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x KURZFASSUNG

Kurzfassung

Das Ergebnis der letzten 20 Jahre experimenteller und theoretischer Untersuchungen

zu Hochtemperatursupraleitern (HTSL) ist ein hoch komplexes, reichhaltiges Phasendi-

agramm, welches noch immer nicht vollständig beschrieben werden kann. Zahlreiche

experimentelle Ergebnisse geben starke Hinweise auf eine inhomogene Verteilung von

Spin- und Ladungskorrelationen in HTSL. Motiviert durch die experimentellen Ergeb-

nisse versuchen wir die Frage zu beantworten, ob Paarkorrelationen in Zuständen mit

Symmetriebrechung im Rahmen der Gutzwillernäherung des Hubbardmodells gefunden

werden können.

Nach einer einleitenden Diskussion ausgewählter experimenteller Arbeiten und theo-

retischer Modelle leiten wir das ladungsrotationsinvariante Gutzwiller-Energiefunktio-

nal im Rahmen des Ein-Band-Hubbard-Modells her. Auf dieser Basis berechnen wir

vielfältige Zustände am Sattelpunkt des Funktionals im attraktiven Bereich (U < 0).

Beginnend mit einer Entwicklung der Energie bis zur zweiten Ordnung untersuchen

wir zunächst die Instabilität eines normalen Systems hinsichtlich Supraleitung im Rah-

men der zeitabhängigen Gutzwillerapproximation (TDGA). Wir leiten ein Kriterium

für den Übergang von der normalen zur supraleitenden Phase im paramagnetischen

Bereich her. Unsere Ergebnisse für ein unendlich-dimensionales Gitter zeigen gute

Übereinstimmung mit den Daten der Quantum-Monte-Carlo-Methode (QMC).

Im nächsten Abschnitt dieser Arbeit präsentieren wir Ergebnisse für zweidimensio-

nale Systeme. Wir vergleichen hierbei numerische Ergebnisse der Gutzwillernäherung

mit der konventionellen Hartree-Fock-Näherung. Am Beispiel eines homogen supralei-

tenden und eines ladungsgeordneten Zustandes zeigen wir, dass die Unterschiede vor

allem im Übergang von schwacher zu starker Kopplung zu finden sind, wobei die Ord-

nungsparameter von der Renormierung beeinflusst sind. Als eine weitere Anwendung

leiten wir ausgehend von der Sattelpunktslösung einen effektiven Hamiltonoperator
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her. Wir vergleichen unseren Formalismus analytisch mit den Schlussfolgerungen der

Bardeen-Cooper-Schrieffer-Theorie (BCS).

Motiviert durch verschiedene experimentelle Arbeiten zu d-wellensymmetrischen, k-

abhängigen ’supraleitenden Gaps’ konzentrieren wir uns auf die Frage, ob Zustände

mit nicht-lokalen Paarkorrelationen eine Lösung der Gutzwillernäherung sind und ob

diese Korrelationen die Energie erniedrigen. Wir diskutieren formale Anforderungen

an eine mögliche Lösung im Hinblick auf eine koexistierende Spinordnung und das

Zusammenspiel mit den nicht-lokalen Paarordnungen.

Als nächste Anwendung präparieren wir Lösungen im normalen und im erweiterten

Hubbardmodell, wobei wir eine zusätzliche Zwischen-Gitterplatz-Wechselwirkung durch

den Parameter V > 0 einführen. Wir zeigen inhomogene Lösungen, welche durch

streifenförmige Bereiche charakterisiert sind, in welchen sich die Parameter für Ladungs-

und Paarordnung in Phase und Amplitude ändern. Wir stellen Ergebnisse für das nor-

male und das erweiterte Hubbardmodell vor und diskutieren den Einfluss des Parame-

ters V . Wir zeigen, dass für den Fall V > 0 eine Paardichte-Welle ohne Streifenordnung

der Grundzustand ist.

Ein weiterer Schwerpunkt dieser Arbeit liegt auf einfachen punktförmigen Inhomogeni-

täten wie Polaronen und (Anti)-Vortices in finiten Clustern. Wir präsentieren Ergeb-

nisse in guter Übereinstimmung mit der logarithmischen Abhängigkeit der Energie vom

Radius des Vortex sowie einer möglichen Anziehung zwischen Vortex und Antivortex.

Schließlich führen wir im letzten Kapitel die superfluide Dichte ein und diskutieren in

diesem Zusammenhang die Stabilität unserer Lösung in endlich-dimensionalen Syste-

men. Wir folgen einer Herleitung, welche auf einer Entwicklung der Energie bezüglich

einer Verdrehung des Ladungsvektorfeldes beruht. Wir diskutieren diesen Zugang im

Vergleich mit exakten QMC-Daten wobei die Ergebnisse unsere Herleitung gute qua-

litative Übereinsimmung zeigen.
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Abstract

As a result of 20 years of experimental and theoretical investigations of high temper-

ature superconductors (HTSC) one can draw a very complex and rich phase diagram

that cannot be described completely yet. Numerous experimental findings give strong

hints for an inhomogeneous distribution of spin and charge correlations in HTSC. Mo-

tivated by the experimental findings we try to answer the question whether pair corre-

lations from broken symmetry states can be found in the framework of the Gutzwiller

approximation of the Hubbard model. After an introductory discussion of selected

experimental works and theoretical models we derive the charge-rotationally invariant

Gutzwiller functional for the one-band Hubbard model. On this basis we calculate

various states from the saddle point solution of functional in the attractive (U < 0)

regime.

Starting with a second order expansion we investigate the instability of a normal system

towards SC in the framework of the time dependent Gutzwiller approximation (TDGA).

We derive criteria for a phase transition from the normal to the superconducting phase

in the paramagnetic regime. We show results for an infinite dimensional lattice that

are in good agreement with QMC data.

In the next section of this work we present results for finite dimensional systems. We

compare numerical results from the GA with the conventional Hartree-Fock approxima-

tion. As an example we discuss a homogeneously superconducting and a charge-ordered

state. We show that the difference is mainly in the crossover from weak to strong cou-

pling which is due to the renormalization in the Gutzwiller formalism. In a next step

we derive an effective Hamiltonian on top of the saddle point solution. We compare the

formalism analytically with the findings from the well known BCS theory. We verify

our conclusions by numerical calculations.

Motivated by different experimental works on d-wave symmetric k-dependent SC gaps
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we focus on the question whether states including non-local pair correlations can be a

solution of the GA and how does this correlation lower the energy. We restrict to the

repulsive regime (U > 0) and discuss the formal requirements for a possible solution

in view of a coexisting spin order and the interplay of local and non-local pair order.

As a next application we prepare inhomogeneous solutions in the normal and in the

extended Hubbard model where we include an additional inter-site interaction by the

parameter V > 0. We present inhomogeneous solutions that are characterized by

stripe-shaped domains where the parameters for charge- and pair- ordering change

their phases or their amplitude. We obtain results for the normal and the extended

Hubbard model and we discuss the influence of the parameter V . We show that in case

of V > 0 a pair density wave (PDW) without stripes is the ground state.

Another focus of the work is on point-like inhomogeneities namely polarons and

(anti-)vortices in finite clusters. We present results that show a good agreement with

the logarithmic dependence of the energy of the vortex state with respect to the vor-

tex radius as well as possible attraction between vortex and anti-vortices. Finally in

the last chapter we introduce the superfluid density in order to discuss the stability

of our solutions in finite dimensional systems. We give a short overview on different

analytical approaches to this quantity. We present an approach that is based on an

energy expansion view of an angular distortion of the charge vector field. We discuss

this approach by comparing the numerical GA results with exact QMC results where

our approach turned out to be in good qualitative agreement.
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Chapter 1

Introduction

Even more than 20 years after the discovery of high temperature superconductivity

in ceramic compounds containing copper oxide planes the physics behind is widely

non understood. Since the experimental finding of the phenomenon in 1986 [1] these

materials show new physical anomalous characteristics beyond the tremendous high

critical temperature as for example unconventional electronic transport properties.

All of the high-Tc-materials contain copper oxide (Cu−O) planes and can be classified

as complex cuprate compounds. Based on parent compounds that are believed to be

Mott insulators these substances become conductors by electron or hole doping and

show a number of phase transitions depending on doping rate and the temperature.

This can be summarized in a simplified phase diagram in Fig. (1.1) for hole doped

HTSC showing the different phases of these materials as a function of doping.

The parent compounds such as La2CuO4 (LCO) or Y Ba2Cu3O6 (YBCO) are anti-

ferromagnetic insulators if the temperature is below the Néel temperature TN . If one

increases the number of holes in the cuprates by replacing La by Sr in LCO or by

increasing the part of oxygen in YBCO the antiferromagnetic order rapidly vanishes

at a doping of xa ≈ 0.02 in Fig. (1.1).

1
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Above a critical concentration around x = 0.05 the doped materials become super-

conducting if the sample is cooled below the critical temperature Tc. The transition

temperature increases with doping until an optimal doping around xopt = 0.15 and

the SC breaks down above a certain doping rate. Even above the critical temperature

in the normal conducting phase the doped SC’s show an anomalous metallic behavior

with a linear temperature-dependence of the resistance [2]. In the over-doped region

x > xopt the cuprates show the normal Fermi liquid behavior. Below a certain tem-

perature one finds the so called pseudogap region [3] inducing a loss in entropy and

magnetic susceptibility. The physics in the pseudogap region makes the phase diagram

even more complex. The two most prominent scenarios for this region are based on

(a) incoherent pairing fluctations [4, 5] and (b) ordered states with broken symmetry

which are presented in this thesis.

Neutron Scattering Studies

One of the early models for the ordered state in the HTSC’s in the under-doped regime

(x < xopt) is based on the assumption that charge carriers are concentrated in striped

domain walls separating domains with opposite sign in the antiferromagnetic order

parameter that can be observed by a modulated spin and charge density.

Neutron scattering studies have provided important information about the momen-

tum and energy dependence of magnetic excitations in cuprate superconductors. The

motivation to search for stripe-like charge and spin modulation in HTSC came from

experimental results for nickelates (La2−xSrNiO4+δ) that are insulating and isostruc-

tural with Sr doped LCO. Above a certain doping limit the antiferromagnetic order

in La2−xSrNiO4+δ is replaced by stripe order [6–8]. Neutron scattering results for the

position and intensity of the superlattice peaks in La2−xSrNiO4+δ showed an incomm-

mensurabilty ǫ in the characteristic wave vectors for the spin (QAF ± 1√
2
(ǫ, ǫ, 0)) [9,10]

and for the charge order ( 1√
2
(2ǫ, 2ǫ, 0)) that increases steadily with doping.
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Figure 1.1: Sketch of the typical phase diagram for high-Tc-superconductors. Tc: criti-

cal temperature, TN : Néel temperature, AF (SC): antiferromagnetic (superconducting)

phase, xopt: optimal doping.

For HTSC cuprates experimental evidences for an incommensurability in both the spin

and charge response that give hints for charge and spin stripes are only found in a

couple of substances e.g. La1.875Ba0.125CuO4 [11] and La1.6−xNd0.4SrxCuO4 [12, 13].

It is discussed whether the stripe formation is associated with the anomalous suppres-

sion of SC observed in La2−xBaxCuO4 and related compounds [14] near a hole con-

centration of x = 1/8. The manifestation of incommensurate charge and spin order is

only evidenced in compounds where the low temperature orthorombic (LTO) structure

is replaced by a low temperature tetragonal structure (LTT) by partial substitution

of La with Nd. Similar experimental evidences for the charge and spin distribution

are also found for Ba-Sr-co-doped LCO compounds [6, 15] and further works showed

that striped states could be induced by Eu-co-doping [16]. In Nd or Ba co-doped
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systems the incommensurate spin response is observed by elastic neutron scattering.

The co-doping causes ’pinning’ of the spin and charge modulation and leads to a static

ordered state. In samples without co-doping the scattering is completly inelastic. Since

the incommensurabilty shows an equivalent doping dependence evidenced for low en-

ergies [17] this suggests the formation of dynamic stripes in La2−xSrxCO4.

The incommensurability in hole doped La cuprates grows linearly with the doping

and survives an insulator SC transition as shown in [18] (without co-doping at finite

energies). It grows in the SC phase up to doping of x = 1/8 where it seems to saturate

as shown in the Yamada plot in Fig. (1.2) [13, 17].

If the instability in view of stripe formation can be transferred to YBCO is still in

discussion. Neutron scattering studies for highly under-doped YBCO give results for an

incommensurate static charge ordering and an incommensurate magnetic resonance [19]

being consistent with stripe formation. The magnetic spectrum of hole doped YBCO

shows an ‘hourglass’ shape analogous to what is observed for hole doped LCO [20,21]

but for higher energies. Doped YBCO has a much larger spin gap (∆s ∼ 30meV )

than in the LCO compounds what makes it difficult to resolve any incommensurate

features from neutron scattering for small energies. However the incommensurability

depends linearly on the hole concentration [21] analogous to results in the doped LCO

compounds. But because of the difference in the energies it is difficult to compare the

results directly.

Nuclear Magnetic Resonance

Nuclear spin resonance is an experimental method to investigate the local electronic

surrounding and magnetic moments of atoms by exciting the atoms with an external

electro-magnetic field. Nuclear spin studies of 63,65Cu using nuclear quadrupole reso-

nance (NQR) in oxygen doped YBCO in the SC phase showed a line broadening in the

63,65Cu resonance spectra and new additional features in the transverse relaxation be-
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Figure 1.2: Variation of the magnetic incommensurability ǫ in La2−xSrxCuO4 with and

without Nd-co-doping [22]. Data for excitation measurements at 3meV and T ≈ Tc

in La2−xSrxCO4 from [17]. Data for elastic scattering results for Nd doped samples

from [13].

low a temperature of 35K which is of quadrupolar orgin and which is possibly connected

with a redistribution of the charge [23]. It is proposed that the order parameter-like

behavior of the broadening of the line width is caused by a charge density wave state

(CDW) in Y BCO7−δ that couples to the nuclear position in the CuO planes and other

parts ot the unit cell.

Later NQR investigations of the spin-lattice-relaxation rate 1/T1 of 63Cu in

La2−xSrxCuO4 that measures the local frequency-dependent Cu-spin fluctuation [24]
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allow to deduce the spatial variation of the local hole concentration ∆xhole. The results

show that the holes are not distributed equally and the variation ∆xhole increases with

decreasing temperature. Basing on the NQR data a detailed analysis of the electric

field gradient surrounding the Cu atoms lead also to a variation of the local hole conce-

tration that coincide with the results from the relaxation rate investigations. Excluding

possible other reasons for the inhomogeneous hole distribution such as Sr2+-clustering

it is discussed if there exists an electronic mechanism causing the segregation of holes

that could be connected with a phase separation.

The line shape analysis of the electric field gradient of Cu and O in the La2−xSrxCuO4

based on NMR studies [25] confirmed the increase of the line width in the spectra upon

doping. The experiments showed an abrupt broadening by a factor of 50 above a hole

concentration of x = 0.05, which cannot by explained with the simple impurity picture

where Sr induces local changes in the hole density. In fact, it can be interpreted as

a charge density variation appearing above a concentration of x ≈ 0.05 and variing

weakly above this value with doping. The magnetic field distribution of 17O showed an

anomalous magnetic shift in the spectrum depending on doping and temperature, that

is assumed to be induced by a spin moment polarization at the Cu atoms in the external

field. The observed line broadening is proportional to the external field and is also

found in the Cu-spectrum where the line width increases with decreasing temperature.

These facts are interpreted as short range modulation of the spin susceptibility. Based

on these results it is assumed that the charge variation is somehow ’pinned’ and comes

along with the spin density variation with a wave length of a few lattice constants.

Surface Sensitive Methods

Beyond the LCO and YBCO related compounds experimental results for bismuthates

and oxychloride superconductors that possibly indicate the existence of modulated

charge ordering come from surface sensitive probes like scanning tunneling microscopy
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(STM). STM investigations are based on the analysis of the local density of states

(LDOS). If sources of disorder are present in the material elastic scattering mixes

eigenstates with different k-values at the contour of constant energy (CCE) which can

be observed by the modulation of the LDOS.

At low temperatures the HTSC Bi2Sr2CaCu2O8+δ (Bi-2212) show a d-wave symmetric

Fermi surface with k-dependent energy gap ∆(k) where the CCE forms banana shaped

surfaces (for a review: [26]). High resolution STM measurements of the differential tun-

neling conductance G = dI/dV for the Bi-2212 surface at T = 4.2K allow a derivation

of the spatial distribution of the local density of states LDOS(E)∼ G(V ) [27]. Later

works [28] approve the observation in under-doped Bi2Sr2CaCu2O8+δ. The observed

interference pattern can be explained as scattering of Bogoliubov quasiparticles. The

quasiparticle scattering takes place between the ends of the banana shaped CCE’s

where the LDOS is high. This can be seen from the peaks in the Fourier transformed

differential tunneling conductance as shown in Fig. (1.3). The regions of high density

make up the tips of an octet in the first Brillioun zone. Similar observations of quasi

particle interference where also made for Ca2−xNaxCuO2Cl2 (Na-CCOC) at nearly

optimal doping [29].

Another possible origin of the peaks in the Fourier transformed LDOS in Bi-2212 can be

an incommensurate, spatial modulation of the electronic structure as suggested in [30].

An analysis of the topographic variation of the differential conductance approves a

four-period-modulation in the LDOS which suggests a static electronic inhomogeneity.

It is still under discussion whether these peaks are nondispersive in energy or follow a

bias-dependent dispersion so that the observation can be understood in the framework

of the octet model [27, 31]. Measurements in Bi2Sr2CaCu2O8+δ [32] show a bias

dependent, dispersive behavior of the quasiparticle interference below a certain energy

scale whereas above this energy only scattering vectors in antinodal regions are left

over suggesting the nondispersive charge order.
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Figure 1.3: Fourier transformed STM results on Na-COOC (Tc ∼ 28K, x ∼ 0.14)

demonstrating the method of analysis. (a) Topography of the differential conduc-

tance G(r, V = −6mV ) and (b) G(r, V = +6mV ). The inset shows the Fourier

transformed conductance |G(q, V )| (c) Conductance ratio map Z(r, V ) = G(r, V =

+6mV )/G(r, V = −6mV ) (d) Fourier transformed conductance ratio |Z(q, E)|. The

dark spots are the regions of high intensity indicating the q-vectors expected from the

octet model. Images are taken from [33].
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1.1 Crystal Structure and Electronic Configuration

From the chemical point of view all HTSC belong to the class of perovskites. Gener-

ally spoken a perovskit compound has a AMO3-structure (e.g. CaT iO3) where a large

cation A is surrounded by an oxidic bounded transition metal M . In all HTSC com-

pounds the transition metal is Cu where the central atom can either be La, Y , Ba or

Sr. The complex unit cell contains one or two CuO-planes and it shows a octahedral

or orthorombic symmetry for lower temperatures.

The doping with holes (or electrons) can be reached by the exchange of the central

cation. In La2CuO4 the La3+ ion is replaced by Sr2+. In the case of Y BCO the

doping works differently. One changes the amount of oxygen so that the region between

the planes serves as the charge reservoir. As mentioned earlier the doping has strong

influence on the physical properties and on the critical temperature.

The geometry of the unit cell of these compounds is characterized by the CuO planes

which are separated by the central atoms. It is supposed that the CuO planes dominate

the physics in the SC phase. In particular the critical temperature seems to depend on

the number of CuO planes per unit cell.

For completeness we mention at this point that there exist compounds based on a

cuprate free structure showing SC at relatively high critical temperature (e.g. BaBiO3-

systems [34] or iron-arsenide-compounds [35]) but it is still under discussion if these

compounds can be counted to the class of HTSC. In this work we focus on the class of

HTSC containing the typical CuO planes.

Three-band-models

In La2−xSrxCuO4 the Cu ion is surrounded by six O ions forming an elongated octa-

hedral CuO6 geometry while in Y Ba2Cu3O6+x the Cu ions are surrounded by five O

ions. The degeneracy between the d-orbitals originating from the rotational invariance
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of the isolated ions is removed by the lattice structure. Because the covalent CuO

bonds are strong and charge transport in c-direction is very small we restrict to the

electrons moving only on the CuO planes.

A microscopic model is two dimensional and has to respect the structure of the elec-

tronic orbitals. The copper ions Cu2+ have nine electrons in the five 3d-orbitals, while

the O2− has the three 2p orbitals occupied. The d-orbitals of the Cu-atoms and the p-

orbitals of oxygen hybridize. The three orbitals that are relevant for the hybridization

are the 3dx2−y2 orbital of Cu and the 2px and 2py orbital from the in plane O. The

orbital configuration is shown in Fig. (1.4).

The state with highest energy has mainly a dx2−y2-character from the copper. In the

undoped case this orbital carries one electron (hole). In this case the system can be

described by a model of localized spin-1
2

states causing the antiferromagnetic, insulating

character of the undoped parent compounds. This means that the electrons must be

strongly correlated and the 3dx2−y2 orbitals must exhibit a strong interaction so that

double occupancy becomes unfavored. Based on this line of reasoning it is possible to

construct a Hamiltonian for electrons in the copper oxide planes [36, 37]. In the hole

notation the Hamiltonian reads as:

Ĥ = − tpd

∑

<ij>

∑

σ=↑,↓
sij

(
d̂†iσp̂jσ + h.c.

)
− tpp

∑

<jj′>

∑

σ=↑,↓
sij

(
p̂†jσp̂j′σ + h.c.

)
(1.1)

+ Up

∑

j

n̂p
j↑n̂

p
j↓ + Ud

∑

i

n̂d
i↑n̂

d
i↓ + Upd

∑

<ij>

n̂d
i n̂

p
j + ǫp

∑

j

n̂p
j + ǫd

∑

i

n̂d
i .

p̂jσ (d̂jσ) are fermionic operators that destroy holes at the oxygen (copper) ions labeled

j (i). < ij > refers to pairs of nearest neighbors labeled i (copper) and j (oxygen).

In Fig. (1.4) we illustrate the included interactions. The first and the second terms of

Eq. (1.1) include the kinetic part. Transition processes are allowed between neighboring

oxygen and copper sites (pd) and between two neighboring oxygen orbitals (pp). The

hopping terms tpd and tpp correspond to the hybridization between nearest neighbors
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of Cu and O atoms and are proportional to the overlap between the orbitals. The

sij take values +1 for symmetric or −1 for antisymmetric overlap. The next three

terms include the Coulomb repulsion between two holes on the same p-orbital (Up),

on the same d-orbital (Ud) and holes occupying adjacent p/d-orbitals. The on-site

Figure 1.4: Spatial orientation of the dominating orbitals of the hybridization of Cu

and O. Also shown: The local transition and repulsion parameters included in the

three-band model and the Zhang-Rice-singlet. (the figure is taken from [38])

energies ǫp and ǫd represent the energy for creating a hole in the p- or d-orbital. From
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band structure calculations [39] one can estimate the values of the parameters in the

Hamiltonian (1.1) in eV :

∆ tpp tpd Ud Up Upd Upp

3.6 0.65 1.3 10.5 4 ≤ 1.2 ≈ 0
.

We used ∆ = ǫp − ǫd. In the table we also included the Coulomb repulsion for two

holes occupying adjacent p/p-orbitals (Upp in Fig. (1.4)). Compared with other on-site

repulsions summarized in the table it is very small and can be neglected. Because

of Ud ≫ ∆ and Ud ≫ tpp,pd we work in the strong coupling limit. In the undoped

system there exists one hole per unit cell. We see from the Hamiltonian (1.1) that an

additional hole will be placed in the p-orbital in the case of strong coupling.

One-band-models

In order to simplify the three band model Zhang and Rice have suggested a method

to reduce the complexity of the model in the strong coupling limit [40]. Because of

the hybridization of the CuO orbitals a hole which is created in the oxygen p-orbital

is bound to the copper ion. The hole at the oxygen can be in a symmetric (parallel) or

antisymmetric (anti parallel) spin state with respect to the central hole spin at the Cu.

That means the spins can either be combined in form of singlet or triplet states. To

second order perturbation theory about the atomic limit (strong coupling) Zhang and

Rice showed that the spin singlet state has the lowest energy (Zhang-Rice-Singlet).

The singlet wavefunctions between adjacent CuO plaquettes overlap and thus give rise

to an effective hopping between these plaquettes. As a consequence one can replace

the three band model by an effective low energy model (t-J model) that was earlier

suggested in [41]. The overlap of the plaquettes is proportional to t and the effective

exchange between adjacent Cu-spins is the paramter J . This model includes only three

states per site: either empty or single occupied by an electron with spin up or down (or



1.1. CRYSTAL STRUCTURE AND ELECTRONIC CONFIGURATION 13

a hole respectively). It is important to mention that the reduction of the three band

model is still controversial.

The t-J model is more commonly obtained as the strong coupling limit of the one-

band Hubbard model which we will discuss in the next section. In the context of the

electronic structure of the cuprate SC the one-band Hubbard model mimics the charge

transfer gap ∆ by an effective Coulomb repulsion Ueff . At half filling and if the on-site

interaction is strong the model reduces to the Heisenberg model which well describes

the spin dynamics in undoped cuprates close to T = 0.
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Chapter 2

Hubbard Model -

Limits and Approximations

Although the Hubbard model provides a very simple form it can be solved exactly only

in one dimension [42] while for higher dimensions one has to rely on approximative

methods. In this section we introduce the one-band version of the Hubbard model and

we will briefly discuss exact solution and basic techniques. Before we discuss in detail

the Gutzwiller variational method we explain briefly the Hartree Fock (HF) method

since we will compare the results of our calculations with this method. Furthermore

we need the HF method to derive the one particle Slater determinant as in input for

our later computation.

2.1 The Hubbard Model - Exact and Approxima-

tive Solutions

The Hubbard model was independently introduced by Gutzwiller, Hubbard and

Kanamori in 1963 [43–46]. The Hubbard model is one of the simplest models to describe

15
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correlated particles on a lattice. The Hubbard Hamiltonian reads as:

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ , (2.1)

where the kinetic term describes the motion between the sites i and j. The operator

ĉiσ (ĉ†iσ) destroys (creates) a spin-σ-electron at the lattice site i. Usually the ’hopping’

integral tij is restricted to nearest neighbor transitions and it is taken as translationally

invariant: {tij = t | i, j are nearest neighbors, tij = 0 elsewhere}.
The second term in Eq. (2.1) approximates the Coulomb interaction among the elec-

trons which is only on-site. The operator n̂iσ = ĉ†iσ ĉiσ is the particle number operator.

In the repulsive Hubbard model (U > 0) the on-site interaction approximates the

Coulomb repulsion, whereas in the attractive Hubbard model (U < 0) it describes an

effective, short range attractive interaction between the electrons. The focus of this

work will be mainly on the attractive on-site interaction. We will explain the nature

of U < 0 systems later.

Even for this reduced version (2.1) no exact solution has been found. The exact ground

state can only be calculated for one dimensional systems using the Bethe Ansatz [42].

In higher dimensions one has to rely on approximative methods of which we will briefly

introduce the HF-technique in the next section.

In the limit of U = 0 the Hamiltonian (2.1) reduces to the free electron system. In

the case of t = 0, electrons cannot move and the Hubbard Hamiltonian approaches the

atomic (insulating) limit with all electrons to be localized.

The t-J-model is the low energy limit of the strong coupling Hubbard model. In the

case of positive U and U
t
≫ 0 doubly occupied sites become energetically unpropitious.

Applying perturbation theory up to second order one can eliminate the double occu-

pancies [47]. Via a canonical transformation Ŝ (Ŝ = O(t/U)) the Hamiltonian (2.1)

transforms to:

H̃ = e−ŜĤeŜ, (2.2)
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leading to the t-J-model:

Ĥ = −Pt
∑

<ij>σ

ĉ†iσ ĉjσP + J
∑

<ij>

(
ŜiŜj − ninj

)
, (2.3)

where J = 4t2

U
. The operator P projects the Hamiltonian onto the subspace where

double occupancy is excluded.

In the case of half filling (n = 1) the electrons localize and Eq. (2.3) reduces to the

Heisenberg Hamiltonian:

Ĥ = J
∑

<ij>

ŜiŜj . (2.4)

The Heisenberg Hamiltonian is a model of localized spins on a lattice and it is used in

the study of critical points and phase transitions of magnetic systems. Although it has

a simple form it can be solved exactly in one dimension only.

2.2 Hartree Fock Approximation of the

Hubbard Model

We start with the Hubbard Hamiltonian (2.1) and include an extra term with the Fermi

energy µ in order to conserve the particle number:

Ĥ =
∑

i6=j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ − µ

(∑

iσ

ĉ†iσ ĉiσ −Nel

)

. (2.5)

The four operator product in (2.5) decomposes as follows:

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ ≈ 〈ĉ†i↓ĉi↓〉ĉ

†
i↑ĉi↑ + 〈ĉ†i↑ĉi↑〉ĉ

†
i↓ĉi↓ − 〈ĉ†i↑ĉi↑〉〈ĉ

†
i↓ĉi↓〉 (2.6)

+ 〈ĉ†i↑ĉ
†
i↓〉ĉi↓ĉi↑ + 〈ĉi↓ĉi↑〉ĉ†i↑ĉ

†
i↓ − 〈ĉ†i↑ĉ

†
i↓〉〈ĉi↓ĉi↑〉.

We ignored all terms that include spin flips.
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Introducing the local charge density niσ = 〈ĉ†iσ ĉiσ〉 and the local pair density ∆i =

〈ĉ†i↑ĉ
†
i↓〉 (∆∗

i = 〈ĉi↓ĉi↑〉) the HF Hamiltonian reduces to:

ĤHF =
∑

i6=j,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

(ni↓ĉ
†
i↑ĉi↑ + ni↑ĉ

†
i↓ĉi↓) + U

∑

i

(∆iĉ
†
i↑ĉ

†
i↓ + ∆∗

i ĉi↓ĉi↑)

−U
∑

i

ni↑ni↓ − U
∑

i

∆i∆
∗
i − µ

(∑

iσ

ĉ†iσ ĉiσ −Nel

)

. (2.7)

The HF method decomposes the Hamiltonian (2.1) into two decoupled single particle

Hamiltonians with spin σ:

ĤHF =
2N∑

mnσ

Hσ
mnψ̂

σ
mψ̂

−σ
n (2.8)

with the vectors:

ψ+ = (ĉ†1↑, . . . , ĉ
†
N↑, ĉ1↓, . . . , ĉN↓) and ψ− = (ĉ1↑, . . . , ĉN↑, ĉ

†
1↓, . . . , ĉ

†
N↓). (2.9)

The HF matrices are of dimension 2N with the explicit elements:

Hσ = σ




tij 0

0 −tij



+ σU




diag

{
ni↓ − µ

U

}
diag {∆σ}

diag
{
∆−σ

i

}
diag

{
−ni↑ + µ

U

}



 , (2.10)

where i, j ∈ {1, . . . , N} and m,n ∈ {1, . . . , 2N}. We defined ∆±
i as above and of course

tii = 0.

The HF approximated Hubbard Hamiltonian has a single particle form that can be

diagonalized.

2.3 Bogoliubov Transformation

The effective Hamiltonian (2.8) includes terms with combinations of two creation or

two destruction operators. In order to calculate the eigenvalues of the Hartree Fock

approximated Hamiltonian (2.8) we introduce a Bogoliubov transformation. If the
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system consists of N lattice sites the one-particle operator Hσ (2.10) has a set of 2N

real eigenvalues. Because of the symmetric structure of (2.10) it consists of N positive

and N negative eigenvalues:

{−ωN ,−ωN−1, . . . ,−ω2,−ω1, ω1, ω2, . . . , ωN−1, ωN}. (2.11)

The corresponding normalized eigenvectors are written as:

V k =




Xα(k)

Y α(k)



 , W k =




Y β(k)

Xβ(k)



 ∈ Vec(2N), k = 1, 2 . . . , N, (2.12)

corresponding to the negative and positive set of eigenvalues. From the eigenvectors

we construct unitary transformation matrices:

T =




Xα Y β

Y α Xβ



 and T† =




Xα∗ Y α∗

Y β∗ Xβ∗



 , (2.13)

with T†T = 1 that diagonalizes the HFA Hamiltonian:

T†HT = diag(−ωN ,−ωN−1, . . . ,−ω2,−ω1, ω1, ω2, . . . , ωN−1, ωN). (2.14)

With the help of the identity ĤσHF = ψ̂σHσψ̂−σ = ψ̂σTT†HσTT†ψ̂−σ respecting the

unitary condition of the transformation one derives for the operators:

φ̂σ = ψ̂σT and φ̂−σ = T†ψ̂−σ, (2.15)

and for the back transformation:

ψ̂σ = φ̂σT† and ψ̂−σ = Tφ̂−σ. (2.16)

We have introduced the transformed vectors φσ consisting of the transformed single

particle operators fiσ:

φ+ = (f̂ †
1↑, . . . , f̂

†
N↑, f̂1↓, . . . , f̂N↓) (2.17)

φ− = (f̂1↑, . . . , f̂N↑, f̂
†
1↓, . . . , f̂

†
N↓).
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The transformations for the single particle ladder operators read explicitly:

ĉj↑ =
∑

k

Xα
j (k)f̂k↑ +

∑

k

Y β
j (k)f̂ †

k↓ (2.18)

ĉ†j↓ =
∑

k

Y α
j (k)f̂k↑ +

∑

k

Xβ
j (k)f̂ †

k↓

ĉ†i↑ =
∑

k

Xα∗
i (k)f̂ †

k↑ +
∑

k

Y β∗
i (k)f̂k↓

ĉi↓ =
∑

k

Y α∗
i (k)f̂ †

k↑ +
∑

k

Xβ∗
i (k)f̂k↓.

In terms of the new transformed operators the expectation values of the single particle

densities read:

〈ĉ†i↑ĉj↑〉 =
∑

k

Xα∗
i (k)Xα

j (k)〈f̂ †
k↑f̂k↑〉 +

∑

k

Y β∗
i (k)Y β

j (k)〈f̂k↓f̂
†
k↓〉 (2.19)

〈ĉ†i↓ĉj↓〉 =
∑

k

Xβ
i (k)Xβ∗

j (k)〈f̂ †
k↓f̂k↓〉 +

∑

k

Y α
i (k)Y α∗

j (k)〈f̂k↑f̂
†
k↑〉

〈ĉ†i↑ĉ
†
j↓〉 =

∑

k

Xα∗
i (k)Y α

j (k)〈f̂ †
k↑f̂k↑〉 +

∑

k

Y β∗
i (k)Xβ

j (k)〈f̂k↓f̂
†
k↓〉

〈ĉi↓ĉj↑〉 =
∑

k

Y α∗
i (k)Xα

j (k)〈f̂ †
k↑f̂k↑〉 +

∑

k

Xβ∗
i (k)Y β

j (k)〈f̂k↓f̂
†
k↓〉.

We used in (2.19):

〈f̂ †
kσf̂k′σ′〉 = δσσ′δkk′〈f̂ †

kσf̂kσ〉 and 〈f̂ †
kσf̂

†
k′σ′〉 = 〈f̂kσf̂k′σ′〉 = 0. (2.20)

The new single particle operators fulfill the anti-commutator relation [f̂ †
kσ, f̂k′σ′ ]+ =

δkk′δσσ′ and we can replace:

f̂kσf̂
†
kσ = 1 − f̂ †

kσf̂kσ. (2.21)

In general the expectation values of the transformed particle number operators 〈f̂ †
kσf̂kσ〉

depend on energy and temperature and obey the Fermi function 〈f̂ †
kσf̂kσ〉 = f(µ,Ek, kT ).
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In our calculation we consider the zero temperature limit T = 0 and the Fermi function

reduces to the Heaviside function:

〈f̂ †
kσf̂kσ〉 = Θ(µ− Ek) =







1 for Ek ≤ µ

0 for Ek > µ

. (2.22)

We rewrite the formulae (2.19):

〈ĉ†i↑ĉj↑〉 =
N∑

k=1

Xα∗
i (k)Xα

j (k), 〈ĉ†i↓ĉj↓〉 =
N∑

k=1

Xβ
i (k)Xβ∗

j (k), (2.23)

〈ĉ†i↑ĉ
†
j↓〉 =

N∑

k=1

Xα∗
i (k)Y α

j (k), 〈ĉi↓ĉj↑〉 =

N∑

k=1

Y α∗
i (k)Xα

j (k).

In our calculation the Fermi energy is a parameter which is unknown at the beginning.

The eigenvectors depend on the Fermi energy and have to be calculated self-consistently

in order to conserve the particle number Nσ which is given by:

Nσ =
∑

k

〈ĉ†kσĉkσ〉. (2.24)

The Fermi energy has to be adjusted correspondingly in each iteration cycle.

2.4 Attraction Repulsion Transformation

This work is focussed on the attractive Hubbard model where the Hubbard-U mediates

an effective attractive interaction (U < 0).

We mentioned that exact solutions of the Hubbard model depend on the lattice dimen-

sion and on the band filling. For a qualitative analysis one can compare the attractive

Hubbard model with the well known results for the repulsive case (U > 0). There

exists a canonical transformation (ĉiσ → b̂iσ) namely:

ĉ†i↓ = exp(iQRi)b̂i↓ and ĉ†i↑ = b̂i↑, (2.25)
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where Q is the antiferromagnetic wave vector. The transformation maps the Hubbard

model with on-site attraction and arbitrary band filling (0 ≤ n ≤ 2) onto the half filled

Hubbard model (so called normal Hubbard model) with an on-site repulsion and with

an inter-site exchange interaction [48, 49] which is of the form of the Ising exchange

with an external magnetic field [48,50]. A mathematical overview is given in appendix

C.2.

In case of U < 0 the CDW and singlet SC order are equivalent to the magnetic

ordered structures in the positive U transformed system. For half filling the CDW

and SC state are strictly degenerate. Beyond half filling the degeneracy disappears. It

also disappears if one assumes an additional interaction such as an inter-site repulsion

mediated by the V > 0 that we will discuss in the next chapter.



Chapter 3

Gutzwiller Approach

and Model Specifications

The difficulties to find an exact quantum mechanics solution to the Hubbard model

in dimensions greater than one have stimulated the growth of several approximative

methods. The latter are intended to describe correctly the physics in the framework of

the model in special limits.

As discussed before the strong coupling limit is appropriate when dealing with strongly

correlated electron systems. Within this framework, standard many-body techniques

such as Hartree-Fock cannot be applied because it covers the weak coupling limits only.

In the strong coupling limit two analytical approaches turned out to be particularly

successful. The Gutzwiller variational approach [51] corresponds to a variational trial

wave function for the ground state and by the use of the so called Gutzwiller approxima-

tion extrapolates weak coupling results to the strong coupling region. The Gutzwiller

approximation becomes exact in the limit of infinite spatial dimension (d→ ∞) [52].

The auxiliary field or slave boson approach enlarges the Fock space at each site by

adding a set of virtual bosons. The essence of this method has been applied early

23
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in the framework of the Anderson model [53, 54]. Including additional constraints to

the model the virtual bosons act as a projection operator onto electronic states as the

doubly occupied states are forbidden in the U = ∞ limit. A reformulation of the

slave boson approach was suggested by Kotliar and Ruckenstein (KR) [55] in order

to describe the finite U regime of the Hubbard model. The method reproduces some

results originally derived by the Gutzwiller approximation scheme as well as other types

of mean field solutions [56].

In this section we will shortly discuss the Gutzwiller variational approach and the

Gutzwiller approximation and the resulting energy functional. Further we derive the

energy functional again in the charge-rotational invariant formulation. We follow the

concept of Kotliar and Ruckenstein but we also refer to the mean field approach sug-

gested by Frésard and Wölfle [56] to explain the physical constraints of the mean field

solution. Finally we will shortly discuss the extended and the attractive Hubbard

model.

3.1 Gutzwiller’s Wave-function and Approximation

The Gutzwiller method is an approximation to the ground state wave function |Ψ0〉
of the Hubbard Hamiltonian (2.5) based on a trial wave function [43]. The crucial

term is the four operator product in the potential term counting the number of doubly

occupied lattice sites. In its basic version the so called Gutzwiller wave function reads:

|ΨG〉 =
∏

i

(1 − (1 − η)n̂i↑n̂i↓)|Φ0〉, (3.1)

where |Φ0〉 is the Slater determinant describing the ground state of uncorrelated elec-

trons and η is the variational parameter. The associated density matrix usually contains

only the normal part:

ρσσ′

ij = 〈Φ0|ĉ†iσ ĉjσ′|Φ0〉. (3.2)
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In the case of η = 0 the ground state is projected to a subspace without double

occupancies. For finite η the Gutzwiller projection operator reduces the weight of con-

figurations with doubly occupied sites in the wave function. The variational parameter

is determined by minimizing the expectation value of the energy:

E(η) =
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

!
= min. (3.3)

In the limit of large values of |U |/|t| (U < 0) doubly occupied sites become unfavorable

because they cost a large amount of repulsion energy. This implies η → 0 to minimize

doubly occupied lattice sites. One can apply similar arguments for empty sites for

more then half filling. This reflects the particle-hole symmetry.

For general values of U an analytic expression for the expectation value with respect to

|ΨG〉 is only possible in one [57] or infinite dimensions [58]. For finite dimensions one

has to apply the so called Gutzwiller approximation (GA) [59] in order to obtain quan-

titative results from (3.3). The GA in its original variant [51,59] uses arguments from

combinatorial theory and approximation for large numbers (Stirling approximation).

In its basic version the ground state energy functional reads:

EGA =
∑

i,j,σ

tijziσzjσρ
σσ
ij + U

∑

i

Di, (3.4)

where the z-factors are given by:

ziσ =

√

(ρσσ
ii −Di)(1 − ρσσ

ii − ρ−σ−σ
ii +Di) +

√

Di(ρ
−σ−σ
ii −Di)

√

(1 − ρσσ
ii )ρσσ

ii

. (3.5)

The ρσσ
ii refer to the elements of the density matrix and Di is the double occupation

density at the lattice site i. The energy functional (3.4) has to be minimized with

respect to Di and ρ. The potential term contains only the double occupancy.

Within the GA a strong on-site repulsion U leads to a decrease in the double occu-

pancies Di. This restricts the transition processes of the fermions and thus reduces

the kinetic energy. This is because the z-factors depend on the variational parameter
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Di and renormalize the kinetic energy which leads to a band diminution. In contrast

within the HF method the potential part is decoupled while the kinetic part is not

involved. Since the influence of a growing ratio |U |/|t| is not respected it covers only

the weak coupling regime.

The approximated energy functional (3.4) can also be recovered by the slave boson

approach [55]. An alternative method to approximate the energy functional in finite

dimensions d was suggested in [60] where the Gutzwiller wave function was expanded

in terms of 1/d around the limit of high dimensions (d → ∞). In the limit of infinite

dimensions the Gutzwiller approximation recovers the exact result for (3.3) with respect

to |ΨG〉 [52]. In this case at half-filling a transition to a localization takes place at a

finite interaction strength (Brinkman Rice transition [61]). In addition it can be shown

that the Gutzwiller wave function does not predict a metal-insulator transition for the

Hubbard model for finite interaction strength in all finite dimensions [62] which is an

artefact of the Gutzwiller approximation. Moreover in the large U regime the GA

describes rather a metal Mott-insulator transition.

The GA is a ’semi-classical’ technique for the calculation of expectation values and it

is derived in its original version using large number arguments. For this reason it is

suited for large fermion systems and it is useful for solid state models in the metallic

state and in the Mott regime but it is probably too simple for small systems and for

molecules.

3.2 Charge-Rotationally-Invariant Gutzwiller Ap-

proach

We will now derive the variational energy functional for the GA following the slave

boson approach originally introduced by Kotliar and Ruckenstein [55]. We present a



3.2. CHARGE-ROTATIONALLY-INVARIANT GUTZWILLER APPROACH 27

general formulation by keeping the charge-rotational invariance.

Essentially, we map the superconducting system into a purely normal conducting state

without superconductivity by performing a local unitary rotation in the charge space

represented by a spin 1/2-algebra [63]. At this point different methods can be used

to derive the Gutzwiller approximation for example counting arguments from combi-

natorial theory [64, 65] or one can derive the GA from the infinite dimension limit as

discussed above. Alternatively, one can use a Gutzwiller projection P̂ directly act-

ing on the Hartree-Fock-Bogoliubov-wave function |Φ0〉 [64, 66]. In our method we

use the well known equivalence between the slave boson method and the Gutzwiller

approach [56, 67–70]. The procedure implemented in the following consists of three

steps essentially. We assume that in our initial reference frame we have non-vanishing

superconducting order which can be described by a vector field. First we rotate the

system locally to a new frame where the expectation values of the superconducting

order vanish. This allows, as a second step, to introduce of slave bosons within the

Kotliar-Ruckenstein scheme. For the bosons we apply the saddle point (mean field)

approximations. Finally, in the third step we rotate the system back to the original

reference frame.

It is convenient to introduce the Nambu-vectors:

Ψ†
i = (ĉ†i↑, ĉi↓) and Ψi =




ĉi↑

ĉ†i↓



 . (3.6)

We introduce the pseudo charge vectors with the components Ĵm
i = 1

2
Ψ†

iτ
mΨi, (m =

x, y, z), where we used the Pauli matrices to define the x, y and z-component. The

components read explicitly:

Jx
i =

1

2
(ĉ†i↑ĉ

†
i↓ + ĉi↓ĉi↑), (3.7)

Jy
i = − i

2
(ĉ†i↑ĉ

†
i↓ − ĉi↓ĉi↑),

Jz
i =

1

2
(ĉ†i↑ĉi↑ + ĉ†i↓ĉi↓ − 1).
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The components of the charge vector form a spin-1/2-algebra. The charge state of a

lattice site i is now represented by the vector Ji which has three degrees of freedom. The

z-component is proportional to the (local) normal charge or doping rate respectively

(δi = 1 − ni). For a homogeneous half filled system then 〈Jz
i 〉 = 0. The x- and

y-components consist of the electron pair creation and destruction operators.

Jx

J
y

J
z

J i

ϕ
i

Figure 3.1: Charge vector for an arbitrary lattice site i. A charge state is a composition

of normal conducting parts along z and the superconducting parts in the x-y-plane.

We define the ladder operators:

J+
i = ĉ†i↑ĉ

†
i↓ and J−

i = ĉi↓ĉi↑, (3.8)

which create (destroy) a SC electron pair at the lattice site i (total spin 0). If the

expectation values 〈J+
i 〉 and 〈J−

i 〉 are non-zero we have (local) SC order. A charge

state is represented in Fig. (3.1) by the expectation values of the three components Ĵi

where the normal charge is real and the SC order is equivalent to a projection into the

x-y-plane.

We now transform a general charge state into a pure normal state. We require that the

SC order vanishes locally so that the expectation values 〈Jx
i 〉 and 〈Jy

i 〉 become zero.
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We define the local rotations in charge space by the following transformations:

Ψ̃i = U†
iΨi and Ψ̃†

i = Ψ†
iUi , (3.9)

where we used the general definition of a unitary rotation by the angle ϕi:

Ui(ϕi) = 1 cos
(ϕi

2

)

+ i sin
(ϕi

2

)

τη . (3.10)

The vector η = (ηx, ηy, ηz) is the rotation axis of unity length and τ = (τx, τy, τz) is a

vector of the Pauli matrices. The rotation axis is in the x-y-plane (ηz = 0) and the

resulting charge vector 〈J̃i〉 is parallel to the z-axis. Since by definition the off-diagonal

Jx
i =

1

2

(
ĉ
†
i↑ĉ

†
i↓ + ĉi↓ĉi↑

)

J
y
i = − i

2

(
ĉ
†
i↑ĉ

†
i↓ − ĉi↓ĉi↑

)

Jz
i =

1

2

(
ĉ
†
i↑ĉi↑ + ĉ

†
i↓ĉi↓ − 1

)

Ψi −→ AiΨ̃i

Φi = U†
i(ϕi)Ψi

Ψ̃i = Ui(ϕi)Φ
MFA
i

〈J̃x
i 〉 = 0

〈J̃y
i 〉 = 0

〈J̃z
i 〉 =

1

cos(ϕi)
〈Jz

i 〉

Φi −→ ΦMFA
i

(MFA: c̃iσ = ziσf̃iσ)

Figure 3.2: Schematic summary of the charge rotational invariant derivation of the

Gutzwiller approximation using the slave bosons and the mean field approximation

(MFA).

order vanishes in the rotated frame we now come to the second step where we apply

the KR slave boson scheme to the associated fermions f̃iσ:

c̃iσ = ziσf̃iσ and c̃†iσ = z†iσf̃
†
iσ, (3.11)
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where the tilde refers to the rotated frame. The renormalization factors read:

ziσ =
1

√

ê†i êi + p̂†i−σp̂i−σ

(ê†i p̂iσ + p̂†i−σd̂i)
1

√

d̂†i d̂i + p̂†iσp̂iσ

. (3.12)

The boson operators refer to the empty (êi), double (d̂i) and single (p̂i−σ) occupied

lattice sites (i) and obey the following constraints:

∑

σ

p̂†iσp̂iσ + 2d̂†i d̂i = 2J̃z
i + 1 (3.13)

p̂†i↑p̂i↑ − p̂†i↓p̂i↓ = 2S̃z
i

ê†i êi +
∑

σ

p̂†iσp̂iσ + d̂†i d̂i = 1

where we defined S̃z
i = 1

2
(Ψ†

i1Ψi − 1). Since we follow essentially a Gutzwiller-type

approach we now apply the mean field approximation (MFA) for the bosons. The Bose

operators are replaced by their classical values which can be taken to be real. With

the help of the equations (3.13) we are able to eliminate all bosons except of d2
i . In

the third step the system is transformed back to the original frame. All steps are

summarized in Fig. (3.2).

We end up with the charge-rotational invariant GA energy functional:

EGA =
∑

i,j

tij
〈
Ψ†

iAiτzAjΨj

〉
+ U

∑

i

[

Di − Jz
i

(√

1 + tan2(ϕi) − 1

)]

. (3.14)

The four operator product in the potential term in (2.5) is now replaced by an ex-

pression depending on the normal charge Jz
i , the rotation angles ϕi and the parameter

Di = d2
i . The functional depends on the normal and anomalous parts of the density

matrix. The complete transformation matrix in Eq. (3.14) reads as:

Ai =




zi↑ cos2 ϕi

2
+ zi↓ sin2 ϕi

2

(Jx
i −iJy

i )

2Jz
i

[zi↑ − zi↓] cosϕi

(Jx
i +iJy

i )

2Jz
i

[zi↑ − zi↓] cosϕi zi↑ sin2 ϕi

2
+ zi↓ cos2 ϕi

2



 , (3.15)
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with

tan2 ϕi =
(Jx

i )2 + (Jy
i )2

(Jz
i )2

, (3.16)

where we skipped the 〈. . . 〉 in Eqs. (3.15) and (3.16). All expectation values refer to the

state |Φ0〉. The matrix Ai includes the local rotation in charge space, the z-factors for

renormalization and the backward transformation to the original frame. It conserves

all degrees of freedom in charge space. The off-diagonal elements in (3.15) induce pair

hopping processes in the effective functional Eq. (3.14).

The z-factors depend on the mean field values of the boson fields and renormalize the

kinetic energy. The Gutzwiller renormalization factors read explicitly:

ziσ =
eipiσ + dipi−σ

√
(e2i + p2

i−σ)(d
2
i + p2

iσ)
, (3.17)

where we refer to the mean field values before the backward rotation is applied.

Because of (Ai)∗11 = Ai
11, (Ai)∗22 = Ai

22 and (Ai)∗12 = Ai
21 and (ρ↑↓ij )∗ = ρ↓↑ji the kinetic

energy term can be summarized as:

∑

ij

tij 〈Ψ†
iAiτzAjΨj〉 = (3.18)

∑

ij

tij

[

(Ai
11A

j
11 −Ai

12A
j
21)ρ

↑↑
ij + (Ai

22A
j
22 −Ai

21A
j
12)ρ

↓↓
ij

+2Re
{
(Ai

11A
j
12 − Ai

12A
j
22)ρ

↑↓
ij

}]

The variational functional (3.14) is the basic functional that is used in this work.

Later we will discuss the nature of the constraints that restrict (3.14). Moreover we

will discuss the energy functional in the framework of the extended Hubbard model.

In the limit of vanishing SC (〈Ĵx
i 〉 = 〈Ĵy

i 〉 = 0) it follows from Eq. (3.16) ϕi = 0. In

this case Ai is diagonal and only the z-factors remain in the matrix. One recovers the

standard Gutzwiller energy functional (3.4) as derived in [55, 60].



32 CHAPTER 3. GUTZWILLER APPROACH AND MODEL SPECIFICATIONS

In case of the homogeneous paramagnet (ni↑ = ni↓) with arbitrary filling we obtain

zi↑ = zi↓ = z0 and the matrix (3.15) reduces to:

Ai =




z0 0

0 z0



 , (3.19)

and the energy functional reads:

EGA = z2
0

∑

i,j,σ

tijρ
σσ
ij + U

∑

i

[

Di − Jz
i

(√

1 + tan2(ϕi) − 1

)]

. (3.20)

The kinetic energy part does not include explicit transitive pair correlations but those

are included via the angle ϕi in the potential term and via the dependency of the

z-factors on the bosons.

3.3 Extended Hubbard Model with Local On-Site

Attraction

The Hubbard model in its basic version includes the on-site repulsion (U > 0) that

corresponds to the Coulomb interactions between the electrons in the same orbital. On

the other hand one can motivate an analogous model where U < 0 thus describing a

local attraction between electrons. Based on the observation that the coherence length

in HTSC is rather short this so-called attractive Hubbard model can account for the

formation of Cooper pairs on short length scales.

The microscopic mechanism leading to an effective short-range attraction of electrons

(holes) can be of various origins. The most obvious one is a strong electron lattice

coupling which gives rise to the formation of small polarons. Two polarons attract

each other via the induced lattice deformation, and they can form small bipolarons

provided that the attraction overcomes the Coulomb repulsion. This mechanism was
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initially suggested to study electric, magnetic and optical properties of amorphous

materials [71, 72].

Another mechanism for short range attraction can result from a coupling between

electrons and quasibosonic excitations of electronic origin such as excitons or plasmons

[73–76].

Yet another possibility is a purely electronic mechanism resulting from coupling be-

tween electrons and other electronic subsystems in solids or chemical complexes. There

can be considered several electronic mechanisms that lead to a non-retarded, static at-

traction [77–80] and thus cause a strong polarizability of anions.

These mechanisms give rise to an attraction between charge carriers that have to

compete with the Coulomb repulsion. If the induced attractive potential partially

overcomes the Coulomb repulsion and if the attraction is strong enough, local pair

formation can take place. The concept of electron pairing basing on an attractive

potential is of interest for several areas in solid state physics. The local attraction

could probably provide an explanation for superconductivity of the non-BCS type

especially in the field of HTSC [78,80–83]. The concept of local attraction is also used

to describe charge density wave formation in narrow band systems [78, 84, 85].

The theoretical models of local pairing either start with a microscopic derivation of the

local attractive interaction or postulate some effective Hamiltonian. In the following

we consider the properties of the extended Hubbard model with on-site attraction and

inter-site repulsion, which can be described by the following Hamiltonian:

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ +
∑

<ij>

Vij(n̂i↑ + n̂i↓)(n̂j↑ + n̂j↓)

︸ ︷︷ ︸

Ŵ

, (3.21)

where we have added the term Ŵ to the Hamiltonian (2.1). Again tij denotes the

transfer integral but the parameter U is now an effective on-site attraction (U < 0). The

new term Ŵ is a sum over the nearest neighbors and includes the inter-site repulsion



34 CHAPTER 3. GUTZWILLER APPROACH AND MODEL SPECIFICATIONS

Vij > 0 acting between two electrons (holes) on adjacent sites.

The model (3.21) can be considered as a general result from a system of narrow-band

electrons strongly coupled to a bosonic field, which they polarize and which in turn

acts upon the electrons, thereby forming entirely new entities. These new entities are

described by the correlated motion of the electrons and their surrounding polarization

field and by an induced short range attraction which competes with the Coulomb

repulsion. The bosonic modes can be phonons, excitons or acoustic plasmons that we

have discussed above.

As discussed earlier for the normal Hubbard model the solution crucially depends on

the lattice dimension d and the number of electrons per site (n = 1
N

∑

i〈ni〉, n ∈ [0, 2]).

Exact results for the ground state are known for half filling (n = 1) in one dimension

[86]. For arbitrary filling in one dimension the attractive Hubbard model has been

solved with the Bethe ansatz [87–89]. Krivnov and Ovchinnikov have shown [87] that

the single-electron excitation spectrum has a gap for arbitrary n, in contrast to the case

of the repulsive Hubbard model (U > 0) where such a gap exists only for n = 1 [42].

For dimensions greater than one approximative methods have to be applied for the

limits of strong or weak attraction.

In the case of d = 2 the Quantum-Monte-Carlo (QMC) method can be used [90] to

derive the phase diagram for the transition from the normal state into one with SC

ordering. For n = 1 the results are consistent with a ground state having both SC and

CDW long range order at zero transition temperature and a power law decay of the

pairing correlations away from half filling at a finite temperature.

Using a slave boson mean field approach the ground state energy for the negative-U

Hubbard model can be calculated on a saddle point level for any coupling U [67, 69].

Several SC characteristics can be calculated for arbitrary filling (0 ≤ n ≤ 2) - so for

example the crossover from the BCS type SC to local pair SC with increasing |U |.
For the first part of the Hamiltonian (3.21) we follow in this work the charge rotation-
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ally invariant Gutzwiller approach that we have already discussed in the last section.

In order to decouple the inter-site repulsion term Ŵ we use the HF approximation.

We take the repulsion to be site-independent (Vij = V ) and so the operator product

decomposes as follows:

Ŵ = V
∑

<ij>

σσ′

ĉ†iσ ĉiσĉ
†
jσ′ ĉjσ′ (3.22)

HF
= V

∑

<ij>

σσ′

[
ĉ†iσ ĉiσ〈ĉ†jσ′ ĉjσ′〉 + 〈ĉ†iσĉiσ〉ĉ†jσ′ ĉjσ′ − 〈ĉ†iσ ĉiσ〉〈ĉ†jσ′ ĉjσ′〉

]

− V
∑

<ij>

σσ′

[
ĉ†iσ ĉjσ′〈ĉ†jσ′ ĉiσ〉 + 〈ĉ†iσĉjσ′〉ĉ†jσ′ ĉiσ − 〈ĉ†iσ ĉjσ′〉〈ĉ†jσ′ ĉiσ〉

]

+ V
∑

<ij>

σσ′

[
ĉ†iσ ĉ

†
jσ′〈ĉjσ′ ĉiσ〉 + 〈ĉ†iσĉ†jσ′〉ĉjσ′ ĉiσ − 〈ĉ†iσ ĉ†jσ′〉〈ĉjσ′ ĉiσ〉

]
.

Now we neglect terms that include spin flips and after rearrangement of the terms

we make use of the anti-commutator relations. We add the expectation value of the

decoupled interaction term to the variational functional (3.14). Finally we obtain the

extended version of the Gutzwiller variational energy functional:

ÊGA =
∑

i6=j

tij〈Ψ̂†
iAiτ

zAjΨ̂j〉 + U
∑

i

[

Di − Jz
i

(√

1 + tan2 ϕi − 1
)]

(3.23)

+ V
∑

<ij>

[

ninj +
∑

σ

(
〈ĉ†iσ ĉ†j−σ〉〈ĉj−σĉiσ〉 − 〈ĉ†iσ ĉjσ〉〈ĉ†jσĉiσ〉

)]

,

which has to be minimized with respect to Di and ρ to derive the saddle point solution.

3.4 Unified Slave Boson Representation

The charge rotationally invariant energy functional (3.14) allows the calculation of the

GA ground state energy on a saddle point level where all degrees of freedom in charge

space are conserved. The slave boson formulation ensures by the implementation of
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the constraints (3.13) the solutions to be kept in the physical part of the Hilbert

space. The charge rotationally invariant functional (3.14) includes the angle ϕi as

variational parameter. The numerical implementation of this formulation including

derivatives with respect to ϕi turned out to be too slow in the process of convergence.

These problems can be avoided by a reformulation of the functional (3.14). Therefore

we consider the GA variational functional in the framework of a unified slave boson

representation [56,69] conserving all charge and spin degrees of freedom. The emphasis

in the following is on a detailed derivation and discussion of the formal aspects and on

the reformulation of the Lagrangian constraints .

We follow the method presented in [56] that is also based on the idea of a complete

mapping of the electron operator representation onto slave bosons as discussed above.

A lattice site i can either be empty, doubly- or σ-occupied. Each possible state is

connected to an auxiliary slave boson.

The state at the site i is described by a product of fermionic and bosonic wave function.

In order to conserve the two degrees of freedom associated with the quantization axis,

the operator product is interpreted as a composite particle whose spin should be 1/2.

The subsequent derivation is based on the rules for combining quantum mechanical

angular momenta.

We define the two (doublet) vectors representing the four possible states a lattice site

can take:

f̂ †i =




f̂ †

i↑

f̂ †
i↓



 and Φ̂†
i =




f̂ †

i↑f̂
†
i↓

1



 .

The pseudo fermion vector f̂i represents the single occupied state that makes up a spin

doublet with S = ±1
2
. In view of the definition of the vector Φ̂i we introduce the

pseudo spin vector Ĵi (3.7) with Jz
i = ±1

2
. The vector Φ̂i takes the form of a pseudo-

spin-doublet with respect to Ĵi. A doubly occupied state leads to Jz
i = 1

2
and an empty

state has the eigenvalue Jz
i = −1

2
.
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For each lattice site we introduce a set of auxiliary bosons that couple to the vector f̂i

for single occupied and to Φ̂i for empty or doubly occupied sites.

A single occupied site denoted as |σ〉 is expressed as a coupled state of Bose operators

p̂†σσ′ and the Fermi operators f̂σ:

|σ〉 =
∑

σ′

p†σσ′f
†
σ′ |vac〉, (3.24)

where we dropped the site index i for simplicity. The coupled state |σ〉 should have

spin 1/2. Since the spin of the pseudo fermion field (f) is 1/2 as well, possible spin

values for the p-bosons are JB = 0 or JB = 1.

For the doubly occupied and empty states (|2〉 and |0〉) we introduce the boson field

b̂†ρρ′ :

|ρ〉 =
∑

ρ′

b̂†ρρ′Φ̂
†
ρ′ |vac〉. (3.25)

The resulting state must have a pseudo spin of either 0 for empty or 1 for doubly

occupied sites. Note that the atomic states |σ〉, |0〉 and |1〉 are also eigenstates of Ĵ2
i

and Ĵz
i .

In order to keep all degrees of freedom we have to apply consequently the quantum

mechanical rules of combining states with different angular momenta. The total pseudo

spin of the fermion wave function in (3.24) and (3.25) is well defined. Therefore we have

to include a scalar boson with total pseudo spin JB = 0 and a boson field with total

pseudo spin JB = 1. For spin and pseudo spin doublets we summarize the operators

in the matrices:

p̂†
σσ′ =

1√
2




p̂†0 + p̂z† (p̂x† − ip̂y†)

(p̂x† + ip̂y†) p̂†0 − p̂z†



 , b̂†
ρρ′ =

1√
2




b̂†0 + b̂z† (b̂x† − ib̂y†)

(b̂x† + ib̂y†) b̂†0 − b̂z†



 ,

(3.26)

where we defined the scalar fields p̂†0 and b̂†0 with respect to the pseudo spin JB = 0

and the vector field p̂† = (p̂†x, p̂
†
y, p̂

†
z) and b̂† = (b̂†x, b̂

†
y, b̂

†
z) with respect to the (pseudo)
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spin JB = 1. The factor 1/
√

2 is a result from the Clebsch Gordon coefficients and

orthonormalization of the states |σ〉 and |ρ〉. The components of the expressions (3.26)

can be expressed by:

p̂†σσ′ =
1

2

3∑

µ=0

p̂†µ(τµ)σσ′ and b̂†ρρ′ =
1

2

3∑

µ=0

b̂†µ(τµ)ρρ′, (3.27)

where we used the Pauli matrices and τ0 = 1. The operators p̂†σσ′ and b̂†ρρ′ obey the

commutation relations:

[p̂σ1σ2
, p̂†σ3σ4

] =
1

2
δσ1σ4

δσ2σ3
and [̂bρ1ρ2

, b̂†ρ3ρ4
] =

1

2
δρ1ρ4

δρ2ρ3
. (3.28)

The electron creation operator is now a linear combination of combined fermion and

boson field operators:

ĉ†iσ =
∑

σ′

(ẑ†i+σ,+σ′ f̂
†
σ + σ′ẑ†i+σ,−σ′ f̂σ′), (3.29)

where the f̂ †
σ are the fermion ladder operators and the linearly combined boson fields

are included in the generalized z-factors:

ẑ†i ρσρ′σ′ = p̂†iσ′σ b̃iρ′ρ + b̂†iρ′ρp̃iσ′σ, (3.30)

where p̃iσ′σ and b̃iσ′σ are the time reversed operators: p̃0 = T̂ p̂0T̂
−1 = p̂0 and p̃ =

T̂ p̂T̂−1 = −p̂.

The operator ẑ†iσ,σ′ in (3.29) describes the change in the slave boson occupation when

an electron is annihilated in a two-channel process. The classical probability for these

processes to happen is not simply given by taking the Bose fields in (3.29) by their

classical values. This may be corrected by introducing a renormalization. It can be

derived from the correct result in the non interacting limit (U → 0)) [55,56,68]. In our

case we obtain:

ẑ†i = p̂†
iRiLib̃i + b̂†

iRiLip̃i, (3.31)
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where the factors Li = (1 − 2b̂†
i b̂i − 2p̂†

i p̂i)
−1/2 and Ri = (1 − 2b̃†

i b̃i − 2p̃†
i p̃i)

−1/2

enter Eq. (3.31). The eigenvalues of Li and Ri are unity, so that these operators can

be added without changing the content. But the presence of Li and Ri will make a

difference in the framework of approximative methods.

We simplify the notation by re-writing the slave boson matrices (3.26):

B̂i =
1√
2




D̂i b̂xi + b̂yi

b̂xi − b̂yi Êi



 , (3.32)

with D̂i = b̂†0 + b̂z† and Êi = b̂†0 − b̂z† representing the bosons for the doubly occupied

and empty lattice sites. We apply the mean field approximation (MFA) by replacing

all Bose operators by their thermodynamical expectation values (Bose condensation).

The components of the Bose field are treated as variational parameters. We drop the

hat in order to refer to mean field values.

In the non rotationally invariant case the z-axis in the Bose sub-space is taken as

quantization axis (bxi = 0 and byi = 0) and the matrix (3.32) is diagonal:

B =
1√
2




di 0

0 ei



 . (3.33)

In this case di and ei are the scalar boson fields derived by Kotliar and Ruckenstein [55].

In our investigation we focus on the properties that follow from the charge rotationally

invariant treatment of the slave boson formalism. We keep the degrees of freedom in

charge space but in spin channel we restrict to the non rotational invariant case. For

single occupied states we rewrite the spin boson matrix (3.26) in the diagonal form:

pi =
1√
2




pi↑ 0

0 pi↓



 , (3.34)

where we have used p0 ± p†z = p↑/↓.
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This point of view allows a straightforward implementation of the constraints. The

well defined mapping of the fermion field to the Bose fields allows to combine the mean

field values of the Bose field with the entries of the density matrix.

Constraints of the Extended Hilbert Space

If we use the commutation relations (3.28) and the canonical (anti) commutation re-

lations for the pseudo fermions f and Φ the correct anti-commutation relation for the

ĉ-operators are recovered, provided the following constraints are satisfied [69]. The

completeness condition tr(p̂†
i p̂i) + tr(B̂†

iB̂i) = 1 leads to:

D2
i + E2

i + 2(b2xi + b2yi) + p2
↑ + p2

↓ = 1. (3.35)

This relation ensures that each lattice is occupied by exactly one slave boson.

A second set of constraints follows from the fact that the matrix elements of ĉ†iσ ĉjσ′

are related to those of p̂†σp̂σ and d̂†i d̂i in the physical subspace. The number of bosons

correspond to the number of fermions.

We evaluate the expectation value of the number operator respecting Eq. (3.29):

〈ĉ†iσĉiσ〉 = p2
σ +D2

i + b2xi + b2yi. (3.36)

The left hand side of (3.36) is the density of σ-electrons at the lattice site i. If an

σ-electron is situated at site i the lattice site can be either single occupied with spin

σ, doubly occupied or even occupied by an electron pair. This relation is expressed by

the right hand side of (3.36). The operator of a doubly occupied site can be expressed

as [69]:

〈n̂i↑n̂i↓〉 = (D2
i + b2xi + b2yi). (3.37)

Additionally one finds constraints for the pair creation and annihilation operators:

〈ĉ†i↑ĉ
†
i↓〉 = (bxi + ibyi)(Di + Ei) and 〈ĉi↓ĉi↑〉 = (bxi − ibyi)(Di + Ei), (3.38)
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combining the pairing terms with the mean field values of the bosons.

The unitary transformation (3.9) was introduced in order to transform the charge vector

locally so that the expectation values of the x- and y-component of the charge vector

vanish (〈Ĵx
i 〉 = 0 and 〈Ĵy

i 〉 = 0) and the z-component transforms as 〈J̃z
i 〉 = 1

cos(ϕi)
〈Jz

i 〉.
In this case the boson matrix B̂i becomes diagonal in Eq. (3.33) if the boson field is

mapped to the normal state. With the help of (3.35) and (3.36) one derives for the

expectation values of the components of the pseudo charge vector Ji in terms of the

mean field values of the bosons:

Jx
i = bix(Di + Ei), Jy

i = biy(Di + Ei), Jz
i =

1

2
(Di − Ei)(Di + Ei). (3.39)

In terms of the boson field that was originally introduced by Kotliar and Ruckenstein

[55] the z-component reads: Jz
i = 1

2
cos(ϕi)(di−ei)(di+ei). We derive a set of equations

that relates the ’originally’ boson fields to the charge-rotational invariant bosons via

the local angle ϕi:

Di = di cos2
(ϕi

2

)

+ ei sin
2
(ϕi

2

)

,

Ei = di sin
2
(ϕi

2

)

+ ei cos2
(ϕi

2

)

,

di =
Di

1 − tan2
(

ϕi

2

) +
Ei

1 − cot2
(

ϕi

2

) , (3.40)

ei =
Ei

1 − tan2
(

ϕi

2

) +
Di

1 − cot2
(

ϕi

2

) .

Given the values for the charge density ni↑ = ρ↑↑ii and ni↓ = ρ↓↓ii and the pair cre-

ation and annihilation operators J+
i = ρ↑↓ii and J−

i = ρ↓↑ii we can derive the expectation

values for boson fields.

We obtain for the z-component of the charge vector at the lattice site i:

Jz
i =

1

2
(ni↑ + ni↓ − 1). (3.41)

The angle ϕi of the local rotation in charge space can be obtained using Eq. (3.16). We

write down an expression for the double occupancy:

〈n̂i↑n̂i↓〉 = d2
i cos2(

ϕi

2
) + e2i sin2(

ϕi

2
). (3.42)
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Further we make use of the auxiliary equations:

di =

√

ni↑ni↓ −
(

1 − 1

cos(ϕi)

)

Jz
i and ei =

√

ni↑ni↓ −
(

1 +
1

cos(ϕi)

)

Jz
i .

With the help of Eqs. (3.36), (3.37) and (3.39) we derive:

bix =
(J+

i + J−
i )

2(Di + Ei)
,

biy = −i (J
+
i − J−

i )

2(Di + Ei)
,

pi↑ =
√
ni↑ − ni↑ni↓, (3.43)

pi↓ =
√
ni↓ − ni↑ni↓,

where we have respected Jx
i = 1

2
(J+

i + J−
i ) and Jy

i = − i
2
(J+

i − J−
i ). With Eq. (3.40)

we obtain expressions for the expectation values of the six bosons for each lattice site.

The generalized and normalized z-factors in (3.15) can be expressed in terms of the

boson fields (3.40):

zi↑ =
eipi↑ + dipi↓

√

(e2i + p2
i↓)(d

2
i + p2

i↑)
and zi↓ =

eipi↓ + dipi↑
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
. (3.44)

With this set of equations we can calculate the expectation values of the bosons from

the density matrix.
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3.5 Gutzwiller Energy Functional and

Lagrangian Multipliers

Now we can rewrite the Lagrange function in terms of the slave bosons including the

constraints. Dropping the inter-site repulsion term that was discussed earlier we obtain:

LGA =
∑

ij

tij〈Ψ†
iAiτzAjΨj〉 + U

∑

(D2
i + b2xi + b2yi) (3.45)

+ µ
∑

σ

(
∑

i

ρσσ
ii −Nσ

)

+
∑

i

(
λ1

iR
1
i + λ2

iR
2
i + λ3

iR
3
i + λ4

iR
4
i + λ5

iR
5
i

)

where the double occupancy is expressed by using identity (3.37). We introduced the

chemical potential µ to conserve the electron numbers Nσ. The MFA matrix reads as:

Ai =
(zi↑ + zi↓)

2




1 0

0 1



+
(zi↑ − zi↓)

2βi




(Di − Ei) 2(bxi − ibyi)

2(bxi + ibyi) (Ei −Di)



 , (3.46)

where βi =
√

(Di −Ei)2 + 4(b2ix + b2iy). The local rotation angle ϕi is replaced by mean

field values of the slave bosons. The MFA values are the variational parameters in this

formulation.

The last terms in (3.45) include the sum of the bosonic constraints with the Lagrangian

multipliers λ
(j)
i that read explicitly:

R1
i =

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)

, (3.47)

R2
i =

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)

, (3.48)

R3
i = (D2

i + E2
i + 2(b2ix + b2iy) + p2

i↑ + p2
i↓ − 1), (3.49)

R4
i = (D2

i + (b2ix + b2iy) + p2
i↑ − ρ↑↑ii ), (3.50)
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R5
i = (D2

i + (b2ix + b2iy) + p2
i↓ − ρ↓↓ii ). (3.51)

The constraints help to keep the solution in the physical part of the Hilbert space.

Eq. (3.49) is the completeness condition where Eq. (3.47), Eq. (3.48), Eq. (3.50) and

Eq. (3.51) guarantee the charge and spin conservation and the Pauli exclusion principle.

We have to minimize (3.45) under the Slater condition (ρ = ρ2). From the saddle point

condition we obtain a set of equations to derive the Lagrangian multipliers:

∂EGA

∂Di

= 0,
∂EGA

∂Ei

= 0,
∂EGA

∂bix
= 0,

∂EGA

∂biy
= 0, (3.52)

∂EGA

∂pi↑
= 0,

∂EGA

∂pi↓
= 0, (3.53)

which yields the matrix equation:












2bxi 2byi 2Di 2Di 2Di

2bxi 2byi 2Ei 0 0

2(Di + Ei) 0 4bxi 2bxi 2bxi

0 2(Di + Ei) 4byi 2byi 2byi

0 0 2piσ 2piσ 0













λi =













∂Di
T + UDi

∂Ei
T

∂bxi
T + 2Ubxi

∂byi
T + 2Ubyi

∂piσ
T













, (3.54)

where we define the Lagrange parameter vector λi = (λ1
i , λ

2
i , λ

3
i , λ

4
i , λ

5
i ). The expres-

sions for the derivatives on the right hand side can be found in the appendix B.5.

3.6 Numerical Method

For the numerical calculation we combine the GA energy functional and the constraints

from the unified slave boson study in one function. We present results for two dimen-

sional square lattices of rectangular shape shown in Fig. (3.6). The cluster consists of

N = Nx × Ny lattice sites with the coordinates (ix, iy). We refer to the lattice using

the integer i counting the lattice sites line by line.
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Figure 3.3: Lattice geometry for a 5x5 cluster.

We start with an orthogonal decomposition of the entries of the density matrix element

ρσσ′

ij :

ρ↑↑lm = 〈ĉ†l↑ĉm↑〉 =
N∑

k=1

Xα∗
l (k)Xα

m(k) =
N∑

p=1

φ∗
l (p)φm(p) (3.55)

ρ↑↓lm = 〈ĉ†l↑ĉ
†
m↓〉 =

N∑

k=1

Xα∗
l (k)Y α

m(k) =

N∑

p=1

φ∗
l (p)φ(m+N)(p)

ρ↓↑lm = 〈ĉl↓ĉm↑〉 =
N∑

k=1

Y α∗
l (k)Xα

m(k) =
N∑

p=1

φ∗
(l+N)(p)φm(p)

ρ↓↓lm = 〈ĉ†l↓ĉm↓〉 =

N∑

k=1

Xβ
l (k)Xβ∗

m (k) =

N∑

p=1

φ(l+N)(p+N)φ∗
m+N (p+N) ,
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The amplitudes in (3.55) are denoted as φi(k) making up the set of variational param-

eters. We summarize the amplitudes of the diagonal representation as follows:

T =




Xα Y β

Y α Xβ



 =




φi(k) φi(k +N)

φ(i+N)(k) φ(i+N)(k +N)





i,k=1,...,N

, (3.56)

where T ∈ Mat(2N × 2N). The amplitudes are complex and can be decomposed into

real and imaginary part:

φi(k) =
{
xi(k) + iyi(k)

}
, (3.57)

where here the indices i and k run from 1 to 2N . We collect the variational parameters

in the real vector x. It contains the entries of the matrix T (3.56) column by column.

The real and the imaginary part of the entries of the matrix in (3.56) build up a 8N2

set of the components of x with the 4N2 real parts in the first section of x and the

4N2 imaginary parts in the second section.

The next subset of variational parameters collected in x consists of the expectation

values of the 6 boson fields (Di, Ei. bxi, byi, pi↑, pi↓ ) of the dimension N for each

boson. The vector x is of dimension D = 8N2 + 6N (x ∈ RD) and can be summarized

as follows:

x =
(

x1(k)
∣
∣
k
. . . x2N (k)

∣
∣
k
, y1(k)

∣
∣
k
, . . . , y2N(k)

∣
∣
k
,
{
Di, Ei, p↑i, p↓i, bxi, byi

}

i

)

, (3.58)

where k runs over 1 . . . 2N and the index i runs over the lattice sites {1 . . .N}. Now

the energy functional (E := E(x)) and the saddle point problem can be summarized

symbolically:

E : RD 7→ C, Re(E(x)) = min!. (3.59)

For the numerical calculation we add all Lagrangian constraints quadratically to the

variational energy functional. This ensures that the function is minimized by force.

We introduce the numerical parameters Λ1, . . . ,Λ8 that are large, positive numbers to
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ensure that the constraints are fulfilled. Note that the numerical parameters Λi are

not identical with the Lagrangian multipliers λi!

The final function reads:

E =
∑

ij

tij

[

(Ai
11A

j
11 − Ai

12A
j
21)ρ

↑↑
ij + (Ai

11A
j
12 − Ai

12A
j
22)ρ

↑↓
ij (3.60)

+(Ai
21A

j
11 − Ai

22A
j
21)ρ

↓↑
ij + (Ai

22A
j
22 −Ai

21A
j
12)ρ

↓↓
ij

]

+ U
∑

i

(D2
i + b2xi + b2yi)

+ V
∑

<ij>

(ρ↑↑ii + ρ↓↓ii )(ρ↑↑jj + ρ↓↓jj )

+ V
∑

<ij>

[(
ρ↑↓ij ρ

↓↑
ji + ρ↓↑ij ρ

↑↓
ji

)
−
(
ρ↑↑ij ρ

↑↑
ji + ρ↓↓ij ρ

↓↓
ji

)]

+

5∑

j=1

Λj

(
N∑

i=1

(
Rj

i

)2

)

+ Λ6

∑

kq

(
∑

i

φ∗
i (k)φi(q) − δkq

)

×
(
∑

j

φj(k)φ
∗
j(q) − δkq

)

+ Λ7

(
∑

i

ρ↑↑ii −N↑

)2

+ Λ8

(
∑

i

ρ↓↓ii −N↓

)2

.

where we have already included the inter-site interaction term. The parameter Λ6

ensures the orthogonality of the transformation matrix φi(k) whereas Λ7 and Λ8 keep

the particle numbers constant. Finally Λi (i = 1, . . . , 5) couple the bosonic constraints

to the function.

In order to find the saddle point solution of Eq. (3.60) with (3.59) we use an algorithm

for minimization of unconstrained multivariate functions that was published and dis-

cussed in [91] and [92]. The algorithm minimizes an unconstrained nonlinear scalar

valued function of a vector variable x either by the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) variable metric algorithm or by a real conjugate gradient algorithm.

The method requires the knowledge of the gradient of the energy functional: G =
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( ∂E
∂xl

)l=1...D. We calculate the derivatives with respect to the amplitudes i ∈ {1 . . . 4N2}
where we use the notation:

∂E

∂xi
=
∑

lm,σσ′

∂E

∂ρσσ′

lm

∑

p

(
∂ρσσ′

lm

∂φ∗
l (p)

∂φ∗
l (p)

∂xi
+

∂ρσσ′

lm

∂φm(p)

∂φm(p)

∂xi

)

. (3.61)

The explicit expressions are given in the appendix B.5.

We start our calculation with an initialization of the density matrix. The distribution

is defined by the density matrix ρσσ
ii where the indices i and σ refer to the spatial

position and to the electron spin. As a first step we need an orthogonal decomposition

(3.56). For this reason we apply the HF diagonalization via the transformation (2.13)

to obtain the initial set of amplitudes (3.57).

3.7 Characterization of the Solution

In our formulation we obtain possible solutions by minimizing the functional (3.60)

with respect to all the constraints. The numerical output is the density matrix ρσσ′

ij

and the set of boson fields.

We classify the results into homogeneous and inhomogeneous solutions which either

can be in the normal or in the superconducting state. In order to characterize the

solution we calculate the on-site electron density and the expectation values of the

charge vector. In the case of inhomogeneous solutions we derive an expression for

the current density that can be separated into a normal current and a super current

resulting from pair correlations.

The three components of Ji are the expectation values of the local charge and super-

conducting order parameter for each lattice site.

Jx
i =

1

2

(

ρ↑↓ii + ρ↓↑ii

)

, Jy
i = − i

2

(

ρ↑↓ii − ρ↓↑ii

)

, Jz
i =

1

2

(

ρ↑↑ii + ρ↓↓ii − 1
)

. (3.62)

The charge state of each lattice site is represented by the three degrees of freedom of

Ji. The components are real where the z-component reflects the local charge density.
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Jx
i and Jy

i are the real and imaginary part of the expectation values of the local pair

creation and annihilation. The length of the x-y-projection (Fig. 3.1) can be taken as

a local order parameter for the superconducting channel.

If one considers a homogeneous, half-filled superconductor with complex order pa-

rameter ∆SC it holds Jz
i = 0 and Jx

i = Re(∆SC) and Jy
i = Im(∆SC). Applying

the attractive-repulsive transformation (see appendix Eq. (C.8)) the charge vector

is transformed to the spin vector and one finds Sz
i = Jz

i , Sx
i = (−1)ix+iyJx

i and

Sx
i = (−1)ix+iyJy

i . Thus a homogeneous half filled superconductor in the attractive

Hubbard model maps to an anti-ferromagnet in the repulsive model.

The Current Density

For inhomogeneous solutions the charge and pair densities vary over the lattice. In

order to derive the current density ji we start with the local charge density ρi and apply

the continuity equation from classical electrodynamics: ∇jl = −ρ̇l. We obtain the

divergence of the local current density field on the left hand side. The time derivative

of ρ follows from the Heisenberg equation of motion as:

∂tρ̂i = i[Ĥ, ρ̂i]−, (~ = 1). (3.63)

The third component of the charge vector is proportional to the local charge density

and we replace for ρ̂i:

∇ĵzi = i[Ĥ, Ĵz
i ]− . (3.64)

We generalize the definition of the current density and we write down the commutators

for all three components of the charge vector [Ĥ, Ĵα
i ] (α = x, y, z). We use the effective

Hamiltonian Ĥ = ĤMFA + Ŵ and with the explicit expression from Eq. (B.1) and
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Eq. (B.2) we obtain for the commutator with Jx
l :

〈[Ĥ, Jx
l ]〉 = iIm

∑

i6=l

til

{

(Ai
11A

l
11 −Ai

12A
l
21)ρ

↑↓
il + (Ai

11A
l
12 − Ai

12A
l
22)ρ

↑↑
il

− (Ai
21A

l
11 − Ai

22A
l
21)ρ

↓↓
li + (Ai

22A
l
22 −Ai

21A
l
12)ρ

↑↓
li

}

+ V
[
4niρ

↑↓
ll − (ρ↑↑li + ρ↓↓il )ρ↑↓il − (ρ↑↑il + ρ↓↓li )ρ↑↓li

]
, (3.65)

the commutator with Jy:

〈[Ĥ, Jy
l ]〉 = −iRe

∑

i6=l

til

{

(Ai
11A

l
11 − Ai

12A
l
21)ρ

↑↓
il − (Ai

11A
l
12 − Ai

12A
l
22)ρ

↑↑
il

− (Ai
21A

l
11 − Ai

22A
l
21)ρ

↓↓
li + (Ai

22A
l
22 − Ai

21A
l
12)ρ

↑↓
li

}

+ V
[
4niρ

↑↓
ll − (ρ↑↑li + ρ↓↓il )ρ↑↓il − (ρ↑↑il + ρ↓↓li )ρ↑↓li

]
, (3.66)

and finally the commutator with Jz:

〈[Ĥ, Jz
l ]〉 = iIm

∑

i6=l

til

{

Ai
11A

l
11 −Ai

12A
l
21)ρ

↑↑
il − (Ai

11A
l
12 −Ai

12A
l
22)ρ

↑↓
il

− (Al
11A

i
12 − Al

12A
i
22)ρ

↑↓
li + (Ai

22A
l
22 − Ai

21A
l
12)ρ

↓↓
il

}

+ V
(
ρ↑↓li ρ

↓↑
il + ρ↑↓il ρ

↓↑
li

)
. (3.67)

The x- and y-part describe the pair current where the z-channel is the current density

with respect to the normal charge carriers. In a two dimensional discrete lattice we

approximate the divergence at the lattice site i as:

∇ji = (jz
ix+1,iy − jz

ix−1,iy) + (jz
ix,iy+1 − jz

ix,iy+1), (3.68)

where we have written the lattice site index i = (ix, iy) in Cartesian coordinates.
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In the case of the commutator (3.67) we obtain for the normal current:

j
(z)
l = iIm

∑

ix 6=lx

∑

iy

(

til

{

Ai
11A

l
11 − Ai

12A
l
21)ρ

↑↑
il − (Ai

11A
l
12 −Ai

12A
l
22)ρ

↑↓
il

− (Al
11A

i
12 −Al

12A
i
22)ρ

↑↓
li + (Ai

22A
l
22 −Ai

21A
l
12)ρ

↓↓
il

}

+ V
(
ρ↑↓li ρ

↓↑
il + ρ↑↓il ρ

↓↑
li

))

ex

+iIm
∑

ix

∑

iy 6=ly

(

til

{

Ai
11A

l
11 − Ai

12A
l
21)ρ

↑↑
il − (Ai

11A
l
12 −Ai

12A
l
22)ρ

↑↓
il

− (Al
11A

i
12 −Al

12A
i
22)ρ

↑↓
li + (Ai

22A
l
22 −Ai

21A
l
12)ρ

↓↓
il

}

+ V
(
ρ↑↓li ρ

↓↑
il + ρ↑↓il ρ

↓↑
li

))

ey, (3.69)

where ex and ey denote the Cartesian unity vectors.
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Chapter 4

Homogeneous SC and CDW

Solutions

In this chapter we apply the GA approach to charge and pair ordered solutions and

compare the results with homogeneous SC results.

In the first section we discuss the stability of a homogeneous solution in infinite di-

mensions at half filling. We investigate the instability of the normal GA state towards

superconductivity.

As the next step we show results for homogeneous SC and CDW states in finite systems.

We compare the GA solutions qualitatively and quantitatively with the Hartree-Fock

approximation of the Hubbard model.

Further we present a formulation of an effective GA-BCS Hamiltonian. With the help

of the mean field values of the boson field we reformulate an effective one particle

Hamiltonian. We present a Bardeen-Cooper-Schrieffer-like discussion and calculate

the density of states for a homogeneous superconductor.

In the last part of this chapter we go a step beyond and we extend our discussion to non

local pair correlation effects. Although this work is mainly based on the investigation

53
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of s-wave SC, we apply the formalism to d-wave superconductivity in the repulsive

Hubbard model (U > 0).

4.1 Stability Analysis in Infinite Dimensions

The instability of a normal system towards SC order reflects in a divergent pair sus-

ceptibility. In order to approach the SC state from this point of view we apply the

time dependent Gutzwiller approximation (TDGA) that was used earlier to calculate

magnetic excitations in the repulsive Hubbard model [93–95]. We use this method to

investigate the stability of a homogeneous paramagnetic saddle point solution obtained

in the GA in the pair channel. We analyze our result in view to the phase transition

from the normal to the superconducting phase.

Firstly we assume that an external field is applied. This external perturbation of the

ground state causes a change in the free energy of the system: F = F0 + δF . We

denote F0 as the free energy of the GA ground state. The response to an external field

induces small fluctuations of the generalized density matrix ρ = ρ0 + δρ and the double

occupancy D = D0 + δD where ρ0 and D0 refer to the saddle point solution of (3.14).

We rewrite the standard GA functional (3.14) in the free energy formulation:

FGA =
∑

i,j

tij〈Ψ+
i Aiτ

zAjΨj〉 + U
∑

i

[

Di − Jz
i

√

1 + tan2(ϕi)

]

(4.1)

− µ

(
∑

iσ

ρσσ
ii −Ne

)

,

where µ is the chemical potential and Ne is the total number of electrons. We expand

Eq. (4.1) up to second order in the generalized density matrix and double occupancy

deviations.

We restrict our investigations to paramagnetic saddle point solutions in the normal

conducting state 〈J±
i 〉0 = 0 so that the particle-particle (pp) and particle-hole (ph)
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channel terms decouple. The free energy expansion in momentum space reads as:

FGA ≈ FGA
0 + tr{h0δρ} + δF pp + δF ph. (4.2)

The first term in Eq. (4.2) is the saddle-point free energy and tr{h0δρ} contains the

single-particle excitations on the GA level.

F ph contains the expansion with respect to the double occupancy and the part of the

density matrix that commutes with the total particle number whereas F pp contains

the expansion with respect to the pair fluctuations δJ±
i . The deviation of the double

occupancy parameter δDi in the particle-hole term δF ph can be eliminated by using

the antiadiabaticity condition [93]:

∂δFGA[ρ,D]

∂δDi

= 0. (4.3)

Eq. (4.3) can be motivated from the assumption that the double occupancy is assumed

to have a much faster dynamic as compared to the evolution of the density matrix.

In the homogeneous paramagnetic case the terms can be written in momentum repre-

sentation:

δF pp =
1

N

∑

q

V δJ+
q δJ

−
−q , δF ph =

1

N

∑

q




δρq

δTq





(

Mq

)




δρ−q

δT−q



 . (4.4)

The term δF ph couples the local density fluctuations δρq with the inter-site charge

fluctuations of the form:

δTq =
∑

kσ

(ε0
k + εk+q)δρ

σσ
k+qk and δρq =

∑

kσ

ρσσ
k+qk. (4.5)

The particle-particle term δF pp describes Gaussian fluctuations of the superconducting

order parameter δJ±
q . The matrix elements of the interaction kernel Mq include the

derivatives of the entries of the MFA matrix Ai and are given explicitly in appendix

B.3.
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For both channels the interaction kernels V (U) (in case of pp) and Mq(U) (in case of

ph) depend on the momentum q and the bare interaction U . Contrary the Hartree-Fock

theory yields U in the pp- and U/2 in the ph-channel.

Having proceeded so far we can now evaluate the ph- and pp-susceptibilities on the

RPA level:

χph(ω, q) =




〈〈ρ̂q, ρ̂−q〉〉 〈〈T̂q, ρ̂−q〉〉
〈〈ρ̂q, T̂−q〉〉 〈〈T̂q, T̂−q〉〉



 , χpp(ω, q) = 〈〈Ĵ+
q , Ĵ

−
−q〉〉. (4.6)

We apply the Dyson equation to obtain the full susceptibilities:

χph(ω, q) = [1 + χ0
ph(ω, q)Mq]

−1χ0
ph(ω, q) ,

χpp(ω, q) = [1 − χ0
pp(ω, q)V ]−1χ0

pp(ω, q), (4.7)

where χ0
pp and χ0

ph denote the non-interacting susceptibilities obtained within the GA.

Results for the Hypercubic Lattice for δ = 0

We now apply the approach developed above to the investigation of the pp- and ph-

instabilities for an infinite dimensional (hyper cubic) lattice restricting to half filling

n = 1 (δ = 0). The density of states (DOS) is given by a Gaussian:

N(ω) =
1√
2πB

exp− ω2

2B2
. (4.8)

where B is the band width. In the case of the ph-channel the charge density wave

instability occurs at q = Q = [π, π, . . . ] and only the [1, 1]-entry of the matrix MQ

remains finite. We find that in this special case of particle-hole-symmetry the pp- and

ph-effective interactions are related by 2M11 Q = V with:

V = −4e0(u− 2)
(1 + u)

(1 − u)
, u =

U

|8e0|
, (4.9)

which proves the consistency of our charge-rotational invariant TDGA. In Fig. (4.1)

the U -dependence of M11 Q and V at zero temperature is shown. For small attractions
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the effective interaction approaches the limit of the HFA (dashed line). At a critical

negative ratio U/B ≈ −6.5 one has a transition towards localized pairs at which the

interactions vanish. In contrast one observes a divergence in M11 Q and V for U > 0

at the Brinkman-Rice transition (see inset to Fig. (4.1)). Finally we calculate the
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Figure 4.1: The effective ph/pp-interaction at zero temperature versus |U |/B. B is

the bandwidth. The inset shows the complete range of the interaction for positive and

negative U from localization to the Brinkman-Rice transition.

transition temperature for the phase transitions towards SC and CDW order from

Eq. (4.7) again for a half filled hc-lattice. In Fig. (4.2) the resulting critical temperature

as a function of |U |/B is shown and compared with results from BCS theory and

Quantum-Monte-Carlo calculations (QMC) from [96].

The results show that the charge-rotational invariant TDGA can be used to calculate

the stability of SC and CDW phases. Since the GA becomes exact in infinite dimensions

we found a good agreement with the QMC data even for the order of magnitude of
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Figure 4.2: Critical temperature versus the on-site interaction |U |/B. B is the band-

width. The kBTc to pp- and ph-instability lines are degenerated.

Tmax
c . It can be seen that in contrast to the BCS theory the charge-rotational TDGA

can capture at least qualitatively the crossover from weak to strong coupling.

4.2 Solutions in the HFA and GA

We consider an 8× 8-cluster where electron hopping is allowed between nearest neigh-

bors only (tij = t). We calculated the GA energy for a charge density wave and for

a homogeneously charged (Jz
i = const) superconductor. In Fig. (4.3) we present the

saddle point energy for different doping rates δ = Nh/L where Nh is the number of

holes and L is the number of lattice sites. In the half filled case (δ = 0) the energy

of the CDW and the SC are degenerate. We define the order parameter for the CDW
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and for the SC as:

∆CDW =
1

L

∑

ixiy

(−1)(ix+iy)(ρ↑↑ii + ρ↓↓ii ) and ∆SC =
1

L

∑

ixiy

ρ↑↓ii . (4.10)

The inset of Fig. (4.3) shows the normalized order parameters corresponding to the

doping rate. We calculated the order parameter with respect to the values at half

filling: ∆̄ = ∆(δ)/∆(δ = 0). The saddle point solution at half filling can be compared
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Figure 4.3: GA energy of homogeneous SC and CDW state as function of the doping

rate. (Results are given for a 8 × 8 cluster, U/t = −5, V/t = 0, t′/t = 0). The inset

shows the normalized CDW an SC order parameters ∆̄CDW and ∆̄SC

with the results of the repulsive Hubbard model. If one applies the attraction-repulsion

transformation the component Jz
i maps to the spin component Sz

i . The components Jx
i

and Jy
i are transformed to (−1)(ix+iy)S

x/y
i . Thus a CDW state is transformed to an anti-

ferromagnet with the quantization along z. In the case of half filling a homogeneous

SC maps to an anti-ferromagnet that is rotated into the Sx-Sy-plane with equal energy.



60 CHAPTER 4. HOMOGENEOUS SC AND CDW SOLUTIONS

As a next step we compare the GA saddle point solution and the Hartree-Fock ap-

proximation. In Fig. (4.4) we present the order parameters for a CDW at half filling as

function of the interaction U/t. The CDW ordering in GA is weaker than in the HF.

0 1 2 3 4 5 6 7 8 9 10
|U|/t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
rd

er
 P

ar
am

et
er

 ∆
C

D
W

GA: ∆cdw
HF: ∆cdw

Figure 4.4: CDW order parameter for a homogeneous normal ground state (without

SC)). V/t = 0 and t′/t = 0. HF and GA results for a 8 × 8 cluster.

The most significant difference appears in the intermediate U -regime.

We find that the ground state energy of the GA is slightly below the HF ground state

(≈ 1%). For example for U/t = −5 we obtain the energy per lattice site (in units of

the hopping parameter t): eGA/t = −3.220 for the GA and eHFA/t = −3.182 for the

HFA.

In Fig. (4.5) we compare GA and HF results for the the kinetic energy for a normal

CDW state as a function of the interaction parameter U/t. The elements of the MFA

matrix Ai renormalize the kinetic energy in the Gutzwiller energy functional. As an

example we present the renormalization factor for the hopping amplitude 〈ĉ†i↑ĉj↑〉 in
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Fig.(4.5). The absolute value of kinetic energy in total is larger in the GA than in the

HF case. Translation processes are allowed between nearest neighbors only (t′/t = 0).

In the example in Fig.(4.5) we compare the kinetic energies for a CDW state. Two

neighboring lattice sites are characterized by an energy difference. In the GA this gap

is proportional to the Lagrange parameters ∼ λ4,5. (In the paramagnetic case it holds:

λ4 = λ5.) It is larger than the gap in the HFA which is proportional to ∼ Un.

If the ratio of U/t increases double occupancies are more preferred. This leads to an

increase in the local charge concentration and thus to an increase of the CDW ordering.

In the limit of large (negative) U the CDW order parameter saturates as shown in

Fig. (4.4). In the small U regime (|U | > 0) the GA approaches the HFA-limit.
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Figure 4.5: Left: Kinetic energy per lattice site versus the on-site attraction U for a

CDW state on a half filled 8× 8 cluster. Right: Renormalization factor of the kinetic

energy (ρ↑↑ij -part) in the GA case. (Results are given for t′ = 0 and V = 0.)

In the limit of U/t → 0 the CDW order parameter is finite. In the case of U/t = 0

the model reduces to a free electron gas on a 2d-lattice with the dispersion εk =

−2t[cos(kx) + cos(kx)]. In this case all one-particle states with k and |k| ≤ kF are

occupied. If we restrict to nearest neighbor transitions the Fermi surface shows a nest-

ing at half filling. At the Fermi edge there exist more possible k-states than electrons.
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We can now construct different electron configurations in the first Brillouin zone (BZ)

with equal energy. Because of the nesting these k-states on the Fermi edge are con-

nected with the vector Q = (π, π) (or q(1|0) = (π, 0), q(0|1) = (0, π)). All possible

configurations contribute to the ground-state wave function in the case of U/t = 0.

The finite momentum vectors yield correlation to the expectation value of the charge

element ∆q = 1/L
∑

kσ〈ĉ
†
k+qσĉkσ〉 and thus a site dependent modulation of the local

charge ni = 1/L
∑

q ∆q exp(iRiqi) that leads to a finite charge order parameter.

4.3 Transformation to an Effective GA-BCS Hamil-

tonian

In order to elucidate more clearly the difference between GA and HF we construct

an effective Hamiltonian with the help of the saddle point solution that we obtain

from the minimization of the GA energy functional (3.14). For this purpose we derive

the Lagrange multipliers at the saddle point by the use of Eq. (3.54). We obtain the

Hamiltonian from the derivative of the GA energy functional (3.14) with respect to the

density matrix:

{
HMFA

}σσ′

ij
=
∂EGA(ρ)

∂ρσσ′

ij

, (4.11)

where ρ = {ρσσ′

ij } is the generalized density matrix. The explicit expressions are given

in appendix A.1. If we re-derive the correct Gutzwiller energy at the saddle point from

the expectation value of the effective Hamiltonian (4.11) we have to add a constant:

EGA = 〈ĤMFA〉+C. The constant C includes the mean field values of the boson fields.

Finally we can rewrite an effective mean field Hamiltonian (MFA-Hamiltonian) that is

given by Eq. (B.1) in the appendix.

In this section we assume a saddle point solution that is homogeneous and paramagnetic

(Ai
11 = Ai

22 = z0 and A12
i = A21

i = 0). In this case the effective Hamiltonian (B.1)
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reduces to:

ĤMFA =
∑

i6=j σ

z2
0tij ĉ

†
iσ ĉjσ +

[

U

2

(

1 −
√

1 +
4|∆|2

(n− 1)2

)

− µ̃

]
∑

iσ

ĉ†iσ ĉiσ

+ Γ
∑

i

ĉ†i↑ĉ
†
i↓ + Γ∗

∑

i

ĉi↓ĉi↑. (4.12)

The Lagrange parameters do not depend on the lattice site index. We use the short

hand notation: Γ = −(λ1 − iλ2) and Γ∗ = −(λ1 + iλ2). Since the solution is homoge-

neous and paramagnetic we use λ = λ4 = λ5 so that this Lagrange parameter can be

included in the chemical potential: µ̃ = µ+λ. Further we replace the angle ϕ with help

of Eq. (3.16) and the pair density using ∆ = 〈ĉ†i↑ĉ
†
i↓〉 that we use as the superconducting

order parameter. Now we transform (4.12) into k-space and obtain:

ĤMFA =
∑

kσ

{

εk +

[

U

2

(

1 −
√

1 +
4|∆|2

(n− 1)2

)

− µ̃

]}

ĉ†kσĉkσ (4.13)

+ Γ
∑

k

ĉ†k↑ĉ
†
−k↓ + Γ∗

∑

k

ĉ−k↓ĉk↑.

The Fourier transformation of the hopping term reads: εk = z2
0

∑

j tij exp (−ikRij).

The order parameter for the superconducting phase transforms as: ∆ = 1
N

∑

k〈ĉ
†
k↑ĉ

†
−k↓〉.

In order to diagonalize the Hamiltonian (4.13) we apply a Bogoliubov transformation

where we introduce the new operators γ̂k,0 and γ̂k,1:

ĉk↑ = u∗kγ̂k,0 + vkγ̂
†
k,1 and ĉ†−k↓ = −v∗kγ̂k,0 + ukγ̂

†
k,1. (4.14)

The new operators fulfill the usual fermionic anti-commutation relations. The complex

factors uk and vk obey:

u2
k =

1

2

(

1 +
ε̃k

√

ε̃2
k + |Γ|2

)

and v2
k =

1

2

(

1 − ε̃k
√

ε̃2
k + |Γ|2

)

. (4.15)

We adopt the notation from BCS theory and define:

Ẽk =
√

ε̃2
k + |Γ|2 and ε̃k = εk +

[

U

2

(

1 −
√

1 +
4|∆|2

(n− 1)2

)

− µ̃

]

. (4.16)
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The transformed Hamiltonian has a single-particle form in terms of the new quasi

particle operators:

Ĥeff =
∑

k

Ẽk

(

γ̂†k,0γ̂k,0 + γ̂†k,1γ̂k,1

)

+
∑

k

(

ε̃k − Ẽk

)

. (4.17)

With the help of (4.14) and (4.15) we can know derive an expression for the pair

density ∆ = 1
N

∑

k〈ĉ
†
k↑ĉ

†
−k↓〉. We obtain an equation that relates the pair density and

the Lagrange parameter:

∆ =
1

2N

∑

k

Γ
√

ε̃2
k + |Γ|2

. (4.18)

If we insert the expression for ε̃k in Eq. (4.18) we find that the right hand side includes

also the superconducting order parameter ∆.

On the other hand the HF method yields the standard gap equation from BCS theory:

∆ = 1/(2N)
∑

k(U∆)/
√

(εHF − µ)2
k + U2|∆|2. Here the SC gap is proportional to the

potential and reads 2U |∆|.
In Eq. (4.18) the SC gap is twice the Lagrange parameter 2|Γ|. Comparing the BCS

result we find the correspondence |Γ| ↔ |U |∆ so that |Γ|/∆ can be interpreted as an

effective pair potential. An analytical approach to the Lagrange parameter is discussed

in section 3.5.

For a numerical study we calculate the density of states (DOS) for the homogeneous

SC in the under doped regime. The density of states is defined as:

N(ω) = 2
∑

k

δ(ω −Ek). (4.19)

We take the mean field values of bosons at the saddle point and we obtain the Lagrange

parameters with the help of Eq. (3.54). We formulate the effective Hamiltonian (B.1)

that can be diagonalized numerically.

We obtain the energy spectrum {Ek} and thus we are able to calculate the DOS using

Eq. (4.19). The results for an 8 × 8-cluster are shown in Fig. (4.6).
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Figure 4.6: Right: Density of states for a homogeneous, under doped SC (Results for

an 8 × 8-cluster and Nh = 8). The dashed line the Fermi energy. Left: The gap 2|Γ|
versus the local interaction. The inset shows the pair density.

The Fermi energy is denoted EF . We find a finite band gap at the Fermi energy that

is given by the Lagrange parameters: 2|Γ| = 2
√

(λ1)2 + (λ2)2. The U -dependence of

the gap Γ is shown in the right graph. Additionally we show the results for the pair

density ∆ versus the local interaction in inset in the right-hand-side graph of Fig. (4.6).

The numerical results show that in the limit of U → 0 the order parameter ∆ ap-

proaches a finite value which can be explained as follows. In our results we obtain

Γ and ∆ from the saddle point of Eq. (3.45). But in section 4.2 we argue that in

the case of U/t = 0 the system reduces to a free electron gas with the dispersion

εk = −2t[cos(kx) + cos(kx)]. All one-particle states with k and |k| ≤ kF are occupied.

Since we investigate a finite cluster we can construct different electron configuration at

the Fermi edge in the first Brillouin zone (BZ). At the Fermi edge EF there exists a set

of possible discrete k-states with equal energy. All possible configurations contribute

to the ground-state wave function in the case of U/t = 0 which is not covered by the

numerical minimization.
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4.4 d-Wave Superconductivity

Although the main focus of this work is on s-wave superconductivity in the negative

U -regime a strong motivation for the investigation of d-wave superconductivity in the

repulsive model is obvious. As mentioned before experiments suggest that at low

temperatures the HTSC have a k-dependent energy gap ∆(k) with d-wave symmetry

[28, 29, 97].

Phase-sensitive symmetry tests, along with evidence from a number of non-phase-

sensitive techniques have been combined to provide evidence in favor of predominantly

d-wave pairing symmetry in a number of optimally doped cuprates. Exemplary we men-

tion an early work [98] concerned with the study of YBCO-based SQUIDs1. From the

measurements of the magnetic flux modulation one can determine the spatial anisotropy

of the phase of the order parameter. The results give evidence for a phase shift of π

that is predicted for the dx2−y2 pairing state. A detailed discussion of the results and

an overview on experimental methods is given in [26].

Motivated by these works we focus on the question if d-wave pairing might be favored in

strongly correlated systems with a repulsive, short range Coulomb interaction (positive

U). A study of dynamical pairing correlations for s- and d-wave symmetries based on

a second order energy expansion on top of the GA energy functional was done in [99].

Possibly the phase transition to a d-wave symmetric ordered state - if it exists - is of

first order in contrast to the transition to s-wave SC that is of second order. In contrast

to our discussion the method in [99] is sensitive to second order phase transition.

In the following we present our investigation based on general arguments and the nu-

merical study of the energies providing a direct approach to possible phase instabilities.

1SQUID: Superconducting QUantum Interference Device
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d-Wave Order Parameter

There exist considerable theoretical works [100, 101] based on the t-t′-J-model that

study the possibility of d-wave pairing symmetry. Given both s-wave and d-wave pair-

ing channels the conclusion of these studies is that the d-wave pairing depends on the

band structure and doping rate. In the framework of the t-J-model one derives for the

gap: ∆k = −1/N
∑

k′ Vk−k′∆k′/(2Ek′), with a positive (antiferromagnetic) potential

Vk−k′. Ek =
√

ε2
k + ∆2

k is the quasi particle energy in the superconducting state. If

this potential is strongly peaked at Q = k− k′ (where Q = (π, π) is the antiferromag-

netic wave vector) and if we assume ∆k > 0 we derive ∆k ≈ −VQ∆k−Q/(2NEk−Q) and

thus we obtain: ∆k−Q < 0.

For a 2-dimensional lattice we introduce a nearest neighbor pair field operator in terms

of the creation and annihilation operators:

∆̂d
x2−y2

=
∑

<ij>

[
∆ij ĉi↓ĉj↑ + ∆∗

jiĉ
†
i↑ĉ

†
j↓
]
. (4.20)

In general the order parameter ∆ij depends on the spatial direction between the lattice

sites i and j. Now we assume that the system is homogeneous and isotropic. Further on

we assume that the order parameter is real and it depends only on the spatial distance

of the nearest neighbors i and j: ∆ij = ∆(i−j). Therefore we parameterize:

∆ij = ∆0

{[
δ(Rx

ij + 1)δ(Ry
ij) + δ(Rx

ij − 1)δ(Ry
ij)
]

(4.21)

−
[
δ(Rx

ij)δ(R
y
ij + 1) + δ(Rx

ij)δ(R
y
ij − 1)

]}
.

with Rij = Ri − Rj. Thus the Fourier representation of the pair field operator (4.20)

reads:

∆ =
∑

k

∆
d

x2−y2

k

[
ĉ†k↓ĉ

†
−k↑ + ĉ−k↑ĉk↓

]
, (4.22)

where the momentum structure of the order parameter yields:

∆
d

x2−y2

k = 2∆0 [cos (kx) − cos (ky)] . (4.23)
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Figure 4.7: Left: density plot of the momentum structure of ∆
d
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k in the first BZ.

Right: Schematic plot in the first BZ. The momentum vector Q connects states with

positive and negative order parameter.

A schematic plot of the order parameter (4.23) is shown in Fig. (4.7). The antiferro-

magnetic wave vector Q = (π, π) connects the section in the first Brillouin zone (BZ)

including positive and negative values of the parameter (∆
d

x2−y2

k = −∆
d

x2−y2

(k+Q) ).

Requirements to the Hamiltonian and Characterization of

Possible Solutions

In the last section we discussed the nature of an effective Hamiltonian (B.1) that

we derived from the GA results on the saddle point level. The kinetic part of this

Hamiltonian includes non local pair correlations (e.g. ĉ†i↑ĉ
†
j↓, i 6= j).

In contrast the Hartree-Fock approximated Hubbard Hamiltonian (2.7) includes only

on-site pair correlation. Thus a HF solution cannot support a possible d-wave or-

dering. As earlier mentioned we need a Hartree-Fock result for the initialization of

the Gutzwiller variational approach. Therefore we add a new constraint to the HF
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Hamiltonian that explicitly brings non-local pair correlation into the equation. The

additional term reads:

Ĥd
x2−y2

=
∑

i6=j

ĉ†i↑ĉ
†
j↓ĉi↓ĉj↑

HFA
=
∑

i6=j

[
∆ij ĉi↓ĉj↑ + ∆∗

jiĉ
†
i↑ĉ

†
j↓
]
−
∑

i6=j

∆ij∆
∗
ji, (4.24)

where we already applied the HFA. We use the short hand notation ∆ij = 〈ĉ†i↑ĉ
†
j↓〉 and

∆∗
ij = 〈ĉi↓ĉj↑〉. We assume a homogeneously charged system and and we restrict to

nearest-neighbor-correlations. Thus (4.24) reduces to:

Ĥd
x2−y2

=
∑

i

∆0

[

c†i↑c
†
i+x↓ + c†i↑c

†
i−x↓ − c†i↑c

†
i+y↓ − c†i↑c

†
i−y↓ (4.25)

+ ci↓ci+x↑ + ci↓ci−x↑ − ci↓ci+y↑ − ci↓ci−y↑

]

−N2∆2
0,

with i ± x for the nearest neighbors in x- and i ± y for the nearest neighbors in y-

direction.

We mentioned that we investigate the possibility of d-wave ordering in the framework of

the effective Hamiltonian (B.1) that is based on the GA saddle point solution. We argue

that from the structure of this Hamiltonian the existence of a d-wave state requires a

local magnetization and s-wave superconductivity. In this case we obtain zi↑ 6= zi↓ and

a local pair ordering J±
i 6= 0. The off diagonal elements Ai

12/21 =
J±

i

2Jz
i

[zi↑ − zi↓] cos(ϕi)

of the MFA matrix Ai do not vanish. Thus the non local pair correlation 〈ĉ†i↑ĉ
†
j↓〉+h.c.

contributes to the saddle point energy.

Under this condition we can assume
(
Ai

11A
j
12 − Ai

12A
j
22

)
6= 0 and the effective Hamil-

tonian (B.1) reads:

ĤMFA =
∑

ijσ

T σ
ij ĉ

†
iσ ĉjσ +

∑

ij

[

T+
ij ĉ

†
i↑ĉ

†
j↓ + T−

ij ĉi↓ĉj↑

]

(4.26)

+
∑

iσ

[
U

2

(

1 −
√

1 + tan2(ϕi)

)

− µ− λ−σ
i

]

ĉ†iσ ĉiσ

+
∑

i

[

Γ+
i ĉ

†
i↑ĉ

†
i↓ + Γ−

i ĉi↓ĉi↑

]

.
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We combined the terms containing the entries of the matrix Ai in T σ
ij and T±

ij :

T ↑
ij = tij(A

i
11A

j
12 − Ai

12A
j
22) and T ↓

ij = tij(A
i
22A

j
22 − Ai

21A
j
12) (4.27)

T+
ij = tij(A

i
11A

j
12 − Ai

12A
j
22) and T−

ij = tij(A
i
21A

j
11 − Ai

22A
j
21)

Further we combined the Lagrange parameters λ↑i = λ4
i (λ↓i = λ5

i ) and Γ±
i = −(λ1

i ∓λ2
i ).

After Fourier transformation of the Hamiltonian (4.26) we obtain:

ĤMFA =
∑

kσ

ε̃σ
k ĉ

†
kσĉkσ +

∑

k,q

Γ+
q ĉ

†
k↑ĉ

†
−k+q↓ +

∑

k,q

Γ−
q ĉ−k+q↓ĉk↑ (4.28)

+
∑

k

(∆d+
k ĉ†k↑ĉ

†
−k↓ + ∆d−

k ĉ−k↓ĉk↑),

where we used Γ±
q = 1

N

∑

i Γ
±
i exp(∓iRiq). Now we require that the local contribution

(s-wave part) to the SC order parameter is homogeneous and the non-local correlations

depend only on the relative lattice spacing Rij = Ri −Rj. Thus we obtain for the non

local part:

∆d±
k =

∑

i

T±
ij exp

(
∓ ikRij

)
. (4.29)

For the s-wave part we derive in this case: Γ±
q = Γ±δ(q). The explicit Fourier transform

can be found in appendix B.2. As in the last section we eliminate the angle ϕi with

help of Eq. (3.16) and the local pair density (s-wave part): ∆s = 1
N

∑

i〈ĉ
†
i↑ĉ

†
i↓〉. The

effective single electron dispersion reads:

ε̃σ
k =

∑

i

{

T σ
i +

[

U

2

(

1 −
√

1 +
4|∆|2

(n− 1)2

)

− µ̃σ
i

]}

exp
(
−iRijk

)
, (4.30)

where we combined the chemical potential and the Lagrange parameter µ̃σ
i = µ − λσ

i .

In Eq. 4.30 we restrict to NN-hopping and we use the fact that the d-wave correlations

depend only on the relative lattice spacing (T σ
ij = T σ

i ). Applying the Bogoliubov

transformation (4.14) we transform to the new operators γ̂k,0 and γ̂k,0 and we obtain:

Ĥeff
d

x2−y2
=
∑

k

Ẽk

(

γ̂†k,0γ̂k,0 + γ̂†k,1γ̂k,1

)

+
∑

k

(

ε̃k − Ẽk

)

. (4.31)
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where we use the following definition:

Ẽk =

√

ε̃2
k + |Γ+ + ∆d+

k |2. (4.32)

The local pair density ∆s can now be derived as discussed in section 4.3. We find an

equation that relates the local pair density with the Lagrange order parameter Γ+ and

the d-wave order parameter:

∆s =
1

2N

∑

k

(Γ+ + ∆d+
k )

√

ε̃2
k + |Γ+ + ∆d+

k |2
(4.33)

The equation shows the that d-wave symmetric ordering coexists only with s-wave

superconductivity. If we insert the expression (4.30) for ε̃k in Eq. (4.33) we find that

the right hand side includes also the local superconducting order parameter ∆s. If we

require the local pair correlation to be zero (∆s = 0) it follows Γ± = 0 and T± = 0 and

Eq. (4.33) can hold only if ∆d+
k = 0 for all values of k. Comparing the results (4.33)

with the standard gap equation from BCS theory where the SC gap is proportional to

the potential we find correspondence |Γ+ + ∆d+
k | ↔ |U |∆ so that |Γ+ + ∆d+

k |/∆ can

be interpreted as an effective k-dependent potential. From the numerical point of view

we try to answer the question: Can a state including non local pair correlations be a

possible solution in the GA approximated Hubbard model and does this correlation

lower the energy? We assume a 10× 10 square lattice where we allow nearest neighbor

hopping with the amplitude t and next nearest neighbor hoppings with the amplitude

t′. The dispersion of non the interacting system reads:

εk = −2t(cos(kx) + cos(ky)) − 4t′ cos(kx) cos(ky). (4.34)

We introduce the spin order parameter: ∆spin
q = 1

N

∑

i(ni↑ − ni↓) exp(qRi), to classify

the spin structures which may coexist with a d-wave state. We investigate two different

structures namely: (1) Néel ordered states with q = (π, π) and (2) collinear spin

ordered states with q = (π, 0).
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Motivated by the work [102,103] we assume t′/t ∈ [−0.5, 0.5] and |U |/|t| ≫ 1. We work

in the strongly correlated regime near half filling (n = 1 − δ) with δ ≪ 1. Both spin

states fulfill the requirements that are necessary for the formation of d-wave ordering

so that the entries of the matrix Ai do not vanish. We studied the non-local pair

correlation 〈ĉ†i↑ĉ
†
j↓〉 which is given by the Fourier transform:

∆(k,q − k) =
1

N

∑

i6=j

〈ĉ†i↑ĉ
†
j↓〉 exp

[
i(kRij + qRj)

]
. (4.35)

We evaluated (4.35) at q = (0, 0) in the first Brillouin zone (BZ). In general we found

for all structures and all choices of parameters ∆(k,−k) ≈ 0. A GA saddle point

solution with a significant d-wave symmetric non-local pair ordering with a coexisting

(π, π)- or (π, 0)-spin order does not exist. In both cases we found for the SC order

parameter of the s-wave part very small values: ∆s ∼ 10−4 to ∆s ∼ 10−6. In the

positive U regime we found for zero and for finite ratios t′/t the standard spin ordered

states that show a significant magnetization. As a consequence of the small local pair

densities (s-wave part) the off-diagonal elements in the GA kinetic energy term (T+
ij and

T−
ij ) in Eq. (3.18) are also small in the same order of magnitude. Due to the precision

of our numerical method we did not find a significant contribution to the saddle point

energy for all cases.

In accordance with Eq. (4.33) and the analytical argumentation we found that a zero

local SC implies that the non-local pair-correlation vanishes. From our results we

conclude that the d-wave symmetric state in the positive U -regime is not a solution of

the Gutzwiller approximated Hubbard model.



Chapter 5

Inhomogeneous Solutions

The complex phase diagram for high-Tc superconductors that was discussed earlier

shows the competition between different ordered phases. In particular, the debate

focusses on the nature of the pseudo-gap region and the question whether a real phase

transition exists in that region.

As we outlined in chapter 1 the high-Tc materials tend to the formation of inhomo-

geneous charge- and spin-structures. Among other experimental techniques surface

sensitive methods give evidences for incommensurate spatial modulation of the elec-

tronic structure in high-Tc materials.

In this chapter we investigate the GA solution of the Hubbard model that we prepared

with stripe-shaped charge- and pair-ordered domains. We call a state a striped state if

there exist spatially separated domains where the order parameter changes significantly

[104]. On this basis we classify the inhomogeneities in the charge structure in the next

section. We characterize the structure by the use of the pseudo charge vector field Ji

and the current density as discussed in section 3.7. We present stripe solutions of the

attractive Hubbard model with and without nearest-neighbor-repulsion (parameter V )

and we discuss the stability of these solutions.

73
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This chapter is organized as follows: First we present solutions where we set the inter-

site repulsion to zero (V = 0). We present solutions where the charge is arranged

in form of stripes with a homogeneous charge and pair ordered structure within the

stripes. We discuss the stability of a solution with Nh holes and with an energy E(Nh)

by comparing this energy with a half filled homogeneous superconductor with the

energy ESC . We introduce than the binding energy per hole:

eh =
E(Nh) − ESC

Nh
. (5.1)

We discuss this quantity with respect to the hole concentration in the stripes. A

mathematical analysis allows a conclusion for an optimal doping or stripe filling [105]

in view of the stripe formation.

In the next section we present results for V > 0. First we investigate the influence

of a finite value of V without arranging the charge order in different domains. These

stripeless solutions for nearest-neighbor-repulsion showed a new inhomogeneous struc-

ture. The CDW order parameter has constant phase over the cluster and the SC order

parameter showed structure of a pair density wave.

In the third section we present stripe solutions for V > 0. The solutions are character-

ized by domains where the charge oder parameter shows a phase shift. The domains

are separated by superconducting domain walls.

In the last section of this chapter we investigate point-like charge and pair inhomo-

geneities. These are probably the simplest form of inhomogeneities. We show results

for local charge inhomogeneities in small systems and in comprehension with the far-

field-ordered charge structures. In this context we focus in the second part of the last

section on polarons and bipolarons in comparison to vortices and anti-vortices. We also

present our result in view of the interplay of these structures. An early comprehensive

overview is given in [106].
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5.1 Homogeneous Charged Stripes

As a first application we prepare structures under the condition of zero inter-site re-

pulsion V = 0. The charge carriers are arranged in domains where the charge density

is homogeneous within the domains. We consider a 16 × 4-cluster in the underdoped

regime with 16 holes. In the upper panel of Fig. (5.1) we present the contour plot of the

charge density ρii i = (ix, iy). The holes are located in the four dark shaded domain

walls separating regions of constant charge density. The lower panel shows the pair

density ρ↑↓ii = 〈ĉ†i↑ĉ
†
i↓〉. The pair density corresponds to the charge structure. The SC

order parameter changes its sign in the vertical stripes and varies from −0.4 to +0.4.

These regions are separated by domain walls where th SC order vanishes. The domain

walls of the pair density correspond to the domain walls of the charge density.

In Fig. (5.2) we present the three graphs corresponding cuts along the physical x-axis.

The graphs provide a quantitative picture of the charge density, the pair density and

the double occupation. The charge density forms stripes where the electrons are evenly

distributed in the SC domains. The holes prefer the walls where the SC order parameter

vanishes.

Because normal charge and SC vanish the expectation value of the charge vector

will take 〈Ĵi〉 = (0, 0,−1) within the domain walls. In Fig. (5.3) we present the x-

y-projection of the vector Ji for this example.

In a next step we like to compare the energy of a state with homogeneous charged

stripes and the homogeneous SC. We find the energies of the striped state is on average

2.4% above the energy of a homogeneous SC (Tab. 5.1). We find that the difference

in energies arises from the difference in the kinetic part of the energy. It increase

whereas the potential part decreases with the formation of stripes. We found explicitly

Estripes
kin > ESC

kin but in contrast Estripes
pot < ESC

pot .

In our investigation we could not find the stripe state to be the ground state. The
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Figure 5.1: Contour plots of the charge- and pair-density for hole-doped 16× 4-cluster

with 4 plain stripes (Nh = 16, t′/t = 0.0 and U = −8 )
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Figure 5.2: Cuts along the x-axis: (a) charge density,(b) SC order parameter ,(c)

double occupancy. (Nh = 16, t′/t = 0.0 and U = −8)

potential term seems to play an important role for the stripe formation. This motivates

us to extend the potential interaction by the inter site repulsion term.

Additionally we mention that the discussed stripe arrangement of SC domains with

different phases that are separated by normal conducting domain walls is a Josephson-

like structure. For this reason we calculated the current density with the help of

Eq. (3.69) but we found no current flowing through the domain walls.



78 CHAPTER 5. INHOMOGENEOUS SOLUTIONS

Doping Homogeneous SC Stripes

(holes) eSC/t eStripes/t

0 -4.48 -4.37

4 -4.23 -4.13

8 -3.98 -3.88

Table 5.1: Comparison of the energies per lattice site for homogeneous SC and a state

with 4 charge stripes in units of the hopping parameter t. (Results are given fir a

16× 4-cluster with t/t′ = 0 and V/t = 0. Precision: 2nd position after decimal point).

Stability and Optimal Stripe Filling

We like to give a statement in view to the stability of a structure as discussed above.

We compare the energy of stripe solutions with the ground state energy of a half-filled

homogeneous charged superconductor ESC . At half filling the homogeneous SC and

the CDW are energetically degenerate in the negative-U -regime as discussed earlier.

We consider 16×4 four SC domains separated by hole doped domain walls with ∆SC =

0. In the density plot Fig. (5.1) and the charge vector field in Fig. (5.3) one finds stripes

with a weak charge carrier concentration. The holes are located in the domain walls

that are positioned at ix ∈ {2, 6, 10, 14}. Because of symmetry reasons the holes are

equally distributed over the stripes. We like to discuss the binding energy per hole

(5.1) as function of the doping rate or the hole concentration in the stripe. Given the

doping rate Nh we evaluate the hole density:

ν =
Nh

nsLy
(5.2)

where Ly is the number of lattice sites in the stripes along the y-direction and ns is

the number of stripes in the cluster.

In Fig. (5.4) we present the energy per hole versus ν. We changed the doping rate,
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system size and the stripe dimension. In this way we obtain a set of different values

for the hole density in the stripes ν. We investigate the influence of the next nearest

neighbor (NNN) transitions for a finite parameter t′. In the diagram we present results

for different ratios of the parameters t′/t as appropriate for cuprates. A negative ratio

of t′ and t favors the formation of partly filled metallic bands in the spin channel [105].

For a qualitative analysis and to guide the eye we fitted the results in Fig. (5.4). For

this reason we expand the the binding energy per y-length in a Taylor expansion up to

second order in terms of ν:
EStripes(Nh) − ESC

Lyns

≈ A+Bν + Cν2. (5.3)

With the help of (5.1) and (5.2) we obtain:

eh ≈ A
1

ν
+B + Cν. (5.4)

This curve corresponds to the fits in Fig. (5.4). On the one hand we find that the

system prefers hole filled stripes in the under doped regime. On the other hand we
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Figure 5.4: Binding energy per hole for stripes in y-direction as function of the stripe

filling. ν for different values of t′/t. The results where calculated for a 16 × 4-cluster

and 4 domain walls. The dashed lines are the curve fits to guide the eye.

cannot find a local minimum in the energy per hole eh for all choices of t′/t. This

means also for the analytic minimum: νmin /∈ [0, 1]. From the local minimum of (5.4)

at νmin =
√

A/C we conclude A ≥ C.

At this point we can summarize our results for the homogeneous stripes at V = 0 as

follows: Within the attractive Hubbard model (at V = 0) we found no spontaneous

symmetry breaking with regard to stripe formation. For all choices of parameters we
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found the stripe solutions instable with respect to the homogeneous superconducting

ground state.

In the next section we take into account the inter-site repulsion (V > 0) in order to

stabilize the stripe solution.

5.2 Stripe-less Solution for V > 0

In this chapter we focus on the influence of the inter-site repulsion term. It was

proposed earlier [107] that the attractive Hubbard model with inter-site repulsion at

half filling prefers the CDW ground state in view to the SC state. Our motivation was

to influence the potential part of the energy and to stabilize the solution. We assume

that solutions including anti-phase domains are preferred in view to homogeneous SC

or CDW solutions. As we discussed in section 3.3 we add the term Ŵ = V
∑

<ij>(n̂i↑+

n̂i↓)(n̂j↑+n̂j↓) to the Hubbard Hamiltonian. We decouple the term with the well-known

HFA. The parameter V is a positive value representing the repulsion between fermions

on adjacent lattice sites.

At first we discuss the influence of V without domain separations. We consider a

16 × 4 cluster and present our results for V = 0 at half filling (Nh = 0). As shown in

Fig. (5.6) we obtain a CDW state with a homogeneous superconductor characterized by

a homogeneous pair density. The top panel shows the charge density ni of the cluster.

The lower panels show the z-y- and the x-y-projection of the vector Ji. The alternating

z-component represents the CDW structure of the normal charge. The x-y-projection

in the lower panel is the superconducting part of the charge vector, which represents a

homogeneous SC. In a next step we compare the energy of the CDW (ECDW ) and the

energy of the homogeneous SC (ESC) by calculating the energy difference:

∆(EGA) = ECDW − ESC. (5.5)

The energy difference as function of the inter-site repulsion V/t is shown in Fig. (5.5).
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Figure 5.5: Energy difference ∆(EGA) Eq. (5.5) at half filling (Nh = 0).

As we see from the graphs a homogeneous SC and CDW order are degenerated (∆EGA =

0) if the inter-site repulsion vanishes (V = 0). In the case V > 0 the CDW state has

lower energies. The inter-site repulsion favors the formation of CDW ordering. The ho-

mogeneous SC is a solution of the restricted charge rotational invariant GA-functional

but it cannot be the ground state.

Now we focus on solutions in the under doped regime with V > 0. Again we consider

a 16 × 4-cluster which is doped with 8 holes (doping rate δ = 0.875). In the two

upper panels of Fig. (5.7) we show the charge and the pair density. In the under doped

regime we find that the CDW state is energetically preferred in the normal conducting

channel. As we can see from the x-y-projection of the vector Ji the SC part has a

checkerboard like density (∆ixiy ∼ ∆0[1+(−1)(ix+iy)]) which we refer to as pair density

wave (PDW). In our investigation we found that the PDW is stable. It has the lowest
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energy compared to the homogeneous charged SC and the homogeneous SC with CDW

ordering.

Figure 5.6: Charge structure for half filling. (Nh = 0) Top: Charge density ni (CDW).

Lower panels: z−y and x−y-projection of the charge vector Ji. (Results for: U/t = −6,

V/t = 0.02, t′/t = 0.
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Figure 5.7: Charge structure for a PDW state in the hole doped regime(Nh = 8).Top

panels: Density plots of the charge ni and pair-density ∆i. Bottom panels: y-z- and

x-y-projection of the charge vector Ji). (Results for: U/t = −10, V/t0.10, t′/t = 0)
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5.3 Stripes with V > 0

In this section we investigate the stripe formation and the interplay of the stripes for

under doped systems at V > 0. We consider a 16 × 4-cluster. The cluster is divided in

4 domains separated by domain walls at the lattice sites located at ix ∈ {2, 6, 10, 14}.
Within the domains the normal charge is arranged in form of a CDW.

The holes are located in the domain walls that are characterized by a small but homo-

geneous charge density. The pair density has a finite value and it is homogeneous in

the domain walls. In the top panels of Fig. (5.8) we show the density plots of the local

charge ni and pair density ∆SC
ix,iy = 〈ĉ†i↑ĉ

†
i↑〉.

In the lower panels of Fig. (5.8) we present the projection of the charge vector field.

The upper panel contains the normal charge while the lower panel contains the super-

conducting components of the vector Ji. The field of the normal charge (Jz-component)

changes its orientation from one domain to the other. The vector field rotates through

the walls maximizing the superconducting order parameter ∆SC
ixiy .

The charge ordered domains have a phase shift from one domain to the other. In order

to give a quantitative state we introduce the local charge order parameter:

∆CDW
ix,iy = (−1)(ix+iy)

[
〈n̂i〉 − n0

]
, (5.6)

where we used the average charge density n0 = 1
N

∑

i〈n̂i〉. The local order parameter

in Eq. (5.6) reflects the phase of the CDW with respect to the lattice site.

In Fig. (5.9) we present order parameters for the normal charge from Eq. (5.6) and for

the pair density ∆SC
ix,iy along the x-axis for different ratios of V/t. The local values are

averaged along the y-axis. The value for ∆CDW
ix,iy changes its sign from one charge ordered

domain to the other and it vanishes for homogeneous charged domain walls. The pair

density ∆SC
ix,iy has its maximum at the domain walls, where the superconducting order

appears. An increasing inter-site repulsion favors the formation of the domains.
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Figure 5.8: Phase shifted CDW domains: (Top: Charge- and pair-density. (Bottom:

Vector field of charge vector. (Results for: Nh = 8, U/t = −5, t′/t = −0.3, V/t = 0.1).
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(Top: CDW order parameter, Bottom: SC order parameter ). Results are given for

Nh = 8, U/t = −5, t′/t = −0.3, V/t = 0.1.

At this point we compare the energies of the different structures that we have dis-

cussed in the last sections. In Fig. (5.10) we summarize the energy for the different

structures versus the inter site repulsion in the under-doped regime. For an orientation

we included the homogeneous charged SC (black solid line). We found that the most

stable structure is a CDW state that overlaps a pair ordered superconductor (PDW) as

discussed in section 5.2 and that is sown Fig. 5.7). These structures does not contain

stripes. The dashed curves in Fig (5.10) represent the saddle point energies of structures

that include charge ordered domains characterized by a phase shifted order parameter
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as discussed above. For completeness we included graphs for these phase separated

structures with two (triangle up) or four (triangle down) domains. We can conclude

that the PDW is the ground state and it costs energy to create a phase separation from

a PDW state.

Further we conclude that the negative Hubbard U favors doubly occupied sites and sup-

ports the formation of superconductivity in homogeneous and inhomogeneous states.

Inhomogeneous, striped states lead to a local increase in superconducting correlations

but a phase separation does not appear spontaneously. The inter-site repulsion V

favors the stabilization of charge- and pair-density wave ordering.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
V/t

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3

E
ne

rg
y 

Homogeneous SC
Pair Density Wave
4 CDW Domains
2 CDW Domains

|U|/t=10, Nh=8

Figure 5.10: Comparison of the energy of homogeneous systems and stripe solutions

versus the inter site repulsion V/t. Black solid line: Homogeneous SC. Red line: Pair

density wave. Dashed lines: Domain separated structures.
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Stability Analysis of CDW Domains

Because we found that the holes prefer to be located in the domain walls we inves-

tigate the influence of the doping rate to the phase separation for different values of

V > 0. Additionally we present examples where we included next nearest neighbor

transitions. The kinetic part of the GA energy functional is modified by finite values

of the parameter t′/t.

We calculate the energy per hole as introduced in Eq. (5.1) as a function of hole con-

centration in the domain walls.

In view to our previous discussion we have to choose an appropriate reference state to

calculate the difference in energy in the case of doping. For this reason we take the PDW

at half filling as reference energy EPDW instead of the homogeneous superconductor.

Thus we calculate the binding energy per hole as: eh = (EStripes(Nh) − EPDW/)Nh.

For different cluster dimensions we calculate the hole doping of the domain walls as:

ν = 1 − 1

NDW

∑

dw

ni. (5.7)

The sum goes over the lattice sites in domain walls. NDW is the number of lattice sites

in the domain walls.

In Fig. (5.11) we present results for different ratios of V/t and t′/t where we considered

a 10 × 10-cluster divided into two CDW domains and two domain walls. As outlined

in the previous discussion the domains are characterized by different phases of CDW

order parameter. The domain walls have weakly but homogeneously charged lattice

sites and a homogeneous superconducting order.

We conclude that the inter-site repulsion term favors the formation of domains (5.9). A

growing ratio of V/t supports the stripe formation and the (hole) filling in the domain

walls that is shown in the right panel of Fig. (5.11). In the case of V = 0 no phase

separation in the CDW channel takes place. A growing ratio of U/t supports the CDW

formation but it acts against the phase separation in the cluster for larger values of U .
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The NNN-interaction t′ supports also the hole concentration in the domain walls. We

found that a finite value of t′/t reduces the width of the domain walls in the small U/t

and small V/t regime. In contrast to the results for the spin domains [105] we found

no evidence for a local minimum of the energy per hole and thus we could not find an

optimal stripe filling and doping rate.
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Figure 5.11: Binding energy per hole for stripes in y-dimension versus the stripe filling

for various parameter sets. The dashed lines are the curve fits to guide the eye. The

results are given for a 10 × 10 cluster and two SC domain walls.
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5.4 Vortices and Point-Like Inhomogeneities

Now we like to expand our investigation to point-like inhomogeneities and vortex struc-

tures in the framework of the Gutzwiller formalism of the Hubbard model.

The class of high-Tc superconductors are strongly type II and, as such, their phe-

nomenology is dominated by the presence of vortices over most of the phase diagram.

The importance of this topic was realized early so that a comprehensive overview is

given in [106]. Theoretical publications on the formation of coplanar, spin vortex phases

in general have been published some years ago [108–111]. A study on the vortices, par-

ticular in framework of the Hubbard model, was done in [112], where the focus lies

on vortices in magnetic textures. Motivated by these works we focus on the question

if vortex structures play a role in the charge-rotational invariant GA of the Hubbard

model.

Self Trapped Polarons and Single Vortex States

As a first step we study the charge structure around a point-like inhomogeneity (single

polarons). We consider a 7 × 7-cluster where we use open boundary conditions. We

prepare a self-trapped polaron by adding an extra electron to a plain CDW state where

the SC parameter is zero over the cluster. The density plots of the charge distribution

and the x-z-projection of the vector Ji reflecting normal and SC charge is shown in

Fig. (5.12). We consider a second structure that includes a single polaron on a CDW

together with a local, point-like SC peak in the center of the lattice as shown in

Fig. (5.13). At this point we define the SC order parameter locally as the length of the

x-y-projection of the expectation value of the vector Ji:

∆SC
i =

√

〈Jx
i 〉2 + 〈Jy

i 〉2, i = (ix, iy), (5.8)

As a next step we consider a homogeneous, superconducting order on a homogeneously
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Figure 5.12: Charge density nix,iyand x-z-projection of the charge vector Ji for a self

trapped polaron 7× 7-cluster with zero SC. (Results are given for Ne = 50, U/t = −5,

V/t = 0, t′/t = 0.)

charged cluster. We disturb the system locally by adding an extra charge to the lattice

where we respect the charge conservation within the whole cluster. In analogy to the

magnetic vortices that are discussed in [111,112] we prepare the structure of a possible

vortex solution as follows. We consider a charge flow that rotates around the localized

extra charge. At this point we classify two types of solutions namely vortex and anti-

vortex configuration. In case of a vortex the current rotates anti-clockwise around the

centered charge where in case of an anti-vortex the current rotates clockwise around

the core. In Fig. (5.14) we show the x-y-projection of the vector field Ji for the vortex-

(top) and the anti-vortex-solution (bottom) on a 7 × 7-cluster with a total number of

electrons of Ne = 50. In the right-hand-side panels we show the normal current density

corresponding to Eq. (3.69) namely jzi ∼
[

Ĥ, Ĵz
i

]

. The charge density ni and the SC

order parameter for the vortex corresponding to Eq. (5.8) is shown in Fig. (5.15). Both

order parameters approach a constant value in the far field of the vortex.
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Figure 5.13: Charge structure of a single polaron with local SC. Top: charge density ni.

Bottom: local SC order parameter ∆SC
i . (Results are given for Ne = 50, U/t = −10,

V/t = 0, t′/t = 0.)
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Figure 5.14: Charge and current structure for a vortex (Top) and anti-vortex (Bottom).

Left-hand-side panels: x-y-projection of the charge vector Ji. Right-hand-side panels:

normal current density jz ∼ [H, Jz]. The SC order parameter is zero in the center of

the (anti-)vortex core. The results are given for a single electron doped into the cluster.

(U/t = −10, Ne = 50, V/t = 0, t′/t = 0)
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Figure 5.15: Charge structure of a (anti-)vortex state. Top: charge density. Bottom:

local SC order parameter ∆SC
ixiy. (Results are given for Ne = 50, U/t = −10, V/t = 0,

t′/t = 0.)
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Energy of Vortices

In this section we like to compare the energies of the four different charge distributions

that we have presented above. We summarize the total energies for various U/t in

Tab. (5.2). The numerical precision of results is of order 10−2.

Parameter Single Polaron Single Polaron Vortex Anti Vortex

and SC

U/t = −5 E = −154.865 E = −155.400 E = −155.412 E = −154.796

U/t = −8 E = −219.758 E = −219.776 E = −219.711 E = −219.751

U/t = −10 E = −245.757 E = −266.074 E = −265.925 E = −265.931

Table 5.2: Comparison of the total energies in units of t for single a (anti-)vortex and a

single polaron in an electron doped 7 × 7-cluster with Ne = 50, t′/t and V/t = 0. The

point charge is at position (4, 4). The precision is to 2nd position after decimal point.

We see from the saddle point energies that the vortex and anti-vortex states are de-

generate. For moderate ratios U/t the results show no significant differences in the

energy to the CDW single polaron state. In the large-U -regime (e.g. U = −10) we find

that the states with SC order are energetically preferred. It has been already discussed

in literature that the energy of a single planar vortex has the well known logarithmic

dependence on the radius Rs of the vortex [113]. This is given by the function:

eV = C ln

(
Rs

ra

)

, (5.9)

where C is a parameter that depends on the charge. Rs is the radius of the vortex

and ra is a constant of order of the lattice spacing. This constant ensures that a cutoff

appears if the radius becomes smaller than the unit cell.
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On this basis we compare the influence of the system size on the energy per hole

(electron). We investigate three different structures: In case of an electron doped

system we prepare a CDW including a single polaron that is centered in the cluster.

The second system is also a single electron doped state where we calculated the energy

for a site-centered vortex state.

In case of hole doping we present results for an inter-site centered vortex. For all three

structures we calculated the energy per lattice site ed. We compare this result with

the energy eSC of a homogeneous charged superconductor at half filling. Finally we

calculate the energy per dopant:

eh =
ed − eSC

Nd

, (5.10)

where Nd is the number of electrons Ne in case of electron doping or the number of

holes Nh in case of hole doping.

We present the energy per electron (hole) in dependence of the lattice dimension Nx

for the three different structures in Fig. (5.16). The energies for the electron-doped-

single polaron and site-centered vortex structure is presented in the top graphs. The

lower graph includes the energy per hole for the inter-site centered vortex. The graphs

include curve fittings to guide the eye. In order to illustrate the fitting in our graphs we

start with the logarithmic function for the energy per lattice site Eq. (5.9). Obviously

the x-dimension of the cluster is proportional to the radius of the vortex where the

lower limit is a system size of 2× 2. In our case the minimum radius is ra = 1 which is

the lattice constant. The lower energy limit is era
6= 0. From Eq. (5.9) we know eV = 0

for Rs = ra. We cannot really identify the lattice dimensions with the vortex radius.

For this reason we modify the Eq. (5.9) using Nx ∼ 2Rs. Further we add a correction

term era
that ensures that the lower limit of the energy vortex is finite. The vortex

energy reads:

eV ∼ C ln

(
Nx

2

)

+ era
. (5.11)
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Figure 5.16: Top: Energy per electron for single electron doped site-centered vortex.

Bottom: Energy per hole for an under doped inter-site-centered vortex (V/t = 0,

t′/t = 0) Eq. (5.10). The lattice dimension is the number of sites Nx in x-direction.
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In order to keep an equivalent structure of the equation (5.9) we rearrange the equation:

eV = C ln

(
1

2
exp

(era

C

)

Nx

)

. (5.12)

We can now identify the vortex radius as Rs = 1
2
exp

(era

C

)
Nx.

Bi-Polarons and Vortex-Anti-Vortex Pairs

In the next part we like to investigate the interplay between two point-like charges

trapped in the CDW lattice (bi-polaron) in comparison with localized pairs of a vortex

and anti-vortex (VAV-pairs). The interplay between VAV-pairs was discussed in the

case of spin textures in [112] where the spin components in the x-y-plane are given by

Si = S0 exp(iQRi)
[
cos(φ1−φ2)ex− sin(φ1−φ2)ey

]
+Szez. Q is the antiferromagnetic

wave vector. If one applies the attraction-repulsion transformation (appendix C.2) one

obtains the charge field Ji of a VAV-pair structure:

Ji = J0

[
cos(φ1 − φ2)ex − sin(φ1 − φ2)ey

]
+

1

2
(ni − 1)ez, (5.13)

where we added the z-component Jz
i = 1

2
(ni − 1) for the normal charge. J0 is the

length of the x-y-projection of the charge vector. The parameters φ1 and φ2 refer to

the angles between the x-axis and the vectors connecting vortex and anti-vortex core

and the site Ri. An overview of the charge vector field and the normal current is shown

in Fig. (5.17) where the VAV-pair is localized at the lattice sites (2, 2) and (5, 5). The

distance between the cores is
√

18 lattice units.

As a next step we like to study the interplay between the vortex and the anti-vortex.

We can conclude that an attractive or repulsive interaction exists if the energy of a

VAV-pair varies with the relative distance. For this reason we calculated the total

energy for VAV-pairs and bi-polarons on a 6 × 6 and a 10 × 10-cluster in view to the

relative distance of the cores in unit of the lattice constant. We summarized the results

in Tabs. (5.3).
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Figure 5.17: Left: x-y-projection of the charge vector Ji for a VAV-pair on a 6 × 6-

cluster. Right normal current density jz
i Eq. (3.69). The results are given for Ne = 38,

U/t = −12, V/t = 0, t′/t = 0.

The GA energies in Tabs. (5.3) are computed up to a precision of 10−3. From the

results we can state that the VAV-pair has on average 2h lower energies than the

polaron. We notice an increase in the energies with the increasing distance in the same

order of magnitude. From our examples we can conclude that there is possibly a small

vortex-anti-vortex attraction.

The results give only a very local picture because our numerical method is restricted to

a relatively small cluster size of at most 12×12 and open boundary conditions. In order

to improve our results we now like to include the far field. For this reason we expand

the cluster where we have already calculated the GA solution by a symmetric virtual

cluster that continues the charge structure. We obtain the vector field Ji with help of

the analytic expression (5.13). From the discussion of the GA solution we assume that

the SC order parameter in (5.8) is conserved in the far field. The far field limit of the



5.4. VORTICES AND POINT-LIKE INHOMOGENEITIES 101

Distance Bi Polaron VAV-Pair

d/
√

2

1 −236.7928 −237.6420

2 −236.8026 −237.0183

Distance Bi Polaron VAV-Pair

d/
√

2

1 −640.767 −641.437

2 −640.132 −640.767

3 −640.134 −640.378

4 −640.196 −640.552

Table 5.3: Energies in unit of t for VAV-pairs and Bi-polarons in dependence of the

relative distance in units of lattice spacing. Left: 6 × 6-cluster and Ne = 38. Right:

10 × 10-cluster and Ne = 102. (Results are given for: U/t = −12, t′/t = 0, V/t = 0.

The precision is to the 2nd position after decimal point).

VAV-pair is a homogeneous SC whereas the field of the bi-polaron is continued as a

plain CDW. In order to attach the far field continuously we take the value J0 from the

SC order parameter ∆SC
i corresponding to Eq. (5.8) from the edge of the GA solution.

The local charge density ni is calculated continuously respecting the phase of the CDW

structure. The energy of the virtual charge distribution is calculated by the classical

two-dimensional anisotropic Heisenberg model [113]:

EHeis = k
∑

<ij>

JiJj , (5.14)

where k takes the value of 4t2/U and Ji and Jj are the classical values of the charge

vector. The total energy per lattice site reads:

e =
EGA + EHeis

N tot
, (5.15)

where N tot is the total number of lattice sites.

In Fig. (5.18) we present the energy per lattice site as a function of the lattice dimension

in x-direction for a VAV-pair and a bi-polaron. The energies converge in both cases to
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a constant.

The energies per lattice show that the VAV-solution is preferred in view to the bi-

polaron. In the limit of the far field the bi-polaron structure approaches a CDW and

the VAV-pair reaches the limit of a homogeneous SC. We derive the limits of the energy

densities for the homogeneous SC and for the CDW with the help of the classical, lattice

normalized Heisenberg energy eHeis = EHeis/N .

We use the SC order parameter ∆SC , the constant charge n and the phase of the CDW

from our GA solution to continue the charge vectors. We obtain:

Jsc
i =

1

2







Re(∆sc)

Im(∆sc)

δ







and Jcdw
i =

1

2

(
δ + (−1)(ix+iy)∆ch

)







0

0

1






,

for the charge fields of the homogeneous SC and the plain CDW. We define δ = n̄− 1

where n̄ is the average charge per lattice site and ∆ch ∈ [0, n̄] is the charge difference

between neighboring lattice sites. Restricting to the 4 nearest neighbors per site the

Heisenberg limit of the energy density reads:

esc = 4
k

N

∑

i

1

4
[(∆sc)2 + δ2] = k[δ2 + (∆sc)2] (5.16)

ecdw = 4
k

N

∑

i

1

4
[δ2 − (∆ch)2] = k[δ2 − (∆ch)2]

where k = 4t2

U
. For the negative U regime we estimate esc < ecdw. The energy densities

of the Heisenberg system reach a limit with the increasing system size (dashed lines in

Fig. (5.18).
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Figure 5.18: Energy per lattice site for the far field of a VAV-pair centered in a two

electron doped quadratic cluster. The lattice dimension is the number of lattice sites

in x-direction. (Results for U/t = −12, V/t = 0, t′/t = 0). The dashed lines are the

classical Heisenberg limits of a homogeneous CDW and a homogeneous SC state from

Eq. (5.16).
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Chapter 6

Gutzwiller Analysis of the

Superfluid Stiffness

Now we like to discuss the response of the system to an external field. This allows to

derive criteria whether our solution is metallic, superconducting or insulating. In this

chapter we introduce the so-called superfluid stiffness DS. The superfluid stiffness is

comparable to the Drude weight D that is used to classify a metallic state. The Drude

weight measures the ratio of density of mobile charge carriers to their mass whereas

the superfluid stiffness measures the ratio of the superfluid density ρS to the mass.

On the one hand the Drude weight can be derived from the penetration depth from

the classical London theory. On the other hand both quantities can be derived in the

framework of the linear response theory.

In this chapter we focus on the superfluid density ρS and we discuss our superconducting

solution in view of this quantity.

105



106CHAPTER 6. GUTZWILLER ANALYSIS OF THE SUPERFLUID STIFFNESS

6.1 Definition and Interpretation of the

Superfluid Stiffness

If one discusses superconductivity one has to consider the Meissner-effect where an

external magnetic field is repelled from the SC bulk. In the London theory one in-

troduces the penetration depth λ. The inverse square of λ measures the superfluid

density. Theoretically there are different ways to introduce this quantity. It can be

derived as a constant of proportionality in the incremental free energy upon a twist of

the order parameter [114]. Another possibility to derive the superfluid density is based

on the linear response to twisted boundary conditions [115]. Yet another method uses

certain limits of the current-current function [116,117].

In the latter method an external vector potential A(r, t) is applied. In the presence of

a vector potential the hopping term in the kinetic energy ĉ†r+xσĉrσ is modified by the

so called Peierls phase factors [118]. If the field is oriented along the x-axis the Peierls

phase factors read: ∼ exp (iAx(r)). In this case the increase of the ground state energy

is proportional to the kinetic energy and the current in x-direction. In a next step the

kinetic energy is expanded and one derives an expression for the paramagnetic current

density in x-direction ĵP
x . Finally one calculates the full frequency dependent linear

current response produced by the vector potential A and one obtains:

Λxx(q, iω) =
1

N

∫ β

0

dτ eiωτ
〈
ĵP
x (q, τ)ĵP

x (−q, 0)
〉
, (6.1)

where ĵP
x (q, τ) is the Fourier transformed current density. One applies ω → ω + iδ as

the usual analytic continuation.

The expressions for the so called superfluid stiffness DS and Drude weight D can be

obtained from the different limits of the double Fourier transform of the current-current

correlation function Λxx [117]:

D

πe2
= −〈kx〉 − Λxx(q = 0, iω → 0), (6.2)
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and a second limit:

Ds

πe2
= −〈kx〉 − Λxx(qx = x, qy → 0, iω = 0). (6.3)

In order to derive this limit one supposes a uniform (q = 0) frequency dependent

electric field. One now applies Faraday’s and Ohm’s law (σe = j) and thus the current

response leads to the frequency dependent uniform conductivity σxx. For T = 0 in the

limit of ω → 0 as in Eq. (6.2) the real part will take the form of a δ-function:

Re(σxx) = Dδ(ω), (6.4)

where D is the Drude weight or charge stiffness [119].

If one requires a static, transverse gauge potential: (qA(q, ω = 0)) the other limit

of the current correlation function as in Eq. (6.3) leads to the superfluid stiffness DS.

In the limit of q → 0 the linear current response approaches the superfluid stiffness

DS [119].

The special requirement to the vector potential ∇A = qA = 0 is the so called London

gauge. In the London theory it was shown that the Meissner effect follows if a static

(ω = 0), long wave length qy → 0 transverse vector potential is applied. The current

density response of a superconductor takes the form jx(qy) = 1
4π

1
λ2Axqy. In this case the

magnetic field is expelled except for a penetration depth λ. The London equation only

holds if one requires the London gauge for the vector potential [120]. The electrical

field in the inner of a SC bulk vanishes but it exists a finite current density.

The knowledge of the limits D and DS allows a better understanding of the nature of

the solutions. The Drude weight D measures the ratio of the density of the mobile

charge carriers to their mass, whereas the superfluid stiffness DS measures the ratio of

the superfluid density ρs to the mass. The crucial difference is the order in which the

limits q → 0 and ω → 0 approach zero. The character of the ground state is given by

the values D and DS in the bulk limit. For a superconductor at zero temperature and



108CHAPTER 6. GUTZWILLER ANALYSIS OF THE SUPERFLUID STIFFNESS

disorder one expects finite values for DS, and D. For a normal metal DS = 0 and D has

to be finite. For an insulating state the superfluid density and the density of normal

charge carriers goes to zero and one expects DS = D = 0 [121]. At finite temperatures

this easy classification is not possible. In this case the δ-function in Eq. (6.4) smears

out and there is D = 0 but σxx(ω = 0) remains finite for a metallic system.

A non-zero superfluid stiffness corresponds not only to the Meissner effect it can also

be used to estimate the critical temperature. Furthermore the Quantum-Monte-Carlo

results [116] prove that D and DS are equal if there is a gap in the system.

An alternative approach to define the superfluid stiffness is discussed in [122]. First, an

expression for the superfluid density ρS is derived. The superfluid density ρS is related

to the superfluid stiffness DS via [117]:

ρS =
DS

4πe2
. (6.5)

The external disturbance of the system induces a phase twist of the SC order parameter

along the x-direction: ∆(R) = |∆| exp(iqR) and q = (qx, 0).

The free energy per lattice site f depends on the phase twist and can be expanded

around the undisturbed ground state in terms of the parameter qx. The superfluid

density ρS is defined as the second derivative of the free energy per site f with respect

to a phase twist:

ρS =
∂2

∂(qx)2
f(qx) (6.6)

Thus if the energy can be expressed as a function of qx one can derive the superfluid

stiffness. In the next section we follow this method in the framework of the GA and we

compare our results with HF results presented in [122]. Further more we compare our

solution for the superfluid stiffness with the results from the linear current response

derived in the framework of the exact Gutzwiller-Monte-Carlo method [116,117].
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6.2 Superfluid Stiffness of the Gutzwiller Solution

In our approach we start with a homogeneous superconductor with the energy E0 that is

represented by a homogeneous charge field 〈Ji〉. We assume that an external field leads

to a local twist of the vector field. We derive an analytic expression for the derivative

of the energy in dependence of the twist. Further from the calculation we derive an

expression for the superfluid density of a homogeneous charged superconductor.

The charge field can represented by a set of Nambu vectors:

Ψ†
i = (c†i↑, ci↓)

T and Ψi = (ci↑, c
†
i↓). (6.7)

We introduce the distortion of the vector field by a local rotation [117] that can be

expressed by the unitary transformation:

Ui(ϕi) = 1 cos
(ϕi

2

)

+ i sin
(ϕi

2

)

τη . (6.8)

The vector η = (ηx, ηy, ηz) is the rotation axis and τ = (τx, τy, τz) is an array of the

Pauli matrices. We choose a rotation around the z-axis: η = ez.

The transformed vector reads Φi = U †
i Ψi. The choice of the rotation axis leaves the

normal charge component Jz
i constant. The twist disturbs the SC order parameter and

we obtain:

J̃x
i = Jx

i cos(ϕi) − Jy
i sin(ϕi), J̃y

i = Jy
i cos(ϕi) + Jx

i sin(ϕi), J̃z
i = Jz

i . (6.9)

We expand the transformation up to 2nd order:

U(ϕi) ≈ 1+ i
ϕi

2
τz − 1ϕ2

i

8
, (6.10)

which then is applied to the Hubbard Hamiltonian. The expectation value of the

potential energy remains unchanged by the local transformation. The expression for
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the kinetic energy reads:

T (ϕ) = T0 +
∑

ijσ

tij(−
1

8
ϕ2

i −
1

8
ϕ2

j +
1

4
ϕiϕj)c

†
iσcjσ (6.11)

− i

2

∑

ijσ

tij(ϕi − ϕj)c
†
iσcjσ.

We assume that the angular distortion increases by a constant value ϕ for a translation

to nearest lattice site in positive x-direction:

±ϕ = ϕix,iy − ϕix±1,iy and ϕix,iy − ϕix,iy±1 = 0. (6.12)

We can now rewrite the kinetic energy in terms of the angular element ϕ:

T (ϕ) = T0 −
1

8
ϕ2
∑

iσ

∑

j=i±1

ti,jc
†
iσcjσ

︸ ︷︷ ︸

T x
0

+ϕ
i

2

∑

i

Jz
i,α=x

︷ ︸︸ ︷
∑

j=i±1

∑

σ

ti,j(c
†
iσcjσ − c†jσciσ)

︸ ︷︷ ︸

Ĵz
α=x

. (6.13)

The expression T x
0 is the undisturbed kinetic energy in x-direction. Jz

i,α=x is the current

element of the normal charge flow between the lattice sites (ix, iy) and the two nearest

neighbors in x-direction: (ix ± 1, iy). If charge transport is allowed along the nearest

neighbors in x-direction the operator of the total current is Jz
α=x. On the one hand the

angular distortion of the charge vectors leads to a change in the ground state energy.

On the other hand it leads to a normal current along the x-axis that acts backwards

to the system. This current must be included in the final expression for the energy

and this can be done by second order perturbation theory. Using the expression of the

current operator along x from Eq. (6.13) one obtains for the energy:

E(ϕ) = E0 −
1

8
ϕ2〈T x

0 〉 + ϕ
∑

i

〈Jz
i 〉 − ϕ2

∑

ν

〈0|∑i J
z
i,x|ν〉〈ν|

∑

i J
z
i,x|0〉

Eν −E0
︸ ︷︷ ︸

2nd order perturbation theory

. (6.14)

We require that the total current in the system is zero. The first order perturbation

theory does not contribute to the energy. Thus the total current vanishes and the third
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term on the right hand side of Eq. (6.14) is zero. We have to evaluate the second order

term from the perturbation theory with respect to the current element:

Jz
i,x =

i

2

∑

j=i±1,σ

tij [c
†
iσcjσ − c†jσciσ] . (6.15)

If we use the definition of the superfluid density ρS from (6.6) we obtain:

ρS = −1

2
〈T x

0 〉 − 2
∑

ν

〈0|
∑

i J
z
x,i|ν〉〈ν|

∑

i J
z
x,i|0〉

Eν − E0

. (6.16)

The expression for the second order perturbation theory can be evaluated within the

time-dependent Gutzwiller approximation (TDGA). In the following we evaluate the

superfluid density ρS by numerical methods in the framework of the GA with explicit

additional constrains.

In the HF formalism without random-phase-approximation one obtains for the super-

fluid density: ρHF
S = −1

2
〈T x

0 〉. We compare our results with the HF results from [122]

and exact results from the QMC [116, 117]. We start with a homogeneously charged

superconductor on a 8 × 8-cluster with the homogeneous charge density n. The com-

plex SC order parameter is defined by ∆0 = 〈Jx〉+ i〈Jy〉. We require a site-dependent

distortion of the SC order parameter along the x-axis:

∆i = |∆0| exp(iqkRi), (6.17)

where we use the momentum vector:

qk =
(2π

Lx
k, 0
)

and k ∈ {0, 1, 2, . . . , Nx − 1}. (6.18)

Lx = a · Nx is the system length in x-direction and Rx
i = a · ix is the x-component

of the lattice vector. a is the lattice constant and set to unity in the following. With

the help of Euler’s formula we find for the charge vector Ji that is twisted along the

positive x-axis:

Jx
i = |∆0| cos

( 2π

Nx
k · ix

)

, Jy
i = |∆0| sin

( 2π

Nx
k · ix

)

, Jz
i =

1

2
(n− 1). (6.19)
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The vector Ji is rotated by an angular element qk = 2π
Nx
k along nearest neighbor

translation in x-direction. In order to fulfill periodic boundary conditions in x-direction

the number of rotations of the vector Ji along the lattice can only take integer values.

Thus the angular element can only take discrete values. Now we are able to calculate

the energy density as a function of the momentum vector e = e(k).

0.0 0.5 1.0 1.5 2.0
qk/π

-4.2

-4.1

-4

-3.9

-3.8

-3.7

-3.6

E
G

A
/t

U/t=-8
Fit : E=Acos(∆ϕ)+B

Figure 6.1: Total GA energy as function of local angular distortion qk for a 10 × 10-

cluster and U/t = −8 and Nh = 8. The red curve fits the discrete values of qk.

The graph of the energy versus the range of qk in (6.18) shows a 2π-periodicity of the

energy (6.1). For qk = 2π the vector Ji is mapped onto itself by translation from ix to

ix +1. For qk = π an alternating order parameter ∆ix,iy = (−1)ix∆0 is created and the

increase in energy reaches a maximum.

We calculate the energy as a function of the twist for a 8 × 8-cluster. We obtain an
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analytic expression for the second derivative of the energy with respect to the angle

with the help of a quadratic curve fitting:

e(ϕ) = e0 +
1

2
ρSϕ

2, (6.20)

where e0 is the energy per lattice site of the homogeneous SC where we use the first

three values of ϕ in a row for the curve fit.

00.20.40.60.81
n

0

0.2

0.4

0.6

0.8

1

D
S
/π

e2

GA:    -kx

QMC: -kx

GA:    Superfluid Stiffness
QMC:  -kx- Λxx (ω=0,qy=π/4)

QMC:  -kx- Λxx (ω=0,qy−> 0)

Figure 6.2: Kinetic energy and superfluid density. Solid black and red line: kinetic

energy contribution to the superfluid density ( [116,117]). Dashed black graphs: QMC

result for superfluid density (stiffness) using the numerical limits ω = 0 and qy → 0

from Eq. (6.3). Blue curve: Superfluid stiffness of the GA solution using the definition

Eq. (6.6). The results are given for U/t = −4 and V/t = 0.
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Alternatively we use the periodicity of the twisted system and fit the values via e(ϕ) =

A0 − ρS cos(ϕ2) with e0 = A0 − ρS.

In both cases we obtain a set of values for the superfluid density that are presented

in Fig. (6.2). We compare the superfluid stiffness DS with the QMC results from

[116,117]. Note: The superfluid stiffness DS and the superfluid density ρS are related

via: ρS = DS/(4πe
2). In Fig. (6.2) the value of 2ρS = DS/(2πe

2) is drawn versus the

doping [122]. The solid lines show the kinetic part of the GA results from Eq. (6.14) and

the QMC results from (6.3) which is one half the density of the kinetic energy in x-direc-

tion: ρHF
S = − 1

2N
〈T x

0 〉. This is the result that one expects in the HF for the superfluid

density.

The dotted lines show the QMC results for the full superfluid density where the (ω, qy →
0)-limit corresponding to Eq. (6.3) was calculated numerically.

The blue dashed line is twice the value of the second derivative of the disturbed energy

density. It corresponds to the superfluid density defined in Eq. (6.6).

The numerical results from the GA with additional constraints do not coincide with

the QMC results. It shows that the full response corresponding to Eq. (6.16) has to be

taken into account. We calculated the energy while the twisted charge field was fixed.

The evaluation of the increase in energy by adding constraints to the system does

not respect that the Lagrange multipliers {λ1
1, . . . λ

5
i } are not constant and depend

on the distortion angle ϕ. This leads to a reduction of the numerical value of the

superfluid stiffness which can be probably captured be the evaluation of the second

order perturbation theory with respect to the current along the x-direction in Eq. (6.16).

6.3 Superfluid Stiffness and Sum Rules

In the next part we like to derive an expression for the superfluid density when the

system is modulated by an angular distortion that is not translational invariant. We
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express the local rotation angle by a Fourier series:

ϕi =
1

N

∑

q

eiRiqϕq, (6.21)

with the momentum vector q and the angular difference:

ϕi − ϕj =
1

N

∑

q

(eiRiq − eiRjq)ϕq . (6.22)

Now the local distortion depends on the coordinates and the angular increment is

not translational invariant. We transform the creation and destruction operators into

momentum representation using:

ĉ†iσ =
1√
N

∑

k

e−iRkkĉ†kσ and ĉiσ =
1√
N

∑

k

eiRkkĉkσ. (6.23)

The energy Eq. (6.21) with angular perturbation reads in momentum representation:

E(ϕ) = E0 +
1

8

1

N2

∑

kqσ

(εk+q + εk−q − 2εk)nkσϕqϕ−q (6.24)

+
1

N

∑

q

〈ĵz
q 〉ϕq

− 1

N2

∑

nq

ϕq

〈0|ĵz
q |n〉〈n|ĵz

−q|0〉
En − E0

ϕ−q.

We respect the definition Eq. (6.6) for the superfluid density:

ρs(q) =
1

4N

∑

kσ

(εk+q + εk−q − 2εk)nkσ − 2

(

1

N

∑

n

〈0|ĵz
q |n〉〈n|ĵz

−q|0〉
En − E0

)

, (6.25)

where we used εk =
∑

j tije
(−i(Ri−Rj)k). The last term on the right hand side is the

second order perturbation theory.

We transform the current operator ĵz
i = i1

2

∑

j(i) tij(ĉ
†
iσ ĉjσ − ĉ†j ĉiσ) and the charge

operator ρ̂i = 1
2
(c†i↑ĉi↑ + ĉ†i↓ĉi↓) into the k-space:

ĵz
i =

1√
N

∑

q

ĵz
qe

iRiq and ρ̂i =
1√
N

∑

q

ρqe
iRiq, (6.26)
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where we used the short hand notations:

ĵz
q =

i

2
√
N

∑

kσ

(εk − εk+q)ĉ
†
k+q,σĉk,σ, (6.27)

ρ̂q =
1

2
√
N

∑

k

(ĉ†k↑ĉk+q↑ + ĉ†k↓ĉk+q↓).

The operators are related via the commutator relation [H, ρ̂q] = iĵz
q . We find for the

perturbation theory in second order:

∑

n

〈0|ĵz
q |n〉〈n|ĵz

−q|0〉
E0 − En

=
∑

n

(En − E0)〈0|ρ̂q|n〉〈n|Ŝx
ρ−q

|0〉. (6.28)

where Ŝx
ρ−q

is the spectral density. An explicit example of the derivation is given in

appendix C.3. The right hand side equals the first order spectral weight and can by

replaced by:

∑

n

(En − E0)〈0|ρ̂q|n〉〈n|Ŝx
ρ−q

|0〉 = M (1)
ρ−qρq

= 〈[ρ̂−q, [H, ρ̂q]]〉. (6.29)

We can now use the sum rules to calculate the first order spectral weight by using the

identity [123, 124]:

1

π

∫

dωωIm(χz
−qq(ω)) = −〈[ρ−q, [H, ρq]]〉, (6.30)

where χz
−qq(ω) is the charge-charge-correlation function. A detailed derivation is given

in appendix C.4. With the help of the Eqs. (6.28), (6.29) and (C.20) we obtain the

expression:

1

N

∑

n

〈0|
∑

i ĵ
z
q |n〉〈n|

∑

i ĵ
z
−q|0〉

En − E0
=

1

π

∫

dωωIm(χz
−qq(ω)), (6.31)

with the charge correlation function χz
−qq(ω) where we use [ρ−q, [H, ρq]] = [[ρq, H ], ρ−q] =

[[ρ−q, H ], ρq].
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As an example we apply the formula to the free system and we obtain for the suscep-

tibility of the non-interacting system:

χz 0
−qq(ω) = 〈〈ρ̂−q; ρ̂q〉〉 (6.32)

=
1

4N

∑

kk′σσ′

〈〈c†kσck−qσ, c
†
kσ′ck+qσ′〉〉

=
1

4N
lim
δ→0

∑

kσ

(nk+qσ − nkσ)

ω − (εk − εk+q) + iδ
.

In the HF formulation one derives χz
−qq(ω) ∼ χz 0

−qq(ω)/
[
1−Uχz 0

−qq(ω)
]

for the suscepti-

bility of the interacting system. In the case of a free system we obtain for the imaginary

part of (6.32):

Im
{
χz 0
−qq(ω)

}
=

1

4N
lim
δ→0

∑

kσ

−δ
(ω − (εk − εk+q)2 + δ2

× (nk+qσ − nkσ). (6.33)

In order to solve the integral in the limit δ → 0 we replace the δ-function by the limit

of the Lorentzian:

lim
µ→0

µ

t2 + µ2
= πδ(t). (6.34)

Finally we find with help of Eq. (6.33) for the integral over the imaginary part of the

susceptibility:

1

π

∫

dωωIm(χz 0
−qq(ω)) =

1

π

1

4N

∑

kσ

∫

dωωIm
{

lim
δ→0

( (nk+qσ − nkσ)

ω − εk+q + εk + iδ

)}

= − 1

4N

∑

kσ

(nk+qσ − nkσ) ×
∫

dωωδ(ω− (εk − εk+q))

= − 1

4N

∑

kσ

(2εk − εk+q − εk−q)nkσ. (6.35)

With the expression (6.25) we obtain for the superfluid density:

ρS(q) =
1

4N

∑

kσ

(2εk − εk+q − εk−q)nkσ. (6.36)
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The superfluid density depends only on the dispersion εk which can be expanded in a

Taylor series:

ε(k ± q) = ε(k) ±∇ε(k)q +
1

2!

∑

αβ

∂α∂βε(k)qαqβ ± . . . . (6.37)

Now we assume a two dimensional lattice and we restrict to nearest neighbor hoppings

with the dispersion: εk = −2t[cos(kx) + cos(ky)]. All non-diagonal derivative in the

expansion vanish and we obtain:

ε(k + q) + ε(k − q) = 4t cos(kx)
∞∑

m=0

q2m
x

(2m)!
+ 4t cos(ky)

∞∑

m=0

q2m
y

(2m)!
. (6.38)

All odd derivatives vanish. We replace the power series of (qx, qy) by the cosine function.

Now we can write for the superfluid density:

ρNN
S (q) = − 1

2N

∑

kσ

εknkσ (6.39)

+
1

2N
cos(qx)

∑

kσ

2t cos(kx)nkσ +
1

2N
cos(qy)

∑

kσ

2t cos(ky)nkσ,

or in terms of the kinetic energy we finally obtain:

ρNN
S (q) = − 1

2N

[

T0 − Tx cos(qx) − Ty cos(qy)
]

, (6.40)

where we use Tx =
∑

kσ 2t cos(kx)nkσ and Ty =
∑

kσ 2t cos(ky)nkσ for the free kinetic

energies in x- and y-direction that are harmonically modulated by the vector q.
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Summary and Conclusion

In this work we investigated a charge-rotationally invariant Gutzwiller approach to

the Hubbard model. We derived the Gutzwiller variational energy functional and

calculated various states from the saddle point solution in the attractive (U < 0)

regime. Motivated by different experimental findings that we discussed in chapter one

we tried to answer the question whether pair correlations from broken symmetry states

in the framework of the charge-rotational GA of the Hubbard model can be found.

As a first test we investigated the instability of a normal system towards SC in the

framework of the time dependent Gutzwiller approximation (TDGA). From the expan-

sion of the free energy functional we derived criteria for a phase transition from the

normal to the superconducting phase in the paramagnetic regime. We calculated the

critical temperature for an infinite dimensional lattice in good agreement with QMC

data [96]. In contrast to the BCS theory our results showed that the charge-rotational

TDGA can capture at least qualitatively the crossover from weak to strong coupling.

As a next step we investigated finite dimensional systems. We presented results for

homogeneous superconducting and for charge-ordered states. We discussed the GA

results in comparison with the HF approximation where we worked out the formal

differences. The numerical investigations showed that the difference is mainly in the

crossover from the weak to the strong coupling. In a next step we derived an effective

Hamiltonian on top of the saddle point solution. We analyzed the effective Hamiltonian

which has a BCS-like structure and we derived an expression for the gap in a self

consistent formulation and we identified an effective potential. We verified the results

by numerical calculations.

Motivated by different experimental works on d-wave symmetric k-dependent SC gaps

we focussed on the question whether states including non-local pair correlations could

be a solution of the GA and how does this correlation lower the energy. Restricting
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to the positive-U regime we discussed the formal requirements to the solution in view

of a coexisting spin order and the interplay of local and non-local pair-order. Our

numerical results showed that non-local pair correlations do not minimize the GA

energy functional.

As a next step we prepared inhomogeneous solutions in the normal and in the ex-

tended Hubbard model including an additional inter-site interaction V . We presented

inhomogeneous solutions that are characterized by stripe-shaped domains where the

parameters for charge- and pair ordering change their phase or their amplitude. We

found no spontaneous symmetry breaking with regard to stripe formation. The prepa-

ration of stripes costs energy and a stability analysis of the stripes based on the energy

showed that the stripes are unstable with respect to a stripe-less ground state. In con-

trast to stripe formation in the spin ordered systems (for U > 0) we could not calculate

an energetically optimal doping rate or stripe filling.

In case of V > 0 it turned out that a pair density wave (PDW) without stripes is the

ground state.

In this work we presented also results on simple point like inhomogeneities namely

polarons and (anti-)vortices on a finite cluster. We could determine a good agreement

of our numerical results with the logarithmic dependence of the energy of the vortex

state with respect to the vortex radius as well as possible attraction between vortex-

anti-vortex pairs.

In the last chapter of this work we discussed the stability of solutions in view of su-

perfluid stiffness. We gave a short overview on different analytical approaches to this

quantity. We presented a derivation based on an expansion of the energy in view of

an angular distortion of the charge vector field. The expression that we found includes

terms from second order perturbation theory that can be evaluated within the time-

dependent Gutzwiller approximation which is not covered by this work. Instead we

presented results for the superfluid stiffness by numerical methods in the framework
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of the GA with explicit additional constraints. In comparison with exact (QMC) re-

sults our approach turned out to be in good quantitative and qualitative agreement.

A quantitative analysis of the superfluid stiffness in the framework of the TDGA will

probably lead to better agreement with the exact results.

For an outlook we state that our investigation of phase instabilities are first results

and can be taken as a motivation for more detailed studies. The TDGA method that

we applied for the calculation of phase instabilities and critical temperatures in the

hypercubic lattice can be applied to finite dimensional systems in the normal and

extended Hubbard model. We mentioned that Gutzwiller analysis of the superfluid

stiffness can also be proceeded in the framework of the TDGA.

The preparation of ’stripes’ in the negative U regime was one of the main topics of this

work. Interesting questions can rise from a combination of adjacent domains that are

characterized by of positive and negative U .
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Appendix A

A.1 Notation and Conventions

Pauli Matrices

In 3.7 made use of the Pauli matrices to define the charge vector. The Pauli matrices

hold explicitly:

τx =




0 1

1 0



 , τy = i




0 −1

1 0



 , τz =




1 0

0 −1



 . (A.1)

Frequently used Commutators

The fermionic field operators obey the following canonical anti-commutation relations:

[
ĉiσ, ĉjσ′

]

+
= 0,

[
ĉ†iσ, ĉ

†
jσ′

]

+
= 0 and

[
ĉiσ, ĉ

†
jσ′

]

+
= δijδσσ′ , (A.2)

The resulting commutator relations read then:

[
ĉiσ, ĉjσ′

]

− = 2ĉiσ ĉjσ′ (A.3)
[
ĉ†iσ, ĉ

†
jσ′

]

− = 2ĉ†iσ ĉ
†
jσ′

[
ĉiσ, ĉ

†
jσ′

]

− = 2ĉiσ ĉ
†
jσ′ − δijδσσ′ .
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For composed operators we list a set of useful commutator relations:

[
ĉiσ′ , ĉ†lσĉkσ

]

− = δilδσσ′ ĉkσ

[
ĉiσ′ , ĉlσĉ

†
kσ

]

− = −δikδσσ′ ĉlσ

[
ĉ†iσ′ , ĉ

†
lσĉkσ

]

− = −δikδσσ′ ĉ†lσ (A.4)
[
ĉ†iσ′ , ĉlσĉ

†
kσ

]

− = −δikδσσ′ ĉlσ

[
ĉiσ′ , ĉlσĉkσ

]

− = 0
[
ĉ†iσ′ , ĉ

†
lσĉ

†
kσ

]

− = 0

[
ĉiσ′ , ĉ†lσĉ

†
kσ

]

− = δilδσσ′ ĉ†kσ − δikδσσ′ ĉ†lσ
[
ĉ†iσ′ , ĉlσĉkσ

]

− = δilδσσ′ ĉkσ − δikδσσ′ ĉlσ

In the case of l = k we obtain the commutators with number operator:

[
ĉiσ′ , n̂kσ

]

− = δikδσσ′ ĉkσ, and
[
ĉ†iσ′ , n̂kσ

]

− = −δikδσσ′ ĉ†kσ. (A.5)

For the commutation of pairs of fermionic operators we use the general formula:

[ĉ†k1σ1
ĉk2σ2

, ĉ†k3σ3
ĉk4σ4

]− = δk2k3
δσ2σ3

ĉ†k1σ1
ĉk4σ4

− δk1k4
δσ1σ4

ĉ†k3σ3
ĉk2σ2

. (A.6)

In terms of the number operators: n̂l↑ = ĉ†l↑ĉl↑ and n̂l↓ =, ĉ†l↓ĉl↓ we obtain explicitly:

[
ĉ†i↑ĉj↑, n̂l↑

]

− = δlj ĉ
†
i↑ĉl↑

[
ĉ†i↓ĉj↓, n̂l↑

]

− = δlj ĉ
†
i↓ĉl↓

[
ĉ†i↑ĉ

†
j↓, n̂l↑

]

− = −δliĉ†l↑ĉ
†
j↓

[
ĉi↓ĉj↑, n̂l↑

]

− = δlj ĉ
†
i↓ĉ

†
l↑

[
ĉ†i↑ĉj↑, n̂l↓

]

− = −δliĉ†l↑ĉj↑ (A.7)
[
ĉ†i↓ĉj↓, n̂l↓

]

− = −δliĉ†l↓ĉj↓
[
ĉ†i↑ĉ

†
j↓, n̂l↓

]

− = −δlj ĉ†i↑ĉ
†
l↓

[
ĉi↓ĉj↑, n̂l↓

]

− = δliĉ
†
l↓ĉ

†
i↑

In terms of the ladder operators: Ĵ+
l = ĉ†l↑ĉ

†
l↓ and Ĵ−

l = ĉl↓ĉl↑ we obtain explicitly:

[
ĉ†i↑ĉj↑, Ĵ

+
l

]

− = δlj ĉ
†
i↑ĉ

†
l↓

[
ĉ†i↓ĉj↓, Ĵ

+
l

]

− = δlj ĉ
†
l↑ĉ

†
i↓

[
ĉ†i↑ĉ

†
j↓, Ĵ

+
l

]

− = 0
[
ĉi↓ĉj↑, Ĵ

+
l

]

− = δlj ĉi↓ĉ
†
l↓ − δliĉ

†
l↑ĉj↑

[
ĉ†i↑ĉj↑, Ĵ

−
l

]

− = −δliĉl↓ĉj↑ (A.8)
[
ĉ†i↓ĉj↓, Ĵ

−
l

]

− = −δliĉj↓ĉl↑
[
ĉ†i↑ĉ

†
j↓, Ĵ

−
l

]

− = δlj ĉ
†
i↑ĉl↑ − δliĉl↓ĉ

†
j↓

[
ĉi↓ĉj↑, Ĵ

−
l

]

− = 0.
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The commutators of the spin operators Ŝ+
l = ĉ†l↑ĉl↓ and Ŝ−

l = ĉ†l↓ĉl↑ and the double

occupancy operator n̂i↑n̂i↓ = ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ must vanishes because:

[
n̂i↑n̂i↓, Ŝ

+
l

]

− = δil
(
ĉ†l↑ĉ

†
l↑ĉl↓ĉl↑ − ĉ†l↓ĉ

†
l↑ĉl↓ĉl↓

)
(A.9)

[
n̂i↑n̂i↓, Ŝ

−
l

]

− = δil
(
ĉ†l↓ĉ

†
l↓ĉl↑ĉl↓ − ĉ†l↑ĉ

†
l↓ĉl↑ĉl↑

)
.

Because the operator products ĉ†lσ ĉ
†
lσ and ĉlσĉlσ violate the Pauli law the commutators

(A.9) project any state onto 0.

Density Matrix

Define the density matrix operator:

B̂ =
∑

i

[∆i(ĉ
†
i↑ĉ

†
i↓ − ĉ†i↓ĉ

†
i↑) + ∆∗

i (ĉi↓ĉi↑ − ĉi↑ĉi↓)] +
∑

iσ

niσ(ĉ†iσ ĉiσ − ĉiσ ĉ
†
iσ). (A.10)

If we wish to distinguish between operators and expectation values explicitly we use

the symbol ρ: for the density matrix:

ρ↑↑ij = 〈ĉ†i↑ĉj↑〉,

ρ↑↓ij = 〈ĉ†i↑ĉ
†
j↓〉,

ρ↓↓ij = 〈ĉ†i↓ĉj↓〉, (A.11)

ρ↓↑ij = 〈ĉi↓ĉj↑〉,
For the off diagonal entries we not the following the relation explicitly:

ρ↑↓ij = 〈ĉ†i↑ĉ
†
j↓〉 = 〈ĉj↓ĉi↑〉∗ = (ρ↓↑ji )

∗ . (A.12)
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Appendix B

B.1 Effective Mean Field Hubbard Hamiltonian

Applying the mean-field approximation the next step replaces the boson fields by its

expectation values. This leads to the following effective MFA Hamiltonian:

ĤMFA =
∑

i6=j

tij

[

(Ai
11A

j
11 − Ai

12A
j
21)ĉ

†
i↑ĉj↑ + (Ai

11A
j
12 −Ai

12A
j
22)ĉ

†
i↑ĉ

†
j↓ (B.1)

+(Ai
21A

j
11 −Ai

22A
j
21)ĉi↓ĉj↑ + (Ai

22A
j
22 − Ai

21A
j
12)ĉ

†
i↓ĉj↓

+ U
∑

i

[

D2
i −

1

2
(ĉ†i↑ĉi↑ − ĉ†i↓ĉi↓ − 1)

(√

1 + tan2(ϕi) − 1

)]

− µ
∑

iσ

ĉ†iσ ĉiσ

+
∑

i

λ1
i

(

2bxi(Di + Ei) − (ĉ†i↑ĉ
†
i↓ + ĉi↓ĉi↑)

)

+
∑

i

λ2
i

(

2byi(Di + Ei) + i(ĉ†i↑ĉ
†
i↓ − ĉi↓ĉi↑)

)

+
∑

i

λ4
i (D

2
i + (b2ix + b2iy) + p2

i↑ − ĉ†i↑ĉi↑)

+
∑

i

λ5
i (D

2
i + (b2ix + b2iy) + p2

i↓ − ĉ†i↓ĉi↓)

+
∑

i

λ3
i (D

2
i + E2

i + 2(b2ix + b2iy) + p2
i↑ + p2

i↓ − 1).
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Hartree-Fock-Decoupled Inter-Site-Repulsion

The Hartree-Fock terms of the inter site repulsion read:

ŴHF = + V
∑

<ij>

{∑

σσ′

[

〈ĉ†iσĉiσ〉ĉ†jσ′ ĉjσ′ + 〈ĉ†jσ′ ĉjσ′〉ĉ†iσ ĉiσ
]

(B.2)

−
∑

σ

[

〈ĉ†iσ ĉjσ〉ĉ†jσĉiσ + 〈ĉ†jσĉiσ〉ĉ†iσ ĉjσ
]

+
∑

σ

[

〈ĉ†iσĉ†j−σ〉ĉj−σĉiσ + 〈ĉ†iσ ĉj−σ〉ĉ†j−σĉ
†
iσ〉
]}

,

B.2 Fourier Transformation of the d-wave Interac-

tion Term

With the short hand writing ∆d+
ij = T+

ij + λd+
ij :

∑

ij

∆d+
ij ĉ

†
i↑ĉ

†
j↓ =

∑

〈ij〉
∆d+

i ĉ†i↑ĉ
†
j↓ (B.3)

=
1

N

∑

〈ij〉

∑

k1k2

∆d+
i ĉ†k1↑ĉ

†
k2↓ exp

(

− iRik1 − iRjk2

)

=
1

N

∑

〈ij〉

∑

kq

∆d+
i ĉ†k↑ĉ

†
−k+q↓ exp

(

− i(Ri − Rj)k
)

exp
(

− iRjq
)

=
1

N

∑

i

∑

kq

∆d+
i ĉ†k↑ĉ

†
−k+q↓

×
{

exp
(
− ikx

)
exp

(
− iR(i+x)q

)
+ exp

(
ikx

)
exp

(
− iR(i−x)q

)

+ exp
(
− iky

)
exp

(
− iR(i+y)q

)
+ exp

(
iky

)
exp

(
− iR(i−y)q

)}

=
∑

kq

2∆d+ĉ†k↑ĉ
†
−k+q↓

{

cos(kx) + cos(ky)
}

δ(q)

=
∑

k

2∆d+ĉ†k↑ĉ
†
−k↓

{

cos(kx) + cos(ky)
}

where we used homogeneity and isotropy arguments.
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B.3 Interaction Kernel of the ph-Channel in the

Free Energy Expansion of the GA Functional

The interaction matrix of the ph channel in the free energy expansion reads as:

Mq =




Aq Bq

Bq Cq



 (B.4)

Aq = Vq −
L2

q

4Mq

(B.5)

Bq =
1

4

(

z0z
′
D

Lq

Mq

+ z0(z
′ + z+−)

)

Cq = −1

4

1

Mq

(z0z
′
D)

2

and

Vq =
1

8
(z′ + z+−)2 1

N

∑

kσ

(εk+q + εk−q)nkσ +
1

4
z0(z

′′
++ + 2z′′+− + z′′−−)e0 (B.6)

Lq =
1

2
z′D(z′ + z+−)

1

N

∑

kσ

(εk+q + εk−q)nkσ + z0(z
′′
σD + z′′−σD)e0

Mq =
1

2
(z′D)2 1

N

∑

kσ

(εk+q + εk−q)nkσ + z0z
′
De0

with e0 = 1
N

∑

kσ εknkσ and the abbreviations homogeneous solution:

z′ =
∂ziσ

∂niσ

z′′σD =
∂2ziσ

∂niσDi

z′′σD =
∂ziσ

∂D2
i

z′+− =
∂ziσ

∂ni−σ

z′′−σD =
∂2ziσ

∂ni−σDi

z′′+− =
∂2ziσ

∂ni−σniσ

z′D =
∂ziσ

∂Di

z′′++ =
∂2ziσ

∂n2
iσ

(B.7)

z′′−− =
∂2ziσ

∂ni−σni−σ
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B.4 The Constrained GA Energy Functional

This is the GA energy functional without the inter site repulsion:

E =
∑

ij

tij

[

(Ai
11A

j
11 − Ai

12A
j
21)ρ

↑↑
ij + (Ai

11A
j
12 − Ai

12A
j
22)ρ

↑↓
ij (B.8)

+(Ai
21A

j
11 − Ai

22A
j
21)ρ

↓↑
ij + (Ai

22A
j
22 − Ai

21A
j
12)ρ

↓↓
ij

]

+ U
∑

i

(D2
i + b2xi + b2yi)

+ V
∑

<ij>

(ρ↑↑ii + ρ↓↓ii )(ρ↑↑jj + ρ↓↓jj )

+ V
∑

<ij>

[(
ρ↑↓ij ρ

↓↑
ji + ρ↓↑ij ρ

↑↓
ji

)
−
(
ρ↑↑ij ρ

↑↑
ji + ρ↓↓ij ρ

↓↓
ji

)]

+ Λ1

∑

kq

(
∑

i

φ∗
i (k)φi(q) − δkq

)(
∑

j

φj(k)φ
∗
j(q) − δkq

)

+ Λ2

(
∑

i

ρ↑↑ii −N↑

)2

+ Λ3

(
∑

i

ρ↓↓ii −N↓

)2

+ Λ4

∑

i

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)2

+ Λ5

∑

i

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)2

+ Λ6

∑

i

(D2
i + E2

i + 2(b2ix + b2iy) + p2
i↑ + p2

i↓ − 1)2

+ Λ7

∑

i

(D2
i + (b2ix + b2iy) + p2

i↑ − ρ↑↑ii )2

+ Λ8

∑

i

(D2
i + (b2ix + b2iy) + p2

i↓ − ρ↓↓ii )2.
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B.5 Derivatives of the GA-functional

The energy functional depend and the densities ρσσ′

ij that depend again on the complex

amplitudes φi(k). We split the complex amplitudes from the k-space decomposition

of the densities into a real and imaginary part:φi(k) = xi(k) + iyi(k) and φ∗
i (k) =

xi(k)− iyi(k). We treat real and imaginary part as independent variables reducing the

GA-energy functional as a real function including a complex variable i. Additionally

the functional depend on 6×N expectation values of the slave bosons from the charge

rational invariant formulation.

Derivatives of the Densities ρσσ′

ij with respect to the Amplitudes

φi(k) and φ∗i (k)

We write down the derivative of the k-space decomposition of Eq. (3.55).

∂ρσσ′

lm

∂xi(k)
= (δmiφ

∗
l (k) + δliφm(k)) (B.9)

∂ρσσ′

lm

∂yi(k)
= i (δmiφ

∗
l (k) − δliφm(k)) .

We applying a case differentiation with respect to the indices i and k and we evaluate

the expressions (B.9):

In the case k ∈ [1, N ] and i ∈ [1, N ]:

∂ρ↑↑lm
∂φi(k)

= δliφm(k) + δm,iφl(k),

∂ρ↓↑lm
∂φi(k)

= δmiφ(l+N)(k),

∂ρ↑↓lm
∂φi(k)

= δliφ(m+N)(k) (B.10)

∂ρ↓↓lm
∂φi(k)

= 0.
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In the case k ∈ [N + 1, 2N ] and i ∈ [N + 1, 2N ] :

∂ρ↑↑lm
∂φi(k)

= 0,

∂ρ↓↑lm
∂φi(k)

= 0,

∂ρ↑↓lm
∂φi(k)

= 0, (B.11)

∂ρ↓↓lm
∂φi(k)

= δl+N iφm(k) + δm+N iφl(k).

In the case k ∈ [N + 1, 2N ] and i ∈ [1, N ] :

∂ρ↑↑lm
∂φi(k)

= 0,

∂ρ↓↑lm
∂φi(k)

= 0,

∂ρ↑↓lm
∂φi(k)

= 0, (B.12)

∂ρ↓↓lm
∂φi(k)

= 0.

In the case k ∈ [1, N ] and i ∈ [N + 1, 2N ]:

∂ρ↑↑lm
∂φi(k)

= 0,

∂ρ↓↑lm
∂φi(k)

= δl+N iφm(k),

∂ρ↑↓lm
∂φi(k)

= δm+N iφl(k), (B.13)

∂ρ↓↓lm
∂φi(k)

= 0.



B.5. DERIVATIVES OF THE GA-FUNCTIONAL 133

Derivatives of EGA with respect to the Real Part

of φi(k) and φ∗i (k)

∂E

∂xi(k)
=

N∑

m

tim(Ai
11A

m
11 − Ai

12A
m
21)φm(k)θ(N − k) (B.14)

+
N∑

l

tli(A
l
11A

i
11 − Al

12A
i
21)φ

∗
l (k)θ(N − k)

+

N∑

m

ti−N m(Ai−N
21 Am

12 − Ai−N
22 Am

22)φm+N(k)θ(k −N)

+
N∑

l

ti−N m(Al
21A

i−N
12 − Al

22A
i−N
22 )φ∗

l+N(k)θ(k −N)

+

N∑

m

tim(Ai
11A

m
12 − Ai

12A
m
22)φm+N(k)θ(N − k)

+
N∑

l

tl i−N(Al
11A

i−N
12 −Al

12A
i−N
22 )φ∗

l (k)θ(N − k)

+

N∑

l

tli(A
l
21A

i
11 − Al

22A
i
21)φ

∗
l+N(k)θ(N − k)

+

N∑

m

ti−N m(Ai−N
21 Al

11 − Ai−N
22 Am

21)φm(k)θ(N − k)

+ Λik

+ 4Λ2

(
∑

j

ρ↑↑jj −N↑

)

Re(φi(k))θ(N − k) i ≤ N

+ 4Λ3

(
∑

j

ρ↓↓jj −N↓

)

Re(φi(k))θ(k −N) i > N

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)







−Re(φi+N(k))θ(N − k), i ≤ N

−Re(φi−N(k))θ(N − k), i > N

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)







−Im(φi+N(k))θ(N − k), i ≤ N

+Im(φi−N(k))θ(N − k), i > N

+ 4Λ7(D
2
i + (b2xk + b2yk) + p2

i↑ − ρ↑↑ii )Re(φi(k))θ(N − k), i ≤ N

+ 4Λ8(D
2
i + (b2xk + b2yk) + p2

i↓ − ρ↓↓ii )Re(φi(k))θ(k −N), i > N
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Derivatives of EGA with respect to the imaginary Part

of φi(k) and φ∗i (k)

∂E

∂yi(k)
= − i

N∑

m

tim(Ai
11A

m
11 −Ai

12A
m
21)φm(k)θ(N − k) (B.15)

+ i
N∑

l

tli(A
l
11A

i
11 − Al

12A
i
21)φ

∗
l (k)θ(N − k)

+ − i

N∑

m

ti−N m(Ai−N
21 Am

12 −Ai−N
22 Am

22)φm+N(k)θ(k −N)

+ i
N∑

l

ti−N m(Al
21A

i−N
12 −Al

22A
i−N
22 )φ∗

l+N(k)θ(k −N)

− i

N∑

m

tim(Ai
11A

m
12 −Ai

12A
m
22)φm+N(k)θ(N − k)

+ i
N∑

l

tl i−N(Al
11A

i−N
12 − Al

12A
i−N
22 )φ∗

l (k)θ(N − k)

+ i

N∑

l

tli(A
l
21A

i
11 − Al

22A
i
21)φ

∗
l+N(k)θ(N − k)

− i

N∑

m

ti−N m(Ai−N
21 Al

11 −Ai−N
22 Am

21)φm(k)θ(N − k)

+ Γik

+ 4Λ2

(
∑

j

ρ↑↑jj −N↑

)

Im(φi(k))θ(N − k) i ≤ N

+ 4Λ3

(
∑

j

ρ↓↓jj −N↓

)

Im(φi(k))θ(k −N) i > N

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)







+Im(φi+N(k))θ(N − k), i ≤ N

+Im(φi−N(k))θ(N − k), i > N

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)







+Re(φi+N(k))θ(N − k), i ≤ N

−Re(φi−N(k))θ(N − k), i > N

+ 4Λ7(D
2
i + (b2xk + b2yk) + p2

i↑ − ρ↑↑ii )Im(φi(k))θ(N − k), i ≤ N

+ 4Λ8(D
2
i + (b2xk + b2yk) + p2

i↓ − ρ↓↓ii )Im(φi(k))θ(k −N), i > N .
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Case Differentiation with respect to the Indices

The given general can be simplified bay apply the case differentiation of the set of

indices. One obtains the for Eq. (B.14):

In the case of i ≤ N :

∂E

∂xi(k)
= 2

N∑

m

tim(Ai
11A

m
11 −Ai

12A
m
21)Re(φm(k))θ(N − k) (B.16)

+ 2
N∑

m

timRe((Ai
11A

m
12 −Ai

12A
m
22)φm+N(k))θ(N − k)

+ Λik

+ 4Λ2

(
∑

j

ρ↑↑jj −N↑

)

Re(φi(k))θ(N − k) i ≤ N

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)

(−Re(φi+N(k))θ(N − k))

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)

(−Im(φi+N(k))θ(N − k))

+ 4Λ7(D
2
i + (b2xk + b2yk) + p2

i↑ − ρ↑↑ii )Re(φi(k))θ(N − k).

In the case of i > N :

∂E

∂xi(k)
= 2

N∑

m

ti−N m(Ai−N
21 Am

12 − Ai−N
22 Am

22)Re(φm+N(k))θ(k −N) (B.17)

+ 2
N∑

m

ti−N mRe((Ai−N
21 Al

11 − Ai−N
22 Am

21)φm(k))θ(N − k)

+ Λik

+ 4Λ3

(
∑

j

ρ↓↓jj −N↓

)

Re(φi(k))θ(k −N)

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)

(−Re(φi−N(k))θ(N − k))

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)

(Im(φi−N(k))θ(N − k))

+ 4Λ8(D
2
i + (b2xk + b2yk) + p2

i↓ − ρ↓↓ii )Re(φi(k))θ(k −N).
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One obtains the for Eq. (B.15):

In the case of i ≤ N :

∂E

∂yi(k)
= 2

N∑

m

tim(Ai
11A

m
11 −Ai

12A
m
21)Im(φm(k))θ(N − k) (B.18)

+ 2
N∑

m

timIm((Ai
11A

m
12 − Ai

12A
m
22)φm+N(k))θ(N − k)

+ Γik

+ 4Λ2

(
∑

j

ρ↑↑jj −N↑

)

· Im(φi(k))θ(N − k)

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)

· Im(φi+N(k))θ(N − k)

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)

· Re(φi+N(k))θ(N − k)

+ 4Λ7(D
2
i + (b2xk + b2yk) + p2

i↑ − ρ↑↑ii ) · Im(φi(k))θ(N − k).

In the case of i > N :

∂E

∂yi(k)
= 2

N∑

m

ti−N m(Ai−N
21 Am

12 − Ai−N
22 Am

22)Im(φm+N(k))θ(k −N) (B.19)

+ 2
N∑

l

tl i−N Im((Al
11A

i−N
12 −Al

12A
i−N
22 )φl(k))θ(N − k)

+ Γik

+ 4Λ3

(
∑

j

ρ↓↓jj −N↓

)

· Im(φi(k))θ(k −N)

+ 4Λ4

(

2bxi(Di + Ei) − (ρ↑↓ii + ρ↓↑ii )
)

· Im(φi−N(k))θ(N − k)

+ 4Λ5

(

2byi(Di + Ei) + i(ρ↑↓ii − ρ↓↑ii )
)

· (−Re(φi−N(k))θ(N − k))

+ 4Λ8(D
2
i + (b2xk + b2yk) + p2

i↓ − ρ↓↓ii ) · Im(φi(k))θ(k −N).



B.5. DERIVATIVES OF THE GA-FUNCTIONAL 137

Derivatives with respect to the Boson Fields

∂E

∂Dk
=

∑

i

tki

[(

2
∂Ak

11

∂Dk
Ai

11 −
∂Ak

12

∂Dk
Ai

21 −
∂Ak

21

∂Dk
Ai

12

)

ρ↑↑ki (B.20)

(

2
∂Ak

22

∂Dk

Ai
22 −

∂Ak
21

∂Dk

Ai
12 −

∂Ak
12

∂Dk

Ai
21

)

ρ↓↓ki

]

+
(∂Ak

11

∂Dk

Ai
12 +

∂Ak
12

∂Dk

Ai
11 −

∂Ak
12

∂Dk

Ai
22 −

∂Ak
22

∂Dk

Ai
12

)

ρ↑↓ki

+
(∂Ak

21

∂Dk
Ai

11 +
∂Ak

11

∂Dk
Ai

21 −
∂Ak

21

∂Dk
Ai

22 −
∂Ak

22

∂Dk
Ai

21

)

ρ↓↑ij

+ 2UDk

+ 4Λ4bxk

(

2bxk(Dk + Ek) − (ρ↑↓kk + ρ↓↑kk)
)

+ 4Λ5byk

(

2byk(Dk + Ek) + i(ρ↑↓kk − ρ↓↑kk)
)

+ 4Λ6Dk(D
2
k + E2

k + 2(b2kx + b2ky) + p2
k↑ + p2

k↓ − 1)

+ 4Λ7Dk(D
2
k + (b2kx + b2ky) + p2

k↑ − ρ↑↑kk)

+ 4Λ8Dk(D
2
k + (b2kx + b2ky) + p2

k↓ − ρ↓↓kk)

∂E

∂Ek
=

∑

i

tki

[(

2
∂Ak

11

∂Ek
Ai

11 −
∂Ak

12

∂Ek
Ai

21 −
∂Ak

21

∂Ek
Ai

12

)

ρ↑↑ki (B.21)

(

2
∂Ak

22

∂Ek

Ai
22 −

∂Ak
21

∂Ek

Ai
12 −

∂Ak
12

∂Ek

Ai
21

)

ρ↓↓ki

]

+
(∂Ak

11

∂Ek

Ai
12 +

∂Ak
12

∂Ek

Ai
11 −

∂Ak
21

∂Ek

Ai
22 −

∂Ak
22

∂Ek

Ai
21

)

ρ↑↓ki

+
(∂Ak

21

∂Ek
Ai

11 +
∂Ak

11

∂Ek
Ai

21 −
∂Ak

12

∂Ek
Ai

22 −
∂Ak

22

∂Ek
Ai

12

)

ρ↓↑ij

+ 4Λ4bxk

(

2bxk(Dk + Ek) − (ρ↑↓kk + ρ↓↑kk)
)

+ 4Λ5byk

(

2byk(Dk + Ek) + i(ρ↑↓kk − ρ↓↑kk)
)

+ 4Λ6Ek(D
2
k + E2

k + 2(b2kx + b2ky) + p2
k↑ + p2

k↓ − 1)
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∂E

∂bxk
=

∑

i

tki

[(

2
∂Ak

11

∂bxk
Ai

11 −
∂Ak

12

∂bxk
Ai

21 −
∂Ak

21

∂bxk
Ai

12

)

ρ↑↑ki (B.22)

(

2
∂Ak

22

∂bxk
Ai

22 −
∂Ak

21

∂bxk
Ai

12 −
∂Ak

12

∂bxk
Ai

21

)

ρ↓↓ki

]

+
(∂Ak

11

∂bxk

Ai
12 +

∂Ak
12

∂bxk

Ai
11 −

∂Ak
12

∂bxk

Ai
22 −

∂Ak
22

∂bxk

Ai
12

)

ρ↑↓ki

+
(∂Ak

21

∂bxk

Ai
11 +

∂Ak
11

∂bxk

Ai
21 −

∂Ak
21

∂bxk

Ai
22 −

∂Ak
22

∂bxk

Ai
21

)

ρ↓↑ij

+ 2Ubxk

+ 4Λ4(Dk + Ek)
(

2bxk(Dk + Ek) − (ρ↑↓kk + ρ↓↑kk)
)

+ 8Λ6bxk(D
2
k + E2

k + 2(b2xk + b2yk) + p2
k↑ + p2

k↓ − 1)

+ 4Λ7bxk(D
2
k + (b2xk + b2yk) + p2

k↑ − ρ↑↑kk)

+ 4Λ8bxk(D
2
k + (b2xk + b2yk) + p2

k↓ − ρ↓↓kk)

∂E

∂byk
=

∑

i

tki

[(

2
∂Ak

11

∂byk
Ai

11 −
∂Ak

12

∂byk
Ai

21 −
∂Ak

21

∂byk
Ai

12

)

ρ↑↑ki (B.23)

(

2
∂Ak

22

∂byk
Ai

22 −
∂Ak

21

∂byk
Ai

12 −
∂Ak

12

∂byk
Ai

21

)

ρ↓↓ki

]

+
(∂Ak

11

∂byk
Ai

12 +
∂Ak

12

∂byk
Ai

11 −
∂Ak

12

∂byk
Ai

22 −
∂Ak

22

∂byk
Ai

12

)

ρ↑↓ki

+
(∂Ak

21

∂byk

Ai
11 +

∂Ak
11

∂byk

Ai
21 −

∂Ak
21

∂byk

Ai
22 −

∂Ak
22

∂byk

Ai
21

)

ρ↓↑ij

+ 2Ubyk

+ 4Λ5(Dk + Ek)
(

2byk(Dk + Ek) + i(ρ↑↓kk − ρ↓↑kk)
)

+ 8Λ6byk(D
2
k + E2

k + 2(b2xk + b2yk) + p2
k↑ + p2

k↓ − 1)

+ 4Λ7byk(D
2
k + (b2xk + b2yk) + p2

k↑ − ρ↑↑kk)

+ 4Λ8byk(D
2
k + (b2xk + b2yk) + p2

k↓ − ρ↓↓kk)
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∂E

∂pk↑
=

∑

i

tki

[(

2
∂Ak

11

∂pk↑
Ai

11 −
∂Ak

12

∂pk↑
Ai

21 −
∂Ak

21

∂pk↑
Ai

12

)

ρ↑↑ki (B.24)

(

2
∂Ak

22

∂pk↑
Ai

22 −
∂Ak

21

∂pk↑
Ai

12 −
∂Ak

12

∂pk↑
Ai

21

)

ρ↓↓ki

]

+
(∂Ak

11

∂pk↑
Ai

12 +
∂Ak

12

∂pk↑
Ai

11 −
∂Ak

12

∂pk↑
Ai

22 −
∂Ak

22

∂pk↑
Ai

12

)

ρ↑↓ki

+
(∂Ak

21

∂pk↑
Ai

11 +
∂Ak

11

∂pk↑
Ai

21 −
∂Ak

21

∂pk↑
Ai

22 −
∂Ak

22

∂pk↑
Ai

21

)

ρ↓↑ij

+ 4Λ6pk↑(D
2
k + E2

k + 2(b2xk + b2yk) + p2
k↑ + p2

k↓ − 1)

+ 4Λ7pk↑(D
2
k + (b2xk + b2yk) + p2

k↑ − ρ↑↑kk)

∂E

∂pk↓
=

∑

i

tki

[(

2
∂Ak

11

∂pk↓
Ai

11 −
∂Ak

12

∂pk↓
Ai

21 −
∂Ak

21

∂pk↓
Ai

12

)

ρ↑↑ki (B.25)

(

2
∂Ak

22

∂pk↓
Ai

22 −
∂Ak

21

∂pk↓
Ai

12 −
∂Ak

12

∂pk↓
Ai

21

)

ρ↓↓ki

]

+
(∂Ak

11

∂pk↓
Ai

12 +
∂Ak

12

∂pk↓
Ai

11 −
∂Ak

12

∂pk↓
Ai

22 −
∂Ak

22

∂pk↓
Ai

12

)

ρ↑↓ki

+
(∂Ak

21

∂pk↓
Ai

11 +
∂Ak

11

∂pk↓
Ai

21 −
∂Ak

21

∂pk↓
Ai

22 −
∂Ak

22

∂pk↓
Ai

21

)

ρ↓↑ij

+ 4Λ6pk↓(D
2
k + E2

k + 2(b2xk + b2yk) + p2
k↑ + p2

k↓ − 1)

+ 4Λ8pk↓(D
2
k + (b2xk + b2yk) + p2

k↓ − ρ↓↓kk)
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B.6 Derivatives of the z-Factors

The z-factors read in the non-rational invariant formulation [55]:

zi↑ =
eipi↑ + dipi↓

√

(e2i + p2
i↓)(d

2
i + p2

i↑)
and zi↓ =

eipi↓ + dipi↑
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
. (B.26)

In order to calculate the derivatives with respect to the mean field values of charge

rotational invariant bosons we apply the chain rule e.g.:

∂ziσ

∂Di

=
[∂ziσ

∂di

∂di

∂Di

+
∂ziσ

∂ei

∂ei

∂Di

]
. (B.27)

We calculate the derivatives of the functions (B.26) with respect to the expectation

values of of the non-rotational slave bosons and we obtain for the z-factor (↑):

∂zi↑
∂pi↑

=
1

√

(e2i + p2
i↓)(d

2
i + p2

i↑)

[

ei −
(eipi↑ + dipi↓)pi↑

d2
i + p2

i↑

]

, (B.28)

∂zi↑
∂pi↓

=
1

√

(e2i + p2
i↓)(d

2
i + p2

i↑)

[

di −
(eipi↑ + dipi↓)pi↓

e2i + p2
i↓

]

,

∂zi↑
∂ei

=
1

√

(e2i + p2
i↓)(d

2
i + p2

i↑)

[

pi↑ −
(eipi↑ + dipi↓)ei

e2i + p2
i↓

]

,

∂zi↑
∂di

=
1

√

(e2i + p2
i↓)(d

2
i + p2

i↑)

[

pi↓ −
(eipi↑ + dipi↓)di

d2
i + p2

i↑

]

.
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For the z-factor (↓):

∂zi↓
∂pi↑

=
1

√

(e2i + p2
i↑)(d

2
i + p2

i↓)

[

di −
(eipi↓ + dipi↑)pi↑

e2i + p2
i↑

]

, (B.29)

∂zi↓
∂pi↓

=
1

√

(e2i + p2
i↑)(d

2
i + p2

i↓)

[

ei −
(eipi↓ + dipi↑)pi↓

d2
i + p2

i↓

]

,

∂zi↓
∂ei

=
1

√

(e2i + p2
i↑)(d

2
i + p2

i↓)

[

pi↓ −
(eipi↓ + dipi↑)ei

e2i + p2
i↑

]

,

∂zi↓
∂di

=
1

√

(e2i + p2
i↑)(d

2
i + p2

i↓)

[

pi↑ −
(eipi↓ + dipi↑)di

d2
i + p2

i↓

]

.

We calculate the derivatives in the charge rotational invariant formulation: (with re-

spect to Di, Ei, bix, biy):

di =
1

2

[

Di + Ei +
√

(Di −Ei)2 + 4(b2ix + b2iy)
]

(B.30)

ei =
1

2

[

Di + Ei −
√

(Di − Ei)2 + 4(b2ix + b2iy)
]

,

The set of the derivatives reads than:

∂di

∂Di
=

1

2



1 +
Di − Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 , (B.31)

∂di

∂Ei
=

1

2



1 − Di − Ei
√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,

∂di

∂bxi
=

2bix
√

(Di − Ei)2 + 4(b2ix + b2iy)
,

∂di

∂byi
=

2bix
√

(Di − Ei)2 + 4(b2ix + b2iy)
,
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and

∂ei

∂Di
=

1

2



1 − Di − Ei
√

(Di −Ei)2 + 4(b2ix + b2iy)



 , (B.32)

∂ei

∂Ei
=

1

2



1 +
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,

∂ei

∂bxi
=

−2bix
√

(Di −Ei)2 + 4(b2ix + b2iy)
,

∂ei

∂byi

=
−2bix

√

(Di −Ei)2 + 4(b2ix + b2iy)
.

We end up with a complete set the final simplified derivatives for the z-factors in the

charge rotational invariant formulation:

∂zi↑
∂Di

=
1

2
√

(e2i + p2
i↓)(d

2
i + p2

i↑)
(B.33)

×





(

pi↓ −
(eipi↑ + dipi↓)di

d2
i + p2

i↑

)

1 +
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)





+

(

pi↑ −
(eipi↑ + dipi↓)ei

e2i + p2
i↓

)

1 − Di − Ei
√

(Di − Ei)2 + 4(b2ix + b2iy)







 ,

∂zi↑
∂Ei

=
1

2
√

(e2i + p2
i↓)(d

2
i + p2

i↑)
(B.34)

×





(

pi↓ −
(eipi↑ + dipi↓)di

d2
i + p2

i↑

)

1 − Di − Ei
√

(Di − Ei)2 + 4(b2ix + b2iy)





+

(

pi↑ −
(eipi↑ + dipi↓)ei

e2i + p2
i↓

)

1 +
Di − Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)







 ,
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∂zi↑
∂bxi

=
2bix

√

(Di −Ei)2 + 4(b2ix + b2iy)

1
√

(e2i + p2
i↓)(d

2
i + p2

i↑)
(B.35)

×
[(

pi↓ −
(eipi↑ + dipi↓)di

d2
i + p2

i↑

)

−
(

pi↑ −
(eipi↑ + dipi↓)ei

e2i + p2
i↓

)]

,

∂zi↑
∂byi

=
2biy

√

(Di − Ei)2 + 4(b2ix + b2iy)

1
√

(e2i + p2
i↓)(d

2
i + p2

i↑)
(B.36)

×
[(

pi↓ −
(eipi↑ + dipi↓)di

d2
i + p2

i↑

)

−
(

pi↑ −
(eipi↑ + dipi↓)ei

e2i + p2
i↓

)]

,

∂zi↓
∂Di

=
1

2
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
(B.37)

×





(

pi↑ −
(eipi↓ + dipi↑)di

d2
i + p2

i↓

)

1 +
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)





+

(

pi↓ −
(eipi↓ + dipi↑)ei

e2i + p2
i↑

)

1 − Di − Ei
√

(Di − Ei)2 + 4(b2ix + b2iy)







 ,

∂zi↓
∂Ei

=
1

2
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
(B.38)

×





(

pi↑ −
(eipi↓ + dipi↑)di

d2
i + p2

i↓

)

1 − Di − Ei
√

(Di −Ei)2 + 4(b2ix + b2iy)





+

(

pi↓ −
(eipi↓ + dipi↑)ei

e2i + p2
i↑

)

1 +
Di − Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)







 ,

∂zi↓
∂bxi

=
2bix

√

(Di −Ei)2 + 4(b2ix + b2iy)

1

2
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
(B.39)

×
[(

pi↑ −
(eipi↓ + dipi↑)di

d2
i + p2

i↓

)

−
(

pi↓ −
(eipi↓ + dipi↑)ei

e2i + p2
i↑

)]

,
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∂zi↓
∂byi

=
2biy

√

(Di −Ei)2 + 4(b2ix + b2iy)

1

2
√

(e2i + p2
i↑)(d

2
i + p2

i↓)
(B.40)

×
[(

pi↑ −
(eipi↓ + dipi↑)di

d2
i + p2

i↓

)

−
(

pi↓ −
(eipi↓ + dipi↑)ei

e2i + p2
i↑

)]

.

B.7 Derivatives of the MFA Matrix Ai

The MFA matrix Ai, that includes the local rotation and the mean field values of the

boson fields is a function of the z-factors in the charge rotational invariant formulation:

Ai
11 = (zi↑ cos2(

ϕi

2
) + zi↓ sin2(

ϕi

2
)) (B.41)

Ai
22 = (zi↑ sin2(

ϕi

2
) + zi↓ cos2(

ϕi

2
))

Ai
12 =

bxi − ibyi

Di − Ei

(zi↑ − zi↓) cos(ϕi)

Ai
21 =

bxi + ibyi

Di − Ei

(zi↑ − zi↓) cos(ϕi)

The rotation angle ϕi can be written in terms of the slave bosons:

cos2(
ϕi

2
) =

1

2
(1 + cos(ϕi)) =

1

2



1 +
Di −Ei

√

(Di − Ei)2 − 4(b2ix + b2iy)



 (B.42)

sin2(
ϕi

2
) =

1

2
(1 − cos(ϕi)) =

1

2



1 − Di −Ei
√

(Di − Ei)2 − 4(b2ix + b2iy)
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Summarizing formulae (B.41) and (B.42) the components of MFA matrix reads as:

Ai
11 =

1

2



(zi↑ + zi↓) + (zi↑ − zi↓)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 (B.43)

Ai
22 =

1

2



(zi↑ + zi↓) − (zi↑ − zi↓)
Di − Ei

√

(Di −Ei)2 + 4(b2ix + b2iy)





Ai
12 = (zi↑ − zi↓)

bxi − ibyi
√

(Di −Ei)2 + 4(b2ix + b2iy)

Ai
21 = (zi↑ − zi↓)

bxi + ibyi
√

(Di −Ei)2 + 4(b2ix + b2iy)

We the final expression for the derivatives of the 4 components of the MFA matrix Ai

with respect to the 6 charge rotational slave bosons:

∂Ai
11

∂Di
=

1

2

[(
∂zi↑
∂Di

+
∂zi↓
∂Di

)

(B.44)

+

(
∂zi↑
∂Di

− ∂zi↓
∂Di

)
Di − Ei

√

(Di − Ei)2 − 4(b2rix + b2iy)

+(zi↑ − zi↓)






1
√

(Di − Ei)2 − 4(b2ix + b2iy)
− (Di − Ei)

2

(√

(Di −Ei)2 − 4(b2ix + b2iy)
)3









 ,

∂Ai
11

∂Ei

=
1

2

[(
∂zi↑
∂Ei

+
∂zi↓
∂Ei

)

(B.45)

+

(
∂zi↑
∂Ei

− ∂zi↓
∂Ei

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)

−(zi↑ − zi↓)






1
√

(Di − Ei)2 − 4(b2ix + b2iy)
− (Di −Ei)

2

(√

(Di − Ei)2 − 4(b2ix + b2iy)
)3









 ,
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∂Ai
11

∂pi↑
=

1

2

[(
∂zi↑
∂pi↑

+
∂zi↓
∂pi↑

)

(B.46)

+

(
∂zi↑
∂pi↑

− ∂zi↓
∂pi↑

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,

∂Ai
11

∂pi↓
=

1

2

[(
∂zi↑
∂pi↓

+
∂zi↓
∂pi↓

)

(B.47)

+

(
∂zi↑
∂pi↓

− ∂zi↓
∂pi↓

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,

∂Ai
11

∂bix
=

1

2

[(
∂zi↑
∂bix

+
∂zi↓
∂bix

)

(B.48)

+

(
∂zi↑
∂bix

− ∂zi↓
∂bix

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)

−(zi↑ − zi↓)
4bix(Di −Ei)

(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
11

∂biy
=

1

2

[(
∂zi↑
∂biy

+
∂zi↓
∂biy

)

(B.49)

+

(
∂zi↑
∂biy

− ∂zi↓
∂biy

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)

−(zi↑ − zi↓)
4biy(Di −Ei)

(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3
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∂Ai
22

∂Di
=

1

2

[(
∂zi↑
∂Di

+
∂zi↓
∂Di

)

(B.50)

−
(
∂zi↑
∂Di

− ∂zi↓
∂Di

)
Di − Ei

√

(Di −Ei)2 + 4(b2ix + b2iy)

−(zi↑ − zi↓)






1
√

(Di − Ei)2 − 4(b2ix + b2iy)
− (Di −Ei)

2

(√

(Di − Ei)2 − 4(b2ix + b2iy)
)3









 ,

∂Ai
22

∂Ei

=
1

2

[(
∂zi↑
∂Ei

+
∂zi↓
∂Ei

)

(B.51)

−
(
∂zi↑
∂Ei

− ∂zi↓
∂Ei

)
Di − Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)

+(zi↑ − zi↓)






1
√

(Di − Ei)2 − 4(b2ix + b2iy)
− (Di − Ei)

2

(√

(Di −Ei)2 − 4(b2ix + b2iy)
)3









 ,

∂Ai
22

∂pi↑
=

1

2

[(
∂zi↑
∂pi↑

+
∂zi↓
∂pi↑

)

(B.52)

−
(
∂zi↑
∂pi↑

− ∂zi↓
∂pi↑

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,

∂Ai
22

∂pi↓
=

1

2

[(
∂zi↑
∂pi↓

+
∂zi↓
∂pi↓

)

(B.53)

−
(
∂zi↑
∂pi↓

− ∂zi↓
∂pi↓

)
Di −Ei

√

(Di − Ei)2 + 4(b2ix + b2iy)



 ,
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∂Ai
22

∂bix
=

1

2

[(
∂zi↑
∂bix

+
∂zi↓
∂bix

)

(B.54)

−
(
∂zi↑
∂bix

− ∂zi↓
∂bix

)
Di − Ei

√

(Di −Ei)2 + 4(b2ix + b2iy)

+(zi↑ − zi↓)
4bix(Di − Ei)

(√

(Di −Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
22

∂biy
=

1

2

[(
∂zi↑
∂biy

+
∂zi↓
∂biy

)

(B.55)

−
(
∂zi↑
∂biy

− ∂zi↓
∂biy

)
Di − Ei

√

(Di −Ei)2 + 4(b2ix + b2iy)

+(zi↑ − zi↓)
4biy(Di − Ei)

(√

(Di −Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
12

∂Di
=

(
∂zi↑
∂Di

− ∂zi↓
∂Di

)
(bix − ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
(B.56)

−(zi↑ − zi↓)
(bix − ibiy)(Di − Ei)

(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3

∂Ai
12

∂Ei

=

(
∂zi↑
∂Ei

− ∂zi↓
∂Ei

)
(bix − ibiy)

√

(Di −Ei)2 + 4(b2ix + b2iy)
(B.57)

+(zi↑ − zi↓)
(bix − ibiy)(Di −Ei)

(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3 ,

∂Ai
12

∂pi↑
=

(
∂zi↑
∂pi↑

− ∂zi↓
∂pi↑

)
(bix − ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
, (B.58)
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∂Ai
12

∂pi↓
=

(
∂zi↑
∂pi↓

− ∂zi↓
∂pi↓

)
(bix − ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
, (B.59)

∂Ai
12

∂bix
=

(
∂zi↑
∂bix

− ∂zi↓
∂bix

)
(bix − ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
(B.60)

+(zi↑ − zi↓)






1
√

(Di − Ei)2 + 4(b2ix + b2iy)
− 4bix(bix − ibiy)
(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
12

∂biy
=

(
∂zi↑
∂biy

− ∂zi↓
∂biy

)
(bix − ibiy)

√

(Di −Ei)2 + 4(b2ix + b2iy)
(B.61)

+(zi↑ − zi↓)






−i
√

(Di − Ei)2 + 4(b2ix + b2iy)
− 4biy(bix − ibiy)
(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
21

∂Di

=

(
∂zi↑
∂Di

− ∂zi↓
∂Di

)
(bix + ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
(B.62)

−(zi↑ − zi↓)
(bix + ibiy)(Di −Ei)

(√

(Di −Ei)2 + 4(b2ix + b2iy)
)3 ,

∂Ai
21

∂Ei
=

(
∂zi↑
∂Ei

− ∂zi↓
∂Ei

)
(bix + ibiy)

√

(Di −Ei)2 + 4(b2ix + b2iy)
(B.63)

+(zi↑ − zi↓)
(bix + ibiy)(Di − Ei)

(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3 ,

∂Ai
21

∂pi↑
=

(
∂zi↑
∂pi↑

− ∂zi↓
∂pi↑

)
(bix + ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
, (B.64)
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∂Ai
21

∂pi↓
=

(
∂zi↑
∂pi↓

− ∂zi↓
∂pi↓

)
(bix + ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
, (B.65)

∂Ai
21

∂bix
=

(
∂zi↑
∂bix

− ∂zi↓
∂bix

)
(bix + ibiy)

√

(Di − Ei)2 + 4(b2ix + b2iy)
(B.66)

+(zi↑ − zi↓)






1
√

(Di − Ei)2 + 4(b2ix + b2iy)
− 4bix(bix + ibiy)
(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3




 ,

∂Ai
21

∂biy
=

(
∂zi↑
∂biy

− ∂zi↓
∂biy

)
(bix + ibiy)

√

(Di −Ei)2 + 4(b2ix + b2iy)
(B.67)

+(zi↑ − zi↓)






i
√

(Di − Ei)2 + 4(b2ix + b2iy)
− 4biy(bix + ibiy)
(√

(Di − Ei)2 + 4(b2ix + b2iy)
)3




 .

B.8 Derivatives of the Inter Site Repulsion Term

The expectation value of the inter site repulsion tern reads:

〈ĤR
HF 〉 = V

∑

<ij>

[
〈ĉ†i↑ĉi↑〉〈ĉ

†
j↑ĉj↑〉 + 〈ĉ†i↑ĉi↑〉〈ĉ

†
j↓ĉj↓〉 (B.68)

+〈ĉ†i↓ĉi↓〉〈ĉ
†
j↑ĉj↑〉 + 〈ĉ†i↓ĉi↓〉〈ĉ

†
j↓ĉj↓〉

−〈ĉ†i↑ĉj↑〉〈ĉ
†
i↑ĉj↑〉 − 〈ĉ†i↓ĉj↓〉〈ĉ

†
j↓ĉi↓〉

+〈ĉ†i↑ĉ
†
j↓〉〈ĉj↓ĉi↑〉 + 〈ĉ†j↑ĉ

†
i↓〉〈ĉi↓ĉj↑〉

]
.
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We write down the partial derivatives (B.68) with respect to the amplitudes of the

Bogolioubiv transformation.

In the case of m ≤ N and k ≤ N one obtains:

∂

∂xm(k)
HR = 4xm(k)

∑

j(m)

(ρ↑↑jj + ρ↓↓jj ) (B.69)

− 4
∑

j(m)

[

Re(ρ↑↑mj)xj(k) − Im(ρ↑↑mj)yj(k)
]

+ 4
∑

j(m)

[

Re(ρ↑↓mj)xj+N(k) + Im(ρ↑↓mj)yj+N(k)
]

,

and

∂

∂ym(k)
HR = 4ym(k)

∑

j(m)

(ρ↑↑jj + ρ↓↓jj ) (B.70)

− 4
∑

j(m)

[

Re(ρ↑↑mj)yj(k) + Im(ρ↑↑mj)xj(k)
]

+ 4
∑

j(m)

[

Re(ρ↑↓mj)yj+N(k) − Im(ρ↑↓mj)xj+N(k)
]

.

In the case of m > N and k ≤ N one obtains:

∂

∂xm(k)
HR = 4

∑

j(m)

[

Re(ρ↓↑(m−N)j)xj(k) + Im(ρ↓↑(m−N)j)yj(k)
]

, (B.71)

and

∂

∂ym(k)
HR = 4

∑

j(m−N)

[

Re(ρ↓↑(m−N)j)yj(k) − Im(ρ↓↑(m−N)j)xj(k)
]

. (B.72)

In the case of m > N and k > N one obtains:

∂

∂xm(k)
HR = 4xm(k)

∑

j(m−N)

(ρ↑↑jj + ρ↓↓jj ) (B.73)

− 4
∑

j(m−N)

[

Re(ρ↓↓(m−N)j)xj+N(k) + Im(ρ↓↓(m−N)j)yj+N(k)
]

,
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and

∂

∂xm(k)
HR = 4ym(k)

∑

j(m−N)

(ρ↑↑jj + ρ↓↓jj ) (B.74)

− 4
∑

j(m−N)

[

Re(ρ↓↓(m−N)j)yj+N(k) − Im(ρ↓↓(m−N)j)xj+N(k)
]

.



Appendix C

C.1 The Bardeen-Cooper-Schrieffer Theory

We start with the BCS Hamiltonian operator reads in the free energy formulation:

H =
∑

kσ

(εk − µ)ĉ†kσĉkσ − U
∑

kk′

ĉ†k′↑ĉ
†
−k′↓ĉ−k↓ĉk↑. (C.1)

The kinetic energy describes s-wave-like electron system an potential term includes the

phonon mediated attractive electron interaction where two electron corresponds to an

other with opposite momentum and spin. We follow the derivation in [125] but we add

the Fermi energy µ in order to work in the canonical ensemble.

In the first step we perform the mean-field approximation where we use a HF-like

decoupling where we respect the anomalous pair correlations yielding the effective

Hamiltonian:

Heff =
∑

kσ

(εk − µ)ĉ†kσĉkσ − U
∑

kk′

〈ĉ†k′↑ĉ
†
−k′↓〉ĉ−k↓ĉk↑ − U

∑

kk′

〈ĉ−k↓ĉk↑〉ĉ†k′↑ĉ
†
−k′↓

+ U
∑

kk′

〈ĉ†k′↑ĉ
†
−k′↓〉〈ĉ−k↓ĉk↑〉. (C.2)

New order parameters can be defined: ∆ =
∑

k〈ĉ−k↓ĉk↑〉 and ∆∗ =
∑

k〈ĉ
†
k↑ĉ

†
−k↓〉 mea-

suring the average pair density. This Hamiltonian has a unusual form since two creation

153
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and destruction operators follow in one term. In order to bring this Hamiltonian in

the one particle formulation one uses the Bogoliubov-Transformation:

α̂k = ukĉk↑ − vkĉ
†
−k↓, α̂†

k = u∗kĉ
†
k↑ − v∗kĉ−k↓ (C.3)

β̂k = ukĉ−k↓ + vkĉ
†
k↑, β̂†

k = u∗kĉ
†
−k↓ + v∗kĉk↑

where the new operators obey the fermionic anti commutator relations:

[

α̂k, β̂k′

]

+
= 0,

[

α̂†
k, β̂

†
k′

]

+
= 0,

[

α̂k, β̂
†
k′

]

+
= 0, (C.4)

[

α̂k, α̂
†
k′

]

+
=

[

β̂k, β̂
†
k′

]

+
= (|uk|2 + |vk|2)δkk′.

For normalization reasons the transformation must hold: |uk|2 + |vk|2 = 1. The uk

and vk have to be calculated with respect to the effective Hamiltonian Heff . The

Hamiltonian has to be diagonal and bilinear in the new operator vectors (α̂†
k, β̂k) and

(α̂k, β̂
†
k):

|uk|2 =
1

2

(

1 +
εk − µ

Ek

)

and |vk|2 =
1

2

(

1 − εk − µ

Ek

)

, (C.5)

and the definition:

Ek =
√

(εk − µ)2 + U2∆2. (C.6)

The effective Hamiltonian than takes the form:

Heff =
∑

kσ

Ek(α̂
†
kα̂k + β̂†

kβ̂k) +
∑

k

(εk − µ− Ek) + U |∆|2

If one expresses the order parameter with respect to the effective Hamiltonian ∆ =
∑

k〈ĉ−k↓ĉk↑〉Heff respecting (C.3) and (C.5) one derives the simplified self consistency

equation (provided ∆ 6= 0):

1 =
U

2

∑

k

1
√

(εk − µ)2 + U2|∆|2
(C.7)

This equation allows the calculation of the order parameter ∆.
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C.2 Attraction-Repulsion Transformation

The attractive Hubbard model can be transferred to the repulsive (normal) Hubbard

model with an inter-atomic Ising exchange with an additional external field [48,50,107]:

ĉi↑ = ĝi↑,

ĉ†i↑ = ĝ†i↑,

ĉi↓ = (−1)ix+iy ĝ†i↓, (C.8)

ĉ†i↓ = (−1)ix+iy ĝi↓.

Respecting the anti commutation [ĝ†iσ, ĝjσ]+ = δij we obtain for the Hubbard Hamilto-

nian for NN transitions:

Ĥ =
∑

〈ij〉σ
tij ĉ

†
iσ ĉjσ + U

∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ (C.9)

=
∑

〈ij〉σ
tij ĝ

†
iσĝjσ + U

∑

i

(−1)(2(ix+iy))ĝ†i↑ĝi↑ĝi↓ĝ
†
i↓

=
∑

〈ij〉σ
tij ĝ

†
iσĝjσ − U

∑

i

ĝ†i↑ĝi↑ĝ
†
i↓ĝi↓ + U

∑

i

ĝ†i↑ĝi↑

where the kinetic energy commutes for the summation over NN and NNN explicitly:

T̂↓ =
∑

ij

tij(−1)(ix+iy+jx+jy) ĝi↓ĝ
†
j↓ (C.10)

=
N∑

i

{
∑

l=±1

t
[

(−1)(2ix+l+2iy) ĝi↓ĝ
†
j↓ + (−1)(2ix+2iy+l) ĝi↓ĝ

†
j↓

]

+
∑

n,m=±1

t′(−1)ix+n+iy+mĝi↓ĝ
†
j↓

}

=

NN∑

ij

tij(−1)ĝi↓ĝ
†
j↓ +

NNN∑

ij

t′ij ĝi↓ĝ
†
j↓

=
NN∑

ij

tij ĝ
†
i↓ĝj↓ +

NNN∑

ij

t̃′ij ĝ
†
i↓ĝj↓

where we use the short hand notation j = (jx, jy). We used the anti commutator

relation for j 6= j = 0 and the symmetry relations tij = tji and we replaced t̃′ij = −t′ij .
The attractive-repulsive-transformation changes the sign of the NNN hopping param-

eter.
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The charge vector Ĵ transforms to the Spin vector Ŝ. The components read:

Ĵx
i =

1

2

[

ĉ†i↑ĉ
†
i↓ + ĉi↓ĉi↑

]

(C.11)

=
1

2
(−1)(ix+iy)

[

ĝ†i↑ĝi↓ + ĝ†i↓ĝi↑

]

= (−1)(ix+iy)Ŝx
i

and in analogy we derive Ĵy
i = (−1)(ix+iy)Sy

i and Ĵz
i = Ŝz

i . For the ladder operators we

obtain: Ĵ±
i ⇐⇒ (−1)ix+iy Ŝ±

i and for the order parameters:

ni ⇐⇒ m̃i + 1 and mi ⇐⇒ ñi − 1, (C.12)

where we used the definition :ni = (ni↑ + ni↓) and mi = (ni↑ − ni↓). With the help

of this formulae one can transform a homogeneous charged superconductor to an anti-

ferromagnet.

C.3 Second Order Perturbation Theory

We assume arbitrary local charge density ρi = 1
2
(c†i↑ci↑+c

†
i↓ci↓). Applying the continuity

equation we use [H, ρi] = iJz
i with the local charge density we derive an expression for

the total current flow at lattice site i:

[Ĥ, ρ̂i] =
∑

m

ĵz
i,m (C.13)

where Ĥ is the Hubbard Hamiltonian Eq. (2.1) an the sum goes over all lattice sites

where transition processes are allowed by the matrix element tij . In order to find an

expression for the 2nd order perturbation theory the transform Hilbert vectors and
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operators into the Heisenberg picture:

〈0|
∑

im

ĵz
i,m|ν〉 = 〈0| exp

(

− i

~
Ĥt
)

exp
( i

~
Ĥt
)∑

im

ĵz
i,m exp

(

− i

~
Ĥt
)

exp
( i

~
Ĥt
)

|ν〉

= 〈0|H [Ĥ, ρ̂H ]|ν〉H
= (−i~)〈0|H

d

dt
ρ̂H |ν〉H

= (−i~)〈0|H
d

dt

(

ei Ĥ
~

tρ̂Se−i Ĥ
~

t
)

|ν〉H

= 〈0|HĤei Ĥ
~

tρ̂Se−i Ĥ
~

t − ei Ĥ
~

tρ̂Se−i Ĥ
~

tĤ|ν〉H
= (E0 − Eν)〈0|ρ̂|ν〉 (C.14)

where
∑

im include all directions. We solve the second order perturbation theory:

∑

ν

〈0|
∑

im ĵ
z
i,m|ν〉〈ν|

∑

im ĵ
z
i,m|0〉

Eν − E0
=

∑

ν

(Eν − E0)|〈0|ρ̂|ν〉|2 (C.15)

We obtain the first moment of the spectral density on the right hand site, that can be

solved by using the sum rule.

∑

ν

(Eν − E0)|〈0|ρ̂|ν〉|2 = 〈[ρ̂, [Ĥ, ρ̂]]〉 (C.16)

Since the total charge commutes with the Hamiltonian the 2nd order perturbation

theory vanishes.

C.4 Green’s Function and Sum Rule

We like to derive the identity (6.30) from section 6.3. The general form is written as:

M
(n)
AB =

∫ ∞

−∞
AAB(ω)ωndω . (C.17)
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where AAB is the spectral density between the operators A and B and M
(n)
AB is the

spectral weight of order n and the spectral density is declared as:

AAB(ω) = lim
δ→0+

i

2π

(

GAB(ω + iδ) −GAB(ω − iδ)
)

(C.18)

= lim
δ→0+

i

2π

(

Gret
AB (ω) −Gav

AB(ω)
)

= lim
δ→0+

i

2π

( X

Y + iδ
− X

Y − iδ

)

= lim
δ→0+

1

π

Xδ

Y 2 − δ2
.

with the retarded and advanced Green functions. The last line in Eq. (C.18) can be

written as:

AAB(ω) = − lim
δ→0+

{
1

π
Im
(

GAB(ω + iδ)
)}

. (C.19)

In the case of n = 1 and M
(1)
AB = 〈[[A,H ], B]〉 this leads to the to:

1

π

∫

dωωIm
(

Gret
AB (ω)

)

= −〈[[A,H ], B]〉 (C.20)

where we use the continuity of the retarded Green function in the upper complex plane:

Gret
AB (ω) = lim

δ→0+
GAB(ω + iδ). (C.21)

This argumentation is a consequence from the sum rule.
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[19] Mook, H. A., Dai, P., and Doğan, F. Feb 2002 Phys. Rev. Lett. 88(9), 097004.

[20] Arai, M., Nishijima, T., Endoh, Y., Egami, T., Tajima, S., Tomimoto, K., Shio-

hara, Y., Takahashi, M., Garrett, A., and Bennington, S. M. Jul 1999 Phys. Rev.

Lett. 83(3), 608–611.

[21] Dai, P., Mook, H. A., Hunt, R. D., and Doğan, F. Jan 2001 Phys. Rev. B 63(5),
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