been few examples of successful 

projects that have been sustainable and/or replicated on a larger scale (Zerriffi, 2008).  

The conversion of biomass residues into energy is a challenge for many scientists. Several 

German universities supported doctor theses related to the characterization and sensitivity 

analysis of solid biomass (Gamba, 2008 and Puttkamer, 2005). In order to reduce the 

technical constraints of biomass firing, Khan et al. (2009), Obernberger (1998) and Werther et 

al. (2000) have been investigating the influence of the ash melting point on the technical 

maintenance of furnaces.  

The Technical University of Hamburg-Harburg (TUHH), with the support of the German 

Biomass Research Centre (DBFZ) and the European Union (EU), have been carrying out the 

project “BioNorm II - Pre-normative research on solid biofuels for improved European 

standards”, which aims at the development of a market for solid biofuels within European 
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standards. This project involves several European partners from Scandinavia, Austria and 

other countries (BioNorm, 2005), which traditionally use forest resources for energetic 

purposes.  

The University of Lund in Sweden has been developing several projects regarding district 

heating systems.  The project "Policy development for improving RES-H/C1 penetration in 

European Member States (RES-H Policy)" is supported by the European Commission through 

the IEE programme (RES-H Policy, 2010). On the European level the projects assesses 

options for coordinating national policy approaches in several EU countries. This results in 

common design criteria for a general EU framework of RES-H policies and an overview of 

the costs and benefits of various strategies. 

As reported by Castro and Dantas (2009), Brazil started using biomass for energetic purposes 

in the late 1990’s with the introduction of co-generation sugar cane ethanol plants. 

Universities in South Brazil started research and pilot projects in the field of co-firing using 

wood, rice husks and coal (Pereira et.al 2009). Professor Bazzo and Professor Schneider 

supervised postgraduate projects about coal and biomass co-firing (Finger, 2001 and 

Restrepo, 2010). Moreover, Professor Labate supervised in 2010 a doctoral thesis about the 

evaluation of the potential use of eucalyptus bark for energy production (Bragatto, 2010).  

During the last decades, the use of ethanol and sugar cane bagasse in Brazil for fuel 

production and electricity generation increased from 10 to 51% (EPE, 2009). Most of the 

available documents cover mostly research in sugar cane cultivation, ethanol production, 

economics, logistics, marketing and energetic balance and the combustion of sugar cane 

bagasse for co-generation (Cunha, 2009; Kanadani, 2010; Molero, 2009; Silva, 2010 and 

Sosa, 2007). The author found few documented research and single official reports regarding 

the compaction of bagasse and other residues.  

Nevertheless, the Federal University of Campinas (UNICAMP), located in São Paulo already 

displays excellence in sugar cane research and is taking some first steps in experimenting with 

biomass briquetting (Felfi et.al., 2010). The gasification of sugar cane residues and co-firing 

bagasse with natural gas have been deeply investigated at UNICAMP (Souza, 2001; 

Rodrigues et.al 2006 and Walter et.al 2008). The Federal University of Itajubá (UNIFEI) 

investigates the technical aspects of biomass such as gasification, combustion and pyrolysis. 

At UNIFEI, Prof. Lora (Lora and Salomon, 2005 and Lora and Andrade, 2009) performed 
                                                 
1 RES-H: Renewable Energy Sources - Heating 
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research regarding the characterization of particulate emissions of sugar cane bagasse 

furnaces (Teixeira, 2005) and also a technical-economic approach to sugar cane production 

(Seabra, 2008). Data concerning social welfare and labour market perspectives in the sugar 

cane fields are also currently available (Azanha, 2007; Bartocci, 2009; Cardoso, 2010 and 

Gomes, 2010).  

As showed by German (Kaltschmitt et al., 2009) and Brazilian scientists (Lora and Andrade, 

2009), research concerning the use of biomass as an energy source has concentrated on 

technological aspects. The literature is mostly focused on the specific analysis of a particular 

technology. Project reports describe often only a particular activity implemented in a specific 

village or region, often neglecting the influence of energy policies and economy in the 

execution of such projects. Nevertheless, few transdisciplinary and holistic analysis of 

decentralized energy systems in rural areas of developing countries has been performed by 

authors like Goldemberg (2004), Cabraal et al. (2005), Chaurey et.al (2004), Hansen and 

Bower (2003), Paz et al. (2007) and Zerriffi (2006 and 2008) and institutions like the World 

Bank (1996) and ESMAP (2005). 

 

1.2 Relevance 

Quality of life and economic sustainability depend strictly on access to regular electric 

energy. Such access is a key element for the economic development and social welfare of 

rural areas (Pereira et al., 2011). Education and health quality depend on the provision of 

electricity.  

Because most of the environmental and social benefits of bioenergy are externalities not 

considered in the priced market, leaving its development solely to the private sector will lead 

to economically efficient outcomes that may not, however, match their environmental and 

social potential (US AID, 2008). Therefore, concerns have been raised about the social 

implications of biomass use for energy generation and to what extent the biomass business 

could promote sustainable development.  

The challenge of this thesis was to investigate all stages of the biomass production and 

utilization chain, from cradle to grave. A vast and rich literature helped the author identify 

each issue separately. The analysis of European literature was crucial for describing the 

technological state-of-the-art of biomass research and development.  Market penetration was 
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also assessed in order to create a scenario for Brazil. However, the biggest challenge was to 

collect data about Brazil.   

The importance of this research relies on the assumption that the use of compacted biomass 

from Brazilian agricultural and forestry residues might be a cost effective alternative to partly 

replace fossil fuels while taking advantage of the resources available in the region to produce 

energy. An extensive utilization of heat and power generation using biomass might facilitate 

the provision of cleaner, more efficient energy services to contribute to local development, 

uphold environmental protection and improve livelihoods in rural areas.  

By using local energy resources, employment can be created and as well perspectives for the 

local population. Furthermore, the increase of public acceptance for renewable technology use 

and the rural electrification are one of the most effectual tools to fight poverty. The existing 

infrastructure of conventional energy supply can be amended by decentralizing energy 

generation, thereby ensuring a sustainable energy supply.  

The findings presented in this thesis reveal Brazil as land of possibilities in the energy sector. 

However, it should be considered that each biomass resource and its utilization chain are 

strictly dependent on the socio-economic and cultural characteristics of the regions where is 

produced. This research has several implications. The methodology used by the author, 

linking technology with socio-economic aspects and experimental activities with personally 

communication in a transdisciplinary way, could serve as inspiration for other researches. 

 

1.3 Objectives 

The present research carried out detailed field work in order to evaluate the energetic potential 

of Brazilian biomass in various regions. This potential could foster research towards regional 

use of biomass for decentralized energy generation in rural areas. Here, the author identifies 

the basic needs, typical constraints and probable challenges of rural electrification and 

economic development in Brazil. Several case studies and social groups were investigated in 

the Federal States of Minas Gerais, São Paulo, and Pará, regarding industrial processes, 

lightning, heating and cooking. 

The aim was to understand individuals and communities, living in isolated areas of the 

Amazon region and non-isolated areas in Southeast Brazil. They presented different social, 
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cultural and geographical living conditions, which were mostly related to access to electricity. 

The author identified two main concerns regarding the utilization of biomass residues in 

Brazil: 

1. Technological challenges:  

- State-of-the-art of technologies 

- Compaction of biomass residues and combustion behaviour 

2. Socio-economic and institutional issues: 

- Economic feasibility 

- Decentralized energy systems 

The aim was to approach biomass technologies and identify the institutional issues in Brazil 

impacting rural electrification. The author investigated regulations, policies and access to 

financing. She evaluated the effects of policies on the development of initiatives for 

decentralized energy generation using biomass resources, taking into account the socio-

economic and geographical peculiarities of the different Brazilian regions.   

The properties of Brazilian biomass were investigated through a selection of the main 

harvested crops like sugar cane, eucalyptus wood, coffee and rice. Some properties of these 

residues were analysed at the Chair of Power Plant Technologies and the Chair of Mineral 

Processing, Processing, and Refinement of Biogenous Resources. The parameters first 

investigated were moisture, ash content, calorific value, and ash melting point.  

The specific objectives of this work can be summarized as follows: 

- To assess the potential of agricultural and forestry residues in Brazil through 

evaluation of existing studies and exchange of knowledge and information with 

Brazilian partners 

- To assess how residues are gathered and used: logistics in Brazil, storage and 

transportation of biomass  

- To characterize Brazilian residues: physical-chemical properties and compaction 

- To determine the socio-economic feasibility of pellet and briquette production for 

decentralized energy generation in Brazil 
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- To investigate how stakeholders could upgrade the biomass residues, generate local 

heat and power and sell the compacted biomass and surplus electricity 

- To outline strategies to increase energy use efficiency, resource upgrading, and 

commercialization. 

 

1.4 Methodology of work 

Case study sampling was done in combination with review of the literature on Brazilian 

biomass resources and the generation of residues in agriculture and forestry activities. Also, a 

detailed overview of the state of the art of biomass technologies was necessary in order to 

widen the scope of possibilities for energy conversion using local resources. In this sense, the 

author could understand how technology implementation might or might not be feasible for 

each investigated region in Brazil. By reading the Brazilian energy policies, the author could 

interpret the meaning of the several institutional modifications and its effects on the economic 

development of the country, especially in rural areas. 

The selection of case studies was initially based on the availability of biomass for sampling 

and further laboratory experiments. The author collected and transported to Germany biomass 

samples, which originated from the main harvested crops: sugar cane, rice, coffee and 

eucalyptus sawdust. This was only possible with the logistic and legal support of the Federal 

University of Viçosa, located in the Federal State of Minas Gerais. 

The investigation of biomass properties was done at BTU Cottbus laboratories. The author 

demonstrated the technical feasibility of the residues for compaction, combustion and 

conversion into energy in two published articles (Missagia et al. 2010 and 2011). However, 

the author still needed to learn how biomass is used for energetic purposes in Brazil and 

where there exists a market for biomass residue. Travelling from South to North, she could 

gather information essential to this research. 

The idea of expanding the geographical scope to North Brazil was due to findings regarding 

the commercialization of residues and the current electrification policies of the country. The 

author sought to access areas where electricity is almost universally provided (Southeast 

Brazil) and where there is a lack of grid connection due to the remoteness (North Brazil).  
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Through field investigation and the interviewing of experts in the biomass business and 

farmers, the author could extend her assumptions regarding biomass use in Brazil.  

 

1.5 Structure of the thesis 

The author performed exploratory measures and feasibility studies that cover the technical, 

socio-economic and environmental aspects of biomass utilization in Brazil. This was done 

through extensive literature research, including academic publications such as scientific 

journals, reports and PhD theses. The choice of types of residues to be investigated was based 

on the biomass availability in the region where the partner university is located. Field 

excursions and interviews were critical to understanding land cultivation and the perspectives 

of farmers.  

Biomass cultivation in Brazil and the utilization of sub-products for energy generation will be 

described in Chapter 2. The implication of the current energy policies for the extension of 

biomass projects is also a crucial issue in this chapter.  

The state-of-the art of the technological advances in biomass conversion are depicted in 

Chapter 3. The physical-mechanical and chemical properties of biomass inform the 

feasibility of compaction and combustion for different residues.  

The pelleting of Brazilian biomass was conducted in pilot scale for sugar cane bagasse, 

eucalyptus sawdust, rice, and coffee husks. The experiments and the results are described in 

Chapter 4. 

Chapter 5 explores the economic feasibility of rural decentralized energy systems based on 

compacted biomass residues. 

In Chapter 6, the author aimed to explore the regional context in order to identify a set of 

prospects and challenges for rural communities in Southeast and North Brazil that could shape 

possible development trajectories for the utilization of biomass residues aiming energy 

generation. 
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2 Biomass and energy generation in Brazil  
 

Brazil is a vast country with a strong regional distinction, varying geographically, culturally 

and economically. A centralized energy system with a National Grid supplies 174 million of 

people with electricity (ANEEL, 2008). The remaining 10 million Brazilians, living mostly in 

the remote areas of the Amazon and in rural areas, are supplied by decentralized, isolated 

energy systems. The difficulties in connecting North Brazil with the National Grid arise 

mainly out of the peculiarities of the region, which has dense forests, large rivers, low 

population density and low income.  

Brazil’s electricity supply relies on hydropower. Because of the strong reliance on large 

hydropower dams for electricity generation, most households are supplied by a central grid 

transmission system (ESMAP, 2005). But due to the environmental impacts caused by 

landscape flooding, the government began restricting the construction of new hydropower 

plants. This allows the introduction of other renewable energy sources such as biomass and 

the diversification of the Brazilian energy sector. 

Producing more energy from biomass residues has development potential in Brazil. 

Agriculture accounted for 6% of the country’s gross domestic product (GDP) in 2010 

(Department of State, 2011). Brazil’s worldwide success in sugar cane production for ethanol 

has opened new possibilities for the use of agriculture residues. Steam generation from sugar 

cane bagasse and leaves could supply inhabitants with as much electricity as Brazil’s largest 

hydropower plant Itaipú (MME, 2008).  

With 5 % of the total energy generated (ANEEL, 2009), biomass electricity has been 

promoted through investments, new policies and regulations, and trough agricultural and 

technological developments. Sugar cane bagasse represents 73.5% (2.926 MW) of the total 

installed power from biomass power plants. Further biomass sources used in power plants 

such as black liquor, rice husks, wood residues, and charcoal contribute little to energy 

generation in Brazil.  

 



 31

2.1 Historical background 

In Brazil, the organization and production model before 1500 was based on indigenous 

collective subsistence (Ribeiro, 1997). The period of the Portuguese colonization brought 

slavery and genocide. Within a few decades many indigenous tribes had vanished from the 

Brazilian coast.  

From the 16th to 19th century, the colonial economy was based on slavery and on the export 

of timber, sugar cane, gold, tobacco, cotton, and coffee. Each of these activities had their 

economic up and downs. The stagnation of the 19th century’s economy was due in large part 

to the collapse of gold mining. The end of the 19th century saw the abolition of slavery in 

Brazil. In the beginning of the 20th century, the distribution of wealth in the country was 

directly related to the agricultural production and export of tobacco, cotton, and coffee. The 

southern Federal States had more capital and a considerably larger consumer market 

compared to the northern regions.  

Industrialization in Brazil occurred during the 1950s. From the 1950s until the beginning of 

the 1990s, the Brazilian dictatorship considered that progress and efficient energy supply was 

best reached through the construction of massive hydropower plants and centralized grid 

connections. Electricity production takes place far from the largest consumer markets, located 

in the southern regions (Walter and Dolzan, 2009). In contrast, current environmental 

legislation restricts the implementation of such hydropower projects in the north, due to their 

significant environmental impacts in the Amazon region.  

During the 1960s and 1970s, the modernization of agriculture began in Brazil. The propagated 

use of chemical fertilizers, pesticides and machinery made possible the cultivation of great 

land extensions. In the beginning of the 1970s, the Oil Crisis pushed the Brazilian government 

to invest in the sugar cane ethanol sector. Farmers were persuaded to plant sugar cane in a 

monoculture system.  

The drastic switch from small-scale to large-scale farming models during the 1970s resulted 

in environmental, economical and social problems in Brazil. In the mid 1960s a project for the 

Brazilian agriculture was launched aiming to modernize the structure of agricultural 

production in order to be competitive with developed countries. Fast and complex changes in 

agricultural production had negative social and environmental impacts. The use of industrial 
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inputs such as fertilizers, pesticides became widespread. By the 1970s mostly large-scale 

farmers were benefited (Martine, 1987).  

In the early 1990s, the government removed much of the State’s intervention in the 

agricultural business. With liberalized trade and strengthened market signals, imports and use 

of agricultural inputs and technology increased markedly throughout the 1990s. The improved 

investment climate and reduced border controls also ushered in foreign direct investment, 

which increased competitiveness and efficiency in the agricultural sector (Schnepf et al. 

2001). Since the mid-1990s, the most significant economic factor has been the introduction of 

a successful economic stabilization plan.  

Brazil has a long history of economic instability involving hyperinflation, overvalued 

exchange rates, and frequent currency realignments. In the mid-1980s, economic reforms 

eliminated domestic and export taxes and restrictions on agriculture. Export taxes and quotas 

were used extensively to dampen internal prices and encourage domestic processing, while 

high tariffs and import controls on agricultural inputs promoted “import substitution” 

programs benefiting domestic industries. The reforms contributed to a more stable 

macroeconomic environment for investment and decision-making (Schnepf et al. 2001). 

Today, Brazil is an important food producer and supplier of international markets, being the 

main exporter of sugar, soybeans, ethanol, coffee, orange juice, timber and tobacco. The 

country's availability of land, water, and labor makes Brazil a naturally low-cost producer of 

crops. One third of the potential arable land is used and the expansion of agricultural areas 

depends on environmental and social impact assessment, access to credit for production, 

investment in infrastructure, and transport.  
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2.2 The potential of biomass in Brazil 

The current political scenario in Brazil supports the introduction of combustion technologies 

for biomass, mainly due to the great expansion of sugar cane ethanol production using 

bagasse, together with the generation of bagasse electricity. Other kinds of residues like wood 

sawdust and rice husks also have a great potential either for covering the local energy demand 

or for commercialization in the form of pellets or briquettes.  

One of the main advantages of such conversion process is allowing the technology to be 

optimized according to technical, environmental, and socio-economic criteria referring to the 

special fuel properties and regional differences (Kaltschmitt et al. 2004). Small-scale systems 

could supply a reliable, clean and economically feasible energy source to rural communities 

when supplied with biomass from local resources. Moreover, according to the Alliance for 

Rural Electrification (ARE, 2010), bioenergy systems are regarded as low investment, 

considering mechanization and operation, which might result in high local labor, demand and 

low investment rate per local job created compared to other energy technologies. 

The literature often describes the production and use of agricultural residues according to 

various Brazilian regions, demand, and local business (Filho et al., 2004 ; Goldemberg, 2007, 

Lora et al., 2009 and Nass et al., 2007). In general, it is assumed that about 25% of any dry 

agricultural feedstock is a residue (Eriksson and Prior, 1990). Table 2.1 shows the residues of 

some Brazilian crops. 

Table 2.1:  Main sources of agriculture residues in Brazil (Couto el. al., 2004) 

Crops Residue percentage in crops (%) 

Cotton 50 

Rice 20 to 25 

Coconut 50 

Coffee 20 

Sugar cane 80 

Sunflower 10 to 15 

Corn 25 to 30 
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The following chapters will depict some of the main important Brazilian products: rice, 

coffee, sugar cane and timber. Samples of each mentioned biomass were collected in the rural 

area of the city of Vicosa, in the Federal State of Minas Gerais. The author chose these crops 

for their feasibility of sampling, the high availability throughout the country, and the 

assumption that the residues could be a potential raw material for compaction and 

combustion. In chapter 4, the physical-chemical characteristics of these residues will be 

presented.  

2.2.1 The coffee tradition in Brazil 

In the end of the 19th century, coffee farms started to be established in Brazil, being located 

mainly in the Southeast region. In the first years of 1910s, the Federal State of São Paulo was 

producing more than half of world’s coffee. Between 1890 and 1930, during the so-called 

‘Coffee Era’, the cultivated coffee made up the majority of the country’s exports. The ‘Coffee 

Era’ played a crucial role in revitalizing Brazil as an agro-exporter in the world market and as 

a potential importer of industrial goods. After the First World War, the surplus production of 

coffee, the loss of British interest in buying Brazilian coffee, and the depletion of arable soil 

were important factors which caused the end of the Coffee Era in São Paulo.  

In 2010, about 2.75 million tons of coffee was produced in Brazil (IBGE, 2011). Today, the 

Federal State of Minas Gerais, located in the Southeast, is the lead exporter of coffee, with 

almost 52% of national production.  

The processing of one ton of coffee generates approximately 20% of residues. Therefore the 

amount of residues generated would be around 548 thousand tons per year. The majority of 

coffee farmers employ part of this residue directly in the soil. This practice aims soil 

protection against erosion and fertilization. Even when coffee husks have satisfactory 

chemical composition in comparison to other organic fertilizers, mainly regarding N and K 

contents, the husk is bulky, making storage, handling and soil incorporation a problem 

(Mazzafera, 2002). Additionally, coffee husk transportation for organic fertilization represents 

high costs for the farmers, especially in hilly areas.  

2.2.2 Sugar cane and ethanol 

Sugar cane is a crop that has been cultivated in Brazil since the colonization. Today, sugar 

cane is a highly profitable and competitive crop within the overall agribusiness sector of 

Brazil (Shikida, 2010). Brazil is the most important sugar cane producer of the world, 
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followed by India, Thailand and Australia, and is responsible for 45% of world-wide ethanol 

production (UNICA, 2008).  

 

Figure 2.1: Sugar cane production by country (FAO in WADE, 2004) 

Brazil achieved worldwide importance in ethanol production as a result of a combination of 

factors such as favorable weather, cheap labor, and extensive governmental support (Bourne, 

2007). The Brazilian government started supporting ethanol production as a strategy to the 

1973 oil crisis. The decision to produce ethanol from sugar cane was based on the low cost of 

sugar at the time and the country's tradition and experience with this feedstock. The program 

Pró-Álcool was created in 1975 and sponsored by the government to phase out transportation 

vehicle fuels derived from fossil fuels in favor of sugar cane ethanol (Briquet, 2007). The 

military dictatorship at the time heavily subsidized and financed new ethanol plants and the 

state-owned oil company, PETROBRÁS, to install ethanol tanks and pumps around the 

country (Bourne, 2007).  

In 1988 sugar prices harshly augmented in the international market. There was a shift in 

ethanol production towards sugar production, resulting in an ethanol supply shortage (Briquet, 

2007). Consequently, ethanol prices rose and the elimination of some ethanol subsidies led to 

a drop in ethanol supply (Ribando et al. 2007). This phase persisted until 1999, when a rise in 

oil prices resulted in a new demand for ethanol (Winfield, 2008). Besides the encouragement 

in production, the Brazilian government also offered a tax on sugar exports in 2002 whenever 
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ethanol appeared in short supply to meet the demand in order to prevent the diversion of sugar 

cane to the international markets.  

In 2003, flex fuel vehicles were launched in Brazil, which run on gasoline, ethanol, or a 

mixture of both. A federal law established mandatory blends of ethanol and gasoline. The 

government set the blend percentages based on the sugar cane harvest and the ethanol 

production, resulting in variations even within the same year.  

Some sugar mill/distillery complexes are capable of producing sugar and ethanol using the 

heat and electricity generated from bagasse combustion. The generation of electricity from 

sugar cane bagasse is as an option to seasonally complement the hydropower sector, in 

relation to the rainfall regimes. Since the 1990s the ethanol distilleries are operated with 

cogenerated electricity. The surplus can be sold to the grids. This is a competitive advantage 

of Brazilian ethanol since it can be produced without using electric power generated by other 

sources.  

Bagasse electricity contributes to the reduction of GHG emissions. Moreover, the generation 

costs from large-scale bagasse plants already compete with the hydropower plants. Ethanol 

plants are located next to the main transmission grid in the State of São Paulo. This is also a 

decisive factor in diminishing the costs and the electricity losses with transmission. However, 

hydropower still guarantees lower prices to consumers (GESEL, 2011). 

Between 25 % and 30% of the sugar cane production is bagasse (Rosillo-Calle et al. 2007). 

Ethanol represents only one third of the energy available in cane (Figure 2.2); the other two 

thirds represented by fibbers in the cane stalks (bagasse) and in cane leaves (straw) is almost 

fully used in the process in the following way: 

- 93% of the bagasse is used as fuel in cane processing, 

- 85% of the straw is burned directly on the fields to reduce the costs of harvesting. The 

other 15% is harvested unburned but the straw is left on the ground to decay. In both 

cases the fiber carbon returns to the atmosphere in the form of CO2. 
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Figure 2.2: Sugar cane: source of energy (Source: UNICA in Jank, 2008) 

In most ethanol and sugar plants of Brazil the bagasse has been burned for generating thermal 

and electrical energy since 1996. The heat is used in the distillation process and transformed 

into steam, which rotates the turbines generating electricity. The self-produced electricity is 

used in the plants and the surplus sold to the grids. The energy output from bagasse is largely 

dependent on moisture, technology and the electricity market rules (WADE, 2004). 

According to WADE (2004), a typical sugar cane complex with a capacity of 3,000 tones of 

crushed cane per day can produce 345 tonnes of sugar, 6,000 litres of ethanol, 3 tonnes of 

yeast, 15 tonnes of potash fertilizer, 25 tonnes of pulp, 15 tonnes of wax, 150 tonnes of press-

mud fertilizer and 240 MWh of exportable electricity from bagasse. 

As reported by the author, an ethanol plant located in Ribeirao Preto, Brazil consumes more 

than 30,000 tons of bagasse per year in a 2 block - 15 MW power plant. The average cost to 

build a new plant is about BRL 2,800/kW, not considering the installation and connection 

costs to the distribution system. 

The electricity generated is used for the ethanol production and the surplus is sold to the grids. 

In this plant, each ton of sugar cane bagasse produces 60 kWh of energy. More than one third 

of this bagasse is bought from other ethanol factories for 10 BRL/ton. Despite of the 

transportation costs of bagasse (20 BRL/ton), the electricity generated compensates the 

efforts. The total electric power is 46 MW/h. The ethanol production consumes 20 MW/h and 

the rest is sold to the national electric system. As reported, the price for 1 MW/h in Brazil is 

much higher for electricity generated in centralized hydro power plants (BRL 345.00 in São 

Paulo) than in decentralized ethanol plants (BRL 153.00). 
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However, the full exploitation of the sugar cane energy potential requires modernization of 

the plants. It is important to improve industrial processes to generate more bagasse. The 

harvest of unburned cane and therefore the recovery of cane straw could increase biomass 

volume (Hassuani et al. 2005). The surplus of 40 - 80 KWh/ton of processed sugar cane is 

related only to bagasse. The use of sugar cane straw for electricity generation could permit an 

estimated production of 200 KWh/ton of processed sugar cane (Castro et al. 2010). 

The great advantage of the bioelectricity projects is the capability to cover the energetic 

demand when the water reservoirs are almost empty. The dry period coincides with the sugar 

cane harvest, which occurs from April until November (Figure 2.3). The hydropower 

reservoirs and the sugar cane plants are both located in Southeast and Center West Brazil. 

Hence, bioelectricity from bagasse could complement hydropower.  

 

Figure 2.3: Average precipitation levels in Brazil (CPTEC, 2011) 

During the last ten years, ethanol production has been growing with an increase of exports. 

According to the IBGE, between 1998 and 2008 the planted area of sugar cane increased 

almost 150% in the Center West region (Annex 1). It has been forecasted that the 2011 sugar 

cane harvest will reach almost 600 million tons, compared to 541.5 million tons last season. 

Of the total cane volume expected for the 2011 harvest, UNICA projects that 43% will be 

destined for the production of sugar, and almost 57% will be used for the production of 

ethanol (UNICA, 2011).  

Brazil is today the world's largest exporter of ethanol, with 430 plants concentrated mainly in 

the Center-South of Brazil. About 60% of production comes from São Paulo and 10% from 
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the Northeast. The Federal State of São Paulo produced ca. 325 million tons of sugar cane in 

the 2010 harvest and 16.84 billion liters of ethanol (GOB, 2011). The planted area of sugar 

cane in São Paulo has increased in the last years as shown in Table 2.2. 

Table 2.2: Sugar cane planted area: Brazil and São Paulo (IBGE, 2011) 

Sugar cane planted area (1,000 ha) 

 2004 2005 2006 2007 2008 2009 

Brazil 5,634 5,815 6,390 7,086 8,211 9,674 

São Paulo 3,414.2 3,673.3 4,258.4 4,835.4 5,411.3 5,538.92 

 

Sugar cane ethanol plants represent a path towards diversification of the Brazilian energy 

sector using biomass. The realization of bagasse electricity projects is simpler to manage 

because such plants have lower environmental risks. The ethanol plants have special 

procedures to treat their wastes and minimize the environmental impacts.  

Today, the ethanol business is a success due to the opening of the electricity market to 

biomass power producers, the private ownership of sugar mills and the stimulation of rural 

activities based on biomass energy to increase rural employment. Through the years, the 

technological advancements and the generation of electricity from sugar cane bagasse have 

contributed to maintain Brazil’s leadership position in biofuel production. Moreover, 

Brazilian industry is able to supply sugar cane factories with equipments, completely 

independent from imports.  

The sugar cane agroindustry for ethanol production in Brazil is a significant job generator 

including a range of competences and training, though most of them are low skill jobs 

(BNDES / CGEE et al. 2008). On the other hand, there has been a sharp decrease in 

employment in the sugar cane sector as the result of the increase in mechanical harvesting in 

sugar cane production. It has been documented that one harvesting machine can replace up to 

100 workers (Smeets et al. 2008). Alternatively, the positive employment effect from the use 

of sugar cane residues for the generation of energy could compensate the negative 

employment effect, by relocating the work force released by mechanical harvesting. 
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2.2.3 The rice industry in South Brazil 

Rice cultivation in South Brazil began with the colonization and its rise as a national food. 

Today, the Federal State of Rio Grande do Sul is the core of irrigated crop acreage and 

produces an important share of Brazil’s rice in an area of approximately 1 million hectares. 

The largest production and the largest rice yields are located in South Brazil. The production 

of rice in Brazil was about 7.7 million ton in 2010 (GOB, 2011).  

Before the commercialization of rice takes place it is necessary to dry and peel the rice. There 

are 300 rice-processing plants in Rio Grande do Sul. Both steps do not occur necessarily 

directly near the cultivation fields. The transport of the raw rice (with husks) is economically 

feasible, since drying and peeling preferably mostly occurs near the consumers and the 

exporting handlers. The rice processing plants are classified in three groups: the white rice 

plants, the parboil rice plants and the joint white and parboil rice plants. The greatest part of 

the Brazilian production is of white rice in Rio Grande do Sul.  

The rice is transported to the processing plants with 25 to 30% moisture, varying with type of 

cultivation and period of the year. The bulk density of rice husks is very low (see annexes). 

Hence, the transportation of this material is problematic. Many companies are compacting 

rice husks into briquettes to improve fuel characteristics (Embrapa 2010, Marcon et al. 2004 

and FAO, 1990). The first briquetting machines in Brazil were sold to rice-mills in the 1980s. 

Afterwards, these machines were expanded to wood factories and sawmills with occasional 

sales to other agro-residue producers such as coffee mills (FAO, 1990). 

The rice harvest occurs between January and April. Rice processing and storage demands 

specific moisture contents of 12 to 15%. Rice husks are fired in direct combustion furnaces, 

which produce heat and the flue gases are used to dry the rice. 

Approximately 22% of rice is made up of husks and each year approximately 760 thousand 

tons are produced in Rio Grande do Sul. The rice husks take more than 2 years to decompose 

and expel methane gas, harmful to the environment. Therefore, most of the farmers in South 

Brazil burn up about 15% of the leftovers to dry the harvested rice and 35% are sold for 

bedding chickens (Eriksson and Prior 1990).  

The processing facilities using rice husks are mostly located in South Brazil. Large-scale 

facilities like the enterprise CAMIL use the rice husks to generate heat for drying the rice and 
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to produce electricity. The combustion of rice husks produces a high amount of ash but little 

sulphur (see chapter 4). 

The CAMIL Biomass Electricity Generation Project in South Brazil has been operational 

since 2001. National and regional legislation prohibits the unlicensed displacement or 

uncontrolled burning or land filling of rice husks. Before the power plant began operations, 

81% of rice husks were disposed in legal landfills. After October 2005, surplus electricity has 

been sold to the grid, using 93% of all generated rice husks for project activity. The surplus of 

7% rice husks is disposed in legal landfills. The amount of CO2 avoided because of this 

project is estimated to be 57,341 tonnes CO2 per year and its certified under the Clean 

Development Mechanism (Clear, 2010).  

As considerable amounts of rice husks are not currently utilized in small-scale farms in Brazil, 

the implementation of decentralized energy systems in rural areas could follow the success of 

CAMIL. In order to achieve that, small-farmers could developed supply chains of rice husks 

to provide the necessary feedstock for heat and power generation. It was documented by the 

author that in several small-scale farms which cultivate rice, the chicken farmers are 

collecting the husks.   

2.2.4 Forestry 

The exploitation of wood has been an important economic activity in Brazil since the times of 

colonization. Forestry is concentrated in the Amazon region (North States) and South, mainly 

in the Federal States of São Paulo, Minas Gerais, Paraná and Rio Grande do Sul. In the 

Amazon region the production is mainly based on timber falling, while in the South forestry is 

based on short-rotation trees.  

2.2.4.1 Native forests 

The regions that have traditionally exploited the wood resources, such as the Amazon, have 

an enormous potential derived from the sizeable amount of residues that could be used for 

energy generation (INPA 2011). The Federal State of Pará (PA) is the greatest wood producer 

in the country, accounting for 53.9% of the national wood production (Rendeiro, 2010). Many 

of the sawmills (65%) located in Pará process 6,000 to 12,000 m³ of timber per year, 

generating approximately 3,000 to 6,000 m³ of residue per year. More than 70% of the 

enterprises could use the residue and generate 200 to 300 kW of electricity (Rendeiro, 2010). 
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Figure 2.4: Wood residues available (m³ / year) in Pará (PA) (Rendeiro, 2010) 

The wood residues are mostly used for cooking and charcoal production. The unrestricted 

disposal of sawdust is also very common in the Amazon region.  The high quantity of residues 

can negatively affect the regeneration and growth of the native forest. The residues also 

increase the risk of forest burning and hinder forest growth. The great majority of the 

sawmills eliminate the residues by open-air combustion. Some industries integrate wood 

milling to charcoal production or generate steam for drying the saw wood (Rendeiro, 2010).  

 

Figure 2.5: Wood residues disposed in a football field in Pará (own source) 

PA 
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Since the 1990s, timber exploitation is monitored and restricted to sawmills, which have 

environmental permition. In 1992, the Brazilian forestry sector developed a certification 

program that would identify the origin of raw materials used by the forest industry of Brazil. 

This work resulted in CERFLOR (Certificate of Origin of Forest Raw Material) (MDIC 2011, 

Inter-American Development Bank 1999). 

According to IBGE (2010), between 1990 until 2007, the level of deforestation diminished in 

the whole country. However, illegal timber falling still occurs and huge areas of the Amazon 

forest have been transformed into pasture and soy monoculture. In the Amazon region, the 

markets are flooded with cheap timber from illegal operations (Nasi et al. 2011, De Lima et 

al. 2008). Official data regarding the amount of saw dust and wood leftovers from log 

processing in the Amazon region are inaccessible.  

Soy expansion into the Amazon began in the late 1990s due to the growing demand for soy 

beans combined with low land prices and improved transportation infrastructure of south-

eastern Amazon. Indirect deforestation was also caused by extended cultivation of soy on 

pasture land for cattle breeding in the transition area between the Cerrado and the Amazon 

(Nepstad et al. 2006). 

2.2.4.2 Short-rotation planted forests 

The total forest area in Brazil reached approximately 6.2 millions of hectares in 2009, being 

4.3 million of hectares covered with eucalyptus trees and 1.9 million hectares with pine trees 

(ABRAF, 2009). The average annual yield for eucalyptus trees is 25 to 50 t/ha during a period 

of 7 years. For pine trees, the average yield is 20 to 40 t/ha during a period of 12 years.  

According to IBGE (2010), short-rotation forests are used in several sectors: pulp and paper 

production (38%), timber production (28%), firewood for cooking (24%) and charcoal (10%). 

Mostly pine trees are used in the timber industry. 

The Brazilian Institute for Forestry Development (IBDF), founded in 1967, created the first 

programs for reforestation. During the 1980s, the cultivation of eucalyptus and pine trees was 

supported by the government and there was an increase in charcoal production. This policy 

was criticized regarding its environmental impacts, because most of the charcoal was based 

on native forests. Therefore, new regulations fostered the production of charcoal using planted 

forests.  
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The paper and pig iron industry are planting short-rotation trees for energetic purposes. The 

enterprise PLANTAR was founded in 1967 and is today one of the greatest eucalyptus 

producers for charcoal production. Since 1985, it produces pig iron using charcoal (Grupo 

Plantar, 2011a). The eucalyptus forests are certified with the international criteria from the 

Forest Stewardship Council (FSC). During the forest growth, the trees capture CO2 from the 

atmosphere and liberate oxygen. During the realization of a carbon trading project, the 

enterprise planted 23 thousand hectares of eucalyptus. The pig iron produced with eucalyptus 

charcoal avoided the emission of 13 million tons of CO2. The project has duration of 28 years 

and should create more than a thousand jobs (Grupo Plantar, 2011b). 

Brazil is a tropical country and the demand for household heating systems is limited. 

However, wood logs and wood residues from native and planted forests are widely used in 

rural areas for cooking. Biomass is burned in ovens with low efficiency and high emission of 

pollutants (Figure 2.6). The energetic efficiency of the traditional firing is low and the health 

risks are considered high.  

 

Figure 2.6: Small-scale use of biomass: firewood stove (Fogão a Lenha: Fotos e Modelos, 2010) 

According to Ludwig et al. (2003), there is an elevated indoor pollution level resulting from 

cooking. Trace gases and aerosols released through biomass burning have a significant 

influence on health, climate and biogeochemical cycles.  

Much of the firewood is obtained by individual gathering and so the fuel use is not available. 

Such useful information would include: the consumption of firewood and the emissions per 

unit quantity of burned fuel.  
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The forestry sector is responsible for 0.5 million direct jobs and 2.5 million indirect ones. The 

largest companies, which cultivate eucalyptus or pine trees, are implementing an “integrated 

system” which consists of a partnership between industry and landowners, mainly small-scale 

farmers. Forestry industries like KLABIN in South Brazil provide seedlings and all other 

agricultural materials. Farmers participate with land and work force. Over 17 municipalities in 

the state of Paraná have been supported with inputs and technical assistance within the 

“Forestry Incentive Program” (KLABIN, 2011). 

Wood processing generates a high amount of residue. The generation of waste is significant in 

the regions that exploit wood resources. In Brazil, pulp and paper factories face problems of 

waste disposal (approximately 48 tons of wood residues to 100 tons of pulp produced). The 

landfill option for final disposal is not feasible, due to the high costs of implementation 

and maintenance (Bellote et al. 1998).  

The compaction of wood residues such as sawdust does not have a great expression in Brazil 

yet. In São Paulo, there are approximately 5 thousand pizza-houses and 8 thousand bakeries, 

in which 70% of energy comes from charcoal or firewood. This is gradually being changed to 

wood briquettes (Walter and Dolzan 2009).  

Briquettes or pellets are more uniform, cleaner, and have a higher density than sawdust, which 

improves storage, transportation and combustion. The Brazilian market for these types of 

solid biofuels is young. The author visited one enterprise, which started producing pellets in 

Southeast Brazil, hoping to export than to Holland.  

 

 

 

 

 

 



 46

2.3 The Brazilian energy context 

Hydropower accounts for 15.3% of the internal energy supply (Figure 2.7) but more than 76% 

in the electricity sector. In Brazil, about 13.9% of the energy needs are supplied by biomass 

(EPE, 2010). Sugar cane bagasse, charcoal and firewood are mainly consumed in the ethanol 

and pig iron industries, and in the residential sector respectively.  

 

Figure 2.7: Internal energy supply in 2009 (EPE, 2010) 

Firewood use is mostly residential and its consumption in rural areas has halved since the 

1970s (Figure 2.8). The main reason is the introduction of gas stoves, substituting for 

traditional firewood cooking in rural areas. It is important to note that the household wood 

consumption is based on estimations (Walter and Dolzan, 2009). The geographical 

dimensions of the country hinder the collection of accurate data regarding biomass 

consumption. 
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Figure 2.8: Wood consumption in Brazil (MME, 2007) 

There are positive and negative consequences arising from this transition. For instance, 

environmental degradation through deforestation could be diminished. Furthermore, modern 

cooking technologies cut back hazardous emissions. In 2007 almost 40% of firewood was still 

consumed in Brazilian home kitchens (Figure 2.8).  

Charcoal is mostly used in industry, specifically in the metallurgic industry. In the last few 

years, the Brazilian government implemented policies aiming at substituting coal coke for 

charcoal in the iron and steel production (Walter and Dolzan, 2009), thereby increasing 

charcoal production. However, due to the ups and downs of coal coke prices, charcoal use for 

pig-iron production is concentrated mostly in small-scale factories. 

There is a growth tendency in the electric energy consumption as shown in the Table 2.3.  

Table 2.3: Electric energy consumption supplied by the grid (GWh) (EPE, 2011) 

Region 2009 2010 

North 23,958 25,514 

Northeast 64,596 70,096 

Southeast 206,567 222,531 

South  66,204 70,322 

Center-West 24,699 25,901 

Total 386,024 414,364 
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In 2008, new conditions of access to the national grid had been defined by the ANEEL 

opening prospects for the connection of ethanol and biomass plants to the grids (ANEEL, 

2008). The evolution of regulations, legislations and official programs also stimulates the 

undertaking of renewable energy projects. Hence, to ensure the supply of electricity is 

necessary a diversification of primary energy generation, prioritizing technologies that use the 

available energy resources at a viable cost. 

2.3.1 The power sector 

The electricity industry in Brazil has undergone a series of significant institutional changes 

over the last century. Private ownership was not allowed from 1935 until the era of reforms of 

the 1990’s. International trends in the electricity sector towards reform and the disproportion 

between investment costs and revenues led to a period of change. Some of the distribution 

utilities were privatized, independent power producers were encouraged, and the independent 

regulator ANEEL was established. While some utilities were privatized, this did not change 

the highly centralized nature of the Brazilian electricity system. Much like in the USA, the 

system is based on regional monopolies granted on a concession basis. Electricity providers 

have exclusivity in their region and universal supply and regulated tariffs (Zerriffi, 2008).   

The installed capacity of Brazil in 2009 considering all the existing electrical sites and the 

international connections was 106 MW.  

 

Figure 2.9: Domestic electricity supply in 2009 (EPE, 2010) 



 49

From this amount, biomass counted with 5 MW as shown in Figure 2.9 (EPE 2010). In the 

past, hydropower represented more than 90% of the installed power capacity in Brazil. This 

contribution has been changed gradually and in 2008 hydropower accounted for 74% of the 

total electricity supply in Brazil. The reason was the construction of new power plants 

supplied by biomass and natural gas. 

As shown in Figure 2.10, the large-scale biomass power plants are currently located mainly in 

the Federal States of São Paulo (SP), Minas Gerais (MG), Espírito Santo (ES), and Goiânia 

(GO), which are the largest producers of rice, sugar cane and eucalyptus wood, respectively. 

The residues originated from these crops supply the biomass power plants. 

 

Figure 2.10: Biomass power plants installed capacity in each state and main crop locations (ANEEL, 2008) 
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According to ANEEL (2008) there are 302 biomass-fired power plants in Brazil, delivering 

5,700 MW. Of the total plants listed, 13 are supplied with black liquor (944 MW), 27 per 

timber (232 MW), 3 by biogas (45 MW), 4 by rice husks (21 MW) and 252 for sugar cane 

bagasse (4,000 MW), One of the characteristics of these plants is their small installed capacity 

of 60 MW, favouring installation close to supply and demand centers.   

Electricity from bagasse provides already 3% of the total Brazilian electricity needs, a figure 

expected to increase to 14% by 2020. This growth is possible as projections calculate that 

sugar cane production is going to increase by 340 million tonnes in the years to come, due to 

investments in 90 new sugar cane plants (Desplechin 2011). 

Sugar cane has a great potential for electricity generation through use of bagasse and straw. 

This is important not only for diversification of the energy sector, but also because the sugar 

cane harvest coincides with the period of dry weather, where the largest installed capacity of 

hydroelectric plants is located. The electricity supplied by sugar cane bagasse in this period 

helps, therefore, to keep the reservoir levels for hydropower. 

2.3.2 Electricity distribution and transmission in Brazil 

Mostly large government-controlled companies, but also several private power producers, sell 

their electricity to distributors via auction. Electricity distribution is mainly operated by the 

private sector, whereas transmission is both publicly and privately owned.  

In Brazil, the transmission lines vary from 88 kV to 750 kV. When the electricity arrives at 

the substations through a system composed of wires and transformers, these values are 

decreased to 127 volts or 220 volts (ANEEL, 2008). 

The provision of electricity relies on government concessions, and the country is fully 

covered by either private (national or international) or state-owned (municipal, state or 

federal) concession areas (OECD/IEA, 2010). Currently there are 63 electricity providers, 

responsible for distributing electricity (ANEEL, 2008). These are large-scale enterprises, 

which have the monopoly of electricity in a region. In most federal states, only one provider 

operates. However, a state can have more than one provider, for example São Paulo and 

Minas Gerais. Prices can vary from BRL 0.19/kWh in North Brazil to BRL 0.43/kWh in 

Minas Gerais (ANEEL, 2008). 
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2.3.3 The Brazilian grid systems  

Due to the large distance between generating sources and power grids, the electricity system 

is predominantly based on sites with central hydroelectric plants and a complex mesh of 

transmission and distribution. Hydropower generation has the largest contribution in the 

electricity system and an already established structure. In rural areas of Southeast Brazil, 

decentralized energy generation using biomass in small-scale steam cycles is not implemented 

due to the low electricity prices of hydropower generation (ANEEL, 2011).   

Figure 2.11: The National Grid (ANEEL, 2008) 
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The Brazilian power sector is divided into two large systems, the interlinked (National Grid) 

and the isolated (Goldemberg, 2002). The National Grid, with approximately 80,000 MW of 

installed power, includes the Northeast-Southeast-South transmission line (Figure 2.11).  

The isolated system includes small local grids mainly in the Amazon (Goldemberg et al., 

2003). These 250 isolated systems are mainly thermal power generation from biomass and 

diesel. They are powered by 1230 generator units, supplying 3% of the Brazilian population, 

located in 380 localities, and represent 45% of the total territory (ELETROBRAS, 2009). Due 

to thermal energy conversion based mostly on diesel, the isolated systems have generation 

costs higher than that of the National Grid (Figure 2.12).  

 

Figure 2.12: Production costs of electricity in Brazil based on different raw materials (ANEEL, 2008) 

The difficulties in supplying the Amazon region with diesel increase the freight prices of the 

fuel and further the generation costs. Therefore, the government created the subsidy CCC3, 

which is used for supporting energy generation in isolated regions using diesel. All electricity 

consumers in Brazil have this subsidy included in their electricity bills. In 2008, the CCC 

subsidy was of BRL 3 billion. 

                                                 
3 Conta de Consumo de Combustíveis Fósseis = Subsidy for fossil fuel consumption 
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2.3.4 Electricity demand and supply 

Brazil’s residential sector of 42.5 million households consumes 25.2% of all electricity 

(Pereira et al. 2010). 97 % of all Brazilian households have access to regular electric energy. 

Whereas Brazil’s urban sector accounts to almost 100% of service, in rural areas only 97% of 

households have access to electricity.  

The North has the greatest levels of lack of electrification, with 62% of the rural population 

(about 2.6 million people) having no access to electricity. In Northeast Brazil, 39% of rural 

residents (about 5.8 million people) lack electricity. In the Center-West the percentage is 

27% (about 370,000 persons), in the Southeast 12% (about 810,000), and in the South 8.2% 

(about 480 000 people) (MME, 2003).  

Urban areas are well electrified, but in the rural areas, 20 million of Brazilians have no access 

to electricity (MME, 2003). The electricity supply in the North is based on diesel generators. 

Overall fuel consumption is high not only due to the electricity generation itself, but also to 

local transportation, which is mostly by motorboat. There are presently ca. 1,000 power plants 

supplying electricity to isolated cities and villages in the Amazon using diesel oil. Almost 700 

units have an installed power capacity below 500 kW (Goldemberg et al., 2003).  

The electrification of isolated communities using diesel still represents a significant barrier to 

community residents (Goldemberg et al., 2003). Increasing electricity supply plays an 

important role in the increase of living standards because it allows high quality lighting, clean 

water, health care, and communications (Goldemberg et al., 2003). The lowest electricity 

consumption levels have been found in the households with low income. Within this 

framework, the Brazilian government has already pursued policies to promote the 

development of decentralized energy systems to provide energy to rural communities. The 

most important electrification programs are described in the next chapter. 
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2.3.5 Electrification programs 

In recent years, government programs have linked millions of Brazilians to electricity through 

grid extensions. The Program of Energy Development of States and Cities (PRODEEM) 

was implemented by the Ministry of Mines and Energy (MME) in 1994 as an initiative to 

bring electricity to rural communities using renewable resources, mainly solar energy. The 

government supplied communities with equipment and distributed it to the chosen projects. 

The projects were focused on community development rather than household electrification 

(WRI, 2011).  

Between 1996 and 2000, PRODEEM provided 3 MW power to 3,050 villages, benefiting 

604,000 people. The National Treasury Fund supported the program with BRL 21 million, 

investing in photovoltaic panels for rural power generation (EIA, 2011). According to 

Goldemberg et.al (2003), only 44 out of the 79 solar systems (56%) were actually operating in 

43 villages located in 10 States. Problems with PRODEEM include the following: 

- A top-down approach, with installations sometimes made in unskilled and 

unorganized communities, 

- No schemes for cost recovery, which results in a lack of funds for maintenance and 

hence unsustainable service, 

- Lack of responsibility of local communities and federal states for the equipment 

- Occasional lack of coordination with grid expansion programs and difficulties in 

identifying suitable locations for equipment purchased in bulk. 

In 1999 the Program “Luz no Campo” (Light in the Countryside) was implemented by 

ELETROBRÁS under the coordination of the MME. It intended to electrify one million rural 

homes in a three-year period. Rural consumers paid the full costs of the connection, spread 

out over a number of years. This program lent 75% of the investment to concessionaires at 6% 

interest, with a two-year grace period and a five to ten year repayment period (WRI, 2011). 

By 2002, this program had connected 480,000 households and another 125,000 were in 

progress.  

The Program “Luz para Todos” (Light for All) was implemented in 2003 and aimed to 

provide social inclusion and reduce poverty and hunger through electricity supply to 12 

million inhabitants in 5 years (OECD/IEA, 2010). In this program, tariffs were to be reduced, 

energy to be provided free to low-income consumers and residential consumers with 
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consumption less than 80 kW/month (WRI, 2011). The projected costs were BRL 14 billion. 

This sum was achieved through a partnership of the federal government, state agencies and 

energy distributors.  The federal government designated BRL 10 billion.  The project is also 

supported by US AID funding (WRI, 2011). Due to the high need of electricity connections, 

the program was postponed until the end of 2011 (MME, 2011 a).  

The coverage rate in rural areas has increased from 49% in 1991 to 97% in 2008 (Pereira et al. 

2010). The positive result can be partially explained by the reduction of the rural population 

in the country (around 5 million), and together with the greater effort made by the program 

Luz para Todos. However, this program has no clear strategies to support and educate isolated 

communities regarding the use of local energy in an efficient way. 

2.3.6 Policies and measures 

The MME oversees the whole power sector and is responsible for policy setting. The 

Brazilian Electricity Regulatory Agency (ANEEL), operating under the jurisdiction of the 

MME, regulates and controls the generation, transmission and distribution of power in 

compliance with current legislation (OECD/IEA, 2010).  

ELETROBRÁS is a state-owned holding company for electricity assets, controlling a large 

part of electric power generation and transmission systems mainly through subsidiary 

electricity providers, as well as some distribution capacity in the Amazon area. The Energy 

Electricity Research Agency (EPE) is responsible for the development of integrated long-term 

planning of Brazil’s power sector, supporting MME’s national energy policy and long-term 

planning.  

The electricity subsidy is distributed to the electricity providers, which have exclusive service 

and do not allow the consumer to make decisions based upon their energy needs and the 

availability of different options for meeting those needs. The generation of electricity in 

Amazonas is controlled by government-owned centralized utilities like the CELPA in the 

Federal State of Pará. It serves the rural areas with electricity mostly based on diesel 

generation. The capacity of grids supplied by diesel allows low quality household 

electrification and only few hours per day. The cost of diesel electricity is high. As official 

electricity providers, CELPA is able to utilize the “Luz para Todos” funds plus the subsidy for 

diesel to keep costs down.  
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The diesel subsidy4 was created in 1973 and is still in force today. It is managed by 

ELETROBRÁS, which gives quotas to the electricity providers, which are proportional to the 

amount of trade energy (Andrade et al., 2011). The budget variations is based on hydrologic 

forecasts, the expansion of the market, fluctuations in the price of fuel and the specific 

consumption of generating centers, leading to greater or lesser fuel consumption, with a direct 

impact on generation costs.  

In 1993 the Federal Government significantly altered the structure of the electricity sector, 

with the aim of stimulating competition and attracting private-sector investors. After the 

reform, electrification in rural areas have progressed from 68% to 74% of househoilds 

(Goldemberg et al., 2003). In 2002 the Law 10438 established rules and obligations of 

distribution concessionaires and introduced changes into the structure of Brazilian energy 

sector. According to the MME (2002) the following measures are the most important: 

- Type of consumers: low-income consumer (80 kWh / month consumption), and high-

income consumer (200 kWh / month) and 

- Subsidies to renewable energy sources through the Program of Incentives for 

Alternative Electricity Sources (PROINFA). 

More than a third of residential customers (35%) in Brazil belong to the low consumer tariff 

class. A total of 77% of the low-income consumers uses up to 80 kWh of electricity per 

month and 23% between 80 and 220 kWh (Instituto Acende Brasil, 2007). Electricity use for 

the rural poor is promoted essentially through lower tariffs for low-consumption classes, the 

idea being that low consumption is correlated with low income (Zerriffi, 2007). 

Consumers, who use up to 30 kWh/month, pay only 35% of the regular residential tariff, 

while those consuming between 31 kWh/month and 80 kWh/month pay the reduced tariff of 

60% of the regular residential tariff.  

In the states of the North and the Northeast, 43% and 62% of all consumers respectively fall 

within the subsidized tariff classes, which are the highest rates for all Brazil (Instituto Acende  

Brasil, 2007). It should be noted that these regions also display the highest poverty indices 

and lowest access rates to a variety of public services. Although low income does not always 

correlate with low consumption levels, recently connected households that live below or near 

                                                 
4 Conta de Consumo de Combustíveis (CCC) 
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the poverty line rarely consume high amounts of electricity. According to ANEEL (2011) in 

2010-2011, the average electricity tariff in Brazil was BRL 0.32 / kWh (USD 0.19 / kW/h). 

The PROINFA became the main program to promote electricity generation from renewable 

sources through incentives and subsidies. It was designed to achieve 10% of Brazilian power 

production and this goal is supposed to be reached within the next 20 years (MME 2008). In 

the first phase, PROINFA required the installation of 3,300 MW from wind turbine, small 

hydropower stations and biomass plants. Long-term purchase guarantees were offered to 

independent power generators: produced electricity is to be purchased by ELETROBRÁS at 

fixed feed-in prices for 20 years. The fixed purchase prices vary amongst renewable sources 

and are determined by the economic value of the competing energy source.  

The Brazilian National Development Bank (BNDES) makes special financing programmes 

available for renewable projects that are eligible for PROINFA. The BNDES can finance up 

to 70% of capital costs (excluding site acquisition and imported goods and services) at the 

basic national interest rate. Interest is not charged during construction and amortization is of 

10 years. Payments are due 6 months after commercial operation (EIA, 2011).  

Interest rates in Brazil are regarded to be among the highest ones in the world. Therefore, 

long-term business for power generation become unattractive under rates of 20 to 30%/year. 

The BNDES has lower interest rates, ranging from 10-18%/year. Another issue is land prices 

in Brazil, which are relatively low compared to land prices in Europe. This helps mitigate 

higher financial costs (Walter and Dolzan, 2009). 

PROINFA is expected to generate 150,000 jobs and to leverage private investments of ca. 

BRL 5 billion. The legislation mandates the use of at least 60% national products and services 

from total construction costs. Each federal state has maximum limits of 20% of total capacity 

for wind and biomass and 15% for small hydropower plants. Such limits are preliminary: if 

part of the 1,100 MW for each source is not purchased, this available potential will be 

distributed according to the older environmental permits. All projects are required to have 

installation permission (EIA, 2011). 

By early 2005 the first phase was finished and 3,300 MW was installed (1,266 MW Solar, 655 

MW Biomass and 1,379 Wind). In 2010, 68 plants were operating: 23 small hydropower 

plants (414.30 MW), 2 biomass plants (66.50 MW) and 43 wind mills (1,110.97 MW), adding 

a total of 1,591.77 MW to the national grid (MME, 2011 b).   
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2.3.7 Auction schemes for power generation projects 

The Brazilian power sector model holds energy auctions aiming supporting new power 

generation projects. The main objectives of the auctions is to guarantee that the offer will 

expand in such a way as to satisfy the growth of demand with the lowest possible generation 

cost in line with the need of guaranteeing low tariff (Castro and Dantas 2010). This means, 

the winning projects are those providing the lowest electricity tariff. For example, the auction 

of the hydropower plant Madeira River (ANEEL, 2008) sold 70% of produced electricity to 

the electricity providers at a lower price (BRL 0.78 / kWh) compared to the price established 

by the MME (BRL 1.22 / kWh). 

The ANEEL classifies power plants into three categories, those without restrictions, moderate 

restrictions or serious restrictions. The plants without restrictions have signed the concession 

contracts, have a valid environmental license and are following the construction schedules 

(Castro, 2007).  

As an example, the Reserve Energy Auction carried out in 2008, specific for advancing 

bioelectricity, has reached 3,518 MW, representing 24% of the total power projects (UNICA, 

2010). The licensed biomass projects are located in 9 Federal States: São Paulo is the leader 

with 32 projects (1,873 MW). Mato Grosso do Sul has 7 projects (596 MW) and Minas Gerais 

has 6 projects (537 MW). The biomass projects have a duration of 15 years.  

The 2008 auction has commercialized energy at an average cost of BRL 155.70/MWh. As a 

comparison, the generic price was BRL 145.23/MWh. According to Castro et.al (2008), sugar 

cane projects would be viable at a tariff of BRL 155/MWh without commercializing carbon 

credits. Therefore, bioelectricity projects are on threshold of competition with conventional 

thermal projects.  
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2.4 Discussion 

Brazilian crops and their harvesting and processing residues hold great potential for energy 

generation. As an example, bagasse co-generation can be considered as a win-win for the 

sugar industry located in São Paulo (WADE, 2004), because it combines low cost, efficiency 

and social benefits with the provision of clean and renewable energy. Another successful 

example is the cultivation of eucalyptus trees for supplying the iron ore production and the 

paper industry. The wood residues are not fully used.  

The creation of incentives for increasing the generation and distribution of electricity in Brazil 

during the 1990s was essential. These measures allowed biomass power plants to have better 

access to financing. Furthermore, the energy commercialization costs were diminished and the 

energy purchase and sale contracts could apply over longer periods. In addition, the Clean 

Development Mechanism (CDM), included in the Kyoto Protocol, was an important policy. 

The CDM stimulated Brazilian and foreign investment in biomass projects to obtain 

additional income by selling carbon credits to polluting companies, which must reduce the 

GHG emission levels.   

Investors in biomass projects are still exposed to the risk of not fulfilling PROINFA’s 

commitments, not receiving financing, facing long environmental licensing process for each 

power plant, and also obtaining the connection point to the distribution grid (Castro, 2007).  

According to Zerriffi (2008), Brazil’s official rural electrification system has three main 

characteristics as a result of the regulatory regime and policies of the central government: 

1. Exclusive service territories for the electricity providers with a requirement for 

electricity providers to provide electricity to all consumers within the territory 

2. Electricity subsidies  

3. Low tariffs for low income and rural costumers 

Since all the customers are in the rural and lower income group, the electricity providers also 

rely on its status as a government utility, part of the ELETROBRÁS group, which allows it to 

run a deficit. The losses in 2004 were BRL 71 million (Zerriffi, 2008). This is a direct result 

of the regulations governing the electricity sector, which mandate exclusive service territories 

for electricity providers and low tariffs for low-income consumers.  
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Rural electrification initiatives such as the program “Luz para Todos” has concentrated 

mostly on increasing access to infrastructure. There are still ten million people in Brazil 

without electricity. Access to the grid is still a barrier to new biomass projects, which are 

located in remote areas. Many of them are distant from the energy substations, which are the 

distributors of the produced electricity.  

Electrification projects based mainly in grid connections are not generally economically 

viable (Goldemberg et al., 2003). Energy supply in these cases must be decentralized, and 

there is an excellent opportunity for the introduction of renewable energy. Community 

participation in electricity management is fundamental in remote areas to reduce costs. The 

social and economic benefits must be maximized to rural communities through the 

implementation of productive activities (Goldemberg et al., 2003).  

Access to electricity is essential to economic development as is indispensable for basic 

activities, such as lighting, refrigeration and the running of household appliances. Brazil has a 

vast potential in the utilization of agricultural and wood residues for solid biofuel production 

for heat and electricity generation in decentralized plants. In this regard, technical and 

economical improvements could be achieved by industrial upgrading (for instance by biomass 

compaction).  The pretreatment of these raw materials could expand the perspectives of the 

use of biomass. The next chapter gives an overview of the state of the art of biomass 

technologies, which could be applied in Brazil.  
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3 Energy from Biomass 
 

Bioenergy is expected to contribute significantly in the mid and long term for future energy 

supply. Biomass currently supplies only a small fraction of the world’s demand, although the 

contribution of the renewables seems likely to grow rapidly in coming decades. According to 

International Energy Agency (IEA), bio-energy offers the possibility to meet 50 % of our 

energy needs in the 21th century (Soetert and Vandamme 2009).  

Biomass is the organic material derived from plants. Aquatic and terrestrial vegetation absorb 

sunlight, water and CO2 to produce biomass through a process called photosynthesis. Plants 

are mainly constituted of carbon. When growing, the biomass first removes the greenhouse 

gas CO2 from the atmosphere and binds the carbon in the biomass. This carbon is later 

released into the atmosphere again as a result of combustion or when the biomass is rotting. 

That means the biomass, used for energy purposes, releases only the CO2 that was previously 

removed from the atmosphere when the plant was growing (Dürrschmidt, 2006). There is 

therefore a closed carbon cycle. According to Sims (2003), the term biomass includes: 

- crop wastes (eg. cereal straw and maize straw for heat and electric generation); 

- agro-industrial residues (eg. rice husks and bagasse for heat and electric generation) 

- animal wastes (eg. sewage sludge to produce biogas) 

- woodlot arisings (eg. from agroforestry and siviculture after log extraction and used 

mainly for heating); 

- forest residues (eg. remainings after log extraction or wood process residues at the 

sawmill or pulp plant); 

- municipal solid waste (either combusted in waste-to-energy plants or placed in 

landfills with the methane gas collected); and 

- energy crops (eg. oil crops to produce biodiesel, or sugarcane and maize for 

bioethanol, or short rotation coppice for heat and electric generation). 

Biofuel is a general term, which includes any solid, liquid, or gaseous fuels produced from 

organic matter, either directly from plants or from industrial, commercial, domestic or 

agricultural wastes. Bioenergy covers all energy forms derived from organic fuels (biofuel) of 
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biological origin used for energy production. It comprises purpose-grown energy crops, as 

well as multipurpose plantations and by-products (residues and wastes). The term “by-

products” includes solid, liquid and gaseous by-products derived from human activities 

(Rosillo-Calle, 2007). 

According to the Food and Agriculture Organization (FAO, 2009), bioenergy provides about 

10 percent of the world’s total primary energy supply.  Most of it is used in the residential 

sector for heating and cooking and is produced locally. In 2009, 97% of the biofuels used in 

the world were counted as solid biomass, 71% of which used in the residential sector. Wood 

fuels count to about 50% of the total combustible renewables and waste used in the world 

(FAO, 2009). 

Solid biomass such wood and agricultural residues, short-rotation woody and herbaceous 

crops can be used for the production of heat and electricity in different processes, depending 

on the type of material available. The development of small-scale biomass power plants 

creates in all stages of crop production, a multitude of possible working positions and 

different trading schemes. This new situation could help changing the traditional energy 

consumption structures and preserving farmer’s culture. However, the improvement of the 

current biomass technologies needs innovation in all energy generation scales.  

Biomass is considered as a promising energy source able to contribute with the greenhouse 

gas emissions reduction targets. Biomass combustion is credited be CO2-neutral and to 

releasing much less sulphur, methane, heavy metals and particulate emissions than their fossil 

fuel counterparts. The current global energy patterns, which are mostly based in fossil fuel 

consumption, could justify the increase in the use of biomass. The author gives an overview 

regarding global energy production and climate change in the following subchapter. 

 

3.1 Global energy production and climate change 

Nowadays, fossil fuels supply nearly 80% of the global current energy consumption (Figure 

3.1). However, petroleum, coal and natural gas can be found in relatively few countries. This 

concentration has already led to economic disruption and political conflicts, such as the Oil 

Crisis in the 1970’s and the Gulf War in the 1990’s.  
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Figure 3.1: Fuel shares of total primary energy supply in 2008 (Source: IEA, 2010) 

The massive use of coal, oil and gas has increased material prosperity in the majority of the 

industrialized countries. The primary energy demand has grown by more than 50% since 

1980. Forecasts predict that this growing trend will continue during the next 50 years.  

 

Figure 3.2: Evolution from 1971 to 2008 of world total primary energy supply by fuel (Mtoe) (IEA, 2010) 

Over 70% of this growth should come from developing countries, where populations and 

economies are growing considerably faster than in the OECD5 nations. China alone should 

account for about 30% of increased energy demand (WEC, 2007). This is one example of 

some of the World Energy Council Scenarios, which were published by the United Nations 

(UN, 2000; UN, 2004). They all assume that world population will increase from its current 

                                                 
5 Organisation for Economic Cooperation and Development 
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level of around 6 billion to 9 billion by 2050. These scenarios incorporate different 

assumptions about rates of economic growth and the distribution of that growth between rich 

and poor countries; about the choices that are made between different energy technologies and 

the rapidity with which they are developed; and regarding the extent to which ecological 

imperatives are given priority in coming decades.  

Rising living standards means the consumption of more energy each year. For developing 

countries like China and Brazil to reach European levels in the use of energy sources would 

require an increase in environmental impacts of the use of fossil fuels. As Figure 3.3 shows, in 

2003 Asia had overlapped the USA in regarding the CO2 emission rates.  

Figure 3.3: Global trends in carbon dioxide emissions from fuel combustion by region from 1971 to 2004 

(Source: IPCC, 2007 a) 

The global emission of gases generated from the combustion of fossil fuels is directed related 

to the greenhouse effect. The greenhouse effect is essential in maintaining the Earth’s surface 

at a temperature suitable for life. The greenhouse gases (GHG) are water vapour, CO2 and 

methane. Since the Industrial Revolution, the burning of fossil fuels has been adding 

substantial quantities of CO2 to the atmosphere in a short time, intensifying the greenhouse 

effect.  

Biofuels should at least partially diminish GHG emissions. The IEA (2004) stated that a core 

concern would be the emissions released during the fuel production and use. The general 

outcome on net CO2 emissions would then rely on the balance between the fossil fuel used to 

produce the biofuel and the fossil fuel displaced by it. However, the results depend on 

assumptions regarding crop rotation, fertiliser use and the use of by-products.  
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3.2 Political framework in Europe 

Since the 1970s there has been a large expansion of biomass-based electricity generation, with 

an increased emphasis on generating efficiency, resulting in electricity exports into liberalised 

or deregulated markets. In addition, there has been an expansion of district heating schemes 

with CHP in Scandinavia, based on straw in Denmark and wood residues in Sweden and 

Finland. In countries with extensive coal-fired electricity generation there have been 

incentives under climate schemes to co-fire biomass in order to achieve carbon offsets of up 

to 15% (World Energy Council, 2007). 

Every country in Europe has included bio-energy in its energetic and climatic policies. The 

agreed reduction in GHG emissions of at least 20% below 1990 levels by 2020, together with 

a 20% renewables target, was a crucial step for the EU's sustainable development and a clear 

signal to the rest of the world that the EU was ready to take the action required by the Kyoto 

protocol (EC, 2009). However, this action alone is not enough to deliver the goal of keeping 

global temperature increase below 2 °C compared to pre-industrial levels.  

In the German electricity sector, the volume of avoided greenhouse gases totalled 74 million 

tonnes, around 55 million tonnes of which is electricity remunerated under the Renewable 

Energy Sources Act (EEG, 2007). This legislation gives priority to the feed-in of electricity 

from renewable energy sources into the national grid at largely fixed fees and it is crucial to 

the development of the renewable electricity sector. Furthermore, around 30 million tonnes of 

emissions were avoided in the heat sector, and approximately 5 million tonnes in the fuel 

sector (BMU, 2010 a).  

The growing proportion of renewable energy sources reduces emissions from the energy 

sector, and makes a significant contribution towards achieving the German Government’s 

reduction targets. The use of renewables enabled Germany to avoid some 107 million tonnes 

of CO2 in 2009, representing a significant contribution towards the climate protection target. 

Germany has undertaken to reduce its greenhouse gas emissions by 40 % by 2020, compared 

with 1990 levels (BMU, 2010 a). The use of bioenergy is to be further expanded. The 

technical potential required for this is available in Germany, where bioenergy accounted for 

3.9% of total electricity consumption, 6.2% of total heat demand and 7.6% of total fuel 

consumption in 2007 (BMU, 2010 b). 

The most important source of bioenergy in Germany is wood. In addition to forestry, 

agriculture also plays an important role in producing biomass for energy recovery. Already in 
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2007, more than 10 % of agricultural land was used to grow energy crops in Germany, with a 

focus on oilseed rape cultivation for the production of biodiesel and the provision of 

substrates for biogas production (BMU, 2010 b). 

About one quarter of Germany's wood production (lower quality line of production) is used 

for generating energy and approximately three quarters are used as material (Kaltschmitt et 

al., 2009). Waste wood and used wood are also used for energy production. Therefore, the 

next chapters will show how biomass residues are processed and converted into energy. In 

chapter 2.4.7, the author will describe a case study in Germany concerning the use of biomass 

residues to produce heat, electricity and also biofuels (pellets).  

 

3.3 Advantages of solid biomass  

Biomass provides an alternative for changing the current scenario of energy production and 

consumption. It is an appealing alternative to fossil fuels because it can be found in the region 

where is used. Biomass can be the waste products from a community; anything ranging from 

food scrapes, fibres or surplus waste from agriculture. All of this material can be used to 

create energy. This is handy not only because is cheap but also minimizes costs involved with 

waste disposal and it also reduces waste going to landfill (Kaltschmitt et al., 2009).  

The energetic balance of biomass is positive. The amount of energy needed for the 

preparation of biomass fuels is lower than the energy that is gained by combustion. A variety 

of biomass resources are utilized through combustion, to generate bioenergy in the forms of 

electricity and heat. Estimations prove that the cumulative residue and organic waste could 

provide between 40 EJ and 170 EJ of energy per year (UCE-UU, 2001). Furthermore, the 

ashes obtained from biomass combustion can be used for fertilization because biomass ashes 

have no risk of soil contamination by heavy metals, which are often found in fossil fuels.  

The potential benefits of biomass increases each year due to the increase in energy 

consumption patterns, followed by the shortage of the world’s fossil fuel reserves. 

Furthermore, the transport and storage of biomass have much less environmental risk 

compared to fossil fuels. By using biomass, the construction of vulnerable gas and oil 

pipelines, which need constant monitoring, can be decreased. If the oil consumption could 

decrease due to the use of biomass, this scenario could help avoiding the offshore oil disasters 

and ocean ecosystem contamination that have occurred in the past.  
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The import of fossil fuels occurs often because oil and natural gas are mostly located in few 

regions of the globe. Middle East has 66.8% of the total proved reserves of oil and together 

with Russia have more than 65% of the natural gas world’s reserves (BP, 2010). Furthermore, 

most of the reserves are in hands of few enterprises. Hence, the commercialisation of fossil 

fuels brings any economical benefits to the region and makes countries dependent of political 

instability. Since biomass fuels are mostly used in the region where is produced, its 

commercialisation as biofuels brings positive socio-economic outcomes. 

 

3.4 Biomass for heat and power 

During the last decades, oil and natural gas prices has been considerably increasing. Hence, 

European countries started investing technology in biomass power plants and household 

ovens. However, technology has been mostly developed for firewood. This includes heating 

ovens, firewood furnaces, automatic wood chip furnaces, and also decentralized biomass 

plants using combined heat and power cycles (CHP).  

One of the major problems of current patterns of biomass use for energy is the low conversion 

efficiency. In European households, most biomass is burnt in so-called three stone stoves with 

an average conversion rate of 10%. In urban areas or larger settlements, larger biomass 

powered plants are common, but due to maintenance problems, low technical standards and 

lack of knowledge about operating them, conversion efficiencies are of the same order of 

magnitude of roughly 10-15%.  

The efficiency of a power plant is the percentage of energy content of the fuel input that is 

converted into electricity output over a given time period. Efficiency of electricity generation 

is defined as the net quantity of electricity produced generated per quantity of fuel fired in the 

relevant power plant (both expressed in the same energy units). In case of boilers or 

cogeneration plants, the efficiency of heat generation is defined as the quantity of heat 

generated per quantity of fuel fired in the boiler or cogeneration plant. The average efficiency 

of electricity (or heat) generation refers to the efficiency over a longer time interval that is 

representative for different loads and operation modes, including start-ups (UNFCCC, 2010). 

Industrial biomass plants are estimated to operate within the same efficiency range. In 

industrialised countries, average conversion rates of 70-75% are common (Kaltschmitt et al., 

2009). 
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Compacted forms of biomass such as wood pellets and briquettes can also be used for 

combustion. The main advantage of biomass compaction is the reduction of volume, which 

plays a crucial role on the logistics and on the economic feasibility of the heat and power 

facility. Therefore, most of the CHP plants in Europe are integrated to production/source of 

biomass. In some cases, the compaction facility is also coupled to the CHP plant.  

The use of biomass for heat and power generation involves a complex chain of arrangements 

in order to provide the desired amount and shape of biomass, which should be converted into 

energy. Hence, the following chapter will give an overview of the types of solid biomass used 

for combustion, the state-of-the art of the supply chain of biomass, and the several 

combustion technologies.  

3.4.1  Energy crops 

Energy crop is the term used to define plants, which are cultivated specifically for energetic 

purposes. They currently contribute a relatively small proportion to the total energy produced 

from biomass each year, but the proportion is set to grow over the next decades. The IPCC 

SRES scenario estimates the realistically achievable potential for energy crops by 2025 to be 

between 2 and 22 EJ yr-1 (Sims et.al, 2006). Energy cropping alone is not sufficient to reduce 

emissions, but it is an alternative for fossil fuels and it is an important component of the 

energy mix for climate mitigation measures.  

Agricultural crops such as corn, wheat, sugar cane, beets, potatoes and tapioca can be 

processed into carbohydrate feedstocks, the primary raw material for the most fermentation 

processes. These fermentation processes can convert those feedstocks into a wide variety of 

valuable products, such as bio-ethanol. Oilseeds, as soybeans, rapeseed and palm seeds can be 

processed into biodiesel (Soetert and Vandamme, 2009). 

Forestry crops such willow and poplar in Germany (Grünewald et al., 2007) and eucalyptus in 

Brazil (Müller et al., 2005) have been successfully cultivated for energetic purposes. Forest 

thinning and removal of small-diameter, low value trees are integral parts of forest 

management, which aims ecological restoration and timber stand improvement. However, 

there is also the potential to drive unsustainable levels of harvesting, with negative 

consequences for biodiversity, soil, and water conservation.  
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3.4.2 Agricultural and forestry residues 

Crop wastes and agro-industrial residues can be considered as fuel sources. The crop wastes 

include the biomass, which remain in the field after harvesting, for instance, straw from sugar 

cane, maize and wheat. On the other hand, the agro-industrial residues like, rice and coffe 

husks and bagasse have higher homogeneity, contain lower moisture and are concentrated on 

the processing plants. Practically, all these residues could directly be compacted into pellets 

and briquettes and converted into energy.   

Forest biomass residue is the by-product of current forest management activities. It is a 

renewable, low-carbon feedstock that can substitute fossil fuels in the production of energy 

and other products (Caputo, 2009). Rests from forest decay or forest management activities, 

which are aimed to maintain a healthy and constant forest growth, are also used as firewood. 

Forestry residues that are obtained after suitable forest management, can increment future 

productivity of forests. However, woody residues like barks and stems are mostly rejected for 

marketing due to irregular characteristics for being used as a biofuel. Moreover, there is no 

quantification of the amount of wood residues, which are left on the forest ground after forest 

clearing. Hence, this type of wood is considered a “free-commodity”, which would be 

available for collection and upgrading before it decomposes. On the other hand, the wood 

residues from industrial activities, such carpentry, are regular in size and moisture, becoming 

an important source of solid biofuel. 

The conversion of biomass to generate heat and power starts with the harvest, collection, 

processing and transportation of the raw material. Therefore the author will describe how 

biomass logistics for wood sub-products and agricultural residues is functioning in Germany. 

The aim is to study which technologies have at most successfully been used in order to create 

a scenario for Brazil. 

3.4.3 Biomass logistics 

Biomass is transported from the field or processing locality to intermediate storage to await 

truck transportation. If the fields are near to the power plant (less than 30 km), the biomass 

can be transported directly from the field to final storage at the power plant. The storage 

should have the minimum level of moisture possible.  

For wood harvesting the level of mechanization varies a lot. In Germany, timber felling, 

delimbing and forwarding can be done manually. However, harvesting short rotation crops for 
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during harvesting. Baling has a tendency for bigger formats and mechanized handling. The 

bales have a cross section area up to 1.5 m² and require front loaders to handle their weight 

(maximum 1 ton) (Kaltschmitt et al., 2009).  

Integrated harvest with pelleting or briquetting can also improve biomass’ density. Transport 

and combustion of such fuels are easy and effective. However, biomass compaction could 

imply high costs when performed in non-self-sustaining facilities. 

3.4.4 Biomass compaction 

Agricultural and forestry residues like rice husks and wood leftovers have very low bulk 

densities. This results in high costs for transportation, and also complicates the processing, 

storage and firing. Biomass could undergo an upgrading process -for instance densification 

into pellets or briquettes- in order to produce solid biofuels with more uniform properties. 

However, pelleting and briquetting should consume the minimum amount of energy possible 

in order to be economically justifiable (Werther et al., 2000). The densification of materials is 

achieved by increasing its mass per unit of volume.  Biomass densification is usually defined 

as compression or compaction of biomass to remove inter- and intra particle voids with 

expected benefits such as: more efficient storage and transportation, reduced biomass losses 

and moisture reduction. Moreover, it improves the physical homogeneity of the fuel and 

increases its total energy content (Kaliyan and Morey, 2009 and Mani et al., 2006). The 

densification of biomass hinders dust emissions and explosion risks.  

Figure 3.7 shows different mechanisms for compaction. At low pressure, rearrangement of the 

particles takes place, leading to closer and denser packing, the energy is dissipated in 

overcoming particle friction. The magnitude of the effect depends on the coefficient of 

interparticle friction.  

 

Figure 3.7: a) At low pressure, b) At high pressure with brittle material, c) At high pressure with elastic and 

plastic material (adapted from Pietsch 1991) 
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At higher pressures, the stress applied at interparticle contacts will cause fractures followed 

by the rearrangement of the fragments and thus a reduction in volume. At higher pressures, 

the elastic and plastic deformations of the particles may occur, causing the particles to flow 

into void spaces and increasing the area of interparticle contact (Pietsch, 1991).  

Pelleting is widespread for producing animal feed and briquetting for compressing coals, 

minerals, and metals (Kaliyan and Morey, 2009). The process comprises pre-treatment such 

as grinding, drying and mixing with additives if necessary. Compression occurs through 

pressing the feed material through dies by rollers for pelleting or extruders for briquetting. 

High energy density, high strength and durability are the main aims of compression. Success 

mainly depends on particle size, compression force, moisture content, and on natural or added 

binders (Kaliyan and Morey, 2010 and Mani et al., 2006).  

 

Figure 3.8: Straw pellets (own source) 

In most industrial facilities, the compactor (pelleting mill or briquetter) is connected to a 

biomass drier and a biomass grinder. Some types of residues like rice husks, do not need 

drying, but sawdust and sugar cane bagasse, for example, have an initial moisture of more 

than 50%, which could hinder the densification process. Moisture can be removed from the 

feedstock by oven-drying or by blowing hot air over or through the particles. If the feedstock 

is too dry, moisture can be added by injecting steam or water into the feedstock.  Large plants 

typically use a portion of their raw material input to provide heat for drying. 

Drying and grinding biomass fuels provide significant benefits to compaction processes and 

boiler operation, but they must be balanced against increased capital and operating costs.  The 

drying is considered the most costly process regarding the overall energetic balance of 

biomass compaction. This will be discussed in more details in Chapter 5. Most of the 

discussions and descriptions are based on information for woody biomass, but the information 

would generally apply to bagasse, husks and other types of residues. 
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3.4.4.1 Drying 

Prior to any application as combustible or fabrication to pellets and briquettes, biomass 

requires drying e.g. the extraction of incorporated water. There are three requirements for 

drying biomass: a source of heat, a method for removing the evaporated water and some form 

of agitation to expose new material for drying (Lipták, 1998). In industrial scale, the moisture 

of biomass is diminished using driers.  

The mechanisms of water incorporation are dependent on the material properties, such as 

fiber content and share of plant tissues. Drying is a complex equilibrium process consisting of 

linked mass transport, interior and across boundary surfaces, with and without phase change. 

The gradient and duration of drying is dependent on material properties, particle size, air 

properties and drying technique. For water evaporation theoretically 2.44 MJ/kg (water) have 

to be provided by the drying air (Kaltschmitt et al., 2009).  

Freshly harvested wood can have water content up to 55%. Residues from sawmills (slab and 

splinter) and sawdust generally have moisture content between 25 – 40%. Residues from 

carpentry (sawdust and small pieces) have the lowest moisture content between 4 – 10%. For 

direct usage of wood log and chips, drying is recommended, preliminary to combustion but 

not strictly regulated (Kreimes, 2008). With respect to moisture content regulations, drying is 

required for pellet, briquette and wood chip production, in order to achieve maximum water 

content of 12 % (ZALF, 2009). The water content of herbaceous material at harvest time is 

between 35 – 40% and a subsequent swath drying reduces the water content to approximately 

15% (Kaltschmitt et al., 2009 and Eichhorn, 1999). 

Open air drying for wood requires a firm underground, regular turning and good irradiation in 

order to achieve water content of 20% within one day. The drying duration for split log varies 

between 9 and 10 month, depending on log size and bark, in order to achieve minimum water 

content of 15%. Freshly harvested herbaceous material has maximum water content of 40%, 

which often is reduced to a minimum of 15% by swath drying within a few days after harvest. 

For bulk goods and hay the effect of natural self-heating can be used, but no major energetic 

advantage has been demonstrated yet (Kaltschmitt et al., 2009). 

Wet feedstocks can be dewatered prior to technical drying by using drying beds, filters and 

screens, presses and centrifuges. Many strategies employ waste heat for drying in order to 

reduce the total energy input. The share of process heat usage and extra heating is case-

dependent, but is crucial for energy balancing. The common practice is to employ as much 
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waste heat as possible for drying combustibles. However, when selecting a dryer and 

designing a system, it is important to consider many factors in addition to energy efficiency, 

such as environmental emissions, operation and maintenance costs and recovery of 

marketable co-products.  

Biomass drying increases combustion efficiency, improves operation and can increase steam 

generation by up to 60% (Ross, 2008).  With moist fuels, 80% excess air may be required to 

prevent smoke formation in wood-fired boilers. Excess air can be reduced to about 30% with 

dry fuel. This reduction in excess air means less heat of combustion goes into heat air. Using 

less excess air also reduces sensible heat losses with the flue gases, increasing boiler 

efficiency. Less air flow through the boiler increases the residence time in the boiler and 

lowers the gas velocities, aiding in more complete combustion and reducing the amount of 

light fuel blown out of the fire box before it completely burns. 

Which drier is chosen for a particular application depends very much on the biomass 

properties, the opportunities for process integration (dryer and compactor) and the available 

environmental legislations (Amos, 1998). Drying biomass fuels has been considered as one 

crucial element of getting the most out of combined heat and power projects because dry 

biofuels increase boiler efficiency and lower atmospheric emissions. Nevertheless, economic 

factors may discourage the use of dried fuel. 

3.4.4.2 Grinding 

Size reduction is necessary before pelleting or briquetting. Common machines are hammer-, 

knife-, and disk-mills, and various choppers, chippers, and shredders (Yu et al., 2003). For the 

example of switchgrass it has been shown that the fibrous nature of grass leads to higher 

specific energy consumption for grinding than other herbaceous biomass (Mani et al., 2004). 

The size of the fibers and particles plays a crucial role on the compaction of residues. In the 

case of wood, the recommended particle size is of maximum 15 mm. For other materials, it 

can be larger depending on which biomass is applied. 

Grinding of raw biomass is carried out to reduce the size of the raw material into a desired 

particulate size. Grinding raw biomass can require significant amounts of energy. Shear stress 

and energy properties of biomass influence the size reduction process. Identifying shear 

response of biomass may improve knowledge to improve grinder design and reduce grinding 
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energy (Womac et.al, 2009). On the other hand, energy consumption for biomass grinding 

increases with decreasing particle size. 

3.4.4.3 Moistening 

Moisture content or water content is described using the wet basis (w.b) and the dry basis 

(d.b). Those concerned with power generation most often consider moisture content on a wet 

basis. The wet basis moisture content directly reflects the fuel value of biomass. The moisture 

content of biomass on the wet basis is the weight of water in a sample divided by the total 

weight of the sample (McGowan, 2009): 

Moisture content (w.b) % = (weight of water) / (total weight) x 100 

Despite of the type of biomass used for compaction and of the facility, namely a pelleting mill 

or a briquetter, the optimum moisture content for biomass densification may range from 8% to 

20% (w.b.) (Kaliyan and Morey, 2009 b) The addition of higher amounts of water can hinder 

the densification process, since more water cannot be absorbed by the biomass.  

Water as moisture in the biomass is one of the most useful agents that are employed as a 

binder and lubricant. Water acts as a film type binder by strengthening and promoting 

bonding via van der Waals forces by increasing the contact area of the particles (Pietsch, 

2005). With the help of heat, water induces a wide range of physical and chemical changes 

such as thermal softening of biomass, denaturation of proteins, gelatinization of starch, and 

solubilization and consecutive recrystallisation of sugars and salts. These physico-chemical 

changes affect binding properties of the biomass particles. 

3.4.4.4 Briquetting and pelleting 

The briquetter is a double-roll press with pockets that shape fine materials into quadratic or 

cylindrical bricks (Engelleitner, 1999). In most of European and German briquetting facilities, 

a piston extruder forms briquettes through a channel (Figure 3.9). Energy consumption of 

briquetting is also input dependent. The moisture content as well as material compaction and 

briquette shape play a major role. Additionally biomass briquetting and charcoal production 

sometimes are combined.  
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3.4.5 Biomass power plant technologies 

Biomass can be converted for power generation using several processes. Generally, the 

majority of biomass-derived electricity is produced using a steam cycle process, in which 

biomass is burned in a boiler to generate high-pressure steam, that flows over a series of 

aerodynamic blades causing a turbine to rotate, which in response turns a connected electric 

generator to produce electricity (U.S Department of Energy, 2006).  

Table 3.1: Biomass power technologies in commercial/demonstration phase  

Technology 

Category 
Biomass Conversion 

Primary Energy 

Produced 

Conversion and 

Recovery  

Final Energy 

Products 

Direct combustion  Stove/Furnace Heat Heat exchanger Hot air, hot water 

Direct combustion Pile burners Heat, steam Steam turbine Electricity 

Direct combustion Stoker grate boilers Heat, steam Steam turbine Electricity 

Direct combustion Suspension boilers: 

Air spreader stoker or 

cyclonic 

Heat, steam Steam turbine Electricity 

Direct combustion Fluidized-bed  Heat, steam Steam turbine Electricity 

Direct combustion Co-firing  Heat, steam Steam turbine Electricity 

Gasification 

(atmospheric) 

Updraft, counter 

current fixed bed 

Low Btu producer 

gas 

Comb. boiler, steam 

generator, turbine 

Process heat plus 

electricity 

Gasification 

(atmospheric) 

Downdraft, moving 

bed 

Low Btu producer 

gas 

Spark engine  Power, electricity 

Gasification 

(atmospheric) 

CFB dual vessel Medium Btu 

producer gas 

Burn gas in boiler 

w/steam turbine 

Electricity 

Gasification 

(atmospheric) 

Co-fueling in CFB 

gasifiers 

Low or medium 

Btu producer gas 

Combustion turbine 

and steam turbine 

Electricity 

Slow pyrolysis Kilns or retorts Charcoal Stoves and furnaces Heat 

Fast Pyrolysis Reactors Pyrolysis oil (bio-

oil), charcoal 

Combustion 

turbines, boilers, 

furnaces, reactors 

Heat, electricity, 

synthetic liquid 

fuels, (BTL) 

Anaerobic 

digestion 

Digesters, landfills Biogas (medium 

Btu gas) 

Spark ignition 

combustion turbines 

Heat, electricity 

Source: adapted from Overend, 2003 and Broek 1995 
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In a furnace, biomass fuel burns in a combustion chamber, converting biomass into heat 

energy. As the biomass burns, hot gases are released. Mechanical power is produced by a heat 

engine, which transforms the thermal energy from combustion of the fuel into rotational 

energy. The rotational energy is transformed into electric power in a generator. A power plant 

includes the boiler, in case of power generation from steam, a turbine or a motor, the 

generator and the cooling tower (UNFCCC, 2010).  

Combustion technologies convert biomass fuels into several forms of useful energy for 

residential, commercial or industrial uses: heat, hot air, hot water, steam and electricity (Table 

3.1). Scale of biomass combustion ranges from heat supply in private households with 10 - 

100 kWth via district heating with plant capacities of 0.5 – 10 MWth to combined heat and 

power plants up to a capacity of 80 MWth in most cases (Obernberger, 1998 and Werther et 

al., 2000). 

Commercial and industrial facilities use furnaces for heat through a heat exchanger in the 

form of hot air or water. On the other hand, a biomass-fired boiler is a more adaptable direct 

combustion technology because a boiler transfers the heat of combustion into steam. Steam 

can be used for electricity, mechanical energy or heat. Steam power stations mostly operate 

using waste wood at low steam parameters and less complex conversion technologies (FNR, 

2009).  

Biomass can be fired as bales (whole or sliced), as loose material (chopped, shredded, or 

milled), as briquettes, and as pellets. Each of these fuel types requires specific delivery, 

standards and furnace technology according to the form and size of biomass (Obernberger, 

1998). As wood, straw and energy crops are collected on a decentralized basis, it is feasible to 

use biomass in small-scale decentralized power stations. 

One efficient alternative for decentralized power stations is the combined heat and power 

plant (CHP), which along with electricity, also decouples the resulting heat so that it can be 

used. Since this type of plant produces heat and electricity at the same time, the energy fixed 

in the biomass can be used very efficiently (FNR, 2009).  

Biomass boilers supply energy at low cost for many industrial and commercial uses. A 

boiler's steam output contains 60 to 85% of the potential energy in biomass fuels. The 

conversion of solid biomass into electricity can be measured in terms of steam power process. 
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Modern large-scale steam power stations attain steam parameters of 250 bar and 560°C, 

giving degrees of electrical efficiency of 43% or more.  

The available alternatives for electricity production are limited by the fuel characteristics of 

solid biomass. Three important small scale processes today are the Organic Rankine Cycle 

(ORC), the steam engine and the Stirling engine. Since these have comparably low electrical 

efficiency, it only makes sense to use them if there is also a client for the heat produced. The 

ORC process and the steam engine are for instance to be found in the wood processing 

industry where off-cuts can be used as fuel and where both electricity and heat are required 

(FNR, 2009). 

The ORC process makes up of organic working fluids that have better evaporation properties 

than water. In this case electricity production also takes place via a steam engine, albeit a 

somewhat modified one. ORC plants come as compact designs with an electrical capacity of 

100 kWhel or more and an electrical efficiency of over 12% (FNR, 2009). 

The steam engine can be regarded as a modern version of the classic Wattsian steam engine 

except for the fact that it operates in a closed cycle. As the electrical efficiency does not 

exceed 15%, this engine only makes sense in places where the (waste) heat is also needed 

(FNR, 2009).  

The Stirling engine is able to convert energy into labour using generally the gas helium, 

which is not inflammable, via a cyclical process of changing temperature and pressure. 

Although the Stirling engine can run on just about any biofuel, this device has several 

technical constraints such as high level of particulate emissions, corrosion and heat loss. 

Stirling engines have an electrical output of below 10 to 40 kWel  and some larger units can be 

found. Recently, the main emphasis has been laid on CHP by combining pellet ovens with 

Stirling engines (FNR, 2009).  

There are two main types of boilers used in CHP plants and heating plants: grate boilers and 

fluidised bed boilers (bubbling or circulating). Both have good fuel flexibility and can be 

fuelled entirely by biomass or co-fired with coal (Junginger et al., 2008). However, 

combustion units are designed specifically for certain size ranges of fuels, for example 

pulverized or compacted fuels (McGowan, 2009).  

Grates are usually designed to fire compacted fuels like wood chips, bark and sawdust pellets 

and briquettes. The grate boilers range from 10 kWth household heating boilers to 50 MWth 
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dolomite. The technical disadvantages include agglomeration of bed materials, requirement of 

highly efficient gas-solid separation systems, high erosion rates of boiler internals due to high 

solid velocities, and high dust load in the flue gas. For dust emission reduction was 

recommended efficient aerosol precipitation and further treatment using electrostatic 

precipitators and bag house filters (Obernberger, 1998 and Werther et al., 2000).  

Bubbling fluidized bed boilers can function with a variety of fuels, such as straw, wood and 

even sludge. In these boilers, the fuel is combusted by means of hot bed material (sand) at the 

bottom of the boiler. The circulating fluidised bed boilers (CFB) are also multi-fuel, 

functioning also with coal. In this type, bed material circulates in the boiler and fuel is fired in 

the bed. They are larger than the bubbling fluidised bed boilers, with a capacity of 20-550 

MW (Junginger et al., 2008).  

Both types of fluidized bed combustors can be used to generate hot gas for drying or for steam 

production. In power plants designed for dried fuel, the boiler can be smaller because less heat 

transfer area is needed. Second, the higher flame temperature, the more complete the 

combustion of the fuel. This results in more heat release, lower carbon monoxide (CO) levels 

and less fly ash leaving the boiler.  

3.4.6 Combined heat and power generation (CHP) 

Cogeneration is the combined heat and power generation (CHP). It is defined as the 

simultaneous production of heat and electricity from a single fuel at a sufficiently high 

temperature. This can enable the furnace to achieve a high overall thermal efficiency.  

There are a number of cogeneration facilities fired by biomass used for power generation in 

the electricity sector and for heating in residential and commercial buildings. Biomass 

processing industries, such as the sugar cane industry in Brazil, have installed combined heat 

and power plants using biomass residues. Many of these have been relatively low-steam 

temperature installations, with only sufficient electricity to meet the plant processing needs 

(World Energy Council, 2007).  

Small-scale CHP essentially brings the power station to the user, usually in the form of a 

small reciprocating engine similar to a truck engine. This will drive an electrical generator 

typically with a power rating between 100 kW and 1 MW output. Especially hospitals, 

communities and large hotels, which have a sufficiently large year-round demand for both 

electricity and heat, should be encouraged to invest in their own CHP plant (Boyle, 2003). 
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Small sized and community based plants have an increased investment costs per kW and a 

lower electrical efficiency when compared to coal plants. Biomass power plant efficiency is 

around 30% depending on the plant size (EIA, 2007). Using high-quality wood chips in CHP 

plants with maximum steam temperature of 540°C, electrical efficiency can reach 33 – 34%, 

and up to 40% if operated in electricity-only mode.  

Although a small-scale CHP unit may only have an electricity generation efficiency of about 

30%, less than that a conventional power station, the ability to use the waste heat makes it 

more energy efficient overall. The overall energy inputs and outputs of a system are shown in 

the Figure below.  

  

Figure 3.13: Overall efficiency of conventional  CHP power plant  (adapted from Boyle 2003)   

The actual amount of waste heat that can be used, depends on the required temperature, but 

for typical heating applications the overall thermal efficiency can be over 80%. An alternative 

approach is to distribute waste heat as hot water from existing or adapted power stations via 

thermally insulated pipes to local buildings.  

3.4.7 Pellet production using CHP 

A sawdust pellet factory in the Lusatian region (East Germany) is able to generate 3.4 MW 

and produces approximately 60,000 tons of pellets per year using a cogeneration system. The 

heat is originated from the combustion of wood chips, which is used to dry the sawdust. This 

material is compacted into pellets. The availability of wood chips is influenced by the 

variations in the weather conditions, forestry harvesting periods, and also the market 

competition. The wood chips are burned with optimal moisture of 25-30%, without being 

previously dried. The combustion of woodchips does not cause corrosion problems in the 

furnaces.  
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The steam generated by the combustion of wood chips is transformed into heat to dry the 

sawdust. The sawdust is transported through bands where hot air is blown (70°C) until is 

dried. Sawdust is then grinded to a particle size ranging from 1-3 mm. Water is added (up to 

14%) to the material in order to allow the extrusion, and depending on the tree specie, binding 

agents, are added. The final output are the pellets, an upgraded product, which might be sold 

to national and international markets.  

The total electricity produced in the Lusatian pellet factory is sold to the grids. The selling 

price is 0.15 Euro/KWh due to the enforcement of the Renewable Energy Sources Act (EEG 

2009). Through a tariff system, the German government determines a price for each unit of 

electricity produced from CHP plants. For new facilities with capacities in excess of 5 MW, 

the entitlement to grid-feed payments under the EEG Act now only applies to electricity 

generated in CHP plants. The bio-electricity is typically more expensive than the standard 

price for electricity. The government provides either the grant from its own funds or may 

compel transition companies to purchase the electricity produced. In this particular case, the 

electricity used in the pellet factory is bought from ENVIA AG for 0.07 Euro/KWh. 

Therefore, this tariff system enables generators like the Lusatian pellet factory to operate 

economically. 

The production costs are approximately from 35 to 45 Euro/ton pellets and 315 kW for 

producing 11-12 tons of pellets per hour. The automatic packing using plastic bags accounts 

for almost the half of the production costs. The pellets are conditioned either in truck tanks, 

big bags or 15 kg bags. Approximately 85% of the pellet production is sold to wholesale 

dealers, the rest is commercialised to local household consumers. 

The pellets produced comply with two different DIN quality standards (DIN 2008). In 2008, 

the typical DIN pellet was sold for approximately 125 Euro/ton and the DIN Plus for 155 

Euro/ton for national and international (Denmark) wholesale dealers (Annex 1).  

 

3.5 Discussion 

As described in the Lusatian case study, electricity is bought in from all the competing power 

stations and then distributed through the central grid. The entrepreneurs’ view is that 

electricity is simply a product and the aim is to maximize sales at minimum financial cost. 

Conventional economic theory says that the best way to do this is through the use of 
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competitive markets and the best way to optimise such system is to leave it to the market 

(Green 2003).  

Electricity markets differ from other commodity markets in many aspects. Demand for 

electricity is inelastic in the short term, storing it is impossible, components of the value chain 

exhibit characteristics of natural monopolies, and reliable supply has great macroeconomic 

importance. In the latter half of the twentieth century, these features gave rise to 

uncompetitive market structures in many countries. By the 1980s there was considerably 

pressure within the European Union to threat electricity as a totally free market commodity, 

especially since there was considerable cross-border trade between different European 

countries (Zachmann, 2009). For free marketers, the privatisation of the electricity industry 

was seen as a role model for subsequent similar “liberalizations” of state-controlled systems 

elsewhere in the world. The key ingredient was that most of the power plants became 

privately owned and were required to compete with each other. 

Furthermore, there is the state involvement. A cheap and reliable supply of electricity is 

essential for economy growth. Also, new technologies such as biomass combustion may 

require high amounts of finance that only the state could provide. For example, in Germany 

there are incentives from the government to support the implementation of biomass-fired 

decentralized power plants. In the Lusatian case study, the entrepreneur is able to produce 

wood pellets using the electricity generated from wood residues. The surplus electricity he 

sells to the central grid, using a credit scheme, which allows the prices of his sold electricity, 

not be lower than the official price charged for conventional electricity. 

Biomass is considered as a promising option to contribute for future energy supply. As shown 

along this chapter, there are different biomass power technologies in commercial and 

demonstration phase. Nevertheless, research is necessary in order to improve existing 

technologies in order to get the full potential benefits. The next chapter will show some 

experiments that were carried out specifically for Brazilian biomass. 
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4 Properties of Brazilian biomass residues 
 

The use of biomass in several Brazilian regions might be an alternative for diversifying the 

energy matrix, which is mostly based on hydropower. The compaction of biomass could 

generate solid biofuels with more uniform properties. Furthermore, biomass combustion could 

be a cost-effective alternative for communities taking advantage of the resources available in 

the region to produce energy.  

In Brazil, several crop residues like maize stalks and sugar cane straw serve as fertilizers and 

are mostly unused as biofuel. The main reasons are the difficulties in collecting them, the non-

homogeneity and impurities. On the other hand, the agro-industrial residues like, rice and 

coffee husks and bagasse have higher homogeneity and are concentrated on the processing 

plants. Practically, all these residues could directly be compacted into pellets and briquettes 

and converted into energy. Nevertheless, the widespread mass production of compacted 

biomass for energy production face several limitations worldwide. The development of 

alternative approaches to tackle these and other limitations is still a challenge for the current 

research regarding the compaction and the combustion of biomass residues.  

The entire pathway of utilisation of solid biofuels is characterised by the kind of biomass 

used, its physical features and its chemical composition. The management of the residues 

includes the collection, storage and transport. These steps can also involve treatment, grinding 

and drying of biomass before densification (Wether 2000). Agricultural residues like rice 

husks and wood leftovers have very low bulk densities. This results in high costs for 

transportation, and also complicates the processing, storage and firing. Agricultural residues 

could encompass a number of problems during combustion, like considerable amount of 

ashes. Hence, the development of technologies for using renewable resources at commercial 

level is needed. 

The geographical, socio-economic and agricultural discrepancies from south to north Brazil 

have been taken into consideration during this work. The Federal State of Minas Gerais 

(Annex 2) is traditionally an agricultural State and most of the inhabitants of rural areas have 

access to electricity. Contrarily, the provision of electricity in rural north Brazil is scarce. 

Amazonian communities are not connected to the grid and diesel generators supply electricity. 

There, forestry predominates as main economic activity, followed by cattle breeding.  
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Based on the availability of residues in the Federal State of Minas Gerais, sugar cane bagasse, 

rice husks, coffee husks and sawdust from short-rotation trees were collected and transported 

to Germany. The aim of this chapter is to characterize agricultural and forestry residues 

regarding their chemical and physico-mechanical properties. The author performed an 

elementary analysis of different Brazilian biomass and analysed the following physico-

mechanical parameters: particle size distribution and pellet stability. The investigation of the 

pellet stability is relevant for implementing combustion and describing the economic 

feasibility of the fuel. 

 

4.1 Elementary analysis of biomass residues 

The characterisation of solid biofuels can be done based on chemical and physical-mechanical 

characteristics. The chemical composition of biomass fuels and specially the ash content 

influence the choice of an appropriate combustion and process control technology 

(Obernberger, 1998).  

The chemical characteristics includes criteria such as the concentration of certain elements 

(mainly C, H, O N, S, Cl, K and heavy metals); while the physical-mechanical properties 

primarily describe combustion related properties and mechanical characteristics able to be 

identified by several means including visual examination.  

Main physical fuel properties are calorific value, moisture content, particle size, bulk density, 

ash melting behaviour (Obernberger, 1998). The calorific value first of all depends on 

moisture content, decreasing linearly with rising moisture content (Jenkins et al., 1998). 

Furthermore it is negatively correlated to the ash content. With every 1% increase in ash 

concentration the heating value of the fuel decreases by 0.2 MJ kg-1DM  (Jenkins et al., 

1996). The significance of various physical-mechanical parameters and the range of their 

implications are described in Table 4.1. 
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Table 4.1: Physical-mechanical characteristics of biofuels and their relevance (adapted from Hartmann 2004) 

Parameter Effects/Relevance 

Combustion properties: 

Moisture content Storability, calorific value, losses, self-ignition, bulk density 

Calorific value Fuel utilization, plant design 

Volatile matter Suitability for gasification, combustion behaviour 

Ash content Particle emissions, costs for use or disposal of ashes 

Ash melting behaviour Operational behaviour, furnace slagging, heat exchanges 

Impurities Ash content, ash melting behaviour 

Physic-mechanical properties: 

Bulk density Transport and storage expenditures, logistical planning 

Particle density Combustion properties (specific heat conductivity, rate of gasification) 

Particle size distribution Pourability, bridging properties, operational safety during fuel 
conveying, drying properties, dust formation 

Bridging properties Pourability, operational safety during fuel conveying 

Stability Dust formation, disintegration, fuel losses 

 

The analysis of these properties for the Brazilian biomass was useful to determine whether the 

investigated residues could be used as biofuel. The results were compared with the European 

and German Standards for solid fuels. The European Committee for Standardization (CEN) 

and the German Institute for Norms (DIN) meet market requirements and enable efficient 

trading of biofuels. The DIN, together with the European Union, developed new standards for 

wood pellets (DIN EN 14961-2, 2010). The CEN is currently working on the improvement of 

standards for agricultural residues, which is not yet in force.  

According to Alakangas et al. (2006), the most important technical specifications, which are 

in implementation, summarize the classification and specification (CEN/TS 14961) and 

quality assurance for solid biofuels (CEN/TS 15234). The goal is to allow producers and 

consumers to select the property class of biomass that is corresponding to the desired fuel 

quality. 
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4.1.1 Material and methods 

Four types of Brazilian biomass were investigated: rice and coffee husks, sugar cane bagasse 

and sawdust from eucalyptus wood. The residues were collected in the Federal State of Minas 

Gerais. The coffee husks came from a large-scale farm located in the region called Zona da 

Mata. Rice husks and sugar cane bagasse were also collected in the same region, yet coming 

from small-scale agriculture. The local furniture and carpentry industry uses mostly 

eucalyptus wood, producing a high quantity of sawdust, which was also used on the 

experiments.  

During the months May and June 2008, the residues were collected, stored and dried. 

Moisture contents of 10 to 20% after drying are the precondition for storability in order to 

avoid decomposition process and increase combustion efficiency (Prochnow et.al 2009). 

Thereafter, the samples were packed and transported to Germany with a moisture value of 

approximately 13%. The analysis of the transported material was carried out in August at the 

BTU Cottbus. This investigation covered chemical and physico-mechanical aspects, such as: 

moisture, ash content, heating value and so on. These preliminary results are shown in the 

next chapters and were important to characterize the efficiency of the pellets as a fuel.  

4.1.2 Results  

The water content analysis was used to determine the processing feasibility of the material. 

Moisture varies according to climate conditions and harvest period. Rice, sugar cane, 

Eucalyptus sp. wood and coffee were harvested during the dry season. After the harvest, the 

residues moisture varied from 14 to 30%. This moisture content could accelerate residue’s 

decomposition process and increase its transportation costs. Hence, reducing the water content 

of the biomass was a necessary step before transporting the material. The biomass was 

exposed to air and constantly revolved for the period of approximately 6 weeks during the dry 

season. Afterwards, a moisture value of approximately 13% was reached and the material 

could be transported to Germany.  

The appropriate weather conditions in Brazil associated with the storage and workforce 

facilities allowed biomass drying with minimum costs. However, transporting and processing 

biomass with high moisture could be a time, energy and money consuming activity. As 

Holmberg and Ahtila (2003) described, power plant efficiency decreases when firing biomass 

with high water content. With wet biofuel, some heat of combustion is used to evaporate the 
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water in the fuel. Regarding dry fuel, all the heat of combustion goes into heating the air and 

produces the combustion.  

Figure 4.1(A) shows the moisture for different types of residues. Coffee husks and eucalyptus 

saw wood had satisfactory moisture values after being exposed to air, as defined in the 

methodology. Sugar cane bagasse presented the lowest value despite its high juice content. 

Considering that bagasse and rice husks presented moisture varying from 7 and 9% 

respectively, this biomass would need a shorter drying period. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 4.1: (A) Moisture content after 6 week drying; (B) Ash content (water free); (C) Lower calorific value 

and (D) Ash melting point (Missagia et al. 2011) 

The percentage of ashes generated by the combustion process related to the total water free 

weight of the used material is a relevant parameter for determining pellet mixtures. The ashes 

contain elements like Si, Al, Fe, Cl, Ca, Mg, S, P, Na and K, which influence the ash melting 

behavior and deposit formation (Jenkins et al., 1998; Khan et al., 2009; Obernberger et al., 

2006; Ogden, 2010). The quantity of calcium and magnesium presented in the residues can 

increase the ash content. Contrasting, sodium and potassium can diminish ash melting 
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temperatures. A high ash content can decreases the heat transfer efficiency of the boiler. 

Furthermore, it can hinder the economic feasibility of the fuel, because removing and 

transporting the ashes generate high costs (Obernberger, 1998). According to the European 

Norm and the German Institute of Norms (DIN EN 14961-2, 2010), the ash content for solid 

biofuels should be up to 3 % (Annex 1). As shown in Figure 4.1(B), rice and coffee husks as 

single samples presented high ash contents. Nevertheless, the development of mixtures using 

lower quantities of these residues could be possible. 

The lower calorific value shown in Figure 4.1(C) defines how much energy can be generated 

per amount of dried biomass. Rice husks presented the lowest heating value. This was due not 

only to its high ash content shown in Figure 4.1(B), but also due to its lowest quantity of 

elementary carbon (36.5 %) and hydrogen (6.3 %) compared to the other biomass. 

Contrasting, eucalyptus sawdust presented the best calorific value compared to husks and 

bagasse. This was due to its low ash content, and high quantity of elementary carbon (46,9%) 

and hydrogen (8,1%) in water free conditions compared to the other residues. According to 

the DIN EN 14961-2 (2010), the calorific value for compressed untreated wood should be at 

least 16 MJ/kg. As Figure 4.1(C) shows, the only residue that could not reach this standard 

was rice husks.  

The ash melting point has a direct effect on the slag formation. Furthermore, the melting of 

ashes in too low temperatures may cause operational problems in some types of furnaces. As 

shown in Figure 4.1(D), saw wood presented the highest temperature. All other residues 

presented acceptable temperatures for ash fusion based on practical experiences with 

furnaces. 

According to Biederman et al. (2005), wood fuels are characterised (with the exception of 

bark) by low ash content. On the other hand, straw, cereals, grasses and grains are 

characterised by considerable ash content and relatively high levels of chlorine, sulphur and 

alkali metals. These features were also identified in the Brazilian biomass samples. As 

expected, the Brazilian sawdust had the lowest content of ash from all the tested samples. The 

highest concentration of ash is found in the rice husks followed by the coffee husks. Their 

ashes contain comparatively low Ca but high K and Si contents and therefore start to sinter 

and melt at significantly lower temperatures than ashes from wood fuels (Table 4.2).  
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Table 4.2: Ash elementary analysis of Brazilian biomass 

 

The presence of the major ash forming elements: Al, Ca, Fe, K, Mg, P, Si, Ti was also 

analyzed in the samples. These elements are of relevance for the ash melting behaviour, 

deposit formation and corrosion (Obernberger et al. 2006). The dominating ash forming 

elements for rice husks and sugar cane bagasse are Si followed by K. High concentrations of 

K and Si can result in the formation of ashes with low melting temperatures and thereby can 

cause slagging on the grate as well as in the combustion chamber (Dahl et al. 2004).  

The guiding values for Cl and S in solid biofuels for unproblematic combustion provided by 

DIN (2010) were also considered for the assessment of the results of the tests carried out 

(Figure 4.2 and Figure 4.3). 
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Figure 4.2: Guiding values for unproblematic thermal utilization (DIN, 2010) and sulphur concentration in 

biomass fuels 

All of the fuel samples investigated exceeded the S guiding concentration for biomass fuels, 

being the coffee husks the one showing the highest levels (Figure 4.2). Sulphur is one of the 

elements responsible for deposit formation, corrosion, and aerosol and sulphur oxide 

emissions. Sulphur concentration should be lower than 0.04 % (DIN, 2010). According to the 

IEA (2007) there are some technological possibilities for reducing these values to the guiding 

ranges. These alternatives are: fuel leaching, the use of automated heat exchanger cleaning, 

coating of boiler tubes, appropriate material selection. On the other hand in order to reduce 

the SOx emissions the technological pathways suggested were dry sorption, scrubbers and 

fuel leaching. These measures are the same ones recommended for the reduction of HCl 

emissions to the guiding ranges. 

Chlorine as well is involved in corrosion, deposit and aerosol formation. Furthermore it 

causes hydrogen chloride and dioxin and furan emissions. Chlorine content should be kept 

under 0.03 % (DIN, 2010). All the fuel samples analysed exceeded the threshold indicated for 

the levels of chlorine (Figure 4.3). In Brazil, large-scale agriculture relies on the use of 

pesticides and fertilizers. Pesticide formulas usually contain Cl and S, which are absorbed and 

stored by the plant.   
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Figure 4.3: Guiding values for unproblematic thermal utilization (DIN, 2010) and chlorine concentrations in 

biomass fuels 

Ashes from biomass combustion contain significant levels of plant nutrients, which could 

make the use on soils feasible. Nevertheless the ashes could be disturbed by the deposition of 

heavy metals on plants and soils by environmental pollution. According to Biederman et al. 

(2005) it is therefore recommended to separate a small and heavy metal rich side stream of the 

ashes (filter fly ash) from the process and to utilise the major part of the ashes produced as a 

secondary raw material with fertilising and liming effects on agricultural and forest soils. 

 

4.2 Agglomeration behaviour 

Agglomeration is the process of gathering fine particles into permanent larger shapes in which 

individual particles can still be distinguished. Hence, agglomeration is related to the particle 

size of the biomass and the characteristics of those particles. The characteristics of single 

particles are usually enhanced as the particle size decreases. When decreasing particle size 

through grinding, the probability of imperfections in the compacted material diminishes, 

resulting in a reduced risk of breakage and a higher strength in the pellet or briquette.  

4.2.1 Material and methods  

Due to the characteristics of the pelleting test facility and the different constitution of the 

materials; biomass grinding and moistening before pelleting were necessary for some types of 

biomass. Since saw wood is already a dusty subproduct, it does not require grinding as seen in 
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Figure 4.4 (C). Coffee husks presented a crunchy and oily structure, Figure 4.4 (B), allowing 

this material be easily pressed and pelletized. Contrastingly, rice husks, Figure 4.4 (A), and 

sugar cane bagasse in Figure 4.4 (D) could not be pelletized in their raw form. Rice husks 

were often stuck in the pelleting facility due to its elastic properties. Therefore, it was 

necessary to grind the material. Sugar cane bagasse must be grinded due to its fibrous 

properties.  

 

Figure 4.4:  Raw biomass: rice husks (A); coffee husks (B); Eucalyptus saw wood (C); sugar cane bagasse (D) 

 

Figure 4.5:  Grinded biomass (4 mm): sugar cane bagasse (A) and rice husks (B) 

Grinding is a costly process, since it requires electrical energy to rotate the cutting knives. The 

finer the material is grinded, the more energy is consumed (Mani et al. 2004). Therefore, the 

maximum particle size of 4 mm was selected for the grinding process (Figure 4.5). 

Raw biomass (except of sugar cane bagasse) and grinded biomass were sieved in order to 

obtain the particle size distribution curves. The automatic sieving device (RETSCH - AS 

200/300 control) is constituted by a row of sieves with known mesh sizes placed one over 

another. The device is used to investigate how much percentage of each biomass sample 

remains at each sieve. A determined amount of material is added into the upper sieve. The 

machine was set to vibrate in a 10 second pulse for 5 minutes. Afterwards, the biomass in 
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each sieve is weighted and the empty weight of the sieve is subtracted. Finally, the weight of 

material having a certain particle size can be calculated and compared to the whole sample 

weight.  

Throughout the experiments, it was observed that the saw wood samples presented impurities. 

The material was retrieved from a small-scale carpentry in Brazil. Given that the saw wood 

residues have a scarce market value; the carpenters took a reduced amount of provisions 

during the collection and storage of this material. Hence, several screws, nails, stones and 

even cigarette rests were found in the samples. The cleaning of the material was carried out by 

the use of magnetic and air separation devices.  

The densification potential of the residues was investigated by the manufacturing of pellets. 

The pelleting process was performed with a laboratory compactor (BEPEX - L 200 / 50 G + 

K) producing approximately 10 kg of pellets per hour (Figure 4.6 and Figure 4.7). 

 

Figure 4.6: Laboratory pelleting device. Source: BEPEX - L 200 / 50 G + K 

 

Figure 4.7: Extrusion of biomass residues into pellets. Source: BEPEX - L 200 / 50 G + K 

1. Working area 

2. Pressure area 
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Pelleting was carried out after grinding. The four types of biomass used in these experiments 

had sufficient natural binding due to the lignin content in their vegetal matrix. Consequently, 

the addition of binding agents such as starch or vegetable oil was not needed for these tests. 

However, moisture content was amended in between 17.5% and 18.5% in order to enable the 

flow of the material through the pelleting holes after the pressing. As soon as the pelleting 

process was completed, the pellets were spread for drying. Otherwise, there might be a risk 

for fungus formation. The pelleting results can be seen in the next section. 

4.2.2 Results 

This section presents a series of results which were obtained for analysing the viability of 

pelleting Brazilian biomass. The fuel properties of agricultural residues vary in a wide range. 

The stage of vegetation growth is the major factor to affect chemical composition as well as 

some physical characteristics. The raw materials sugar cane bagasse, coffe husks, rice husks 

and saw wood were investigated and their physico-mechanical properties are shown in the 

following subchapters.  

4.2.2.1 Particle size distribution analysis 

The particle size of biomass plays a crucial role on the agglomeration of the material. 

Furthermore, the particle size distribution curves could help defining which material presents 

more uniformity for the pelleting. As Mani et al. (2004) reported, an uniform particle size 

distribution could enhance efficiency during fuel conveying into the pelleting device. 

Furthermore, it can help identifying whether drying or grinding of biomass is needed.  

As Figure 4.8 shows, coffee husks at raw form (without grinding) presented unsteady 

percentages of different particle sizes. Contrastingly, the Eucalyptus saw wood particle size 

distribution curve showed an uniform pattern, having more than 40% of its weight represented 

by a particle size of approximately 0,25 mm. This could be due to its previous processing in 

the carpentry and furniture factories in Brazil.  
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Figure 4.8: Particle size distribution curve for coffee husks and saw wood (raw form) 

The grinded rice husks and sugar cane bagasse showed an uniform particle size distribution 

(Figure 4.9) compared to the one of the raw coffee husks. Hence, the grinding of the material 

could reduce the variability of the particle size distribution, facilitating the pelleting process 

itself and contributing to the production of pellets with more uniform density.  

 

Figure 4.9: Particle size distribution for rice husks and sugar cane bagasse (4mm grinding) 

Nevertheless, depending on biomass properties like moisture, oil and lignin contents, it is still 

possible to perform a technically feasible pelleting without previous grinding. Coffee husks 

and saw wood showed moisture values of approximately 12% after being exposed to air, as 

defined in the methodology. However, it was needed to increase its moisture content up to 

approximately 18% in order to be compressed in the laboratory pelleting facility. It has been 



 118

tested that in large size facilities the original moisture content of the raw material is sufficient 

to carry out the extrusion.  

The process of extrusion can be defined as the formation of cylindrical agglomerates (such as 

pellets) by forcing a plastic mass through a perforated die, then cutting the extruded material 

or allowing it to break off (Engelleitner, 1999). As Figure 4.10 shows, Eucalyptus saw wood 

could be pelletized on its raw form being the resulting pellets perceptibly stable.  

 

Figure 4.10:  Pellets from Eucalyptus saw wood 

Considering the different dimensions of biomass upgrading, efforts should be made in order 

to determine the most suitable process parameters for each specific biomass assessed in order 

to minimize the costs of grinding while maximizing the uniformity of the final product. 

The relevance of the stability assessment -for densified biofuels- lies on the fact that this 

parameter characterises the risk of abrasion or break ups as consequence of handling and 

transportation processes. It is recommended the implementation of abrasion tests in order to 

have a quantitative measurement of the suitability of pellets for handling and transportation. 

Furthermore, it is also recommended to investigate possible biomass mixtures in order to 

enhance not only the physical characteristics but also the chemical properties of biomass 

energy pellets. 

4.2.2.2 Pellet stability: visually noticeable 

The stability of the agglomerates under research was examined by analysing the visually 

noticeable stability after pelletization. Stability is a parameter that depends on the pelleting 

technique employed. Solid biofuels with a higher stability guarantee that a bigger part of the 

pellet will arrive in one piece. On the other hand, solid biofuels with less stability have a 

tendency to disrupt and release fine dust or particles when they are transported or stored.   

The dust influences the combustion process and emissions negatively (Temmerman et al. 
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2004) and is considered as a health hazard while broken pellets may disturb the conveying 

process leading to an inhomogeneous fuel feeding during combustion.  

Significant changes in the experiment results arose due to modifications in the parameters of 

the pelleting process such as the force applied when been pressed during the extrusion, the 

particle size after grinding and the moisture content. 

The rice husks could be better pelletized when more force was applied during the 

densification process due to its elastic properties. Figure 4.11 (B) shows how even and glossy 

the pellet surface appears when higher forces are applied (1000 N), compared to the Figure 

Figure 4.11 (A) which shows pellets that had undergone the extrusion with less force (600 N).  

 

Figure 4.11: Pellets from rice husks, applying less force (A) and more force (B) 

Sugar cane bagasse showed different pelleting performances when using biomass of different 

particle sizes. The visually noticeable stability of the 4 mm particle size sugar cane pellet was 

considerably less than the 2 mm particle size pellets. Figure 4.12 (B) shows how rough is the 

surface of the 4 mm particle size sugar cane pellet when compared to 2 mm in Figure 4.12 

(A).   

 

Figure 4.12: Pellets from sugar cane bagasse grinded to 2 mm (A) and 4 mm (B) 

Pellets with rough surface have less stability, because they tend to release more particles and 

disrupt. When particles are released there is not only a fuel loss but also a risk of hindering the 

pellet feeding system and the combustion itself. Furthermore, a rough pellet surface has a 
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higher propensity of absorbing water molecules from the air and pellets with high moisture 

values are more likely to decompose. 

4.2.2.3 Pellet abrasion 

Further experiments were carried out in order to analyze the effects of water content and 

particle size in the strength and abrasion behavior of the biomass pellets. The selected 

biomass was Brazilian rice husks.  

 The rice husks were milled with 2 mm, 4 mm and 6 mm sieve meshes. The biomass was 

grinded with a cutting mill (SM 2000 Retsch). The moisture content was determined using the 

ASAE Standard S358.2 by drying the samples in an oven for 24 hours with a temperature of 

105 °C. Each experiment was repeated 5 times. The average water content of the raw rice 

husks assessed was 9.5%. Past experiments with rice husk pelleting showed that the ideal 

water content to ensure agglomeration was 17% - 20%, therefore the rice husks needed to be 

further moistened (Missagia et al., 2010).  

Pelleting was performed with the laboratory compactor Hosokowa Bepex, Type 

L200/50GþK. The rice husk pellets were tested for abrasion as described in the ASABE 

standard S269.4. Abrasion is the loss of particulate material due to handling of pellets, like 

transportation and storing. The abrasion tests were carried out with the three samples of 

pellets (made with the raw material grinded with the 2 mm, 4 mm, and 6 mm sieves). The 

samples were placed in the test rotating machine (Erweka AR 401) at a rotation speed of 50 r / 

min for 10 minutes. The sample was then sieved with a sieve having an aperture of (0.8 * 

pellet diameter) mm as suggested (Narra et al 2010). The difference in the weights of the 

pellets before and after the abrasion test gives the abrasion value. Each experiment was 

repeated 5 times. On the other hand, the ability of pellets to withstand forces such as 

compression, impact and shear can be measured by durability experiments. Three groups of 

tests were carried out to investigate the hardness of pellets against compression and bending 

strengths. These experiments were selected as such pressures might occur during handling, 

transportation, and storage of pellets (Narra et al., 2010). 

Compressive resistance is defined as the maximum crushing load a pellet can withstand 

before cracking or breaking (Kaliyan et al. 2009). The compressive stress behavior for rice 

husk pellets was obtained with the device (Zwick Roell-ZMART.PRO) As shown in Figure 

4.13, the rectangular compression die A is moved at a constant rate from top to bottom. The 



 121

pellet sample C lies on the fixed plane B. When the die A reaches the pellet C, the 

compression force would act on the pellet increasing the load gradually. The compression die 

A continues moving downward until the test specimen fails by cracking or braking. The load 

at fracture is read off a recorded stress–strain curve, which is reported as force. 

 

Figure 4.13: Compression stress principle  

The bending strength avoid pellets’ break when they experience a bending load. The “three 

point pressure” technique was used to measure the bending strength of the pellets. One load 

acts on the middle of the sample and another two forces act on the each side of sample to 

support it. Another bending strength test is the “point pressure” test in which the load acts on 

the middle of the material on the top and a plane supports the material from below (Figure 

4.14).  

  

Figure 4.14: Three point pressure (left) and point pressure (right) principle  

The pre-processing of the rice husks by grinding improves pellets’ stability by reducing air 

spaces between particles during the compression, allowing closer surface-to-surface contact 

for a given volume of feed. Nevertheless, the results showed that the stability of the pellets 

was only slightly affected by the particle size. Discrepancies on the abrasion from particles 

sizes ranging from 2 – 6 mm grinding with 19% moisture content were observed. However, 

the abrasion of the pellets made of raw material grinded with the 2 mm sieve was smaller than 

the pellets with an average particle size of 4 mm and 6 mm with three different moisture 
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contents. On the other hand, the water content had a considerable influence on the abrasion of 

rice husk pellets. The higher moisture content (for the three particle sizes) resulted in lower 

pellet durability. 

The abrasion percentage values of the pellets with 17% of moisture content were 4% (for the 

pellets made with the raw material grinded with the 2 mm sieve), 5% (for the 4 mm ones) and 

4.6% (for the 6 mm ones). The abrasion percentage of these three samples complies with the 

standard quality values of agricultural pellets as specified in DIN. 

 

Figure 4.15: Results of the abrasion test of rice husks pellets (abrasion percentage) 

Pellets with fine particle size and low water showed higher degree of hardness. Three groups 

of tests were made to investigate the hardness of the pellets. Figure 4.16 shows the 

compression stress of the pellets.  

Figure 4.17 and Figure 4.18 show the bending strength of the pellets with two different 

methods (point pressure and three point pressure). As shown in Figures 4.16, 4.17 and 4.18 

similar results were obtained when compared to the ones of the abrasion tests. 
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Figure 4.16: Results of the compression stress tests of rice husks pellets (load in N) 

 

Figure 4.17: Results of the point pressure tests of rice husks pellets (load in N) 

 

Figure 4.18: Results of the three point pressure tests of rice husks pellets (load in N) 
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In literature, there is disagreement regarding the impact of particle size in the durability of the 

final products. For instance, Kaliyan et al. (2009) suggested that generally, when biomass 

compaction is being carried out; the finer the grind, the higher the durability of the final 

product. On the other hand Grover et al. (1996) and Zahra (2006) noted that mixed particle 

sizes could give optimal pellet quality since they would make inter-particle bonding with 

nearly no void spaces. Furthermore, small particle sizes were identified as potential causes of 

blocking the pellet mills affecting production capacity (Shankar et al. 2010). The 

characteristics of the biomass, pre-conditioning processes, and densification equipment 

variables interact with one another (Kaliyan et al 2009). Therefore, in order to optimize the 

quality of densified biomass, the control of the system variables is a major requirement.  

Even when the abrasion percentage of the samples analyzed comply with the standard quality 

values of agricultural pellets as specified in the Agro and Agro+ standards from France; they 

would not satisfy the norms of the Önorm M7135 (<2.3%) and DIN EN 14961-2 (2.3% - 

3.5%). On the other hand it is important to note that these norms are designed for wood based 

pellets.  Therefore, an alternative to improve the abrasion behaviour of rice husks pellets 

could be to mix this material with wood.  Hence, more research would be needed in this 

regard. 

 

4.3 Discussion 

Even when all the processes aiming to produce pellets have a basic compaction mechanism in 

common, they can be carried out by a number of techniques. Each facility might use a 

particular method in order to manufacture specific types of products in respect to their 

diameter and length. 

Some parameters were here evaluated according to the technical specifications on solid 

biofuels implemented by the European Union in 2010 (EN 14961-2). The standards for wood 

pellets became stricter than the former regulations developed by the European Committee for 

Standardization (CEN) and the German Institute for Norms (DIN). These standards are only 

defined for wood biomass. The CEN is currently working on the improvement of norms 

including the ones for agricultural residues pellets, which is not yet in force. The obtained 

pellets complied with the European norms for wood pellets, presenting a diameter of 8 mm 

but a variable length ranging from 40 mm to 45 mm.   
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According to the results, the conversion of biomass into pellets and pellets into energy could 

be applied for Brazilian biomass. This potential should foster research towards new power 

plant technologies for decentralized energy generation. However, the socio-economic 

feasibility of pellet production in Brazil should be taken into consideration. This will be 

depicted in Chapter 5.  

Agricultural residues are usually widely available in Brazil. However, the ash content of these 

residues is relatively high compared to wood. This influences the choice of the appropriate 

combustion technology, deposit formation, fly ash emissions and the logistics concerning 

storage, utilisation and disposal (Obernberger et al. 2006). Therefore, more investigation on 

the combustion of blended biomass (wood and agricultural residues) should be carried out. 

The outcomes could result in technically and economically feasible alternatives for heat and 

power generation in Brazil. 

It has been implied that small-scale applications for pellets or other forms of compacted 

biomass like briquettes allow building up a supra-regional fuel distribution system. This 

enables a strong competition on the fuel market. On the other hand, a disadvantage is the 

relatively high fuel costs and the technical modifications on the combustion devices, which 

should be adjusted to sharp fuel properties (Kaltschmitt et al. 2004). In this regard, it has also 

been documented that an expansion of the subsidies or the creation of incentives could 

stimulate the diversification of the alternatives of supply by stimulating the producers to 

develop furnaces adapted specifically to certain fuel characteristics (Coelho 2009).  

The evolution of energy systems will require considerable time and expense in order to alter 

energy and raw material inputs, operations and products and to develop and introduce 

technological innovations, as well as to establish the infrastructure to support them. In order 

to identify possible technological-market deficits that could affect the introduction of biomass 

residues in the renewable energy trading schemes, the current Brazilian framework will be 

analyzed in the next Chapter.  
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5 Economic feasibility of biomass use for 

energy generation in Brazil 
 

One of the paths towards economic sustainability refers to the availability of access to regular 

electricity. Such access is a key element for the economic development of communities and 

for the reduction of poverty (Pereira et al., 2011). It can be assumed that electricity 

consumption in rural areas is considerably lower than in metropolitan areas. This holds 

particularly for the household sector where poverty levels are higher and overall population is 

low (EPE, 2008). 

The slow progress in expanding access to electricity is mainly due to the high costs associated 

to the extension of grids to remote areas and also the implementation of decentralized systems 

(Pereira et al., 2010). Even when there are resources available to expand the energy 

generation based on biomass; this needs to be done with the enhancement of socio-economic 

conditions of the communities involved. Therefore, this Chapter focuses on the economic 

feasibility of biomass energy systems, considering the social groups directly involved with its 

production.  

The supply chain of five kinds of Brazilian biofuels (sugar cane bagasse, eucalyptus sawdust, 

coffee husks, rice husks and native wood sawdust) will be analysed by the author. The 

German experience in the compaction of biomass and conversion technologies for heat and 

power generation is taken as reference to identify market scenarios for Brazil.  

The use of local biomass and the compaction can diminish storage and transportation costs. 

However, due to the variety of biomass production chains in Brazil and the type of technology 

applied, costs vary broadly. The author analyzes three alternatives for biomass use in different 

facilities: compaction into pellets and briquettes, power generation and integrated heat and 

power generation with biomass compaction. Several biomass supply chains were depicted in 

order to understand the current application of biomass residues, particularly in rural areas of 

Southeast and North Brazil. Both regions were chosen based on the availability of electricity 

for rural populations.  

The several possibilities for biomass utilization have pros and contras from the economic 

feasibility perspective. The author proposes alternatives for several supply chains based on 
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real parameters and real scenarios. The main objective of the economic feasibility analysis is 

to propose alternativess for using biomass with different outcomes, namely solid biofuels, 

heat and electricity. Of major interest is the compensation effect through material compaction, 

which allows material transportation over longer distances. The production of pellets and 

briquettes integrated with heat and electricity generation is considered as a promising 

alternative for rural communities, depending on the availability of biomass residues. 

 

5.1 Economic feasibility: theoretical background 

Financial engineering provides a variety of tools for benchmarking. The focus lies on 

investment appraisal, which is required to estimate the benefit of investments. An objective 

view of capital values can be obtained by either static or dynamic calculation strategies. Both 

provide information on predictable consequences of the investment in order to give an aid for 

decision-making. Besides technological, legal and other economical aspects this is one of the 

most influencing factors, apart from personal preferences. 

5.1.1 Methods for investment appraisals 

The static methods are easy to perform and therefore cheap. In these methods the time related 

to cash flow is neglected. An average of all outgoing and incoming payments is calculated to 

give short-term prediction or rough estimations. These methods cannot account for internal 

dependencies and are bound to one period (Olfert, 2008).  

The cost comparison method is only used to compare two investments regarding their costs by 

calculating costs per period or per unit (Jossé, 2007).  

cost ሺper unit or periodሻ  ൌ  
∑ ௙௜௫ݐݏ݋ܿ ൅ ∑ ௩௔௥ݐݏ݋ܿ

 ݀݋݅ݎ݁݌ or ݐ݊ݑ݋݉ܽ ݊݋݅ݐܿݑ݀݋ݎ݌ ݈ܽݐ݋ݐ

eq. 1 

The calculation considers variable and fix costs (see eq. 1) including imputed depreciation 

and imputed interest rate. The latter includes the costs of external finance, regardless of the 

origin, by a given interest rate (Jossé, 2007). The imputed depreciation takes the loss of value 

for the employed goods (material, machinery, tools, etc.) into account. Based on the real 

service life any good’s shrinking value is calculated by means of the replacement cost at the 
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end of lifetime (Eichhorn, 1999). Depreciation is good-dependent and can be linear (see eq. 

2), declining, inclining or activity related (Olfert, 2008).  

linear depreciation ሺprice per yearሻ ൌ
ݐݏ݋ܿ ݐ݈݊݁݉݁ܿܽ݌݁ݎ െ ݁ݑ݈ܽݒ ݈ܽݑ݀݅ݏ݁ݎ

݂݈݁݅ ݁ܿ݅ݒݎ݁ݏ  

eq. 2 

The profit comparison method is an extension of cost comparison by incorporation of 

revenues. It is also used to compare two investments (Jossé, 2007). 

return ሺper unit or periodሻ ൌ
ݐݏ݋ܿ െ ݁ݑ݊݁ݒ݁ݎ
݀݋݅ݎ݁݌ ݎ݋ ݐ݅݊ݑ  

eq. 3 

The amortization method determines the break-even-point, when an investment is paid off 

independently. In the static method the difference of initial investment and residual value is 

related to the return and depreciation per year (Jossé, 2007). 

amortization time ሺyearsሻ ൌ
ݐݏ݋ܿ ݐ݊݁݉ݐݏ݁ݒ݊݅ െ ݁ݑ݈ܽݒ ݈ܽݑ݀݅ݏ݁ݎ

݊ݎݑݐ݁ݎ ݈ܽݑ݊݊ܽ ൅  ݊݋݅ݐܽ݅ݐܿ݁ݎ݌݁݀ ݈ܽݑ݊݊ܽ

eq. 4 

The leveled energy cost method is a combination of the above listed static methods and 

calculates the price per unit of provided energy, based on all included investment and 

production costs (Quaschning, 2009). This method is appropriate in order to calculated 

comparable results, which serve for decision-making. Based on leveled energy costs different 

energy sources can be compared and identified advantageous. 

leveled energy cost ൌ

ሺ݅݊ݐݏ݋ܿ ݐ݊݁݉ݐݏ݁ݒ ൅  ∑ ሻ௘௡ௗݐݏ݋ܿ ݊݋݅ݐܽݎ݁݌݋
௦௧௔௥௧

൘݀݋݅ݎ݁݌ ݂݈݁݅ ݁ܿ݅ݒݎ݁ݏ

ݎܽ݁ݕ ݎ݁݌ ݕ݃ݎ݁݊݁ ݀݁݀݅ݒ݋ݎ݌   

eq. 5 

A greater significance with respect to static methods can be achieved by consideration of 

dates for outgoing and incoming payments. These dynamic approaches consist of several 

methods (present value, accumulated value, internal rate of return and annuity). However, the 

author considered the annuity method for the dynamic calculation of costs. 
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The annuity method calculates the annual profit factor of an investment as a product of 

present value and the capital repossession factor (annuity factor). The annuity factor is 

dependent on the service life n and the interest rate i. 

ANF୷ୣୟ୰,୧ ൌ  
ሺ1 ൅ ݅ሻ௡ 

ሺ1 ൅ ݅ሻ௡ െ 1 

eq. 6 

annuity ൌ  ଴ܹ · ANF୷ୣୟ୰,୧ 

eq. 7 

The annuity method permits evaluation of additional investments for extension and 

compensation or defined periods within the service lifetime. For an annuity greater or equal 

Zero the project can be profitable. In the latter case not less than the invested capital flows 

back over service lifetime. 

 

5.2 General approach for economical feasibility of CHP 

plants 

Generally, the design capacity of CHP power plants can be determined by heat requirements 

for heat-operated facilities and by electricity requirements for power-operated facilities. The 

main driving force is long-term stability of prices for biomass fuels. In order to achieve break-

even of cost and benefit for heat-operated systems, the amount of generated heat must equal 

the amount of a competing system, for example heating a boiler (Steinborn, 2009).  

The additional costs for a CHP facility must be compensated by electricity generation. The 

value of generated electricity must equal the excess investment cost for the CHP (Steinborn, 

2009). The generated electricity can be applied in two ways, as feed-in to power grids or to 

cover own requirements. In the first case, the value of electricity is determined by the selling 

price. In the second case, the value of electricity is determined by the opportunity cost of 

electricity, for example the price which has not to be paid. 

The annual load duration curve determines the amount of required heat during the year 

(Figure 5.1). With seasonal variations in heat demand a decrease in electricity production 

might occur. The example shows full load service time only for circa 30% of the whole year. 
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availability of sufficient biomass supply can be checked by means of fuel requirement 

calculation. The efficiency of the reference power plant determines fuel input requirements. 

Assuming capacity utilization above 90%, fuel supply should enable about 8,000 service 

hours per year (Brauer, 2009). 

The chosen technology for energy conversion is dependent on the prospected power plant 

capacity (Table 5.2).  

Table 5.2: Possible conversion technologies for biomass combustion (Gaderer, 2009 and Schwarz, 2009); 

acreage calculated according to Kaltschmitt (2009) 

                                                     
Energy conversion technology 

Electrical 
efficiency   
(%) 

Initial  
investment costs 
(US$/kW) 

Typical 
capacity 
(MWel) 

Approximate 
required acreage 
(Thousand ha) 

Co-firing (CF) 35 – 40 1,100 – 1,300 10 – 50 5.4 – 27 

Dedicated Steam Cycle (DST) 
10 – 30 

25 – 35  
3,000 – 5,000 

5 – 25 

25 – 500 

2.7 – 13.5 

13.5 – 270 

Integ. Gasif. Comb. Cycle (IGCC) 35 – 48  2,500 – 5,500  25 – 50 13.5 – 27  

Organic Rankine Cycle (ORC) 10 – 20  2,500 – 3,500  0.1 – 5  0.06 – 2.7  

Gas Engine (GE) 25 – 30  3,000 – 4,000  0.2 – 10  0.54 – 5,4 

Stirling Engine (SE) 10 – 25  5,000 – 7,000  < 0.1 < 0.1 

As shown, some technologies are only applicable for medium scale capacities, what entails 

large area requirements e.g. longer transportation distances and fuel prices. On the other hand 

technologies for small-scale applications have higher investment costs per kW and lower 

electrical efficiency relative to coal plants. Electricity costs in cogeneration mode (CHP) 

range from US$ 40 - 90 / MWh (IEA 2007). 

However, according to Walter et al. (2008) Brazilian mills are producing surplus electricity 

from residual sugarcane bagasse since 1996 (exceeding 12 kWh per tonne of biomass 

crushed: the estimated electricity self consumption of a characteristic mill). Therefore, most 

of the Brazilian mills can operate in a self-sufficient way. According to Desplechin (2011) in 

Brazil, currently, bioelectricity from bagasse is funnelled back into the sugarcane mills to 

meet 75.5% of the sector’s electric energy demands. Besides, any power surplus is sold to 

local electricity grids. 
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Due to the variety and availability of raw materials and type of technology applied, costs of 

biomass power plants vary broadly. The economic feasibility of biomass plants is dependent 

on the existing supply and process chains of raw material. Hence, it is a challenge to identify 

typical costs for biomass heat and electricity generation. Nevertheless it is recommended to 

use local biomass to avoid costly and energy-consuming transportation. Furthermore, the 

compaction of biomass can diminish storage and transportation costs. 

5.2.1 Biomass supply and process chain 

In the following section, the process chain of some Brazilian wooden and fibrous biomass will 

be described. Here the main energy consuming steps are size reduction and drying. For 

allocation of fibrous material as fuel after harvesting generally no pre-processing is 

performed. Exceptionally due to rainy weather during harvest preliminary drying might be 

required. For combustion whole bales or lose straw are used as input material. In Brazil, the 

classic biomass use in large-scale plants is sugar cane bagasse. 

For wooden biomass, starting with acquisition from forests, size reduction is conducted with 

varying levels of mechanisation. This directly reflects in energy input and working hours for 

resource allocation. For harvesting wood men-hours per solid-cubic-meter vary from 3.6 

mh/scm for private harvesting to 0.3 mh/scm for professional harvesting (FNR, 2007). With 

application of harvesting, skidding and forwarding machinery the working effort can be 

reduced to 0.17 mh/scm (Roßmann, 2009). This increases energy input from forest to 

sawmills, by factor 10 compared to manual labour (Jamieson, 2007). In Europe and Northern 

America due to increasing wages, manual operation is substituted by machinery. 

Mechanization levels in Asia and Southern America are badly recorded.  

The only wooden energy source, which subsequent to harvesting requires no further 

processing, is wood log. For direct usage of wood chips drying is recommended, preliminary 

to combustion but not strictly necessary (Kreimes, 2008). Sawdust can be used directly in 

fluidized bed combustion without any further processing. 

Material allocation costs can be derived by consideration of the process steps as listed in the 

following: 

- harvesting 

- processing (mixing, compaction, drying) 

- storage and transportation 
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By determination of energy and labor cost for each process step a price can be calculated 

based on input factors or process factors. This reflects the minimum price for the biomass 

resource. The input factors for biomass production can vary due to a range of possible 

production steps and material qualities. For residues the main variations are: 

- material density and water content 

- amount of residues 

- transportation distance  

- impurities of material 

Thus the supply cost for combustible materials are not fixed for one material type, but 

dependent on the allocation scenario. Production residues already went through a production 

process and therefore the expected variation of physical parameters is respectively low. 

The key properties for raw material processing are water content and dimension e.g. drying 

and size reduction requirements. These attributes determine energetic efficiency (not 

applicability) of the raw material for energy source products. For example, wood from slab 

and splinter with a length of 2 m still is applicable for pellet production, but mechanical 

processing might be consuming too much energy for large-scale application. This reflects in 

pellet production costs, not in their energetic advantage over fossil energy sources. 

In summary, production costs e.g. primary energy input for solid biomass fuels are only 

comparable based on raw material origin. Fuel crops consist of the full supply chain and 

therefore require the highest effort for allocation. The supply costs for biofuels are not fixed 

for one material type, but dependent on the allocation scenario. Therefore, the author picked 

several supply chains of biomass residues, located in specific regions, with different holders, 

with existing allocation and commercialization plans.  

5.2.1.1 Biomass supply: coffee husks 

The coffee production in Brazil can be classified into small-scale farming (l5 - 10 ha farm 

size) medium-scale (below 100 ha) and large-scale farming (above 100 ha). At remote small-

scale farms and medium-scale farms coffee is still dried with sunlight, with subsequent 

peeling. But approximately 80% of these farms (INCOFEX, personal communication) 

transport the unprocessed coffee bean over a maximum distance of 70 km to a processing 

plant, at total transportation costs of 100 BRL per ton. 



 139

 

 

Figure 5.3: Dried coffee (left) and coffee husks (right). (own source) 

At the processing plant beans are dried using the heat generated by the coffee husks, whereby 

1 ton coffee results in 0.5 ton of husks. The surplus of husks is sold to chicken farms. The 

coffee exporter enterprise INCOFEX burns coffee husks to dry the coffee beans (Figure 5.4). 

The efficiency of the furnaces is often low, due to the equipment situation and also to the low 

bulkiness of the husks. The director reported that 250 kg of husks are used to dry 

approximately 4 tons of coffee beans.  

  

Figure 5.4: Coffee husk furnace (on the left) for drying coffee beans (on the right) 

Additionally, INCOFEX is selling coffee husks to chicken farms. These farms use the coffee 

residues as a substrate for chicken beds. As reported by a coffee producer in Vicosa, at the 

Federal State of Minas Gerais, the commercialization of husks often happens at zero costs. 

Several chicken farms use coffee husks for chicken beds. As an agreement, chicken farmers 

collect the husks at zero costs plus transportation of 100.00 BRL / ton (ca. 30 km) to the 

chicken farms.  

After the chicken beds are ready for disposal, coffee farmers collect the enriched coffee husks 

with chicken excrements to be more efficiently used as a bio-fertilizer. The use of poultry 
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litter as organic fertilizer is an attractive alternative to make production more profitable due to 

the total or partial substitution of the chemical fertilizers (Benedetti 2009). 

It was reported by the author that large-scale coffee producers are selling the husks (BRL 

60.00 / ton) to the chicken farms and neglect the enriched fertilizer. The average price of 

chemical fertilizers in Minas Gerais is BRL 50.00 / ton. The bio-fertilizer costs varies from 

BRL 70.00 – 120.00 / ton (MFRural, 2011). It was also reported that several coffee producers 

integrated chicken farming in their production systems. 

5.2.1.2 Biomass supply: rice husks 

In the region of Vicosa, most of the rice husks production supplies chicken farms. The 

cultivation of rice is done in small scale, mostly organically. Through the processing of rice 

30% residues arise. Several chicken farms use rice husks for chicken beds. As an agreement, 

chicken farmers collect the husks at zero costs plus transportation of 100.00 BRL / ton (ca. 30 

km) to the chicken farms. Simirlarlly to the coffee husk supply chain, farmers collect the 

enriched rice husks with chicken excrements to be used as fertilizer.  

5.2.1.3 Biomass supply: eucalyptus sawdust 

The author investigated 6 small-scale sawmills in Southeast Brazil: 5 in the Federal State of 

Minas Gerais and 1 in the Federal State of Espírito Santo, and found out that most of the 

sawdust is sold to chicken farms, to be used in chicken beds. However, according to Walter et 

al. (2009), only in São Paulo, there are approximately 5 thousand pizza-houses and 8 thousand 

bakeries, in which ones 70% of energy source is charcoal or firewood, which is being 

gradually changed to wood briquettes.  

  

Figure 5.5: Sawmill in Espírito Santo (own source) 
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5.2.1.4 Biomass supply: Amazonas sawdust 

In North Brazil, the author investigated 3 communities in the Federal State of Pará (Amazon), 

which produce sawdust and use for the generation of heat and electricity.  The investigated 

region is rich in water resources. Hence, most of the population uses canoes and motorboats 

as main transport. The transportation of wood logs for the sawmills is done using the river 

systems (Figure 5.6).  

Figure 5.6: Wood log transportation in Amazonas 

The logs are kept in water before milling. Once wood is removed from water, it needs to be 

used subsequently in order to avoid biomass decomposition, caused by high temperature and 

moisture of the air.  

5.2.1.5 Biomass supply: sugar cane bagasse 

The Organic Sugar Cooperative visited by the author cultivates sugar cane and produce 

organic sugar using bagasse for generating heat, which is used on the processing of sugar cane 

juice. In total, the association produces approximately 700 tonnes of sugar cane per year. 

From this amount, 200 tonnes of bagasse is obtained and used for cooking the sugar cane 

juice and producing brown sugar. The organic sugar is freighted with trucks to Belo 

Horizonte, the capital of Minas Gerais, and sold in rural markets.  The transport cost 100 BRL 

/ ton of sugar. 
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Figure 5.7: Sugar cane harvest (on the left) and milling (own source) 

  

Figure 5.8: Sugar cane bagasse (on the left) and bagasse combustion for cooking sugar cane juice (own source) 

Table 5.3 shows the factors that influence the allocation of biomass in the initial phase of 

utilization and also the existence of a market chain. The data regarding the production of 

residues per year, transportation distance to processing plants was collected on the facilities 

visited by the author.  

 

 

Table 5.3: Investigated biomass supply chains in Brazil and biomass properties 

Residues Origin Ton / year Transport Impurities Market Destination 

Coffee husks Minas Gerais 300 70 km No Yes Heat generation 
Chicken farms 
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Rice husks Minas Gerais 50 30 km No Yes Chicken farms 

Eucalypt sawdust Minas Gerais 1000 20 km Yes Yes Chicken farms 

Amazon sawdust Pará 4,500 Fluvial Yes Yes CHP Briquet facility 

Bagasse Minas Gerais 200 0 km Yes No Heat generation 

* Coffee husks (Saenger et al., 2001); rice husks (Mansaray and Ghaly, 1997), eucalyptus sawdust (Higashikawa 

et al., 2010); Amazonas sawdust (Rendeiro, 2010) and bagasse (Wade, 2004). 

Generally, the biomass residues present low bulk density. Hence, farmers and holders of the 

biomass business should care about the conditioning of residues, in order to avoid moisture 

increase and changes in the physico-chemical properties. Moreover, as greater the volume, as 

costly is the allocation of this material.  

The compaction into pellets or briquettes could enhance bulk density and improve the 

physical characteristics of the fuel. The coffee husk fuel can save storage and decrease risks 

of biomass ignition. Hence, it could be used direct in the furnaces for drying the coffee beans. 

Another option could be the commercialization of the coffee husk pellets to the chicken 

farms. The transportation of a compacted material decrease the allocation costs and inserts a 

new product on the agricultural market. However, compaction facilities demand investment 

costs, which in most of the cases cannot be decked by smallholders.  

 

5.3 Biomass utilization alternatives for Brazil 

The main cost factors influencing the implementation of biomass projects are listed in the 

following: 

− Investment costs of biomass plants 

− Investment costs for power grid and heat grid connection/construction 

− Investment costs for working media allocation (water, electricity, diesel, etc.) 

− Running costs for operation (fuel, fresh water, fuel, chemicals, disposal cost, waste 

water, electricity) 

− Running costs for personal (salary, social service, tools) 

− Other costs (maintenance, insurance, fees, rent, office) 
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The initial investment costs are referred as capital costs. They are determined by the credit 

amount, which results from planning and construction cost and the common interest rate. By 

means of the annuity method, within a given service life period, the annual payment to the 

credit grantors (annuity) can be calculated. By determination of running cost factors and all 

other costs, the annual payments can be opposed to the annual return from electricity and heat 

selling (cost comparison method). The analysis of running and other costs is performed 

statically. Only capital costs are considered dynamically assuming a constant interest rate. 

This approach calculates the present facility revenue. The results can be used for further 

economical calculations with dynamic methods, which are not applied because of lacking 

information on future interest rates and price changes. 

 

Figure 5.9: Analysis approach for agriculture and forestry residues and production residues (own source) 

The economic feasibility of energy generation from biomass consists of two general 

considerations. Initially, the costs for energy conversion in the utilization phase have to be 

calculated (Figure 5.9). This involves facility planning and construction, running costs, 

personal costs and other facility related cost factors. 

The most influencing financial factors are initial investment costs, fuel cost and market price. 

The investment costs are dependent on availability and advance of the applied energy 

conversion technology. The market price for electricity and heat may vary regionally and 

temporarily in a manageable range. The fuel costs are dependent on nominal market prices 

e.g. demand for the biomass resource or supply costs. Therefore these three factors can 

determine cost-effectiveness alone and have to be tuned in order to achieve positive returns. 
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Generally, the price for fuels is included in running costs. But for agriculture, forestry and 

production residues in Brazil there are often no market price. By means of allocation cost 

analysis an input price can be determined. This cost reference can be transformed into a 

nominal fuel price by predictive market estimations. 

The nominal fuel price can be used in order to calculate cost functions for several scenarios 

for biomass fuel application. Three main approaches can be applied: the distribution of 

compacted biofuels from production centers (Figure 5.10, compaction case); the concentration 

of biomass at supply hotspots exclusively for electricity generation (Figure 5.10, power 

generation case) and biomass for heat and electricty generation with the production of 

compacted biofuels (Figure 5.10, integrated case).  

 

Figure 5.10:  Selected scenarios for biomass utilization in Brazil (own source) 

5.3.1 Compaction case for biomass residues utilization 

The compaction case presents a scenario for the valorization of biomass through the 

production of compacted biofuels (pellets and briquettes), independent from integrated energy 
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Biomass compaction refers whether to regional or to local production of biomass pellets and 

briquettes. Primarily the regional approach involves a production facility with industrial 

capacity. The design of the facility depends on the available amount of residues. A maximum 

transport distance of 30 km has been set in order to keep transportation costs low. The 

discharge of regional pelleting facilities exceeds 1 ton per hour.  

The local approach refers to transportable machines with a lower capacity and a small 

discharge rate, with maximum 300 kg per hour. These machines require an appropriate input 

material condition with suitable particle size and water content. The operator is responsible to 

fulfill quality requirements. Production of pellets generally requires understanding of 

cohesion mechanisms or at least defined routines. The quality of produced pellets, in 

particular abrasion resistance, may vary due to input material quality variations and 

difficulties during the production process.  

The production of briquettes is easier to handle for semi-skilled workers. Defined routines for 

input particle size and water content are necessary, but the process is less sensitive to input 

material quality variations, compared to pelleting. Even manual briquetting is possible, with a 

hand-operated device. The reported discharge with 300 kg per day is far below mechanical 

devices and only suitable in low labor cost regions, but at much smaller investment costs of € 

1,500 (Gladstone, 2009). 

Another option to save investment cost is the application of mobile pelletizing machinery. 

This device is operated with a diesel generator and can be considered a cutting edge 

technology. The maximum capacity is suitable to large-scale and the device is mobile, 

additionally it also applies for small-scale production. As rule of thumb for economic 

feasibility in Germany, an annual production of 1,000 tons has been reported to be sufficient 

(Kraft 2011, personal communication). 

Additionally, all machinery types distinguish in quality, durability and maintenance service. 

The maintenance costs are subject to skill level of operators, raw material quality and type, 

climatic and installation conditions. Generally, the durability of briquetting devices has been 

reported to be more long-lasting than pellet devices (Wornath 2011, personal conversation). 

Spare parts, such as flat matrices and “Koller” for pelleting devices have been indicated as 

cost intensive equipments (Seipp 2011, personal communication). 
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5.3.1.1 Methodology for compaction case calculations 

Through field research and personal conversation, the author performed a selection of 

compaction machinery for pellets and briquettes. All nominal data, given by technical 

description and list prices have been used, in order to compare costs (see cost comparison 

method) of the single devices. The difference of shipping cost is considered to be marginal 

and is not discussed further.  

Table 5.4: Input data for cost comparison method 

Biomass compaction Unities 

Minimum production capacity kg/hour 

Maximum production capacity kg/hour 

Required electrical power kW 

Total investment costs (nominal) BRL 

Based on investment costs, energy consumption costs and wage costs, comparison of the 

devices had been calculated, with a nominal output of 1 ton compacted material. For financial 

considerations the input material price has been left out, assuming an equal price for all 

production facilities. Anyway raw material costs do not refer to the compaction process itself 

and therefore could be externalized and considered later. In Table 5.5, several compaction 

machines have been listed. 

The energy costs were calculated based on machine power, service hours and electricity price. 

Here the maximum electrical power requirement was taken from technical data sheets (see 

Table 5.5), weighted with service hours and an average electricity price of 350 BRL/MWh 

(ANEEL, 2011).  

In case of fully equipped devices (industrial pelleting facility and mobile pelletizer) 

crushing/drying cost are included. For other machinery they are added as external electricity 

cost. The cost calculation for pelleting and briquetting devices involves crushing/drying cost 

per ton, based on the industrial scale with no heat integration. Due to strong dependency on 

raw material input quality and/or particle size distribution, here maximum costs per ton had 

been assumed for all machinery, in order to achieve a basis for comparison. Finally the 

maximum production output during, with maximum annual service hours results in a nominal 
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maximum output. This is weighted with the related maximum energy cost, in order to 

calculate specific energy cost. 

Table 5.5: Description of compaction machineries for further cost comparison analysis 

Pelleting machinery Installed Power Company Required workers Man-hours/ton 

Industrial pelleting  260 kW AGICO 3 3 

Mobile pelletizer            
(for hire) 

220 kW BauerPower 
1 1* 

Local pelletizer 30 kW MABA 1 3,3 

Local pelletizer 7,5 kW PP 0,25 1,7 

Local pelletizer 4 kW PP 0,25 2,5 

Local pelletizer 3 kW PP 0,25 4,2 

Briquett machinery Installed Power Company Required workers Man-hours/ton 

Industrial briquetting  22 kW WEIMA 1 2,9 

Local briquetting  7,5 kW GROSS 0,25 1,6 

Local briquetting  4 kW WEIMA 0,25 6,25 

Local briquetting  3 kW RUF 0,25 6,25 

By assuming 8,000 annual service hours within a 10 years lasting lifetime of each device, the 

linear description is calculated and included to annual capital cost. This approach implies no 

external debt, for example a completely bar payment of the device at production start-up.  

Generally, two cases of production are distinguished. Primarily, the regional approach 

requires raw material transportation to the industrial pelleting facility. Another option is 

transporting the mobile pelletizer to the raw material. For both transportation options 

distances are assumed 30 km and cost are calculated with a referred transport price. The 

mobile pelletizer can travel a maximum distance of 60 km, but this is strongly dependent on 

the conditions of Brazilian roads. Secondly, the local approach uses biomass from the vicinity 

and requires no transportation. 

The author considered that for all machineries, the operation of the devices is performed by 

workers, who are granted with a minimum salary of 500 BRL/month in Brazil. Only in the 



 149

case of the mobile pelletizer (for hire) the German wage is applied for comparison purposes. 

It is important to notice that the mobile pelletizer is until now not employed in Brazil. Hence, 

the German conditions were applied for specific costs calculations. Later on, another 

approach for a mobile pelletizer scenario for Brazilian conditions (community approach) is 

described aiming potential future application. The technical description of the considered 

devices includes worker effort considerations and serves as basis for calculation of wage cost. 

The worker wage cost for the mobile pelletizer (for hire) is considered to be the 24-fold of 

Brazilian minimum salary within the German entrepreneurial case. According to an existing 

business example, production costs split into nominal wage cost / hour and production cost / 

ton. The calculated production cost of 70 EUROS / ton cover the expenses on energy and 

wage in the case of regular production. In case of irregular production, for instance due to the 

low quality of biomass, production capacity decreases and therefore machine operation time 

increases, when producing 1 ton of pellets. Therefore, splitting the costs into 35 EUROS / 

hour for wage and 35 EUROS / ton for energy has proven to be applicable. The application of 

this approach (machine for hire) has been reported to trigger a learning effect, which promotes 

proper preparation of raw material (Seipp 2011, personal communication). 

The entrepreneurial mode of operation includes business objectives, with a benefit to the 

company owner. It is completely handed over to the customer and is represented as capital 

cost when hiring the device. The mobile pelletizer could be applied in Brazilian communities 

by assuming machine usage at cost coverage. The case is balanced by applying capital and 

wage cost approaches like for the other related machineries (Table 5.5). Capital costs 

calculate as linear description from investment costs for the service lifetime. The wage costs 

are based on working effort and Brazilian minimum salary. The energy costs are calculated by 

means of required energy input (technical description) and Brazilian fuel (diesel) prices.   

The calculation of overall production costs per unit (see cost comparison method), whereas 1 

ton of pellet or briquette is produced, allows a first analysis of different organization 

strategies. The considerations are made to evaluate the production cost for pellets or 

briquettes, when leaving the production facility and enable modular application of the results. 

5.3.1.2 Results    

The specific production costs for related compaction machineries were calculated and the 

results differentiate considerably. The analysis was performed for pellet facilities and 
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briquette facilities separated. The capacity of biofuel production for the investigated 

machinery is fixed and related to costs. For higher capacities different price changes have to 

be considered. Normally, investment costs for local machinery double with 2-fold capacity. 

Here, investment costs are considered capital costs.  

For industrial machinery investment costs can be considered as almost linear with capacity. 

Although parallel usage of preparation or feeding devices is possible, the core parts, such as 

‘Kollergangpresse’ (for pelleting) and compactor (for briquetting) need to be doubled for 2-

fold production capacity. As these parts contribute to the main investment and main energy 

costs, the resulting capital and energy costs marginally deviate from linear increase with 

capacity (WEIMA 2011, personal communication). 

Figure 5.11shows the costs of pellet production from a free of charge biomass residue. This 

was calculated based on the production of 1 ton of pellets. For regional applications the 

transportation costs to the facility or to raw material (mobile pelletizer) account to a large 

share of the overall cost. The transportation costs for the mobile pelletizer in a community 

operation mode is slightly higher than for entrepreneurial operation. For local machinery 

preliminary crushing and grinding are considered as external costs with a maximum value. 

Cost basis are the pre-treatment energy and wage costs of an industrial process. For local 

application prices increase with decreasing capacity due to constant wage cost and lower 

output.  
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Figure 5.11: Comparison of production costs for different pelleting approaches. 

Figure 5.12 shows the costs for briquette production under the same circumstances of 

pelleting cost calculations. Due to lower quality requirements of the input material, 

(Kaltschmitt 2009) the external costs for drying and crushing can be assumed to be 

significantly lower with respect to pelleting. But for sake of comparability here the 

preliminary material treatment costs have been set equal. For local devices, the investment 

costs of briquetting machinery are considerably high due to developed technology and 

hydraulic parts.  

 

Figure 5.12: Comparison of production costs for different briquetting approaches. 
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As shown above, the biomass fuel production costs for small-scale machinery (power input 3 

kW and 4 kW) are lower with pelleting then with briquetting devices. On this scale 

briquetting has as practical advantage, due to less dependency on input material quality 

(Kaltschmitt 2009). Therefore the desired product, a compacted biomass fuel can be produced 

with higher stability. Moving to medium and large-scale applications (power input > 7.5 kW), 

the production costs for briquettes are slightly lower. Though dependency on raw material 

quality still exists and costs for preliminary treatment can be significantly lower for the 

briquetting process it is considered as the best applicable approach. 

As shown above, the biomass fuel production costs for small-scale machinery (power input 3 

kW and 4 kW) are lower with pelleting then with briquetting devices. On this scale 

briquetting has as practical advantage, due to less dependency on input material quality 

(Kaltschmitt 2009). Therefore the desired product, a compacted biomass fuel can be produced 

with higher stability. Moving to medium and largescale applications (power input > 7.5 kW), 

the production costs for briquettes are slightly lower. Though dependency on raw material 

quality still exists and costs for preliminary treatment can be significantly lower for the 

briquetting process it is considered as the best applicable approach. 

The compaction of biomass could be an alternative to save energy, transport and storage 

costs. However, due to the variety of biomass production chains in Brazil and the type of 

technology applied, costs vary broadly. The German experience in the biomass compaction is 

taken as reference to define market scenarios for biofuels in Brazil.  

The fabrication of pellets and briquettes requires processing, which is dependent on primary 

input material. Biomass water content and particle size determine the extent of energy input. 

Input diameters can be from some µm (sawdust) to many cm (wood chip).  

The composition of raw materials for pellet and briquette production is locally and temporally 

fluctuating while the process steps remain. In Brazil, briquettes are used as a fuel in several 

applications: industrial furnaces (pig iron), ceramic industry and bakeries. Many authors have 

described the environmental and socio-economic benefits of compacted biomass residues: 

easy handling, higher storing availability, substitutes wood logs, less emissions, higher 

calorific value and fuel uniformity when compared to wood.   
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5.3.2 Power generation case for biomass residues utilization 

The power generation case represents application of unprocessed non-compacted agricultural 

and production residues exclusively for electricity generation. Material availability and 

transportation plays a major role in the cost calculations. In this case, sufficient biomass fuel 

supply is assumed. Transportation costs are included to biomass fuel prices. The maximum 

transportation distance is assumed to be 30 km. 

The power generation case excludes heat-operated facilities and any profit from heat selling. 

Therefore, only leveled electricity costs determine cost-effectiveness of the facility. The 

technology for energy conversion is dependent on the prospected power plant capacity. In this 

survey two power plant types were chosen. Their technical frame variables are listed below. 

Table 5.6 Conversion technologies for biomass combustion (adapted from Gaderer, 2009 and Schwarz, 2009) 

Energy conversion 
technology 

Electrical 
efficiency   
(%) 

Thermal  
efficiency 
(%) 

Initial investment 
cost                 
(BRL/kW) 

Typical capacity 
(kWel) 

Dedicated Steam Cycle 
(DST) 10 – 30 80 – 90 5,300 – 8,700 5,000 – 25,000 

Organic Rankine Cycle 
(ORC) 10 – 18  66 – 83 4,400 – 6,200  100 – 5,000  

Stirling CHP8  9 – 12  85 – 90  8,740 – 13,570   Less than 100 

 

5.3.2.1 Methodology for power generation case calculations 

The investment costs for conversion technologies have been used and adapted to the Brazilian 

market, by adjusting initial prices according to comparable Brazilian reference biomass 

projects implemented in the Federal State of Pará by the University of Pará (Rendeiro, 2011) 

and in the Federal State of Ceará by the municipality Fortaleza in cooperation with the Chair 

of Power Plant Technology in 2009 at the Brandenburg University of Technology (BTU 

Cottbus). 

The base investment costs refer also to the average initial investment costs given in Table 5.6. 

A business-planning tool used for a biomass power plant design in Fortaleza, gives all 

operational and investment cost factors. This was developed using template data from the 

                                                 
8 Biedermann (2004) 
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Lusatian biomass power plant in Sellessen (Vattenfall, 2011). The cost calculations for 

different fuel materials and technologies were performed with a broad data input.  

Electricity output accounts as exclusive return of the biomass plant. Application of heat and 

CO2 certificates were excluded in the primary step. The power plant capacity was set with 200 

kWel due to small-scale approach and comparability to a case study in Pará (Rendeiro, 2011). 

Design referring to annual load curve does not apply for electricity-operated facilities. 

According to Table 5.6, the electrical efficiency of a power plant is dependent on the capacity. 

In order to achieve a practical comparison, the efficiency of a DST plant was set to maximum 

and for ORC plant set to minimum. The reason for such comparison is that the efficiency 

range from the ORC technolgy is relative small. On the other hand, the efficiency range from 

DST technology is larger (Table 5.6). This enables to present a range of possible costs. 

Many cost factors are sufficiently described with linear dependency on power plant size 

(investment, operational and other costs). As mentioned above, the biomass power plant in 

Sellesen and additionally a related business plan for Brazil (Fortaleza) have been used as cost 

factor basis. By extrapolation to other power plant capacities the cost factors were adapted. 

The behavior of personal costs is not linear. Here approximations from practical experience 

were used to estimate working effort (personal communication).  

The time frame for amortization of the reference power plant was set to 10 years. This period 

refers also to the minimum service lifetime. Linear depreciation has been excluded by aiming 

at cost-benefit comparison before tax. In case of extension of the service life over 

amortization period, the annual capital costs only include the area rent, because of no further 

debt. Therefore it is called service life, which is the period of payback for any initial 

investment for facility construction. In the Figure below, the annuity of a reference power 

plant using ORC technology was used for the sake of simplicity, in order to illustrate the 

behaviour of annual capital costs.  
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Table 5.7: Cost factors for calculating the electricity generation case 

Cost factor Unit Value Data Background 

General Data   

Maintenance cost % 3 Often applied value 

Disposal - cost for ashes per t 100 PC11 

Annual field rent per year 16,700 Template 

Fuel derived data   

Heating oil demand      

(extra power device) 

l/a 0 Extrapolation 

Drinking water  per m³ 5.85 Extrapolation 

Well water  per m³ 0.002 Arbitrary 

Ash per lorry T 10 Common capacity 

Price/ash transport per transport 150 CAGECE12 list price 

Rent for toploader  per hour 20.3 Template 

Waste water price per m³ 0 PC 

Well water treatment  per m³ 0 PC 

Internal 

Electricity data 

  

Peak load fee (12 h) kW / month 23.18 CELESC13 list price 

Base load fee (9 h) kW / month 4.3 CELESC list price 

Average connection Hours / day 12 Arbitrary peak load time 

Peak load prices 

(consumption) 

  

     Dry season per kWh 0.25434 CELESC list price 

     Wet season per kWh 0.22996 CELESC list price 

Base load prices 

(consumption)  

  

     Dry season per kWh 0.15834 CELESC list price 

     Wet season per kWh 0.14419 CELESC list price 

Other costs   

Insurance                                 

(2,5 % of invest cost) 

per year 2.5% Template 

Demolition                

(0,0055 % of inv.) 

per year 0.00055 Template 

The consumption of external electricity for power plant operation can contribute a large 

amount to annual running costs. Therefore two scenarios have been applied. The external 
                                                 
11 Personal communication 

12 Companhia de Água e Esgoto do Ceará 

13 Electricity concessionary in Santa Catarina 
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electricity usage scenario assumes complete selling of generated electricity and purchase of 

electricity with prices charged by the regional concessionary CELESC. The internal 

electricity usage scenario assumes coverage of internal electricity requirements by own 

generation. Hence the latter approach enables grid-independent operation of the power plant, 

when objecting island solutions. Also this is an option to lower running costs when internal 

generation is cheaper than external purchasing.  

For the initial financing of power plant implementation two different approaches apply. They 

represent viewpoints of the facility owner. The self-financed approach assumes full payment 

of the facility by the owner, by means of credits without any preliminary owned capital. Here 

the service life period is used to payback creditors from facility returns. With the annuity 

method, required annual payments can be calculated. The applied interest rate (6 % p.a.) was 

taken from the business plan for Fortaleza. Using an annuity credit, annual payments are 

constant for the duration of service life (see Figure 5.13). The resulting annuity (paying back 

plus interest) accounts to a large share for capital cost of the facility. The “grand fathering” 

approach assumes donation of the reference power plant by government or any other entity. 

Here only area rent accounts to capital cost, which are reduced to a minimum.  

Grid service fees are neglected as they are considered to be included in connection costs 

(Table 5.7). The annual power plant revenue before tax is calculated as difference of returns 

minus all costs. By weighting all costs with annual electricity output, the specific generation 

costs (leveled energy cost) can be determined. Both results are comparable with existing 

references. 

5.3.2.2 Results  

By determination of all cost factors and returns from electricity selling in Minas Gerais and 

Pará, the economical situation of two applicable technologies can be described. The strong 

dependency on biomass fuel prices can be observed in a cost function. For Minas Gerais, the 

feasibility of biomass power plants was calculated for sugar cane bagasse, coffee husks, rice 

husks and eucalyptus saw wood. For Pará, sawdust from native woods was considered in the 

calculations.  

In Figure 5.14, the annual return and annual material costs for the self-financed approach in 

Minas Gerais with external electricity usage are presented comparing sugar cane bagasse (w 

50 %) and coffee husks. Since sugar cane bagasse (w 50 %) is available free of charge, 
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biomass power plant project is necessary. By using minimum efficiency for ORC and 

maximum for DST, feasibility borders can be determined. The average costs from internal and 

external electricity usage were used to calculate the electricity costs of a 200 kW power plant, 

considering different financing scenarios and technologies.   

 

Figure 5.16: Electricity generation costs for 200 kWel nominal power plant under Brazilian price conditions: 

CEMIG (black line), CELPA (grey line) and auction scheme (dashed line) and different schenarios: (a) DST and 

self-financed; (b) DST and grand fathering; (c) ORC and self-financed and (d) ORC and grand fathering 

The specific electricity generation costs for bagasse (w 50 %) are considerably low. Due to 

the minimum fuel price here 5 BRL / MWh can be achieved at the lower border for “grand 

fathering” and 16 BRL / MWh for self-financed approach. This allows external electricity 

usage in any case and participation in auction schemes.  
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The achieved return from electricity selling (external el. usage) still compensates expenses on 

electricity purchasing, assuming an electricity consumption price of 190 BRL / MWh, 

including connection cost. For island solutions (internal el. usage), according to the above 

listed conditions, the possible return is lowered by 6 % in average (see Figure 5.15) due to 

required internal electricity usage. For the considered capacity (200 kWel) annual internal 

electricity consumption accounts 4% of generation.  

A combination of technically possible power plant efficiencies (Table 5.7) has been analysed 

step-by-step. The aim was to achieve a cost coverage of a power plant in operation, with 200 

kWel nominal power. By using different electrical efficiencies, dependent on applied 

technology and input raw material, the economic feasibility was determined in Table 5.9.  

Table 5.8: Economic feasibility for different financing approaches, technologies and biomass  

Raw material Organic Rankine Cycle Dedicated Steam Cycle 

Grand fathering                                                                      Economic Feasibility 

Bagasse (w 12%) high high 

Bagasse (w 50%) high high 

Eucalyptus sawdust (w 12%) high high 

Coffee husks (w 12%) high high 

Rice husks (w 9%) low high 

Native wood ( w 30%) high high 

Self financed                                                                            Economic Feasibility 

Bagasse (w 12%) low high 

Bagasse (w 50%) high high 

Eucalyptus sawdust (w 12%) low low 

Coffee husks (w 12%) no low 

Rice husk (w 9%) no no 

Native wood (w 30%) high high 

The raw sugar cane bagasse with water content of 50 % is applicable in any mode if the 

material and transportation price is zero. On the other hand, the utilization of coffee husks, 

eucalyptus sawdust and rice husks for power generation, considering the investigated supply 

chains in Minas Gerais, could not be feasible for self-financed biomass projects using ORC 

technology. 
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Due to slightly higher investment costs (see Table 5.6) for DST when compared to ORC, 

auction prices cannot be undercut. But alternative electricity supply for remote areas, with 

island solutions is still beneficial. Raw materials with an overall price above R$ 160 can be 

considered as hardly applicable to any mode of selling.  

5.3.3 Integrated case for biomass residues utilization 

The integrated case has as main compensation effect, the biomass compaction, which allows 

selling of an additional product. Additionally material transportation over longer distances 

and storage abilities are improved. The main objective of the cost examination is to calculate 

feasibility scenarios for combined heat power generation with the additional production of a 

marketable biofuel. The integrated concept refers to an industrial cluster. Here agricultural 

and production residues serve as fuel for a CHP facility. Additionally the excess amount of 

material is processed into briquettes for commercialization.  

The integration of waste heat for preliminary material drying is a technically feasible process 

step (B&B Bioenergie, personal communication). According to the facility located in Calau, 

Germany, the required drying temperature is considerably low, about 50 °C. The theoretically 

required heat annual amount for hot air drying with the belt dryer, assuming low dryer 

efficiency with 30 % is calculated with 370 kWhth/ton. This thermal energy can be provided 

by waste heat of the power plant. The additional equipment with heat exchangers and drying 

chambers increases initial investments cost, but the amount is comparatively low with respect 

to combustion technology. Electricity consumption cost of the dryer (belt dryer in Calau) is 

provided by the power plant and included to the balance as internal electricity requirements.  

Compared with the calculated annual heat amount of approximatelly 7,300 MWhth/year in a 

power plant with 200 kWel nominal power (ORC with 18% efficiency), sufficient heat can be 

provided for drying. Therefore the water content of bagasse can be reduced from 50 % to 12 

mass %. This enables to exploit a higher calorific value parallel to zero transportation cost, 

due to local availability of bagasse (w 50%). By reducing the raw material price to zero, fuel 

costs do not contribute to leveled energy costs. Hence the amount of applied fuel is regardless 

for price calculations and therefore electrical efficiency no longer affects economic feasibility 

of the integrated power plant. Lower electrical efficiency requires a larger amount of fuel. 

This has a back-effect on drying because larger raw material input requires more drying 

energy. Based on annual fuel input and available thermal energy the feasibility of integrated 

drying is calculated. 
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For different electrical efficiencies different amounts of fuel are required. Due to regional 

organization of biomass supply the availability is limited. In order to check sufficient supply 

of biomass the required raw material amount for a 200 kWel facility is calculated. Primarily 

the analysis of the integrated case examines local electricity generation without raw material 

transportation. Therefore bagasse and native wood have been chosen as fuels in the first step. 

Due to their availability as free of charge raw material they remain locally at their generation 

source. The technical frame conditions concerning cost factor extrapolation, service lifetime 

and service hours remain.  

The annually produced amount of sugar cane bagasse was reported with 200 ton, in the 

prospected region. The required amount (4,100 ton / year) exceeds the locally available 

material by far. Therefore additional bagasse has to be transported to the power plant in order 

to operate with 200 kWel. No excess raw material is available, which disables the option of 

material compaction. With a local fuel supply approach a power plant with 200 kWel has too 

high fuel requirements. 

A feasible scenario for an integrated power plant, without additional fuel transportation to the 

investigated community, would provide a nominal electrical power below 100 kW. This 

rather micro-scale of generation requires an applicable technology. The above listed ORC and 

DST processes are not suitable. Therefore a Stirling CHP facility has been chosen as reported 

by Obernberger (Biedermann, 2004). Here the waste heat can be used for bagasse drying and 

integrated to the local production of sugar.  

As resource integration bagasse (w 50%) from sugar cane refining can be handed into a local 

dryer, driven by waste heat from the power plant. The dried bagasse will be used as fuel for 

the Stirling CHP facility. The generated heat is used primarily used for Stirling operation, 

secondary in the sugar refining and tertiary in the bagasse drying process. The generated 

electricity is used internally for machine operation (internal electricity usage) and the excess 

amount can be sold to the local concessionary. 

Assuming combustion of internally dried bagasse with water content of 12 mass % fuel input 

to the power plant can be calculated. After evaporation of water from the raw bagasse (w 

50%) approximately 114 ton bagasse (w 12%) per year can be used as fuel. The drying of 

bagasse requires heat energy input. By applying hot air drying with 30% efficiency, the 

required annual amount of heat is calculated with 74 MWhth/year (B&B Bioenergie, personal 

communication). The electrical energy consumption of 5 MWhel/year by the dryer is 
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considered as internal electricity usage. The investment costs of drying technology (1,000 

BRL / year) are included in the capital costs. The facility service lifetime is fixed to 10 years, 

assuming 8,000 annual working hours.  

Table 5.9: Economic analysis of a 7 kWel sugar cane bagasse CHP plant with Stirling technology 

Small-scale sugar cane bagasse CHP plant in Minas Gerais 

    Self-financed  Grand fathering  

Specific electricity generation costs BRL 41 MWh BRL 23 MWh  

Capital cost  BRL 11,200 / year BRL 2,700 / year  

Planning cost  BRL 0 / year BRL 0 / year  

Running cost (fuel)  BRL 0 / year BRL 0 / year  

Running cost (material) BRL 2,100 /year BRL 2,100 /year  

Running cost (personal) BRL 3,900 /year BRL 3,900 /year  

Insurance and other fees BRL 1,700 / year BRL 1,700 / year  

Return  BRL 15,800 / year BRL 15,800 / year  

Annual yield without taxes -BRL 3,100 / year BRL 5,400 / year  

Annual electricity generation 43 MWh / year 43 MWh / year  

Initial investment cost BRL 63,0 BRL 63,0  

As indicated in Table 5.9, this approach cannot achieve cost coverage for a self-financed 

approach. For such micro-scale solutions even optimization of small cost factors, like field 

rent can result in better feasibility. In order to find a feasible solution the breakeven point was 

calculated for integrated drying of bagasse in a local micro-scale power plant.  

For the self-financed approach this facility requires at minimum 11 kWel nominal power in 

order to achieve cost coverage. Here the leveled energy costs equal regional electricity 

customer prices charged by CEMIG (390 BRL/MWh). The returns from electricity selling 

cover generation costs. Due to calculation model deviation (+ 10 %) this value should not be 

handled as an absolute threshold, but as a feasibility range.  

Considering the grand fathering approach, the use of bagasse for heat and power generation 

combined with compaction is feasible at cost coverage with a 4 kWel facility. With self-

financed approach, the power plant capacity would be 9 kWel. Both capacities implies 

sufficent bagasse supply. The lower border of economic feasibility is between 4 and 9 kWel 
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nominal power. The required area for the production of 16 tons bagasse was indicated with 1 

ha. Therefore production area is between 5 ha and 15 ha in order to get sufficient supply from 

a regional source. These acreage requirements are still on local scale.  

It is imporatnt to mention that the Stirling CHP facility is a cutting edge development, which 

not yet has achieved broad availability (Biedermann, 2004). The integration of a dryer to a 

sugar cane bagasse facility could be a development objective. 

For the application of native wood in the Federal State of Pará, the same integration concept 

can be applied for drying. Due to the lower raw material water content less drying heat is 

required. Additionally excess amounts can be used for biomass compaction and product 

selling. A broad range of excess amount for native wood can be achieved by applying 

different electrical efficiencies of conversion technology. The proposed compaction 

technology is briquetting because less raw material preparation is required and parallel good 

product stability can be achieved with local machinery operation staff (Schuco 2011, personal 

communication). Capacity building for briquetting is required and feasible. Energy costs and 

external costs for the briquetting machinery, which result in electricity costs, are indicated in 

the power plant balance (internal electricity usage).  

The return loss from electricity selling is calculated for the power plant and additional return 

from wood briquette selling is included. The whole approach is presented as island solution 

due to remote localization in Pará. As discussed above the nominal efficiency is decisive for 

material input. Here the ORC technology was chosen with maximum electrical efficiency (18 

%) in order to present a real value based on the investigated case study in Pará (Rendeiro, 

2010). The nominal power has been set to 200 kWel, in order to achieve comparability with 

the investigated case in Pará (see Chapter 6).  

The native wood sawdust originated in local sawmills is used as fuel. The preliminary drying 

of sawdust is done with waste heat from the power plant. A briquetting device performs the 

compaction of surplus raw material, with electricity supply from the power plant. Assuming 

200 kWel installed power; the required raw material of native wood (w 30%) is 2,800 ton / 

year. This results in an excess amount of 1,740 ton / year of native wood, which can be 

processed to briquettes. Therefore a briquetting machinery with nominal power input of 7,5 

kW and 350 kg/h maximum capacity has been chosen. Two of these devices are required in 

order to produce pellets from the calculated excess sawdust. The machines are assumed to be 
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operating 8,000 hours per year with power supply from the power plant. The consumed 

electricity is included in the power plant balance as internal electricity usage. 

Briquette selling in Brazil with the nominal market price of 300 BRL / ton (Felfi et al., 2010) 

increases entrepreneurial return. The loss from decreased electricity selling increases leveled 

energy cost. The additional investment and wage cost as well as lost returns from electricity 

selling can be compensated, as shown in Table 5.10: the calculation assumes availability of 

the state of the art technology for ORC process, drying and briquetting machinery.  

Table 5.10: Economic analysis of a self-financed 200 kWel CHP plant with ORC technology using native wood 

sawdust in Pará 

 Electricity generation    
native wood (w 30%) 

Drying                
native wood (w 12%) 

Briquette production   
native wood (w 12%) 

Spec. elec. generation costs 137 BRL / MWh 129 BRL / MWh 155 BRL / MWh 

Capital cost 142,000 BRL/year 148,000 BRL/year 152,000 BRL/year 

Planning cost 0 0 0 

Running cost (fuel) 0 0 0 

Running cost (material) 33,000 BRL/year 35,000 BRL/year 36,000 BRL/year 

Running cost (personal) 8,100 BRL/year 10,000 BRL/year 16,000 BRL/year 

Insurance and other fees 29,000 BRL/year 29,000 BRL/year 29,000 BRL/year 

Return 555,000 BRL/year 550,000 BRL/year 1,026,000 BRL/year 

Annual yield without taxes 343,000 BRL/year 328,000 BRL/year 793,000 BRL/year 

Annual electricity 
generation 

1,550 MWh/year 1,485 MWh/year 1,320 MWh/year 

As shown in Table 5.10:, the integration of biofuel production is an additional income and 

employment source. Higher investment and running costs are compensated through returns 

from briquette selling. For the investigated power plant (200 kWel ORC) a total investment 

cost of approximately 1.2 million BRL is necessary. The specific investment cost is 5,300 

BRL / kWel. The amount of annually generated electricity is 1,300 MWh/year with integrated 

briquette production. Additionally a renewable energy product is generated. 

The margin of the whole production process is strongly dependent on the raw material price 

of native wood. By creating a market for this residue, further price increase is possible. Based 

on the calculations presented in Table 5.10: the raw material price inclusively transport cost 
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should not exceed 105 BRL / ton. Here break even is achieved for the integrated production of 

briquettes from native wood. At this point return from electricity and briquette selling still 

covers all expenses on production. 

The production of bagasse briquettes could be also implemented in a 200 kWel facility (ORC 

with electrical efficiency of 18 %) in other Brazilian regions. The resulting marginal costs for 

bagasse are higher than 130 BRL / ton. This could be regarded as the maximum raw material 

price using only bagasse as fuel for an integrated process with additional briquette selling. 

The production is considered cost effective when the price of the raw material is lower than 

130 BRL / ton. However, the application of coffee husk, eucalyptus saw dust and rice husk for 

electricity generation, in Minas Gerais has been shown as inefficient. These residues have 

already a supply chain and a market price. Moreover, the quantity available is not sufficient 

for operating a 200 kWel power plant using ORC and DST technologies.  

 

5.4 Discussion 

Biomass costs of dedicated production systems are especially dependent on the availability of 

residues, transportation costs, availability of human labor and existing supply chain. Through 

investigating several biomass energy generation schemes, the author could conclude that in 

general, there is a technical and economical feasibility for residues and wastes.  

Heat and power generation plus the compaction of biomass residues was not identified in 

Minas Gerais. On the other hand, biomass projects and the commercialization of briquettes is 

giving the first steps in North Brazil. The author visited a briquette facility in the Federal State 

of Pará, city of Belém. The huge amount of wood residues produced by sawmills in this 

region and its low price in the market, could allow North Brazilian briquettes competing with 

the European market. 

Nevertheless, in North Brazil, wood residues are mostly originated from illegal timber falling. 

As this wood production is not certified, it would be not possible to produce and export 

briquettes and pellets with residues of this production (Walter and Dolzan, 2009). 

Nevertheless, the author investigated 3 sawmills in the Federal State of Pará (Amazon) where 

timber was certified by the government. 

As reported by the author, most of the sawdust generated in Southeast Brazil is sold to 

chicken farms, to be used in chicken beds. Regarding the compaction of the residues into 
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briquettes and pellets, there is no precise estimation of the amount of production in the 

country using sawdust, wood chips, wood waste and scrap. Since already exists the 

commercialization of wood residues, introducing new technologies and a new market for 

pellets or briquettes for local use or for exporting is still a challenge for Brazil.  

The carpentry industry generates most of the residues, processing the entire wood logs for the 

production of timber pilling and/or oriented strand boards (OSB) or chipboards. During the 

first steps of manufacturing – wood peeling and sawing – there is the production of great 

quantities of shavings, which could be used for energy generation in loco. On the other hand, 

the enterprises which process wood for the manufacture of noble products, like furniture, tend 

to produce less amounts of residues and with smaller particle size, like saw wood and saw 

powder. These materials could be compacted in loco, diminishing the storage and 

transportation constraints.  
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6 Decentralized biofuel schemes in Brazil 

 

The success of the large-scale decentralized bioenergy schemes in Brazil is due to the sugar 

cane industry. Ethanol production demands a high amount of energy input. Therefore, the 

combustion of bagasse became an alternative for decking the energy demand in the ethanol 

plants and supplying the National Grid with bagasse electricity in the dry season, when the 

shortages in hydropower often occur. 

Even when positive contributions of, for instance, the sugarcane and ethanol industry on job 

creation and income in Brazil have been recognized; in its agricultural sector, the level of 

social benefits and child labour are still important issues. Several authors (Azanha, 2007; 

Bartocci, 2009; Cardoso, 2010 and Gomes, 2010) often described socio-economic 

implications of large-scale energy plantations. Data concerning social welfare, quality of 

employment, potential use of child labour, education and access to health care in the sugar 

cane fields are nowadays available. Violation of land property rights of small farmers, or the 

additional pressure on land and on valuable ecosystems such as rain forests are also 

concerning aspects (Junginger et al. 2006). 

Despite of the level of formalization of the sugar cane sector is higher compared to other 

monocultures, the working conditions have been criticized. The evolution of mechanical 

harvesting in unburned sugar cane fields is already occurring, motivated by new specific 

legislation and environmental pressures. The ethanol industry employs approximately 1 

million workers (Shikida, 2010). If mechanical harvesting would be adopted abruptly, it could 

cause social problems due to loss of thousands of jobs in rural areas (Hassuani et al. 2005).  

The sustainability of energy from biomass resources is an essential aspect for its consolidation 

in the local, national and international markets (Walter et al. 2008). The generation of 

bioenergy will be only justified if their socio-economic and environmental impacts are 

favorable, compared to conventional energy sources.  

Brazil is a rich country with an extreme unequal distribution of resources and income. 

Education, health, food and electricity are scarcely available in remote areas. Most of the 

families (90 %) who do not have access to electricity at home have an income equivalent to 
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less than three minimum wages. Around 33 % of these earn less than one minimum wage14. 

The exploitation of human labour in the agro-business fields and the absence of electricity in 

remote areas hinder socio-economic development. Poverty and lack of perspective cause 

migratory flows from the countryside to the Brazilian capitals. The question that arises is how 

to keep farmers and rural inhabitants in their land.  

In the previous chapters, the properties of biomass residues, the diversity of national 

approaches to electricity market reform and the economic feasibility of biomass power plants 

were investigated. The results show that coffee husks, rices husks, sugar cane bagasse and 

wood residues could be technically and economically employed as potential biofuels, only 

when considering the regionality and the existing supply chains of the investigated biomass. 

Therefore, the great challenge is how to address biomass energy generation issues to small-

scale farmers and the rural population in different regions. 

In order to approach the possibilities of biomass use in small-scale decentralized schemes, it 

was conducted a structured analysis and several cases were investigated in different Brazilian 

regions. Regarding data, they were collected in the Federal States: Minas Gerais (four cases) 

and Pará (two cases). The case studies were sorted according to the availability of electricity 

in rural areas. In Minas Gerais, the National Grid (hydropower) supplies all the biomass case 

studies. In Pará, the isolated grid system predominates and in all case studies electricity was 

provided through small-scale decentralized bioenergy schemes.   

 

6.1 Approaching smallholders’ views and concerns 

During the research, the author observed that a high rate of illiteracy was present in the visited 

rural areas. Despite of the lack of income and electricity in some communities, television is 

the main source of information for most inhabitants. Most families are used to watch mainly 

soap operas. In Brazil, there is a social accommodation caused by mass media consumption, 

which hinder rural populations to acquire the knowledge and skills that could lead to 

emancipation. In addition, as Barros (1994) concluded, even the literate in Brazil does not 

cultivate a habit of reading books or newspapers. Within this context, family, neighbourhood, 

school and more recently television have been forming the cultural, environmental and social 

structures of the Brazilian rural society.  

                                                 
14 Brazilian minimum wage: BRL 545.00 (March, 2011) http://www.portalbrasil.net/salariominimo.htm 
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The investigation was done through interviews and literature research. The author spoke with 

academics, non-profit-organizations, community leaders and farmers. This provided valuable 

information about the chain of biomass utilization, the application of residues and the past 

electrification efforts in a particular region. Informal talks were used to identify the cultural 

background of people, the availability of resources, the socio-economic situation, the 

ecological and political limitations of the investigated biomass schemes. The results were 

interpreted and sorted according to previous research methods performed by Zerriffi (2007). 

This research method employs a case-by-case analysis, which was adapted according to 

crucial issues of energy generation schemes, like:  

- Electricity supplier: centralized (hydropower) or isolated? 

- Current application: heat or/and power? 

- Stakeholders (beneficiaries): households, enterprises or community structures? 

- Financing: how it was obtained and what does it cover? 

The author selected five types of biomass after investigating the production and supply chains 

of residues. The description is shown above. 

Table 6.1: Screening of five biomass utilization schemes in six different case studies in Brazil (own source) 

Residue Case   
studies 

Electricity   
supplier 

Current application Stakeholders 
(beneficiaries)  

Financing  

Coffee husks 
(Minas Gerais) 

1 Centralized 
(CEMIG15) 

Heat generation 
Chicken bedding 

Coffee enterprise 
Chicken farms 

Private 

Rice husks    
(Minas Gerais) 

1 Centralized 
(CEMIG) 

Chicken bedding Chicken farms Private 

Sugar cane 
bagasse        
(Minas Gerais) 

1 Centralized 
(CEMIG) 

Heat generation Community Private 

Sawdust               
(Minas Gerais) 

1 Centralized 
(CEMIG) 

Chicken bedding Chicken farms Private 

Sawdust          
(Pará) 

2 Isolated  Heat and power 
Briquetting 

Wood enterprise 
Community  

CNPq16 
ELETROBRÁS 

Zerriffi (2007) also analysed the long-term impacts of biomass schemes on the heat and 

electricity supply situation based on institutional and management variables:  

                                                 
15 CEMIG (Companhia Energética de Minas Gerais): electricity concessionary in the State of Minas Gerais 
16 CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico): research and technology council 
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- Location 

- Quality of electricity service 

- Sustainability 

- Replicability 

Sustainability has a broad meaning, which encloses environmental, socio-economic and 

technical dimensions. When applied to energy generation, this means that the combustion of 

biomass residues should be economically feasible, create social well-being and the 

environment should be kept in balance. The economical sustainability is represented by the 

regularization of the external and internal investments (Paz et al., 2007). Furthermore, it 

should meet the needs of the present generation without compromising the ability of future 

generations to meet their own needs (UN 1987). Table 6.2 lists the long-term impacts of 

selected biomass utilization schemes in Brazil. 

Table 6.2: Long-term impacts of five biomass schemes in Brazil (own source) 

Residue Location Quality of 
electricity service 

Sustainability Replicability  

Coffee husks            
(Minas Gerais) 

City High High (fertilization)  
Low (heat generation) 

High 

Rice husks                 
(Minas Gerais) 

Countryside Low High High 

Sugar cane bagasse 
(Minas Gerais) 

Countryside Low Medium High 

Sawdust                     
(Minas Gerais) 

City High High High 

Sawdust                     
(Pará) 

Countryside Low High High 

Replicability is a measure of whether the characteristics of the particular biomass scheme can 

be used to provide heat and/or electricity to new costumers  (Zerriffi, 2007). Sustainability in 

this sense means the ability of the biomass energy generation scheme to cover its costs and 

provide functioning systems over a long period of time.  
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6.1.1 Biomass utilization schemes in Minas Gerais 

Minas Gerais is an agricultural State, with a long tradition in coffee and sugar cane cultivation 

in large-scale to small-scale farms. Rice is only cultivated for subsistence purposes, in small-

scale. The carpentry and furniture industry is relatively strong in the region, since eucalyptus 

trees are broadly cultivated. The wood processing establishments are mostly located in the 

city of Vicosa, the commercial center of the adjacent rural areas and where the Federal 

University is located. 

The investigated cases are small-scale farming and carpentry structures located in the region 

called Zona da Mata in Minas Gerais. There, 100 % of the urban population and most of the 

rural population have access to electricity. In all investigated cases, rural communities have 

infrastructure, health and education. The level of instruction of adults is up to the primary 

school. Nevertheless it was observed a change in the prevalent education patterns. Youngsters 

are having more schooling opportunities (high school) than their parents during the past. The 

average family composition is three children per household. 

As Table 6.1 describes, coffee husk is a residue used for drying the coffee beans (heat 

generation). The sustainability of this biomass utilization scheme is low due to the low 

efficiency of furnaces for firing the husks and the bulkiness of the material, which hinders 

storage and transportation. However, the utilization of coffee husks for chicken bedding and 

further fertilization is currently employed in larger-scale with success. Similarly, rice husks 

and sawdust from Minas Gerais are also employed for chicken bedding, but not for heating 

purposes. Hence, the sustainability of the coffee husks, rice husks and sawdust for fertilization 

purposes is considered of high scale because of the recycling of nutrients in the soil and 

establishment of a market chain for residues through chicken farms.  

The author could identify a high replicability of coffee, rice and sawdust schemes (Table 6.2). 

Several coffee and rice producers integrate coffee cultivation with chicken farming in the 

rural regions of Vicosa, aiming saving expenditures with chemical fertilization. It is important 

to note that the potential for using coffee husks, rice husks and sawdust for compaction and 

energy generation in Minas Gerais exists where the demand for chicken bedding is low and 

hence the marketing of husks and sawdust does not take place (personal communication).  

On the other hand, sugar cane bagasse appears a promising biomass source for supplying the 

local demand of heat for organic sugar production in small-scale farms of Minas Gerais. The 

Organic Sugar Cooperative located in a rural community (Rio Branco) of the city of Vicosa 
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cultivates sugar cane and produce organic sugar using bagasse for generating heat, which is 

used on the processing of sugar cane juice. The cooperative was founded in 2004 and counts 

with 10 sugar mills and 25 members. The rural community has approximately 200 inhabitants. 

There, a primary school, an event saloon and a small health centre are available. 

The cooperative could not inform the author about favourable policies or subsides through 

government grants for using alternative fuels. Nevertheless, there is a perspective of external 

subsidizing. The governmental agency for agricultural development (EMATER) contacted the 

bank Santander, which offered a donation of 50,000 BRL for the farmer’s cooperative. Each 

sugar mill could use 4,500 BRL strictly for improving the infrastructure of the mills. As 

reported, farmers are sceptical regarding the donation. They are afraid to be forced to pay 

back the amount of money, which was offered by the bank.  

The average yield is 70 tones sugar cane per hectar, depending on weather conditions. Each 

ton of sugar cane originates 300 kg of bagasse. Each association member cultivates sugar cane 

in own farms, varying from 0.5 – 4 hectares of sugar cane per hectare. In total, the association 

cultivates 10 hectares, so it produces approximately 700 tonnes of sugar cane per year. From 

this amount, 200 tonnes of bagasse is obtained and used for cooking the sugar cane juice and 

producing brown sugar. The organic sugar is freighted with trucks to Belo Horizonte, the 

capital of Minas Gerais, and sold in rural markets. The transport costs 100 BRL / ton of sugar. 

The mills operate using electrical energy, approximately 1.5 kWh per day. According to 

Pedro, the cooperative’s leader, electricity arrived in his community only in 1987. However, 

there are still days when electricity fails. In Brazil, it is common that the quality of electricity 

service is much lower in rural areas than in urban areas (Table 6.2). This is due to the large 

extension of the grids for energy distribution. 

Table 6.3 Decentralized biomass generation scheme using bagasse in Minas Gerais (own source) 

Community Rio Branco 

Inhabitants 200 

Cooperative members 25 

Sugar mills 10 

Cultivation 10 hectares 

Production sugar cane 700 tons / year 

Production bagasse 200 ton / year 
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The author visited the cooperative in 2008 and 2011. With interviews, a detailed description 

of the situation could reveal if changes in the quality of life have occurred. During the last 

visit, it was recognized that farmers succeed in constructing a building for the collection, 

storage and distribution of the organic sugar (Figure 6.1).  

  

Figure 6.1: Formal sugar storage (left) and new storage and administration building (right) 

Furthermore, they improved the installations for processing the sugar cane juice and 

transforming into sugar. In order to cook 500 liters of juice per day, it is needed to burn 200 

kg of bagasse. A “home technology” developed by Pedro, allows the pre-heating of sugar 

cane juice before cooking (Figure 6.2). The “double pan system” can save a cooking time of 

two and a half hours.  

  

Figure 6.2: Formal pan for juice cooking (left) and new “double pan” (right). 
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The cooperative cultivate sugar cane organically and also it could be expected to continue the 

commercialisation of organic sugar. This represents a good perspective for covering 

production costs and further functioning of the cooperative. However, the utilization of the 

bagasse for heating purposes is still inefficient. The storage of bagasse requires large rooms 

and farm’s environment suffer from visual and material pollution. Since the heat generation 

from non-compacted bagasse could be considered inefficient, the sugar cane bagasse scheme 

presents a medium sustainability parameter regarding heating purposes (Table 6.2). 

In all investigated biomass schemes of Minas Gerais there was a lack of commitment for 

producing electricity using biomass in combustion process. According to academics of the 

Federal University of Vicosa, farmers prefer to carry out the production processes in their 

farms using and paying for the electricity provided by the regional concessionary CEMIG.  

The government program Luz para Todos (Chapter 2) implemented rural electrification in 

almost 100 % of the remote communities of Minas Gerais. Light and power is crucial for 

establishing production processes in the agriculture and industry. The access to electricity 

increases economical possibilities for the rural population, and consumers are ready to pay for 

it, rather than producing power themselves in small-scale biomass firing facilities.  

The life quality and economic perspectives of rural population in Brazil can differ enormously 

regarding electricity availability. In regions where the grids do not arrive and electricity is not 

available, the population is conducted to use alternative solutions for generating power. In the 

Amazon region, local diesel generators provide electricity few hours a day and can only cover 

basic needs. Nevertheless, governmental initiatives through university, research centers and 

experts have been implemented for the utilization of local biomass in Amazon.  

6.1.2 Biomass utilization schemes in Pará 

The North region has complex ethnic, socio-economic and cultural conflicts. Most part of the 

remaining Brazilian indigenous population is located in this area and the conflicts generated 

by the intense attempts of land appropriation results in losses in their cultural patrimony. The 

electric sector has a history of attempts to occupy part of those lands for generation purposes, 

but they were not always successful (Paz et al., 2007). 

It is estimated that in the Amazon region 80% of the unattended communities have less than 

30 households (Amazonas Energia, 2009), and very few settlements have more than 100 

inhabitants.  Because of the distance from the main transmission and distribution lines, grid 
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extension for these communities is economically unviable. Hence, there are still many 

communities in the Amazon that cannot be assisted by the conventional system.  

The use of expensive diesel generators in this region is still the norm (OECD/IEA, 2010). The 

cost of electricity generation in these areas is high and reaches USD 200 / MWh (ESMAP, 

2005). This is mainly due to the high costs of fuel and transportation and often because of the 

inefficient functioning of old motors. (Goldemberg et al., 2004. A liter of diesel transported to 

generate electricity may mean using 2 liters for obtaining it.  

It was reported that the diesel electricity provided by CELPA is mainly used for 

entertainment, illumination, water pumping, food refrigeration and air-conditioning. However, 

it has been not possible to implement commercial activities like fruit industrialization, 

conditioning, freezing of agricultural and fishery products. Refrigeration for the local 

agriculture and fishery would improve community’s ability to commercialize its products. 

However, these cannot be reach using diesel generators. 

The investigated cases are two isolated communities located in the Marajó Island: community 

of Santo Antônio and community of Porto Alegre. In both communities, most of the rural 

population have access to electricity only few hours per day. Furthermore, there is a lack of 

basic infrastructure, like waste water treatment. Sewage canalization is directed to the rivers. 

Health service is only available in Breves. Education is secured only up to the primary school. 

Adults are mostly illiterate. Nevertheless it was observed a change in the prevalent education 

patterns. Youngsters are having more schooling opportunities (high school) than their parents 

during the past. The average family composition is ten to twelve children per household. 

The local economy has a strong extractivist component, which is a cultural heritage from 

indigenous people and colonizers. The main economic activity is wood exploitation, with a 

low rate of industrialization. Secondary activities are cattle breeding, soy cultivation, boot 

transportation services, fishery and tourism. The carpentry and furniture industry is relatively 

strong in the investigated region. The wood processing establishments are mostly located in 

the city of Breves, the commercial center of the adjacent rural areas. 

In the communities of Santo Antônio and Porto Alegre, the author investigated two biomass 

projects, which implemented small-scale biomass plants using direct combustion of wood 

residues in a CHP plant (Combined Heat and Power plant) using ORC (Organic Rankyne 

Cycle). The projects were financed by the Ministry of Education (CNPq) and ELETROBRÁS 
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and executed by the Federal University of Pará (UFPA). The aim was to generate heat and 

power using wood residues from local sawmills.  

The two isolated communities are located in the Marajó Island, where life is deeply connected 

with the numerous estuaries of the Amazon River (Figure 6.3 and Figure 6.4). The area has a 

wetland type of ecosystem. The main economic activities are fishery, wood milling, fruit 

production, rice cultivation, ice production and oil extraction from native seeds. The Amazon 

region has a high diversity of native oil seeds, with pharmaceutical and cosmetic importance. 

 

Figure 6.3: Boat transportation (left). Ice and fish handling (right) 

 

Figure 6.4: Typical house located in the Marajó Island (left) and daily life (right) 

In 2009, the UFPA implemented the Project ENERMAD in the community of Porto Alegre. 

The CHP plant of 200 kW is fed with wood residues from milling (Figure 6.5). The lower 

heating value of the native wood is approximately 18 MJ / kg, the moisture is 40% and the 

load is 150 kg of sawdust per hour. The biomass residues produce steam, which is used to 

rotate the turbine and generate electricity. Attached to the power facility is a seed oil factory 
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(Figure 6.6), which uses the waste heat produced from the saw wood residues to the oil press 

machinery. The seeds are supplied by community members, which earn 1.00 BRL / kg of 

collected seeds. The variety of seed species, like buriti and muru-murú, and the amount of oil 

extracted for each different seed is depending on the seasonality of seed production. 

  

Figure 6.5: Integrated biomass utilization scheme: sawmill (left) and sawdust CHP plant (right). 

 

  

Figure 6.6: Integrated biomass utilization scheme: oil extraction (left) and muru-murú seed (right). 

The project was implemented in four steps:  

1. Civil engineering (store building) 

2. Installation of equipments  

3. Plant commissioning  

4. Training of operators  

The transport logistics and the lack of local infrastructure were the main difficulties faced 

during the execution of the project. The equipments were transported by ferryboat and 
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delivered manually. The plant commissioning was performed by the project engineers 

together with the local operators, in each step of the production chain: combustion of sawdust, 

biomass drying, seed pressing and oil extraction. The training of operators involved: security 

in furnace operation, food manipulation, environment protection, business administration, 

operation and monitoring of the biomass CHP plant, ice factory and oil extraction facility. In 

addition, the project coordinators (UFPA) also offered a training course for the efficient use of 

electricity. 

The Project ENERMAD has the support of a NGO for establishing a sustainable market for 

the seed oil through regional market managers. The inhabitants created a cooperative with the 

support of the university. The cooperative has 14 operators, which are distributed in the 

electricity generation (8 persons), oil extraction (4 persons) and ice factory (2 persons).  

The electricity generated from sawdust is available for supplying households and commercial 

/ industrial establishments. The electricity is measured in each house (electric meter) and 

charged monthly. The cooperative is responsible for the maintenance of the mini-grid, the 

electrical load assessment in each household and the delivery of electricity bills for the 

consumers.  

The project coordinators (university) are responsible for the socio-economic monitoring of the 

activities, which occur every six months. The evaluation covers: 

- Development of rice cultivation and productivity 

- Native forest area and quantity of oil seed trees available 

- Quantity of milled wood, quantity of sawdust generated 

- Quantity of biomass consumed in the CHP plant 

- Generated and consumed electricity 

- Quantity of ice produced and sold 

All these information contributes for a sustainable administration of biomass energy projects. 

The sustainability of the project (Table 6.2) is guaranteed by several factors: 

- Availability of wood and wood residues 

- Availability of fresh water (CHP plant, ice factory and further activities) 

- Availability of native seeds (oil extraction) 
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- Costs of electricity (for consumers) 

Approximately, 750 kg of biomass is being consumed in the CHP plant. Mostly, the supply is 

guaranteed by the local sawmill and partially by adjacent sawmills, which provides biomass at 

zero costs, and as well by the residues originated from the seed oil extraction. This availability 

ensures the full functioning of the plant. The costs of the biomass electricity is 140 BRL / 

MWh, which is very attractive, compared to the diesel electricity and also to the prices 

charged by the local concessionary CELPA17, which is currently 360 BRL / MWh (ANEEL, 

2011). 

The integrated biomass plant is located in the riverside. Hence, fresh water is obtained by 

direct pumping. Afterwards, the water is purified in a treatment plant, which is integrated to 

the ice factory. The ice production can supply the community and the surplus is sold to 

adjacent localities. Before the project implementation, the fisherman used to travel around 

120 km to obtain ice for conserving their fishes. Nowadays, they can buy local ice for a 

cheaper price and save money of transportation. 

The local sawmill processes wood and sell the whole production in the local market, in the 

city of Breves. With the autarchic production of electricity, the sawmill tripled its daily 

production, from 5 m³ to 15 m³ of processed wood. Furthermore, the cooperative, supported 

by a NGO, is selling the extracted crude oil for approximately 10 BRL / liter to a cosmetic 

factory in Belém. This potential could be increased, since there is an immense variety of 

vegetable species. Furthermore, the processing and transesterification of crude vegetable oil 

into biodiesel requires further research. 

Due to the availability of accessible electricity, there is a great perspective for initiating 

further local economical activities such as:  fruit industrialization (açaí fruit), rice processing 

(peeling) and furniture factory. Hence, the focus on power generation combined with 

productive activities, like seed oil extraction, increases project’s sustainability and also makes 

it less vulnerable to competition from the diesel generators, which are anyway focused on 

serving households. 

Social improvements were also identified in the project. Sawdust electricity provides the 

community with light and power more hours per day. Hence, adults can participate in basic 

schooling programs offered by the government in the evening. Furthermore, social evenings 

are happening more often in the community.        

                                                 
17 CELPA: Centrais Elétricas do Pará S.A. 
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The success of the Project ENERMAD was used to illustrate how small-scale decentralized 

biomass schemes could work. However, the isolation of communities and the lack of a 

minimum level of schooling and instruction of the locals could increase the difficulties related 

to project management, operation and maintenance. As reported by Prof. Goncalo Rendeiro, 

the Project Marajó, in the community of Santo Antônio, failed due to business 

administration problems. This project was inaugurated in 2007 and the variables were similar 

to the Project ENERMAD (Table 6.4). 

Table 6.4: Biomass projects implemented by UFPA in two communities (own source) 

 Communities 

                                                       
Project variables 

Porto Alegre 

Project ENERMAD 

Santo Antônio 

Project Marajó 

Inhabitants 240 72 

Diesel consumption  450 l / w eek 200 l /week 

Wood production 8,500 ton / year 3,600 ton / year 

Sawdust production 4,500 ton / year 1,800 ton / year 

Sawdust consumption 750 kg / hour 750 kg  / hour 

Biomass plant capacity 200 kW 200 kW 

Oil extraction capacity 100 kg of seeds / hour 100 kg of seeds / hour 

Seed price 1 BRL / kg 1 BRL / kg 

Oil price 10 BRL / liter 10 BRL / liter 

Ice productivity 10 ton / day 10 ton / day 

Electricity price (diesel) 1,30 BRL / kWh 1,30 BRL / kWh 

Electricity price (biomass) 0,15 BRL / kWh 0,14 BRL / kWh 

Household expenses with electricity 
(BRL and kWh / month) 

BRL 27.00 / month           
180 kWh / month 

BRL 21.00 / month                
150 kWh / month 

Project workers 8 14 

The integration of production processes was also the objective of the Project Marajó. A local 

sawmill should supply the plant with wood residues and generate heat for drying biomass and 

extracting vegetal oil from native seeds. The electricity generated from the steam should 

supply inhabitants, an ice factory and a commercial deep-freeze store. Since 2009 the project 



 187

is not in operation due to difficulties in business and administration practice of the semi-

analphabetic population and also due to corruption problems. 

In both Amazonian case studies, the rural populations face harsh living conditions: long 

distances, difficulties in transportation and lack of money favour the use of local resources. 

Nevertheless, the author could identify a high replicability of biomass projects using sawdust 

(Table 6.2). Several sawmills in the Marajó Island see this initiative as a chance for improving 

life quality, production processes and income in the remote areas of Amazon. 

 

6.2 Practical application of results into further projects 

Significant features of energy systems are not only their condition of renewability, but also 

their environmental sustainability and social impacts. Generally, the diffusion of alternative 

technologies could have a positive impact on the welfare of individuals, economic 

development and social change. New commercial possibilities for agricultural biomass in the 

energy sector could stimulate farm economies, and revitalize struggling rural communities. 

However, the üpresent case studies have shown complexities and socio-economic and 

environmental implications of resource use for energy production. As observed, the 

implementation of decentralized biomass energy projects could be hindered due to: 

- Broad distances leading to difficulties and high costs of transportation 

- Absence of a biomass supply chain, complicating the diffusion of goods and services 

between communities 

- Lack of basic infrastructure (sanitation, education and health) 

- Low income and low energy consumption lead to small returns on investments 

- Environmental degradation  

Most of crops in South and Southeast are located at places where freight is expensive up to 

marine ports. In addition, Brazil’s transportation system is relying on highways and roads, 

which in most regions of the country are in precarious situation. Hence, the high cost of 

transporting biomass by trucks hinders the commercialisation of biofuels.  

It is known that some attempts of pellets production in Southeast Brazil for exporting failed 

due to high transportation costs. The author could obtain information about these efforts 
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through interviews. The Fairbiomass Pellet Export project, located in Itajubá, Minas Gerais, 

planned to use coffee husks delivered from Ipanema Coffee, a large-scale coffee producer in 

Brazil, to produce pellets and export initially to the power plant Essent in Holland. According 

to Ricardo Pin, director from Fairbiomass Pellet Export, the constraints regarding the 

exportation of coffee husk pellets to Holland were due to Brazilian harbor bureaucracy and to 

problems on the certification of the coffee husks, which should be sustainably produced for 

exportation. 

Brazilian ports are not equipped for fast carrying bulk biomass such as charcoal, bagasse, 

wood pellets or chips. Most of the ports are public and their services are expensive and 

inneficient. In order to solve this problem, private ports located at strategic places and 

conveniently equipped with belt-carriers have been used for wood chips exports. A least three 

big companies for both energy and pulp purposes have well structured and specialized ports 

such as Amcel, in Santana (State of Amapá) and Bianchini (Tanac), in state of Rio Grande do 

Sul (Walter et al., 2009).  

The important aspects in relation to isolated areas are the small electricity demand, the lack of 

skilled people, and difficulties in properly operating and maintaining power equipment 

(Goldemberg et. al, 2003). Hence, one of the barriers for biomass use in isolated villages 

could be a matter of adapting technologies. As Rendeiro (2010) reported, the main factors that 

affect the economical success in sawmills are: wood conditioning, type of equipment used, 

wood species and working skills. In consequence, power systems for these areas must be of 

small capacity and as simple as possible.  

Brazil, a major food exporter, is expected to increase the exports of food rapidly during the 

coming decades (Smeets et al. 2008). Hence, the amount of agricultural residues could be 

expected to augment as well, increasing the amount of available feedstock for heat and power 

generation. During this research, the author identified that the implementation of 

decentralized biomass energy projects in Brazil is currently depending on: 

6.2.1 Technology 

Biomass technologies should be adapted according to geographical and socio-economic 

conditions in Brazilian regions and Brazilian enterprises. Hence, the implementation of 

innovative projects using agricultural and forestry residues is depending on scientific research 

programs that targets the total use and recycling of biomass. 
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Recent studies (Junginger et al., 2008) showed that a series of new configurations and 

improvements in logistics would able to export pellets from Brazil with competitive 

international prices. As an example, fluvial transport may be a solution for the Northern and 

Center-Western region due the existence of several rivers appropriated for this purpose (e.g. 

Amazonas and Madeira river). For the other Brazilian regions, fluvial transport should be 

mixed with railway.  

Biomass compaction through pelleting or briquetting might improve the transportation and 

storage of large amounts of biomass from a technical and economic perspective. Nevertheless, 

one significant challenge regarding the use of agricultural residues for energy generation is 

the technological improvement for small-scale combustion devices.  

Besides the technological challenges, in Brazil, there are currently additional areas of concern 

that should be taken into consideration when stimulating new solid biofuels’ markets. Some 

of the aspects to be taken into account are the lack of biomass solid fuel standards and the 

need of assessing the cost benefit of compacted biomass energy systems. Improvements in the 

logistics of the already established biomass networks are expected to contribute to costs 

reductions.  

6.2.2 Socio-economic conditions 

In order to safeguard small-scale agriculture and its agricultural production model, it has been 

suggested that biofuel production could be stimulated in a decentralized manner with scales 

allowing the entry of small-scale farmers as biofuel producers and the eventual reduction of 

dislodgment between production areas and consumer centres (BNDES / CGEE et al. 2008). 

Concerning economic concentration and its implications, a bioenergy system using biomass 

residues could be characterized as a highly decentralized industry compared with other energy 

related activities since an important number of suppliers would be involved. 

In regions where the population doesn’t have access to electricity, the alternative option is to 

use residues from agricultural activities, forest residues (branches, leaves, etc) and sawmill 

residues (sawdust, wood chips, etc) to generate heat and electricity. Local biomass projects 

should be financially sustainable and replicable, meeting the needs of locals. The organization 

of biomass production and supply chains involve stakeholders from all stages of the life cycle 

of coffee, rice, wood or sugar cane production. Another important issue is the choice of the 

best available energy generation scheme for the considered region.  
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There are several social benefits of decentralized biomass fired cogeneration. Regarding the 

large-scale plants, it has the potential of increase employment for populations located in the 

surroundings of the biomass facilities, for instance ethanol plants. On the other hand, it could 

broaden the scope and increase income for small-scale sugar cane farmers, which produce 

mostly organic sugar. 

As sugar mills, wood mills also tend to be located in rural areas, near plantations. Hence, 

bagasse and wood cogeneration could provide a more efficient and regular access to 

electricity supply in areas distant from the grids. This facilitates the collection of electricity 

payments by electricity boards in rural areas. Simultaneously, an increase on the reliability of 

distributed power could enhance the life quality of rural populations (WADE, 2004). 

The project aimed at serving the needs of isolated communities should be specifically drawn 

up for this population in accordance to their particular needs and potential. As described by 

the author, the project Buriti is focused on providing electricity to productive activities in 

order to improve economic output and social development. Other projects, like Santo 

Antônio, are more centered on household supply, allowing higher levels of electricity 

consumption compared to diesel generators.  

The sawdust CHP plant integrated with the oil extraction facility fosters the substitution of 

fossil fuels by renewable sources that are available locally. Such substitution generates 

positives impacts on the local and national economy and reduces the emissions of GHG into 

the atmosphere. 

6.2.3 Environment 

Currently in Brazil, there is an ongoing debate about the land use exploitation and the effects 

of intensive crop cultivation, specially regarding the frontiers of sugar cane cultivation for 

ethanol production. In principle, the compaction of biomass residues in Brazil would result 

neither in drastic land use changes nor in the already practiced agricultural activities. 

Therefore, it could be assumed that the feedstock required, as the straightforward inputs to the 

system are already available without causing processes disruption. Nevertheless, it is 

important to consider the whole supply chain of solid biofuels, in order to assess the socio-

economic and environmental impacts of their production in all the stages involved. Hence, 

despite the production of residues being a natural process in agriculture and forestry systems, 

a life cycle assessment should be carried out. 
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Biomass fuels have several environmental advantages over fossil fuels, being a core one that 

it is a renewable resource, offering a sustainable and reliable supply. The energy sector has a 

small share in the total Brazilian emissions due to the relevant participation of renewable 

energy in the Brazilian energy matrix, mainly hydroelectricity and ethanol consumption in the 

transport sector.  

There is a utopia of preserving Amazon’s forests, hindering the socio-economic development 

of local populations. As a result, however, the region has been neither preserved nor 

developed, and suffers from destructive exploitation (Andrade et al. 2011). On the other hand, 

development could be compatible with environmental protection, when natural resources are 

used respecting the time necessary for recovering, considering the local culture and the needs 

and aspirations of the individuals. 

Environmental Impact Assessment (EIA) is required only for medium and large projects for 

forestry or agriculture monoculture in Brazil. Most of small-scale projects do not carry out 

EIA. Thus, illegal exploitation of native forests and pollution of ecosystems is often 

recognized (Walter et al., 2009). Nevertheless, a legal framework was enforced in 1998 and 

set sanctions for environmental crimes. 

Biomass fuels have lower emissions of particulates, SO2, NO2 and CO2 compared to coal and 

other fossil fuels. Biomass combustion emits less GHG than composting. Besides, when 

decomposing, biomass can release methane, a GHG 27 times more potent than CO2 (WADE, 

2004). Furthermore, the cogeneration process using biomass is more efficient compared to 

conventional combustion process, which do not recover heat. 

In Brazil, there is much evidence that areas covered with native vegetation are cleared out to 

grow soy, sugar cane, rice, and eucalyptus wood. Hence, bioenergy obtained though large-

scale monoculture systems could be rather a threat as an opportunity for ecosystems and 

people (FNR, 2009). On the other hand, farmers could cultivate energy crops in small-scale 

systems and diversify the species varieties. The desired amount of biomass used for energy 

generation could be reached through cooperation schemes.  

If the forests that provide wood fuel are re-replanted at the same rate as they are cut down, 

then such fuel use should in principle be sustainable. Bioenergy systems are considered 

sustainable when they maintain their production over the long term without overt depletion of 

the resources that originally gave rise to them, such as biodiversity, soil fertility, and water 
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resources. Such focus is based on one of the classical definitions of sustainability: “the 

amount of production that can be sustained indefinitely without degrading capital stocks, 

including natural capital stocks” (UN, 1987). 

When forests are managed sustainably, the CO2 absorbed in growing replacement trees should 

equal the CO2 given off when the original trees are burned. However, this is only true when 

complete combustion of the wood occurs and all the carbon in the wood is released as carbon 

dioxide (Boyle et al., 2003).  

The major challenge in many countries is to run a proposed bioenergy project through 

contractual and consenting processes that are needed to reach commercial reality. Even when 

biomass conversion is considered a state-of-the-art technology, the socio-economic potential 

is no longer fully realized in many countries of the world. Hence, there are several issues to be 

resolved: 

- Land availability 

- Environmental impacts of monoculture in indigenous forests 

- Sustainable cultivation of energy crops and plantation forests 

- Storage and transport of large volumes of biomass residues 

- Energy output/input ratios 

- Economic competition from cheap fossil fuels 

In Brazil, deforestation is unlikely to decline in the near future despite low population density 

in the Amazon and Cerrado regions. High food and fuel prices will favour continued forest 

clearance for production of livestock and agricultural crops for food, feed and biofuel to meet 

the global demand. Sustainable forest management will continue to be a challenge in a 

number of countries where land tenure is poorly defined (FAO, 2009). Federal policies should 

attempt to ensure the sustainability of woody biomass harvesting. This should be done 

coupled with measures towards winning the public acceptance. 

6.2.4 Policies 

The Brazilian policy framework supports the development of renewable energy markets in the 

electricity sector. Therefore, the electrification of rural areas with energy from off-grid 

systems based on domestic resources; could contribute to achieve environmental and social 

targets such as the inclusion of rural communities in the development of the agro-energy 



 193

sector in the country. In addition, the participation of small holders as market actors could 

boost the social and economic benefits in rural and remote areas. 

Policies for renewable energy and the administration of agricultural and manufacturing 

activities in Brazil are expected to play a crucial role regarding their contribution to 

sustainable development. The stability of economic incentives for renewable electricity 

sources; the creation of institutional structures to assure the environmental performance of 

decentralized alternatives. Besides the market barriers that have to be overcome, the social 

and environmental dimensions should be considered, in order to define the pathway to take 

advantage of the native resources in sustainable energy systems. 

Worldwide, the main economic barriers to renewable energy projects include high initial costs 

and the small-scale production of equipment and systems. To overcome these barriers the 

creation of a market of minimum size is essential. The successful implementation of 

renewables has been based on tax incentives, but the Brazilian government has never 

formulated a comprehensive and long-term policy for renewables with this kind of incentive. 

Instruments such as tax reduction for imported devices of higher efficiency, credits on taxable 

income and accelerated depreciation have also been helpful (Goldemberg et. al, 2003). 

In general terms, regulatory actions by ANEEL address important issues, but there are many 

doubts concerning their effectiveness as tools for fostering renewable electricity in Brazil. In 

the event that the mandatory market is approved with no corresponding action regarding 

economic and science and technology policies, an external dependence on equipment 

suppliers will be created in several renewable energy sectors (Goldemberg et. al, 2003). 

Ten years ago power generated from alternative plants could not be sold to the grid. Hence, 

only after the implementation of energy policies the commercialisation of electricity was 

possible. Nevertheless, decentralized energy production in Brazil faces institutional barriers. 

The policies and measures created by the government, such as PROINFA, are still 

unfavourable for the success of electrification projects using biomass in rural areas.  

One of the main policies of PROINFA is implementing grid extension to remote areas. 

Connection costs may become higher if population density is low and consumers are 

dispersed (FAO, 2001). Therefore, decentralized renewable electrification options other than 

grid extensions, by either individual systems or mini-grids, may provide much cheaper 

alternatives particularly in the remote and isolated villages of the Amazon region (ESMAP, 

2005).  
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6.2.5 Financing: R&D Projects 

Lack of continuity on biomass projects, biofuel exports and long-term contracts repels 

investments. The establishment of a domestic market for solid biomass residues in Brazil 

could be an alternative for such barriers. As it happened with the ethanol program, large-scale 

production and business maturity can only be achieved through long run initiatives. 

The Brazilian government has established that resources between 0.75 % and 1 % on net sales 

of generation concessionaries, transmission and distribution of electricity, would be used to 

fund programs and projects in the energy area. The idea was to use the expenditures of 

enterprises in R&D projects for implementing alternative energy sources with lower costs and 

better quality, waste reduction, energy efficiency, besides stimulating competitiveness of 

national industrial technology (Pereira et al., 2010). 

According to FINEP (2011), the percentage of annual revenues dedicated to R&D projects 

varies from 0.5 % (distributing utilities) to 1 % (transmission and generating utilities). The 

half of these values is spend by the utilities themselves in internal R&D projects. The other 

half is collected by a governmental fund, so called CT-Energ. Distributing utilities have to 

invest their total annual revenues (0.5 %) in end-use energy efficiency projects. 

The Brazilian Development Bank BNDES18 is the main financial support instrument for 

investments in all economic sectors. The Bank allocates special resources, preferably in the 

form of long-term funding and shareholdings, in addition to supporting undertakings that 

contribute to economical and social development (BNDES, 2011). BNDES invest not only in 

large-scale projects, but also in undertakings by micro, small and medium-sized companies, 

individuals and public administration agencies. Requests can be made directly with the 

BNDES or with an agent institution. The majority of operations are carried out indirectly 

through a partnership with a network of accredited financial institutions located nationwide. 

These agents may be commercial, public or private banks, development agencies or 

cooperatives. In indirect operations, the Bank reallocates financial resources to accredited 

agents, which are responsible for credit analysis and approval. 

The BNDES make available supporting mechanisms such as: financing and non-reimbursable 

resources. Financing schemes grant investment projects, isolated acquisition of new 

machinery and equipment, exports of machinery, Brazilian equipment and services and the 

                                                 
18 BNDES: Banco Nacional do Desenvolvimento  
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acquisition of goods and production inputs. Additionally, the BNDES offers financing 

programs of a transitional nature, which are focused on a determined economic segment. The 

Bank also administers some funds, which are resources to support specific activity sectors. 

The non-reimbursable resources are investments of a social, cultural (educational and 

research), environmental, scientific or technological nature, which need not be financially 

reimbursed to the BNDES. 

The financing of biomass energy generation projects could also be executed by international 

research cooperations. The German Ministry of Environmental, Nature Conservation and 

Nuclear Safety (BMU) and the KfW Development Bank just stared establish an innovative 

climate protection fund. This pool assists developing economies to invest in renewable energy 

and measures for energy use efficiency. With regard to the objectives of R&D projects for 

sustainable energy supply in Brazil this might be one of many possible funding sources.  

Another option could be the Investment Bank Berlin (IBB), which is running a funding 

program to strengthen small and medium sized companies. In focus of the program are 

evolvement activities to enter foreign markets. Here is a potential pool for German project 

partners. The German Ministry of Economics and Technology runs the initiative Germany 

Trade & Invest (GTAI), which belongs to the program “Technology for climate protection 

and energy use efficiency”. Here technology co-operation of small and medium sized 

companies with foreign countries are supported. This might give another option for German 

partners to increase funding.  

Furthermore, the BMBF is running the program “Research in sustainable development”. Here 

the branch energy use efficiency, renewable energy, based on research and development will 

be examined as potential source. Research institutions and companies can be supported.  

6.2.6 Participation of stakeholders 

Since biomass residues are transported in Brazil commonly in their natural bulky state, the 

establishment of a Brazilian network for biomass compaction could provide costs reductions 

in the upgrading process of residues (UNICA, 2010). Another influential factor for the 

development of for further compacted biomass market opportunities -both in heating and in 

electricity production- is the price.  

Technical assistance and training should be provided on a long-term basis. National and 

international donors, such as universities, NGOs, government and energy agencies, must 
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implement energy generation projects towards creating access to resources and supporting 

efforts to create markets and promoting community’s autonomy (Zerriffi, 2007). Furthermore, 

the strategy for implementation of networks should take into account the characteristics of the 

specific community and the benefits from the utilization of local resources, in this case 

biomass residues, should be shared equally among the local population. 

The participation of rural communities is a fundamental key to reaching socio-economic and 

ecological transformation. According to GTZ (1999), “participation is an interactive and 

cooperative process of analysing, planning and decision-making. It allows all participants to 

formulate their interests and objectives in a dialogue, which leads to decisions and activities 

in harmony with each other, whereby the aims and interests of other participating groups are 

taken into account as far as possible”. The author noted that communication skills aiming the 

involvement and participation of stakeholders in rural areas are fundamental in communities 

where the level of illiteracy is high. 

However, there is considerable resistance to organised participation in Brazilian rural areas. 

Farmers are in most cases sceptical about new ideas. Since farmers devote all of their energy 

to the daily life for survival, they can only approach to long-term activities if this is achieved.  

 

6.3 Discussion 

Changing established social and economic systems in Brazilian rural areas is extremely 

complex. This is partially due to the geographical isolation and to the low level of illiteracy. 

In some cases, the lack of opportunities offered by the government, like infrastructure, 

education and health, hinders the organisation of new socio-economic arrangements. 

The author could identify that the investigated sugar cane cooperative in Minas Gerais 

improved facilities and installations aiming energy efficiency. According to Pereira et al. 

(2010), with an increase of income, families tend to opt for more modern methods of cooking, 

heating, lighting and use of home appliance products. The discussion with the cooperative’s 

members showed a great interest in implementing new technologies for bagasse utilization 

and ethanol production. It was reported that there exists a strong cooperation between the 

University of Viçosa and the farmers aiming ethanol production for generating heat and 

electricity.  
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The local populations, who have limited access to information and education, have less 

participation in the definition of priorities for the societies in which they live (Andrade et al., 

2011). Therefore, public intervention such as from universities and research institutes is 

important for supporting stakeholders in rural areas. However, this depends on financial 

support and as well on the preferences of the potential consumers. 

The presence of subsides and governmental financial support influences the viability of a 

decentralized electrification scheme. It has positive and negative effects. It could improve the 

finance of the biomass scheme or it could make it less competitive with the current electricity 

scheme available. Since low-income costumers are allowed paying lower electricity bills, 

there is no willingness to invest in alternative production of electricity from local resources in 

rural areas. As an example, in Minas Gerais, it is safer and cheaper to use the available 

centralized energy service supplied by the hydropower plants. 

In Amazonas, the diesel subsidy enables the supply of electricity to isolated communities. On 

another hand, it inhibits the competitiveness of renewable sources of electricity in the region, 

as it alters the relative price of the options. The implication of eliminating completely the 

subsidies for diesel consumption and low-income consumers is that rural residents may be not 

able to pay the afforded electricity price and be excluded from the grid (Zerriffi, 2007). One 

way of modifying the current scenario would be to use the diesel subsides to enable the viable 

supply of renewable energy to isolated communities, on a long term and sustainable basis, 

rather than subsidizing fossil fuels (Andrade et al., 2011). 

Greater chances for participation of stakeholders in local energy generation should be given. 

Communities could participate fully without worrying about operating illegally or being 

undercut by the large utilities. They could opt for electrification options that are best suited to 

their needs without loosing the low-income subsidies. Finally, governments could meet their 

desired electrification targets while supporting rural electrification goals (Zerriffi, 2007).  
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7 Conclusions 
 

Brazil has an enormous potential to generate energy from biomass residues. However, there is 

a need for combining different available renewable resources in the country. For instance, 

hydropower and sugar cane bagasse cogeneration could be complementary energy sources. 

Further initiatives supporting the access to electricity through the utilization of local biomass 

could open the scope from centralized energy generation to decentralized generation.  

The broadening of energy generation from agricultural and forestry residues face several 

barriers. The diversity of situations described in this thesis shows that regionalism and culture 

plays an important role in the implementation of solutions and alternative technologies. The 

unequal income and electricity distribution of Northern and Southern citizens leads to a 

distinct ways of perceiving the environment and achieving socio-economic development. On 

one hand, the provision of energy allows socio-economic development, on another hand; it 

can create environmental impacts in the original ecosystems.  

Historically, the Brazilian energy policies privileged the attendance of the great industrial 

consumer’s needs and the great cities of the Southeast region. In spite of the unquestionable 

success obtained by this policy in fomenting the industrialization and expanding Brazilian 

GDP, it also hindered socio-economic development of remote areas. Hence, small-scale 

energy generation using biomass is still a challenge for several rural communities in the 

whole country, which face the lack of electricity supply and job opportunities.  

The challenge in Amazonia is how to use resources to promote socio-economic development 

without impacting the balance of the environment. Sawdust utilization for energy generation 

could be considered sustainable if sawmills are operating in legal conditions. The control of 

deforestation in Amazonia is still a challenge, which involves corruption and idealism.  

The development of rural communities in Brazil has been by the geographical barriers of a 

vast country. Individuals are strongly connected to cultural patterns19, which have been 

traditionally and orally preserved through many generations of social isolation. In isolated 
                                                 

19 Culture is everything humankind adds to nature, in the process of adaptation to the physical environment and to the social environment (Barros, 1994).  
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communities with distinct ethnical and cultural characteristics, the planning of energy 

generation alternatives should be done through long-term actions. These should consider the 

sustainable use of resources combined with shared benefits to the local population, such as 

health, education and employment.  

Even when from the economical and technological point of view, biomass power generation 

is considered feasible, the implementation of decentralized electricity production in rural 

areas depends on social inclusion and on the commitment of the locals. Biomass power 

generation should be combined with advice, instruction and efficient use. Finally, sharing 

management and responsibilities in rural development projects may involve multiple links 

among communities, government agencies and non-profit organisations.  

The technological option to be adopted in rural areas could succeed more efficiently when 

coupled with governmental and institutional support. Such financing should cover initial 

costs, maintenance of biomass facilities and workshops for promoting local participation and 

economic development. Successful examples of local biomass utilization in isolated areas of 

the Amazon forest were recorded in Marajó Island. As the author reported in Chapter 5, 

biomass projects implemented and sponsored by governmental institutions, like the Federal 

University of Pará and ELETROBRÁS, are in most of the cases economically feasible. 

However, the technical and economical functioning of the biomass facilities is depending on 

the commitment and the level of illiteracy of the local population.  

With rising electricity prices and increasing demand for renewable energy, biomass-fired 

combined heat and power (CHP) systems become more attractive. It is crucial that biomass 

resources are used efficiently. While CHP itself represents a significant efficiency gain, there 

are a number of other steps that can be taken to improve the efficiency of existing and new 

steam CHP systems. These include steam system and boiler measures, waste heat recovery, 

and biomass drying and dewatering. 

There is a large potential for improving the efficiency of electricity generation by introducing 

new technologies. Optimising the running of such systems requires taking into account not 

just fuel costs, capital expenditure and the consequences of anti-pollution legislation, but also 

wider notions of national energy self-sufficiency and expectations of economic growth. 

Brazil’s transportation infrastructure and port facilities are deficient and costly. The average 

distance to ports from Brazil’s Center-West is over 1,000 kilometers, and Brazil still relies 
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predominantly on expensive overland truck transportation to move most bulk commodities. 

Compacted forms of biomass such as wood pellets and briquettes could reduce transportation 

costs, depending on the economic feasibility of the compaction facilities. According to the 

results, briquetting could be a more viable option for Brazil. It does require lower level of 

technological skills and it can be managed more simply than pellet devices.  

In both ways, with self-financing and governmental support (“grand fathering”), the 

establishment of biomass utilization schemes is dependent on stimulating local production for 

supplying biomass chains and markets. Hence, it is crucial to guide and assist the rural 

population in finding out the relation among residue utilization, environmental protection and 

income generation. In Brazil, most of the Federal Universities and research institutes like 

EMBRAPA have pilot projects, which are extended to the rural areas. The aim is to bring 

technology innovations to the field and improve living conditions of rural communities.     

Considering the variety of Brazilian regions and cultures, energy generation technologies 

should be adapted to the resources available and the local socio-economic conditions. 

Investments in technology can equip people with better tools and make them more productive 

and prosperous, raising incomes and building capacity for future innovations (Paz et al., 

2007). This was recognized in a case study in the Federal State of Minas Gerais (Chapter 6), 

where farmers developed their own technological solutions, using available resources, to 

improve industrial processes and increase income.  

The investigation of six specific case studies gave the author the possibility of identifying 

different resource management strategies, which biomass technology was applied and the 

needs of the local population. The results show the potential of utilization of local biomass for 

energy generation in Minas Gerais and Amazonas. It was noted that the cultural, geographical 

and socio-economic discrepancies of Brazil play an important role in the implementation of 

future projects. 

Several projects have been succeeding in establishing local energy generation from biomass 

resources. In most of the case studies there is a need for implementation on a commercial 

scale. Therefore, each community should develop its own concept according to specific 

characteristics and potential. Nevertheless, introducing new ideas into rural communities 

requires a deep interaction with stakeholders. The process of interaction among community 

members and experts should influence the development of activities. To conclude, it could be 

added that energy supply and consumption should be addressed through integrated research. 
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The cultural, geographical and socio-economic discrepancies of Brazil could involve 

challenges on the implementation of future projects, even when their development would 

provide benefits for Brazil as a whole.  
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8 Annexes 
 

Annex 1: Pellet Norms (DIN, 2010) 

Parameter/Normen DIN 51 731 
(DIN 2008) Önorm M7135 DIN EN 14961-2 

(DIN 2010) 

Diameter 4 to 10 mm 4 to 10 mm 6 ± 1 mm 

Length <50 mm <5xd 3.15 to 40 mm 

Bulk density >0.65 kg/dm3 >0.60 kg/dm3 >0.60 kg/dm3 

Moisture content <12% <10% <10% 

Abrasion No requirements <2.3% 2.3% - 3.5% 

Ash content <1.5% <0.5% 0.7% - 3.0% 

Calorific value 17.5-19.5MJ/kg >18 MJ/kg 16 - 19 MJ/kg 

Sulphur content <0.08% <0.04% <0.04% 

Nitrogen content <0.3% <0.3% <1.0% 

Chlorine content  <0.03% <0.02% <0.03% 

Arsenic <0.8 mg/kg No specified <1 mg/kg 

Lead <10 mg/kg No specified <10 mg/kg 

Cadmium <0.5 mg/kg No specified <0.5 mg/kg 

Chromium <8 mg/kg No specified <10 mg/kg 

Copper <5 mg/kg No specified <10 mg/kg 

Mercury < 0.05 mg/kg No specified < 0.1 mg/kg 

Zinc < 100 mg/kg No specified < 100 mg/kg 

Binding agent Not allowed <2% <2% 
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Annex 2: Brazil - political map (IBGE, 2011) 

 

 

Annex 3: Increase in sugarcane planted in area in Brazilian regions from 1998 to 2008 (IBGE, 2011) 

Region Area planted 1998 (ha) Area planted 2008 (ha) % Increase 

North 14.965 28.016 87,21 

Northeast 1.251.348 1.277.481 2,09 

Centerwest 367.600 888.311 141,65 

Southeast 3.059.432 5.367.621 75,45 

South 356.608 649.448 82,12 

Total 5.049.953 8.210.877 62,59 
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Annex 4: Rice, coffee and sugar cane production in Brazil 2010 and projection for 2011 (IBGE, 2011) 

Rice 2010 2011 Variation (%) 

Area harvested (ha) 2,705,730 2,774,608 2.5 

Production (t) 11,325,672 12,859,611 13.5 

Average yield (kg/ha) 4,186 4,635 10.7 

 

Coffee 2010 2011 Variation (%) 

Area harvested (ha) 2,159,544 2,147,518 -0.6 

Production (t) 2,862,013 2,598,935 -9.2 

Average yield (kg/ha) 1,325 1,210 -8.7 

 

Sugar cane 2010 2011 Variation (%) 

Area harvested (ha) 9,191,255 8,869,136 -3.5 

Production (t) 729,559,596 705,823,063 -3.3 

Average yield (kg/ha) 79,375 79,582 0.3 
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Annex 5: Electricity consumption in Brazil 

 

Regions Electricity consumption (GW h) Participation in 
the 

consumption in 
2008 (%) 

 1999 2003 2008 

North 3,604 3,956 5,036 5.27 

Northeast 11,948 11,859 16,515 17.28 

Southeast 47,283 41,743 51,479 53.86 

South 12,667 12,963 15,454 16.17 

Center-West 5,828 5,623 7,100 7.43 

Total 81,330 76,144 95,585 100 

 

Annex 6: Electricity consumption by sector in Brazil (in percentage) 

 

Sectors Electricity consumption (GW h) 

 1999 2003 2008 

Energy sector 3.3 3.5 4.3 

Residential 25.7 22.3 22.3 

Commercial 13.8 14.1 14.6 

Public 8.9 8.7 8.1 

Agricultural 4 4.2 4.3 

Transportation 0.4 0.3 0.4 

Industrial 43.9 47.0 46.1 

Total 100 100 100 

Final consumption (103 toe) 27,144 29,430 36,830 

 

 

The Brazilian residential sector answered for 22.3% of the total electricity consumption being distributed in 2008 

(MME 2009). 
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Annex 7: Electricity price in different Brazilian regions (ANEEL, 2011) 

Abbreviation Concessionary 
Residential 

(R$/kWh) 
Duration of validity 

 AES-SUL   AES SUL Distribuidora Gaúcha de Energia S/A. 0.31497  19/04/2011 until 18/04/2012 

 AmE   Amazonas Distribuidora de Energia S/A 0.30425  01/11/2010 until 31/10/2011 

 AMPLA   Ampla Energia e Serviços S/A 0.40188  15/03/2011 until 14/03/2012 

 BANDEIRANTE   Bandeirante Energia S/A. 0.32537  23/10/2010  until 22/10/2011 

 Boa Vista   Boa Vista Energia S/A 0.26876  01/11/2010 until 31/10/2011 

 CAIUÁ-D   Caiuá Distribuição de Energia S/A 0.29764  10/05/2011 until 09/05/2012 

 CEB-DIS   CEB Distribuição S/A 0.27952  26/08/2010 until 25/08/2011 

 CELESC-DIS   Celesc Distribuição S.A. 0.32499  07/08/2010 until 06/08/2011 

 CELG-D   Celg Distribuição S.A. 0.29353  12/08/2010 until 11/08/2011 

 CEMIG-D   CEMIG Distribuição S/A 0.38978  08/04/2011 until 07/04/2012 

 ELETROCAR   Centrais Elétricas de Carazinho S/A. 0.36920  
29/06/2010 until 

28/06/2011 

 CERON   Centrais Elétricas de Rondônia S/A. 0.35123  
30/11/2010 until 

29/11/2011 

 CELPA   Centrais Elétricas do Pará S/A.  (Interligado) 0.36990  
07/08/2010 until 

06/08/2011 

 CEMAT   Centrais Elétricas Matogrossenses S/A.  (Interligado) 0.41257  
08/04/2011 until 

07/04/2012 

 COCEL   Companhia Campolarguense de Energia 0.33214  
24/06/2010 until 

23/06/2011 

 ELETROACRE   Companhia de Eletricidade do Acre 0.37545  
30/11/2010 until 

29/11/2011 

 CEA   Companhia de Eletricidade do Amapá 0.19729  
30/11/2010 until 

29/11/2011 

 COELBA   Companhia de Eletricidade do Estado da Bahia 0.38203  
22/04/2011 until 

21/04/2012 

 CELTINS  
 Companhia de Energia Elétrica do Estado do 

Tocantins 
0.41807  

04/07/2010 until 

03/07/2011 

 CEAL   Companhia Energética de Alagoas 0.33363  
28/08/2010 until 

27/08/2011 

 CELPE   Companhia Energética de Pernambuco 0.34427  
29/04/2011 until 

28/04/2012 

 CERR   Companhia Energética de Roraima 0.32728  
01/11/2010 until 

31/10/2011 

 COELCE   Companhia Energética do Ceará 0.40199  
from 

22/04/2011 

 CEMAR   Companhia Energética do Maranhão  (Interligado) 0.41392  
28/08/2010 until 

27/08/2011 

 CEPISA   Companhia Energética do Piauí 0.37314  
28/08/2010 until 

27/08/2011 

 COSERN   Companhia Energética do Rio Grande do Norte 0.34472  22/04/2011 until 
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21/04/2012 

 CEEE-D  
 Companhia Estadual de Distribuição de Energia 

Elétrica 
0.31642  

25/10/2010 until 

24/10/2011 

 CFLO   Companhia Força e Luz do Oeste 0.30410  
29/06/2010 until 

28/06/2011 

 CHESP   Companhia Hidroelétrica São Patrício 0.38426  
12/09/2010 until 

11/09/2011 

 CJE   Companhia Jaguari de Energia 0.30617  
03/02/2011 until 

02/02/2012 

 CLFM   Companhia Luz e Força Mococa 0.42706  
03/02/2011 until 

02/02/2012 

 CLFSC   Companhia Luz e Força Santa Cruz 0.39938  
03/02/2011 until 

02/02/2012 

 CNEE   Companhia Nacional de Energia Elétrica 0.32818  
10/05/2011 until 

09/05/2012 

 CPEE   Companhia Paulista de Energia Elétrica 0.40444  
03/02/2011 until 

02/02/2012 

 CPFL-Paulista   Companhia Paulista de Força e Luz 0.32883  
08/04/2011 until 

07/04/2012 

 CPFL- Piratininga   Companhia Piratininga de Força e Luz 0.31421  
23/10/2010 until 

22/10/2011 

 CSPE   Companhia Sul Paulista de Energia 0.38596  
03/02/2011 until 

02/02/2012 

 SULGIPE   Companhia Sul Sergipana de Eletricidade 0.38054  
14/12/2010 until 

13/12/2011 

 COOPERALIANÇA   Cooperativa Aliança 0.35786  
14/08/2010 until 

13/08/2011 

 COPEL-DIS   Copel Distribuição S/A 0.30000  
24/06/2010 until 

23/06/2011 

 DMEPC   Dep. Municipal de Eletricidade de Poços de Caldas 0.30642  
28/06/2010 until 

27/06/2011 

 DEMEI   Departamento Municipal de Energia de Ijuí 0.36764  
29/06/2010 until 

28/06/2011 

 ELEKTRO   Elektro Eletricidade e Serviços S/A. 0.36604  
27/08/2010 until 

26/08/2011 

 ELETROPAULO   Eletropaulo Metropolitana Eletricidade de São Paulo  0.29651  
04/07/2010 until 

03/07/2011 

 EDEVP   Empresa de Distrib. de Energia Vale Paranapanema  0.33151  
10/05/2011 until 

09/05/2012 

 EEB   Empresa Elétrica Bragantina S/A 0.36454  
10/05/2011 until 

09/05/2012 

 ENERSUL   Empresa Energética de Mato Grosso do Sul S/A  0.43062  
08/04/2011 until 

07/04/2012 

 EFLJC   Empresa Força e Luz João Cesa Ltda 0.39923  
30/03/2011 until 

29/03/2012 

 EFLUL   Empresa Força e Luz Urussanga Ltda 0.31736  from 
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30/03/2011 

 ELFSM   Empresa Luz e Força Santa Maria S/A. 0.41142  
07/02/2011 until 

06/02/2012 

 EBO   Energisa Borborema ? Distribuidora de Energia S.A. 0.29599  
04/02/2011 until 

03/02/2012 

 EMG   Energisa Minas Gerais - Distribuidora de Energia S.A. 0.43907  
18/06/2010 until 

17/06/2011 

 ENF  
 Energisa Nova Friburgo - Distribuidora de Energia 

S.A. 
0.33311  

18/06/2010 until 

17/06/2011 

 EPB   Energisa Paraíba - Distribuidora de Energia 0.34886  
28/08/2010 until 

27/08/2011 

 ESE   Energisa Sergipe - Distribuidora de Energia S.A. 0.33793  
22/04/2011 until 

21/04/2012 

 ESCELSA   Espírito Santo Centrais Elétricas S/A. 0.32889  
07/08/2010 until 

06/08/2011 

 FORCEL   Força e Luz Coronel Vivida Ltda 0.36405  
26/08/2010 until 

25/08/2011 

 HIDROPAN   Hidroelétrica Panambi S/A. 0.36026  
29/06/2010 until 

28/06/2011 

 IENERGIA   Iguaçu Distribuidora de Energia Elétrica Ltda 0.37183  
07/08/2010 until 

06/08/2011 

 JARI   Jari Celulose S/A 0.30345  
07/08/2010 until 

06/08/2011 

 LIGHT   Light Serviços de Eletricidade S/A. 0.31769  
07/11/2010 until 

06/11/2011 

 MUX-Energia   Muxfeldt Marin & Cia. Ltda 0.32609  
29/06/2010 until 

28/06/2011 

 RGE   Rio Grande Energia S/A. 0.38429  
19/06/2010 until 

18/06/2011 

 UHENPAL   Usina Hidroelétrica Nova Palma Ltda. 0.44479  
19/04/2011 until 

18/04/2012 

 

 

 

 

 

 

 


