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Chapter 1

Introduction

Demands for better ride comfort, road handling eoikrollability of passenger cars have
motivated automotive industries to consider theafsective and semi-active suspensions.
Many analytical and experimental studies on actwel semi-active suspensions to
improve ride quality and handling performance hbeen performed. The conclusion is
that active and semi-active suspensions can provadstantial performance
improvements over passive suspensions in general.

The effectiveness of the active suspension systemebicle dynamics is analyzed
based on vehicle models. Passenger cars are compiéhbody systems consisting of
many rigid and deformable componermspp andSchiehlen [59], Rahnejat [60], Rill [63]
andWillumeit [92]. A full vehicle model needs to present thelm@ar kinematics of wheels
and axles, the effects of suspension geometry asdadinclude the drive train, the steering
mechanism and the tire dynamigartim andLugner [42], resulting in a high number of
degrees of freedonsince it makes no sense to try to build a univershicle model that
can be used to solve all dynamic problems, redutythmic models for specific
investigation purposes are often designed inst&asthard and Schiehlen [24] and Rettig
and Stryk [62]. The vehicle yaw dynamics is mainly studiedsdsh on the conventional
planar models such as single track mo#&lelmon [2], Mitschke [51] andWallentowitz [87],
or double track modekckermann [1], Halfmann and Holzmann [36] and Kiencke and
Nielsen [40], where the effects of active suspensions atetaken into consideration. On
the other hand, yaw motion is usually neglectednathe quarter-car, half-car or spatial-car
model with active or semi-active suspensions aresiigated. In order to study the effects
of active suspensions on the vehicle yaw dynanagstoper mathematical model of the
vehicle must be established that can describe gmamdic characteristics of interest
sufficiently, but at the same time can be easdgtid in control synthesis.
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The application of active suspensions involves speinsably the application of
control algorithms. Active control concepts havermenvestigated extensively over the
past ten years. The purpose of an optimal contr@blpm is to determine the control
policy optimizing specific criteria, subject to tlm®nstraints imposed by the physical
nature of the problem. One of the most effectivéinagd control technigues commonly
used in engineering is the linear quadratic regul@tQR) control,Colaneri, et al. [14],
Ramirez [61], Schwarz [71] and Siouris [75]. For linear systems whose states can be
measured online, the LQR algorithm results in apgnstate-feedback control structure
and provides an easy way to derive the optimalrotiet. By choosing appropriately the
weighting factors corresponding to the criteriairgérest, the optimal controller can be
immediately obtained via MATLAB software. Howevehe standard LQR problem is
defined only for linear systems without disturbasde practice, dynamic systems usually
are affected by exogenous excitations. Thereformyrdrol law with state-feedback and
disturbance-feed forward controllers has been ag@pby several investigators as an
optimal solution for the disturbance-rejection eohproblem, e.gAckermann [1], Bail [4]
and Sampson [67]. Different formulas for the controllers havedn applied without
theoretical basis. Therefore, developing the LQBbl@m for excited linear-systems to
affirm the control law as well as to define corhgthe optimal controllers is necessary.

Another approach to achieve the optimal contraemulti-criterion optimization
(MCO). Once the control structure is determined,dptimal components of the controller
can be obtained from the associated multi-criteoptimization problem. Furthermore, the
best trade-off between conflicting criteria candtso derived. In order to find the optimal
compromise solutions, which are known as the Edg#mRareto(EP) optimal solutions,
the multi-criterion optimization problem usually shao be reduced to scalar utility
problems,Bestle [7], Das [18] and Eberhard, et al. [22]. Being one of the effective
scalarization approaches, the compromise method@aerate an even distribution of the
EP-optimal solutions on the trade-off surface eifethe criterion space is non-convex,
Collette and Siarry [16] and Deb [20]. This method, however, results in wasted
computational resources to problems with more ttvem criteria. To deal with such
problems, the recursive knee approach introducebalsyand Denis [19] andWachal and
Bestle [86], an advanced optimization method that canteraaepresentative set of the EP-
optimal solutions with a minimal computation effahould be applied.
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Solving the multi-criteria optimization problem éatly for the optimal controller
would be time-consuming, especially for large systevhere the number of controller
components often is cumbersome. This problem casolved by the combination of the
LQR algorithm, i.e., instead of finding directlyetitomponents of the controllers, the task
of optimization routine is to define the optimal iglging factors of the associated LQR
problem. For each time simulation, the controliesults from the LQR algorithm based
on the weighting factors provided by optimizatiolyagithm. By combining multi-
criterion optimization with the LQR control, notlgrcomputational time can be reduced
significantly, but also the limitation of the LQRgarithm to the constrained control
problems can be overcome.

A constant optimal controller obtained from the LQ&ed optimization method
proposed above, however, is valid only to a speaperation point defined by specific
values of the system parameters. Vehicle dynanstesys usually include parameters
that can be changed arbitrarily by different driveneuvers or road conditions, thus
resulting in parameter-varying systems. To maintdia desired performances of a
parameter-varying system, the controller has toabée to change its parameters
corresponding to the change of the system varyiagarpeters over their operation
regions, Sastry and Bodson [68]. The process for designing such controllers fo
parameter-varying systems is referred to as gdiaekding control design. Recently,
various gain-scheduling design techniques have mgeduced. These methods, however,
require either a complicated control structure,esgeBalas, et al. [5] andsenc [32], or a
complex computation procedure, see eAgkermann [1]. Therefore, a strategy for
designing gain scheduling based on the defineargptontrol structure and the proposed
optimization method must be studied.

The effectiveness of the designed gain-scheduliogtraller must be evaluated
through vehicle handling test maneuvers. It is dketiwn that there are an infinite number
of paths that could satisfy the requirements ferdbuble-lane-change maneuver at a given
speed, which is designated as the standard vétaalgling test. In order to find an optimal
path with respect to specific requirements, thé ganeration problem must be formulated.
There are several different objectives for pathnaigation such as optimization of driving
time, deviation from the lane center and drivingesa O’Hara [54]. Aiming to define an
optimal path that enhances driving safety, theckeHateral dynamics can be reduced by
minimizing track curvature, and thus minimizingelat! acceleration during the test.
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1.1 Literature Survey

The description given above shows that, active esasipn design relies on the fields of
vehicle dynamic modeling, optimal control, multiterion optimization, and gain-
scheduling control. The following sections brieflyescribe papers relevant and
complementary to this research.

1.1.1 Passive, semi-active and active suspensions

The purpose of an automobile suspension is to adelgusupport the chassis, to maintain
tire contact with the ground, and to manage theptomise between vehicle road handling
and passenger comfort. Depending on the configursitand implementations, vehicle
suspension systems can be classified as passipensimn, semi-active suspension or
active suspension.

When designing a passive suspension, the trademefitioned above is made
upfront and cannot be easily changed. For exangpleports car suspension will have
stiffer shock absorbers for better road handlinglevthe shock absorbers on a family
vehicle will be softer for a comfortable ride. Ihet case of semi-active and active
suspension systems, the trade-off decisions ca@hdigged in real-time.

A semi-active suspension has the ability to chaimgedamping characteristics of
the shock absorbers (dampers) by continuously ngryatensity of a magnetic field,
Figure 1.1a, e.gChoi, et al. [13],Geng [31], Paré [56] and Spencer, et al. [76], or by
regulating a controllable orificeKriger [43]. As for a passive damper, the applicable
force in a semi-active damper depends on the sigthe stroke velocity across the
damper. Since semi-active dampers can only dissgrargy, not every control command
can be applied. As shown in Figure 1.1b, only ferlggng in the first and third quadrant
of the force-stroke velocity plane can be produced,a positive forcd-c can only be
supplied while the damper is compressing and ativegéorce while expanding. If the
controller commands a negative force during dangoenpression, the best that can be
done is to generate only a compression force adl as)possible, in other words, to set
the current input to zero.
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Figure 1.1:  Schematic configuration (a) and characteristics (b)

of magnetorheological (MR) dampers for different currents

Contrary to semi-active suspensions, hydraulicaots of fully active suspensions
can generate continuously controlled forces, heytcan both add and dissipate energy
from the system, and thus provide better performahan semi-active suspensions. The
hydraulic actuators are typically governed by etdbhydraulic servo-valves and are
mounted in parallel to passive suspension springd dampers, allowing for the
generation of forces between the sprung and ungpro@asses. The electro hydraulic
system consists of an actuator, a primary powenplspalve and a secondary bypass
valve. As seen in Figure 1.2, the hydraulic actuatglinder lies in a follower
configuration to a critically centered electro hyglic power spool valve with matched
and symmetric orifices. Positioning of the spagldirects high pressure fluid flow to
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either one of the cylinder chambers and conneetsther chamber to the pump reservoir.
This flow creates a pressure differende across the piston which acts on the piston to
provide the active forcEc for the suspension system. The change in forpeoisortional

to the position of the spool with respect to cemtbrch is controlled by a current-position
feedback loop, the relative velocity of the pistand the leakage through the piston seals,
Donahue [21]. The research represented in this thesis assdufly active suspensions.

S f

spool
Az=12y-Zs
A
Zy I: > return
-
/
If ,
Pr ————
piston A
L
I I AP = PP, /’ supply
|
Y
Ps 4——/
-
I: return
—

Figure 1.2:  Schematic configuration of hydraulic actuator

A complete suspension typically consists of passiwmponents and an actuator.
Most technical solutions use the actuator in parédl a conventional spring and damper,
as illustrated in Figure 1.3 for a quarter-car mipfie reasons of safety, i.e. to guarantee
vehicle stability in case of actuator failure, amkrgy savings.
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Figure 1. 3: Quarter-car model with active suspension

1.1.2 Vehicle modelling

Physical models for investigating the vertical dymas of suspension systems are most
commonly built on the conventionguarter-car model, which represents the vertical
motion of a system including a quarter of the caglypband the corresponding wheel, e.g.
Chantranuwathana andPeng [10], Donahue [21], Pang, et al.[55], Shen and Peng [73]
andYi and Song [94]. To take into account the suspension geometong, et al. [38]
introduced aplane quarter-car model with a semi-active Mac-Pherson suspension. More
accurate analysis is achieved by extensions tecalkmifull-car mode, e.g.Choi, et al. [13]
andPark andKim [57], which reflects both vertical deflections aindlinations. Bounce,
roll and pitch motions of the car body can be itigased simultaneously. In addition, the
effects of suspension geometry and stabilizerstsrall bars also can be involved in the
model, e.g.Gartner and Saeger [30] and Mitschke [50, 51]. Separated and decoupled
investigations are possible usihglf-car models, e.g.Gaspar, et al. [29],Taghirad and
Esmailzadeh [78] andVaughan [83].

The most commonly used models for studying vehiateral dynamics are the
conventional planar models suchsagle track modd, e.g.Ammon [2], Lazic [45], Lu, et al. [46]
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andRyu [65], anddouble track model, e.g.Ackermann [1], Halfmann andHolzmann [36] and
Kiencke andNielsen [40]. Although the yaw motion is taken into accquhe suspension
effects are not considered for these modéjsarinen [39], Sampson and Cebon [66]
and Sampson [67] investigated the effects of the suspensioriesygson vehicle lateral
dynamics based onfalf-car roll model. Additionally, the influences of the suspension
and tire deformations on the vehicle stability dnashdling were also evaluated Bydie
andHac [8] andHac [34, 35].

1.1.3 Control algorithmsfor active suspensions

One of the most straightforward and effective acalrdpproaches for active suspensions is
the so-calledsky-hook control, which is used to hang up the vehicle body ornrtaiad sky
completely uncoupled from road excitations. A langenber of applications in the literature
exist which often consist the skyhook approachhasreference control law; many of
those investigations have used the quarter car lhasda basis, e.gChoi, et al. [13],
Donahue [21] andKriger [43]. Analogously, theround-hook control concept takes into
account wheel oscillations, eMplasek, et al. [82].

Linear quadratic regulator (LQR) is a powerful concept of optimally contraty
linear systems commonly used for vehicle systentrobnThis technique results in a
simple control structure with an optimal state-tesck controller which can easily be
obtained from the solution of the algebraic Ricexjuation. Several applications of the
LQR control have been used in active suspensiorapre.g. Rettig and Stryk [62],
Sampson [67] andTaghirad andEsmailzadeh [78].

For complex systems where not all states are abtess be measure#alman filter
techniques are often usedyloscinski and Ogonowski [52] and Shahian and Hassul [72].
The LQR control with Kalman filter has been appliedhe investigations dfriiger [43],
Venhovens andNabb [84] andYi andSong [94]. Another approach proposed\tgughan [83]
is to use th&. QR control with output-feedback controller.

Dealing with the uncertainties in system parametaeny robust control techniques
have been developed. The most commonly used isltheontrol, e.g.Choi, et al. [13],
Gaspar, et al. [29] andnvu [93]. Additionally, adaptive extensions to therstard LQR
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control have been performeGhantranuwathana and Peng [10]. Beside that, there also
exists a variety of alternative formulations of theblem to control active suspension
systems such dsizzy logic control, e.g.Kriiger [43] andRouieh andTitli [64], anddliding
mode control, e.g.Chen andHuang [11], Yokoyama, et al.[95] andZhong [96].

1.1.4 Multi-criterion optimization

As already mentioned, suspension design has ttveed® conflict between ride safety and
ride comfort resulting in a multi-criterion optinaizon problem. There exist a large number
of methods and algorithms for solving such muliiecion optimization problems, see for
exampleAndersson [3], Coleman, et al. [15], Collette and Siarry [16], Deb [20] and
Marler andArora [47]. Most methods attempt to scalarize multipbgectives and perform
repeated applications to find a set of Edgwortre®a(EP)-optimal solution®gestle [7]
andShukla andDeb [74].

Aiming to provide a good diversity among solutiansthe criterion space, beside
the compromise method various advanced algoritheme heen developed. The first one
is thenormal boundary intersection (NBI) method, developed byas [17, 18] andDas
and Dennis [19]. Their study was aimed at getting a good g of solutions on the
efficient frontier by starting from normal directi® to the ideal plane passing through
individual function minimizers. The study used auality constraint formulation of the
sub-problems. A modified version of the NBI apphoacalled therecursive knee
approach, was developed byas and Dennis [19]. Better formulations were also
introduced and programmed W¥achal andBestle [86].

Kim and Weck [41] developed thadaptive weighted-sum method for multi-criterion
optimization. Initially, the efficient frontier isapproximated by employing a single-
objective optimization algorithm with the weightedm approach many times. Efficient
front patches are then identified and further esfiby using additional equality constraints.

Mattson, et al. [48] andMessac, et al. [49] developed thermal constraint method
for getting an even distribution of the EP-optirealutions on the Pareto frontier. In the
normal constraint method, there is a sequentialagah of the feasible space by hyper-
planes passing through a point on the ideal pl@hen, et al. [12] also developed the
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physical programming method and then presented a different method for gemeratie
entire efficient frontier using the physical progmaing approach.

Over the past decade, teeolutionary multi-objective optimization received growing
attention by its ability for finding multiple EP-timal solutions in a single simulation run
and providing the entire range of solutions anddth@pe of the Pareto frontiéeb [20]
andShukla andDeb [74]. Applications of the evolutionary multi-objae optimization to
the design of rail vehicle suspensions performedcEbgrhard, et al. [23] andHe [37]
demonstrated the effectiveness of this method.

1.1.4 Gain-scheduling contr ol

Due to arbitrary changes of the system parametessiltimg from different drive
maneuvers or road conditions, vehicle dynamic systeare often formulated as
parameter-varying systems which require the cdetroto change its parameters
appropriately. Gain-scheduling is one of the mosititive approaches to adaptive control,
commonly used to control linear parameter-varylidg\{) systems. This technique amounts
to design controllers which are able to updater tharameters on-line according to the
variations of the system parameters. The advamagain-scheduling is that the required
performances of the system are guaranteed by piiet change of the control parameters in
response to the changes in the system dynagzssy andBodson [68].

Conventionally, gain-scheduling control is desigfmwda two-step procedure: first
one designs local controllers at specified openapoints, then a parameter-dependent
controller for linear parameter-varying systemadblesiuled either via snitching scheme,
e.g.Giua, et al. [33], or bynterpolating among the local point designs, ekgmar [44].

Robust control techniques such as Hor H,, control have recently become a popular
concept in control of linear parameter-varying sys$ with un-modeled dynamics or
unknown disturbances, e.Bruzelius [9], Fujiwara and Adachi [27], Gaspar, et al. [29],
Wang andTomizuka [89, 90] andNu [93]. These techniques involve the solution oé¢én
matrix inequalities and result in a constant sfagglback matrix ensuring that the transfer
function from excitations to controlled outputslasver than a prescribed small value,
Gahinet, et al. [28]. The set of admissible parameteuesican be treated in a direct
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manner. In addition, bounds on the rates of charfigke parameters can be incorporated
to obtain a less conservative controller, &\ang and Tomizuka [88]. The resulting
controller has a stability and performance guaraimethe pre-defined operation region.
However, a potential problem with these methodkadack of performance.

Another approach for designing gain-scheduling rmdmé the so-calledimultaneous
I-stabilization method presented byickermann [1] andWang, et al. [91]. This technique
permits the designer to specify a set of desirgebns, joint or disjoint, in the complex root
plane. Then a numerical algorithm is used to fimel tontrol parameters such that all the
roots of the closed-loop systems resulting fromlitnearized plant models are within the
specified regions. Although the performances otctbeed-loop system can be improved by
changing the desired regions in the complex plesimultaneouB-stabilization method
is only suitable to controllers with a few compotsen

Petersen, et al. [58] use theonstrained LQR method to design gain-scheduling for
a wheel-slip-control model, resulting in a paramelependent controller scheduled by
the car velocity. Good performance and robustndsthe® model are shown through
analysis and experimental results. However, thigr@gch is limited within a specific
operation region and requires special experiermeddsigning the weighting matrices.

1.2 Outlineof the Dissertation

Following this introduction chapter, the remaindsr the thesis is divided into six
chapters. Chapter 2 describes the fundamentals ultibody system dynamics. The
equations of motion of multibody systems are estladl based on analyzing the
kinematics and kinetics. Additionally, reduced dmearized forms of the equations of
motion are presented which will be used for cortralysis.

In Chapter 3 a three-degree-of-freedom spatiahwadel for studying the vehicle’s
lateral dynamics is introduced. To define the elguat of motion, a plane track model
describing yaw motion of the car is presented. liilearized equations of motion and
their state-space representation are then intradugscussions on special cases of the
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general spatial car model result in a simplifieddeioto be used for optimal control
analysis. For simulation, a spatial car model it buMATLAB/Simulink.

An optimal control law for the spatial car modetisfined in Chapter 4 based on the
linear quadratic regulator (LQR) control. The LQRolgem is shown first for linear
systems without disturbances, which results in ptin@l state-feedback controller, and
then extended to linear systems with measurabterdances, which leads to an optimal
disturbance-feed forward controller. Automotive fpemance criteria specified for the
spatial car model are also introduced in this datrapThe effectiveness of active
suspensions with LQR control compared to passivaensions is shown based on
simulation results for the spatial car model.

Some background information on multi-criterion ap#ation (MCO) is first
presented in Chapter 5. Then, formulations of trapromise method and recursive knee
approach are given in more detail. MCO problemsbfith passive and active suspension
cases are defined. In order to reduce the numbeesign variables for the case of active
suspension, an optimization procedure combining M@0 method with the LQR
algorithm is proposed. The advantages as well awlziicks of the compromise method
compared to the recursive knee approach for findingg Pareto frontier are discussed
based on optimization results.

Chapter 6 introduces the method of designing gelmeduling control for the linear
parameter-varying spatial car model. First the ajgmn region of the model is determined,
considering the effects of the deformation of saspa and tires on the vehicle stability in
cornering situations. Then, based on the localn@giticontrollers defined for specified
operation points, a parameter-dependent contradleformulated that is able to vary
continuously its parameters according to the chaeddhe system’s varying parameters.
To demonstrate the effectiveness of the designeainsder-dependent controller, vehicle
handling test simulations are performed with inparameters obtained from the path
generation problem defined for double-lane-changaeuvers.

Finally, conclusions and recommendations on futh@search are summarized in
Chapter 7. Appendices provide the parameters ottingied car, the NEWEUL output
file for the spatial car model and MATLAB.m-filesed for the various investigations in
this dissertation.
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Chapter 2

Multibody System Dynamics

Many mechanical and structural systems such asleshrobots, mechanisms, and aircrafts
consist of interconnected components that undegeggel translational and rotational
displacements and can be modeledhaibody systemsén this chapter, thkinematicsand
kinetics of multibody systems are formulated. Subsequetiig,equations of motiomf
multibody systems in both nonlinear and linearifoedh are presented.

2.1 Multibody Systems

In general, anultibody systens defined to be a finite set of elements suchgad bodies
and/or particles, bearings, joints and supportangp and dampers, active force and/or
position actuators as illustrated in Figure 2.1 dfgure 2.2. For the mathematical
description of these elements, the following asgionp are agreed upo®c¢hiehlen [70]:

1. A multibody system consists of rigid bodies andaideints. A body may degenerate
to a particle or to a body without inertia. Theati@ints include the rigid joint, the
joint with completely prescribed motion (rheonoroanstraint) and the vanishing joint
(free motion).

2. The topology of the multibody system is arbitrachains, trees and closed loops are
admitted.

3. Joints and actuators are summarized in open légaf standard elements.

4. Subsystems may be added to existing componenke ghultibody system.
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rigid body

constraints

coupling
elements

Yi

X

Figure 2.1: Multibody system

mass elements (no elastic deformation) coupling elements (no mass)

© rigid body NN spring

@ mass point © 40 damper

actuator
© I:l 0 (force control)

ideal constraints (rigid, no friction, no mass)

g\\—\\- o & é bearings, joints

O_E_o servo motor

(position control)

Figure 2.2: Elements of multibody systems (and idealizations)
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The topological structure of a multibody system t&npossibly tree structure or
system with closed kinematical loops. The most comign mentioned classification of
constraints is scleronomic vs. rheonomic accortlnipeir time variation characteristic or
holonomic vs. non-holonomic according to the caustr motion type. More detailed
descriptions about multibody systems can be foorkstle [7], Popp and Schiehlen [59]
andSchiehlen [69].

For dynamical analysis, the multibody system hdsetdescribed mathematically by
equations of motions. In the following sections ¢emeral theory for holonomic and non-
holonomic systems will be presented using a minimahber of generalized coordinates
for a unique representation of the motion.

2.2 Kinematics of Multibody Systems

There are basically two approaches in choosingdioates to describe the kinematics of
multibody systems, generalized, i.e. independertrdinates and dependent coordinates.
The former one leads to a kinematics descriptiomimimal form, whereas the later one
results in the descriptor form. Multibody systemighvehain or tree structure can always
be described with generalized coordinates and gulesgly by ordinary differential
equations (ODEs). Multibody systems with closedokon the contrary cannot be always
described with independent coordinates. The intcbodo of additional dependent
coordinates in this case requires additional algebronstraint equations resulting in a
coupled differential-algebraic system of equatiohmotion (DAE).

The degrees of freedom (DoR)f a spatial multibody system withbodies and
independent constraints can be calculated as6p — q Accordingly f generalized
coordinatesy = [ y1, y2, ..., yr]' can be chosen to describe the translational amational
motion of each bod¥;, i = 1(1) p. The translation can be described with the position
vectorr; of the center of gravity (CG), whereas the orieotaimay be described by a
matrix of directional cosineS;. In an inertial reference frame, they can be desdras
functions of the generalized coordinates of follegviorm:

i = ri(%t)’
S =S/(y.t) i=11)p. (2.2)
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Through total differentiation with respect to tintae translational velocity, and
angular velocityw, of each body using the infinitesimat13 vector of rotatiords can be
expressed as

dy onyt) . an(y.t)

g 2y y+— 5 =35 (.t)y + Vi (y.t),
0 - BB, B0 0500 @2

The Jacobi matricedr; and Jg; of translational and angular velocity charactetiize
mapping from generalized to physical velocity spddese Jacobi matrices are necessary
for the later application of d’Alembert’s principte eliminate the constraint reactions.
The second term in Equations (2.2) will only oceuth rheonomic constraints, they
present the local velocity independent yof Likely, the translational and angular
accelerations; and ¢; can be calculated through repeated total diffeation:

a. _advi v (y'jy,t)er8vi(y',y,t)y,+6vi(1),y,t):: J

gt o P ot Ti(y7t)y+§i (y,y',t),

0= =8”‘%y’t)y+awi(g;y’t)y+awi ‘g;y*):: Ini )i+ (4.9.0).

(23)

The X1 vectora; of local translational acceleration amgl of local angular acceleration
contain theij independent acceleration terms.

2.3 Kineticsof Multibody Systems (Newton-Euler Equations)

The main purpose of the dynamic equations of madiybsystems is to find a connection
between motion and the acting forces. Basic appesato the dynamics of multibody
systems are distinguished as synthetic (vector) amalytic (scalar) approaches. The
Newton-Euler formalism introduced here is essdgtakynthetic approach.
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For application of Newton’s and Euler’'s law regsigeparation of the constrained
body K; from its interacting bodies by replacing the ideahstraints with equivalent
constraint reactions and coupling elements by a@pforces. Newton’s equations of
motion and Euler’'s dynamic equations can then badtated as

mlal - fia + fir,

la, + o0 =12 +1/, i=11)p. (2.4)

In these equations, the mass property of the bguyK; is represented by its massand
the X3 inertia tensot; relative to its center of gravit@;. The forces acting on the rigid
body and the moment relative to its center of gyaaie divided into applied force§®
and momentsd?, and reaction forces$," and momentd; . The skew-symmetric tense,

is defined as

0 -0, o
E)i = Si SIT =| o, 0 —Oy |, i :1(1)p (25)
—0y 0y 0

Equation (2.4) consist of totallyp6Newton-Euler equations of motion for a
multibody system with only DoFs for both thd variablesy and the reactions. With
vector variables:

Or = ma;,

O = lia + ol T=1(1)p, (26)
representing gyroscopic, Coriolis and centrifugatés, Equations (2.4) may be rewritten as

m Jr j +of =7+ 1,

L g i+ Qre =17+, i =1(1)p. (27)

The reaction forces and moments in (2.7) can béhdurexpressed imx1l general
constraint forceg = [ g1, %, ..., 94 T with the translational and rotational distributio
matricesk; andL:

f." =F (10,

Il =LbYg  i=1Dp. (28)
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Equation (2.7) can be summarized as Newton-Euleatens

MJij+G =3+ Qg (29)

by introducing the following global matrices anctiars, respectively:6p global mass
matrixﬁ, 6pxf global Jacobi matrixJ , 6px1 global vector of applied forceg®, 6px1
global vector of gyroscopic, Coriolis and centrifilidorcesq®, as well as thepkq global
distribution matrix of reaction forceé as:

M = diag{mll, e Mpl 1y, p},

— T
J= [JTTl, o | I Jﬁp] ,
12, |3TT,

C T C T T
qu g aeny qu ’

T

o)

_ T
a_ [ff‘ AR

~C CT C T
q- = |:qu » o Orp
Q- |F Rl L ] (210)

wherel denotes thex3-identity matrix.

2.4 Reduction and Linearization of the Equations of Motion

According to d’Alembert’s principle, the virtual wo of reaction forces vanishes for all
motions which are consistent with the constraiftss can be expressed by an orthogonal
relationship between the global Jacobi matrix ahd g¢lobal distribution matrix of
reaction forcesSchiehlen [69]:

J"Q=o0. (211)

By multiplication of Equation (2.9) with the trareged global Jacobi matrix from the left,
the reaction forceg can be eliminated as follows:

j+J'a°=73"9"+J"Qg, (212)
=M = = 0
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and the equations of motion expressed in genecablatates can be derived as:

M(y.t)i + k(y.9.t) = aly.3.1). (219

These equations take on the fornf abn-linear ODEs of"® order. The symmetric, positive
definite fxf mass matriXxM, thefx1 vector of general gyroscopic, centrifugal andidlisr
forcesk, and thdx1 vector of general applied forcgsire defined according to (2.12).

In many technical applications, vibrations with pest to prescribed motions or
equilibrium positions will be small. Then the gesieaed coordinateg can be considered
as small and the equations of motion can be linedri

In case of holonomic multibody systems, the vilomadi around the given motion,
which is represented by the vecig(t), can be described as

y©) =y (t) + #(t) (214)

where thefx1l position vectorn(t) and thefxl velocity vector1'1(t) are always much

smaller than some comparison vectors. Using thensxin of Taylor's series and
accepting the differentiable property of the vesttine terms in (2.13) have the following
linearized forms:

K (.8) = k(yo(0)70(0)1) + % NCE %k. RCE
o) =K =K,
~ Ko (t) + Ky(t)n(t) + Ky(t)ﬁ(t), (2.15)
4(.9.1)= qlyo®)3o0)) + g RCE g RCE
= (1) =o,0) o0
<) Q0m) Qi) (216)

The first term in (2.13) can be written as:

M) = My, t)[3o(t) +i(t)

= Mo 0o i) + LMD ey

= oy [*8
< Mo)iiolt) + Mo()iit) + m@ym» ) (217)
(yo)

= My(t)
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Substituting (2.15), (2.16) and (2.17) for (2.18)lgs the linearized equations of motion
in the form:

M(t)i + Pty + Qltly = h(t) (218)
where
M () = Mo(t),

P(t) = K, (t) - Q;(t),
Qt) = M, () + K, () - Q,(t),
ht) = ap(t) - ko(t) = Mo(t)#,(t). (219

If further M(t), P(t) andQ(t) are independent of time, the multibody systenmslza
treated as linear time-invariant (LTI) system disemt by

Mij + (D+G)y + (K+N)y = ht) (220)

where the matrix of velocity-dependent fordesis split into a symmetric matrix of
damping force® and a skew-symmetric matrix of gyroscopic forGsespectively, and
the matrix of position-dependent force3 is split into matrices of stiffneds = K™ and
non-conservative forcds = — N', respectively. All matrices hereby are of dimendid.
Vector h(t) is an excitation vector of dimensidrl representing control or disturbing
input forces.

For non-holonomic systems the velocity degreesreédom are reduced by non-
holonomic constraints. With the application of Jnk principle, the equations of
motion in both nonlinear and linearized form can dieained similarly. More details
about non-holonomic systems can be founBestle [7] andSchiehlen [69].
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Chapter 3

Passenger Car Modeling

In this chapter, a&patial car model for a vehicle with a double-control-arm suspension
will be developed. The yaw motion of the car wil Berived from glane track model.
The linearized equations of motion obtained from the computer-aided multibody system
program NEWEUL will be transformed into tkate-space representation form. Finally,

a simplified spatial car model will be presentedichwill be used to design optimal
control.

3.1 Suspension Forces

The influences of suspension geometry are ofteoragh in conventional quarter-car
models. In this section, modified suspension patarsecharacterizing the effects of
suspension geometry will be defined by comparing tiitual works generated by the
forces acting on the car body of a double-control-asuspension and those of a
conventional quarter-car model. The virtual-worktioee introduced in this section can
be applied analogously for other types of suspensidind properly modified suspension
parameters.

3.1.1 Double-control-arm suspension

The schematic diagram of a double-control-arm susipa system is shown in Figure
3.1. In this model, the directions of the springrp@r and the actuator at the static
equilibrium are described by angles and pco respectively, while that of the lower
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control arm is presented by andgie The model has two degrees of freedom, the vértica
displacement of the sprung massnd the displacement of the unsprung mass whigh ma
be represented by the rotational anfjtd the lower suspension arm.

actuator

anti-ro

Figure 3.1: Plane model of double-control-arm suspension

The given parameters of the model are the stiffoédbie springks, the damping
coefficient of the dampd, the rotational stiffness of the anti-roll lgrand positions of
joints. The suspension forces acting on the caryl{edrung mass) result from spring,
damper, actuator and anti-roll bar.

e Spring and damping for ces
Figure 3.2 illustrates the definition of the sprifigce vectorFx and the damping force

vectorFg when jointD connecting the spring-damper with the lower cdraron moves to
D'. For small rotational anglg, i.e. £ << 1, vectoi, representing the displacement of joint
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D can be treated to be orthogonal to the lower obrsrm OD and its value can be
defined by =Ip sin() = Ip &, resulting in thelynamic deflection of the spring-damper:

Al ~ 85 sin(py) = 15 sin(ey). (32

The spring force Fx is proportional to the sum of dynamic deflectiah and static
deflectionAlg of the spring, i.e.

Fe = ko(Al + Aly), (32)
or with (3.2):
Fe = kolp&sin(pg) + koAl . (33)

Thedamping force Fg can be computed approximately by

Fg = byAl = byly& sin(p,). (34)

S
S Ys
j*
\ 2% ’
\j ¢l e
N =y &
O & St\Fs
Ip
Fk
9 59

Figure 3. 2: Definition of the spring and damping forces
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By defining an instantaneous velocity ceneof the unsprung mass as shown in
Figure 3.3, the rotational angleand velocity £ of the lower suspension arm can be
expressed by

£~ Le A (35)
E-U
and
. Le )
§x = Az, (36)
E“-U

respectively, wherdz = ( z, — zs ) is the relative vertical displacement betweengprung
and unsprung mass. Substitutiigto Equation (3.3) yields

Fe =ko Ip |LE sin(py) Az + kg Al . (37)
E“-U

=4
With £ defined by (3.6), the damping forEg in (3.4) can be expressed by
Fg = by Ap AZ. (38)

In the abovep is the coefficient representing the influenceshef suspension geometry
on the spring and damping forces.

instantaneous velocity center i
pu.

P

1~ AzZlcos(yo)

U

Figure 3. 3: Definition of the rotational angle of the lower suspension arm
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By introducing rotational matriceS¢,, S¢ andS(g,+s5¢) corresponding to angles,
£and (9, +09) as

1 0 0
Se,=| 0 codsy) sin() |, (39)
0 —sin(¢,) cods,)

1 0 0 10 0
Se=|0 cod¢) -sin(¢)| ~ [0 1 —¢& |, (310)
0 sin(¢) codé) 0 & 1
1 0 0
Sig,+9)= | 0 coddy +59) —sin(9; +59) (311

0 sin(9,+59) cogY, +59)

where §, = % —(po +&,)  anih <<1, the directional unit vecta of Fx andFg in the
coordinate syster8 fixed to the sprung mass can be defined by

0 0 0
€ = Sigyes9| 0 | =| sin(d+59) | ~| sin(9y)+codd,)sd (312)
-1 —cod9, +59) —codd, ) +sin(9, )59

while vectordp in the coordinate systeBSican be defined from vectorsp androp as

dp = Top' ~ Top (313)
with
0 0
foo: = Sg, Se | 1o | = Io| codl&y) + £sin(&) (314)
0 =sin(&,) + & cod&,)
and
0 0
oo =S¢ | 1o | = 1o cod¢o) (315)
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resulting in
0
dp =lp & | sin(&,) |. (316)
cods,)
With the directional unit vectayp (3.12), the vector of spring forée can be defined as
0
Fo = Feep=F¢ | sin(9,)+codd,)s9
—codd, ) +sin(9, )59
0 0
= F¢ | sin(9) | + Fc | codd,) |69 . (317)
—cod9,) sin(%,)

Thevirtual work generated by the spring force can be computed by
W, =FQ dp . (318)
Substituting (3.16) and (3.17) into (3.18) and ngkinto account, 69 << 1 yields

Wy =FJ dp = Flp & (ccody +&,)) = Felp & (—co{%—%D
= —Fy Ip &sin(gy,), (319)
or with (3.5) and(3.7):
Wy = - Fy Ap Az=— (ko2 Az + kodp Alg)Az. (320)

Similarly, the virtual work generated by the dangpfarce can be computed by

Wy = —byd5 AzAz. (321)

The virtual works generated by the spring and damarces of the double-control

arm suspension model will be compared to those ajreventional quarter-car model to

define the modified suspension stiffness and daghpaefficient.
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e Actuator force

The magnitude of the actuator foré&, denoted byu, is determined by control
commands. By defining the directional unit vectdri=@ and the displacement of joift
connecting the actuator with the lower suspensiom, ave can obtain the virtual work
generated by the actuator force as

W, =—U, |C|LE sin(pco) Az (322)
E“-U

=Ac

wherec represents the influences of the suspension gepmethe actuator forces.

e Anti-roll force

When the small vertical displacements of the Iaét the right wheels are different, the anti-
roll bar with a rotational stiffnegg creates an anti-roll momekty, see Figure 3.4, as

(6a1 =) COSIE,) (323

My =1, .

where da is the displacement of joirk connecting anti-roll bar with lower suspension
arm, the subscriptd™and “r” denote the left and the right wheel of the caspectively.
This moment results in the anti-roll forEg acting on the unsprung mass with the value:

My ; (Sa —Oar Jeody) (324)
e e |

The virtual work generated by the anti-roll forcas be computed by
W, =—Fy (54 —0a )cos(&y), (325

or with(3.24):

AW, =1 {(% —5Ar)005(§o)} 2. (326)

e
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b)

Figure 3.4: Definition of the anti-roll force

For small rotational angl€ of the lower control arm, the displacemeft can be
computed from Figure 3.4a as

RN (327)
or with¢ givenin (3.5):

Le
le Ly

~

A= la Az. (328)
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Substituting the above equation into (3.24) and§Byields

1 L
Fu =1y 5 la—=—cos&)(Az - Az,) (329)
€ leLy
1 L ?
elu

=

where 1, is the coefficient representing the influenceshef suspension geometry on the
anti-roll forces. At the sprung mass, the valueghaf anti-roll forceF, is defined by the
equilibrium condition

2F,a - 2F,c=0 (33))
resultingin
a a
Fr=F,—=1rgAs — . 332
A UC 0 A ec ( )

3.1.2 Modified suspension parameters

Let us consider the conventional quarter car mdhtlesitrated in Figure 1.3 with spring
stiffnessk, the damping coefficierth and the valuei of the actuator forc&c. For this
model, the values of the spring forEg with pre-stresEAK0 and damping forcé&g are
defined by

Fe = k(zy —25) + Fy,=kAz + Fy, (333)

Fg = b(z, —25) = bAz (334)
wherez, andzs are vertical displacements of unsprung and spnoaigs, respectively.

Since the directions of the forces acting on theid®and displacements are opposite,

the virtual works resulting from the spring, damaed control force can be computed as
MW, = —Fy Az = — (kAz + B )z, (335)
oWy = —Fg Az = —~bAz Az, (336)

SWe = —UAZ. (337)
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Comparing the above virtual works to those of thelde-control-arm model defined by
(3.20), (3.21) and (3.22), respectively, yields

k = ke A2, Fy, = ko Ap Alg, (3398)
b = by Ay, (339)
U= Uy Ac - (340)

For a half-car or full-car model constructed frooanbination of quarter car models,
the value of the anti-roll fordéa at the left and the right wheel can be computed by

Fo=r(Az —Az) (347
resulting in the virtual work
Wy =—Fy (A7 - Az ) ==1(Az - Az, ) (342

wherer is the modified rotational stiffness of the amtltbar. Comparing to the virtual
work (3.30) yields the anti-roll stiffness for angilified car model:

r=r, AAZ : (343

It should be noted that the unit ofis [N/m/rad] instead of Nmvrad] due to the unit of
Aa (3.30).

With the modified suspension parameters defined(3$8), (3.39), (3.40) and
(3.43), the influences of the geometry of a dowdaatrol-arm suspension can be involved
in the conventional simplified car models.
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3.2 Three Degree-of-Freedom Spatial Car Model

Capturing all vehicle dynamic problems with onevensal model can be quite difficult.
Although including more number of elements in thedel may increase the model's
accuracy, it substantially increases the computdiime. In order to study the influence
of suspension characteristics on vehicle handimb saability, i.e. the lateral dynamics, a
novel spatial car model is proposed with the folleywsimplifications, Figure 3.5:

e the four wheels are treated as massless pointské®t their traces along the road
surface; the mass of suspensions is also ignored;

e the car body, i.e. the sprung mass, is considesesingle rigid body that can rotate
along its fixed roll and pitch axes. The pitch agisssumed to go through the center of
gravity of the car body.

t
ZC O WI
tWI'
Ir O
Yc
XC (1
a .
bt I c g
O\ th (04
yi=}
O
hrc
0 ‘/./' yR
" (e e o
’ o R
kf (0\\9*\ ﬂ <
It II ﬁzc
< hrv
car track

Figure 3.5: Three degree-of-freedom spatial car model in reference configuration
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The gpatial car model has three degrees of freedom: 1) the vertical anoti
expressed by, 2) the rotational motiof about the roll axis which is inclined by a
constant anglé with respect to the horizontal axis, and 3) thational motion about the
pitch axis denoted by pitch angle. In order to describe the motion of the car bdbsee
coordinate systems are introduced additionallyh® &bsolute inertial reference frame
{O, x, Vi, z }, i.e. the track coordinate systerw{xy, Yv, zv}, the car body roll motion
coordinate systenR, Xr, Yr, Zr } and the car body fixed coordinate syste@) %c, Yc, Zc }.
The direction of coordinate systems is defined etiog to ISO 8855, i.e. the positive
axis points straight forward, tlyeaxis points to the left and tlzeaxis points upwards.

The trace of the chassis, i.e. the un-sprung nmedsding the four wheels, in they
plane of the reference fran@ can be described with a coordinate system thatlates
only within thex-y plane and rotates only along theaxis. This coordinate system is
referred to as the track coordinate systemit equilibrium of the car, the-axis ofV runs
through the center of gravity of the car bodyslbbvious that the rotation ®f represents
the yaw motion of the car denoted by

The roll motion coordinate systelis assumed to keep its origin directly above the
coordinate systend, i.e.R shifts only along the-axis ofV. This shifting is indicated by
Zc and it is one of the three degrees of freedom @fcdr body. Orientation of systef
can be described by two consequent elementaryansafThe first one is a rotation about
they-axis of coordinate systemwith a fixed angled defining theroll axis of the sprung
mass. The consequent rotation is aboutxtagis of frameR with roll angle g which
along with the rotation axis describes tied motion of the sprung mass and yields the
second degree of freedom of the car body.

The last coordinate systef is fixed to the car body with its origin fixed to
coordinate systerR and a rotational degree about thaxis. This rotation represents the
pitch motion of the car and is characterized by anglewhich is the third degree of
freedom of the car body.

Applied forces and moments on the car body resolnfsprings, dampers and
actuators of the four suspensions and anti-roff bathe front and at the rear side of the car.
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3.3 PlaneTrack Mode

The car is assumed to move along a given trajecod; to keep its yaw orientation
tangential to the track all the time. In order ®scribe the motion of the car, the track
must be modeled first. A relatively simple and easy to produce a car track is the
division of the whole track path into sectionsislpossible to reproduce all road courses
which occur in real road systems using only thriéferént path forms: straight-line, spiral
and circular-arc segments as illustrated in Figuée

Yi . r-arc se
qreuld 91716,

X

Figure 3.6:  Basic path forms of the track

The track is described by a track coordinataelong the track and its curvature
k = k(S) which is the inverse of the curve radi(s), i.e. k()| = 1R(s), wherex(s) > O for
a left curve and«(s) < O for a right curve. The curvature of the trasggments can be
defined as follows:
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e for straight-line segment&(s) — o = «(s) =0, (3)44
e for circular-arc segment&(s) =Ry = x(s) = 1Ry = congt., (3.45)

e for spiral segments running frogto s;:

- from a straight line into a cirattarc e.g.:

om0 423)

- from a circular-arc to a straigihe:

Vi

instantaneous center

track of the car’'s CG

Figure 3.7:  Plane track model

(3.46

(3.47

Figure 3.7 shows the plane track model used toritbesthe yaw motion of the car.

As illustrated in the figure, the angular yaw véttpcan be defined as following:
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. d 1 ds 1 .
y:d_]t/:@E:@ = x(s)v. (3.49

The trajectory of the track in they plane of the inertial coordinate system may be
computed from

%, =vcody),
% =V sin(y). (3.49

The accelerationg, andy,, can be projected along tangent and normal @irecof the
moving frameV as

a, = % cody) + ¥ sin(y),
a, = - X, sin(y) + ¥, cody). (3.50

Alternatively the car longitudinal and lateral decation can be calculated from longitudinal
and angular velocity as

=V,

a, = % = v [vi(s) = vy. (3.5)

3.4 Linearized Equationsof Motion of the Spatial Car Mode

In this section, the linearized equations of motdnhe spatial car model will be defined
which will be used for simulation and control arsdy As indicated in section 3.2, the
vector of generalized coordinates for the spatalsodel may be chosen as

y=lz, B, ]’ (3.52)

and the vector of general applied forces and mosnessulting from the suspension and
expressed in the car body fixed frame may be sumethas

o =[fz, g, l.]7. (3.53)
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More details about these quantities will be give®ection 3.5. It is assumed that the car
body roll and pitch angles are small, j®a <<1. This assumption is acceptable since the
maximum value of the roll angle for passenger @aitypical rollover test maneuvers is
less than 6 degreeBorkenbrock, et al. [26],Ungoren, et al. [79, 80, 81] anttiano and
Parenteau [85], in addition the pitch motion is often negled for even roads and normal
maneuvers, i.e. without sudden acceleration. Bamedhe theoretical derivation in
Chapter 2, the computer-aided multibody system qammgNEWEUL can be applied
resulting in the linearized equations of motion

Mij+ Py +Qy=nh (3.54)

of the spatial car model where timass matrix M is given as

Mg 0 0
M=|0 (mStherlx)cosz(H)Jr |, sin*(@) O |, (359)
0 0 »

thematrix of velocity- dependent forcesis

0 0 0
P=|0 0 (I +1y —1,)yco48)|, (356)
0 (I, +1ly —1,)ycod8) 0

the matrix of position dependent forces realsas

0 0 0
|4 —Mshgca, sin(@)cogp) (e 1 Vico
Q=|0 _(msthzc+|Y —IZ)]?ZCOSZ(H) (Ix —1;)7cod6) , (357)
L0 —(Ix —12)7codp) ~(x -12)7% |

andthevector of excitation forcesisrepresenteby
fz.
h=| mghgca, cog@)+ | ,57sin(0) +1 5 (cog)+ arsin(9)) |- (358)
I

a
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The physical meaning and values of the symbolshm équations above and the
NEWEUL output file are provided iAppendices A and B, respectively.

The vector of excitation forcéscan be divided into two components

0 ze
h = | mghgca, codf)+ 1, 7sin(@) | + Iﬁ(COS(H)JraSin(H)) (359)
0 I
=h, =q

where the first ternin,, denotes the excitation by exogenous disturbaresdtng from
the yaw motion of the car which generates the dhtaccelerationa, and the yaw
acceleratiory . Summarizing these quantities iwextor of disturbancesw yields

0 0 a,
h,, =| Mshgc cod8) 1, sin(6) . (360)
0 0 4
=H :W

w

The second termy in Equation (3.59) is theector of general applied forces, which is
related to vector (3.58)y

1 0 0
d=|0 (cod9)+asin@) O |q. (362)
0 0 1
=Gy

Using the equations (3.59), (3.60) and (3.61),lthearized equations of motion of
the spatial car model (3.54) can be rewritten as

Mij +Py + Qy = H,w + GJq*. (3.62
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3.5 State-space Representation of the Spatial Car M odel

To analyze the control algorithms, the equationsnofion are often transformed into the
state-space form. In this section, the state-spgmesentation of the spatial car model will
be introduced. Based on the discussions on theatomtoblem for the obtained plant
models, the simplified spatial car model for optic@ntrol analysis will be determined.

3.5.1 General applied forces

With small roll and pitch angle, the vector of geaia@applied forcesm the car body fixed
frameC can be derived from Figure 3.8 as

qa =1 g = | ty fsl -t sz + Ly sz -t fS4
l, —lifg — lifsy + Lifgg + 1 fgy

or

n
N

9]
w

wheret,; andt,, are the half track width of the front and rear agledl; andl; denote the
distances from the car’'s center of gravity to thentf and rear axle, respectively. The
suspension forcds;, i = 1(1)4, sum up from spring forcEg;, damping force&g;, anti-roll
forcesFai and actuator forces (control inpuksy, i.e.

fsi= Fi + Fai + Fa + Foi, i=1()4

which may be summarized in matrix form as

fSl I:Kl I:Bl I:Al FCl
fSZ _ I:K2 i FBZ i I:A2 i I:C2 . (364)
fSS I:K3 FBS I:A3 I:C3
fS4 I:K4 I:B4 I:A4 I:C4
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It should be noted that the static spring forcagehagainst the weight of the vehicle and
will not be considered in the following.

Figure 3.8: Applied forces and moments in the car body fixed frame

Since the four wheels of the car are assumed tmdms-less points keeping their
traces on the road surface, izg. = 0, the vector of spring forces can be computelg o
from the vertical displacements of the nodal point§ according to section 3.1.2 by

ke 0 0 07z,
0 ki 0 0]z,
'w="10 o ki 0 || zgy | (365)
0O O K, Zs,
—
=Ksg =Zs
the damping forces by
by 0 0 07z
0 by 0 0]z,
'e="10 0 b 0]z, (366)
0 0 0 b ||z
—
=Bs =1

and the anti-roll forces by
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re —-r; O 0 Zg,
-y I 0 0 Zs,
"7 o o T A 2 (367)
0 O -r Zs,
—
=Kx =2

wherek: andk; are the translational stiffnesses of the front r@aal suspensionis, andb; are
the damping coefficients of the front and rear saspns, and; andr, are the rotational
stiffnesses of the front and rear anti-roll baespectively. With the above equations, the
vector of total suspension forcésin Equation (3.64) can be expressed as a funcfieertcal
displacementgs and velocitiegg of the suspension nodes attached to the sprungasiass

fo=—(Kg+K,) 2z — Bgzg + U. (368)

For small roll and pitch angles, the linearizedtieihs between the vertical displacements
of the suspension nodes, i = 1(1)4, and the generalized coordinates can beedefrom
Figure 3.9 as

Zg = Zc + t,; Bcodd

Zes= Zo + t,, fcodl) + |, a,
)

) -
)

-l ,

orin matrix notation

Zg, 1ty codd) —I,
ZSZ _ 1 —th COE(&) - If Zc
Zss | | 1 t,codd) | B\ (369
Zs, 1 -t, codd) |, i
——
Zg = G¢ y

Due to the constant matri®¢ , the relation betweeng andy reads as
z2s = GL v. (370)
Using equations (3.63) and (3.68) — (3.70) resultthe vector of general applied
forcesin the car body fixed fram€:

=G [ (Ks+K,)GLy-BsGLy + u. (371)
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Isy=2c — twr,B COS(€)+ Ira

Zo=Zc — twifcos(0)- i

Zs1 = Zc + twifcos(0)- lix

Figure 3.9: Vertical displacements of the suspension nodes for small angles & and £

Substitution ofg® in (3.71) with linearization due tar,y,y,u<<1 vyields a final
representation of the vector of general applieddsr(3.61) in inertial system:

0= GGl (Ks+K,)GLy-BsGLy +u]
0

0
(codf)+asin(@) 0| ty —ty t
0 1

[l
o O -

[_(KSJFKA)Ggy_Bngy + U]

1 1 1 1
=4 | t,; codd) -t codd) t, codd) -t,, codh)
1, 1, I, |

r

+0-’Sin(€) [ R " twe [_(KS+KA)G-Sry_BSGgy+U]
e

~ Gs [ (Ks +K,)GL y-BsGLy + u] (372)
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where Gs has been defined in Equation (3.69). The linedreguations of motion of the
spatial car model (3.62) finally can be expressed b

Mij+|P+G¢BGL | y+[Q+Gs(Ks+K,)GL|y=H W + Gg u. 3.7
Yy Yy Yy

This equation will be used in the simulation practs calculate the quantities estimating
the dynamic characteristics of the spatial car rhode

3.5.2 Linear parameter-varying spatial car model

In order to analyze and synthesize the controlrdlgos for the spatial car model, the
linearized equations of motion (3.73) must be tiamsed to state equations as

N ol
ij ~MYQ()+Gs(Ks+Kp)GL| ~MP()+GsBGI]]| ¥

—— ——
= X = Ala,,7.7) =X
0 0 a,
+ [ ] u+ [ ][ ] (374)
MG M7?H, || 7
— —_— ——
=B =By, w

wherex:z[yT, yIT]Tz [zc, B, a, 2, B, d]T is the state vectov(ay,7) is the vector
of exogenous disturbances according to (3.60), Al ,7,7)e R °*° B < R°®** and
B,€ R ®? are state matrices. The matricé.):= P(7) and Q(.):=Q(a,,7,7) are the
parameter-dependent terms of the mada, ,7,7) and defined by (3.56) and (3.57),
respectively.

Let y= [zg ,B]T, y € R° denote the vector of measured outputs and defiae th
relation = g; ij with gTﬁ = [0, 1, 0] , then with (3.69) and (3.73) the measuent
equations of the spatial car model can be written as



Chapter 3 - Passenger Car Modeling 43

Zs GS 0 Y
Bl [-gimQ()+6s(ks+Ku)BL] g m2[P()+eBGL] |
y = Cla.7.7) X

0 0 ay

+ u + (375)

g; M7'Gs gy M7 H, || 7

—_ =

=D =D w

w

where C(a,,7,7)e R®*®, De R°** and D,, ¢ R°*? are the measurement matrices.
Please note the difference in the symlyolsr measurement output agdior generalized
coordinate.

With the state equations (3.74) and measuremerdtiegs (3.75), the equations of
motion of the spatial car model can be expressethenstate-space form of lanear
parameter-varying (LPV) system:

x=Aa,,7,7)x+ Bu + B, W(ay,j/'),
(376)
y=C(a,,7,7)x+ Du + D, W(ay,i/')-

It should be pointed out that in general the vayyparameters of the system can take any
values in some operation region, i.e. their timefions are unknown beforehand. Therefore,
the state-space matricéga, ,7,7) andC(a,,7,5) and the vector of disturbanceda, , /)

are treated as on-line data. The variations oktfstem parameters result in the changes
of system dynamics. To maintain the required pemnforce of the system, a parameter-
varying controller must be designed which is aldeupdate its parameters on-line
according to the variations of the system pararsetéowever, for systems with more than
two varying parameters, it is very difficult to dgs such a controllerBalas, et al. [5],
Fitzpatrick [25], Gaspar, et al. [29] andVu [93]. Therefore, the spatial car model must be
simplified in order to reduce the number of systerying parameters.
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In the case of given time functions for the systamying parametera, a,, y andy,
the state-space data over the time can be compdtidide. Here the spatial car model
takes on the form of kanear time-varying (LTV) system:

X=At)x+ Bu + B, w(t),
(377)
y=C(t)x+ Du + D, w(t).

Theoretically, the optimal control problem for adar time-varying system (3.77) can be
solved with a time-varying controller as will beosim in the next chapter. This controller,
however, is defined only for a specific trajectofythe system varying parameters, which
can change arbitrarily in practice. Moreover, definthe time-varying controller for linear
time-varying systems requires large computatioffatte Ramirez [61], Schwarz [71] and
Siouris [75]. For these reasons, the linear time-varypatial car model (3.77) will not be
used to design parameter-varying controller forgpatial car model.

Instead, a simplification of the spatial car modsl based on constant
longitudinal and angular velocities, i.&, =0 and y =0. With these assumptions,
vector of disturbance in equations (3.74) and (3.75) is reduced to dasva=a, and
the linear parameter-varying spatial car model (3.76) becomesiear time-invariant
(LTI) system with constant disturbance:

%=A()x+ Bu + b,w(a,),
(379)
y=C(y)x+ Du + dww(ay), a,, 7 = const.

Both the car yaw ratg- and the lateral accelerati@g in (3.78) can be measured directly
by sensors. Each paﬁp?,ay) defines a specific linear time-invariant systernitwgonstant
disturbance, whose optimal controller can be obtiirasily based on thinear
guadratic regulator (LQR) control algorithm, which will be introducea the next chapter

in more details. By combining the optimal contradldor the linear time-invariant plants
specified by selected pair(s?,ay), a parameter-dependent controller can be deriged a
will be shown in Chapter 6.
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3.6 Simulation Model of the Spatial Car

In order to calculate the quantities estimatingdizreamic characteristics of the spatial car
model, a simulation model is built in MATLAB/Simuak, Moscinski and Ogonowski [52],
where the spatial car model is combined with thientgd state-feedback and disturbance-
feed forward controllers, Figure 3.10.

Since the varying parameters of the spatial carehcah be computed from the car
longitudinal velocityv and track curvature: by equations (3.48) and (3.51), these
parameters are defined as the input parameterthéosimulation and generated in the
block ‘Maneuvers. By changing the time-behaviour of the car londihal velocity and
track curvature, different operation regimes of & are simulated. The linearized
equations of the spatial car model (3.74) are sbineblock ‘Spatial Car Model’ by a
MATLAB S-function which is presented in Appendix The measured outputs and
dynamic criteria specified for the spatial car moale defined in blockCriteria’. The
optimal control law with state-feedback and dis&unte-feed forward is structured in
block ‘Controller’. Here the control forces are computed. For thespp@ suspension case,
the controllers are initialized with zero matric&s. observe lively the simulation process,
the movement of the car is animated by blo&hkifmation’.

_EP car position
car position x [ o tates
car mation S R L states = - - e sus. displacements
disturbances bepp »@ AHIMATION
MANUEVERS CRITERIA rall eoceleration

i

I—4 caonitral forces o

disturbances w zus. displacements

CONTROLLER

3

[0

controll forces

Figure 3.10: Simulation model of the spatial car model in MATLAB/Simulink
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Chapter 4

Linear Quadratic Regulator Control

Linear quadratic regulator control (LQR) is a powerful concept of optimallgrtrolling
linear systems whose states are available to bddeHl, i.e. the states can be measured
online. In this chapter, the LQR problem is shownliinear systems without disturbances
which results in an optimatate-feedback controller, and then extended tmear systems
with measurable disturbances, which leads to an optimadlisturbance-feed forward
controller. The difficulty of solving thedifferential Riccati equation (DRE) for the case of
linear time-varying (LTV) systems will be exposed. In contrast to tase of linear time-
varying systems, the solutions of the LQR problenlihear time-invariant (LTI) systems
can be easily obtained by solving tlgebraic Riccati equation (ARE). The LQR control
design based on the automotive performance crpeaified for the spatial car model will
demonstrate the effect of LQR control to passeoges with active suspensions.

4.1 LQR Problem for Linear Systems without Disturlances

In this section, the standard LQR problem is defiaed solved based on Pontryagin’s
maximum principle to find the optimal controllerrfinear systems without disturbances.
This method will be applied to linear systems wikasurable disturbances in the next
section to define an optimal controller for thetsggdacar model.
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4.1.1 Definition of the LQR problem
In the case of vanishing disturbanee$) = O, the linear time-varying spatial car model
(3.77) becomes a special case of the general ltmearvarying system of the form

X = At)x + B(t)u,  x(0)=x,,

(41

y = C(t)x + D(t)u

where x(t)e B", y(t)e ™ u(t)e k" are vectors of states, measured outputs and control
inputs, respectivelyAt)e Z"*" andB(t) € & "*"are state matrices whil€(t)e & ™*"

and D(t) e R™*" are the measurement matridése LQR problem is to find a control input

u(t) minimizing the following quadratic objective fumn subject to constraints (4.1):

J:T F(u, x,t)dt ::T [XTQ(t)x + 2x"N(t)u + u"R(t)u ] dt . (42)

The matrix Q(t)e R "*" is symmetric and positive semi-definite, i@(t) = Q(t)" > 0,
weighting the states whil(t) e 2" *" is a symmetric positive definite matri(t) = R(t)" > 0,
penalizing the control effort. The mix-relation Wween the states and control inputs
denoted by the matrid (t)e & "*" will be shown later in Equation (4.4).

Relatively small elements @)(t) compared tdr(t) will result in a control law which
will tolerate large errors in the states with loyuts. On the other handQft) is made large
compared toR(t), this will result in tight control, i.e. small rers in the states with
considerable inputs. Different values of the estéQ(t) or R(t) can be used to penalize
specific states compared to others at the samensé control energy. In the standard LQR
problem the matril(t) is assumed to be positive definite, however sfiecial cas&(t) = 0
of the LQR problem called the@ngular problem can be found iMoylan and Moore [53],
Ramirez [61] andSchwarz [71].

In most optimization problems, the objectives thwged to be regarded for

minimization are not the complete state vectt) but only a selection according to
measurement outpuygt). Therefore, the objective function (4.2) may bplaced by

- [yQ,0y + uR,0u] a. (43)
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whereQ,(t)e ™™, Q,(t)=Qy(t)" =0 and R,(t)e R"*", R,(t)=R,(t)" >0 are
weighting matrices of the measured outputs andralied inputs, respectively.

Substitution ofy(t) from (4.1) in (4.3) yields

3=[[cx + DU Q,Cx + Du) + uR,u]
0
~[[ x"lcTq,c) x + 2x"(c"Q,D) u + uT(DTQ,D + R, ) u ] dt
° =Qft) = N(t) =R(t)
Z.:XTQX+2XTNU+UTRU]dt. (44)

0

The equation shows that the objective functlarefined in (4.3) is contained in the more
general form (4.2) with properly defined matri€@@), N(t), andR(t). The assumptions of
Qy(t) > 0 andRy(t) > O ensure the conditions d(t) > 0 andR(t) > 0 to hold for anyC(t)
andD(t).

4.1.2 LQR solution using the Pontryagin’s maximm principle

There are different techniques to solve the LQRbl@m. In this section, the solution of
the LQR problem will be deduced from Pontryagin’aximum principle.Pontryagin’s
maximum principle states that the optimal contralt) that minimizes the objective
function (4.2) subject to constraint (4.1) must imize the so-calletHamiltonian

(U, %, 4,t) = F(u,x,t)+ 2T (Ax+ B u)
:(XTQX+2xTN u+u'R u)+,1T(Ax+Bu) (45)

where At)e R" are thedynamic Lagrange multipliers or co-state vector. According to
(4.2) and (4.5) the objective function can alsabscribed as

J(u,x,l,t):j Fu, x,t) dt :I [ 76-2T(Ax+Bu) ] dt
=— [ ATxdt + [redt
0 0

or after partial integration of the first term
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J(u,x,,l,t):—,lTx|: + T ATxdt + T JEdt
0 0
=g %o +TZTX dt+TjL6dt (46)
0 0

where the initial conditiorx(0) = xo and the asymptotic valugw) = 0 for asymptotic

stable systems are used. By introducing the vanat x and du of state and control
input, we can find the expansion of the objective functiora first order Taylor-series
about the optimal point:

T T
J(u+§u,x+5x,,1,t)zJ(u,x,,l,t)J{[Qj SX + [QJ 5u}. (4.7)
OX ou

The necessary condition for a local extremum of J is that the first order term of the

Taylor-series must vanish:

53 = J(u+du,x +6x,4,t)- I(u, X, 4,1)

:Kg—iyax{%jku} Lo (48)

By the introduction of the co-state vectit) this condition is satisfied for arbitrary
variationsox anddu only if

oJ -
—=0 49
~ (49)
and

|
oJ -
-~ - 0. 410
» (410)

With (4.6) equation (4.9) leads to the so-calietier-Lagrange equation

! © ® .
Q:O:I}udt+'[a—j6dt = l:—a—%, (4-11)
OX 5 5 OX OX
or with(4.5):
i=-2Qx-2Nu-ATJ, (412)

From (4.10) and (4.5) we find
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! 2]
o) 20k (4.13)
ou ou
=2N"x+2Ru+B" 1, (4.14)
which can be solved for the optimal control as
u = —R‘l(NTXJr%BT/l]. (4.15)

Note thatR(t)™ is assured to exist due Rft) > 0. This is known as thaifficient condition
for a local minimum, which can be obtained by tetio?J/ 6%u > 0. Equation (4.15)
shows that the optimal contra(t) is a function of the state vectrft) and the co-state
vectorA(t). In order to eliminate(t) in (4.15), we assume tiReccati transformation

i=2P X (4.16)

whereP(t) is called theRiccati matrix. Using the Riccati transformation, the optimal woh
becomes

*

U =—RNT +BTP) x=—K" (t)x (417)

=K" (t)
demonstrating that the optimal control is a timeyirsg, proportionalstate feedback
controller with gains K™ (t) € /£"*". The optimal control structure for the standardR.Q

problem is illustrated in Figure 4.1. To compltdt), the Riccati matri(t) must be
determined.

state-feedback controller

Figure 4.1: Optimal state-feedback control for linear systems without disturbances
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4.1.3 Algebraic Riccati equation

Taking the derivative of the Riccati transformat{@nl6) gives

i=2PX+2Px. (418)
Substitution of the Riccati transformation (4.16)the Euler-Lagrange equation (4.12)
gives

A=-2Qx-2Nu-2A"Px. (419

Equating these two expressions A(tr) yields

PX+Px=-Qx-Nu-ATPx. (420)

With the state equations (4.1) and the control(4&7) we find

~Px =P(Ax+Bu)+Qx+Nu+A"Px
—p{Ax+B[RYNT+B"P) x }+Qx + N[ RN +BTP)| x+ ATP x.

(421

This is valid for any state vecta(t) only if the following matrix equality holds:
_P=PA+ATP-(PB+N)RNT +B"P)+Q. (422)

Equation (4.22) is called thdifferential Riccati equation (DRE) and is a nonlinear first
order differential equation with a time-dependexitison P(t), Ramirez [61], Schwarz [71]
and Siouris [75]. For theinfinite-time LQR problem Schwarz [71] proved thatP(t)
approaches a constant matPixi.e.

im P(t)=P, P=PT >0. (423
t—>ow
Hencelf’(t): 0 and Equation (4.22) becomes a time-dependent ragelRiccati equation.
Since this equation does not depend on the g{8t@r controlu(t), it can be computed
independently from the state differential equatiarisch means that the optimal control
gain matrix K'(t) can be computed separately from the state dynassponse. In
practice, it will be pre-computed and stored foedause.
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For linear time-invariant (LTI) systems wherd, B, C, D, Q, N andR are constant
matrices, the control task can be simplified. lis tase, the unique solutiéhof the time-
invariantalgebraic Riccati equation (ARE)

PA+A"P —(PB+N)R*NT+B"P)+ Q=0 (424)

results in the optimagdtate-feedback controller with a constansgtate-feedback gain matrix
K " defined by (4.17):

K'=R*NT+B"P). (425)

The conditions for existence and uniqueness of sfabilizing optimal control
known as theKalman criteria for controllability and observabilityAckermann [1],
Ramirez [61] andSchwarz [71], are as follows:

e the pair A, B) is controllable, i.e.
Rank [B, AB, ..., A"'B ] =n, (426)
e the pair(QS =Q-NR'N", A,:=A-BR'N T) is observable, i.e.

Rank [Q;, ALQL, .. (AL)7qQ] } ~n, (427)

Within the MATLAB software,Shahian and Hassul [72], the LQR problem for
linear time-invariant systems can be solved forabjective functions defined by (4.2) and
(4.3) using the commandigr and ‘Igry’, respectively. Once the weighting matric@sN
andR in (4.2) orQy andR, in (4.3) are defined, the commandigr* and ‘Igry’ will check
the conditions (4.26) and (4.27) automatically aaturn the Riccati matriP and the
optimal state-feedback gain matkixf those conditions are satisfied. The optimal coini
can then be derived easily by (4.17). The weighthagrices, therefore, can be considered
as the design parameters of the LQR problem.
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4.2 LOR for Linear Systems with Measurable Distubances
The standard LQR approach is used to synthesisepamabd controller for systems
without disturbances. In practice, however, mostesys are influenced by exogenous

disturbances which also effect control optimality.this section, the LQR problem for
linear systems excited by measurable disturbandebenpresented.

4.2.1 Problem definition

Let us consider the linear time-varying system {3.including disturbances in a more
general form, i.e.

Alt)x + Bt)u + B,[t)w,  x(0)=x,,

-
[l

(428)
C(t)x + D(t)u + D,(t)w

y

where B, (t) e Z"*" and D,,(t) e R™*". The vector of disturbancew/(t)c R" is
assumed to be measurable in real time. The LQR @mofdr the system (4.28) is to find a
control inputu(t) minimizing the objective functioddefined by (4.3).

Substitutingy(t) from (4.28) into (4.3) yields

[(Cx+Du+DWW)TQy(Cx+Du+DWW)+ uTRuu]dt

o
Il

Cx+Du)Q,(Cx+Du)+2(Cx+Du) Q,D,w+w DIQ,D,w+u"R,u |dt
y y

y

Il
O+—8 O+ 8 o«—8

-[[¥eTe,c)x +2x7(eTe,p)u uT(oQ 0+ R Ju a
=Q(t) =N() =R(t)
+T { 2x'c'Q,D, w+2w' D, Q,Du +w' D;Q,D, W }dt
[ 2wyPw
=N, ) =N, () =R,(t)

[(XTQX+2XTN U+UTRU)+(2XTNXWW+2WTNUWU+WT RWW)] dt

ot—8 O3

F(u,x,w,t) dt. (429



Chapter 4 - Linear Quadratic Regulator Control 54

Different from the standard LQR problem is the setgroup of terms depending on the
disturbancesv(t). Therefore, the control law has to be a funcodmothx(t) andw(t). It
should be noted that the solution of the optimaftd problem for disturbed linear
systems via the LQR approach requires both the (& and disturbancev(t) to be
known or measurable over the entire time domain.

4.2.2 Solution based on the Pontryagin’s maximumrinciple

The Hamiltonian for the optimal control problem of linear systen(¥.28) with
measurable disturbances can be defined as

26(u, x,w, 4,t) = F(u, x,w,t)+ AT (Ax+Bu+B, w)
:(XTQX+2xTN U+UTRU)+(2XTNXWW+ 2w N, u+w' RWW)
+A"(Ax+Bu+B, w). (430)

Based on the Pontryagin’s maximum principle, tleeessary condition for a local
minimum is given by thdculer-Lagrange equation

0%

B —(2Qx+2Nu+2N ,w+ AT ) (431)

A=

and theoptimal control equation

O:a—%:ZNTx+2Ru+2NIWW+ BTA. (432)

ou

The optimal control can be derived from (4.32) as

*

u :—R_l[NTX-i- NJWW+%BT,1J. (433

In order to eliminate the co-state vectéft) from Equation (4.33), theRiccati
transformation is assumed as

i=2(Px-¢) (434)
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whereP(t) = P'(t) and£(t) are the so-calleBiccati matrix andRiccati vector, respectively.
Then the optimal control becomes

*

U =-RYNTx+NL,w+BTPx-BT¢)

—LRMNT+BTP)x]+ FRUNTw-BT¢). (435)

= u;(t) = u\f\,(t)

This equation shows that the optimal conuu(ll)* for the stated problem includes not only
state-feedback control u(t), but also disturbance feed-forward control u,(t). To
complete the optimal contrmj(t)* , the Riccati matriP(t) and Riccati vectoé(t) must be
defined.

Taking the derivative of the Riccati transformat{@n34) gives
i=2Px+Px-¢) (436)
Substituting the Riccati transformation (4.34)ha Euler-Lagrange equation (4.31) yields
ji=-2[Qx+Nu+ N, w+ AT(Px - &) (437)
Equating these two expressions At yields
Px+P>‘<—é=—[Qx+Nu+NXWw+AT(Px—§)]. (4398)
The state equations (4.28) yield
P x+ P(Ax+Bu+ wa)—éz—[Q x+Nu+N,_ w+A"(P x—f)]
or after rearranging
(F’ X+PAXx+ATP x+Q x)+(N + PB)u—[éJrATé‘—(NXWJr PBW)W]:O.
With the control law (4.35), the equation becomes
(P X+PAX+ATPx+Q x)+(N + PB)[— R‘l(NT + BTP)X]
+(N+PB) RN w-BT¢)| - [é+ATe-(N,, +PB,)w|=0

or
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[P+PA+ATP-(N+PB)RLNT +BTP)+Q] x
_E- [AT (N +PB)R ‘1BT]§ [N+PB)R‘1NJW—(NXW+PBW)]w:O.

(439)

Equation (4.39) is satisfied for any vector of etad(t) and disturbances(t) only if the
two lines vanish separately. This results in thealy knowndifferential Riccati matrix
equation (4.22), i.e.

P+PA+AP-(PB+N)RYNT+B™P)+Q =0, (440)
and the so-calledifferential Riccati vector equation

¢+ [AT+(N+PB)RIBT] & + [(N +PB)RINT, ~ (N, + PB,)| w=0.
(441)

Let K;(t) denote the optimatate-feedback controller where according to Equation (4.35)

K'=—R*NT+B"P), K()e &"", (442)

X

the differential Riccati vector equation (4.41) ¢censimplified to
f+[AT+K;TBT}§+[K:TNJW—(NXW+PBW)}W:O. (443)

For theinfinite-time problem we ge(t) = 0 andé(t) = 0 , se®amirez [61] andSchwarz [74].
Equations (4.40) and (4.43) then become the tinmgivg algebraic equations resulting in
the time-dependent Riccati matrB(t) and vector(t), respectively. In this case the
Riccati vectorg(t) can be computed by

-1
5:—[AT+K:TBT} [K:TNIW—(NXWJrPBW)}W. (444)

With the state-feedback controlléfi(t)and the Riccati vectaf(t) defined by (4.42) and
(4.44), respectively, the disturbance feed-forwadtrol u;,(t) in (4.35) can be written as

= - R—l{NJW+BT[AT+(K )BT [(K;)TNT .+ PB )]}

=Ky (t)e & (445)




Chapter 4 - Linear Quadratic Regulator Control 57

whereK ,(t) represents the optimalisturbance-feed forward controller. Consequently,
the optimal control is defined by

+u, =K x — K, w. (446)

For the case ofinear time-invariant (LTI) systems,P(t) = P is a constant matrix
which is the unique solution of the algebraic Ricequation (4.24) resulting in the
constant optimal gain matricé¢, and K, .

Figure 4.2 shows the optimal control structure lioear systems with measurable
disturbances. It can be realized clearly that ttamdard LQR problem described in
Section 4.1 is a special case of the stated prowlgimw(t) = 0.

disturbance-feed forward controller

x=Alt)x+B)u+B,(t)w

y=C(t)x+D(t)u+D,(t)w

model plant

state-feedback controller

Figure 4.2: Optimal control structure for linear systems with measurable disturbances
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4.3 Application of LQR Control to the Spatial Ca Model

The linear time-invariant spatial car model (3.78%ults from constant velocity and
track curvaturex is used as an example to design the optimal cohased on LQR
approach. Since the lateral acceleratpms disturbance of the system can be measured
online by an acceleration sensor, the solutiohefltQR problem for linear systems with
measurable disturbances introduced in the abowgoseran be applied. To estimate the
dynamic characteristics of vehicles in yaw moti@utomotive performance criteria
specified for the spatial car model are introducedizantages and drawbacks of the LQR
control design applied to the spatial car modehaitive suspensions will be shown.

4.3.1 Dynamic criteria for the spatial car model

During cornering, the vehicle weight is transfertetween the wheels resulting in load
changes. Vehicle ride safety and road handlingacieristics, however, are determined
by the dynamic wheel loads. High loads allow greamngitudinal and lateral
transmission forces between wheels and ground.h@rcontrary, low wheel loads can
cause loss of controllability of the car. Largergmi#udes of the roll and pitch angles will
indirectly influence ride safety as contact forcagmitudes might reach zero causing lift-
off, Sampson [67]. The most commonly used criterion for riddesy of passenger cars is
the integral function of quadratic dynamic wheehds, Mitschke [50], Popp and
Schiehlen [59]. Since the dynamic wheel loads are proporiicioathe suspension
deflections, the integral of quadratic suspensieftedtions can be used as a substitutive
criterion,Bestle [7].

For the spatial car model, the four wheels of tae are assumed to be mass-less
points which keep their traces on the plane trackase. The dynamic wheel loads are,
therefore, proportional to the vertical displacetsesf the suspension nodes i = 1(1)4,
and thus can be used to representidesafety criterion, Ammon [2]:

3 :\/ L :2 2 (Ot . (4.49)
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Ride comfort is mainly characterized by the acatlens of the driver and
passengerditschke [50], Popp andSchiehlen [59]. For simple models, the accelerations
of the car body can be used alternatively to eseamahicle ride comfort. While the
vertical acceleration is of special interest forscaiding on uneven roads, the roll
acceleration of the car body must be taken intesid@nation for cars in yaw motion on
even roads. Thade comfort criterion for the spatial car model can then be defined by

‘) :\/ L ey ar (4.49

For passenger cars using active suspensions, imgrade safety and ride comfort
often requires a large expense of control energymti©l effort, therefore, must be
considered as an objective to be minimized for gxragsr cars using active suspensions.
Thecontrol effort criterion for the spatial car model can be expressed by

(- J L ﬂi 0@ dt (4.49

The formulas (4.47) (4.49) represent root-mean-squares (RMS/r.m.suspension
displacements, car body roll acceleration and odritrces, respectively. It should be
noted that minimizing the integrals in (4.4%) (4.49) will minimize f1, f, and fs,
respectively. These integrals, therefore, can be akated as corresponding criteria and
will be used alternatively to define the objectivaction for LQR control design.

4.3.2 Spatial car model simulation

As illustrated in Figure 4.3, the car may move glancircular track of radiuR = 10 [m]|
with constant velocityv = 30 km/h = 8.33 nV/s. At the starting point, the lateral
acceleration of the car jumps to a constant vajue VV/R = 6.94m/s” as a step function
exciting the system. The car parameters are givéppendix A.
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Vi

v=28.33[m/g|

X

Figure 4.3: Simulation of the spatial car model in cornering

4.3.3 LQR design for the spatial car model

In order to apply the LQR control to the spatial oadel, the objective function must be
determined first. The quadratic objective functionthe spatial car model can be defined
as weighted sum of the integrals in (4.41%.49)

J = V\ﬁ]gizé dt + w, T,BZ dt + W3TZ4:ui2 dt . (450)
i 0 0i=1

i=1
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With the vectors of control inputs and measured outpugsdefined by (3.64) and (3.75),
respectively, the objective function (4.50) carelspressed in the regular form of the LQR
problem (4.3) by introducing the weighting matrices

Qy:diag{wl’ W, W, W, W,
and

R, =diag{w;, ws, W, W} (451)

wherew;, w, andws; are the weighting factors on ride safety, ride fmtand control
effort, respectively. Once the weighting matri€gsandR, are determined, the MATLAB
function ‘1gry’ will give the Riccati matrixP and the optimal state-feedback control
gainK;. The optimal disturbance-feed forward control géj;can be then easily derived
from (4.45) with the matriceR, N, andN,,, defined in Equation (4.29). By choosing

proper weighting factors, desired solutions caoliained.

Suspension Displacement at Front-Left Wheel

3 I i I I
| | .
‘ N R w=0 , wz=0 , ws=10?
| |
T 2r--- [ N . - Wl:2x107, w,=0 w3:10'2 |
S S Gl | e, ! -—- w=0 , w,=2x10°, w_=107
s ’ A PP L L P
™ e R o et LR PP _ w.=2x107, w_=2x10%, w_=102 }i
NS ECEE el 1 2 3 a

B [deg/s?]

time t[s]

Figure 4.4: Simulation results obtained from LQR design
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Figure 4.4 shows the simulation results correspando different values of the
weighting factors. During simulation the systemetmlon the form of the linear-time
invariant system with constant disturbange= a, (3.78). The resulting optimal control
gains Ky e R**® and K., e R** are given in Table 4.1. For clearance, only theeti
response of the vertical displacement of the su@pemodezs; and the control forca; at
the front-left wheel are plotted in the figure.dase 1 denoted by the dotted lines, only the
control effort criterion is minimized resulting i, , K, = 0 which means that no control
energy is provided by the actuators. The dash-daitel dashed lines corresponding to
case 2 and case 3 represent the responses ofdtenswhen the ride safety and ride
comfort criterion are optimized separately, respett. In the last case described by the
solid lines all three criteria are penalized armbapromise solution is derived.

Table 4.1: Optimal state-feedback gain matrix K; and disturbance-feed forward gain vector K:\,
corresponding to different weighting factors

weighting factors optimal control gains
case
* *
Wy W W K, (x10%) Ky
1 0 0 1072 0 0
2.8980 1.2132 -3.0599 0.4091 0.1508 -0.3908 i 42.1406 ]
2 7 - 2.9099 -1.3957 -2.7736 0.4084 -0.1496 -0.3883 -74.7698
2x10 0 10
3.0438 1.3990 5.3511 0.2688 0.1484 0.4597 70.7979
3.0555 -1.1892 5.6352 0.2681 -0.1496 0.4622 | -45.1908 |
0.0007 -1.0378 0.0415 0.0010 0.0856 0.0155 i 39.8123 ]
3 0 2X103 10_2 0.0006 1.1796 -0.0379 -0.0008 -0.0850 -0.0169 -41.8481
-0.0007 -1.1814 0.0395 0.0009 0.0872 0.0171 41.6755
-0.0008 1.0185 -0.0393 -0.0009 -0.0821 -0.0150 | -39.3411 |
2.9035 -0.2623 -2.9627 0.4094 0.1674 -0.3761 i 45,8808 ]
4 2X107 2x103 10_2 29049 0.1732 -2.8718 0.4082 -0.1640 -0.4036 -52.2497
3.0487 -0.1685 5.4497 0.2690 0.1634 0.4750 51.0035
3.0501 0.2636 5.5398 0.2679 -0.1654 0.4478 | -46.3534 |
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The simulation results show the effectiveness t¥@asuspension systems with LQR
control on ride safety and ride comfort of the ibazornering and the usefulness of the LOR
design as the optimal gain matrices with a largmber of components can be easily
obtained by choosing appropriate weighting factétswever, if the control problem is
subject to constraints on the states, measuredtsubp control inputs, the optimal solutions
may not be found by choosing the weighting facbyrband.

In order to overcome the drawbacks of the LQR apgnan the optimal controller
design problem, multi-criterion optimization must &pplied. The combination of multi-
criterion optimization methods and the LQR algantfor defining the optimal controllers
for the spatial car model will be introduced in tiext chapter.
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Chapter 5

Multi-criterion Optimization

In technical applications, multiple goals have &téaken into account which often are in
conflict. Multi-criterion optimization (MCO) is a powerful tool for finding the best
compromise solution balancing the conflicts, andréfore is of great importance in
practice, particularly in engineering design. Iistbhapter, two effective MCO methods
for generating the trade-off solutions, namely ¢tbenpromisenethodand therecursive
kneeapproach will be introduced. MCO problems will be definéat both thepassive
and active suspensiomase. An optimization method combining the MCO ar@@R
algorithm in order to reduce the number of designables will be presented. Significant
improvements in ride safety and ride comfort fog grassive and active suspension also
will show the effectiveness of the approach.

5.1 Overview on Multi-criterion Optimization

Multi-criterion optimization (MCO) or vector optimation refers to the process of
optimizing simultaneously a collection of objectiumctions. The general multi-criterion
optimization problem is to find &ector of design variables, p € R", optimizing the
vector of criteriaf (p), f : " — R" , subject toequality constraintg(p) = 0, inequality
constraintsh(p) < 0 andvariable boundg' andp":

opt f(p)
pe?”
where

P = {peRh ‘ d(p)=0,h(p)<0,p' < p<p'.g: R"> R', h:Rh—>R"‘} (5.)
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is theset of admissible desigms feasible design space, appt means minimization of
all individual criteria fi(p), i = 1(1)n. The criteria define a transformation of the fe&esi
design space? to theattainable criterion spacé,

pe? } (52)

Figure 5.1 illustrates the mapping of the feastldsign space” to the attainable criterion
space# for a bi-criterion case.

F={f(p)e B"

P2 f2

mapping

design space R criterion space 2"
4 4
P1 f1

Figure 5.1: Mapping from design space # C Rz into criteria space # < IR 2

If we have only one single objective, ire= 1, the problem is acalar optimization
problem where the scalar objective definettal order on 7. This means all design
pointsp € 2 are comparable to each other. In this case, amlesimtp is called aglobal
minimumif

t(p )< f(p) Vper, (53)

and called docal minimum if there exits an open sé — /&2 around p’ such that

t(p )< f(p) Vpeunr. (54)
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In real engineering applications usually more tlogxe criterion has to be minimized
simultaneously, i.en > 1, resulting in amulti-criterion optimization(MCO) problem.
The vector of criteria defines onlyartial order on 72, i.e. not all designs i? are
comparable to each oth@estle [7]. Since it is impossible to find a design painwhere
all criteria are minimized at the same time, i.e.

fi(p*)g f.(p) Vi,pe?”, (55)
a new concept of optimality, nameigdgeworth-Pareto optimalitys defined as follows:

A design p¥ € 27 is called Edgeworth-Pareto(EP) optimal if there exits no
feasible poinip e 2 such that f;(p) < fi(pEP) Vi and fj(p)< fj(pEP) for at
least ong. The design points satisfying this property belemtgheEP-optimal set

P ={p® er|Bper:t(p)<t(p™)] (56)
where f(p)< f (p=°) means{ f, (p)< 1,(p=) v i) A ((p)= 1 (p™)).

The set in/2" formed by the criteria vectors of the EP-optimdlitions
o 1 (o) 57

is always located on the boundary of the attainahterion space?, and therefore it is
known as théareto frontieror trade-off curvewhereas the Pareto-optimal $8t” has not
necessarily to lie on the boundary of the feasielsign space’ as illustrated in Figure 5.2.

P2 4 f, &

mapping f

/Z_EP
EP

P

design space R" criterion space 2"

> >
P1 f1

Figure 5.2: Pareto-optimal set PEP and Pareto frontier fEP
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The end point§; of the Pareto frontier are calléwividual minima They are defined
by vectorsf; := [ f(pi ), ....fi , ..., fa(pi)]" wherep;” denotes théndividual optimizerof
the criterionfi(p) with minimumf;”, i.e.

f = min f(p), i=21n. (58)
pe”

The hyper-plane running through all individual nniai is known as theonvex hull of the

individual minima(CHIM), Das andDenis [19]. For the bi-criterion problem, the CHIM
is the line joining the individual minimB; and F,", which are respectively defined by
vectors:

see Figure 5.3.

f, &

l*
f2 77777777

CHIM

A A

Figure 5.3: Individual minima Fl* and Fz* and CHIM
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5.2 Multi-criterion Optimization Methods

In general, EP-optimal solutions are not uniques ttime designer has to choose a single EP-
optimal point from the se®" as the desired solution instead. To find suchtpain a
representative subset @?5", the multi-criterion optimization problem usualias to be
reduced to scalar utility problems. In this sectiovo scalarization approaches applied to the
MCO problem for the spatial car model for obtainangample set of points of the Pareto
frontier, namely theeompromisemethodand therecursive knee approactare introduced.
Other MCO methods can be foundBiestle [7], Collette andSiarry [16] andDeb [20].

5.2.1 Compromise method

The compromise method entails minimization of ohthe criteriaf,(p), while expressing
the remaining criteria in the form of inequalitynsbraints:

min f,(p) where 7" ={ pe”| f;(p)<e, icZ\{r}}. (59)
pe?’
In the above formulatiors; represents an upper bound forand can be considered as
scalarizing parameteDas [17, 18]. By progressively changing the constraialuese;,
different points on the Pareto frontier can be dathp

f2

Figure 5.4: Compromise method for the bi-criterion problem with I = 2
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Figure 5.4 visualizes the working of the compromrmsethod for a bi-criterion case,
wheref, is retained as a criterion, whife is treated as a constraifit< ¢;. With this
constraint, the original attainable criterion sp#ces reduced tg72:= f (#), which is the
left-upper portion of# bounded by;. The solution of the problem (5.9) depends strpngl
on the value of the constraint. As can be seen from the figureeif< fi:= fi(p1) is
chosen, there exits no feasible solution to thé¢éedtgroblem. On the other hand, if
e1>f,2:=fy(p2 ) is used, the entire search space is feasibletenaesulting problem finds
the solution poinf; .

A remarkable advantage of the compromise methdithisthe EP-optimal solutions
can be found even if the criterion space is nonseenMoreover, these solutions can be
distributed evenly on the Pareto frontier by chaggppropriately the values farwithin
the minimum and maximum value of the individuaterionf;. For the bi-criterion case as
illustrated in Figure 5.4N EP-optimal points on the Pareto frontigf~ between the
individual minimaF,” andF," can be found by choosing the constraint values @

ey = f,7 — kAg,,  k=1@Q)N (510)

where

Agy = f12Ik\l;Jr:I_fl ’ fl* = fl(pl*)’ fl? = fl(p;)'

This formulation means that; is reduced evenly fronk,>" to f,” with the constant
differenceAe;.

The effectiveness of the compromise method is, kewdimited to problems with
not more than two criteria. For problems with mdhan two criteria, values of the
constraints for more than one criterion have tddtermined in advance. Many sets of the
constraint values need to be chosen and the comdsm number of associated
optimization problems increases. This results irste@ computational resources as will
be shown in Section 5.4, where the compromise ndeth@pplied to the three-criterion
optimization problem defined for the spatial cardalo
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5.2.2 Recursive knee approach

The recursive knee approach is a technique basdtearormal-boundary intersection
(NBI) method introduced first bpas andDenis [19]. This technique was then modified
and programmed b¥achal andBestle [86], whose main idea is presented below.

The NBI sub-problem maximizes the distance alongranal while staying feasible
in an attempt to find the point of intersectionvbe¢n the normal and the Pareto frontier.
Let F be the matrix defined @&:=[ fi, fo, ..., f, ]. Then an arbitrary poinA on the
CHIM can be determined by vector:= Fa, whereae 4 — R" is treated as scalarizing
parameter with

74:={aeﬂ€n

i a =1, a zo}. (512)

At a given pointA, define a vecton normal to the CHIM pointing away from the origin.
Then, the NBI sub-problem for obtaining a single-d&fmal solution can be formulated
as follows

min t
pe 2.t
subjectto Fa + tn= f(p),
acA. (512

The NBI algorithm for a bi-criterion case is illasted in Figure 5.5. For finding a
representative subset of solutions, pdirttas to be moved along the CHIM, and thus the
value of vectom has to be varied. A systematic method of setding order to generate
an evenly distributed set of EP-optimal points lo@ Pareto frontier can be foundDas
andDenis [19].

If the origin point of the lind=a + tn, i.e. pointA, is allowed to be an optimization
variable itself, the solution to the problem yiettle EP-solution that is furthest from the
CHIM in normal direction. The NBI sub-problem (5)1Rerefore has to be reformulated
with a becoming a design variable as well:
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min t
pe”,t,a

subjectto Fa + tn= f(p),
aeA. (513)

This sub-problem is called tHanee sub-problemand the solution to this sub-problem
characterizes thenee of the Pareto frontier

Figure 5.5: Normal-boundary intersection (NBI) method

Once the knee of the Pareto frontier is obtainkd, CHIM can be refined by
considering the piece-wise linear approximatiomijeg the individual minima with the
knee, as shown in Figure 5.6. Each linear segnmemtbe considered as a separate sub-
CHIM, and the knee sub-problem can be solved foh esab-CHIM. The process can be
repeated recursively to generate several pointe@Pareto frontier.
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f2

Figure 5.6: Recursive knee approach

Since the solution to the knee sub-problem yidigspoint that is ‘the furthest’ from
the piece-wise linear approximation, every solutiona subsequent knee sub-problem
yields the best refinement of the approximationsgums. This procedure results in
building a good approximation to the Pareto franbg solving a minimal number of
computationally intensive sub-problems.

Since the origin point of the normal direction igaiable in the knee sub-problem,
the disconnected nature of the Pareto frontier poxe infeasibility problem for the
technique as it did for the traditional NBI methdtherecursive knee approaatan easily
be applied to problems with more than two critesawell. Since the approach finds the
EP-solutions that would best improve the piece-Wisear approximation, it does not
miss important parts of the Pareto front@as [18].

The pre-eminence of the recursive knee approachtbgecompromise method to the
three-criterion optimization problem of the spatiat model will be shown in Section 5.5.
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5.3 MCO Problem for Passive Suspension

In this section, di-criterion optimization problem for the spatial car modelwatpassive
suspensionsystem will be defined and solved with tlmempromise methodThe
significant improvements in both car ride safetg aide comfort will be shown.

5.3.1 Problem definition

For the case of a passive suspension, the twotolgedo be minimized argde safety
(4.47) andide comfort(4.48). The chosen design parameters are the dgropefficients
br andb; of the front and rear suspensions, the stiffneksaadk. of the front and rear
suspensions, and the modified rotational stiffnessandr, of the front and rear anti-roll
bars. The MCO problem for the spatial car modehwaipassive suspension then reads as

min f(p), f(p)=[f. f,]",
pe?”

P::{p:[bf, br, kf, ki” rf’ rr]TERG‘ p| < pg pu}
where
p' = [1000 1000 15000 15000 15000 5004,

p" =[2000 2000 25000 25000 25000 15004 (514)

5.3.2 Optimization results based on the compromise method

To apply the compromise method, the comfort coter, is chosen to be minimized,
while the ride safety criteriofi is expressed as inequality constraint. The MCO lprab
for the passive suspension case (5.14) then redloices

min _f,(p) where 72 ={ pe 7| f(p)<s, } (515)
pe?P?
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with properly chosen upper boungson ride safety. As indicated earlier in Sectionb,.2
to ensure that all the EP-optimal solutions of pheblem will be found, the value of the
constraints; must be chosen within the valuis andf;> of the ride safety criteriofy.
Thus, these values must be computed first by splthre single optimization problems
(5.8). Once the individual minim&;" and F," are determinedN EP-optimal points
betweenF;" and F, can be generated evenly on the Pareto frontiersdlying
progressively the problem (5.1fy N values of the constraint defined by (5.10).

The obtained optimization results for the spatal model with passive suspension
based on the compromise method are presented la $dband shown in Figure 5.7. The
simulation parameters have been the same as tkeusad for the LQR design in Section
4.3.2, i.ev = 30km/handx = 1/10m ™.

Table 5.1: EP-optimal solutions for passive suspension optimization

criteria optimized design variables
point f1 f2 b br ke ke re re
[cm  [deg/d] x10° [Ns/nj x10* [N/ x10* [N/m/rad
1 1.4905 47.5780 2.0000 2.0000 1.9952 1.7491 1.9195 0.9593
2 1.4651 47.6340 2.0000 1.9998 2.0070 1.7563 1.9367 0.9762
3 1.4394 47.7035 2.0000 1.9983 2.0190 1.7667 1.9544 0.9928
4 1.4132 47.7442 2.0000 2.0000 2.0295 1.7771 1.9723 1.0118
5 1.3882 47.8133 1.9987 2.0000 2.0394 1.7867 1.9913 1.0298
6 1.3629 47.8568 2.0000 2.0000 2.0499 1.7953 2.0119 1.0478
7 1.3373 47.9157 2.0000 2.0000 2.0598 1.8051 2.0324 1.0679
8 1.3127 47.9730 2.0000 2.0000 2.0710 1.8145 2.0498 1.0899
9 1.2868 48.0346 2.0000 2.0000 2.0828 1.8261 2.0741 1.1079
10 1.2586 48.1030 2.0000 2.0000 2.0953 1.8384 2.0984 1.1320
11 1.2338 48.1644 2.0000 2.0000 2.1072 1.8509 2.1206 1.1528
12 1.2098 48.2247 2.0000 2.0000 2.1204 1.8639 2.1403 1.1749
13 1.1831 48.2928 2.0000 2.0000 2.1329 1.8762 2.1654 1.2004
14 1.1578 48.3589 2.0000 2.0000 2.1440 1.8903 2.1896 1.2254
15 1.1312 48.4297 2.0000 2.0000 2.1614 1.9086 2.2146 1.2500
16 1.0999 48.5147 2.0000 2.0000 2.1753 1.9216 2.2492 1.2841
17 1.0799 48.5701 2.0000 2.0000 2.1831 1.9338 2.2687 1.3089
18 1.0540 48.6434 2.0000 2.0000 2.1967 1.9473 2.2986 1.3384
19 1.0304 48.7113 2.0000 2.0000 2.2111 1.9615 2.3261 1.3653
20 1.0026 48.7930 2.0000 2.0000 2.2293 1.9832 2.3557 1.4000
21 0.9770 48.9500 1.9924 2.0000 2.2423 1.9970 2.3889 1.4350
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Figure 5.7: Optimization results for the spatial car model with passive suspension

Figure 5.7 shows the EP-optimal solutions in thepeter spaces and the criterion space
by the stars. The dots are the solutions for rahglameated design parameters to give
some impressions about the feasible spaces. Abeaeen from the criterion space, an
almost even distribution of the EP-optimal solusioon the Pareto frontier has been
generated by changing evenly the constraint valiee success of solving the MCO
problems depends highly on the starting designtpoifio converge more quickly, the
optimal result of (5.15) for soma®™ was taken as starting point for the optimization
problem with the next bound®:

pe) = p Y, k=1@N, P = (516)
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Compared to the case of the original passive ssgpenvith parameters given in
Appendix A denoted by the black circle in Figur&,%he optimized passive suspension
improves the car ride safety by about 12% — 42% radel comfort by 21% - 23%. The
obtained results show that improving ride safetgdmering situations requires an increase
in both the springs and anti-roll bars stiffneshjol is contrary to the case improving ride
comfort.

54 MCO Praoblem for Active Suspension

Ride safety and ride comfort of the car can behknmrtimproved by using active
suspension. In this section, tti@ee-criterion optimization problem for the spatial car
model withactive suspensiowill be defined. An optimization method combinitige
multi-criterion optimization concept with the linrequadratic regulator (LQR) algorithm
will be introduced. The drawback of the comprommsethod compared to the recursive
knee approach for the three-criterion optimizaggwablem will be exposed based on the
results obtained from the proposed optimizatiomatlgm.

5.4.1 Problem definition

Different from the passive suspension case, thgtenge of the control forces generated
by actuators in the active suspension system regjgontrol effort which has to be taken
into account in an optimization problem. The ci&esector, therefore, includes not only
ride safety f andride comfortf,, but also thecontrol effortcriterion (4.49). The spatial
car model is set up the same way as in the cak®RBfdesign and the control structure
with state-feedback and disturbance-feed forwanatroler is according to Figure 4.2.
The parameters of the optimized passive suspermio®sponding to the fOrow in
Table 5.1 are used as constants for the passiyperssion parts. The design variables are
the componentk,; of the 4«6-state-feedback gain matrs, and the elements, of the
4x1-disturbance-feed forward gain vectgy. The MCO problem for the spatial car model
with active suspension can then be stated as
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min f(p), f(p)=[f, f,, ],

pe”
2= {p=[ K o Keagr Kuar s Ka] T €BZ| B(p) <0}
where
h(p):= mgX[m§x| uj (t)|j ~ 500. (517)

In the above formulation, the design parameterscansidered as unbounded. However,
an inequality constrairti(p) is used to limit the control forces, accordingthe limited
capability of real actuators.

54.2 MCO with LQR control

Solving the MCO problems of the form (5.17) dirgddr the optimal control gainsK;
and KCN without pre-knowledge about the solutions or baumebuld be rather time-
consuming, especially for large systems like thaetiapcar model. This problem can be
solved faster by applying the LQR algorithm. Insted finding directly the components
of the controllers via optimization, the LQR algbm is used to comput&, and K.,
with weighting factorsw, w, andws provided by the optimizer.

With inclusion of LQR control, the MCO problem (3)lcan be reformulated as
follows:

min f(p), f(p)=[f, f,, fs]",
pe”

Pzz{pz[ W, Wy, W ]Teﬂﬂ p' <p<pY, h(p)so}
where

o= 0 o 109,

o' =10, 1¢, 10?|",

h(p) = miax(m?xj U (t)|j _ 500, (518)
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The optimization procedure can be described byrEi§B. As illustrated in the figure, the
LQR algorithm provides the optimal control gaiKs*A and KCN for the spatial car model
based on weighting factors obtained from the MC@plorhen a simulation is performed
and the criteria and nonlinear inequality constrane computed and returned to the MCO
loop. The final values oK; and K;, corresponding to the optimal weighting factorshaf
problem (5.18) are the solution of the problem T%.By the combination of the LQR
algorithm, the number of design variables for th€M™ problem defining the optimal
controllers can be reduced to the number of caiteri

Initialization

MCO Loop LQR Algorithm

Spatial Car Simulation

min f(p)
pe”

Optimized
Spatial Car Model

Figure 5.8: Optimization procedure for the spatial car model with active suspension using LQR algorithm

The optimization algorithm using LQR control inttaxéd above is concretized in
the applications of the compromise method and sageirknee approach to the MCO
problem of the spatial car model (5.18) presemedte sections below.
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5.4.3 Optimization results based on the compr omise method

Let the ride comfort; be the criterion to be minimized while ride safgtgnd control effort
f;are expressed as inequality constraints. The M@DIlgm for the spatial car model with
active suspension (5.18) can then be reduced tecHiar optimization problem

min _ f,(p) where 22:={ pe?| f,(p)<e, f4(p)<es ). (519)
pe?

In order to define proper values for the constgitte individual minima must be
determined first by solving the single optimizatiproblems (5.8). Then, the constraint
bounde; can be defined as

ggj) = f3 _(j _1)A33 , j :1(1)M (520)
where
fu— f,
Agg = -2 3 M 3 ,

fy=max(ff, 12), 127 = f,(pl.), o= fa(03)

and M is a user-defined number of sections. Correspgnttines'”, N evenly varying
values ofz; within the individual minimd; andf;* can be derived by (5.10). To define
proper values of; corresponding to the other valug€’ to &s™, sub-individual minima
must be defined by solving the following problems:

B0 min f,(p), 20 ={per| f(p)<el ) j20M.  (521)
pep)

Once the values of the constraimisand ¢; are determined, the problem (5.19) can be
solved progressively for different fixed valuestbé constraint; and associated varying
values of the constraiat.

Solutions of the problem (5.19) are shown in Figbi@ for different values of the
control effort.When theconstraint bound on the control effegtis decreased tes = O, the
trade-off curves tend to the black star correspandd the case of the passive suspension
with zero-control effort. For the case of no coaistr on control efforfs, i.e. e3 — o, the
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EP-optimal solutions do not converge to zero, tagthe boundary represented by the
six-pointed stars in the figure. This results frifra inequality constrairi(p) in (5.18) used
to limit the maximum value of control forces gerteda by the actuators.
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Figure 5.9: Results of the three-criterion optimization problem based on compromise method

As can be seen from the figure, both the car sdiety and ride comfort are
significantly improved when the active suspensiath state-feedback and disturbance-feed
forward control is optimized. These improvementpettel on the value of control effort as
depicted in Figure 5.9. As shown in Table 5.2, whbe EP-optimal solutions for the case of
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arbitrary control effort are given, ride safety ande comfort of the car with optimal active
suspension are improved by about 51% — 64% and-63%80, respectively.

Table 5.2: EP-optimal solutions for active suspension optimization based on compromise method for
arbitrary control effort

criteria design variables
point fy f2 f3 Wy W, W3
2 4 -4
[cm] [deg/s] [N] x10 x10
1 0.6134 12.2040 360.8736 6.9832 20.4031 0.3543
2 0.6055 12.2500 360.8453 6.9832 18.9070 0.3344
3 0.5966 12.3510 361.6310 6.9832 17.5469 0.3163
4 0.5882 12.4710 365.3826 6.9832 16.3046 0.2997
5 0.5798 12.6150 369.2553 6.9832 15.1656 0.2844
6 0.5714 12.7543 373.1473 6.9832 14.1182 0.2703
7 0.5630 12.8940 377.0474 6.9832 13.1524 0.2572
8 0.5547 13.0354 380.9625 6.9832 12.2597 0.2452
9 0.5463 13.1798 384.8833 6.9832 11.4330 0.2340
10 0.5379 13.3274 388.8147 6.9832 10.6657 0.2236
11 0.5295 13.4787 392.7540 6.9832 9.9525 0.2140
12 0.5211 13.6339 396.7014 6.9832 9.2913 0.2051
13 0.5128 13.7932 400.6561 6.9832 8.6756 0.1968
14 0.5044 13.9566 404.6178 6.9832 8.1002 0.1891
15 0.4960 14.1241 408.5850 6.9832 7.5285 0.1816
16 0.4876 14.1787 412.6083 6.9832 6.6386 0.1729
17 0.4792 14.8379 416.1475 6.9832 5.6428 0.1649
18 0.4709 15.6020 419.6442 6.9832 4.8395 0.1594
19 0.4625 16.3784 423.2026 6.9832 4.1990 0.1561
20 0.4541 17.6671 426.5835 6.9832 3.2998 0.1575

The optimization procedure introduced above hasvehthe complication of the
compromise method to a three-criterion optimizatgnoblem. To get a figure about
solutions, a large number of optimization probleans required to be solved and increases
the risk of obtaining more local optima. Then, greblem has to be resolved with one or
more new starting points which results in wastethmatational time. In order to overcome
this drawback of the compromise method, the reweitsnee approach may be used instead.
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5.5.4 Optimization results based on the recur sive knee appr oach

Based on the optimization algorithm programmed \gchal and Bestle [86], the
recursive knee approach introduced in Section 3s2applied to solve the MCO problem
for the spatial car model with active suspensione Bbtained optimization results are
shown in Figure 5.10 and some of them are citélchinle 5.3.

Different from the compromise method, the numbeEBfoptimal solutions for the
recursive knee approach can not be defined inarigince the iterations are terminated
according to the knee distant®f the knee sub-problems (5.13), which dependhen t
form of the Pareto frontier. As can be seen fromfigure, in flat regions of the Pareto
frontier only a few EP-optimal points have beenegated, whereas many points have
been produced in highly curved regions.
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Figure 5.10: Optimization results based on recursive knee approach
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Table 5.3: EP-optimal solutions for active suspension optimization based on recursive knee approach

criteria design variables
point fl f2 f3 W1 Wo W3
4 -4
[cm] [deg/$] [N] x10 x10
1 0.4541 17.6671 426.5835 6.9832 20.4031 0.3543
2 0.4586 16.8939 423.7608 5.6952 70.6110 0.2881
3 0.4590 17.0350 423.7857 5.7814 22.5580 0.2935
4 0.4593 16.5736 422.5167 5.6077 12.1690 0.2813
5 0.4597 16.7113 422.5151 5.7207 13.3746 0.3234
6 0.4685 16.7059 415.5217 5.9585 10.5000 0.3371
7 0.4733 17.1598 412.7485 5.9763 13.0354 0.3432
8 0.4814 17.4234 407.0224 5.5970 18.2439 0.3275
9 0.4817 16.0460 403.9879 45710 48.9117 0.2274
10 0.4845 16.5221 402.7689 6.2455 42.8665 0.3173
320 0.7857 30.5169 55.5835 2.7803 17.8988 0.6568
321 0.7918 30.2930 53.5705 2.9684 21.4410 0.7175
322 0.8038 29.7068 49.7925 3.6794 67.9262 0.9308
323 0.8049 29.5808 49.4576 2.5385 51.9351 0.6450
324 0.8292 31.8725 43.4565 2.9824 17.8921 0.8113
325 0.8418 32.2900 40.2773 2.3654 15.7321 0.6718
326 0.8448 32.5263 39.5997 2.3689 12.0562 0.6786
327 0.8869 31.4941 29.7252 2.9643 97.0776 0.5020
328 0.9819 36.3711 9.6581 4.2049 92.5754 0.6611
329 1.0014 35.8023 7.7729 4.9348 88.5600 0.7065
330 1.2586 48.1030 0.0000 0.0000 0.00000 0.0100

Since the knee of the Pareto frontier is usualgated in the middle interval, the
formula (5.16) for defining starting points usedhie compromise method is inefficient to
the recursive knee approach. A new formulatiordigfining the starting point of the knee
sub-problem (5.13) has been presentewlhbyhal andBestle [86]. With this formulation,
the starting point can be changed automaticallynahe sub-problem (5.13) is required
to be restarted after a definite number of non-teshhcomputations. Another advantage
of the recursive knee approach is the Pareto falgorithm which filters out non-EP-
optimal solutions as well as local EP-optimal siolu$ that may have been obtained
during the generation of candidate designs.



Chapter 5- Multi-criterion Optimization 84

Unlike the compromise method, the recursive kngaagch requires to solve the
single optimization problems (5.8) only once foe thdividual minima defining the first
CHIM. Moreover, the risk of obtaining non-EP-optinslutions and local EP-optimal
solutions is avoided by the Pareto filter algorithirhe recursive knee approach, therefore,
reduces the computational time by about three titn@gpared to the compromise method
while giving the same results.
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55 MCO Problem for Passive and Active Suspensions

In the previous section, the active suspension e optimized with fixed passive

suspension parameters. In order to estimate tleetefness of optimizing the passive
and active suspensions at the same time, the thitegion optimization problem where

both passive and active suspension parameterscar@dered as design variables is
introduced in this section.

5.5.1 Problem definition

With inclusion of LQR algorithm introduced in sexti 5.4.2, the optimal passive and
active suspension parameters for the spatial catelpan be obtained by solving the
following MCO problem:

min f(p), f(p)=[f. f,. fa]",
pe”

P::{p:[ P, p;]TeR9| p' <p<p’ h(p)so}
where

p=|bs, b, ki, ko, re, 1 ]Te RS,

po=[w, W, w]'eRr?

p, = [1000 100Q 15000 1500Q 1500Q 5004,

p{ =[2000 2000 25000 25000 25000 1500§",

m=[ 0 o 10°],

p=[1F, 1, 17|,

h(p):= max [m?xj U, (t)|j — 500. (522

|
In the above formulation, the vector of design ablesp; includes the passive suspension
parameters whil@, contains weighting factors which will determine thptimal control
gains K, and K for the active suspension based on the LQR ahyurit
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5.5.2 Optimization results

In order to derive comparable results with a reducemputational time, the compromise
method for the case of arbitrary control efforfyiplied to solve the problem (5.22), which is
concretized by the MATLAB.m files introduced in Apmdix D.1. The optimization results

are represented by the asterisks in Figure 5.11gamh in Table 5.4. Compared to the
results obtained from optimizing the passive susp@ndenoted by the stars in the figure,
ride safety and ride comfort of the car are imptbisg about 60% and 75%, respectively.
These values are 14% and 2% better than the refertged from optimizing the active

suspension only with arbitrary control effort whigte described by the six-pointed stars.
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| | | | | | |
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| | | | | | |
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ride safety fl [cm]

Figure 5.11: Comparison between the optimized passive, optimized active and optimized passive-
active suspensions



Chapter 5- Multi-criterion Optimization

Table 5.4: EP-optimal solutions for passive-active suspension optimization based on compromise
method for arbitrary control effort

criteria design variables
point 4 4
f1[cml f,[deg/$] f3[N] Wi x10 W W5x10
1 0.5243 11.9999 334.0244 4.6723 24.6195 0.3730
2 0.5173 12.1472 337.9501 4.6723 20.7456 0.3219
3 0.5104 12.3599 341.8873 4.6723 17.2809 0.2770
4 0.4928 12.4905 351.9964 4.6723 13.2872 0.2195
5 0.4931 12.4921 351.8148 4.6723 13.3267 0.2202
6 0.4894 12.5059 354.0309 4.6723 12.6984 0.2108
7 0.4825 12.6178 358.0819 4.6723 11.3196 0.1919
8 0.4755 12.7886 362.0795 4.6723 9.9694 0.1740
9 0.4685 12.9479 366.1000 4.6723 8.8603 0.1590
10 0.4615 13.1058 370.1430 4.6723 7.9116 0.1461
11 0.4546 13.1562 374.1754 4.6723 7.0495 0.1342
12 0.4476 13.3162 378.2476 4.6723 6.3341 0.1244
13 0.4406 13.4795 382.3260 4.6723 5.7025 0.1156
14 0.4336 13.6466 386.4136 4.6723 5.1411 0.1078
15 0.4267 13.8180 390.5094 4.6723 4.6399 0.1008
16 0.4197 13.9950 394.6172 4.6723 4.1910 0.0946
17 0.4127 14.1766 398.7333 4.6723 3.7871 0.0890
18 0.4057 14.3632 402.8607 4.6723 3.4239 0.0840
19 0.3988 14.6071 406.9448 4.6723 3.0608 0.0794
20 0.3918 15.5962 410.3890 4.6723 2.3471 0.0736
design variables
point by by ke ke Iy Ir
x10% [Ns/nj x10* [N/m] x10* [N/
1 2.0000 2.0000 2.4979 2.4943 2.5000 1.5000
2 2.0000 2.0000 2.4982 2.4945 2.5000 1.5000
3 2.0000 2.0000 2.4982 2.4945 2.5000 1.5000
4 1.9999 1.9999 2.4988 2.4946 2.5000 1.5000
5 1.9993 1.9992 2.4992 2.4949 2.5000 1.5000
6 2.0000 2.0000 2.4982 2.4945 2.5000 1.5000
7 2.0000 2.0000 2.4982 2.4945 2.5000 1.5000
8 2.0000 2.0000 2.4982 2.4945 2.5000 1.5000
9 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
10 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
11 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
12 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
13 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
14 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
15 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
16 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
17 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
18 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
19 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
20 2.0000 2.0000 2.4983 2.4945 2.5000 1.5000
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The obtained results show that the best solutiorésigning the active suspension
system is to optimize the parameters of both passhd active components at the same
time. However, it should be noted that the deriogtimal values are valid only for a
specific operation point defined by given values tbé car yaw rate and lateral
acceleration. For different operation points, thegive and active suspension parameters
have to change appropriately. Since the passivpess®n parameters are typically
unchangeable, the practical way is to design arctet that is able to change its
parameters according to the changes of the systeamgng parameters. The process of
defining such a controller is known as gain-schieducontrol design which will be
introduced in the next chapter in more details.
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Chapter 6

Gain-scheduling Control

Gain-scheduling is one of the most common control techniques tigetksign controllers
that can change their parameters in response twahation of the system dynamics
resulting from varying parameters. In this chaptgain-scheduling control will be
designed for the spatial car model. By consideting effects of suspension and tire
deformation on the vehicle stability in corneringuations, theoperation region of the
spatial car model will be determined. Based amimal local controllers defined for
selected operation points, the parameter-dependent controller will be then designed. The
effectiveness of the designed parameter-dependentrodler will be demonstrated
through the simulation oflouble-lane-change maneuvers, which are designated as
standard vehicle handling tests. In order to fiptiroal paths for the double-lane-change
maneuvers that minimize the vehicle lateral dynandigring the test, path generation
problem will be formulated and solved in this chapter.

6.1 Operation Region of the Spatial Car Modd

As indicated in Chapter 3, the linear parameteyuar (LPV) spatial car model (3.76)
can be simplified as a set of linear time-invarigbfl) systems (3.78) defined by
pairs(7,ay). In this section, upper bounds for the lateraktrationa, and yaw ratg,
which determine the operation region of the spafgal model, will be defined based on
the stability condition of vehicles in corneringking into account the compliance of
suspension and tires.
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6.1.1 Vehicleside-slip and rollover stability

When cornering with large lateral acceleration,cdaemayslip sideways or roll over under
the action of the centrifugal force located at ¢the center of gravity. The most traditional
analysis of vehicle side-slip and rollover stabilis based on a rigid vehicle model in
steady-state cornering as shown in Figure 6.1.

Msay >

hc

tw tw F2.in

Figure 6.1: Rigid vehicle model

During cornering, the centrifugal forees a, is counterbalanced by the lateral tire
forces, which are limited by values proportionathte corresponding normal tire loads and
the tire-ground friction coefficieniitschke [51] andSteinberg [77]. It is assumed that the
road friction coefficientg, are the same for all four wheels, resulting in

mg a I:y-out + I:y—in < Hy (Fz—out + I:z—in) = Hy Ms g

y =
or
Aygip < Uy O (6.2)

whereg = 9.81m/s” is the gravitational acceleration. For dry-asphaiids, the friction
coefficient is approximatelyy, = 1.0 resulting in a maximum lateral acceleratiatue
ay < aygip = 9.81m/s’ that the car is able to reach before slipping saiew
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The vehicle rollover threshold is defined from tind-wheel lift condition, i.e. the
normal loads on the inside wheels reach zeros,fargdthe total normal load on the inside
wheelsis F.in = 0. Taking moments about the center of contatthes for the outside
wheelsTC with the simplification of the same front and réatf-track width,tys =ty = tu,
results in the simple formula for the lateral aecation at the rollover threshold:

t
ay < yg) = hlg (62)
C
wherehc is the static height of car’'s CG above ground. féte ¢./hc) is often referred to
as the static stability factor used to estimatghbuthe vehicle rollover-resistance ability.

The maximum lateral acceleratical, of the car during cornering is limited by the
smaller one of the lateral accelerations at thHevet and side-slip threshold, i.e.

ay = min(ayroII , aydip) . (6.3)

For the spatial car model with the dates given inekxgix A, ay ron = 14.91m/ is greater
thanay gip = 9.81m/s?, which means that the car will more probably slkjesiays instead of
rolling over.

However, neglecting the deformation of suspensiontaiad in the above analysis
often leads to overestimation of the rollover thadd. To determine more accurately the
upper bound for the lateral acceleration, the eriltes of suspension and tire compliance
on the vehicle rollover stability must be considere

6.1.2 Effectsof suspension and tires compliance

Due to lateral compliance of suspension and tifesdistance in lateral direction between
the center-plane of the vehicle and the tire cdrgatches is changed, usually reduced. In
addition, the transmission of lateral forces betwten body and the wheels results in
vertical components called “jacking” forces, which general do not cancel out and
usually increase the static height of car's CG. Thanges in effective half-track width
and height of car’'s CG, which reduce the laterakbcation at the rollover threshold, are
illustrated in Figure 6.2.
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hc + A hc

TC | t,— Aty

Figure 6.2: Rollover model with deformable suspension and tires

The changes in effective half-track width resulirrbody roll, tire deformation and
suspension kinematics. During cornering, the cay bbolls about the roll axis resulting in a
lateral shift of the car’s CG towards outside ohtwhich decreases the effective half-track.
Also, the half-track width is reduced due to thestal displacements of the tire contact
patches with respect to the body resulting fronerktdistortion of tires. An additional
change of half-track width occurs because of susparkinematics. During suspension
deflection, the wheel changes its inclination angih respect to the car body, resulting
in a lateral displacement of the wheel which incesabe effective half-track width.

During cornering maneuvers on smooth roads, theckebody is usually subjected
to vertical forces, often referred to as “jackirigices, which tend to lift the car's CG above
the static location. In steady-state cornering eéhare primarily two sources of jacking
forces: nonlinearities in suspension stiffness attaristics and vertical components of
forces transmitted by suspension links. Suspenstdimess characteristics are usually
progressive, that is stiffness increases with sisperdeflection in order to maintain good
ride properties with full load. This characteristicsuspension permits smaller deflection in
compression of the outside suspension than deffectiextension of the inside suspension.
As a result, the height of car's CG increases. Hifsct is highly dependent on the
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particular stiffness characteristic, which is difficto be captured in a general approach.
Therefore, it is often neglected in the analysisnfifiences of suspension compliance on
the vehicle rollover stability. The second jackmffect is a result of forces in suspension
links. Lateral forces generated during corneringh@avers are transmitted between the
body and the wheels through relatively rigid susgam links, which are in general not

parallel to the ground. Therefore, the reactiorcdsrin these elements have vertical
components resulting in a vertical net force, whishally pushes the body up for typical

suspensions.

Hac [35] shows that the effect of total change in tlfieative half-track width
resulting from body roll, tire compliance and suspen kinematics reduces the lateral
acceleration at the rollover threshold computedheystatic stability factor (6.2) by about
15%, while the change in height of car's CG causedalbliing forces contributes a
reduction of about 5% for passenger cars. Applyirggse results to the spatial car model
yields the lateral acceleration at the rolloveresiolday o = 11.93m/s’. This result is
limited to the passive suspension system. Wherathige suspension system is applied,
the suspension deformation will be restrained &gpmtly by the controlled forces
generated by the active dampers at four wheelshigncase, the value @i, ;o1 will be
between 11.93 —14.91s".

Since the lateral acceleration at the rolloverghadd is greater than that at the side-
slip threshold, the upper bound value of the ldi@caeleration for the spatial car model is
determined aa," = a, gip = 9.81M/S",

6.1.3 Definition of operation region and oper ation points

Theoretically, theoperation region of the spatial car model is a rectangle boundethby
coordinate axes and the upper bounds for latere¢le@tiona,” and yaw rate/"as
illustrated in Figure 6.3, wheg’ = 9.81n/s” is the maximum lateral acceleration that the
car is able to reach before slipping sideways, whllean be computed from" and the
car minimum turning radiuBmin as

= | — . (6.4)
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This equation is obtained from (3.51) in the liitseay =vy" andv= R, 7". With

Rmin = 10m, the upper bound of yaw rate is derivedjas~= 1.0rad/s. In practice, this
operation region may be further reduced by minimwming radius and maximum
velocity as ay < v, however, in order to simplify the computationabgedure, the

max7/’

whole operation region as shown in Figure 6.3 Wwél used to design gain-scheduling
control for the spatial car model.

y[radis] 4

7" =100 (o 0—0—0—0—0—0—0—0
08 Pt
08 P
L S SRmmsmas

S S

0.2 o— == =0~ =000

u _ 2
a, =981 a,[ms]

Figure 6.3:  Operation region and selected operation points

The variation of the car yaw ratg and lateral acceleratioa, in the operation
region leads to changes in the system dynamicsndiatain the required performance of
the system, the controllers have to update theiamaters on-line according to varying
system parameters. Thus, a parameter-dependeatfetatback gain matriﬂ(x(;k,ay)
and disturbance-feed forward gain vectq[,(;?,ay) are required to control the spatial car
model. To design such a controller, the dependehtige controller on the variation of
anday over the operation region must be investigated.this purpose, 66 pair@),ay)
corresponding to 6@peration points are selected as illustrated by the small circtes i
Figure 6.3. Each operation point defines a linaéae{invariant system, whose optimal
controllers can be obtained by applying the multedon optimization method with the
linear quadratic regulator algorithm as introduirethe previous chapter.
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6.2 Gain-scheduling Design for the Spatial Car Model

In this section, theptimal local controllers, i.e. the optimal state-feedback gain matrices
and disturbance-feed forward gain vectors of thedr time-invariant systems defined by
the selected operation points, will be computece magligible influence of the yaw rate
on the optimal local controllers will be shown. Bdson the variation laws of the
components of the optimal local controllers, tpa&rameter-dependent controller as
continuous functions of the lateral acceleratiol & formulated.

6.2.1 Optimal local controllers

In order to simplify the problem of finding the opé&l local controllers, a scalar

optimization problem is used instead of the muitecion optimization problem. Since ride

safety is most important for cars in cornerings ttiiterion is defined as the only objective
for the gain-scheduling design:

. 1 174, _
f fi=. — (t)dt = 6.5
e 6 me e k(IS AOa . -1 (69

where the vector of design variablpsand the feasible design spageare defined
according to (5.18). The optimal state-feedbackn gaiatrix K, and disturbance-feed
forward gain vectoK,, are derived from the optimal solution of problenbjtased on a
strategy similar to the one shown in Figure 5.8.

Figure 6.4 shows the obtained results for the sadleoperation points, which are
generated by changing evenly lateral acceleraajowhile keeping constant yaw rate
The small figures describe the dependences of ptienal control gainK, andK, on
lateral acceleration and yaw rate. As can be se®n the figures, the obtained optimal
local controllers depend only slightly on the yaater This can be explained by the
negligible effect of yaw rate on the car ride safgiterion as follows:

With values y < 10rad/s for the yaw rate and the parameters of the cangin
Appendix A.1, the yaw rate-dependent matrgs) in (3.56) andQ(y) in (3.57)
(with a, =0 and # =0) are much smaller than the invariant matri@&8.G; and
G¢(K¢+K,)GLin the state equations (3.74), respectively. ThérioesP(7) and
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Q(y), therefore, can be omitted in the matriodl’) and C() defined in equations
(3.74) and (3.75), i.e.

0

0

-MGg(Kg +KA)GE —MT'GgBsGS

} and

- 9}; M Gs(Ks +K,)Gg - 9};; M 7GsBsGg

Thus, the linear system (3.76) can be substituyed b

X~Ay X+ Bu + bww(ay),

y~CyXx+ Du + dww(ay).
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Figure 6.4: Components of optimal gains K:( and K:;, vs. &y for different y
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Since then the state vectgrdoes not depend on the yaw rgte the vector of
measured outputy = [z5, £]', and thus the car ride safety criterifnis
independent of .m

The validity of this approximation can be seen iguFe 6.7, from the negligible
effects of yaw rate on the suspension displacemgutf the front-left wheel. The same
results are also observed for the suspension dsplants of front-right, rear-lednd rear-
right wheels. Since the car ride safety criterianis a function of the suspension
displacementgg, its value is almost constant when varying the yate. The optimal
solutions of the optimization problem (6.5), theref do not depend on the change of
yaw rate as seen in Figure 6.4.
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Figure 6.5: Negligible effects of yaw rate ¥ on suspension displacement at front-left wheel
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6.2.2 Parameter-dependent controller design

As discussed above, the effect of the yaw ratehendptimal local controllers can be
neglected. However, to design an adequate meamrrotlent the mean values of the
optimal local controllers obtained from six diffatevalues of yaw rate are used for the
parameter-dependent controller of the spatial cadeh The values of the control gains
are given in Table 6.1 and shown by the dots inuf€ig6.6. In order to obtain

continuously varying functions of the lateral aecation, polynomials ira, fitting the
mean values of the optimal local controllers havbd found.
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Figure 6.6: Mean-value points and interpolated curves for control gains
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Table 6.1: Mean values of the optimal local controllers (x104)
lateral acceleration ay [MVs]]

0.0000 0.9810 1.9620 2.9430 4.9050 4.9050 5.8860 6.8670 7.8480 8.8290 9.8100
Ky 11 3.8874 | 3.8833 | 3.8833 | 3.8833 | 3.8813 | 3.8822 | 3.3479 | 2.7419 | 2.3430 | 2.0516 | 1.8212
Ky 12 1.6879 | 1.6858 | 1.6859 | 1.6858 | 1.6846 | 1.6516 | 1.4313 | 1.1867 | 1.0060 | 0.8560 | 0.7414
K13 | -4.0186 | -4.0143 | -4.0143 | -4.0143 | -4.0123 | -4.0111 | -3.4292 | -2.7747 | -2.3615 | -2.0672 | -1.8344
Ky 14 0.4892 | 0.4889 | 0.4889 | 0.4889 | 0.4887 | 0.4888 | 0.4462 | 0.3913 | 0.3544 | 0.3257 | 0.3016
Ky 15 0.1943 | 0.1941 | 0.1941 | 0.1941 | 0.1941 | 0.1946 | 0.1714 | 0.1429 | 0.1238 | 0.1099 | 0.0987
Ky 16 | -0.4668 | -0.4665 | -0.4665 | -0.4665 | -0.4663 | -0.4663 | -0.4259 | -0.3734 | -0.3380 | -0.3104 | -0.2872
Ky 21 3.8959 | 3.8917 | 3.8917 | 3.8917 | 3.8897 | 3.8904 | 3.3522 | 2.7427 | 2.3430 | 2.0516 | 1.8212
Ke 2o |-1.8095|-1.8073 |-1.8074 | -1.8073 | -1.8062 | -1.7716 | -1.4987 | -1.2005 | -1.0060 | -0.8560 | -0.7414
Ke 23 |-3.8193|-3.8152|-3.8153 | -3.8152 | -3.8132 | -3.8162 | -3.3227 | -2.7539 | -2.3615 | -2.0672 | -1.8344
Ky 24 0.4887 | 0.4884 | 0.4884 | 0.4884 | 0.4882 | 0.4883 | 0.4459 | 0.3912 | 0.3544 | 0.3257 | 0.3016
Kg 25 |[-0.1934 |-0.1932|-0.1932 | -0.1932 | -0.1931 | -0.1937 | -0.1709 | -0.1428 | -0.1238 | -0.1099 | -0.0987
Ky 26 |-0.4674 |-0.4671 | -0.4671 | -0.4671 | -0.4669 | -0.4672 | -0.4261 | -0.3734 | -0.3380 | -0.3104 | -0.2872
Ky 31 4.0485 | 4.0443 | 4.0443 | 4.0443 | 4.0423 | 4.0433 | 3.5008 | 2.8820 | 2.4743 | 2.1754 | 1.9381
Ky 32 1.8045 | 1.8024 | 1.8024 | 1.8024 | 1.8012 | 1.7667 | 1.4920 | 1.1920 | 0.9980 | 0.8492 | 0.7356
Ky 33 7.2091 | 7.2016 | 7.2017 | 7.2016 | 7.1980 | 7.2016 | 6.2683 | 5.1940 | 4.4687 | 3.9294 | 3.5014
Ky 34 0.3254 | 0.3252 | 0.3252 | 0.3252 | 0.3251 | 0.3252 | 0.2948 | 0.2563 | 0.2304 | 0.2103 | 0.1936
Ky 35 0.1919 | 0.1917 | 0.1917 | 0.1917 | 0.1916 | 0.1922 | 0.1696 | 0.1417 | 0.1228 | 0.1090 | 0.0979
Ky 36 0.5604 | 0.5600 | 0.5600 | 0.5600 | 0.5598 | 0.5601 | 0.5076 | 0.4411 | 0.3961 | 0.3613 | 0.3322
Ky 41 4.0569 | 4.0527 | 4.0527 | 4.0527 | 4.0507 | 4.0514 | 3.5051 | 2.8828 | 2.4743 | 2.1754 | 1.9381
K a2 |-1.6653|-1.6633|-1.6633 |-1.6632 | -1.6621 | -1.6295 | -1.4149 | -1.1763 | -0.9980 | -0.8492 | -0.7356
Ky 43 7.4068 | 7.3991 | 7.3991 | 7.3991 | 7.3955 | 7.3950 | 6.3740 | 5.2147 | 4.4687 | 3.9294 | 3.5014
Ky 44 0.3249 | 0.3247 | 0.3247 | 0.3247 | 0.3246 | 0.3247 | 0.2945 | 0.2563 | 0.2304 | 0.2103 | 0.1936
Kg 45 |-0.1927 | -0.1926 | -0.1926 | -0.1926 | -0.1925 | -0.1930 | -0.1700 | -0.1418 | -0.1228 | -0.1090 | -0.0979
Ky 46 0.5598 | 0.5594 | 0.5594 | 0.5594 [ 0.5592 | 0.5592 | 0.5073 | 0.4410 | 0.3961 | 0.3613 | 0.3322
Kw1 0.0091 | 0.0091 | 0.0091 | 0.0091 [ 0.0091 | 0.0087 | 0.0067 | 0.0053 | 0.0042 | 0.0033 | 0.0028
Kwz -0.0104 | -0.0103 | -0.0103 | -0.0103 | -0.0103 | -0.0100 | -0.0075 | -0.0055 | -0.0042 | -0.0033 | -0.0028
Kwa 0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0102 | 0.0099 | 0.0074 | 0.0055 | 0.0041 | 0.0033 | 0.0027
Kwa -0.0091 | -0.0090 | -0.0090 | -0.0090 | -0.0090 | -0.0087 | -0.0067 | -0.0053 | -0.0041 | -0.0033 | -0.0027
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This is achieved with the MATLAB function pblyfit’, which finds the
coefficients of a polynomigd(x) of ordern in a least-mean-square sense. To reduce the
order of the interpolation functions, the fittingirges illustrated in Figure 6.6 are
divided into two parts, respectively: 1) curve segms corresponding ta, > 4.905m/s?
which are represented by fourth-order polynomialncfions of the form
p(ay) = cay + C,ay + Ca; + C,ay + Cs, and 2) straight-line segments fyr< 4.905
m/s’ with magnitudes defined from the associated patyiabfunctions forp(ay = 4.905).

The coefficients of the fourth-order polynomialsétions are given in Table 6.2.

Table 6.2: Interpolated functions for the gain matrices of the parameter-dependent controller

for &, < 4.905 M/s” for @ > 4.905 M/S”
parameter-dependent A k = p(ay) _ Cla§ + CZaf; + c3a§ + Cjay + Cg
controller x 10

C C2x10°  C3x10"  C4x10°  Cs5x10°

Ky 11 3.8822 -73.1516 2.1885 -2.3554 1.0330 | -1.1707

Ky 12 1.6516 -18.8070 0.5730 -0.6248 0.2687 | -0.2169

Ky 13 -4.0111 83.4862 -2.4868 2.6637 -1.1650 1.3555

Ky 14 0.4888 -7.6396 0.2303 -0.2514 0.1136 | -0.1310

Ky 15 0.1946 -3.8878 0.1171 -0.1275 0.0573 | -0.0703

Ky 16 -0.4663 7.3274 -0.2210 0.2416 -0.1094 0.1269

Ky 21 3.8904 -73.9046 2.2100 -2.3772 1.0421 | -1.1831

Ky 22 -1.7716 31.0983 -0.9276 0.9914 -0.4261 0.4421

Ky Ky 23 -3.8162 64.7866 -1.9508 2.1147 -0.9328 1.0329
Ky 24 0.4883 -7.5834 0.2286 -0.2497 0.1129 | -0.1299

Ky 25 -0.1937 3.7921 -0.1144 0.1247 -0.0560 0.0685

Ky 26 -0.4672 7.2557 -0.2187 0.2388 -0.1078 0.1237

Ky 31 4.0433 -75.2145 2.2511 -2.4246 1.0651 | -1.2076

Ky 32 1.7667 -31.8039 0.9477 -1.0120 0.4349 | -0.4562

Ky 33 7.2016 -127.0284 3.8142 -4.1235 1.8172 | -2.0378

Ky 34 0.3252 -5.2403 0.1579 -0.1722 0.0776 | -0.0898

Ky 35 0.1922 -3.7701 0.1137 -0.1239 0.0557 | -0.0682

Ky 36 0.5601 -8.9698 0.2703 -0.2950 0.1329 | -0.1533
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kx 41 4.0514 -75.9615 2.2724 -2.4463 1.0742 -1.2199
kx 42 -1.6295 17.7079 -0.5411 0.5915 -0.2544 0.1977
kx 43 7.3950 -145.5807 4.3460 -4.6682 2.0475 -2.3579
kx 44 0.3247 -5.1845 0.1563 -0.1705 0.0769 -0.0887
kx 45 -0.1930 3.8492 -0.1160 0.1263 -0.0567 0.0695
kx 46 0.5592 -9.0409 0.2727 -0.2978 0.1344 -0.1564
kW 1 0.0087 0.0987 -0.0031 0.0037 -0.0021 0.0055
Ky kW 2 -0.0100 0.0704 -0.0019 0.0016 -0.0003 -0.0017
kW3 0.0099 -0.0573 0.0015 -0.0012 0.0001 0.0021
kW4 -0.0087 -0.0854 0.0027 -0.0033 0.0019 -0.0051

6.3 VehicleHandling Test Smulation

The control above has been designed for constamtrgtes and lateral accelerations. In
order to see the effectiveness of the designedsgdniaduling control on ride safety and
ride comfort, adouble-lane-change maneuver as one of the standard handling tests for
vehicles will be simulated. The path for the mareuwill be generated as optimal path
minimizing the lateral acceleration.

6.3.1 Double-lane-change maneuvers

There are two types of double-lane-change maneuereesdeveloped by the International
Organization for Standardization (ISO) and oneothizced by the Consumers Union (CU).
e |1S0O 3888-2 double-lane-change maneuver

The 1SO 3888-2 double-lane-change maneuver, wiscllso known as the “EIK” or

“Moose” avoidance test, represents a changing kep&th based on pre-determined cone
placement on the road as illustrated in Figure 6.7.
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A = 1.1 x Vehicle Width + 0.25 m
B = Vehicle Width + 1 m

throttle mr
released
B
\r\ path of vehicle
N\ /
A
~
P, ~ Jn—-_—-—-—}ISm
g V_
12m 13.5m 11m 125 m 12m
— | | o el -

Figure 6.7: 1SO 3888-2 double-lane-change maneuver

The widths of the run-up section and swerve sectiencalculated as functions of the
vehicle width. The cone sections must be handledeumverrun conditions, i.e. the
throttle must be released on entering the sectimhtle car must be in its top gear (or
position "D" for vehicles with automatic transm@s)j. The entrance speed is at least
v = 60km/h. These conditions significantly reduce the possiof driver influence. The
test is considered to be passed if no cones arekkdoover, and the maneuver is carried
out on a dry road.

e  ConsumersUnion Short Course double-lane-change maneuver

The Consumers Union Short Course double-lane-chamgeeuver is designed to test
object avoidance. The schematic of this maneuvskesched in Figure 6.8. In testing the
vehicle is required to exit the original lane tacmva road obstruction and immediately
returns to the original lane without knocking obe tcones. Like for the 1SO 3888-2
maneuver, the Consumers Union Short Course doahi&dhange maneuver is
performed on dry road with a minimal entrance sp&ed= 60knvh.
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Figure 6.8: Consumers Union Short Course double-lane-change maneuver

6.3.2 Path generation problem for double-lane-change maneuvers

To define the path generation problem for the deldoie-change maneuvers, the path must
be modelled first. There are an infinite number path models that can satisfy the
requirements of the ISO 3882-2 and Consumers U@) Short Course double-lane-
change maneuvers at a given entrance speed. Aitoirdevelop apath modd that is
adaptable to a variety of test vehicles and abpdduce a repeatable and effectively optimal
vehicle path, the paths for the ISO 3882-2 and QudrtSCourse double-lane-change
maneuver are assumed to be composed of a seséwight-line and circular-arc segments
with spiral segments between them as illustratédgares 6.9 and 6.10, respectively.

The straight-line segments (S) are described hy @ervaturex = 0, while constant
curvaturesg = const., j = 1(1) m, characterize circular-arc segments (C). For ek
segments, constant rates of curvature chamgesgonst., k = 1(1)n, are used. To reduce
the complication of the maneuver for test drivedentical rates of changey|| =r can be
used. In order to complete the vehicle path, intaddto the curvatures; and the rate of
curvatures changesg, the time points of changing curvatugenust be defined. All these
parameters are treated as tfesign variables for the path generation problem. The
number of design variables is determined by the bmrm of segments with constant
curvatures and the numbarof points with changing curvature. For the 1SO 38
double-lane-change path we hawe= 4 andn = 6, while we getn = 3 andn = 4 for the
CU Short Course double-lane-change path.
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Path model for ISO 3882-2 double-lane-change maneuver
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Path model for CU Short Course double-lane-change maneuver

Figure 6.10:
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The path constraints for the ISO 3882-2 and Consumers Union Short Gours
double-lane-change maneuver are given by the coséigns in Figures 6.7 and 6.8,
respectively. To ensure that no cone is knockedtbattracks of the wheels have to stay
within the boundaries generated by the upper ameerocone rows during the cone
sections as illustrated in Figure 6.11. Taking iatzount finite dimensions of tires and
cones, the minimal distance between the wheel $rackl the cone center lines can be
chosen e.g. a8= 0.30m.

A
Yi
upper cone upper bound on the wheel tracks
u
Ycone
u
YW
Yv §
Y ;
[ IO Sy i
Ycone < \ & i @ S5
|
lower cone i lower bound on the wheel tracks
|
i
: cone section
- : |
| ! |
| ! |
| ! |
| A | }
XO XV Xe X

Figure 6.11: Description of the wheel track boundaries in a cone section

The wheel track is a series of the wheel locatigds, Y.i) created during
simulation, which can be computed from the car’s BGation v, Yy) and rotation
matrix defined by yaw angle in the absolute inertial reference frainas

Xui cogy) =sin(y)] [ X, Xy

Yo Sin(7/ ) 005(7 ) Yui Y

wherex,i andyy are the coordinates of til wheel in the track coordinate syst&m
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Tables 6.3 and 6.4 show the section dimensionseofSO 3882-2 and Consumers Union
(CU) Short Course double-lane-change (DLC) maneawerthe wheel track boundaries
for the studied car where the vehicle width is assdito be 2.0%n. It should be noted
that for both types of double-lane-change maneuvkes test requires that the car
maintains a straight trajectory only within thesticone section of the course. The car’s
heading orientation is unrestricted at the endhaf test. For none-cone sections, no
bounds on the wheel tracks are required. Baseti@padrameters given in the tables, the
constraints on the wheel tracks for the cone sestih 3 and 5 can be formulated as
shown in Table 6.5.

Table 6.3: Section dimensions and wheel track boundaries for ISO 3882-2 DLC maneuver

position section 1 section 2 section 3 section 4 section 5
Xo [m] 10.0 22.0 35.5 46.5 59.0
Xe [M] 22.0 35.5 46.5 59.0 71.0
u
Yeone LM 1.25 5.30 1.50
|
Yeone LM -1.25 2.25 -1.50
Yy [m] 0.95 5.00 1.20
Y\,'v [m] -0.95 2.55 -1.20

Table 6.4: Section dimensions and wheel-track boundaries for CU Short Course DLC maneuver

position section 1 section 2 section 3 section 4 section 5
Xo [m] 10.0 31.0 46.0 46.0 64.0
Xe [M] 31.0 46.0 46.0 64.0 82.0
u

Yeone LM 1.20 5.70 1.80

|

Yeone LM -1.20 2.10 -1.80
th,IJ [ 0.90 5.40 1.50
Y, [m -0.90 2.40 -1.50
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Table 6.5: Constraints for the path generation problem
constraints on the wheel tracks
1ISO 3882-2 DLC maneuver CU Short Course DLC maneuver
| max (Y,,,5)— 095 " max (Y,,5)- 090
section 1 Xy 3< 22 X3 <31
h, = <0 h, = <0
~min (Y,,,)- 095 max (Y, 4)— 090
XW2,4S22 _XW2'4 <31
| max (Y, 3)— 500 [ max (Y,,;)- 540
section 3 355< X,y 3465 Xw13= 46
h, = <0 | h,:= <0
—min  (Y,,,)+ 255 —min (Y, ,)+ 240
3555 X, 4<465 L Xyy2,4=46
max (Y, ) 120 max (Y, ) 150
section 5 59< X1 5 64< Xy13
h, = ' <0 h, = <0
—min (Y,,,)- 120 ~min (Y,,,)- 150
59< Xyy2.4 64< X204

In order to avoid vehicle sideway-slipping, tbeterion for the path generation
problem can be defined as the vehicle lateral acagbn. Since for constant speed lateral
acceleration is proportional to curvature, seel(3.Binimizing the maximum magnitude
of path curvature reduces lateral acceleratiomgriduring the test.

If we restrict ourselves to the case where chanfiearvature are the samey | =r,
the path generation problem can be written asvaio
min  max ‘ Kj(p)‘,
pe” j=1mm
P::{p:[tl,..., th, [y Kppeor K] € R™™ p' <p<p", h <0, h, <0, h, SO}

where
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o for the ISO 3882-Zouble-lane-change path modd in Figure 6.9:
m=4,n=6,
p=[0.5,1.0, 15, 2.0,3.0,3.5 0.1000,0100, -0.0353, —0.0353, 0.010d0]
p'=[1.5, 2.0, 2.5,3.0, 4.0, 45, 0.3145,0363, -0.0100, -0.0100, 0.0353]

o for the CU Short Coursdouble-lane-change path modd in Figure 6.10:
m=3,n=4,
p = [1.0, 2.0, 3.0, 4.0, 0.1000, 0.01000363, 0.0100],
p' =[3.0,4.0,5.0,6.0, 0.3145 0.03530%00, 0.0353]. (6.9)

In the above formulation, the upper bound on the of curvature changeis defined
according to the maximum rate of change for hunzanfwheel steerings max= 720deg/s,
Forkenbrock, et al. [26] andHac [34], while the upper bound on curvatuses computed
from (3.51) with the given car spegd= 60 kmv/h and lateral acceleration at the side-slip
thresholda,” = 9.81m/s’. The MATLAB.m files used to solve the path genieraproblem
for the ISO 3882-2 double-lane-change maneuverpegeented in Appendix D.2 as an
example.

During simulation, the entrance speed 60km/h reduces steadily with a constant
rate ofdv/dt = — 0.5m/s”. The resulting 11 parameters defining the optivedlicle path
for the 1ISO 3882-2 double-lane-change maneuver are

t=[t, .., tg]" =[1.0562, 1.6852, 2.4609, 2.5895, 3.21369944
r = 0.3038,
K =[x, .., &, 1" =[0.0295 —0.0295, —0.0295, 0.0295]

The path and related information on this maneuxeishown in Figure 6.12.
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Path generation results for ISO 3888-2 DLC maneuver

Figure 6.12:

For the CU Short Course double-lane-change mangtheioptimal vehicle path is

defined by

2.3258, 3.6428, 4.4454)

1T =[1.5327,

=[t Iy

t*

1 9+

r = 0.3120,

., k5 ]7 =[0.0210, -0.0300, 0.0300].

:[K*

*

K

The graphical representation of the path is showsigore 6.13.
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Figure 6.13: Path generation results for CU Short Course DLC maneuver

6.3.3 Simulation results with gain-scheduling control

The optimal path parameters obtained from the pmheration problem are used for
simulating the studied car in the double-lane-ckafigi. C) maneuvers with the designed
gain-scheduling control. It should be noted that spatial car model in this case takes on

the form of a linear-parameter varying system esged by (3.76) due to the variation of
the car speed and yaw rate during the test.
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The simulation results for the 1ISO 3888-2 and theSZidrt Course DLC maneuvers
are shown in Figures 6.14 and 6.15, respectivelg Jystem dynamic responses for the
optimal passive suspension case are representée byin lines, while those for the case of
active suspension with gain-scheduling control preskin Table 6.2 are denoted by the
thick lines.
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Figure 6.14: Simulation results for ISO 3888-2 DLC maneuver
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Figure 6.15: Simulation results for CU Short Course DLC maneuver

As can be seen clearly from the figures, the susperdisplacement®; and car body roll
accelerationg for both double-lane-change maneuvers are signifig reduced by the
action of the controlled forces based on the desigparameter-dependent controller.
Compared to the case of passive suspension, tlve acispension improves the car ride
safety by about 47% for the ISO 3888-2 and 52%lHer@U Short Course DLC maneuver.
At the same time the car ride comfort criterionuealreduces by 31% and 38%,
respectively. The improvement in the ride comfaitiecion of the car can be explained by
the optimization results shown in Figure 5.9 whert binle safety and ride comfort criteria
tend to lower left corner even when optimizing régdety only. The obtained results above
demonstrate obviously the effectiveness of actisspensions with gain-scheduling control
on both ride safety and ride comfort criteria faspenger cars in yaw motion.
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Chapter 7

Summary

Aiming to design optimal controllers for passenger cars with active suspensions,
optimization methods are applied to various investigations in this dissertation. The
obtained results show that both ride safety and ride comfort of the car in yaw motion are
improved significantly with the designed controllers. The effectiveness of active
suspensions on the vehicle lateral dynamics is demonstrated based on a simplified and
linearized three-degree-of-freedom spatial car model featuring handling performance,
where the effects of suspension geometry are taken into account.

Since all states and disturbances of the spatial car model are assumed to be available
from online measurements, the linear quadratic regulator (LQR) algorithm is applied to
define the optimal control law. The LQR control theory is introduced for linear systems
without disturbances, and then extended to linear systems with measurable disturbances
resulting in an optimal control law with state-feedback and disturbance-feed forward
controller. The application of the LQR control on the spatial car model shows the
usefulness of this approach since the optimal controllers with a large number of unknowns
can be easily derived by choosing appropriately a few weighting factorsonly.

The obtained results also show that optimal solutions might not be found by
choosing the weighting factors by hand if the control problem is subject to constraints on
the states, measured outputs or control inputs. This drawback of the conventional method
of designing the LQR control is overcome by applying a multi-criterion optimization
approach, where the weighting factors become design variables of the associated MCO
problem. With the combination of the LQR algorithm the number of design variables of
the MCO problem defining the optimal controllers can be reduced significantly. The
MCO problem for the spatial car model with active suspension is solved based on the
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compromise method and recursive knee approach. Optimization results demonstrate the
effectiveness of the proposed optimization method.

The influences of suspension and tire compliance on vehicle rollover stability are
considered in order to determine the operating region of the studied spatial car model.
Aiming to maintain the desired performances of the system which can be changed due to
the variation in the system parameters, gain-scheduling control design is investigated. The
global parameter-dependent controller results from the two following design steps: first
the local controllers at specified operation points are computed, then the components of
the global controller is interpolated as polynomial functions of the system varying
parameters. The effectiveness of the designed gain-scheduling control is demonstrated by
the simulation of 1SO 3882-2 and Consumers Union Short Course double-lane-change
maneuvers, which are designated as the standard handling tests for passenger cars. The
simulation parameters result from a path which minimizes the vehicle lateral dynamics
and is found itself by an optimization problem.

Due to limitation in time, this dissertation cannot focus on all aspects of each
spreading problem, and some future research is desirable. To describe sufficiently the
vehicle lateral dynamics, the effects of tire dynamics on the vehicle vibration and
handling must be included, which were omitted in this research. In addition, although all
states and disturbances of the studied spatial car model are measurable, received signalsin
practice are often corrupted by measurement noise, resulting in discontinuous control. To
apply effectively the LQR control, optimal state-feedback and disturbance-feed forward
controller has to be combined with a Kalman optimal estimator. Furthermore, the
achievements of this research should be verified by practical experiments.
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Appendix A

Parameters of the Spatial Car Model

This thesis focuses on a spatial car model intreduc Chapter 3. For computations and
simulations, the parameters in Table A.1 are usexughout this dissertation.

Table A.1: Parameters of the studied passenger car

par ameter notation value unit
1 sprung mass Ms 1460.0 kg
2 roll moment of inertia of the sprung mass Ix 460.0 kg m?
3 pitch moment of inertia of the sprung mass ly 2460.0 kg m?
4 yaw moment of inertia of the sprung mass 4 1900.0 kg m?
5 front suspension damping rate b 1290.0 Ns/m
6 rear suspension damping rate b 1620.0 Ns/m
7 front suspension stiffness ks 19960.0 N/m
8 rear suspension stiffness ks 17500.0 N/m
9 modified front anti-roll bar stiffness I 19200.0 N/m/rad
10 modified rear anti-roll bar stiffness re 9600.0 N/m/rad
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11 vertical front tire stiffness kit 175500.0 N/m
12 vertical rear tire stiffness Kir 175500.0 N/m
13 distance from roll axis to the car’'s CG hrc 0.2 m
14 height of roll axis above ground hry 0.3 m
15 half the distance between the front wheels t 0.761 m
16 half the distance between the rear wheels t 0.755 m
17 distance from the car’'s CG to front axle If 1.011 m
18 distance from the car’s CG to rear axle I, 1.803 m
19 minimum turning radius Ruin 10.0 m
20 maximum car speed Vimax 56 m's
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Appendix B

NEWEUL Output File for the Car Model

NEWEUL is a FORTRAN program for computer-aided gatien of symbolic equations
of motion of a multi-body system. This program &@napplied in various technical fields,
such as vehicle dynamics, robotics, mechanism diynanalysis, and for any topological
structure of multi-body systems with holonomic oonrholonomic constraints. The
equations of motion of a multi-body system in botimlinear and linearized forms can be
automatically generated by the formalisms descrime@€hapter 2. The output file of
NEWEUL presents not only the results, but alsocitnatents of the input file which has to
be provided by the user. In the following, the NEMEoutput file obtained for the three
degree-of-freedom spatial car model is shown.

C> RAEUMLICHES FAHRZEUGMODELL Y: ZC
C> Y: BETA
C> Tuan-Anh. Nguyen September,2003 Y: ALPHA
C> Cc>
C> 2 Automatische Ableitung (1: 1/2; 2: P{®: keine)
C> C>
0  Steuerparameter: 0=holonom, 1=niclaitnmin Cc>
0  Komprimierungsart(0-6): O=vollsymbalis C> HILFSVARIABLEN
4  Zahl der Koordinatensysteme C> koo
3 Zahl der (Lage-)Freiheitsgrade C>
3 Zahl der Hilfsvarablen HV:  XV(T)
9  Zahl der linearisierbaren Groessen HV:  YV(T)
0  Zahl der numerischen Groessen HV:  GAMMA(T)
2 Zahl der Vereinfachungen C>
0  Zahl der Substitutionsvariable C>
INEGST=2/ C> LINEARISIERUNG
C> (Darstellung der Newton-Eulerschen @langen C>  *kkkiiicioiokokokak
C> im Inertialsystem) C>
C> 1 Vollstaendige Linearisierung
C> Cc>
C> LAGEVEKTOR C>

C>  #munnniodk Cc> VEREINFACHUNGEN
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C>
VFV: XVOTOT*cos(GAMMA)+YVOTOT*sin(GAMMA)
VFE: AX

C>
VFV:-XVOTOT*sin(GAMMA)+YVOTOT*cos(GAMMA)
VFE: AY

C>

C>***

C>¥*xx Ausgabeblock 1

C>***

C>*xx Allgemeine Angabre

C>***

C>
C> Lagevektor
Y(1)=2C
Y(2)=BETA
Y(3)=ALPHA
C>
C> 1. Ableitung des Lagevektors
Y1(1)=ZCP
Y1(2)=BETAP
Y1(3)=ALPHAP
C>
C> 2. Ableitung des Lagevektors
Y2(1)=2CPP
Y2(2)=BETAPP
Y2(3)=ALPHAPP
C>
C> Hilfsvariable
C>
XV=XV(T)
C>
YV=YV(T)
C>
GAMMA=GAMMA(T)
C>
C> Linearisierbare Groessen
C>
ALPHAPP
BETAP
ZC
C>
C> Vereinfachungen
C>
VFV=XVOTOT*COS(GAMMA)+YVOTOT*
SIN(GAMMA)
VFE=AX
C>
VFV=-XVOTOT*SIN(GAMMA)+YVOTOT*
COS(GAMMA)
VFE=AY
C>
C>***
C>***
C>***

BETAPP
ZCP

ZCPP
ALPHA

ARP
BET

Ausgabeblock 1-Hre

C> KOORDINATENSYSTEME
Cc> *ok Hdk ko

C>
C>
C>

Vehicle Fixed Coordinate - Track Motion

KOSART: R

KOSYNA: YA

KOSYNA: |
C>
C>

- Referenzsystem
- Namen des Koordinatengyss
- Namen des Bezugssystem

**+% Rotatorischer Teil ****
1  Zahl der Teildrehungen
C>

3 Artder Drehung (-3_+5)
C>
C> Drehwinkel
WINK= GAMMA
C>
C>  ** Translatorischer Teil ****
1  Zahl der Teilvektoren
C>

KOSYNA: |
C>
C>

System fubeilvektor

Teilvektor

R(1)= XV

R(2)=YV

R(3)=0

C>

C>*¥kxx kkk * Fkk Rk X Fohokk *x
C>
C>
C>

Roll Motion

KOSART: R
KOSYNA:
KOSYNA:
C>
C>

- Referenzsystem
RO - Namen des Koordinatensyss
YA - Namen des Bezugssystems

**+% Rotatorischer Teil ****
2 Zahl der Teildrehungen
C>
2 Artder Drehung (-3_+5)
C>
C> Drehwinkel
WINK = THETA
C>
1  Artder Drehung (-3_+5)
C>
C> Drehwinkel
WINK = BETA
C>
C>  ** Translatorischer Teil ****
1  Zahl der Teilvektoren
C>
KOSYNA:
C>
C>

YA System fugeilvektor
Teilvektor

R(1)=0

R(2)=0

R(3)= HRV+ZC

C>
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C>
C>  Car Center
C> -
KOSART: R - Referenzsystem
KOSYNA: Pl - Namen des Koordinatgstems
KOSYNA: RO - Namen des Bezugssystems
C>
C>  ** Rotatorischer Teil ****
1  Zahl der Teildrehungen
C>
-2 Art der Drehung (-3_+5)
C>
C> Drehwinkel
WINK = THETA
C>
C>  ** Translatorischer Teil ****
1  Zahl der Teilvektoren
C>
KOSYNA: Pl System rfaeeilvektor
C>
C> Teilvektor
R(1)=0
R(2)=0
R(3)= HRC
C>
C>
C>  Car with Pitch Motion
C>
KOSART: S - Starrkérper
KOSYNA: CAR - Namen des Koordinatgstems
KOSYNA: Pl - Namen des Bezugssms
C>
C>  ** Rotatorischer Teil ****
1  Zahl der Teildrehungen
C>
2 Artder Drehung (-3_+5)
C>
C> Drehwinkel
WINK =  ALPHA
C>
C>  ** Translatorischer Teil ****
0  Zahl der Teilvektoren
C>
C>xrk* el * RFAAKK kX i
C>*** *kk
C>#rx Ausgabeblock 2 rkk
C>*~k* *k%k
C>r* Koordinatensystean ok
C>*~k* *%k%k
C>

C> Drehungsmatrix YA bzgl. Inertialsystem
DS1(1,1)=COS(GAMMA)
DS1(1,2)=-SIN(GAMMA)

DS1(1,3)=0.
DS1(2,1)=SIN(GAMMA)
DS1(2,2)=COS(GAMMA)
DS1(2,3)=0.

C>
C>

C>
C>

C>
C>

C>
C>

C>
C>

C>
C>

C>
C>

C>***
C>***
C>***

C>

DS1(3,1)=0.

DS1(3,2)=0.

DS1(3,3)=1.

C> Ortsvektor YA bzgl. Inertialsystem
DR1(1)=XV

DR1(2)=YV

DR1(3)=0.

Drehungsmatrix RO bzgl. YA
DS2(1,1)=COS(THETA)
DS2(1,2)=SIN(THETA)*SIN(BETA)
DS2(1,3)=SIN(THETA)*COS(BETA)
DS2(2,1)=0.

DS2(2,2)=COS(BETA)
DS2(2,3)=-SIN(BETA)
DS2(3,1)=-SIN(THETA)
DS2(3,2)=SIN(BETA)*COS(THETA)
DS2(3,3)=COS(THETA)*COS(BETA)

Ortsvektor RO bzgl. YA
DR2(1)=0.
DR2(2)=0.
DR2(3)=HRV+ZC

Drehungsmatrix Pl bzgl. RO
DS3(1,1)=COS(THETA)
DS3(1,2)=0.
DS3(1,3)=-SIN(THETA)
DS3(2,1)=0.

DS3(2,2)=1.
DS3(2,3)=0.
DS3(3,1)=SIN(THETA)
DS3(3,2)=0.
DS3(3,3)=COS(THETA)

Ortsvektor Pl bzgl. RO
DR3(1)=-HRC*SIN(THETA)
DR3(2)=0.
DR3(3)=HRC*COS(THETA)

Drehungsmatrix CAR bzgl. PI
DS4(1,1)=COS(ALPHA)
DS4(1,2)=0.
DS4(1,3)=SIN(ALPHA)
DS4(2,1)=0.

DS4(2,2)=1.
DS4(2,3)=0.
DS4(3,1)=-SIN(ALPHA)
DS4(3,2)=0.
DS4(3,3)=COS(ALPHA)

Ortsvektor CAR bzgl. PI
DR4(1)=0.
DR4(2)=0.
DR4(3)=0.

*% *kkk * *% *% *kkk *%

*k%k

Ausgabeblock 2-Hre

*% *kkk * *% *% *kkk *%

*k*k

*k*k
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C>***
C>***

C>

C>***

C>
Cc>

C>

C>

C>

C>

C>
C>

C>

C>

Ausgabeblock 5

Kinematische Groessen eRefzsystem

*% *kkk * *% *% *

Kinematische Groessen des Referenzsystems YA
LTR1(1,1)=0.
LTR1(1,2)=0.
LTR1(1,3)=0.
LTR1(2,1)=0.
LTR1(2,2)=0.
LTR1(2,3)=0.
LTR1(3,1)=0.
LTR1(3,2)=0.
LTR1(3,3)=0.

*%

LRR1(1,1)=0.
LRR1(1,2)=0.
LRR1(1,3)=0.
LRR1(2,1)=0.
LRR1(2,2)=0.
LRR1(2,3)=0.
LRR1(3,1)=0.
LRR1(3,2)=0.
LRR1(3,3)=0.

AQTR1(1)=AX
AQTR1(2)=AY
AQTR1(3)=0.

AQRR1(1)=0.
AQRR1(2)=0.
AQRR1(3)=GAMMAOTOT

OR1(1)=0.
OR1(2)=0.
OR1(3)=GAMMAOT

Kinematische Groessen des Referenzsystems RO

LTR2(1,1)=-SIN(THETA)

LTR2(1,2)=0.

LTR2(1,3)=0.

LTR2(2,1)=BETA*COS(THETA)

LTR2(2,2)=0.

LTR2(2,3)=0.

LTR2(3,1)=COS(THETA)

LTR2(3,2)=0.

LTR2(3,3)=0.

LRR2(1,1)=0.
LRR2(1,2)=1.
LRR2(1,3)=0.
LRR2(2,1)=0.
LRR2(2,2)=0.
LRR2(2,3)=0.
LRR2(3,1)=0.
LRR2(3,2)=0.
LRR2(3,3)=0.

AQTR2(1)=AX*COS(THETA)
AQTR2(2)=AX*BETA*SIN(THETA)+AY

*k%

*kk C>

*kk

C>

Cc>
C>

C>

C>

C>

C>

C>

AQTR2(3)=AX*SIN(THETA)-AY*BETA
AQRR2(1)=-GAMMAOTOT*SIN(THETA)

AQRR2(2)=GAMMAOT*BETAP*COS(THETA)+
GAMMAOTOT*BETA*COS(THETA
AQRR2(3)=GAMMAOTOT*COS(THETA)

OR2(1)=-GAMMAOT*SIN(THETA)+BETAP
OR2(2)=GAMMAOT*BETA*COS(THETA)
OR2(3)=GAMMAOT*COS(THETA)

Kinematische Groessen des Referenzsystems Pl
LTR3(1,1)=0.
LTR3(1,2)=0.
LTR3(1,3)=0.
LTR3(2,1)=BETA*COS(THETA)
LTR3(2,2)=-HRC*COS(THETA)
LTR3(2,3)=0.
LTR3(3,1)=1.
LTR3(3,2)=0.
LTR3(3,3)=0.

LRR3(1,1)=0.
LRR3(1,2)=COS(THETA)
LRR3(1,3)=0.
LRR3(2,1)=0.
LRR3(2,2)=0.
LRR3(2,3)=0.
LRR3(3,1)=0.
LRR3(3,2)=-SIN(THETA)
LRR3(3,3)=0.

AQTR3(1)=-AY*BETA*SIN(THETA)+AX+2.*HRC*
GAMMAOT*BETAP*COS(THETA)+ HRC*
GAMMAOTOT*BETA*COS(THETA)
AQTR3(2)=AX*BETA*SIN(THETA)+AY+
HRC*GAMMAOT**2*BETA*COS(THETA)
AQTR3(3)=-AY*BETA*COS(THETA)

AQRR3(1)=0.
AQRR3(2)=GAMMAOT*BETAP*COS(THETA)+
GAMMAOTOT*BETA*COS(THETA)
AQRR3(3)=GAMMAOTOT

OR3(1)=BETAP*COS(THETA)
OR3(2)=GAMMAOT*BETA*COS(THETA)
OR3(3)=-BETAP*SIN(THETA)+GAMMAOT

C>

C>***
C>***
C>***
C>***

*% *kkk * *% *% * **

Ausgabeblock 5-Hre

C>

C>***
C>***
C>***
C>***
C>***

*% *kkk * *% *% * *%

Ausgabeblock 6

*kk

Kinematische Groesse rKoerper
*%k%k

*k*k

C>

*% *kkk * *% *% * *%
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C> Kinematische Groessen des Starrkoerpers CAR

C> im Inertialsystem

C>
LT1(1,1)=0.
LT1(1,2)=-HRC*BETA*SIN(THETA)*
COS(THETA)*COS(GAMMA)+HRC*
SIN(GAMMA)*COS(THETA)
LT1(1,3)=0.
LT1(2,1)=0.
LT1(2,2)=-HRC*BETA*SIN(THETA)*
SIN(GAMMA)*COS(THETA)-HRC*
COS(THETA)*COS(GAMMA)
LT1(2,3)=0.
LT1(3,1)=1.
LT1(3,2)=-HRC*BETA*COS(THETA)**2
LT1(3,3)=0.

C>
AQT1(1)=AX*COS(GAMMA)+2.*HRC*
GAMMAOT*BETAP*COS(THETA)*
COS(GAMMA)+HRC*GAMMAOTOT*BETA*
COS(THETA)*COS(GAMMA)- AY*SIN(GAMMA)-
HRC*GAMMAOT**2*BETA*SIN(GAMMA)*
COS(THETA)
AQT1(2)=AX*SIN(GAMMA)+2.*HRC*
GAMMAOT*BETAP*SIN(GAMMA)*
COS(THETA)+HRC*GAMMAOTOT*BETA*
SIN(GAMMA)*COS(THETA)+AY*COS(GAMMA)+
HRC*GAMMAOT**2*BETA*COS(THETA)*
COS(GAMMA)
AQT1(3)=0.

C>
LR1(1,1)=0.
LR1(1,2)=COS(THETA)*COS(GAMMA)
LR1(1,3)=BETA*SIN(THETA)*COS(GAMMA)-
SIN(GAMMA)
LR1(2,1)=0.
LR1(2,2)=SIN(GAMMA)*COS(THETA)
LR1(2,3)=BETA*SIN(THETA)*SIN(GAMMA)+
COS(GAMMA)
LR1(3,1)=0.
LR1(3,2)=-SIN(THETA)
LR1(3,3)=BETA*COS(THETA)

C>
AQR1(1)=-GAMMAOT*ALPHAP*COS(GAMMA)-
GAMMAOT*BETAP*SIN(GAMMA)*COS(THETA)
AQR1(2)=-GAMMAOT*ALPHAP*SIN(GAMMA)+
GAMMAOT*BETAP*COS(THETA)*COS(GAMMA)
AQR1(3)=GAMMAOTOT

C>
01(1)=BETAP*COS(THETA)*COS(GAMMA)-
ALPHAP*SIN(GAMMA)
01(2)=BETAP*SIN(GAMMA)*COS(THETA)+
ALPHAP*COS(GAMMA)

C> MASSENGEOMETRISCHE DATEN
C>  * Kkkkkkkkdokk
C>
C>  Car with Pictch Motion
KOSYNA: CAR
Koordinatensystems
C>
C> Masse
Mass =
C>
C> Traegheitstensor
KOSYNA: CAR
Traegheitstensors
C>
I(1,1)=IX
I(2,1)=0
1(2,2)=1Y
I(3,1)=0
1(3,2=0
1(3,3)=1Z

Namen des

MC

System fuer Angabe der

C> *% *kkk * *% *% * **
C>*** *kk

C>#* Ausgabeblock 7 rkk

C > Kkk *kk

C>*** Massengeometrische Ge&ssen
C>*** **k%k

C > Kkk *k*k

C>*wxkx Hokxk * el * i

C>

C> Massengeometrische Groessen fuer CAR
MA1=MC
11(1,1)=IX*COS(GAMMA)**2+2 *IX*BETA*
SIN(THETA)*SIN(GAMMA)*COS(GAMMA)-
2. *IY*BETA*SIN(THETA)*SIN(GAMMA)*
COS(GAMMA)+ IY*SIN(GAMMA)**2
11(2,1)=IX*SIN(GAMMA)*COS(GAMMA)+
IX*BETA*SIN(THETA)*IN(GAMMA)**2-
IX*BETA*SIN(THETA)*COS(GAMMA)**2-
IY*BETA*SIN(THETA)*SIN(GAMMA)**2+
IY*BETA*SIN(THETA)*COS(GAMMA)**2-
IY*SIN(GAMMA)*COS(GAMMA)
11(2,2)=IX*SIN(GAMMA)**2- 2 *|X*BETA*
SIN(THETA)*SIN(GAMMA)* COS(GAMMA)+
2 *IY*BETA*SIN(THETA)*SIN(GAMMA)*
COS(GAMMA)+Y*COS(GAMMA)**2
11(3,1)=-IX*ALPHA*COS(GAMMA)-IY*BETA*
SIN(GAMMA)*COS(THETA)+ IZ*ALPHA*
COS(GAMMA)+IZ*BETA*SIN(GAMMA)*
COS(THETA)
11(3,2)=-IX*ALPHA*SIN(GAMMA) +|Y*BETA*
COS(THETA)*COS(GAMMA)+IZ*ALPHA*
SIN(GAMMA)-IZ*BETA*COS(THETA)*

01(3)=-BETAP*SIN(THETA)+GAMMAOT COS(GAMMA)
C> 11(3,3)=1z
C> i i
C>*** Hk C> *kk Kk Fkkk * *% *kkKk * *%
C>¥** Ausgabeblock 6-Hre ok C>HRF ok
C>#* Frk CSFR Ausgabeblock 7-Hre ok
C>*** ***C>*** *kk
C>rkkkikkkkkkkkkkkkkkkko ok HAKKKKK CoFHAAAAIIIIAAK RIS IIAAA AT IAA, Hhkkkkk
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C> EINGEPRAEGTE KRAEFTE LE1(2)=LALPHA*BETA*SIN(THETA)*
C> * kkkkk SIN(GAMMA)+LBETA*SIN(GAMMA)+
C> LALPHA*COS(GAMMA)-LBETA*BETA*
C>  Applied Force on CAR SIN(THETA)*COS(GAMMA)
c> LE1(3)=LALPHA*BETA*COS(THETA)-
C>  Artder Kraft/des Moments LBETA*ALPHA
(GK,AK,AM,IK,IM,$END) C>
FLEART: AK Crrkkkkkkkkkibibkkkkkkkkikork ekl
C> System auf das die Kraft wirkt C>¥* Fok
KOSYNA: CAR 1.System (Wirkupgsitiv)  C>*** Ausgabeblock 8-Hre bl
C> C>*** *kk
C> System, in dem die Kraft eingegeben wird C>¥* ok
KOSYNA: CAR Crrkkkkkkkkkkbibkkkkkkk ko ekl
C> C>xxkx kK * RFAARK * i
C> KraftMoment eingeben C>#* ok
FLE(1)= 0 C>*x* Ausgabeblock 9 rkk
FLE(Z): O C>*** *k%k
FLE(3)= FzC C>*** NEWTON-EULER-GeEkichunger
C> C>*** *kk
C>  Applied Moments on CAR C>#x* ok
C> C>rxrkx Aok * RFAAKK * i
C>  Art der Kraft/des Moments C>
(GK,AK,AM,IK,IM,$END) C> Massenmatrix
FLEART: AM MQT21(1,1)=0.
c> MQT1(1,2)=MC*HRC*SIN(GAMMA)*
C> System auf das das Moment wirkt COS(THETA)
KOSYNA: CAR 1.System (Wirkupgsitiv) MQT21(1,3)=0.
C> MQT1(2,1)=0.
C> System, in dem das Moment eingegeben wird MQT1(2,2)=-MC*HRC*COS(THETA)*
KOSYNA:  CAR COS(GAMMA)
C> MQT1(2,3)=0.
C> KraftMoment eingeben MQT1(3,1)=MC
FLE(1)=  LBETA MQT1(3,2)=0.
FLE(2)=  LALPHA MQT1(3,3)=0.
FLE3= © MQR1(1,1)=0.
c> MQR1(1,2)=IX*COS(THETA)*COS(GAMMA)
C>#mbio kR okkickk MQR1(1,3)=-1Y*SIN(GAMMA)
C> MQR1(2,1)=0.
FLEART:  $END MQR1(2,2)=IX*SIN(GAMMA)*COS(THETA)
C MQR1(2,3)=IY*COS(GAMMA)
Corrkiriiik ki ki Rk MQR1(3,1)=0.
C>*x w*  MQRL(3,2)=-1Z*SIN(THETA)
C>#x* Ausgabeblock 8 ok MQRZ1(3,3)=0.
C>*** K%k C>
C>¥x* Kraefte/Momente ** C> Kreisel-, Zentrifugal- und Corioliskraefte
C>*x w% KQT1(1)=MC*AX*COS(GAMMA)+2.*MC*
Crrkkkkkkkkktbibkikkkkkkbkork ekl HRC*GAMMAOT*BETAP*COS(THETA)*
C> COS(GAMMA)+MC*HRC*GAMMAOTOT*

C> Kraefte/Momente auf CAR
C> im Inertialsystem
FE1(1)=FZC*ALPHA*COS(GAMMA)+FZC*
BETA*SIN(GAMMA)*COS(THETA)
FE1(2)=FZC*ALPHA*SIN(GAMMA)-FZC*BETA*
COS(THETA)*COS(GAMMA)
FE1(3)=FZC
C>
LE1(1)=LALPHA*BETA*SIN(THETA)*
COS(GAMMA)+LBETA*COS(GAMMA)-
LALPHA*SIN(GAMMA)+LBETA*BETA*
SIN(THETA)*SIN(GAMMA)

BETA*COS(THETA)*COS(GAMMA)-
MC*AY*SIN(GAMMA)-MC*HRC*GAMMAQOT*2*
BETA*SIN(GAMMA)*COS(THETA)
KQT1(2)=MC*AX*SIN(GAMMA)+2.*MC*HRC*
GAMMAOT*BETAP*SIN(GAMMA)*
COS(THETA)+MC*HRC*GAMMAOTOT*BETA*
SIN(GAMMA)*COS(THETA)+ MC*AY*
COS(GAMMA)+MC*HRC*GAMMAOT**2*
BETA*COS(THETA)*COS(GAMMA)
KQT1(3)=0.
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KQR1(1)=-IX*GAMMAOTOT*ALPHA*
COS(GAMMA)-IY*GAMMAOTOT*BETA*
SIN(GAMMA)*COS(THETA)+IZ*GAMMAOTOT*
ALPHA*COS(GAMMA)+ [Z*GAMMAOTOT*
BETA*SIN(GAMMA)*COS(THETA)-
IX*GAMMAOT*ALPHAP*COS(GAMMA)-
IY*GAMMAOT*BETAP*SIN(GAMMA)*
COS(THETA)+IX*GAMMAOT**2*
ALPHA*SIN(GAMMA)-IY*GAMMAOT**2*BETA*
COS(THETA)*COS(GAMMA)-I1Z*
GAMMAOT*2*ALPHA*SIN(GAMMA)+
IZ*GAMMAOT**2*BETA*COS(THETA)*
COS(GAMMA)-IX*GAMMAOT*BETAP*
SIN(GAMMA)*COS(THETA)- IY*GAMMAOT*

ALPHAP*COS(GAMMA)+IZ*GAMMAOT*BETAP*

SIN(GAMMA)*COS(THETA)+IZ*GAMMAOT*
ALPHAP*COS(GAMMA)
KQR1(2)=-IX*GAMMAOTOT*ALPHA*
SIN(GAMMA)+IY*GAMMAOTOT*BETA*

COS(THETA)*COS(GAMMA)+IZ*GAMMAOTOT*

ALPHA*SIN(GAMMA)- IZ*GAMMAOTOT*
BETA*COS(THETA)*COS(GAMMA)-
IX*GAMMAOT*ALPHAP*SIN(GAMMA)+
IY*GAMMAOT*BETAP*COS(THETA)*
COS(GAMMA)-IZ*GAMMAOT*BETAP*
COS(THETA)*COS(GAMMA)+
IZ*GAMMAOT*ALPHAP*SIN(GAMMA)-
IX*GAMMAOT**2*ALPHA*COS(GAMMA)-
IY*GAMMAOT**2*BETA*SIN(GAMMA)*
COS(THETA)+ IZ*GAMMAOT**2*ALPHA*
COS(GAMMA)+IZ*GAMMAOT**2*BETA*
SIN(GAMMA)*COS(THETA)+IX*GAMMAOT*
BETAP*COS(THETA)*COS(GAMMA)-
IY*GAMMAOT*ALPHAP*SIN(GAMMA)
KQR1(3)=IZ*GAMMAOTOT
C>
C> Eingepraegte Kraefte/Momente
QEQT1(1)=FZC*ALPHA*COS(GAMMA)+
FZC*BETA*SIN(GAMMA)*COS(THETA)
QEQT1(2)=FZC*ALPHA*SIN(GAMMA)-
FZC*BETA*COS(THETA)*COS(GAMMA)
QEQT1(3)=FzC
QEQR1(1)=LALPHA*BETA*SIN(THETA)*
COS(GAMMA)+LBETA*COS(GAMMA)-
LALPHA*SIN(GAMMA)+LBETA*BETA*
SIN(THETA)*SIN(GAMMA)
QEQR1(2)=LALPHA*BETA*SIN(THETA)*
SIN(GAMMA)+LBETA*SIN(GAMMA)+
LALPHA*COS(GAMMA)-LBETA*BETA*
SIN(THETA)*COS(GAMMA)
QEQR1(3)=LALPHA*BETA*COS(THETA)-
LBETA*ALPHA
C>
C>
C>***
C>***
C>***
C>***
C>

*% *kkk * *% *% * *

Ausgabeblock 9-Hre

*% *kkk * *% *% * *

*% *kkk *

C>
C>***
C>***
C>***
C>***
C>***
C>***
C>
C>
C> Massenmatrix
M(1,1)=MC
M(2,1)=0.
M(2,2)=IZ*SIN(THETA)**2+MC*HRC**2*
COS(THETA)**2+IX*COS(THETA)**2
M(3,1)=0.
M(3,2)=0.
M(3,3)=1Y
C>
C> Verallgemeinerte Kreisel-, Zentrifugal- und
Corioliskraefte
K(1)=0.
K(2)=-1Z*GAMMAOTOT*SIN(THETA)-MC*HRC*
AX*BETA*SIN(THETA)*COS(THETA)-MC*HRC*
AY*COS(THETA)-MC*HRC**2*GAMMAQOT**2*
BETA*COS(THETA)**2-IX*GAMMAOTOT*
ALPHA*COS(THETA)+IZ*GAMMAOTOT*
ALPHA*COS(THETA)-IX*GAMMAOT*
ALPHAP*COS(THETA)-IY*GAMMAQT**2*
BETA*COS(THETA)**2+IZ*GAMMAQOT**2*
BETA*COS(THETA)**2-IY*GAMMAOT*
ALPHAP*COS(THETA)+IZ*GAMMAQOT*
ALPHAP*COS(THETA)
K(3)=IY*GAMMAOTOT*BETA*COS(THETA)+
IY*GAMMAOT*BETAP*COS(THETA)-
IZ*GAMMAOT*BETAP*COS(THETA)-
IX*GAMMAOT**2*ALPHA+IZ*GAMMAQOT**2*
ALPHA+IX*GAMMAOT*BETAP*COS(THETA)
C>
C>

*kk
Ausgabeblock 10 ol
*kk
*k%k

Bewegungs-Gleichurem

*k*k

*% *kkk * *%

Verallgemeinerte eingepraegte Kraefte
QE(1)=FzC
QE(2)=LBETA*ALPHA*SIN(THETA)+LBETA*
COS(THETA)

QE(3)=LALPHA

C>
C> Matrix der geschwindigkeitsproportionalen Ktae
P(1,1)=0.

P(1,2)=0.

P(1,3)=0.

P(2,1)=0.

P(2,2)=0.

P(2,3)=-IX*GAMMAOT*COS(THETA)-
IY*GAMMAOT*COS(THETA)+IZ*GAMMAOT*
COS(THETA)

P(3,1)=0.

P(3,2)=IY*GAMMAOT*COS(THETA)-
IZ*GAMMAOT*COS(THETA)+IX*GAMMAOT*
COS(THETA)

P(3,3)=0.

C>
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C> Matrix der gyroskopischen Kraefte
G(1,1)=0.
G(1,2)=0.
G(1,3)=0.
G(2,1)=0.
G(2,2)=0.
G(2,3)=-IX*GAMMAOT*COS(THETA)-
IY*GAMMAOT*COS(THETA)+IZ*GAMMAOT*
COS(THETA)
G(3,1)=0.
G(3,2)=IY*GAMMAOT*COS(THETA)-
IZ*GAMMAOT*COS(THETA)+IX*GAMMAOT*
COS(THETA)
G(3,3)=0.

C>

C> Matrix der Daempfungskraefte
D(1,1)=0.
D(1,2)=0.
D(1,3)=0.
D(2,1)=0.
D(2,2)=0.
D(2,3)=0.
D(3,1)=0.
D(3,2)=0.
D(3,3)=0.

C>

C> Matrix der lageproportionalen Kraefte
Q(1,1)=0.
Q(1,2)=0.
Q(1,3)=0.
Q(2,1)=0.
Q(2,2)=-MC*HRC*AX*SIN(THETA)*COS(THETA)-
MC*HRC**2*GAMMAOT**2*COS(THETA)**2-
IY*GAMMAOQOT**2*COS(THETA)**2+
IZ*GAMMAOT**2*COS(THETA)**2
Q(2,3)=-IX**GAMMAOTOT*COS(THETA)+
IZ*GAMMAOTOT*COS(THETA)-
LBETA*SIN(THETA)
Q(3,1)=0.
Q(3,2)=IY*GAMMAOTOT*COS(THETA)
Q(3,3)=-IXx*GAMMAQOT**2+IZ*GAMMAOT**2

C>

C> Matrix der nichtkonservativen Lagekraefte
N(1,1)=0.
N(1,2)=0.
N(1,3)=0.
N(2,1)=0.
N(2,2)=0.
N(2,3)=-0.5*IX*GAMMAOTOT*COS(THETA)+
0.5*IZ*GAMMAOTOT*COS(THETA)-0.5*LBETA*
SIN(THETA)-0.5*Y*GAMMAOTOT*COS(THETA)
N(3,1)=0.
N(3,2)=0.5*IY*GAMMAOTOT*COS(THETA)+
0.5*IX*GAMMAOTOT*COS(THETA)-
0.5*IZ*GAMMAOTOT*COS(THETA)+
0.5*LBETA*SIN(THETA)
N(3,3)=0.

C>

C> Matrix der konservativen Lagekraefte
K(1,1)=0.
K(1,2)=0.
K(1,3)=0.
K(2,1)=0.
K(2,2)=-MC*HRC*AX*SIN(THETA)*
COS(THETA)-MC*HRC**2*GAMMAQT**2*
COS(THETA)**2-IY*GAMMAQT**2*
COS(THETA)**2+IZ*GAMMAQT**2*
COS(THETA)**2
K(2,3)=-0.5*IX*GAMMAOTOT*COS(THETA)+
0.5*IZ*GAMMAOTOT*COS(THETA)-
0.5*LBETA*SIN(THETA)+0.5*Y*GAMMAOTOT*
COS(THETA)
K(3,1)=0.
K(3,2)=0.5*IY*GAMMAOTOT*COS(THETA)-
0.5*IX*GAMMAOTOT*COS(THETA)+
0.5*IZ*GAMMAOTOT*COS(THETA)-
0.5*LBETA*SIN(THETA)
K(3,3)=-IX*GAMMAOT**2+IZ*GAMMAQT**2

C>

C> Vektor der Steuer- und Stoerkraefte
H(1)=FzC
H(2)=IZ*GAMMAOTOT*SIN(THETA)+
MC*HRC*AY*COS(THETA)+LBETA* COS(THETA)

H(3)=LALPHA
C>
C>Htimbi Ftik
C>*** *kk
C>*** *kk
C>wx Ausgabeblock 10-E red wx
C>*** *kk
C>*** *kk
C> ik Ftik
C>
C> Liste der verwendeten Namen
T ZC BETA ALPHA
ZCP BETAP ALPHAP ZCPP
BETAPP ALPHAPP XV XVOT
XVOTOT YV YVOT YVOOT
GAMMA GAMMAOT GAMMAOTOT AX
AY THETA HRV HRC
MC IX Y 1z
FzC LBETA LALPHA
C> Speicherplatzbelegung:
C>
C> benoetigt vamkden frei
C> Arbeitsfeld 3140 50000 46860
C> Faktorfeld 4 20000 19996
C> Variablenfeld 31 2000 1969
C> Rechenzeitin Sekunden:  0.020
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Appendix C

MATLAB S-Function for Simulation

Figure 3.7 shows the simulation model of the spatia described in MATLAB/Simulink.
The block tar3dof_sfunc’ represents the linearized differential equatiohshe spatial car
model according to Appendix B. The content of Bifunction is shown below and consists

of four parts:

e initialization and initial conditions,

e right-hand side of ODE,
e output definition,
e and termination.

% car3dof_sfunc.m

%

% Tuan-Anh. Nguyen October, 10. 2005
%

%
% Linearizad Equations of Motion bét
% SPATIAL CAR MODEL

%

function [sys,x0,str,ts] = car3dof_sfunc(t,x,u, figaram)
switch flag,
% Initialization

case 0,
[sys,x0,str,ts]= mdlInitializeSizes;

% Derivatives

case 1,
[sys]=mdIDerivatives(t,x,u,param);

% Update

sys=mdlUpdate(t,x,u);
% Outputs

case 3,
sys=md|Outputs(t,x,u);
sys=[sys];

% Terminate

case 9,
sys=mdITerminate(t,x,u);

% Unexpected flags

otherwise
error(Unhandled flag = ',num2str(flag)]);
end

% end sfuntmpl
%

%
% mdlInitializeSizes

% Return the sizes, initial conditions, and santiphes
% for the S-function.

%
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function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 6;
sizes.NumDiscStates =0;
sizes.NumOutputs =6;
sizes.Numinputs =19;

sizes.DirFeedthrough  =0;
sizes.NumSampleTimes = 1;
Sys = simsizes(sizes);

% initialize the initial conditions
x0=[000000]j;

% str is always an empty matrix
str=1];

% initialize the array of sample times
ts =[00];

% end Initial Conditions

%

% mdlIDerivatives

% Return the derivatives for the continuous states.

% LINEARIZED EQUATIONS OF MOTION OF

% SPATIAL CAR MODEL
%

% | xp = A*x + B*u + Bw*w |

%

€]

%

function [sys]=mdIDerivatives(t,x,u,param)
% reflection of the input to system parameter o iRUL

% generalized coordinates (Verallgemeine Koordimate

%

ZC =u(l);
BETA =u(2);
ALPHA = u(3);

% generalized velocities (Verallgemeine Geschwikelijy

%
ZCP = u(4);
BETAP =u(5);
ALPHAP = u(6);

% parameters of car motion
%

XVOTOT = u(7);
YVOTOT = u(8);
GAMMAOTOT= u(9) ;
XVOT =u(10);
YVOT =u(11);

GAMMAOT = u(12);

XV =u(13);
YV  =u(l4);

GAMMA = u(15);

% control forces

ul = u(16);
u2 = u(17);
u3 = u(18);
u4 = u(19);

u = [ul; u2; u3; u4j;

% car accelerations

AX = XVOTOT*CoS(GAMMA) + ...
YVOTOT*sin(GAMMA);

AY =-XVOTOT*sin(GAMMA) + ...
YVOTOT*cos(GAMMA);

% vector of disturbances

w = [AY; GAMMAOTOT];

% end of the reflection

%

%

% PARAMETERS OF CAR MODEL

%

% car parameters

THETA = 15/180*pi;

HRC =0.2;
HRV =0.3;
MC = 1460;
IX =460;
IY =2460;
IZ =1900;
bf =1290;
br =1620;
kf = 19960;
kr = 17500;
rf =19200;
rr = 9600;
tf =0.761;
tr = 0.755;
If=1.011;
Ir =1.803;

%

% distance of the sprung magsfiom
% the roll axes

% height of the roll axes

% sprung mass

% roll moment of inertia ofetfsprung
% mass

% pitch moment of inertia okthprung
% mass

% yaw moment of inertia of ggrung
% mass

% front suspension damping rat
% rear suspension damping rate
% front suspension stiffness

% rear suspension stiffness

% madified front anti-roll bstiffness
% modified rear anti-roll tsiffness

% half the distance betweenftbnt

% wheels

% half the distance betweenrtar

% wheels

% distance between the c.gd. the front
% axle

% distance between the c.d.the rear
% axle

% suspension stiffness and damping matrices

%
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Kss = diag([kf,kf kr,kr]);

Ksr = [rf,-rf,0,0; -rf,rf,0,0,; 0,0,rr,-rr; O,&r,rr];
Bs = diag([bf bf br br]);

G =[1,1,1,1; tf -tf tr,-tr; -If,-If,IrIr];

Gs =G; Gs(2,:)= G(2,:)*cos(THETA);

% end of initialization
%
%
% system matrices definition
%

% mass matrix

M(1,1)=MC;

M(2,1)=0.;

M(2,2)=1Z*sin(THETA)"2+MC*HRC"2*...
COS(THETA)"2+IX*cos(THETA)"2;

M(3,1)=0.;
M(3,2)=0.;
M(3,3)=IY;

% matrix of velocity dependent forces

P(1,1)=0.;
P(1,2)=0;
P(1,3)=0;

P(2,1)=0;
P(2,2)=0.;
P(2,3)=(-IX-1Y+1Z)*GAMMAOT*cos(THETA);

P(3,1)=0;
P(3,2)=(IY-1Z+IX)*GAMMAOT*cos(THETA);
P(3,3)=0.;

% matrix of position dependent forces

Q(1,1)=0;
Q(1,2)=0;
Q(1,3)=0;

Q(2,1)=0.;

Q(2,2)=-MC*HRC*sin(THETA)*cos(THETA)*AX-...
(MC*HRC"2+1Y-1Z)*GAMMAQOTA2*. ..
COS(THETA)"2;

Q(2,3)=(1Z-IX)*GAMMAOTOT*cos(THETA);

Q(3,1) =0.;
Q(3.2) = IY*GAMMAOTOT*cos(THETA);
Q(3,3) = (IZ-IX)*GAMMAOT"2;

% exciting vector

H(1) = 0;

H(2) = MC*HRC*cos(THETA)*AY + ...
1Z*GAMMAOTOT*sin(THETA);

H(3) = 0;

H  =[0; MC*HRC*cos(THETA)*AY + ...
IZ*GAMMAOTOT*sin(THETA); 0];

Hw =10, 0; MC*HRC*cos(THETA),...
IZ*GAMMAOTOT*sin(THETA); 0, O];

% state matrices
%
A = [zeros(3,3),eye(3);
-inv(M)*(Q + Gs*(Kss+Ksr)*Gs),...
-inv(M)*(P + Gs*Bs*Gs)];
B = [zeros(3,4); inv(M)*Gs];
Bw = [zeros(3,2); inv(M)*Hw];

%measurement matrices

%
gbeT=[01 O];
C =[Gs/, zeros(4,3); gheT*A(4:6,))];
D = [zeros(4,4); gbeT*inv(M)*Gs];
Dw = [zeros(4,2); gbeT*inv(M)*Hw];

%

% Right-hand side of Eq.(1)
yp = A*X + B*u + Bw*w;
sys(1:6) = [yp];

% end mdlDerivatives
%

%

% mdlUpdate
% Handle discrete state updates, sample timednits,
% major time step requirements.

%
%
function sys=mdlUpdate(t,x,u)

% no discrete state updating necessary!
sys = [I;

% end mdlUpdate
%

%

% mdlOutputs
% Return the block outputs.

%

%
function sys=mdIOutputs(t,x,u)

sys(1:6) = x(1:6);

% end mdlOutputs
%
%
% mdITerminate

% Perform any end of simulation tasks.

%

%
function sys=mdITerminate(t,x,u)

sys = [x];

% end mdITerminate
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Appendix D

MATLAB.m Files for Optimization

This appendix describes the MATLAB.m files used g$olve the multi-criterion
optimization (MCO) problems defined for the spatiat model with passive and active
suspensions introduced in Chapter 5 and the patérgion problem for the ISO 3882-2
double-lane-change manuever presented in Chapter 6.

D.1 Suspension Optimization

In Section 5.5 the MCO problem defining the optipalameters for both passive and active
suspensions of the spatial car model is solveddbaseéhe compromise method by using the
MATLAB optimization function fmincon’. Ordinarily, the functionfmincon’ requires two
MATLAB.m files: one defines the objective functiand the other one defines the nonlinear
constraints. The corresponding MATLAB.m files nameépass_act _object.m’ and
‘pass_act_const.m’ are shown below.

% cm_pass_act.m function [PM]=cm_pass_act(flmin,f12,N)
%

% Tuan-Anh Nguyen, November 2005 % fimin inidividual minimum f1

% % f12 value f1 at f2min

% % (flmin & f12 are provided

% Compromise Method with LQR Algorithm % from individual optimization)

% for MCO problem finding optimial % N number of calculation points

% passive-active suspension parameters % call program e.g.

% % [PM] = cm_pass_act(0.3918,0.5243,19)

% %
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global vc kappa tsim Gs M P Q Hw f1 3

tsim = 2.5; % simulation time
vc=30/3.6; % car speed
kappa = 1/10; % curvature

%
% car parameters
THETA = 15/180*pi; % slope angle of roll axis
HRC =0.2; % distance of the sprung massfiom
% the roll axes
HRV=0.3; % height of the roll axes
MC =1460; % sprung mass
IX =460; % rollmoment of inertia of the
% sprung mass
IY =2460; % pitch moment of inertia of the
% sprung mass
IZ =1900; % yaw moment of inertia of the
% sprung mass

tf =0.761; % half the distance betweenftbet wheel
tr =0.755; % half the distance betweenréae wheel

If =1.011; % distance between the c.g.thadront axle
Ir=1.803; % distance between the c.g.thaedear axle

G =[1,1,1,1; tf -tf tr,-tr; -If,-If,IrIr];
Gs =G; Gs(2,:)= G(2,:)*cos(THETA);

%
GAMMAQOT = vc*kappa; GAMMAOTOT = 0; AX=0;

% mass matrix (massenmatrix)

M(1,1)=MC;

M(2,1)=0;
M(2,2)=1Z*sin(THETA)"2+MC*HRC"2*...

COoS(THETA)"2+IX*cos(THETA)"2;

M(3,1)=0.;

M(3,2)=0.;

M(3,3)=IY;

% matrix of velocity dependent forces
P(1,1)=0.;
P(1,2)=0;
P(1,3)=0;
P(2,1)=0;
P(2,2)=0.;
P(2,3)=(-IX-1Y+IZ)*GAMMAOT*cos(THETA);
P(3,1)=0;
P(3,2)=(IY-1Z+IX)*GAMMAOT*cos(THETA);
P(3,3)=0.;

% matrix of position dependent forces
Q(1,1)=0;
Q(1,2)=0,
Q(1,3)=0;
Q(2,1)=0

Q(2,2)=-MC*HRC*sin(THETA)*cos(THETA)*AX-...

(MC*HRC"2+IY-1Z)*GAMMAOTA2*...
COoS(THETA)"2;
Q(2,3)=(1Z-IX)*GAMMAOTOT*cos(THETA);

Q(3,1)=0.;
Q(3,2)= IY*GAMMAOTOT*cos(THETA);
Q(3,3) = (IZ-IX)*GAMMAOTA2;

% disturbance vertor
Hw =[0; MC*HRC*cos(THETA); 0];

%
% Compromise method with LQR algorithm
%

% standard options for optimization with fmincon

OPTIONS = optimset(‘fmincon’);

OPTIONS = optimset(OPTIONS, TolX',1e-6,...
TolFun',1eBICon',1e3,...
'DiffMinChangis-9, ...
'DiffMaxChanges-3,...
'LargeScalé’,'o.
'MaxFunEvale3];

%initail design
pO =[1500, 1500, 20000, 20000, 20000, 10000, ...
2e7 1le3 le-2];
% p(1): front suspension damping rate
% p(2): rear suspension damping rate
% p(3): front suspension stiffness
% p(4): rear suspension stiffness
% p(5): front anti-roll bar stiffness
% p(6): rear anti-roll bar stiffness
% p(7): w1 weighting factor on f1
% p(8): w2 weighting factor on 2
% p(9): w3 weighting factor on f3

%lower and upper bounds

plb =[1000, 1000, 15000, 15000, 15000, 5000,...
0 0 1le-6];

pub =[2000, 2000, 25000, 25000, 25000, 15000,...
le8 1e6 1le-2];

%optimization algorithm
global mui_f % changing step of constraint kgin

% step changing for constraint bounds
delta_f1 = (f12-fAmin)/N;

i=1;

% set changing constraint bounds

for mui_f =flmin + N*delta_f1 :-delta_f1 : fimin;
Z = clock; % calculation time

[p.f,exitflag,output] = fmincon(@pass_act_object,...

pO.[0.0.0.81b,pub,...
@pass_act_G@RTIONS,...

fimin,f12,N)
if exitflag == -1
break % stop program if no soluti®found
else
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% outputs

MCO_p(i,))= p;

MCO_f2(i) =f;

MCO_f3(i) =13;

MCO_f1(i) = f1;

PM(i,:)=[MCO_f1(i),MCOQO_f2(i}',...
MCO_f3(i)',MCO_p(i,?)];

figure(1);

xlabel(ride safety f_1 [cm]);

ylabel('ride comfort f_2 [deg/s"2]);

title('Criterion Space f_1-f 29;

plot(PM(;,1),PM(;,2), 'b."; hold on;

plot(PM(i,1),PM(i,2), 'ro’); hold on; grid;

% new start point
pO=p;

i=i+1;

end

end

disp([Calculation time t = ' num2str(etime(clock,Z
's ="' numa2str(etime(clock,Z)/60) ' min.

%

%

% Objective function definition
% for cm_pass_act(flmin,f12,N)
%

%

function [f] = pass_act_object(p,f1min,f12,N)

disp([
disp(['p =" ,num2str(p)])

global vc kappa tsim Gs M P Q Hw f1 f3
global h g mui_f

% design variables

bf = p(1);

br = p(2);

kf = p(3);

kr = p(4);

rf=p(5);

rr = p(6);

Bs = diag([bf bf br br]);

Kss = diag([kf,kf kr,kr]);

Ksr = [rf,-rf,0,0; -rf,rf,0,0,; 0,0,rr,-rr; O,&r,rr];

% system matrices
A =[zeros(3,3),eye(3);
-inv(M)*(Q + Gs*(Kss+Ksr)*Gs)),...
-inv(M)*(P + Gs*Bs*Gs")];
B ={[zeros(3,4); inv(M)*Gs];
Bw = [zeros(3,1); inv(M)*Hw];

% measurement matrices
gbeT=[01 O];
C =|[Gs', zeros(4,3); gbeT*A(4:6,)];
D =[zeros(4,4); gbeT*inv(M)*Gs];
Dw = [zeros(4,1); gbeT*inv(M)*Hw];

% LQR algorithm
SYS =ss(A,B,C,D);

% weighting matrices
Qy = diag([p(7), p(7). P(7), P(7), P(8)));
Ry = diag([p(9), p(9). p(9). p(9)]);

% optimal gain matrices K1& K2
[Kx,Px,E]=lgry(SYS,Qy,Ry);
R =D*Qy*D+Ry;
Nuw=Dw"*Qy*D;
Nxw=C*Qy*Dw;
Kw=(R)\[Nuw+B"*inv(A'+Kx"*B")*...
(Kx*Nuw'-Nxw-Px*Bw)];

% simulation options
my_opt = simset('Initialstep’, 0.01,...
'SrcWorkspace', 'cutjen

% call simulation
sim('cm_pass_act_model',tsim, my_opt);

% criteria definition

f1 = sqrt(sum(J_zs)/length(J_zs)); ée safety
f2 = sqrt(sum(J_bepp)/length(J_bepp)); % ridafoot
f3 = sqrt(sum(J_u)/length(J_u)); % control effort

% objective function
f=12;
disp([==="'f1 = ,num2str(fl),' ===",...
'f2 = ",num2str(f2),' === ",'{3 = ',n@str(f3)])
disp('mui_f ='," ,num2str(mui_f)])

% nonlinear constraints
h(1) =f1 - mui_f;
h(2) = max(max(abs(ui)))-500;

g=[]; % no equality constraint

%

%
% Nonlinear constraints definition
% for cm_pass_act(flmin,f12,N)
%

%

function [h,g] = pass_act_const(p,f1min,f12,N)

% see pass_act_object(p,f1mimfL2
% for constraint computatio

global h g
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D.2 Path Generation for Double-L ane-Change M anuever

The following MATLAB.m file is used to solve the thageneration problem for the 1SO-
3882-2 double-lane-change maneuver presented tio®&c3.2. The entrance speed of the
car is assumed as= 60km/h reducing steadily with a ratete v = — 0.5m/s”. The path is
defined based on 11 parameters: the time pointharfiging curvaturé — ts, the rates of
curvature change (assumed to be the same) andrif@wesc; — x 4. The constraints for the
problem are defined based on the positions of dlne Wheels during simulation and the
wheel track boundaries given in Table 6.3.

% Elk_test_optim.m poff = plb; % offset
% x_lb = pskal.*(plb-poff); % lower bound
% Tuan-Anh Nguyen, Apr. 2006 x_ub = pskal.*(pub-poff); % upper bound
% x0 = pskal.*(p0-poff); % start point
%
% Path generation for ISO Doubl_Lane_Change Mague ¥ standard options for optimization with fminimax
% (Elk Test) OPTIONS = optimset(fminimax’);
% OPTIONS = optimset(OPTIONS, TolX',1e-3,...
% TolFun',1e-3,Tohn’',1e-3,...
'DiffMinChange’;®e...
function [PE]= EIk_test_optim 'DiffMaxChange’ée..
‘LargeScale’, off'
% call program 'MaxFunEvals', IeBnAbsMax',4);
% [PE]=Elk_test_optim Z = clock;
%
[x.f,exitflag] = fminimax(@Elk_test_object,x0,...
% simulation parameters 0.0.0.0.x_lbxub,...
% @EIK_test_constJUPNS)
\Y =60/3.6; % entrance car speed
rate_v = -0.5; % reduction rate of car spee % set outputs
tsim =6; % simulation time p=poff+x./pskal; % scalarization turnback
PE=p;

global tsim v rate_v poff pskal
disp(['Calculation time t = ' num2str(etime(clock,Z

% initial design 's ="' num2str(etime(clock,Z)/60) ' mih.
p0=[1.05 1.68, 2.45, 2.60, 3.20, 4.00,...
0.3000,... %
0.0300, -0.0300, -0.0300, 0.0300]; %
% Objective function definition
% bounds on design variables % for Elk_test_optim

kap_max = 9.81/v"2; % from sideway slippingdition %  minimize maximum kappa <=> minimize max ay
%

plb=[0.5 10 15 2.0 3.035,.. %
0.1000,...
0.01 -kap_max -kap_max 01p; function [f] = Elk_test_object(x)
pub =[1.5 20 25 3.0 4.045,..
0.3145,... global tsim v rate_v poff pskal
kap_max -0.01 -0.01 kapxfna global hg
% scalarization for optimizing on [0 1] p=poff+x./pskal;

pskal= 1./(pub-plb); % scalarizatfactor p=p"
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disp([' 1)
disp([t ='," ,num2str(p(1:6))])
disp(['])

disp([rate =" ',num2str(p(7))])
disp(['])

disp([kappa =" ,num2str(p(8:11))])

% new design variables for simulation

t_1=p(1); t_2=p(2); t_3=p(3);
t_4=p(4); t_5=p(5); t_6=p(6);
rate_1=p(7); rate_2=-p(7); ter8=p(7);
rate_4=-p(7); rate_5=p(7); terd=-p(7);

kappa_2=p(9);
kappa_4=p(11);

kappa_1=p(8);
kappa_3=p(10);

% simulation option

my_opt = simset('Initialstep’, 0.01,...
'SrcWorkspace', 'cutjen

% call simulation

[tS,yS]= sim(Elk_test_opt', tsim, my_opt);

% objective vector for minmax problem
f(1) = abs(kappa_1);
f(2) = abs(kappa_2);
f(3) = abs(kappa_3);
f(4) = abs(kappa_4);

% description of the position of test cones forrElest

%

%longitudinal position of cones
xc1=[10:12/4:22];
xc2=[(22+13.5):11/4:(35.5+11)];
xc3=[(46.5+12.5):12/4:(59+12)];
xcones=[xc1,xc2,xc3];

% lateral position of upper and lower cones
ycul=[1.25%ones(1,length(xcl))];
ycu2=[5.3*ones(1,length(xc2))];
ycu3=[1.5*ones(1,length(xc3))];

ycl1=[-1.25*ones(1,length(xcl))];
ycl2=[2.25*ones(1,length(xc2))];
ycl3=[-1.5*ones(1,length(xc3))];

ycl =[ycul;ycll];
yc2 =[ycu2;ycl2];
yc3 =[ycu3;ycl3];
ycones=[ycl,yc2,yc3];

% lateral position of wheels
%

for i=1:1:4,
x=xy_wheel(,i); % longitudir@osition of
Wheel ith
y=xy_wheel(;,i+4); % lateral pasit of
Wheel ith

% section 1 (cone section)

[a,k0]=min(abs(xvS-10));

[a,k1]=min(abs(xvS-22));
ywl=y(k0:k1);

% start of section
% end of section

% section 2 (non-cone section)

[a,k2]=min(abs(xvS-35.5));

% section 3 (cone section)

[a,k3]=min(abs(xvS-46.5));
yw3=y(k2+1:k3);

% section 4 (non-cone section)

[a,k4]=min(abs(xvS-59));

% section 5 (cone section)
yw5=y(k4+1:end);

% nonlinear inequality constraints
%
if mod(i,2)==1
% section 1
h(3*i-2)=max(yw1)-(1.25-0.3);
% cone section 3
h(3*i-1)=max(yw3)-(5.30-0.3);
% cone section 5
h(3*i)=max(yw5)-(1.5-0.3);

% constraints for left whee

elseif mod(i,2)==0
% section 1
h(3*i-2)=-min(yw1)+(-1.25+0.3);
% section 3
h(3*i-1)=-min(yw3)+(2.25+0.3);
% section 5
h(3*i)=-min(yw5)+(-1.5+0.3);

% constraints for right wele

end % if
end % for

% nonlinear equality constraints
%
g=1[; % no equality constraint

figure(1)
title('Car Path’); xlabel(x_I [m]"); ylabel('Y/[m]");
plot (xvS,yvS,'b','LineWidth',1.5);hold on;
plot (x3,y3,'g:);hold on;
plot (x4,y4,'g:");hold on;
plot (x1,y1,'b:");hold on;
plot (x2,y2,'b:");hold on;
plot (xcones,ycones,'r.','MarkerSize',5); haffclgrid;

%

%

% Constraint definitions
% for Elk_test_optim
%

%
function [h,g] = Elk_test_const(x)

global h g % see Elk_test_object(x)

% for constraint ahitfion



