Design and Realization of Privacy
Guaranteeing Means for
Context-sensitive Systems

Von der Fakultat fir Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universitat Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation
vorgelegt von

Dipl.-Informatiker

Michael Maaser

geboren am 11.12.1975 in Jena

Gutachter: Prof. Dr. rer. nat. Peter Langenddrfer
Gutachter: Prof. Dr.-Ing. Jorg Nolte

Gutachter: Prof. Dr. rer. oec. habil Glnter MUller

Tag der mindlichen Prifung: 06. Juli 2010

To my lovely daughter

Abstract

Privacy issues are becoming more and more important, especially since the
cyber and the real world are converging up to certain extent when using mobile de-
vices. Means that really protect privacy are still missing. The problem is, as soon
as a user provides data to a service provider the user looses control over her/his
data. The simple solution is not to provide any data but then many useful services,
e.g., navigation applications, cannot be used.

The dissertation addresses two aspects of privacy protection. The first aspect re-
gards not producing private information if possible. Such unnecessary information
are traces of access controlled service uses. Hence, one approach in this disser-
tation enables k-anonymous authorization for services uses. It equips the users of
the system with trusted pseudonymous certificates reflecting their respective autho-
rizations. Analogous to anonymous e-cash, the certificates are issued by a trusted
authority with knowledge of the actual authorizations of an identified user. The
certificates can be verified by any service supported by the trusted authority but
without knowledge of the user’s identity. Not even the issuing authority is able to
reveal the users identity from the pseudonym of a certificate. Hence, service usage
cannot be tracked, neither by the service nor by the authority. This protects the
privacy of service usage behavior of users.

The second aspect of privacy protection is to remain in control over private data re-
leased to others. Temporary release of private data is essential to context-sensitive
services, which rely on these context data to provide or improve added value.
Therefore, the dissertation designs a Privacy Guaranteeing Execution Container
(PGEC), which enables applications to access private user data and guarantees that
the user data is deleted as soon as the service or application is finished. Basically,
the concept is that the application obtains access to the user data in a specially
protected and certified environment, the PGEC. The PGEC also restricts the com-
munication between the application and the service provider to what is explicitly
allowed by the service user. In addition to those means, the PGEC also imple-
ments countermeasures against malicious attacks such as modified host systems
and covert channel attacks, which might be misusing CPU load to signal data out
of the PGEC. Thus, the PGEC guarantees a “one time use” of the provided private
data.

Zusammenfassung

Privatsphiren- und Datenschutzfragen gewinnen immer mehr an Bedeutung.
Vor allem seit die Cyber- und die reale Welt durch die Verwendung mobiler Gerite
zu einem gewissen Grad konvergieren. Mittel, die tatsidchlich die Privatsphire
schiitzen, fehlen noch immer. Das Problem ist: Sobald ein Benutzer seine Daten an
einen Diensteanbieter iibermittelt, verliert er die Kontrolle iiber seine Daten. Die
einfachste Losung wire es, liberhaupt keine Daten zu iibermitteln. Dann kénnen
jedoch viele niitzliche Dienste, z. B. Navigations-Anwendungen, nicht verwendet
werden.

Diese Dissertation adressiert zwei Aspekte des Privatsphiarenschutzes. Der erste
Aspekt betrifft die Nicht-Erzeugung privater Informationen wenn moglich. Solche
unnotigen Informationen sind Nutzungsspuren an zugriffsbeschrinkten Diensten.
Deshalb ermoglicht ein Ansatz dieser Dissertation eine k-anonyme Zugangsbe-
rechtigung. Er stattet die Benutzer des Systems mit vertrauenswiirdigen pseudony-
misierten Zertifikaten aus, welche die entsprechende Autorisierung reflektieren.
Analog zu anonymen e-Cash-Ansitzen werden die Zertifikate von einer vertrau-
enswiirdigen Autoritit mit Kenntnis liber die tatsdchlichen Berechtigungen iden-
tifizierter Nutzer ausgestellt. Die Zertifikate konnen von jedem Dienst mit Un-
terstiitzung der Autoritit verifiziert werden, ohne die Identitit des Benutzers zu
kennen. Nicht einmal die ausstellende Autoritit ist in der Lage, die Identitét des
Benutzers aus dem Pseudonym des Zertifikates zu ermitteln. Daher kann die Ser-
vicenutzung nicht nachverfolgt werden, weder durch den Dienst noch durch die
Autoritét. Dieses schiitzt die Privatsphére des Dienstnutzungsverhaltens der Nut-
Zer.

Der zweite Aspekt des Privatsphirenschutzes ist, die Kontrolle iiber ausgegebe-
ne private Daten zu behalten. Die voriibergehende Herausgabe privater Daten ist
unerldsslich fiir kontextsensitive Dienste, die auf solche Kontextdaten angewiesen
sind, um den Mehrwert des Dienstes anzubieten oder zu erhdhen. Dazu wird in
dieser Dissertation ein Privatsphéren garantierender Ausfiihrungscontainer (PGEC)
entworfen, der Anwendungen den Zugriff auf private Nutzerdaten ermoglicht, da-
bei aber garantiert, dass die Nutzerdaten geloscht werden, sobald der Dienst oder
die Anwendung beendet ist. Im Grunde ist das Konzept, dass die Anwendung
den Zugriff nur innerhalb einer speziell geschiitzten und zertifizierten Umgebung,
dem PGEC, erhilt. Der PGEC beschriankt aulerdem die Kommunikation zwischen
der Anwendung und dem Dienstanbieter auf das MaB, welches explizit durch den
Dienstnutzer festgelegt wird. Zusitzlich zu diesen Mitteln wendet der PGEC Ge-
genmanahmen an gegen boswillige Angriffe, wie modifizierte Hostsysteme und
Angriffe iiber verdeckte Kanile, die zum Beispiel die CPU-Last missbrauchen
konnten, um Daten aus dem PGEC herauszuschleusen. Damit garantiert der PGEC
eine “Einmalnutzung” der herausgegebenen privaten Daten.

1ii

Contents

Abstract
Zusammenfassung
Contents

1 Introduction
1.1 Motivation e
1.2 Scenarios
1.2.1 Anonymous Authentication/Access Control
1.2.2 Stationary/mobileuse
1.2.3 Exchange of Private Data for Purpose
1.2.4 Scenario of Accessing Medical Data of Patients

2 Related Technologies
2.1 Existing Privacy Protection Technologies
2.1.1 Declarative Technologies
2.1.2 Enforcing Technologies
2.2 Access Control Technologies
2.2.1 eXtensible Access Control Markup Language (XACML)
2.2.2 Discretionary Access Control (DAC)
2.2.3 Mandatory Access Control MAC)
2.2.4 Role Based Access Control (RBAC)
2.3 Authentication Technologies
2.3.1 Kerberos
2.3.2 Pre-shared key (PSK) Authentication
2.4 Digital Rights Management (DRM)

3 Anonymous Access Control
3.1 Technology e
3.2 FunctionPrinciple Lo oo

ii

O O NN Lt AW

13
13
13
14
23
23
25
26
26
27
27
29
29

vi

3.2.1
322
323
324
3.3 Performance
3.4 Simplified Example
3.4.1
3.4.2 Anonymous Authorization and Authentication

Requirements
Mathematical Background

Attacks by Malicious Users
Attacks by Malicious Certificate Authority (CA)

Issuing of Certificates

4 Protecting Private Data by Technical Means

4.1 Terminology
4.1.1
4.1.2 Economical Security
4.1.3 Evaluate Information Load of Literals
4.1.4 Negotiation of Permitted Data
4.2 Privacy Guaranteeing Execution Container (PGEC)
4.2.1

Service Classification

Stand-alone Architecture
4.2.2 Distributed Architecture
4.3 Protection Requirements
4.3.1

5 Prototype Implementation

5.1 Technical Aspects and Components of the PGEC

5.1.1 PGEC and its Host Runtime Environment
5.1.2 Other Protection Means
5.1.3 CovertChannels
5.1.4 Assertion of Untampered System
5.1.5 Abstract Programming Interface (API) for Data Access
5.1.6 Mutual Authentication of Distributed PGEC Instances
5.2 Test Attacks and Effects of Counter Measures
5.2.1 TestRegular Attacks

5.2.2 Test Covert Channel Attacks
6 Summary

Bibliography

A Listings

List of Symbols and Abbreviations

List of Figures

List of Tables

PGEC Threat Model

CONTENTS

113

117

127

155

158

161

Acknowledgements

With having this dissertation eventually finished, I would like to thank my family and
friends for constantly nagging me about the state of affairs regarding my dissertation,
which made me not give up.

I would like to thank my wife, as she put pressure on me by having finished her disser-
tation prior to me. She also provided the cover art of this book.

Finally, I would like to thank my colleague and friend Steffen Ortmann for his peer re-
viewing and especially for being a good discussion partner on many issues that occurred
in this work.

Chapter 1

Introduction

In the world we used to know a few decades ago, privacy was simple. You closed the
door and there you go. What happens behind closed doors stays behind closed doors.
While privacy was your right to self-determine when, how and to what extent informa-
tion about yourself is communicated to others!, you used to be in almost full control
of your information. Even if you told private information to someone, this information
was not shared widely. Additionally, the details or the degree of truth decreased natu-
rally when telling from one person to the next. But things have changed. Large parts of
human life and social interactions migrated into the Internet. Hence, a vast amount of
data is put into and stored in the net. Since machines do not forget and are able to make
exact copies of what they know, the natural degradation and limitation in travel distance
of information are gone. Besides, the machines are able to gather information that is
not explicitly given but can be inferred from user behavior or context [2]. A context is
defined as

“the conditions and circumstances that are relevant to an event, fact, etc.”’[3]

These conditions and circumstances can be used to improve a service or to provide a
service at all, e.g., a navigation service directing based on current position. On the other
hand, private information could be derived that is not even known to the owner. In such
case, it is very hard to remain in control over the own private information.

The remainder of this chapter motivates the demand for privacy and introduces a number
of scenarios with different requirements for privacy.

'Derived from definition[1] by Prof. em. Alan Westin, Public Law and Government, Columbia Uni-
versity

4 CHAPTER 1. INTRODUCTION

1.1 Motivation

From a personal point of view, the lack of privacy protection by annoying advertisements
may be noticed. Here e-mail spam, cold calls from call centers or mailings with credit
offers from banks could be considered. Sometimes the information is gained from a pub-
licly available source, e.g., the phone number from the telephone book or yellow pages.
Even though this is not actually a privacy breach, the publication of the phone number
was not supposed for those unsolicited calls. Hence, persons or even companies releas-
ing personal information require the purpose being adhered. Technologies that bind data
to a purpose or other restrictions, e.g., P3P[4] and GeoPriv[5], exist (see section 2.1.1).
On the other hand, some advertisement or information that exactly fits a persons current
needs may not be considered annoying but well placed. A large number of personal
information including the context of the aimed person has to be known to figure out
the exactly fitting unsolicited information. One may consider various recommendation
systems. Those can be either systems that recommend on the basis of a community as

2 or music playlists like last.fm?. These are based on pre-

in online shops like Amazon
viously purchased products and shopping behavior of other customers or other listeners
music liking. It can further be music and television show recommenders based on key
words, artists, genre or any other meta-data. Such systems live on the release of some
private information such as behavior tracking, interests and contexts. Privacy Enhancing
Technologies (PET) that aim to act in this field must not hinder the release of those data
but ensure to keep control over it, to prevent it from being misused for any unintended
purpose.

Governmental institutions like the Art.29 Data Protection Working Party* demand for
PET as well [6]. This is especially provoked by an amount of publicly known privacy
breaches. Those already occurred some years ago, like JetBlue’s Privacy Policy Viola-
tions [7] or the publication of AOL’s pseudonymized search log that enabled data miners
to identify at least one person [8]. Privacy breaches are recently going on. There are not
only accidental privacy breaches as in the British HM Revenue & Customs?, which lost
CDs with personal information of about 7.25 Million British Families receiving child
benefits [9]. The Italian ministry of finances intentionally published the annual tax dec-
larations of all citizens [10]. That is, even institutions that gather private information by
law do not always obey privacy concerns. Furthermore, especially since 9/11 there exist
covetousness of the government and security organs of the United States of America to
get many information about people traveling into the U.S.A. [11] as well as information
on financial transactions. The latter is known as the SWIFT affair [12].

The given examples show that private data is not safe, not even at parties that should be
trusted as they are organs of the government you elected. These are supposed not to be

Zhttp://www.amazon.com

3http://www.last.fm
“http://ec.europa.eu/justice_home/fsj/privacy/workinggroup/index_en.htm
Shttp://www.hmrc.gov.uk

1.2. SCENARIOS 5

interested in gaining profit from the collected data. It may not be feasible to counteract
the growing interest in private data of governmental institutions by technical means such
as presented in this work, but the past and current leaking issues shall demonstrate that
there cannot be trust into any party with regard to private data. Effective privacy pro-
tection means should not rely on trustworthy parties but rather giving or regaining full
control to the owner of the data. As data and especially personal information is useful
only when being processed, means that allow private information to be processed by
services provided by other parties are required. These services as well as the additional
information brought with the service are somewhat private to the other party and hence,
worth to be protected as well. The privacy protection technology presented in Chapter 4
aims to achieve that omni directional protection. It protects data users and services and
the service providers’ code as well.

1.2 Scenarios

There are various scenarios, where personal/private data arise or are being used. Hence,
multiple aspects of privacy protection must be considered. Two of those aspects are
addressed in this dissertation. The first aspect regards the prevention of generation of
private information, such as behavioral traces. Protection of and control over data ac-
tually released to others is the second privacy protection aspect addressed here. A third
aspect concerns only about the deduction of information from released or sensed private
data [2]. It is considered, that fulfillment of the first two aspects obsoletes the third.
Those mentioned scenarios differ in the way private data are gathered and processed.
This comprises the source of the data, which data or type of information is actually
used, what is the data used for and whether or how does the data positively affect the
purpose. The following sources may be considered:

o Content of own data bases from previous data gathering,

o Information explicitly provided by the owner,

e Information gathered from user’s behavior (e.g., by tracking) or

e Aggregation and inference of information from original information.
Such data could be rather static information like

e Birth date,

Credit card or social security number,

Phone number or e-mail address,

Postal address,

Income,

6 CHAPTER 1. INTRODUCTION

e Health records,
o ...
or more dynamic information, e.g.,
e Proclivities,
e Interests or
e Behavior like shopping history, movement patterns or daily schedule.

Some of those data are obviously necessary to accomplish certain service, e.g., a postal
address is needed to send a package. Information may also affect the purpose, such as
the insurance premium for a health or accident insurance is lower when being healthy
and young. Even without releasing health record and birth date such an insurance may
procured, but probably the highest possible rate will have to be paid. Another example
is an automobile liability insurance. The rate depends on static information like birth
date, gender, date of receiving the drivers license, affiliation with certain groups (public
service, farmers etc.) and even the type of car as well as dynamic information like a
drivers record or years without claims. Some information entitles for certain rebates. If
one cannot or do not want to present a clean drivers record, she/he is likely to start with
the highest possible rate.

The following sections describe scenarios, in which a person uses services provided
through computers that involve personal data. The affection on privacy and hence, the
requirements on protection from misuse of that data is investigated.

1.2.1 Anonymous Authentication/Access Control

The first addressed scenario cares about private information that is inferred from a user’s
behavior. This scenario considers services, which do not actually need context infor-
mation. The user tracking and behavior inference becomes possible only if users utilize
services with revealing their identity. A prime example of such scenario can be a hotel
complex. Let there be a number of guests that paid different rates. The rates dictate
which facilities may be used. Such facilities can be a pool, a gym, a sauna, a squash
or tennis court, a billiard room or even varied class restaurants. Depending on the age,
the access to the bars might also be restricted. Drinks may be included or not, which
is currently distinguished by colored wrist bands. Access to the rooms is restricted to
the current occupants at any time as well as for security staff. The French maid should
access the room in a restricted time frame and when no one else is in the room only. On
the other hand, security staff and French maids may access more than one room. One
may also consider a teacher of a school class or the trainer of a sports team that may
have granted access to all rooms assigned to the class or team. There may further be
restrictions on the use of the land-line phone or the TV and video offer in the room.

This hotel and its guests may be concerned about their privacy. But the hotel still has to

1.2. SCENARIOS 7

assert the adherence to the restrictions that apply, either due to paid rates or just by legal
issues. The guests do not want to be tracked in their behavior within the hotel. Nobody
should know, when a certain guest goes for breakfast, in the pool or the gym. How long
did someone spend in the bar? Which movies did someone watch before going asleep?
To accomplish this an access control system is needed that does not associate the ex-
ecution of an access right with an identity. In other words, such control system must
enable persons to legally access restricted activities or areas without the need to reveal
their identity. Some of the requirements could be fulfilled by offline solutions like the
mentioned colored wrist bands or handing out mechanical keys. Even those wrist bands
violate the privacy of the wearer, since everyone can see it and hence, can gain knowl-
edge about the rate/package she/he has paid. Proving age requires a drivers license,
passport or ID card. This is the initial point where a mapping to an identity occurs.
When using electronic key cards, guests have to trust that these are not assigned with
an identifier and the doors being opened do not track this identity. Hence, a suitable
approach shall make tracking technically impossible. When tracking of movement or
service use (consuming movies or TV) is impossible, the inference of profiles including
personal proclivities becomes infeasible. The drawback of such system is, that in case of
maybe criminal attempts the deniability or provability of presence or absence becomes
very difficult. This problem of deniability or provability is also addressed in private pay-
ment methods and e-cash schemes like in [13].

Such mechanism for anonymous and untraceable access control is presented in Chap-
ter 3. It leverages digitally signed certificates to prove granted rights by possession.
Since digital certificates may be copied or eavesdropped, the legal possession of a cer-
tificate can be proven by knowledge. The revocation of rights is addressed by limited
validity duration of the certificates. Presence can be proven only if both parties agree.
The access control unit, e.g., the door, presents the used certificate and the guest presents
her/his prove of ownership of the certificate. To further prove the time of access, the
guest should also digitally sign the current time stamp upon accessing or using a certifi-
cate. Absence can only be proven indirectly with the prove of presence at some other
place on mutual agreement between the user and the other access control unit.

1.2.2 Stationary/mobile use

With opening the Internet for commercial activities in 1992 and growing services like
access to news, communication means and shopping facilities, lives of people and the so-
ciety started to change. On the one hand, Internet users benefit from being well informed
and up to date with "What is going on in the world?”, staying in contact with interesting
people independent of the distance or being able to shop 24 hours a day, 7 days a week.
On the other hand, they lost some privacy. Online shops became able to track your shop-
ping habits and even the stuff that you were not buying but just looking at. This allows
to create a user-related profile. The publication of wish lists helps in creating of profiles
as well. This includes lists of books that have been read, as it is available from public

8 CHAPTER 1. INTRODUCTION

libraries, that have been bought or wished and even certain Internet news that have been
subscribed to or have been read. These are used by parties to interpret the interests of a
person and deduce actions or restrictions. Several cases are known, where people with
certain reading habits were debarred from entering the U.S.A.[14].

Modern communication means, such as ICQS, Windows Live Messenger’ or Skype®, an-
nounce your availability status to others. This is an intrusion into privacy and hence, the
respective protocols introduced privacy mechanisms that allow to distinguish between
users that are allowed to see the state and those that are not or to hide the online state at
all. In recent few years community portals came up that allow to express yourself and
to get in contact with users having similar interests. Some prominent representatives are
MySpace?®, Facebook!?, StudiVZ!! and its offshoots. All these platforms allow for some
kind of exhibitionism. For the purpose of finding the right people with shared interests
this just seems to be appropriate. The backside of the medal is the possible loss of pri-
vacy, since everyone is allowed to access the information provided. Increasingly often
such platforms are seeked by personnel managers to get private background information
for job applicants. More often than not, the information found is not conducive for get-
ting the job.

With third generation mobile devices and the upcoming mobile Internet people are en-
abled to access all the services anytime and anywhere now. Various means to determine
the position of a wirelessly connected mobile device are known. The position of mo-
bile phones can be estimated from the GSM base station and its sectoral antenna it is
connected to and the received signal strength or the packet travel time[15]. The same
holds true for devices connected via 3G and 4G communication channels, e.g., UMTS
or WiMax. This capability is widely used for cell phone features like the home-zone in-
troduced in Germany by former VIAG Intercom and continued by its successor O,'? or
competitors Vodafone!? and T-Mobile'*. For Wireless LAN (WLAN) enabled devices
such as laptop computers or Personal Digital Assistants (PDAs) the used WLAN hot-
spot can be determined. Last but not least, a device may actively determine its position
using Global Positioning System (GPS) or comparable systems. When incorporating
such position information, not only cyber world habits but also real world motion habits
can be tracked and linked together. Of course, the position information can bring in lots
of benefits such as being exploited by numerous Location Based Services (LBSs) with
navigation systems being the most prominent representative. On the other hand, it holds
serious risk for users’ privacies. Users are most likely aware that their current position is

Shttp://www.icq.com
"http://www.live.com
8http://www.skype.com
“http://www.myspace.com
Ohttp://www.facebook.com
http://www.studivz.net
Zhttp://www.o2online.de
Bhttp://www.vodafone.de
“http.//www.t-mobile.de

1.2. SCENARIOS 9

needed for the service currently used or brings some additional benefit into it. But they
are as likely not aware that the same service could also track position data over time and
deduce information for a different purpose. Keeping a position at a shopping window
over a certain time could allow to deduce an interest in the products displayed.

1.2.3 Exchange of Private Data for Purpose

While a number of services could be provided without any information from the user,
there are at least the same amount of services that definitely require information from
or about the user. Otherwise, those services would render useless. When the service
can convince the user that such information is required, the user is most likely willing
to release the information as requested. At the same time, the user wants to ensure that
the released information is not used for any other purpose than providing the requested
service. For instance, a user may hand out her/his mail address to receive an ordered
product. She/he is not expecting the address being told or sold to some insurance agent
that comes over to talk her/him into a new insurance, for example. Similarly this can
hold true in the opposite direction. Consider a musician or his agent that want to sell
some MP3 track to a potential listener. While the payment could be considered as the
service provided by the listener the MP3 track is the personal information of the mu-
sician. The musician is definitely interested in getting the money and agrees to hand
out his music to the listener. Besides that, the musician wants to assert that the listener
does not tell or give the bought music track to someone else without receiving further
payment. Therefore the musician is using some Digital Rights Management (DRM) on
the music track to remain in control over his personal information (the music track).

As one can see from the given examples, binding some data to a certain purpose is actu-
ally some kind of copy protection. When considering existing DRM solutions from the
content providers point of view, it is also some retention protection, since DRM allows
to specify license durations such as play only once or play only within 24 hours etc. The
purpose may be specified in this license as play only, no copy, no output to analog de-
vice or any other restriction. When the mechanisms from the DRM technologies could
be applied to any kind of data and for more flexible processing than just rendering using
a given audio or video codec, it was just appropriate for privacy protection, too. Any
person ought to be enabled to encapsulate her/his private data with a DRM harness that
hinders a service provider from using these data for any other than the specified purpose.

1.2.4 Scenario of Accessing Medical Data of Patients

Medical data of patients bear critical information that does not only influence the per-
sonal lifestyle but may even affect the financial or professional situation of the patient or
her/his relatives or acquaintances. Thus, medical data require special protection from
unauthorized access and from information inference. This high demand for privacy

10 CHAPTER 1. INTRODUCTION

makes them a good vehicle to derive privacy requirements and to demonstrate the ca-
pabilities of privacy protection means.

During medical treatment it occurs very often that findings have to be shared between
various physicians. This is the case in almost any referral. There it is required to transfer
findings or even a medical history to the next treating physician. In case of involved
X-ray photography, such transfer is even required by law §2c R6V'. An X-ray photo
appears to be the patient’s private data and requires appropriate protection when trans-
ferred to the treating surgeon. Using digital radiography, the X-ray photo exists as a
digital image stored in a Picture Archiving and Communication System (PACS). The
picture is available at every Personal Computer (PC) connected to the PACS introducing
a privacy risk, without control of the patient. Similar is true for any other medical data
stored in Electronic Patients Records (EPRs). A patient may further want to be in control
over what data is communicated to her/his health insurance and how this data may be
passed to other insurance companies. In all these cases, i.e., creation, transfer, storage
and usage the patient shall remain in control over her/his data.

To show the primary functions of the Privacy Guaranteeing Execution Container (PGEC)
introduced in Chapter 4 the following scenario shall be used. This scenario has been cho-
sen to illustrate interactions between several services within the PGEC in a simplified
way. Of course, other medical services that make use of patients context, like emergency
handling, diagnosis support or long term monitoring, are feasible as well. Please note,
the PGEC is a distributed system and each participant of the scenario runs her/his own
instance. The instances form a logical unit with one inside and one outside. The logical
unit is depicted by the dashed lines forming a closed ring in Figure 1.1. A patient sees
a radiologist to have an X-ray photo taken. The radiologist creates the digital image
and puts it in the container. Thereby the radiologist states the patient as the owner of
the image. This enables to demonstrate how data items like the X-ray image are iden-
tified in the system and how the ownership of an item is set. Similarly any data with
privacy relevance will go into the container. Further, the patient allows an EPR to store
the image, requiring that it can be stored but not seen by the EPR service. Obviously,
this needs an encryption and key management scheme, which are to be demonstrated by
this. The respective EPR storage service is triggered by the radiologist after creation of
the image. Next, the treating surgeon shall also be enabled to access the X-ray photo
of the patient. This can either be during her/his visit or even without presence of the
patient. This demonstrates how the patient, as the owner of the data, remains in control
over her/his data. This will also demonstrate the complex relationship between owners,
data items, service providers, service users and access right management. Again, the
key management scheme required for decryption of the stored medical data is stressed.
While all involved services run inside the container, the patient and the physicians can
trust in appropriate privacy protection of the data. Even the EPR can concentrate on pro-
viding its services without worrying to much about privacy. By never seeing the content

I5Rontgenverordnung in der Fassung der Bekanntmachung vom 30. April 2003 (BGBL. I S. 604)

1.2. SCENARIOS 11

of the stored data and not knowing the required keys, the data is securely protected.

Electronic
Patient

PGEC Instance
PGEC Instance

EPR X-Ray
EPR Storage GUI Visualization GUI

Radiologist Surgeon

X-Ray Image Producer

PGEC Instance

Allow (X-Ray Pic; Radiologist; EPR X-Ray Storage GUI)

Allow (X-Ray Pic; Surgeon; EPR X-Ray Visualization GUIIg?

Patient

Figure 1.1: Transfer of patients data using an EPR inside the PGEC. The ring displays
the logical unit of the distributed container, whereas the darker shaded sectors are the
instances running on the machines of the respective scenario participants. The inside of
the ring is the environment, in which service can be executed and access private data
depending on the access rights granted by the data owner. Private data can be filled into
the container but never leave it un-encrypted. (The faded EPR Visualization Service
has no actual function but to provide the Visualization GUI, which in turn implements
the required functionality. This is reasonable due to the transparent distribution of the
container instances.) The numbering reflects the sequence of the calls. Calls numbered
with a and b are triggered by the according API calls to the PGEC.

12 CHAPTER 1. INTRODUCTION

Structure of the Dissertation Since the requirements for privacy vary throughout the
introduced scenarios, various solutions for privacy protection exist addressing these re-
quirements. Such privacy protection solutions and technologies are described in the
following chapter. Chapter 3 presents a solution for scenarios where actual information
is rather irrelevant, but merely some access authorization by possession or knowledge
is important. One could compare that to the possession of a mechanical key. An ap-
proach that aims to regain control over all released personal information, even such that
is inferred secretly, without loosing the benefits from processing such information as a
context is presented in Chapter 4. The privacy gains from the presented solutions as well
as remaining lacks in absolute privacy protection are summarized in the last chapter.
Despite all technological possibilities and capabilities, people should not loose a certain
amount of sanity and reason and develop a healthy privacy awareness.

Chapter 2

Related Technologies

Privacy is an aspect relevant for a number of fields of application and research. Thus, it is
addressed either as the main focus of research projects, e.g., PRivacy and Identity Man-
agement for Europe (PRIME)', or as an addition to research in e.g., LBSs or Wireless
Sensor Networks (WSNs). It can be distinguished between pure declarative technologies
(see Section 2.1.1) and technologies that technically support privacy enforcement (see
Section 2.1.2). The latter are more relevant to this work.

This work presents two approaches for privacy protection. One approach prevents the
user from inadvertently leaving marks while accessing restricted services or areas. This
preserves the users anonymity. This chapter presents various technologies for access
control and authentication and assesses its contribution to protect a user’s privacy. The
second approach developed in this dissertation aims at allowing to benefit from releasing
private data for a particular purpose. The technology presented therein asserts that this
private data cannot be misused for some other purpose, either inadvertently or with in-
tent. Similar behavior is known from DRM systems, which are presented in Section 2.4.

2.1 Existing Privacy Protection Technologies

2.1.1 Declarative Technologies

Technically, the Platform for Privacy Preferences Project (P3P) [4] defines an XML di-
alect for the description of privacy policies. So service providers can state which data
they are gathering for which purpose. A P3P Preference Exchange Language (APPEL)
[16] can be used to express what a user expects to find in a privacy policy. P3P and
APPEL merely provide a mechanism to describe the intentions of both sides rather than
means to protect user data after agreeing to use the service.

IETF’s GeoPriv working group is developing an architecture for handling location infor-

Thttps://www.prime-project.eu/

13

14 CHAPTER 2. RELATED TECHNOLOGIES

mation in a privacy aware manner [5]. One of the benefits of this architecture is that the
privacy rules, are stored as part of the location object [5]. Thus, nobody can claim that
she did not know, that access to the location information was restricted. But misuse is
still possible and it is still not hindered somehow by technical means.

2.1.2 Enforcing Technologies

There are several approaches that try to protect privacy in location aware middleware
platforms [17, 18, 19, 20, 21]. In [17, 18, 19] means are discussed that enable the user
to declare how much information she is willing to reveal. [20] discusses a middleware
that applies user defined rules, which describe who may access the user’s position infor-
mation and under which circumstances. The approach investigated in [21] intentionally
reduces the accuracy of the position information in order to protect privacy. This helps
to protect privacy to certain extent, but it cannot be used in systems that need an accurate
position to work properly, e.g., navigation services. In all these approaches means to
enforce privacy are missing.

There is a lot of work done in the area of digital rights management to protect con-
tent [22, 23] as well as code from misuse [24]. Those approaches rely on specialized
hardware such as Smartcards, or are vulnerable to data extraction [25]. Further, these
systems do not provide means to execute any code to be freely defined as it was needed
for services. They merely protect media content, which could be considered as the ser-
vice provider’s data. But, despite the protection of user data is in principle an equivalent
problem these approaches do not provide a solution for protecting service users’ data.

Agent Platforms

To the best of the knowledge, there are only two approaches [26, 27] that try to make
sensitive data available to a third party while ensuring secrecy of that data. [27] proposes
an architecture that ensures secure data processing by exploiting the java sandbox model
as execution environment for data processing code and by limiting the feedback from the
data processing code to the out side world. In order to allow correct interpretation of data
processing results as well as development of appropriate algorithms, a part of the data has
to be publicly accessible. In addition, sensitive data is always kept at its owner’s site.
The prerequisites of this concept render it impractical to implement location based or
context sensitive services, although it is well suited for privacy preserving data mining.

The approach presented in [26, 28] tries to avoid that user data is accessible outside a
specially secured execution environment. User data is enclosed in an agent and securely
transferred into an isolated closed-door one-way platform provided by a trusted third
party. The service agents proceed analogous with their own data. Those entire agents
interoperate within that trusted environment and agree on a certain result. The result is
forwarded by all involved agents independently to the closed-door platform, which posts
the result to the agents’ origins if the forwarded results are equal. This ensures that no

2.1. EXISTING PRIVACY PROTECTION TECHNOLOGIES 15

private data is transmitted to the opposite party if the agent did not agree to. In order
to ensure the privacy of the user and to protect the services data, all agents including
their enclosed data are deleted after service completion. In contrast to this approach,
PGEC does not rely on a trusted third party that provides processing capabilities such as
a server plus a specific agent platform. Encapsulation of sensitive data and its deletion
after service completion are provided by the PGEC by design. It allows for bilateral
cooperation between service users and service providers. User and service provider data
do not need to be transferred a priori but only when really needed. Their data may even
be used without being transferred. This is especially helpful if location based services
are realized inside the container, because they may need a huge amount of data, such as
a catalog of all restaurants in New York City. This feature is ensured by the concept of a
distributed PGEC, which consists of at least two instances at either participant side but
represents virtually one single PGEC.

Statistical Data Protection

In scenarios where individual information is not of interest but rather the information
that can be derived from a larger number of individuals, such as a sum, average, min-
imum/maximum or range, variance or standard deviation, the privacy of the individual
can be sustained. Statistics literature knows two methods to modify the value of a field
to protect the privacy of the individual value but to retain the statistical properties of the
set of values [29]. Those are:

o Value-Class Membership
e Value Distortion

Besides, there exists Value Dissociation. When requesting a field’s value of a particular
record in a database, this method returns the value of the respective field in another
record of the database. Similar to value distortion, this is not very useful when requesting
individual values. It can protect privacy when selecting subsets from the database or
requesting general values like average. An advantage is, that it is also applicable to
alphanumeric values. In [29] the similarity to value distortion is shown as well as a
suitable attack is presented. That reduces the number reasonable applications for this
method. The following paragraphs explain the more useful methods of statistical data
protection.

Value-Class Membership This method of statistical data protection partitions the do-
main of values. Each partition is a set of values and mutually disjoint and every possible
value is contained in exactly one set x;. A request for a particular value is then answered
with the set x; instead of the actual value. This method is commonly known and widely
used to hide individual values, e.g., in questionnaires. The sizes of the respective sets
do not need to be equal. Sometimes the partitions are created by discretization into in-
tervals. Annual salaries, for example, could be partitioned into intervals of 10.000 € for

16 CHAPTER 2. RELATED TECHNOLOGIES

values lower than 100.000<, and intervals of 50.000 € for higher values.

This is especially useful for location data. For many applications a coarse grained loca-
tion resolution might just be sufficient. The intervals can also be multidimensional, such
as an area on earth’s surface or combined with a temporal interval. Such intervals were
used by Gruteser and Grunwald [21] for spacial and temporal cloaking in LBSs. The
position of an individual at a certain time is mapped into a three-dimensional interval
in a way that the positions of a number of other individuals fall into the same interval.
The maximum size of the interval depends on the service. By the pure knowledge of
the interval passed to the LBS, the actual individual cannot be distinguished, which pro-
vides a certain amount of anonymity. To assure that the interval contains more than a
given minimum of individuals the authors take advantage of a central server as a loca-
tion anonymizer, which in turn knows the exact positions of each individual over time.
Such central anonymizer is the weakest link in privacy protection of that approach and
a potential target of privacy attacks. Privacy was protected far more when no central
instance was needed. To accomplish that, the size of the interval has to be determined
by each individual with some confidence that she/he is not the only element within that
interval.

Another approach to maintain location privacy within spatial intervals is described in
[30]. It uses dynamically created intervals observed at the individual’s devices during
the anticipation of two individuals coming into close vicinity. Upon event registration
the intervals are chosen as circles around the current positions of the involved individu-
als. The radiuses r; and r; of any pair of individuals are limited to r; + r; + v <= d; ; with
v being the requested vicinity distance and d; ; the current distance between this pair of
individuals. As long as neither of the involved individuals leaves her/his interval (area)
there is no need to communicate the actual position. Only if an individual leaves her/his
interval, the current positions of all individuals involved in the affected event description
have to be retrieved by the event server. Accordingly, the event might be raised or new
intervals are calculated and passed to the individuals. While the “observed” individu-
als stay rather distant from each other, their respective latitude is large enough to rarely
require position updates, which keeps the level of location privacy high.

Value Distortion A common approach of value distortion is random data perturbation.
Each individual value is adjusted with an offset or scalar. The offset or scalar has to be
chosen in a way that it renders into the neutral element regarding the applied operation
of interest. For adding or averaging, the sum or average of the offsets respectively must
be zero. For multiplication the product of all scalars must be one. To ensure that the
individual value cannot be deferred by subtracting the offset or dividing the scalar, these
offsets and scalars have to be different and randomly assigned to the individual values.
The random value is drawn from a well known distribution such as the uniform distribu-
tion within interval [—a, +a] or the Gaussian distribution with mean ¢ = 0 and a known
standard deviation o [31].

2.1. EXISTING PRIVACY PROTECTION TECHNOLOGIES 17

It is clear that with random values it is almost impossible to reach the galn of getting n

random numbers that actually sum up Z ri = 0;r; € Z or multiply to H ri=1;reR
i=1 i=1
Methods that try to reconstruct the original distribution from the distorted values have

been introduced and discussed by [32]. They approximate the original distribution of
values Fy(u) as

U _ d
F) = f_;o Jolw —fo @ dz o
[hw=-2fu@dz

With differentiation and averaging over all data samples w;, they obtain the posterior

distribution from
, Svwi —u) fu(u)
Ju) = (2.2)
v Z [fowi— D fu(2)dz

As fy(u) remains still unknown, the authors iterate by using the left hand side of Equa-
tion (2.2) on the right hand side of the next iteration by starting with fg(u) being the
uniform distribution. The iteration stops when the difference between two consecutive
approximations becomes sufficiently small (1% of the threshold of the y? test [32]).

Even though this most likely does not produce exact values, it appears to be sufficient

for many statistical evaluation of measurements. On the downside it has been shown
that preservation of privacy in certain types of data perturbation is not necessarily good
[33]. For processing exact values either individual or aggregated ones other approaches
have to be taken into account. To gain an exact average or sum, means are needed to
extract the randomness in the distortion without determination of the individual ran-
dom values. A simple approach was to distribute the random offsets on the participants
that they exactly sum up or multiply to the neutral element. Let there be data sources
vi;i = 0,1,2,...,n mutually sharing cryptographic keys, which can be obtained by key
distribution mechanism described in [34]. The first vo may randomly choose a prelimi-
nary u6 and send it to v;. Each v;;i < n—1 adds an own randomly chosen u; and forwards
it to v;4+1. v,—1 adds a random offset as well and forwards the sum uy to vy. Finally vg
determines ug = uf) — us, which it uses as its secret offset. Each data source may use its
secret offset to distort its data d; + u; and send them to the sink. Without knowing the
offsets u; it can calculate the sum) d; =), d; + u; because), u; = 0. Alternatively, the
first data source vy might add a random offset to its actual value dp and send it to the next
data source. Each data source is adding its actual value and transmits it to the next. The
last data source sends the sum to vg, which can then subtract its random offset, resulting
in the actual sum and forwarding it to the sink. Due to the mutual link encryption be-
tween the data sources, it can be ensured that no entity knows both the incoming and the
outgoing sum of any other entity but itself. Hence, no entity may defer the actual value
of another entity. This distortion of adding a random number could also be considered
a very simple privacy homomorphism regarding the sum function of the actual values.
More sophisticated privacy homomorphisms are described below in Section 2.1.2.

With Cluster-based Private Data Aggregation (CPDA) and
Slice-Mix-AggRegaTe (SMART), the authors of [35] introduce two schemes that allow

18 CHAPTER 2. RELATED TECHNOLOGIES

the exact additive aggregation of values in a distributed sensor network while preserv-
ing the privacy of the individual data. In both schemes they use mutual encryption keys
obtained by the mechanism in [34].

CPDA uses additive properties of polynomials. They build clusters of n nodes that
share n seeds s;;i = 0, 1, ..., n— 1. Each of them calculates n polynomials of degree n—1.
In this polynomials

Vii= d,‘ tris;jtnr; S? Rl o P I S?_l; i,j =0,1,...,n—-1 (2.3)

the coefficients are n — 1 random numbers and the actual value. Every node i sends the
vj, to respective node j. Then these nodes j add the received values

—

n— n—1 n—1 n— n—

1
Fj:Zij = dl-+Zr1,i sj+2r2,,- S§+...+ Tn-1,i S7_1 (24)
j 0 i=0

1
i=0 i= i=0 i

Il
[«

and share their respective results. This gives a system of n equations with n unknown
coeflicients. Which can be solved like this.

1

> d; 1 N Sg_l - Fy
-1
Z ryi _ 1 S1 S’ll F] (25)
2 Tn-1 s o 87 Fpi

This can also be used to additively aggregate multiple values (up to n) at a time if these
are used in replacement of the random values.

SMART The second approach, which the authors of [35] pursue, is Slice-Mix-
AggRegaTe (SMART). It uses the associativity of the addition. In the first step each
node chooses k nodes and slices its value into k£ + 1 summands.

k
Vi = Z Vi,j (26)
Jj=0
Second these slices are transmitted to the chosen nodes and one is kept for itself. Each

node adds all its received slices and the slice kept for itself

k

> vij 2.7)

i=0
and sends it in the third step to the aggregator or data sink. There the sums of slices are

added resulting in the sum of all original values without any node knowing the actual
value of any other node.

k k k Kk k
NEDNRIE DN

2.1. EXISTING PRIVACY PROTECTION TECHNOLOGIES 19

CPDA and SMART turn out to preserve privacy of the individual values very well espe-
cially with growing cluster sizes or slice counts. One of their drawbacks is the introduc-
tion of computation and communication overhead. Besides that, these mechanisms can
only be applied if an additive aggregation of data is sufficient for the envisioned purpose.
Note, other statistical requests, such as average or minimum/maximum, can be deferred
from additive aggregation as well. Moreover, it is possible to also map the multiplication
into addition by using logarithmic identities.

a-b-c = N@bo _ Jn@+n®)+n() (2.9)
The SMART approach might further be used to retrieve the set of actual values without
knowledge of their actual mapping to nodes.

The presented technologies are applicable in distributed sensor networks for a priori
known services of rather low complexity. Those services are pure data aggregation or
simple statistical in-network evaluations. Complex processing of data or inference of
contexts as required by the scenarios described in Section 1.2 is not feasible.

Privacy Homomorphisms There are more complex operations that may even not be
executed on the source of the data. Reasons for this constraint may be limited resources
or more prominent parameters to be kept secret from the data source, as the private key
to be used in digital signatures. To preserve the privacy of the data there must be a way
to obtain the result of the complex operation without knowing the operation or its secret
parameters and without passing the actual data. This can be reached through the use of
homomorphisms or homomorphic encryptions.

Simple types of homomorphisms are group and ring homomorphisms. These map either
a group (A, +) into (B, ®) or aring (C, +, -) into (D, &, ®) respectively. With f(a) being
the respective homomorphism the following expressions are true.

flai + a2) = f(a) @ f(az);ai € A; f(ai) € B (2.10)
fler+c2) = fle) @ f(c2);ci € Cs f(ci) € D (2.11)
fler-c2) = fle) ® f(c2);ci € C; f(ci) € D (2.12)

This definition can also be generalized to an arbitrary number of functions or operation
with even arbitrary arity.

fglar, az,an)) = h(f(a1), f(a2), ..., f(an)) (2.13)

If further f(a) is an encryption function & and a corresponding decryption function 6
with key k exists, this can be used as a privacy homomorphism. Some literature [36]
denotes the quadruple (J, &x, G, H) as the privacy homomorphism. G = g1, 82, ..., 8m
and H = hy, hy, ..., hy, are sets of functions over which the privacy homomorphism is
defined.

Or(h(e(ar), €k(@a2), ... gx(an))) = gla, ay, ..., an) (2.14)

20 CHAPTER 2. RELATED TECHNOLOGIES

Well known examples are the multiplicative homomorphism of Rivest-Shamir-Adleman
(RSA) and the new privacy homomorphism of Domingo-Ferrer [37]. Using the RSA
homomorphism the encryption of the product of two messages can be determined as the
product of the encryptions of its factors.

¢i = €.(m;) = m{ mod N (2.15)

c1 = m{ mod N (2.16)

¢y = m5 mod N 2.17)

c1 ¢y =mi-m§ mod N = (my - my)* mod N (2.18)

Analogous is true for the decryption, where only the exponent is changed. An inversion
of this homomorphism is widely used in RSA blind signatures. The blind signatures
utilize that the signer of m; - m, cannot determine the factors m; and m;, whereas the
requester of the signature can choose my = k¢ mod N by encrypting a random k with the
public key of the signer and further determine k! mod N.

(my - k)¢ mod N = m$ - (k%) mod N = m$ - k mod N (2.19)

With k! the requester can then determine m{ mod N without letting the signer know
mp.
m -kmod N -k mod N =m-k-k' mod N =mS mod N (2.20)

The new privacy homomorphism of Domingo-Ferrer is an enhancement of Rivest’s
et al. privacy homomorphism [38] that supports modular addition, subtraction and mul-
tiplication. The enhancement was necessary since it has been shown by Brickell and
Yacobi [39] that it is vulnerable to a known-plaintext attack. The enhancement lever-
ages the indeterminism of k£ > 2 summands similarly to the slicing in SMART [35] to
withstand known-plaintext attacks. Therefore the cleartext a is split into k secret sum-
mands a;, whereas the likelihood of guessing the summands decreases with increasing k.
Hence, it is named a security parameter. The sum of these summands is modular equal
to the secret cleartext a € Z, to a module of n = pq. p and q are secretly chosen prime
numbers by the owner of the private data. With that, even small values less than n are not
trivially encrypted. The owner of the private data further chooses two prime constants
rp € Z, and ry € Z,. The summands are multiplied to the summands. For big numbers it
is known to be extremely difficult to determine the actual prime factors if these are also
big enough. n can be public since it is equally difficult to factorize. The encryption of
cleartext a is

gx(a) = (layr, mod p,ar, mod ql, [azrlz, mod p, agrg mod q], ...,

(2.21)
[akrf, mod p, akr]; mod q)).

While the cleartext is a € Z,, the ciphertext is £(a) € (Z, X Zq)k . The operation on the
ciphertexts (a vector addition/subtraction) that is homomorphic to the plain addition/-
subtraction would also map into (Z, X Zq)k . Without the knowledge of p and g it can

2.1. EXISTING PRIVACY PROTECTION TECHNOLOGIES 21

only be narrowed to (Z, X Z,)¥. That is for k = 2,

er(a) = ([ayr, mod p,a ry mod ql, [azrlz7 mod p, azrczl mod q]) (2.22)
&x(b) = ([byr, mod p,bir, mod q], [bzrlz, mod p, bzré mod q)) (2.23)

gx(a+b) = (layr, mod p + byr, mod p,ayr, mod q + byry mod q, (2.24)
[agr?, mod p + bzrlz, mod p, azrg mod q + bzré mod q)) .
The addition/subtraction of the vector elements may be executed modular to n, if n is
public. The multiplication with an un-encrypted integer can be derived from this addi-
tion/subtraction, too. Each vector element is multiplied with that un-encrypted integer.
The operation, which is homomorphic to the multiplication, pairwise multiplies all the
elements containing r, as well as those containing r,. The multiplication may be modu-
lar to n, too. For simplicity the mod n is omitted in the given equations. The exponents
of r,, or r, respectively are the degrees, which add up during multiplication. Similar to
Equation (2.24), terms with the same resulting degree are added up (see Equation (2.25)).

er(a-b) = ([0,0], [a1r, mod p - byr, mod p,airy mod q - biry mod ql,
lair, mod p - bzrlz) mod p + azrf, mod p - byr, mod p,
ayrg mod q - bgrg mod q + azrg mod q - byry mod q],

[azrf, mod p - bzrlz, mod p, azrs mod q - bzré mod q]) (2.25)

The decryption is done by multiplication of each element with the respective inverses

-1 -1
r, and r," powered to the necessary degree.

rl_,]rp =1 mod p (2.26)

ry'rg=1mod q (2.27)

Then the elements are added and solved by using the Chinese Remainder Theorem.

¢ = ([c1,p7ps ClgTq)s [cz,prf,,cz,qr;], e, [cm,prg, Cm,qul]) withm = lk;l e N
(2.28)
D’ (c) = ([cl,prpr;1 mod p,cl,qrqr;1 mod q],
[c2,p72ry,2 mod p,cagrry? mod g, .. (2.29)

[cm,pry 1, mod p, cmgry'r,” mod ql)
m m
D'(c) = (Z ci,pr;r;" mod p, Z ci,qrflr;i mod q) (2.30)
i=1 i=1
D'(¢) = (cp mod p,cqy mod q) (2.31)

D(c) = c,,qq_1 + qup_l mod n with qg~' = 1 mod p; pp~' =1 mod g (2.32)

Even though this privacy homomorphism provides good privacy protection within the
operations addition, subtraction and multiplication (encrypted and mixed) on integers, it

22 CHAPTER 2. RELATED TECHNOLOGIES

does not explicitly address division or floating point values. When considering floating
point values in fractional representation (numerator and denominator) as a pair of two
integers also the division could be derived. In contrast to the original privacy homo-
morphism by Rivest et al., it is resilient to known-plaintext attacks. Also numbers less
than p and g are non trivially encrypted. On the backside the multiplication is computa-
tionally expensive and memory-intensive. Each multiplication of two encrypted values
of degrees k| and k, result in an encrypted value of degree k; + ky. This increases the
effort for any following operation on this result. To reduce the degree of an intermediate
result this would have to be transfered to the owner of the original values for decryp-
tion and new encryption, which produces values of degree k only. While this would
reduce the memory and computation effort on the encrypted values in the privacy pro-
cessing environment, it would increase the communication and the computation effort
on the data owners side. The optimal distribution of further homomorphic operation and
re-encryption of intermediate results at the owners side can be determined, but is depen-
dent on the particular expression that has to be calculated. Further, not every task can be
accomplished using the four basic arithmetic operations. Hence, the set of possible ap-
plications relying on this homomorphism is limited. Those applications must purely rely
on calculations using the basic arithmetic operations. More complex math, text process-
ing or even any generic data processing using loops, conditions and other programming
constructs are not feasible. The aforementioned scenarios cannot be addressed with this
approach.

Vanish The authors of [40] aim at self-destruction of data. Their approach named Van-
ish gives the data owner control over unlimited copies of that data even without knowing
the existence of such copy. Similarly to DRM mechanisms (see Section 2.4), the actual
payload is encrypted with a key randomly assigned to that data. That key is stored at a
different place than the encrypted code and is the part that actually self-destructs. The
only ways for an attacker to get hold of the data, is to gather the complete key while it
exists or to obtain a decrypted copy of the data. Retroactive attacks are not possible. To
accomplish the destruction of the encryption key this is split into shares using threshold
secret sharing [41] and distributed in a Distributed Hash Table (DHT). The indexes to
which the shares are distributed is derived from a random access key that is stored with
the encrypted private data. The underlying DHT of Vuze? provides automatic deletion
of aged entries after eight hours and OpenDHT [42] lets even specify a maximum dura-
tion of the stored entries. That way it is ensured that key shares disappear over time. If
DHT nodes disconnect, shares may be removed before the key share expiration. When
reconnecting, DHT nodes are usually assigned to a different index scope responsibility
that effectively makes the key share unavailable. To cope with that, the threshold ratio
of the required key shares for reconstruction should be less that 100%. The key shares
disappear at least after the expiration given by/to the DHT. When less than the required

Zhttp://www.vuze.com

2.2. ACCESS CONTROL TECHNOLOGIES 23

number of key shares can be retrieved from the DHT, the data cannot be decrypted any-
more. A collaboration attack with nodes that do not delete their key shares requires as
many attackers as the threshold, which never change their index scope responsibility, and
the unlikely event that these attackers where chosen by the random access key. With the
millions of nodes in the DHT of Vuze, such an attacking approach is negligible. Despite
the Vanish system can rely on the oblivion of the DHT, it has to trust the receiver of
certain private information that she/he does not keep an un-encrypted copy nor any party
keeps the complete key. To ensure this, the key share aggregation and reconstruction as
well as the decryption should be executed within a closed software environment like the
Protected Media Path (PMP).

Since Vanish imposes no requirements on the type of the data to be protected, it appears
to be applicable for generic and complex services and scenarios as the described in Sec-
tion 1.2. On the downside, the data is not protected while being processed. That is, the
services have to be trusted not to keep un-encrypted copies of the data or the key. Van-
ish protects only from retroactive attacks. Its data and key distribution scheme may be
applied in the PGEC to distribute data, keys and permission rules among the PGEC in-
stances. This can enable privacy protected services even without current online presence
or connectivity of users.

2.2 Access Control Technologies

Independent of whether data to be accessed and processed is encrypted or not, a broad
spectrum of technologies can be used to control this access. The access can be con-
trolled on various levels of abstraction. Commonly known are access modifiers in object
oriented programming languages such as Java, C++ or C#. They use keywords, e.g.,
public, protected, private or internal, to control access of objects to methods
and fields in other objects or classes. The access of users or services to a system at
whole or entities in the system is controlled on a higher level of abstraction. This in-
cludes also applications acting on a user’s behalf or initiative, i.e., processes in the user’s
context. Some of the technologies used here are rather declarative, e.g., eXtensible Ac-
cess Control Markup Language (XACML) where others actively implement protection
mechanisms. Other technologies address even privacy aspects, e.g., Kerberos (see Sec-
tion 2.3.1) and various Role Based Access Control (RBAC) systems. The following
section discusses a few access control techniques with regard to their applicability in
privacy protection systems as the PGEC or for anonymous access control.

2.2.1 XACML

Access control and security policies have to be enforced in various areas of information
systems. Those could be e-mail and remote-access systems as well as companies busi-
ness systems restricting access to internal business data. The number of elements and
points of enforcement of security policies increases with the size of the enterprise. The

24 CHAPTER 2. RELATED TECHNOLOGIES

policy elements may even be managed by multiple departments, e.g., the Information
Systems department, Human Resources, the Legal department or the Finance depart-
ment. The independent configuration of each enforcement point is current practice. Due
to the lack of a consolidated view of the safeguards, a modification of such access control
and security policy is expensive and unreliable. Even without the need of modification,
such implementation of security policy is hard to communicate to consumers, sharehold-
ers and regulators.

In an effort of addressing consolidated view, modification and comprehensible com-
munication, a common language for expressing security policies was developed. The
eXtensible Markup Language (XML) provides easy extensibility to the requirements of
access control, a widespread platform and tool support. Based on that, XACML has
the potential to express any access control and security policy independent of applica-
tion and corporate internal characteristics. With an enterprise-wide implementation of
XACML, a unified management including writing, reviewing, testing, approving, is-
suing, combining, analyzing, modifying, withdrawing, retrieving and enforcing of the
security policy becomes feasible for all components of the information systems of the
enterprise.

Listing 2.1 displays a very simple policy as an example for XACML. It defines a rule
that permits (line 12) access to any element (line 10) for each subject that has an e-
mail (RFC822) address in the domain med.example.com (line 21). The determination
whether the subject fulfills the given requirement is specified via the match function
rfc822Name-match (line 19) and its two parameters (lines 20-23). The essential part
of the rfc822Name-match function is shown in Listing 2.2.

The XACML language is very generic with regard to the description of target ele-
ments and accessing subjects. Even the matching functions can be extended using math
expressions described in MathML [44]. Besides the actual policies including the access
rules, XACML also formally describes the requests for data. The requests share some el-
ements with the policies, which simplifies the comparison and matching on evaluation of
an incoming request against a given policy. The elements and their structure are defined
in an XML Schema Definition (XSD) provided by Organization for the Advancement of
Structured Information Standards (OASIS)?. It allows static syntax and validity checks.
With including other name spaces, it can further embed structures from other XML doc-
uments to restrict and enforce access control on data items in XML-based databases.
For applications and frameworks that control access to any data or entity the utilization
of this language is an appropriate means to maintain a somewhat standardized way of
access and compatibility to other systems. Due to the flexible description of rule sub-
jects including according match functions, it is even applicable to privacy aware and
anonymized access control systems.

Shttp://www.oasis-open.org/home/index.php

O 0NN AW —

2.2. ACCESS CONTROL TECHNOLOGIES 25

Listing 2.1: Example Policy in XACML[43]

<?xml version="1.0" encoding="UTF-8"?7>
<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os http://docs.oasis
-open.org/xacml/access_control -xacml-2.0-policy-schema-os.xsd"
PolicyId="urn:oasis:names:tc:example:SimplePolicyl"
RuleCombiningAlgId="identifier:rule-combining-algorithm:deny-overrides">
<Description>
Medi Corp access control policy
</Description>
<Target/>
<Rule RuleId="urn:oasis:names:tc:xacml:2.0:example:SimpleRulel”
Effect="Permit">
<Description>
Any subject with an e-mail name in the med.example.com domain can perform any action
on any resource.
</Description>
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">
med . example.com
</AttributeValue>
<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0
:subject:subject-id" DataType="urn:oasis:names:tc:xacml:1.0:data-
type:rfc822Name" />
</SubjectMatch>
</Subject>
</Subjects>
</Target>
</Rule>
</Policy>

Listing 2.2: Code snippet from rfc822Name-match function in Sun’s XACML imple-
mentation

String arg®
String argl

= ((StringAttribute) (argValues[0])).getValue();
= ((RFC822NameAttribute) (argValues[1])).getValue();
if (arg®.indexOf(’@’) !'= -1) {
// this is case #1 : a whole address
String normalized = (new RFC822NameAttribute(arg®)).getValue();
boolResult = normalized.equals(argl);
} else if (arg®.charAt(0) == ’.’) {
// this is case #3 : a sub-domain
boolResult = argl.endsWith(arg0®.toLowerCase());
} else {
// this is case #2 : any mailbox at a specific domain
String mailDomain = argl.substring(argl.index0f(’@’) + 1);
boolResult = arg®.toLowerCase().equals(mailDomain);

2.2.2 Discretionary Access Control (DAC)

It is commonly known to provide credentials to gain access to a system, i.e., a name
or login and a respective password. This holds true for logins to operating systems,
web-sites, e-mail accounts and so on. Actually it is only an identification (user name)
and authentication (proof of knowledge). An authenticated identity provides the basis
for the actual access control. If there is more granularity required than an all or noth-
ing access to a system, this identity has to be mapped to respective permits or access

26 CHAPTER 2. RELATED TECHNOLOGIES

rights. On community web-sites such as Facebook*, it maps to full access to the profile
belonging to that given identity. Further, it maps to some access to profiles that state this
identity being a ‘friend’. The identity to access right mapping can also be cascaded. An
identity may belong to a group to which certain rights are granted. Well known exam-
ples are Linux’ and UNIX’ file systems. Access rights are reflected as attributes to the
file or directory (or other entity) using a bit mask representing read, write and execution
rights to the owner (an identity), to a group or all others (the group to which all known
system identities belong). These access permissions attributed to an entity are sufficient
to decide whether the access requested by a particular identity is to be granted. Such
mechanism is a DAC.

Systems that evaluate the access right in the moment of access using a mapping with
this identity are obviously not suited for high privacy demands. It can still be used as a
widely accepted paradigm for identification and authentication in applications where the
time and sequence of access of an identity to certain services, systems and data entities
are not in the focus of protection.

2.2.3 Mandatory Access Control (MAC)

In opposition to the DAC, the MAC examines the access on attributes of the accessing
subjects and the to-be-accessed objects using a set of authorization rules (policy). MAC
is commonly associated with multilevel security systems. In such systems, the required
attribute for the objects is the security level it belongs to, e.g., public, confidential, se-
cret, top secret. A subject also possesses a security level attribute. The simple rule is that
the security level of the subject must be equal or higher than the security level attributed
to the object to be accessed. Rules might be more complex in other scenarios.

Since the actual access examination requires the attribute only instead of the identity, it
supports somewhat privacy. If the attribute can be provided without revealing the iden-
tity of the subject such mechanism can be incorporated in an anonymous access control
system. The system presented in Chapter 3 is actually capable of providing these at-
tributes without an identity. The attributes, which directly map into rights, are organized
in a hierarchy. This makes it equivalent to an RBAC system [45].

2.24 RBAC

RBAC is a more flexible approach to restrict system access to authorized users than
MAC and DAC. In organizations with lots of activities and functions as well as lots
of users/subjects, the maintenance of discretionary mapping of subject to objects cause
high effort. Subjects may change their functions or position within or drop out from an
organization. Further, new subjects mights also get in the organization more frequently

“http://www.facebook.com

2.3. AUTHENTICATION TECHNOLOGIES 27

than the organizational structure is updated. Stability in this mapping can be gained by
modeling the activities and functions as a role [46]. Assigning subjects to roles, to move
them from one role to another or to un-assign a subject from a role, significantly reduces
the administration effort. Flexibility is achieved through the following facts.

o A subject can have multiple roles.

e A role can have multiple subjects.

e A role can have many permissions.

e A permission can be assigned to many roles.

Roles can even be composed from other roles, inheriting the assigned permissions. In
Figure 2.1 exist nine users and six objects with a permission on each object. The users
are assigned to three roles that include each other. For instance, User 9 is a doctor and
has by that the permissions of an intern and a healer, too. User 5 is an intern inheriting
the permissions from the healer role, but excluding permissions granted to doctors only.
A role could also inherit from multiple roles, which is not depicted.

The indirection between a permission and a subject make roles a suitable vehicle to pro-
tect the privacy of a user/subject when executing an action requiring certain permission.
For full protection, the presentation and authorization of one or more roles should be
possible without identification of the subject taking on these roles. This requirement is
comparable to the requirement stated in Section 2.2.3 and is solved in Section 3.1. It is
obvious that the degree of privacy protection raises with the number of subjects taking
the same role.

2.3 Authentication Technologies

This section describes two authentication technologies, which are applied in information
systems besides straightforward user name and password checks. Other technologies
claiming authentication, such as Remote Authentication Dial-In User Service (RADIUS)
[48], usually embed those basic authentication technologies.

2.3.1 Kerberos

Kerberos (RFC1510 [49]) describes an architecture to authenticate users and services in
open and untrusted networks. It provides authentication without sending a password,
neither as plain text nor encrypted. The Kerberos architecture exchanges encrypted tick-
ets for authentication between the involved parties, which provide protection against
eavesdropping in the network. Besides the user and the service, there exist a Kerberos
Authentication Service (KAS) and a Ticket Granting Service (TGS). The KAS provides

28 CHAPTER 2. RELATED TECHNOLOGIES

Object 1 trans_a

member of ser?

'm\ User3

Object 2 —

trans_b

Object 3 trans_c ‘memb/or‘ Userd
o member of sers
— s User6

Object 4 rans d member o

membgr_of

Object 5 frans_e ‘memb/_of User7
o member of ser8

Object 6 "/-n’a;s’j/f ‘;m\ User9

Figure 2.1: Multi-Role relationships [47] in an RBAC system. Access rights to Objects

are assigned to respective roles Healer, Intern or Doctor. The roles include each other

by a member_of relationship. That is, a Doctors transitively inherits the access rights

from Interns and Healers. Users assigned to a particular role are explicitly granted with

the rights assigned to that role and implicitly with the rights assigned to the more general
roles.

a Single-Sign-On, which means that users have to login at only one entity but are en-
abled to use all services using the Kerberos system. By that, the KAS is the only party
that learns the user identity, whereas the TGS learns the service identity to be used by
certain client. The mapping between the client and the user is known to the KAS only.
That is, as long as the KAS can be fully trusted, the privacy of the user is protected,
with regard to her/his identity. Since, the ticket granting ticket, issued by the KAS, is
encrypted with a key, shared only between KAS andTGS, it cannot be assured that the
user identity remains secret from the TGS. Also other channels for collusion between
KAS and TGS are not excluded. Similarly, the service may learn a users identity by
collusion with KAS andTGS.

In [50] the Kerberos protocol has been adapted to protect users’ privacies by changing
the roles in the architecture. It assumes a platform containing the KAS and a service
providing private information about users. The latter service provides the information
only on presentation of a ticket issued and signed by the owner, which has the role of the

2.4. Digital Rights Management (DRM) 29

TGS. That is, every user of the platform runs her/his own TGS. The service requesting
private information on the users behalf appears as the Kerberos client. Here, privacy is
not protected for the services identity but rather for the centrally available information
of the platform users, such as positions.

2.3.2 Pre-shared key (PSK) Authentication

Pre-shared keys (PSKs) are a priori known secrets between communicating parties. Usu-
ally those are symmetric keys. PSK is used for implicit authentication, like it is used
in Kerberos. It is further commonly used in WLAN encryption like, Wired Equiva-
lent Privacy (WEP) and Wi-Fi Protected Access (WPA). This symmetric key can be
used directly for encryption of the communication between the parties sharing that key.
In Internet Protocol Security (IPsec) [51], the symmetric key is generated at runtime
and exchanged using Diffie-Hellman key exchange algorithm [52]. Mutual authenti-
cation is accomplished using the PSK. Application of PSKs is feasible for small net-
works. In larger networks a Public Key Infrastructure (PKI) or RADIUS (RFC2865
- RFC2869)[48] provide better maintainability. A PSK authentication is easy to im-
plement and provides good privacy protection, since the key cannot be mapped to an
identity. On the other hand, it provides no means for revocation. If a user’s granted
access shall be revoked, all others have to pre-share a new key.

2.4 Digital Rights Management (DRM)

DRM summarizes technologies that limit or control the access to digital content such as
video, audio, documents or software. Usually it is applied by copyright holders to pre-
vent their content from being used in ways other than supposed and to protect their busi-
ness model on exploiting their creative content. This includes prevention from copying,
transforming or consumption over the time permitted. Those technologies effectively
prevent the protection means of their contents from being circumvented by manipulat-
ing the file, such as stripping of some header or skipping an initial serial number check,
which has been used on numbers of software applications. Most of them encrypt the
actual content and use various techniques to hide or control the keys. Apple’s’ FairPlay
is quite simple to understand. The media content is encrypted with an AES master key.
This master key is encrypted with an individual user key, which is generated during the
purchase. Since only the master key has to be individually encrypted and overwritten
in the file, this can be accomplished in no time making it a reasonable vehicle even for
larger media files. At the time of media consumption, the QuickTime® software con-
tacts the license server to check whether the particular user key can be retrieved. This
enables the license server to revoke user keys, e.g., due to elapsed rental time. Only
with this user key the encrypted master key in the media file can be decrypted, which

Shttp://www.apple.com
Shttp://www.apple.com/de/quicktime/

30 CHAPTER 2. RELATED TECHNOLOGIES

consequently enables to decrypt the media.

The most commonly known and probably the oldest widely used DRM system is the
Content Scrambling System (CSS)’, which was introduced in 1996 and is used by al-
most every commercially produced DVD. The required keys are hidden in the lead-in
area of the protected disc and in licensed hardware or software players.

Since the CSS uses relatively short encryption keys of only 40 bit length, it has been
cracked relatively easy [53]. Following DRM systems have been designed using stronger
encryption schemes. The Advanced Access Content System (AACS)? that has been in-
troduced for HD-DVD and Blu-Ray discs, applies the Advanced Encryption Standard
(AES) with key lengths of 128 bits and a more complex key organization. The first ap-
proaches to break this system extracted the keys from software players using debuggers
and memory space inspection [54]%1°. Compromised keys have been revoked, which
prevented the affected players from decrypting newer digital content.

As we learn from all these successful breaches, there are only two ways to prevent such
attacks. That are, either using hardware based protection mechanisms on the PC plat-
form, such as Trusted Computing [55], or not providing the keys to software players.
It is expected, that a software-only based PGEC is vulnerable to the same attacks. For
a productive environment and a widely distributed usage it should rely on a Trusted
Computing Platform. Besides an effective key protection, which can eventually not be
accomplished in a software only approach, there are other measures for runtime data
protection to be taken. Those can be learned from software based DRM systems that
are deeply integrated in the Operating System (OS). The most prominent, if not even
the only one, is the Protected Media Path (PMP) by Microsoft!!. The PMP is exe-
cuted in a protected environment, which supports to protect any data flow within, es-
pecially protected content from and through Windows Vista. Protection from inside
attacks is attained by permitting only trusted code in the Protected Environment (PE).
Trusted code is digitally signed and the used key is certified with a PMP-PE certifi-
cate issued by Microsoft. Participating user-mode display driver component, user-mode
audio driver components or audio processing objects and Media Foundation'? pipeline
plug-ins (codecs, mf transforms) use this certificate for signing. Other modules such as
kernel-mode display device drivers and kernel-mode audio driver components require
other types of certificates (Protected Video Path - Output Protection Management (PVP-
OPM) , Protected Video Path - User-Accessible Bus (PVP-UAB) and Protected User
Mode Audio (PUMA)) to be embedded and used for signing. The PVP-OPM for in-
stance ensures that a PC’s integrated graphics adapter outputs provide reliable control of
output protection schemes, such as High-bandwidth Digital Content Protection (HDCP),

"http://www.dvdcca.org/css/

8http://www.aacsla.com
“http://forum.doom9.org/showthread.php?t=122664
1http://forum.doom9.org/showthread.php?t=122969
http://msdn.microsoft.com/en-us/library/aa376846(VS.85).aspx
2http://msdn.microsoft.com/en-us/library/ms694197(VS.85).aspx

2.4. Digital Rights Management (DRM) 31

Macrovision, and Copy Generation Management System-Analog (CGMS-A) as it is re-
quired under license agreement with content owners [56]. This allows to extend the
protected environment with a Protected Video Path (PVP) and PUMA. Hence, the pro-
tected content never leaves the PMP as un-encrypted data between the media source and
the physical display or audio device (see Figure 2.2).

® Application
A 3
1 r]
Command / Control L=

Protected Environment (PE)

Protected Video
3 Media Interoperability Gateway Path

Video Video ‘ Kernel Graphics
Decryptor Decoder aEEmEm ‘ Device
Authority
Enai
naine A Qutput Trust
Authority
PE

Media Authority
Source
Input Trust
Authority
y
Audio Audio o User Mode
\ Decryptor H Decoder I_.- @ @ 8 8= Audio Sink Kems!
Audio
Device

Figure 2.2: Protected Media Path (PMP) Overview [56]. It displays data and control flow
from the protected digital media to the rendering devices. Decryption of data happens
only within a specially Protected Environment (PE) by trusted components. Decrypted
data may further leave the PE only via Protected Video Path (PVP) and Protected User

Mode Audio (PUMA). This ensures that no copies of the decrypted streams can be
obtained.

Video Sink

/

]

Protected User Mode Audio

Protection from outside tampering with the PE and the components running within is
approached by a number of measures.'> These apply to the operations that a typical
process can or cannot perform on a protected process or its threads:

o Inject a thread into a protected process

Access the virtual memory of a protected process

e Debug an active protected process

Duplicate a handle from a protected process

Change the quota or working set of a protected process

e Set or retrieve context information of a thread

Bhttp://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-
b18336565f5b/process_Vista.doc

32 CHAPTER 2. RELATED TECHNOLOGIES

e Impersonate the thread

The OS kernel monitors continuously which components and modules are loaded in the
environment by periodically performing a cryptographically-protected handshake with
the PE components. If an untrusted kernel mode component is present, this handshake
fails and the PMP stops processing.

For further protection of the PE and content in the PMP, revocation of trusted compo-
nents is introduced. Compromised trusted components can be revoked to prevent further
execution and replaced with a newer trusted version of the component when it becomes
available.

Still the PE is completely implemented in software, which makes it vulnerable to software-
based attacks. Patching the Windows kernel remains possible.!* It is not known up to
here, whether the content protection can be successfully circumvented using this ap-
proach. Even though it might appeal to execute the PGEC inside this PE, which might
increase the required effort to break in, there are various obstacles. Currently only media
applications get certified to run in the PMP. The bigger problem is that every service
that is going to run inside the PGEC has to be signed and certified by Microsoft then,
which is likely not to happen. For the development of a PGEC, certain security mea-
sures from the PE and PMP may be inherited but still have to be adapted to the needs
of a multi-purpose protected environment that shall even run untrusted and uncertified
code as well.

“http://www.alex-ionescu.com/?p=35

Chapter 3

Anonymous Access Control

Usually access control goes along with identification and authentication. This process
often requires to give a proof of identity or to verify released personal data. In real life
this proof can be given by confidential documents like passports, whereas electronic me-
dia prefer the usage of credentials or digital certificates for these issues. Digital certifi-
cates are trustworthy documents that are issued by a trusted Certificate Authority (CA),
where the user has been identified through official documents. Certificates issued by a
CA can be used as digital identity cards for electronic services. Given the user data and
her/his certificate, a service can request the CA to check the user data. For example, an
age-restricted pay-TV service could verify the age of a user by her/his certificate and
thereby authorize the service use. Besides the age of the certificate’s owner, the verifica-
tion unnecessarily releases additional information contained in the certificate. Thereby
the service gains all certified user data and the CA acquires knowledge about the us-
age of the certificate. That way an anonymous usage of certificates becomes infeasible.
In consideration of privacy, a service should receive essential information only and the
CA does not need to know where, when and for what purpose an issued certificate is
used for. The presented certification method, which was also published in [57], allows
evidencing granted rights by the use of anonymous individual-related certificates. The
content and the regularity of any issued certificate are preserved while the legal owner-
ship can be proved anonymously. In the pay-TV example, neither the CA can find out
who consumed which content nor is the service able to map certificates to real identities,
not even in mutual collaboration.

k-Anonymity Full anonymity and individual-relation of certificates are actually contra-
dictory. To solve this conflict pseudonyms are used, which can be mapped to an indi-
vidual only by that individual. The other information in the certificate, i.e., the granted
right, is chosen such, that it cannot be matched into an individual. This introduces k-
anonymity, which is defined as follows:

33

34 CHAPTER 3. ANONYMOUS ACCESS CONTROL

“Each release of data must be such that every combination of values of quasi-identifiers
can be indistinctly matched to at least k individuals [58].”

That is, the presenter of a certificate can be identified only as one of the k individuals,
which are granted the particular right denoted in the certificate. When presenting mul-
tiple certificates at the same time, the presenter must be aware that her/his k-anonymity
decreases to the intersection of the respective k; possible individuals quasi-identified
from the presented certificates i. In the worst case this may even result in k = 1, i.e., no
anonymity. Hence, the presented system especially benefits from large user groups and
relatively low number of required certificates to be presented for access authorization.

3.1 Technology

There exist many approaches that consider privacy and anonymity for trustable elec-
tronic media. The major goal is to establish trustable user data and authentication meth-
ods for service usage. Chaum developed the concepts of credential system [59] and
group signature schemes [60] to establish verifiability on user data. Credential systems
are made to give a proof of identity when interacting with electronic services. Signatures
are used to prevent electronic documents from being changed by unauthorized entities.
Nowadays, certificates are the preferred means for authorization and identification is-
sues. Increasingly providing privacy and anonymity for users comes into consideration
when interacting with services.

Most approaches focus on enhancing the user’s privacy towards services, e.g., by us-
ing pseudonyms in certificates and e-cash schemes as provided in [61, 13]. Releasing
data implies a trusted third party, for example a CA or a bank, where the pseudonym
can be mapped to the real identity of the user. Services may request the trusted third
party to verify the correctness of certified data for a given pseudonym. Hence these ap-
proaches support anonymity of users against services but enable the trusted third parties
to track issued certificates. Even privacy enhancing certification frameworks as pre-
sented in [62] and [63] still use a trusted third party and do not provide a solution for
fully anonymous granting of certificates. Preventing trusted third parties from tracking
issued certificates either needs using untraceable pseudonyms or blinding the content of
the certificate before signing. Chaum determined the idea of blinding certificates [64]
that allows concealing the content from the CA. Therein the CA is requested to issue a
certificate with unknown content. Consequently, this method is inefficient particularly
with regard to verifiability of certified data. The CA might issue invalid certificates or
could grant certificates for unauthorized identities. In an approach to avoid this, the CA
demands » blinded versions of the content to be transmitted and then requests to reveal
the blind factors of n — 1 versions. Thereby, it can discover attempts of fraud. While the
remaining subject is randomly chosen, the attacker has limited chances (p = rll) to foist
a fraudulent certificate.

Even a combination of known approaches would not bear up against a collaborated at-

3.2. FUNCTION PRINCIPLE 35

tack of services and trusted third parties. To the best of knowledge, there exists no known
approach that provides fully anonymous use of certificates, where neither the service nor
the CA is able to map the certificate to a real identity. Nevertheless, the approach pre-
sented herein can guarantee that only valid certificates are issued by the CA.

3.2 Function Principle

This section sets up the means for a privacy aware certification system. In such system a
user retrieves pseudonymous certificates for rights legally granted to her/him. Thereby
the CA does not get hold of the pseudonym. Services gain the pseudonym from verifica-
tion of the presented certificates by the CA. For authentication the user proves ownership
of the pseudonym to the service.

3.2.1 Requirements

It is supposed that users have certain rights, either by explicit grant or due to physical
properties, e.g., age. If a service requires certain rights those must be presented by
a potential user. Usually this is done by authenticating the user, whereby the service
knows which rights are granted to her/him. For an anonymous access control it is not
required and even undesired that a user is known to the service she/he uses. Thus, the
user has to present the granted rights explicitly. To ensure that a user presents valid
rights only, those rights must be issued as certificates by a trusted authority, called CA,
which knows all users and their respective granted rights. Certificates shall further be
revocable or valid for a limited time. Prevention from double-spending of a certificate
within the time of validity, as in digital payment schemes, is not required. In addition,
certificates shall be prevented from eavesdropping, so that they cannot be used by other
users. In an effort to prevent eavesdrops, the certificates are issued to particular users.
To maintain privacy, it must not be possible to track the issued right certificate. As for
privacy reasons, the CA shall not get to know which user presented a particular right
certificate to a service. Hence, a right certificate must contain:

o a verifiable right
e a verifiable expiration date

e a means to prove ownership, which cannot be mapped to the user identity by the
service, the CA or both

As proof of ownership, a pseudonym in form of a public-private key pair is used. Hence,
the certificate contains the public key whereas the user possesses the private key of that
pair. Since the certificate shall not be mapped to the user’s identity, the authority must
not know the pseudonym when issuing the certificate. The way to certify something
without knowing it is blind signing [64], as mentioned. The downside of blind signing is
that the signer has no means to verify what is to be actually signed. It is not reasonable

36 CHAPTER 3. ANONYMOUS ACCESS CONTROL

to sign a right or an expiration date in blind. Otherwise, the authority might sign a right
that is not granted or for an unrealistic expiration date, which breaks the possibility of
right revocation. A means to interdigitate the openly signed right and expiration date
with the blindly signed pseudonym has been found. This enables to verify the right and
the expiration date during signing and still not knowing the pseudonym within. The
next section explains the math details of this interdigitated signature algorithm. In the
subsequent section potential attacks from malicious users, CAs or eavesdroppers are
addressed. Means to guard against those attacks are introduced.

3.2.2 Mathematical Background

The following shows the math of the algorithm. When applying blind signing, the only
value that is under control of the signer is the key. So, the idea for interdigitating blinded
information with verifiable information is to encode the verifiable information into the
key itself. That can be accomplished be using unique signature keys for each right or
expiration date. Since at least the set of expiration dates is unbounded, a static assign-
ment of keys is not feasible. Therefore, it has been chosen to algorithmically build these
keys. That is, signing some message with the n + 1* key is exactly the same as signing
it with the n™ and once more with the first key. Thus, interdigitating an information i
can be achieved by signing the blinded message i times. Obviously, the information that
is openly interdigitated has be € N. Please note, despite the inductive description of the
derivation of the n + 1* key, it is possible to directly calculate that key, which dramati-
cally reduces the calculation effort of the signing process (see Section 3.3).

To map the verifiable information into N the rights and the possible expiration dates
are numbered. For the expiration dates, this is as days from 2007-01-01. The blinded
pseudonym is encrypted r times with a key dedicated for rights and ¢ times with a differ-
ent key for expiration dates, being r the number of the right to be certified and 7 the ex-
piration date of the certificate. Obviously, a malicious user could try to get a pseudonym
signed multiple times to gain rights with higher numbers that are not actually granted.
Prevention of this illegal right acquisition is presented in Section 3.2.3. Encrypting a
certain message r times and afterwards decrypting it r times with the respective keys
of one RSA key pair, will result in the same original message (see Equations (3.1) to
(3.4)). Therein, the public key is (e; N), the private key is (d; N) and the message to be
encrypted is m.

ed =1 mod ¢(N) 3.1
= m = m mod N (3.2)
e'd” = 1" mod ¢(N) (3.3)

= m)* =m“D" = mmod N (3.4)

Let the user choose a pseudonym p. Further she/he chooses randomly and secretly a
blind factor k. With k and the publicly known modulus of the signature key of the CA,

3.2. FUNCTION PRINCIPLE 37

the user can calculate the modulus inverse k~! with
kk™' = 1 mod N. (3.5)

According to Chaum, the pseudonym or a hash value of it can be blinded by modular
multiplying it with the encrypted blind factor. The public key of the rights authority is
used to encrypt k. The result is given to the authority to be encrypted with the respec-
tive private key. Without actually knowing the factors in the product, this results in an
encryption of the pseudonym p and a decryption of the blind factor k, which can be neu-
tralized by multiplication with the inverse k~!. In Equation (3.6) one can find the result
of an openly signed pseudonym and compare it with the result of the blind encryption
(see Equation (3.9)). Equations (3.7) and (3.9) are processed at the user’s side and (3.8)
at the authority’s side. It can easily be seen, that the authority does not get to know the
actual pseudonym p nor the encrypted pseudonym s. At the same time, the user gets a
signed pseudonym, without knowing the authorities private key (d; N).

pd = s mod N 3.6)

User: P(k) = ppiindgea mod N (3.7
CA: Phiinded” = p* (k) = p?k = Spiingea mod N (3.8)
User: Spiindeak” ' = plkk™' = p? = s mod N (3.9)

In Chaum’s blind signature the information is just: “Yes, this has been encrypted with
the signer’s private key.” The intention here is to let it say: “This has been encrypted
with the signer’s private keys for right r or other stated purpose.” Therefore the blind
encryption procedure was extended in two ways. The first is to encrypt the blinded
pseudonym multiple times. The number of encryptions encodes separate information,
i.e., the right. This way the authority gains some control of what it signs. Still there is no
knowledge about the pseudonym that is signed. Only, decrypting it exactly the number
of times that it was encrypted results in the pseudonym, which can then be verified. If
it cannot be verified, it is either not the pseudonym of the presenting user or was not
decrypted the right number of times and hence, is not certifying the right it claims to.

User: Pk = phiingea mod N (3.10)
CA: Potindea” = P K" = pTk = Spiingea mod N 3.11)
User: Spiindeak ' = pl kk™' = p¥ = s mod N (3.12)

The operations in Equation (3.11) are processed in the CA with knowledge of neither the
pseudonym p nor the blind factor k. The operations in Equations (3.10) and (3.12) are
executed on the user’s side to generate a signed pseudonym without knowing the private
key (d; N) of the authority.

The second extension of the procedure is to use multiple key pairs to encode orthogonal
information, i.e., the right and the expiration date. There is only one constraint on the
keys to be used. All have to use the same modulus. Equations (3.13) to (3.15) show the

38 CHAPTER 3. ANONYMOUS ACCESS CONTROL

process of creating a blind signature with two key pairs [(e; N),(d; N) and (e; N),(d; N)].
This can easily be extended to more than two key pairs as long as these use the same

modulus.
User: Pk = ppiindea mod N (3.13)
CA: Poiindea® ® = p* kD CD = pddp = 5y geg mod N (3.14)
User: spindeak™ ' = pT k" = p? = s mod N (3.15)

Using both extensions of the blinding algorithm, the user gets an encrypted pseudonym
as if being encrypted using the private keys of the CA but without letting the authority
know the pseudonym. On the other hand, the authority can ensure that the signature is
used for the intended purpose only, because the signature turns into a valid pseudonym
only if decrypted using the public keys (e; N) and (é; N) the correct numbers of times r
and 1.

There is a chance that the pseudonym could be decrypted correctly even when applying
a wrong right or expiration date. This is called a collision. A collision may occur when

e = e™e"” mod o(N). (3.16)

With e and é being relatively prime to ¢(N) they and their powers belong to the multi-
plicative group of integers modulo ¢(N). The likelihood for finding two congruent pairs
of e"e" and e™e" is the reciprocal to the order of that group, which is ¢(¢(N)). Accord-
ing to [65] ¢(N) > VN VN > 6. Hence, the likelihood of colliding rights and expiration

dates is equal or less than For bit lengths of N at 1024 or more, this becomes

s

negligible.

3.2.3 Attacks by Malicious Users

Up to here, the basic approach is still vulnerable to attacks like fraudulent falsification
and eavesdropping. So, a malicious user is able to gain a right, which was not actually
granted by requesting blind signatures for certain granted rights multiple times. That is,
a user might be granted the rights r; and r,, whereas a right r| + r; is not granted. Since
the CA has no means to check the content of the pseudonym to be encrypted, it does
not notice when encrypting an already encrypted pseudonym (see Equations (3.17) to
(3.19)).

User: PPk = ppiingea mod N 3.17)
CA: Poiinded”” = p7 KD = p"" P k = Sppingea mod N (3.18)
User: sblmdedk_l = pdrw2 kk~! = pdrlw2 = s mod N (3.19)

A similar attack is gaining a not granted right with a number lower than the number of a
granted right. Assume a right r; is granted, whereas the right , = r; — 1 is not granted.

3.2. FUNCTION PRINCIPLE 39

Once the user possesses a pseudonym signed for »; she/he can create a valid one for r,
by decrypting it once with the public key of the CA, see Equation (3.20).

pdrle = pdrr1 mod N (3.20)

To tackle these, both keys of a pair are used privately to the CA and only the modu-
lus is shared with users to prevent from reduction of the certified right. An additional
private-private key pair (2; N),(d; N) is used to count the number of signature steps. In-
dependent of the right to be certified, the blinded pseudonym gets signed exactly once
with (d; N). A valid signature must not be signed more than once with this key (d; N). In
case, the attacking user tries to get a signature for an already signed pseudonym in order
to increase the ordinal number of the signed right and to extend the expiration date, this
key (d; N) is applied more than once. Hence, an attack is detected while verifying the
pseudonym’s rights.

In the blinding procedure the blind factor needs to be encrypted with the public keys of
the CA before multiplying it to the pseudonym. Since all keys are private here, the blind
factor has to be encrypted by the CA as in Equation (3.21). On the other hand, the CA
must not know the applied blind factor. It could determine the pseudonym otherwise.
It is feasible to use the CA-encrypted blind factor to the power of n modulo N with n
being randomly chosen and unknown to the CA (see Equation (3.22)). After the blind
encryption in Equation (3.23) only k" remains, for which the modular inverse k™" can
easily be determined by the user via Equation (3.24).

CA: k% = kca—enc mod N (3.21)
User: plkca-enc") = Pblindea mod N (3.22)
CA: Poiinded™® = p™ K™ = UK = $p1ingeq mod N (3.23)
User: Splindedk " = p‘?drk"k_” = p‘idr = smod N (3.24)

In fact, CA-encrypting the blind factor and encrypting the blinded pseudonym are the
corresponding en- and decryption operations. This could be exploited to remove the flag,
that reflects the number of signature steps, when signing a pseudonym twice. To prevent
this, a pre-shared generator is used as k. Note, CA-encrypted blind factors may even be
exchanged between users, which prevents the CA from encoding user identity related
information into the blind factor. Since, now the service does not know the authority’s
keys, the decryption and verification has to be forwarded to the CA. If a user presents
the signed pseudonym to a service claiming that it was issued for right r and expiration
date #, the CA to decrypts the signed pseudonym r times with (e; N), ¢ times with (&; N)
and once with (e; N) as shown in Equation (3.26).

s= p® yod N (3.25)

$e€e = p‘zdr‘itéerét = p mod N (3.26)

40 CHAPTER 3. ANONYMOUS ACCESS CONTROL

3.2.4 Attacks by Malicious CA

While the CA knows the identity of a user, when blindly signing her/his pseudonym, it
is possible for a malicious CA to append identity information to the blind signature by
multiplication. To accomplish this, the CA chooses a large prime number f and indexes
the known identities. Equation (3.23) is then extended to Equation (3.27) with i being
the index of the identity. The un-blinding at the user’s side does not notice this identity
foisting, see Equation (3.28). During the verification of the signature, which is done at
the CA, the signed pseudonym including the foisted identity is decrypted resulting in
a product of pseudonym and the power of the chosen prime number f and the identity
index (Equation (3.29)). As the format of the pseudonym is known, this product can
iteratively be multiplied with the inverse of f until such well-known format is reached.
The count of the required iterations is the identity of the user.

pb[indedddrfiddr = pdd’kéd(ed)’nfiddr = pdd'knfiddr = Sblindedfiddr mod N (327)
Sblindedfid_drk_n = pjdrfilidrknk_n = pljdrfid_dr = sfid_dr mod N (328)
(sf9Ye¢ = b fl mod N (3.29)

This foisting may not be prevented but it can be detected by the user. Therefore, the
user splits her/his chosen pseudonym into at least two factors p;, see Equation (3.30).
She/he lets the CA blindly sign each factor and the actual pseudonym as well in arbitrary
sequence. That way, the CA cannot distinguish, which one is the pseudonym and which
are factors, and hence, it has to treat all equally. If a malicious CA foists the signatures
with identities the results are as in Equation (3.31) and (3.32). Multiplication of the
signed factors must result in the signed pseudonym. If it does not, as in Equation (3.33),
a manipulation by the CA is discovered.

n
[ri=r (3.30)
=1
P 4 mod N (3.31)
P o N 332
n n
l—[(P iy = ([| pyy i = i piddn g pidd g v (3.33)
j=1 j=1

The service has no information on the identity of the user and hence, the CA does not get
to know the identity either. Since the CA has never known the encrypted pseudonym,
un-blinded during the signature process, it cannot map it to an identity in the verification
process. The CA returns the pseudonym to the service if and only if the decrypted result
for the claimed right, expiration time and exactly one flag is in fact a valid pseudonym.
This can be achieved by checking the format of the pseudonym. While using the public
key of an arbitrary key pair ((&; U),(d; U)) concatenated with a secure hash of itself as
pseudonym, the CA is enabled to verify the format of the decrypted pseudonym. If

3.3. PERFORMANCE 41

the format cannot be verified, the certificate has probably been claimed with wrong
parameters (fraudulent use of certificate). Further the public key (€; U) can be used
to encrypt a challenge (Equation (3.35)) that only the owner of the private key (d; U)
belonging to the pseudonym can decrypt (Equation (3.36)) and hence, prove her/his
ownership of the pseudonym. If the user cannot decrypt the challenge, she/he is not the
owner of the pseudonym (eavesdropped certificate).

p=@U) (3.34)
Challengeé = Cope mod U (3.35)
Cencd = Cdec = Challenge mod U (3.36)

3.3 Performance

According to the algorithm described, the exponents in the used RSA keys have to be
raised to the power of the right or the expiration date respectively. As this is not a
modular operation this power increases very quickly. Assuming an exponent of about
512 bit and a right 13 to be specified, the respective power has a length of 6656 bit. For
expiration dates this length can be even much higher. Such huge numbers are hard to
handle, but raising the encryption exponent to a power of n means exactly the same as
encrypting n times. Thus, one could sequentially execute n modular operations using
only the encryption exponent (see Equation (3.37)).

m@) = (m*)°)° mod N (3.37)

The sequential execution of n modular operations definitely decreases the amount of
used memory but rather increases the calculation effort. In the presented approach all
encryption operations, which use an encryption exponent raised to a power, are executed
in the CA, which also knows ¢(N). Using the dependency in Equation (3.38) the calcu-
lation of the encryption exponent can be reduced from a memory and time consuming

calculation of ¢" to e ™od ¢(N)

Using the reduced exponent for encryption results in
the same value as if using the very large power or encrypting n times using the original

exponent e (see Equation (3.39)).

x =ymod ¢(N) = m* = m’ mod N (3.38)
m©) = m© med ¢ od N (3.39)

The calculation effort for this reduction is the same as one regular encryption with one
key. So, the effective calculation effort for encrypting n times using the original exponent
reduces from n to two operations. This reduction has to be accomplished for each key in
use e, ¢, e. Hence, for the authority the encryption effort does not grow with the numbers
r or t to be encoded, but linearly with the number of different keys to be used.

42 CHAPTER 3. ANONYMOUS ACCESS CONTROL

Network load and repeated verification effort Each certificate in the existing imple-
mentation that is transmitted to a service as proof of possession of a right has a size
of about one to two kByte. While each certificate contains only one particular right,
possibly in combination with a device or device group that this right applies to, various
service require more than one right at a time. Hence, a user would have to transmit
multiple certificates for each service call. Additionally, there is the forwarding to the
CA and the verification of the certificates. To circumvent unnecessary network traffic
and calculation effort at the CA, implicit sessions are proposed. By sending a set of
certificates, a user retrieves a list of Transaction Authentication Numbers (TANs) from
a service. These TANs are associated with the verified certificates or with the claimed
rights respectively. The service assures that none of the generated TANs is already as-
signed to another set of verified certificates. By using sufficiently long numbers as the
TANS, the probability for successful guessing a TANs becomes negligible. All these
TANSs belong to an implicit session. Each service call is accompanied with one of the
TANSs. With this TAN, the service can match the associated rights with required rights
for that particular service call and deny service if necessary. So, the calculation effort
for verification can be reduced to once per certificate and service. The network traffic
per service call can be reduced from several kByte to a few bytes. The mentioned list of
TANSs serves an additional purpose while simultaneously protecting itself. After gener-
ation, the list is encrypted with the public keys from the pseudonyms in the associated
certificates. In fact, it is encrypted with a random symmetric key (AES), which in turn
is encrypted using the public keys. The encrypted AES key is transmitted along with
the encrypted list of TANs. Only the legal owner of the presented certificates is able
to decrypt the key and thereby the list. It is not required to return a ‘response’to the
‘challenge’. The usage of a valid TAN implies the correct decryption of the list of TANs
proofing the legality of its recipient. Note, it is the nature of a TAN that it can be used
just once. Hence, the service keeps track of used TANs. Possible interception of a TAN
by a Man-in-the-Middle attacker is not addressed here, but can easily be circumvented if
the connection between user and service is encrypted using an appropriately exchanged
key, e.g., using Diffie-Hellman [52].

All blind factors are encrypted by the CAstarting from an a priori known generator k.
As these are the basis for the mentioned power in Equations (3.21) to (3.24) and the
same for every user, these can already be produced in advance of actual requests. This
does not reduce, but rather increases, the overall effort of the CA but it increases the
responsiveness of the CA upon request of such pre-encrypted blind factor. Analogous,
the combined keys for verification according to Equations (3.25) and (3.39) are prepared
and cached, which halves the response time for verification of a certificate.

3.4. SIMPLIFIED EXAMPLE 43

3.4 Simplified Example

This section explains the presented anonymous access control method in an example.
For better visualization of the involved parties and exchanged certificates the certified
information is highly simplified.

3.4.1 Issuing of Certificates

In the example it is assumed, there is a user named Bob. A right with the reference
number 2 has been granted to him. Bob wants to get his right certified for later use. The
CA knows at least a user named Bob and the right number 2 granted to him. Please
remember, the k-anonymity grows with the number of users granted with the same right.
Further, the CA holds several key pairs sharing a common modulus for signing and
verifying pseudonyms in certificates. For simplicity, only the key pairs for rights and
expirations dates are displayed in Figure 3.1. Actually, further key pairs are used, e.g.,
for devices, priorities and especially for the signature counter.

Bob randomly chooses a key pair as a pseudonym. He creates an unsigned certificate,
stating right 2 and a rather fictitious expiration date 3. In advance, Bob fetched a blind
factor from the CA and raised it to a power with a random exponent, which is only
known to him. He appends the hash value of the public key of his pseudonym with well
defined markers and multiplies this with the power of the blind factor. That way, he
gains a blinded pseudonym, i.e., it is not possible for anyone but Bob to regain the hash
value from this nor even the public key itself.

Bob sends this unfinished certificate to the CA with releasing his identity to the CA.
It can be assumed that appropriate means for identification and authorization of a user
exist, e.g., RSA key pairs. Each user identity possesses such a pair, while its public key
is known to the CA and associated with the identity. All responses to an identity are
encrypted using this public key. Only the legal recipient can decrypt the response and
hence, implicitly authenticate. This encryption is not depicted in the figures. The CA
checks whether the right 2 claimed in the certificate is granted to Bob and the demanded
expiration date lies within the next 24 hours. If this is positive, the blinded pseudonym
gets signed with the signature keys for the respective number of times (see Figure 3.2).
Afterwards it is returned using the above mentioned encryption, which implicitly au-
thenticates Bob as the legal receiver of the signed certificate.

44 CHAPTER 3. ANONYMOUS ACCESS CONTROL

W e

rights key pair

s o®

expiration key pair

Expires 3 Bob

N

]
pseudonym key pair

Figure 3.1: A user Bob known to the CA creates an unfinished certificate with right 2 and
expiration date 3. He adds a blinded self chosen pseudonym, displayed as the hatched
lock. The pseudonym is part of a key pair, which is like the blind factor only known to
Bob.

rights key pair
N

D

expiration key pair

Right 2 @

Expires 3

pseudonym key pair

Figure 3.2: Bob sends the unfinished certificate to the CA. After identification and
authentication of Bob, the CA verifies whether the demanded right and expiration date
are granted to Bob. In the successful case, the CA signs the certificate twice with the key
for rights and three times with the key for expirations dates.

3.4. SIMPLIFIED EXAMPLE 45

Since Bob knows the effective blind factor, i.e., the raised power with his secretly
known exponent, he can use its inverse to un-blind the pseudonym. Thereby, it remains
validly signed (see Figure 3.3). Actually, only a secure hash of the pseudonym’s public
key is signed and Bob also adds the plain version of that public key to the certificate.
With such completely signed certificate, Bob can disrobe from his identity and interact
under his chosen pseudonym with services. The correlation between the identity Bob
and the pseudonym is known to him only.

1Y)

e D

rights key pair

an D

expiration key pair

Right 2 @

Expires 3 pseudonymous

@Q

pseudonym key pair

Figure 3.3: Bob uses the inverse of the blind factor, known only to him, to un-blind the
pseudonym after the CA returned the signed certificate (removal of hatching)). He gains
a validly signed certificate, which cannot be mapped to an identity. Using this, he can
prove his right 2 until date 3 without revealing his identity.

3.4.2 Anonymous Authorization and Authentication

There is an unidentified user possessing a certificate, claiming the right 2 and expira-
tion date 3. In the example, there is further a Video On Demand (VOD) service, which
requires its potential users to possess right 2, which could represent certain age for exam-
ple. The unidentified user sends her/his certificate to the VOD service (see Figure 3.4).
The service requests the CA to verify the certificate. As described in Section 3.2.3,
the keys for verification must be kept as secret as the keys for signature. Therefore, the
verification cannot be accomplished by the service itself. The CA decrypts the signed
pseudonym with the respective number of verification keys, according to the claims of
the certificate. In this example that is, twice with the key for rights verification and three
times with the key for expiration date verification (Figure 3.5). Actually, the signature

46 CHAPTER 3. ANONYMOUS ACCESS CONTROL

- Yideo on Demand Service
Right 2 @

! & Expires 3
rights key pair 2. Request 4'\1)
N verification l -

D

expiration key pair

pseudonymous

pseudonym key pair

Figure 3.4: A user wants to use a VOD service without revealing her/his identity. The
service requires the possession of right 2 at the time of usage. For the proof of ownership
of right 2, the user sends her/his certificate to the service.

counter verification key and further verification keys for devices or priorities are applied
here, too.

If the result of the decryption with the according verification keys is a well-formed
pseudonym, that is, a hash value of the contained public key appended with the well-
known markers, it is returned to the service (Figure 3.6). Please note, while the verified
pseudonym is either a public RSA key or the hash value of that key, eavesdropping and
replaying by other users pose a threat. But if the authenticating user could forge a CA
and respond a her/his pseudonym or according hash value to the service, she/he can
fraudulently obtain authorization. Hence, a trusted and encrypted connection between
service and authority is required. The format check of the pseudonym under verifica-
tion is depicted in Figure 3.5 that each of the colored locks is assigned with exactly one
equally colored key. The number of keys is determined by the claims of the certificate.
In case there was a key, which could not be assigned to one of the locks, a right with a
higher ordinal number or a later expiration date than certified was claimed. The signed
pseudonym would be determined as invalid in such case. Remains a lock without respec-
tive key, that means that a right with lower ordinal number or an earlier expiration date
than certified was claimed. Also then the certificate is recognized as invalid. In neither
case, the CA returns the decryption result to the service.

In the example here, the signed pseudonym was validly decrypted and returned to the
service. The service may therefore assume that right 2 is granted to the legal owner of the
certificate. Certainly, it has to be assured that the certified expiration date is not reached

3.4. SIMPLIFIED EXAMPLE 47

Video on Demand Service

pseudonymous

pseudonym key pair

Figure 3.5: For verification of the certificate received from the user, the service forwards
it to the CA. The CA applies, according to the claimed right and expiration date, twice
the verification key for rights and three times the verification key for expiration dates.

yet, i.e., the certificate has not expired. Figure 3.7 depicts, how the service verifies the
legal possession of the presented certificate by the presenting user. As already described
in Section 3.3, the service creates a list of TANs (in Figure 3.7 denoted as ‘Challenge’)
and encrypts that list with the public key of the pseudonym embedded in the presented
certificate. The encrypted list is sent back to the user.

Only if this user has legal ownership of the certificate, she/he possesses the correspond-
ing private key belonging to the pseudonym. With this she/he is able to decrypt the list
of TANs (see Figure 3.8). Illegal presenters of the certificate, e.g., eavesdroppers, can-
not decrypt this list. The later transmission of a valid TAN from the list implies legal
possession of the rights associated with this list of TANs.

48 CHAPTER 3. ANONYMOUS ACCESS CONTROL

CA EE Video on Demand Service
rights key pair ﬁ
© < Return decrypted and '
EE i extracted pseudonym
expiration key pair
pseudonymous

@@@8

pseudonym key pair

Figure 3.6: If the verification results in a well-formed pseudonym, the CA returns this to
the requesting service. Otherwise nothing is returned and the service excludes the user
from the service usage.

Eﬁ Video on Demand Service

rights key pair

o

expiration key pair

pseudonymous

@@998

pseudonym key pair

Figure 3.7: The well-formed pseudonym received from the CA is a public key, which
can be used for verification of legal ownership of the presented certificate. Therefore,
the service generates a random challenge and encrypts it with the embedded pseudonym.
This encrypted challenge is returned to the presenting user.

3.4. SIMPLIFIED EXAMPLE

49

rights key pair
I3 i

P

expiration key pair

pseudonymous

pseudonym key pair

Video on Demand Service

Figure 3.8: If the user is legal owner of the certificate, she/he possesses the private key
belonging to the pseudonym. Only with this private key the challenge can be decrypted.
With a correct decrypted challenge the legal possession of rights can be proven, which

entitles for service usage.

Chapter 4

Protecting Private Data by
Technical Means

Besides special issues with privately relevant data it is a fact that everything that can be
read, can also be copied. A further generalization of that fact is:

“Everything that can be sensed, can be copied”.

Once data are copied, the original owner has no actual control over the copy of these data.
Hence, the data could be used at any time for any purpose by the party that possesses this
copy. If one is concerned about her/his private data and wants to prevent such copies,
the only 100% safe solution is not to give her/his personal data to someone else. Therein
giving can be something like transmitting, showing or making it audible. On the other
hand, a lot of services, especially in the Internet, do not make sense or are not usable
without some personal data of the user. The dilemma is how to hand out personal data
to the service without giving it the capability to create a copy. A copy is considered
a manifestation of data that can be sensed by another entity. If there is a technical
solution that prevents the service from manifesting the data at all or at least having that
manifestation not being sensable by other entities, a user could faithfully pass her/his
data to the service and trust that the data are deleted afterwards or at least not be used for
any other purpose. Note, the user would not have to trust in the service and its privacy
policy, but merely in the service independent privacy protection solution.

It is assumed that content of volatile memory, such as registers in CPUs and RAM, is
not sensable by others. Modern OSs provide means to prevent access to certain memory
segments by others than the owner. Encrypted data in persistent memory or transferred
across a network is also supposed to be not sensable as long as the key for decrypting is
unknown to the entity trying to sense.

A technical means to protect private data shall hence assert that these private data must
not be sensable by other entities than the one they have been handed out [66]. To be on

51

52 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

the safe side, all possible senses and not just the obvious ones have to be addressed.
Humans can obviously see and hear or read and listen respectively. Hence, data should
not be written or spoken to protect information from humans. But humans can also
smell, taste and feel. Consequentially, odors and pheromones or flavors and condiments
must not be used. With ‘feeling’ describing the ability for tactile cognition, temperature
cognition and cognition for pain or balance, rather not obvious communication means
as surfaces, heat, coldness, needles or shock must also not be used.

For computers the following senses are considered:

e Reading a hard drive, floppy, optical drive or similar

Listening to the network

Scanning

Recognizing key press or mouse motion

Sampling audio
e Grabbing video or capturing screen content
Less obvious capabilities are to:

e Read from shared memory

Scanning and parsing system streams (in, out, err)

Catching exceptions

Synchronizing on semaphores or object monitors

Determine CPU and memory load
e Recognize file access

It can be easily deduced, which operations and actions must be prohibited to prevent a
service that processes private data from copying. A technical privacy protection means
should prohibit just these operations for service code running accompanied by that
means. This is to be done even on the service providers premises. That is, the ser-
vice provider imposes a restriction on her-/himself that she/he cannot circumvent. If the
service provider can further prove that she/he is using this restriction enforced by the
protection means, she/he can provide confidence to the user. In other words, private user
data can be used by the service but not copied to be used for unexpected purpose. The
technical means that is going to accomplish this is called a Privacy Guaranteeing Exe-
cution Container (PGEC) and presented in the Sections 4.2 to 5.1. Beforehand, some
definitions are given to describe and understand the application context of the PGEC.

4.1. TERMINOLOGY 53

4.1 Terminology

This section explicates a number of terms that are used in the description of PGEC.
These descriptions shall support the understanding of the PGEC and its protection means
and prevent misconceptions. Herein, services are classified and economical security,
information load and negotiation of privacy contracts are defined.

4.1.1 Service Classification

The communication between the code, which is executed inside the container, and the
service provider outside, is restricted by a privacy contract. The privacy contract has to
be negotiated between the service provider and the service user. Appropriate means to
do so have been proposed in [67, 68, 69, 70]. Both parties have to sign that contract.
It defines which kind of messages may be sent by the code providing the service and
to which communication endpoints they may be sent. The rules that have to be defined
inside the privacy contract depend on the kind of service. Up to now three classes of
services are identified.

1. Logically delivering services
2. Logically controlling services

3. Physically delivering services

Logically delivering services do not need to communicate with the service provider
side. A navigation service is a representative of this class. In order to provide its func-
tionality, it only needs to read local service data such as a map and the current position of
the mobile device. No communication with the service provider is needed, except in case
these services are charging a small amount of money. This class especially addresses the
presentation of the service results. Presentation is usually considered as a display with
a GUI or similar. This can be misused to retrieve private data from inside the container
via an allowed means. A virtual graphical device can actually write the information to
disk as a straight forward attack. Services are most likely not presenting own secret data
to the service users. The user has no actual control over what is displayed. Hence, dif-
ferentiation is required between a container running at service provider’s side, suspected
to fraudulently obtain private data, and a container on the user’s side, which demands
the private data to be protected. Thus, services running in the container on the user’s
device may be allowed to display any result or information while prohibiting any audio
or video generation on the service providers machine. The output device might be stated
in the contract as well and could be authenticated by knowledge of the private key that
was used to generate the contract signature.

Logically controlling services do not provide any benefit without a chance to send
messages back to the service provider. Examples of logically controlling services are re-

54 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

mote control services for cameras in surveillance applications. These essentially need to
send messages back home, such as move right, left, up and down. The privacy contract
has to enumerate a message vocabulary for this class of services. on the one hand, this
vocabulary has to be rich enough to provide a comfortable handling. On the other hand,
it shall be sparse enough to ensure that malicious code cannot misuse this vocabulary to
encode privacy relevant information and send it back using the allowed messages. The
negotiation does not need any knowledge on the semantics of the data items to be nego-
tiated about. This is especially true for the messages or literals to be defined. Neither
the negotiation nor the PGEC actually needs to know the meaning of a certain commu-
nication endpoint for such messages. It only needs to be able to identify and address
that endpoint. Similarly, the names of the literals are of low meaning to the PGEC. The
count of different literals is what matters. That is, the service and its negotiation entity
can propose any literal of any name. This proposal is done before knowledge of pri-
vate user data and hence, cannot contain any of such information. The literals have to
be string comparable. So the PGEC can check the content of messages. Besides the
pure number of different literals, their expected frequency or acceptable delay shall be
specified. Additionally, literals may be grouped. This grouping is also defined by the
service. Literals of different groups are considered to be orthogonal. By orthogonal it is
meant that changing the sequence of those literals will not affect the result in the exter-
nal world. The knight’s move in chess gives a good example. Moving [-step-ahead and
then 2-steps-right results in the same position as 2-steps-right and I-step-ahead. Hence,
movements ahead and backward form one group and right and left form another group.
To prevent misuse of literals for trickling private information to the outside, the number
of literals should be kept low. The number of literals and their groups is defined in the
privacy contract. Keeping the size of groups as low as possible allows to randomly mix
orthogonal literals if several of them are triggered within a close time span. For the given
example, if the maximum delay is defined to be one second and in this interval the two
literals ahead and right are triggered for sending, the PGEC may send them in any order.
Mixing orthogonal literals reduces the chance of encoding information in the sequence
of sent literals. The amount of information that could be “morsed” with the literals can
be estimated (see Section 4.1.3). This estimation can be used in the negotiation strategy
to limit the number of different literals, their frequency or the overall number throughout
the service usage.

Physically delivering services are the last identified class of services. Online-shops
or print services are members of that class. Those actually require to disseminate private
data such as shipping addresses or content of pages to print. Hence, they require weaken-
ing of the privacy guarantee. Consider a shopping service that needs at least the shipping
address given to the delivery service as well as information for clearing to be given to
the bank. In case such information disclosure is permitted by the privacy contract, the

4.1. TERMINOLOGY 55

service requests the container to send the information to the appropriate party. Thus, it
is made sure that only pristine information is given. Further it is ensured that it is given
to those parties only that the information was supposed for. But note, from the moment
this privacy relevant information leaves the container, there is no control over it anymore.

4.1.2 Economical Security

A 100% secure solution has no chance to ever been broken. But this is rather theoretic,
that is, every encryption or security solution can be broken. It just depends on time and
effort how and when it can be done. Hence, economical security is defined:

“When the effort to break the protection of an entity/data is larger than the value of the
entity/data, its protection is economical secure.”

This must be considered in the protection means of private data inside the PGEC and
the self-defense means of the PGEC. For the protected user data inside the weakest
point in its protection perimeter is decisive. While existing encryption technologies,
e.g., AES, RSA or Elliptic Curve Cryptography (ECC), are known to be strong with
sufficiently long keys, possible design or implementation flaws in OS, the Java Virtual
Machine (JVM) or the PGEC may be easier to exploit. The latter are usually not tackled
in a brute-force manner, which makes it hard to estimate the actual effort. For informa-
tion leaks like the introduced literals in the PGEC, an estimation can be calculated (see
Section 4.1.3). It has been shown that a 768-bit integer can be factorized within 2.5 years
using a cluster of 80 PCs [71]. Based on the date of first factorization of a 512-bit integer
it is extrapolated that 1024-bit integers could be factorized within reasonable time in ten
years. Thus, the authors recommend to withdraw keys of 1024 bit length no later than
2014. Hence, key length of 2048 can still be considered secure. One of the authors esti-
mated and compared the efforts, by time and money or hardware respectively for various
symmetric and asymmetric encryption or secure hashing algorithms, regarding the used
key lengths [72]. This estimation could be used to estimate an upper bound for the value
of data being securely protect or to determine a minimal key length to protect data of
certain value.

In consideration of the vulnerability of software-only solutions as described in Sec-
tion 2.4, software may be protected additionally using hardware dongles. Hardware
dongles evolved throughout the years from providing a read-only serial number to cryp-
tographic devices. Obviously, the encryption may not be broken brute-force. Depend-
ing on the intelligence, the software makes use of its dongle, the effort to hack certain
functions can be increased. Appropriate means, to hack and to obstruct hacking were
described in [73]. This article refers to a hacker contest [74], in which one of two tasks
regarding such dongle was successfully hacked. It was possible to run certain function
without the dongle while possessing the dongle and this particular function was actually
licensed by the dongle. The other task, running an unlicensed function, which would

56 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

require breaking the keys inside the dongle was not solved. From the duration of the
contest, which was six weeks, an upper bound and hence costs can be estimated. Esti-
mation of effort and costs to physically break into the hardware was not found.

4.1.3 Evaluate Information Load of Literals

For services that need to communicate with the outside world in a somewhat limited
way, i.e., some remote control service, the admittance and use of fixed literals are pro-
posed. Those literals have to be negotiated before service usage. Those literals are then
some kind of predefined commands. Those commands should not have parameters. Oth-
erwise, the domain of the parameter has to be that small that it could also be mapped
into a small number of commands without parameter.

Note, that those literals could be misused to transfer private data to processes that are
not under control of the PGEC. To cope with that, it is proposed to limit the overall
number of literals, the frequency of literal sending or the duration of a service session
using literals. Such limitation is calculated as follows.

D the amount of data in bits to be privacy protected
T the amount of data in bits that can be transferred through the use of literals

L the number of admitted literals while each parameterized literal counts as many
times as the size of the co-domain of its parameter

n the number of transferred literals
f the frequency of literals

¢t the duration of a session sending literals

2F =1 (4.1)
T=n-log, L 4.2)
n=f-t (4.3)
T=f-t-log,L (4.4)
T <D 4.5)

From Equation (4.1) can be learned that a sequence of T bits (two possible values) builds
the same number of combinations as # literals (L possible values). By solving this to T
(Equation (4.2)), it can be determined how many bits of information can be transferred
by a number n of L possible literals. When considering an average frequency of literals
and the duration of a service usage session the number, the number of literals that can
be transmitted during that session is determined by Equation (4.3). Hence, with a given
average frequency, session duration and amount of possible literals the information load,

4.1. TERMINOLOGY 57

which can leave the control of the PGEC, can be calculated using Equation (4.4). For
privacy protection it is required, that this information must be less than the data size of
the sensitive information to be protected.

Assume a service that is using four literals at about one literal per second. This service
is getting credit card number, expiration date and name of a user and is suspected to
transfer these data out. A credit card number has 16 digits, with the first being anything
between three and six. The expiration date has twelve months and one of four years
including the current year. Assume, the user has an average 17 characters name like
‘Christian Schmidt’. That results in 4 x 10'> possibilities for the credit card number,
4 x 12 possibilities for the expiration date and for the name 26 x 27> x 26 possibilities.
About 139 bits (D = 139) are required to express those. Thus, f - ¢ - log, L must be less
than 139 bits. That is, with four literals and an average frequency of one per second, it
needs 70 seconds to transfer the given data via the literals. Thus, the user may want to
limit the duration of the session to less than 70 seconds in order to protect the privacy of
her/his credit card data.

More interesting are quickly changing private information like position data that could
allow tracking and creation of a personal profile, i.e., certain dwell time at places. For
example, the position might be given in the 14-digit Gauss-Krueger-Notation, which is
around 53 bits and the service is going to use five literals. Further, it is assumed between
two known positions should be five minutes to remain kind of incognito. To ensure
that position information cannot be transfered using the literals more often than every
five minutes, the frequency of the literals throughout the service usage session must be

limited.
f-t-logoL<D 4.6)
D
- 4.7
I gD @7
53bit
f< o 4.8)

300sec - (log, 5) 70—

teral

With application of Equations (4.6) to (4.8) it can be figured that the frequency must
be less than one literal every 13 seconds to meet the privacy requirements regarding the
position information.

4.1.4 Negotiation of Permitted Data

Privacy protection requires adequate declaration of which data may be used by whom
and for what. Note, this may even be no data for nobody and no purpose. Approaches
for such declaration have been presented in Section 2.1.1. There is even some tool sup-
port for these technologies. AT&T’s Privacy Bird!, for instance, is a free plug-in for
Microsoft Internet Explorer. It allows users to specify privacy preferences regarding

Thttp://www.privacybird.org/

58 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

how a website stores and collects data about them. The user’s preferences are set by
enabling/disabling different rules out of a set of fixed options. The user is not able to
define further rules or specific restrictions. If the user visits a website, the Privacy Bird
analyzes the policy provided and indicates whether or not the policy matches the user’s
preferences.

Depending on the service class users are ready to permit the release of other information.
This is even true for specific services. That is, personalized privacy policies are required.
Such personalized privacy policy is called a privacy contract. The way to achieve such
privacy contracts is negotiation. To preserve privacy in this negotiation process differs
from usual negotiations used in network technologies. Choosing one option from the
intersection of the respective lists of options from both parties, will affect the privacy of
the negotiation partners. A step-by-step modification of an initial proposal can be used to
achieve privacy aware negotiation. To the best knowledge there are only two approaches
that allow step-by-step modification of the originally proposed policy by service user
and service provider namely [75, 76]. But in both approaches only the service provider
is enabled to present new versions of its policy, whereas the user can only accept or
reject the proposal. The user side can only provide hints, why the proposed policy was
not accepted. These hints may help the service provider to calculate a more suitable
proposal.

For real privacy respecting negotiation, both negotiation opponents should define their
secret preferences that specify whose acceptable room to negotiate. Both negotiation
parties should be capable to offer counterproposals based on former offers. Finally, suc-
cessful negotiations should close with a mutually signed privacy contract that contains
all negotiated content. Such privacy contracts have been introduced together with a pro-
cedure to negotiate them between a service provider and a user in [67, 68].

If this negotiation scheme and according privacy contracts are used together with a pri-
vacy guaranteeing means like the PGEC presented herein, it must distinguish between
data that is allowed to be used within the container, for which copy protection is guar-
anteed, and those data that may leave the container, e.g. in case of physically delivering
services. Also, the literals and their constraints (grouping, frequency, maximum amount
or session duration) have to be negotiated and stated with the privacy contract. Even
though, a privacy contract appears to be the most appropriate way to specify permis-
sions for data access, literal sending and purpose binding, the effort of integration of the
existing implementation of a privacy negotiation unit [69, 70] has been avoided in favor
for the implementation of the actual protection features presented herein.

Further, such automated privacy negotiation systems [68, 69, 70], which determine indi-
vidual privacy contracts [67] can be used in conjunction with standardized access control
policies like XACML. An appropriate translation between the XML privacy contract and
the XACML policy supports the integration of privacy negotiation into existing systems
implementing XACML.

4.2. Privacy Guaranteeing Execution Container (PGEC) 59

4.2 Privacy Guaranteeing Execution Container (PGEC)

The Privacy Guaranteeing Execution Container (PGEC) is designed for stand-alone ex-
ecution as well as for distributed execution. When executed as a stand-alone application
on the service user’s side, it makes sense only for protecting the code and embedded
data of the used service. Executed at services providers premises, it protects the user’s
private data as long as it can be ensured that those data cannot be grabbed on their way
into the container. The most flexible way of usage allows a distributed container. Mul-
tiple instances, running at user’s and service provider’s premises, provide a transparent
but secure exchange of private data throughout the distributed container instances. The
architectural design is partially analogue in a stand-alone and a distributed container.
Those shared architectural designs are described in Section 4.2.1, whereas those parts
that allow for distributed execution of the container are presented in Section 4.2.2.

4.2,1 Stand-alone Architecture

Figure 4.1 shows the components of the PGEC, i.e., the execution environments, the
communication interface, the privacy contract and covert channel attack protection means.
Privacy contracts are a declarative privacy protection means as described in Section 2.1.1.
These contracts have been introduced together with a procedure to negotiate them be-
tween a service provider and a user in [67, 68]. Implementations of their negotiation
have been presented in [70, 69]. For convenient usage of the PGEC presented herein, a
negotiation unit derived from [70] should be implemented in the PGEC.

Communication Interface

The communication interface restricts access to data as well as the literal exchange ac-
cording to what is agreed between the service provider and the service user. It is obvious
that the service usually consists of external code. The user is likely to not fully trust the
service code. Hence, to control the communication of the service and thereby protecting
her/his private data, the user executes the service code within the PGEC.

Restricting Network Communications Besides other privacy relevant information, the
privacy contract states which literals may be sent to which communication endpoints and
which data is to be retrieved from the user through the container. All decisions taken by
the communication interface are based on this privacy contract. The communication
interface is in principle a kind of rule engine applying the rules defined in the privacy
contracts. In case, the executed service in the container definitely needs to communicate
with the outside of the container at its origin or any other party, this communication
must be limited in a way that it prevents transmission of privacy relevant data. The
communication must not be established by the service itself but merely by the container.
An API supporting to send literals is provided by the communication interface. The
service may and can initiate the sending of literals only by using the communication

60 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

User Data
Age
Nationality
Position

I

i

I

I

i

I

I

| |User Data ()
Device class

I linterests Code

I

= 2 . . .

Observation of Observation of Random
Data-Access Network-Communication | | Resource Usage

4 i Memory

Privacy contract
Literals: which, rate Processor
Communication end points

Data access agr.
Which data

li

Communication Interface

Literals

Figure 4.1: Architecture of the Privacy Guaranteeing Execution Container (PGEC). It
features a communication interface observing and controlling communication with ex-
ternal processes or machines. In general external communication is prohibited. Excep-
tions can be specified in privacy contracts or data access agreements. Further, the PGEC
provides an arbitrary number of execution environments. The separate execution envi-
ronments effectively suppresses communication between their applications and services.

interface of the container. That way it can be ensured that the service does not send
privacy relevant data to somewhere else. The destinations of the literals as well as the
possible literals themselves are defined during the negotiation process of the privacy
contract. The vocabulary has to be defined in a way that enables the communication
interface of the container to check whether or not a certain literal is allowed. Therefore
it is proposed that the vocabulary consists of literals. In this case, the communication
interface can use a simple string compare operation to verify whether the literals are
allowed or not. The container checks the literals given through the API on compliance
with the privacy contract and sends the actual literal to the specified communication
endpoint or dismisses it.

Even if the vocabulary of the literals is well defined, i.e., if it prohibits easy sending of
sensitive data, it can be used for this purpose if an unrestricted number of messaged may
be sent. Since the meaning of such literal cannot be generally determined, those could be
used to encode sensitive data. An assessment on the amount of messages for encoding
private data is made in Section 4.1.3. Hence, the container may also limit the frequency
of such literals or it could deliver orthogonal literals in unspecified order. This decreases
the chance of encoding information other than the control information to be transmitted

4.2. Privacy Guaranteeing Execution Container (PGEC) 61

by the literal. Exemplary for such service, remote control services for electronic devices
shall be named, e.g., an air conditioner. It does not need to know the privacy relevant
information of someone’s preferred room temperature, but only needs to be adjusted
warmer or cooler until the measured temperature fits the personal preferences.

A service may need to receive additional information from its origin at the outside of
the container. In this case, the communication interface provides another API to request
such information by response of a function call or by providing predefined data streams.
The container is enabled to suppress messages from the services origin to the executed
service, to prevent from guessing information and acknowledging by literals.

If a service tries to send data not agreed to in the privacy contract or to communication
endpoints not agreed to, a privacy exception is generated. Such privacy exceptions can
also be logged. This log may help to prove fraudulent behavior during the negotiation
process or to prove claims of reimbursement of unjustified service charges, if the service
is not functional due to the lack of particular information.

Restricting Data Access The second task of the communication interface is to control
data access. Here again, the privacy contract describes what is permitted, while any-
thing else is be prohibited. In addition, write operations to persistent storage have to be
blocked by the communication interface. Since the required data is application/service
dependent, there has to be a specified way in which the container gains access to the data
potentially passed to the services inside it. Two approaches have been identified.

The first approach is to specify an API to push information from the outside into the
container. This enforces every application using the container to execute services to
adapt to that API. The bigger problem comes with changing privacy relevant data that
may be needed by services but not as often as these change. Thus, a data push approach
would result in a never-ending push thread that takes up computational power, probably
without any positive effect on the services in the container. If data is pushed into the
container, the container itself has hold of these data. Unfortunately, this prevents the
garbage collector from deletion of the demanded data upon service completion. Only
data directly associated with services and their classes are deleted on service comple-
tion. In a distributed PGEC, it is likely that private data are pushed into the data owner’s
container instance at her/his device only. Hence, it is not critical if her/his data are not
immediately deleted.

The second approach is to allow the container to access to the data at install-time or even
at run-time. To accomplish that, a data access component as displayed in Figure 4.1,
which grants read access only is proposed, and which uses the privacy contract to check
which data may be read. Reading private data into the PGEC is not considered critical,
since no data can leave the execution environment if it is not allowed in the privacy con-
tract, i.e., the communication interface will filter all literals and other communication
means are restricted, too. Private data may exist in various formats and be accessible
by a number of means. Thus, unified access to all kinds of private data is not feasible.

62 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

Standardized access interfaces like Java Database Connectivity (JDBC) and query lan-
guages like SQL are not available for every data source. Therefore, a combination of
both approaches is most promising for a productive application of the PGEC. For sim-
plicity reasons, the first approach has been chosen for the implementation presented in
this work.

Execution Environment

The execution environment is merely a logical construct ensuring that applications and
services within the PGEC can access the container interfaces but have no access to data
or code outside the container. In fact, the PGEC distinguishes between inner and outer
execution environments, where outer execution environments are situated logically out-
side the PGEC, are less restricted but have no access to private data. The communication
restrictions imposed on the inner execution environments allow the services within to
access private data. Both types of environments provide the necessary infrastructure to
services executed inside and outside the container, e.g., access to the processor, volatile
memory etc. They are also responsible for the cleanup operations that have to be done
when a service is no longer used, i.e., it has to make sure that all data is really deleted.
While it is quite obvious that services running inside the PGEC are not supposed to
communicate with the outside world, the inner execution environments have further to
ensure that different services inside the PGEC shall not directly communicate with each
other. It is an additional task of the execution environments to ensure that these services
do not have any communication with each other. That means, even the use of a shared
memory segment has to be avoided by the execution environment. The amount of exe-
cution environments in a PGEC instance is not fixed and usually for each service a new
execution environment is built. Note, that the outer execution environments, which exist
logically outside the container are not restricted by the communication interface and cor-
responding privacy contracts. On the other hand, those have no access to the private data
accessible inside the container. This construction is not depicted in Figure 4.1 but was
introduced to run additional processes besides the container. Those processes can for
instance, receive literals or provide a management application for users to manage pri-
vacy preferences, insert private data into the container or even find and request services
provided inside the distributed container. Detailed discrimination from inner execution
environments can be found in Section 5.1.2.

4.2.2 Distributed Architecture

Services/applications that are using and processing private information in a stand-alone
fashion are not threatening users’ privacies very much. Usually, these are executed at
the users’ machine over which she/he has control. The only threat of those with regard
to privacy was network communication. The user may protect her-/himself by applying
a firewall. A number of firewall systems exist in the market. Those are either software

4.2. Privacy Guaranteeing Execution Container (PGEC) 63

solutions so called personal firewalls such as the Microsoft® Windows Firewall or hard-
ware solutions built into routers, i.e., using Linux’ iptables. Mostly those are used to
prevent unwanted access from the outside of the firewalled hosts. Firewalls can further
be used to block certain protocols or several ports. As far as it is known, there is no
way of a firewall to prevent certain data items to be sent to not blocked addresses. Even
though there is some packet inspection, there is no chance to recognize the content of
encrypted packets. Firewalls have no control over the data once it passed the firewall.
Hence, a firewall may only assure that no data leaves the machine at all. This is similar
to unplugging the network cable, which renders all Internet services unusable.

On the other hand, those Internet services are more interesting but also impose more
privacy concerns. Such services will not bring any benefit or not even function, when
not having an Internet connection. This is likely in cases where large databases, process-
ing power or distributed community knowledge is required for providing the service.
Using such services, requires to either transfer private data to the service provider with
the database or the database to the user. The latter will obviously refused by the ser-
vice provider. It is exhausting bandwidth and threatens its intellectual property. The
first is not reasonable from the privacy perspective. This is addressed by the distributed
architecture of the PGEC. The PGEC'’s distributed architecture stipulates to connect
multiple instances of the PGEC with encrypted channels (see Figure 4.2). The keys
used for encryption of the channels are only known to the PGEC. This can either be
accomplished by using a dedicated symmetric key for all channels or appropriate key
exchange between the instances. In the latter case, the PGEC instances need a mutual
authentication mechanism. The channels are used to transparently transfer private data
from one PGEC instance to another. This allows the services running in the execution
environments of the PGECto access private data analogous to the stand-alone version.
The communication interface forwards the data request to the PGEC instance, which
holds the data. In opposite to firewalls, the PGEC transfers sensitive data securely over
the network into other PGEC instances only. While regular firewalls do not prevent local
applications to write onto local hard drives or similar persistent storage devices - even
printers, the PGEC does. That way, all data transferred within PGEC instances remain
within those. This is true for private data of service users as well as data and service
code of the providers. Within the container instances both can be brought together and
the service can usefully be completed.

The encrypted channels actually allow any communication between container instances.
That is, forwarding of literals, control messages, data access authorization requests and
even tunneling network connections or pipes between distributed components of ser-
vices within the PGEC. Communication of networked services, which is not possible in
a stand-alone PGEC, can be established when all service components run inside PGEC
instances. Still, all regular network communication, which is not tunneled into another
container instance, is suppressed.

Since data can only be used within PGEC instances, this principle may be compared

64 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

PGEC Instance at Service Provider Side PGEC Instance at Service User Side

I Inner Execution Environment 1 Inner Execution Environment
1 1

‘
T
- IT=

} Logical service commuricat tion Logical servs communicaton 4
4
Observationof | | Observationof | |/ Encrypted _ _ _ _ __ \ | _ (Observation éf Observation of
Data-Access Network-Communication Interconnection Network-Communication Data-Access
Data access agr. Privacy contract Privacy contract Data access agr.
Communication Interface Communication Interface

Figure 4.2: Architecture of the distributed container. A distributed PGEC consists of at
least two instances of the stand-alone PGEC. These instances are connected through en-
crypted channels, which tunnel all communication of services distributed in these PGEC
instances and messages for container management and control. Mutual authentication
mechanisms ensure that only PGEC instances are the endpoints of those channels. These
channels allow transparent access to private data available in other container instances.

to DRM systems where the protected content can only be decrypted and played within
certified DRM enabled systems, which comply with the requirement not to persistently
store the decrypted data. PGEC is a DRM system that allows everyone to protect her/his
data from being copied, but even be used for a priori unknown purposes within the con-
tainer. A key or license management similar to existing DRM systems (see Section 2.4)
can ensure use limitation for particular data, users and services. The key management
scheme introduced in the prototype presented herein is presented in Section 5.1.5. The
constraints on the keys protecting particular private data shall be derived from the pri-
vacy contracts.

4.3 Protection Requirements

In order to provide useful context aware services, a lot of different information has to be
taken into account. This ranges from a personal profile of the service user over related
data from a third party to the algorithms used and developed by the service provider.
The major problem to solve when it comes to privacy issues is how to guarantee that the
service provider does not retrieve data of the service user. This task has to be tackled
in such a way that the solution can adapt to different contexts, i.e., the data which may
be exposed or protected can vary from application to application as well as from user to
user even for the same application. In addition, service providers must be protected from
malicious service users, i.e., it has to be ensured that the service user cannot get hold of
the algorithms provided by the service provider. In order to provide mutual protection
between service user and service provider PGECs are introduced. These are containers,

4.3. PROTECTION REQUIREMENTS 65

which are independent of the service provider as well as independent of the service user.
They have to ensure the following properties:

1. All data may be stored in volatile memory only and will be deleted after comple-
tion of service use; this has to hold true for service provider as well as for service
user data.

2. The communication between the code executed in the container as well as the
communication between the container and any third party is to be restricted to
what is agreed between the service provider and the service user. This agreement
is denoted as the privacy contract, as mentioned before.

3. The local exchange of messages and implicit communication, e.g., via shared
memory is prohibited.

If property (1) is fulfilled the container may be executed on any location (server or mo-
bile) due to the fact that there is no way to get low level access to the data of the other
side. The benefit is that load balancing becomes feasible. Computational expensive ser-
vices do not have to be executed on the mobile device.

If property (2) is fulfilled, there is no chance to steal data during the service use. The
problem here is to define a set of allowed messages. On one hand, it has to be sufficiently
large to allow service fulfillment. On the other hand, it has to be as restrictive as possible
in order to ensure that it cannot be misused to steal data, and to enable the container to
verify the content of the allowed messages.

If property (3) is fulfilled, a service running in a container cannot share its knowledge
about gained private data with other services that are concurrently executed within the
PGEC. Hence, it is not possible to extract private data via an additional service and a
faked user with a very loose privacy policy.

In order to make sure that the service user as well as the service provider will trust the
PGEC, it has to be implemented by a trustworthy third party, and it has to be signed by
that party using a PKI certificate, e.g., from VeriSign?.

This section discusses the threats that are posed to the PGEC. Based on the identified
classes of attacks, possible countermeasures are mentioned. Details on the implementa-
tion of these counter measures can be found in Section 5.1.

4.3.1 PGEC Threat Model

In order to understand the security means provided by the PGEC, the goal of a potential
attacker needs to be defined clearly by formulating potential attacks and by defining
required countermeasures. The prime goal of the PGEC is protecting service user’s
privacy. Thus, the most important aspect in the design of the PGEC is to prevent data
extraction from the container. In this model, the PGEC itself is the only trustworthy

Zhttp://www.verisign.com/

66 CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

entity. It is implemented by an institution, which is considered to be trustworthy by all
users of the PGEC, but will be executed at host systems that are owned by potential
attackers. In other words, the PGEC needs to be capable of protecting itself against
malicious execution environments, which are manipulated in order to steal data out of
the container. In addition, it also needs means to prevent program code provided by the
service user or service providers from transmitting data out of the PGEC. The following
three classes of attacks can be used to retrieve data out of a PGEC:

1. Sending data via network, shared memory or file system to a collaborating entity,

2. Using covert channels [77] such as Central Processing Unit (CPU) load or similar
to signal data to a collaborating entity,

3. Compromising the PGEC or its execution environment on the host system to un-
dermine the protection means against threats of classes 1 and 2.

To emphasize the proof of concept, a list of possible attacks to gain private data protected
in a PGEC is presented.

Regular Data Protection

Obviously, collections of private data can be gathered by sending/copying any private
information, which is gained, to a collaborating entity. Such transmission over one of
various applicable channels is considered an attack. In general these channels are net-
work links, shared memory or a file system to which the collaborating entities have
mutual access. To protect the private data in the container from those attacks, these
channels and corresponding attacks are enumerated. It is considered that all these at-
tacks are realizable by regular means using Java APIs. Table 4.1 enumerates the attacks
together with the respective countermeasures to prevent those that are implemented in
the container. The respective implementation issues are described in Section 5.1.

Protection from Covert Channels

Besides the channels applicable for communication, which are provided through a Java
API, there are channels, which are not a priori identified as applicable for communi-
cation. Those are called covert channels. Table 4.2 lists a number of covert channels
that might be exploited to communicate private data to the outside world. The presented
countermeasures show awareness of a number of covert channels and the ability to mini-
mize the chance of successful communication along those channels. Of course, reaction
on unknown covert channels is hard or even impossible to achieve, which is not part of
this work.

4.3. PROTECTION REQUIREMENTS

67

Attack Countermeasure
1 | Replace SecurityManager of the JVM Override and hardcode Permissions in
2 | Read a file checkPermission Method of PGEC’s own
3 | Write a file SecurityManager
4 | Open a network connection (TCP/UDP)
5 | Wait for or accept network connection (Listen
on a port)
6 | Redirect default system streams
7 | Print on printer
8 | Call native methods that are not managed by
the JVM
9 | Access private methods of the
PrivacyManager via reflection and over-
ride of Java method access control

10 | Read and write system properties or read envi-
ronment variables

11 | Display a GUI window

12 | Access to databases via JDBC JDBC access relies on socket or file access,

which is solved by the SecurityManager.

13 | Access private data via the PrivacyManager | The constructor of the PrivacyManager
without it being instantiated and installed in the | checks whether there is no other
first place SecurityManager yet, and whether it is

instantiated from the main thread and there
was no other action before.

14 | Exchange data via static fields (shared mem- | Use various own ClassLoaders for each exe-
ory); includes trying to get references on ob- | cution environment.
jects in other execution environments.

15 | Render audio Override security Permissions and replace

audio system classes with own ClassLoader
16 | Write to system streams Redirect system streams to NUL device and
prevent further redirection by hard-coded
Permissions in own SecurityManager

17 | Access information with a debugger Prevent debugging; i.e., compile with option
-g:mone does not create debug information in
the Java binary, prevent running the debug in-
terface library (jdwp.dll) within the PGEC pro-
cess. The latter is achieved a a side effect of the
assertion of untampered host environment (see
Section 5.1.4).

Table 4.1: Attacks launched via regular API means using Java and respective counter-
measures provided by PGEC

68

CHAPTER 4. PROTECTING PRIVATE DATA BY TECHNICAL MEANS

Covert Channel Attack

Countermeasure

18 | Throw Exceptions with messages containing | Catch all Exceptions and filter messages
private data in the container execution environment that
started the service
19 | Start threads with names containing private | Assign each execution environment with a sep-
data and enumerate running threads from outer | arate thread group and prevent threads within
environments that group from retrieving parental thread
groups, which would contain threads or thread
groups of other execution environments.
20 | Synchronize on globally accessible object | PGEC holds locks on every globally accessible
monitors or semaphores object’s monitor
This includes all box objects created dur-
ing automatic boxing of primitive types, the
Class objects of classes loaded by the system
ClassLoader and all static properties of such
classes. (see Listings 5.10 and A.4)
21 | Encode information by the amount of allocated | PGEC allocates large amounts of memory it-
memory self in a random fashion; Drawback: the appli-
cation in the container must be able to handle
OutOfMemoryErrors
22 | Encode information in the CPU load PGEC produces random CPU load or steady
high CPU load by a background thread that
consumes all remaining CPU cycles that are not
assigned to any application outside or inside the
container
23 | Request loading of classes that are not actu- | Determine actually existing class files in the
ally class files but rather pipes open by external | classpath at startup time and prohibit and sup-
communication end points; similar “touching” | press any useless class loading during runtime
of files can be detected outside and hence be
used to trickle information out
24 | “Morse out” information by alternating class | Class loading is allowed only once per run
loading of existing classes
25 | “Morse out” information with allowed literals Random mixing of semantically independent
literals; if possible all literals should be seman-
tically independent
26 | Encoding of information with literals over syn- | PGEC introduces a random latency in the trans-
chronized time mission of literals
27 | “Morse out” information by sending equal | Use stream ciphers for PGEC intercommunica-
packets over the PGEC interconnection and | tion to make originally equal packets incompa-
sniff on the network rable in the encrypted network communication
28 | “Morse out” information by alternating send- | Send padding packets to all other associated in-

ing of packets to collaborating communica-
tion partners in distributed PGEC; use network
sniffing to evaluate the communication with the
respective PGEC instances over time

Packet from A to B encodes 0

Packet from A to C encodes 1

stances of the distributed PGEC that are not in-
volved in the actual communication.

Table 4.2: Covert Channels Attacks executed by program code inside the PGEC

4.3. PROTECTION REQUIREMENTS 69

Protection from Compromised PGEC or its Host System

Especially, the countermeasures enumerated in Table 4.1 rely on means provided by
the implementation of the JVM and the Java security architecture. Hence, an attacker,
e.g., a data collector or data miner, may attempt to circumvent the protection means
of the PGEC by overriding the Java security measures or comparable measure in the
OS. Such attacker could provide her/his own JVM including modified versions of the
Java networking API. Such modification could access network endpoints, i.e., Sockets,
without permission check by the SecurityManager. Thus, the PGEC has to self-defend
against modifications of the JVM and its system classes or OS provided libraries. Since,
the modifications are a priori unknown, the PGEC attempts to ensure that is runs in
well-known environments only. That is, PGEC runs only in certified versions of OSs
and JVMs. Means to assert this is implemented and described in Section 5.1.4.

Chapter 5

Prototype Implementation

PGEC:s have to fulfill mainly three tasks. They have to provide an execution environment
that ensures proper clean up of data and code when the service is no longer used. It
further restricts the information exchange via all possible channels to what is allowed in
the privacy contract. Such functionality can be inherited by using runtime environments
that ensure secure code execution such as Java runtime environment, .NET or even the
Adobe! Shockwave interpreter. All of the mentioned approaches provide some kind
of a sandbox model which limits the access of foreign code to local resources such as
file system and network. Since the PGEC needs to protect itself against the runtime
environment, additional conditions need to be fulfilled to guarantee correct behavior the
PGEC. The prototypical implementation explained in this section is done in Java. This
allows to take advantage of the sandbox and security management facilities of the Java
runtime environment. The security manager, controlling the sandbox, can prevent file
and network access, access to system properties, access to printers and even to methods
implemented in native and hence unmanaged code.

5.1 Technical Aspects and Components of the PGEC

This section describes aspects of the implementation of a PGEC using the example of a
prototypical implementation in Java. Since, all components of a PGEC instance in the
distributed architecture also exist in the stand-alone version, almost all aspects apply to
both architectures likewise. Differences exist in the API for data access (Section 5.1.5),
which has to enable transparent access to private data throughout the distributed compo-
nents and to provide logical unity. Finally, those distributed instances have to mutually
authenticate to ensure that exchanged private data remain logically inside the PGEC
(Section 5.1.6).

Thttp://www.adobe.com/

71

72 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.1.1 PGEC and its Host Runtime Environment

The code, that is the PGEC and the services within, is executed in a runtime environment
and thus may only access system resources through that runtime environment. This cir-
cumstance allows limiting the access to resources by security managers. These security
managers obey certain security policies. The code inside the sandbox may only access
those resources that are explicitly granted.

local or remote code
security policy

class loader

' <

B sandbox

JVM A

A,B,C — Protection Domains

Valuable resources (files, etc.)

Figure 5.1: Java 2 Security Model [78]. The evolution of the Java security model even in-
troduced protection domains, which resemble the execution environments of the PGEC’s
architecture. While the security policy and access permissions define the allowed ac-
tions, the protection domain and access control checking provide the enforcement. In
the Java security model, the security policy and the access permissions are defined by
the owner/executor of the JVM. In contrast to that, in the PGEC these are defined by (ne-
gotiated) privacy contracts and must be immutable by the executor of the JVM running
the PGEC and the services within.

In earlier versions of Java, only remotely loaded code ran inside the sandbox and had
limited permissions. That is, locally started code had no limitations in accessing system
resources. The evolution of Java and its security model developed protection domains
for any type of code, regardless of locally or remotely loaded and whether signed or not
(see Figure 5.1). These protection domains provide a reasonable base for the execution
environments of the PGEC. Unlike in the Java security model, the security policy and
the access permissions must not be set or changed by the executor of the JVM hosting

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 73

the PGEC. This policy depends on the data access and usage restrictions imposed by
the data owner. Additionally, the PGEC addresses and limits access to system resources,
that usually have not much or no security relevance, e.g., GUI or audio system. The
limitation of the service permissions can go that far that services are only able to com-
municate with their execution environment. Thus, the service is not able to send any
information anywhere else but to the container. There is no need for a service to directly
access any local resource. Every data or logical resource can be accessed through and
only through the container. The container grants access to resources only if the service
is authorized by the privacy contract with the data owner/service user. While the ser-
vice providers may start a container component themselves, they are actually enabled
to set the security policies on their own. In order to still guarantee proper functionality
of the PGEC, the security policy that applies to the services in the container’s execu-
tion environment must not be adjustable by the executor of the container. Thus, the
according security policy must be fixed and an appropriate security manager must be
running to obey this policy. To accomplish this, the container itself is designed and
implemented incorporating a security manager including the constricted policy for the
services inside. The PGEC’s implementation inherits from SecurityManager and is
named PrivacyManager to reflect the privacy protection purpose. To ensure that this
embedded security manager is not bypassed, the container instantiates only if

(1) there is no other security manager already installed,
(2) the PrivacyManager is the very first component started in the JVM and

(3) the JVM has not been tampered with.

Condition (1) is needed to ensure that only the trusted and certified security manager of
the PGEC is running. If there was another security manager installed beforehand, it may
not be possible to install the containers own security manager and the other manager
cannot be trusted by the container, which results in a security and privacy leak. This
condition is checked by lines 203, 204, 208 and 209 of Listing 5.1.

Condition (2) is used to ensure that no components are started prior to the PGEC.
Otherwise it was possible for those components to open and keep a network or file handle
without control of the container. Such might be used to circumvent the container access
restrictions. The critical point here is the constructor of the PrivacyManager, which
is designed to check itself whether it was called from the right class and hence being
installed as the very first action within the program flow. In the stipulated program flow,
the main method of PrivacyManager shall be the entry point of any program using the
PGEC. This is to ensure that there is no thread running or class loaded out of control of
the PGEC. As can be seen in Listing 5.2 the singleton accessor method is called the very
first, which will eventually call the constructor of PrivacyManager (see Listing 5.1).

666
667

74 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Listing 5.1: This method provides convenient access to the PrivacyManager as a sin-
gleton implementation and in imitation of the static access to the SecurityManager
including appropriate type casting.

public static PrivacyManager getPrivacyManager() throws PrivacyException {
SecurityManager secMan = System.getSecurityManager();
if (secMan == null) {
// no SecurityManager set yet set this PrivacyManager as new
// System wide SecurityManager
return new PrivacyManager();
} else if (secMan.getClass().equals(PrivacyManager.class)) {
return (PrivacyManager) secMan;
} else {
throw new PrivacyException("Privacy Manager could not be installed");

}

Listing 5.2: Entry point for the PGEC.

public static void main(String[] args) {
PrivacyManager privacymanager = getPrivacyManager();

Within the constructor, the call stack must look like this.

com.endosoft.pgec.PrivacyManager.<init>(PrivacyManager. java:135)
at com.endosoft.pgec.PrivacyManager.getPrivacyManager (PrivacyManager. java:207)
at com.endosoft.pgec.PrivacyManager.main(PrivacyManager.java:667)

It appears to be sufficient to check whether the stack height equals three (line 137 of
Listing 5.3) and that the bottom element points to the main method of PrivacyManager
(lines 143 and 149). Since this check is done within the constructor, the topmost element
is obviously this constructor itself. While this constructor is private and only called from
the static getPrivacyManager () method, the next element in the stack trace is just this
method. The next stack element has to be the main () method of the PrivacyManager.
This is true only in two cases. The first is, the mentioned main() method is the ap-
plications entry point, which makes it the bottom element of the stack. In the second
case, PGEC’s main() method has been called from somewhere else, which increases
the length of the stack trace to more than three.

Condition (3) ensures that the security features provided by the JVM are not circum-
vented by a malicious JVM implemented by an attacker. Such a JVM probably does
not implement any of the security concepts built-in into Java. By that, private data may
be released even if the security manager of the PGEC is enabled. Hence, the container
has to check its hosting JVM. To prevent possible JVM manipulations only well-known
JVM implementations are accepted. More details are found in Section 5.1.4.

These three conditions ensure that no private data can be disseminated without user con-
sent. They ensure that the PGEC runs only in a proper and secure environment and

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 75

Listing 5.3: Stack trace evaluation to assure that the main method of PrivacyManager
is the systems entry point and no other action is performed before instantiation and
installation of the PrivacyManager.

private PrivacyManager () throws PrivacyException {
if (!checkSoftwareEnvironment()) {
throw new PrivacyException("there are modules loaded that are not "
+ "allowed, deprecated, manipulated");

}

StackTraceElement[] stackTrace = new Throwable().getStackTrace();
int stackLength = stackTrace.length;
if (stackLength != 3) {
throw new PrivacyException(
"PrivacyManager must be instantiated from its own main
+ "method (stacktrace length = 3)");

"

}
StackTraceElement bottomStackElement = stackTrace[stackLength - 1];
if (!bottomStackElement.getClassName().equals(
"com.endosoft.pgec.PrivacyManager")) {
throw new PrivacyException(
"only com.endosoft.pgec.PrivacyManager may instantiate "
+ "itself");

if (!bottomStackElement.getMethodName().equals("main")) {
throw new PrivacyException(
"com.endosoft.pgec.PrivacyManager.main(String[] args) "
+ "must be the program entry point to instatiate "
+ "PrivacyManager");

thus, data is secured by PGEC means. Otherwise they prohibit container instantiation
and by that data access, since services may access privacy relevant data only inside the
container.

Class Design Practice

It is commonly not considered good practice to build classes with more than 2000 lines
of code. Due to the special circumstances that require most of the code within and used
by the PrivacyManager to be protected from external use, the most methods within
have to be private. Those methods cannot be outsourced to external classes. As much
as possible inner classes have been used to structure the code while maintaining the
access protection achieved from private methods and fields. For clearer arrangement,
those inner classes should be moved into separate files using technologies like includes,
known from C, C++ and other programming languages or partial classes, known from
C#. Unfortunately, the Java language provides neither of these means.

5.1.2 Other Protection Means

In the following, protection means, which are not addressed by the SecurityManager,
are described. The Java sandbox model is able to restrict access to system resources.
This was designed from the perspective to protect a user’s machine from foreign code,
that might be loaded over the Internet. These restrictions can be weakened for particular
resources if the user trusts the foreign code. To increase trust code signing was intro-

76 CHAPTER 5. PROTOTYPE IMPLEMENTATION

duced. Unfortunately, the sandbox was not designed to extend the restrictions. There
are some resources that were not considered problematic, i.e., memory access, audio
devices. Untrusted access to the GUI is addressed by marking the respective window
but complete window suppression is not generally considered. An access control on the
programming level exists, but may be circumvented by reflection, if not appropriately
prevented by the SecurityManager. Even the introduced error handling mechanisms
can be misused for privacy attack.

Bypass Java Language Access

The Java language provides a number of access modifiers, such as public, protected
and private. If the modifier is omitted, access is restricted to classes within the same
package only. Usually these are checked when an object tries to access a field, method
or constructor. In most cases this is already done at compile time. That makes it im-
possible to directly access a private method from outside the defining class. By using
the reflection capabilities of the Java language fields, methods or constructors can be
accessed dynamically. The access check is done at runtime. There is a flag that may
be set to bypass the Java language access check. Using this flag would allow to access
private fields, methods and constructors from places that are not supposed to. Fortu-
nately the setting of this flag can be prevented by a SecurityManager implementation.
The PrivacyManager representing the PGEC is designed to do so. Hence, there are two
cases: the PrivacyManager is already installed as the system’s SecurityManager or it
is not. In the first case, an attempt to set the flag will be successfully avoided with throw-
ing a PrivacyException. If there is no SecurityManager or an implementation of
SecurityManager that might not care about ReflectPermissions, the flag can be
successfully set. To actually gain access to the field or method under attack an instance
of the containing class is needed. Such instance of PrivacyManager can be retrieved
via the singleton accessor method or its constructor. The constructor is defined private
but using the mentioned flag it could still be called. The singleton accessor method either
returns the existing instance of the PrivacyManager or creates an instance by calling its
constructor. This instance is returned in any subsequent calls. As described above, the
PrivacyManager assures itself fulfilling the aforementioned conditions or does not in-
stantiate otherwise. These measures ensure that the PrivacyManager is instantiated and
installed under very tight restrictions only and thereby prevent access bypasses through
reflection. Given this, it can be relied on the Java language access control by modifiers
in all other places.

Isolating Execution Environments Inside the PGEC and Preventing Shared
Memory Access

The Java runtime environment provides no concept of pointers or direct memory access.
Objects in memory are accessed through references. Due to the lack of direct mem-
ory access there is no actual concept of shared memory either. On the other hand, any

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 77

object can be shared within the Java virtual machine by sharing its reference. Security
permission checking is only done for external resources like files, sockets and native
library linking but not for object access in memory. That is, if it was possible to share
a reference between a service running within the container and some colluding applica-
tion outside the container, this could be misused for uncontrolled transfer of data from
inside to outside. Such data might be private data of the service user and hence, such
transfer is a privacy breach. As there is no means to effectively divide privacy relevant
data from non-privacy-relevant data, it is not an option to try to allow reference sharing
for non-relevant data only. Effective protection can only be granted when no reference
is shared at all. The ways of sharing a reference shall be evaluated. First is to share a
reference by passing it as a parameter through a method call. Second is to fill it into an
available property of another object. Third and forth are analogue but using statically
available methods or properties. In the first two cases, a reference to the object must
be already known. Creating the reference on its own by newly instantiating an object
is not a problem, because the new object lies also either inside the container or outside
just as the creating object does. When not creating the reference itself there exists a path
along known references to that reference. Since each step in the path was created by
instantiating an object - unless the step used a static reference - all objects along the path
are actually on the same side of the container, which is no problem.

The open point here are static references. Static reference are accessible through the
class itself rather than an actual instance. They are accessible even if there is no instance
of that class at all. The only preconditions are that the class is loaded and its name is
known to the object that tries to access it. It is not feasible to assert that an object does
not know the name of a class, especially in the case that the service running inside and
the colluding application outside the container are created by the same party. The obvi-
ous way to prevent the access to static references is to have the class not being loaded.
But if the service and the colluding application are running, their respective classes are
already loaded. There must be a way to have the class with the static reference being
loaded but still not accessible or not even been found by the class that tries to access it.
When a class is accessing another class, it requests its own ClassLoader for that other
class. The ClassLoader knows all classes it has loaded itself or forwards the request
to its parent ClassLoader. So when using different ClassLoaders inside and outside
the container and making sure that each does not return a class loaded by the other one,
a class with a certain name can be loaded multiple times. The multiple classes with the
same names use different memory and hence, their respective static references point to
different places. That way all changes to static references or the content behind are ac-
cessible to objects of classes loaded by the same ClassLoader.

PGEC uses different ClassLoaders for different execution spaces, which ensures that
objects in different execution spaces do not have handles on instances from other spaces.
Only the container or classes within just that other execution space know those handles.
The container will not give those handles to the objects instantiated in another execution

78 CHAPTER 5. PROTOTYPE IMPLEMENTATION

space. To access static fields or methods of a class, the accessing object must have hold
of that class with static fields. If it is loaded by a particular ClassLoader instance it will
not get hold of the classes loaded by a different ClassLoader instance but load an own
copy of a class of that name. Thus, no static changes in instances of that class are visible
to objects instantiated by the other ClassLoader. Thereby there is no shared memory
available. That allows to run various services in parallel while preventing access to each
other.

In the implementation, a new ClassLoader was inherited that makes up an execution
environment (see Listing A.3). Further, a ClassLoader for services within the con-
tainer differs from ClassLoaders for other applications outside the container. This
differentiation of logically being inside or outside the container has been introduced
in Section 4.2.1. Hence, specializations for an InnerExecutionEnvironment and an
OuterExecutionEnvironment have been inherited from that general
ExecutionEnvironment. One of those differences is the capability of injecting re-
placement code for inner classes as described in Section 5.1.2 and displayed in List-
ing 5.6.

Audio System

One of the system resources that was not considered security relevant by the creators of
Java and its security management is the audio system. The sound system distinguishes
sampled and synthesized audio. The sampled audio system plays audio stream that are
based on samples, e.g., WAV-files, MPEG-1 Audio Layer 3 (MP3)-files or Compact
Discs (CDs). The synthesized audio supports the Musical Instrument Digital Interface
(MIDI) protocol, which allows to generate sound by specifying tones rather than sound
samples as well as to record those tones from adequately equipped music instruments
connected to the MIDI interface at the sound card. As it is mostly used as an output
device by synthesizing music with (multiple) instruments and it cannot be used to access
or manipulate data of the user that is running a Java sandbox, it can be assumed not
to do any harm. On the other hand, the specification of tones is pretty expressive and
hence, could be used to emit information that can be sensed by some application that is
not bound to the PGEC. Consequently, it might not be security relevant but may enable
privacy breaches. Imaginable ways to do so are virtual sound devices or virtual MIDI
implementations that actually just record to disc instead of emitting sound.

When accessing the MIDI system with the existing Java API, the SecurityManager is
consulted only to access some system properties. Even suppressing those properties or
emptying the respective values does not prevent the existing MIDI system from being
used. In the standard Java implementation even without being able to enumerate the
devices, a handle to the according MidiDevice.Info can be retrieved with explicit
knowledge of the identifiers of the existing MIDI devices. Further, several MIDI devices
may exist on a single PC and it is almost impossible to figure out the malicious ones. The
easiest way to do so is to exchange the code for class MidiSystem, which is statically

24

26

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 79

used. The injected class code implements the same methods as the original class but
never returns anything that can be used to produce MIDI audio. First of all, that is not
to offer any MidiDevice.Info as to been seen in Listing 5.4. Analogous, the code for

Listing 5.4: Replacement of MidiSystem for inner execution environments.

public static MidiDevice.Info[] getMidiDeviceInfo() {
return new MidiDevice.Info[0];
}

class AudioSystem can be replaced with something that pretends not to have any audio
device (mixer) at all (see Listing 5.5). When an application approaches to access one of

Listing 5.5: Replacement of AudioSystem for inner execution environments.

public static Mixer.Info[] getMixerInfo() {
return new Mixer.Info[0];

}

the audio systems it has to retrieve a handle to either a MidiDevice or Mixer. These
handles can only be gotten from the classes MidiSystem and AudioSystem. PGEC
provides a replacement code for both of them. When one of these classes is accessed
the class loader of the accessing class is requested to find the class MidiSystem or
AudioSystem. Since all classes inside the container or rather within an inner execution
environment are loaded by an InnerExecutionEnvironment, the access requests are
caught and the replacement code is injected, see code snippet in Listing 5.6.

Graphical User Interface (GUI)

The highest level of privacy protection can be gained for logically delivering services.
Logical delivery requires some representation of the result, e.g., some changed or filled
file or a display to the service user. This service class appears to be unreasonable with-
out representation of the result. On the other hand, display of a GUI has been identified
as Attack #11 in Table 4.1. Obviously, it is critical to allow a service to produce a
GUI at devices under control of the service provider. As already mentioned in Sec-
tion 4.1.1, GUIs may be presented at devices under the user’s control. These devices
can be identified as the origins of the user’s private data. From the scenario introduced
in Section 1.2.4, it is known that user’s data may even accrue on other devices. Further,
a user may allow, depending on her/his trust into another party, other devices to display
a GUI as well. A chat service may be considered, which is provided by one service
provider to two or more chatters. While the chatters should each see a GUI and hence,
the communicated messages, the service provider should neither see nor log the conver-
sation. PGEC’s method in Listing 5.7 is consulted if and when any GUI operation, such
as opening a window, is executed. Therein, callers from inner execution environments
(line 1000) undergo further evaluation. It is checked, whether either for any container

80 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Listing 5.6: Replace various class code in inner execution environments.

protected final byte[] loadClassData2(String name) {
if (classesToBeReplaced.contains(name)) {
String filename = name.replace(’.’, File.separatorChar).concat(
".class.replacement");
System.err.println("one should not load " + name +
+ name) ;
return loadReplacementClassData(filename);
} else {
return null; // do not use super.loadclassData here
// if the class has not to be replaced
// it has to be checked whether it is a "global" PGEC class
// therefore use NULL here

" within PGEC "

}

private byte[] loadReplacementClassData(String name) {
// load the class data from the connection
log.debug("loading replacement class " + name);
// TODO get rid of hard coded pathnames
File classTolLoad = new File("D:/development/dissertation/PGEC/classes",
name) ;
if (classTolLoad.exists()) {
int classlLength = (int) classTolLoad.length();
byte[] out = new byte[classLength];
try {
FileInputStream fis = new FileInputStream(classTolLoad);
int ptr = 0;
while (ptr < classLength) {
ptr = fis.read(out, ptr, classLength);

} catch (FileNotFoundException fnfe) {
out = null;
} catch (IOException ioe) {
out = null;
}
return out;
}

return null;

instance (line 1002) or explicitly for this particular local container instance (line 1003)
GUI access is granted. The information, which container instances are granted with GUI
access rights (line 1004), has to be derived from the negotiated privacy contract. In the
existing implementation, this is explicitly set (see Listing 5.8).

Despite in Section 5.1.2 the use of the audio system by services in inner execution en-
vironments is generally prohibited and prevented, it shall be considered to grant access
to the audio system in the same way as the to the GUI. To accomplish this, the necessity
for class replacement in Listing 5.6 can be additionally checked analogous to the checks
in lines 1001 to 1003 of Listing 5.7.

5.1.3 Covert Channels

In Table 4.2 a number of imaginable covert channel attacks have been enumerated. The
table also provides brief descriptions of possible counter measures. The enumerated
covert channel attacks start with those that are able to transfer blocks of informations,
e.g., strings, at once and continue with channels that enable ‘Morseing’ of small pieces
of information. These small information pieces can then be used to encode larger infor-

996

998
999
1000
1001

1002
1003
1004
1005
1006
1007

1008
1009

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 81

Listing 5.7: Actions regarding the GUI require AWTPermissions to be granted. Appli-
cations in inner execution environments may only create and display windows if explic-
itly permitted by the privacy contract.

private void checkPermission(AWTPermission perm) throws PrivacyException {
// TODO handle according to the name
// i.e. inner classes shall never read out pixels on the screen
// perm.getName () ;
if (isInner()) {
Set<ContainerID> grantedContainers = getEffectivelyGrantedVisualizationSites(
getEnvironmentID());
if (grantedContainers.contains(null)
|| grantedContainers.contains(getContainerID())) {
// GUI is allowed from this environment at this container
} else {
throw new PrivacyException(
"inner classes in this execution environment may not open GUI
Frames in this container");

Listing 5.8: API to explicitly grant access to GUL

private PermissionStructure permissions = new PermissionStructure();

private HashMap<ExecutionEnvironmentID, HashMap<DataltemID, Object>>
assignedPrivateData = new HashMap<ExecutionEnvironmentID, HashMap<DataItemID,
Object>>(Q);

@Override
public void allowGUI(ExecutionEnvironmentID executionEnvironmentID)
throws PrivacyException {
allowGUI (executionEnvironmentID, null);

}

@Override

public void allowGUI(ContainerID containerID) throws PrivacyException {
allowGUI (null, containerID);

}

@Override
public void allowGUI(ExecutionEnvironmentID executionEnvironmentID,
ContainerID containerID) throws PrivacyException {
if (isOuter()) {
permissions.allowGUI(executionEnvironmentID, containerID);
} else if (isInner()) {
throw new PrivacyException(
"inner classes may not grant rights to display a GUI by themselves");
} else {
// actually it is pretty unlikely that the container or its classes
// grant rights to inner execution environments
throw new PrivacyException(
"only outer classes may grant rights to inner environments to display a
GUI");

mation blocks. This section details a few of them (covert channel attacks #18 to #22). To
prove the counter measures to be effective, attacks using the respective covert channels
have been implemented. It can be shown that the attacking code is capable of transmit-
ting some information using its chosen covert channel. Further, respective counter mea-
sures have been developed that are embedded in the PGEC. With the counter measures
enabled, it can be shown that the attacking code is not further capable of transmitting
its information. In fact, the receiving part of the attacking code is not able to identify or

82 CHAPTER 5. PROTOTYPE IMPLEMENTATION

decode the information from the covert channel.

Throwing Exceptions

In Table 4.2 (Attack #18) the messages included in exceptions have been identified as
a transportation means for private data from within the container. An attacker might
throw a user defined RuntimeException with a message containing anything she/he
likes. As this could even be encrypted, a pure filtering of the messages is not feasible
for data protection. Further, it cannot be a priori known which exceptions may oc-
cur. Fortunately, Java provides a means to catch any uncaught exception. Uncaught
Exceptions other than RuntimeExceptions or its heirs are already complained at
compile time. The required handler, for catching RuntimeExceptions can be set by
the ClassLoader. PGEC implements own ClassLoaders to create multiple inner and
outer execution environments. These ClassLoaders are the barrier between the envi-
ronments and can also be the barrier for uncaught exceptions inside their loaded classes.
Therefore the class loader spanning inner execution environments only has to override
getUncaughtExceptionHandler () and provide it with an exception handler that dis-
cards the leaking exception. In Listing 5.9 the exception occurrence is notified for de-
bugging purpose. Note, exceptions that are caught by service code running inside the
PGEC will not leave the inner execution environment anyway.

Listing 5.9: Discarding any uncaught exception raised within an inner execution envi-
ronment

@Override

protected UncaughtExceptionHandler getUncaughtExceptionHandler () {
return new InnerUncaughtExceptionHandler();

}

private static class InnerUncaughtExceptionHandler implements
Thread.UncaughtExceptionHandler {

@Override
public void uncaughtException(Thread t, Throwable e) {
// this is an inner exception
// suppress all messages
System.err.println("Exception raised but don’t tell anything");
// TODO remove this debugging output
System.err.println("DEBUG: " + t + " " + e.getMessage());

Named Threads

To give services the flexibility of concurrent execution, Java provides threads. Besides
the program logic, these threads carry some meta data. These are, e.g., the priority, a
name and the thread group it belongs to. An attacker inside an inner execution environ-
ment could try to start threads with names containing private data. Her/his collaborator

669
670
671
672
673

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 83

in an outer execution environment could enumerate all running threads and getting the
names from them, containing the private information. The PGEC tackles this by assign-
ing each execution environment with a separate thread group. Further it prevents threads
within that group from retrieving parental thread groups. Only from these parental thread
groups, sibling thread groups belonging to other execution environments or threads can
be enumerated. That way the names of threads in other execution environments remain
hidden and no information can flow through these names.

Encoding on unapparent information carriers

Thread Synchronization The first example of unapparent information carriers are mon-
itors and semaphores (attack #20). When these are globally accessible to a software sys-
tem, such as the services running in inner and outer execution environments, they can be
used for thread synchronization across the borders of execution environments. A basic
attack #20 requires three threads and three object monitors (X, A and B) to synchronize
on. One thread is the sender of the information, while the other two are receivers. The
monitor X is used to synchronize all three of them. That is, it must be ensured that the
sender locks the critical section of X first and until both others are waiting directly be-
fore their critical sections of X. When the sender leaves X, the receivers pass their critical
sections quickly and the sleep a bit to give the sender a head start. This head start allows
the sender to enter critical sections of A and B. After the sleep of the receivers both try
to enter these sections as well, one section after the other. One receiver tries to enter A
first and the other enters B first. As long as the sender hold the locks both cannot enter
their critical sections. Depending on the sequence, in which the sender leaves the critical
sections of A and B, one or the other receiver is preferred in entering the sections. The
receiver that wins this ‘race’ determines the received information. One is responsible
for 0 and the other one for 1. An exemplary chart showing the sequences, in which the
critical sections of X, A and B are entered and left is displayed in Figure 5.2. In this
example the sender encodes a sequence of 0-1-1 using the mentioned object monitors.

To counteract this covert channel, PGEC holds locks on every globally accessible ob-
ject’s monitor. This includes all box objects created during automatic boxing of primi-
tive types, the Class objects of classes loaded by the system ClassLoader and all static
properties of such classes (see Listings 5.10 and A.4).

Listing 5.10: Gather lots of locks to prevent synchronization of threads in different exe-
cution environments as a countermeasure to covert channel attack.

// new InfiniteLock(privacymanager);
for (Class<?> clz : classesBelongingToPGEC) {
// new InfiniteLock(clz);

}

new InfiniteLock(); // locking the boxed primitive types

By holding all the locks during the complete runtime of the PGEC, every other thread
attempting to gain a lock on one of these has to wait until the lock is released. The locks

84 CHAPTER 5. PROTOTYPE IMPLEMENTATION

are released only at the System. exit () call, which also shuts down the waiting threads.
Thus, those have no chance to ever run, resulting in starvation of the attacker. Hence,
there is no chance for synchronization on those globally accessible objects. Synchro-
nization is possible only on objects loaded by the execution environments ClassLoader.
From Section 5.1.2 it is known that these cannot be shared between inner and outer exe-
cution environments.

Unfortunately, it has been discovered that the class Window holds a lock on itself, re-
spectively using a synchronized method, during the instantiation of Window or its de-
scendants. This is required to create any GUI and hence, the Window class cannot be
locked by the PGECand is exempt from locking (see Listing 5.11). Even though, there
is only one class explicitly denoted, this list grows at runtime. Every class that contains
static synchronized methods is added to that list. The more classes that are in that list,
the more classes’ monitors can be misused for exploiting covert channel attack #20 using
inner/outer synchronization. For prevention of this, the system classes, such as Window
and those in packages java.*, which cannot be replaced by own ClassLoaders, have
to be redesigned to not use static synchronized methods.

Listing 5.11: Enumeration of objects that cannot be locked by the PGEC to prevent a
deadlock, e.g., when opening a GUI.

private static final HashSet<Object> criticalObjects = new HashSet<Object>();

static {
criticalObjects.add(Window.class);
criticalObjects.add(SecurityManager.class);
//criticalObjects.add(System.err);
//criticalObjects.add(System.out);

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC

obtain lock X

release lock X
& obtain lock A
& obtain lock B

release lock A

release lock B
obtain lock X

release lock X
& obtain lock A
& obtain lock B

release lock A

release lock B
obtain lock X

release lock X
& obtain lock A
& obtain lock B

release lock A

release lock B

Sender

Receiver 0

sleep
100ms

Receiver 1

> receive f

sleep
100ms

" iiia il
E send 0 ! !
(=3 | |
8
o | |
aQ | |
g
Q | I
w | |
| |
| |
| |
| |
| |
| |
— ==
al Tw
28 B1E
I 218
M il
| |
| |
| |
| |
| |
Ty |
g & £ output 0 !
(=] 25 |
8 H » B i
S
t B
--------------------- u H:
» B
" [|
£ SiE 218
S 5
3 send 1 %;g g8
o .
3 M receive -
2 | |
| |
| |
| |
| |
| |
| |
| |
| |
T al2
|
|
|
|
|
.......... - ;
£
=3 |
S I
S
| an
""""""""""" 88 ole
o® 8IS
®IS
g ole T
S SIE]
8 send 1 ot i
wn =1
o i) |
8 M receive < |
» | |
| |
| |
| |
| |
| |
| |
| |
T, ale
212 %\E
SE 8IS
o138 IS
1t Y
|
|
|
|
|

100ms

N ==z
sleey
50m:

output 1

85

Figure 5.2: Sequence chart of concurrent threads transferring information by synchro-
nization on globally accessible object monitors. The colors in the chart reflect the mon-
itored objects. X - yellow, A - red and B - blue. A solid block of particular color means
that the thread holds the lock on that objects monitor. A thread waiting for a particular
lock is depicted as a faded block of the respective color. Within the critical sections
there is not much logic but merely sleeping. The receiving threads use a shared object to
determine which one is the first to enter the critical section of A or B respectively. The
first outputs a 0 or 1 accordingly.

86 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Memory Load The next example of attacks is using the memory load ((#21)) as the
covert channel. The sending part of the attacker allocates or frees memory, while the
receiver can easily determine the amount of free memory. Since Java applications have
no actual control over the exact execution of the JVM’s garbage collector, there remains
some uncertainty on the moment of actual memory clearance. Further, other threads may
also allocate or free memory blocks. Therefore, the attacking code takes advantage of
the Manchester encoding [79] based on a not to small clock cycle. While the Manchester
encoding is self-synchronizing, the jitter resulting from delayed garbage collection can
be compensated with a sufficiently long clock cycle. The existing attack implementation
uses as clock cycle length of 1200ms. To generate such code, the rising edge matches
the allocation of a rather unusual amount of memory (up to 128 MByte), whereas the
falling edge is achieved by freeing just this memory block. These are accomplished by
the methods in lines 19-45 of Listing A.5. The receiver (Listing A.6) of the informa-
tion samples the signal modulated on the memory allocation more often than the a priori
chosen clock cycle. Due to the possibilities of other threads allocating or freeing mem-
ory in the JVM, it adjusts the median value between high and low signal every time it
came to a decision on rising or falling edge. This allows to cope with memory alloca-
tion noise up to half the chosen block size (64 MByte). For demonstration purpose it
prints an approximation of the signal graph and the received information on the console
without further processing. A detected high signal, that is highly allocated memory, is
displayed as -(dash). Low signals, i.e., larger amounts of free memory, are reflected by
_(underscore). The console output reads like this:

With disabled counter measures, the generator can run in an inner execution environment
while the reader in an outer execution environment can receive the transmitted “Hello
World”. It is obvious that this could be any other information from inside the container,
too.

The respective counter measure follows about the same approach as the attacker. But
instead of modulating a signal on the memory allocation it produces noise. That is, it
allocates and frees large amounts of memory randomly over time (see Listing A.7). With
these blocks being large enough, the reader cannot distinguish between memory alloca-
tions done by its colluding generator and the one from the counter measure. The size of

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 87

the blocks can be determined in multiple ways. The counter measure can figure out the
amount of available memory already before any service or attacker has been loaded and
started by the PGEC. The noise may then use a block of about that size. If the JVM can
adjust the available memory the size has to by dynamically adjusted. Another option
is to observe the memory allocation and determine unusual large allocation operations.
These may be assumed as an attack and the noise blocks of the counter measure should
have that size.

CPU Load Finally, a covert channel attack using the CPU load as its covert channel
(#22) has been implemented to prove the concept and to show effectiveness of the respec-
tive counter measure. Much like the implemented attack using the memory allocation,
the attacking sender (Listing A.8) modulates its information onto the CPU load with
Manchester encoding. High signal results in high CPU load and low signal results in
low load. Figure 5.3 shows a snapshot of the CPU load graph captured by the Windows
task manager.

Ed Windows Task-Manager

Datei Optionen Ansicht 7

anwendungen | Prozesse | Systemleistung | Metzwerk

CPU-Auslastung Werlauf der CPU-Auslastung

_.||ﬂ||,,?,,u||ﬂ||l J“"\ (

it i

Figure 5.3: CPU load chart over time with modulated information.

The respective colluding receiver samples the CPU load and decodes the information
from this. Java provides no API to determine the current CPU load. Therefore the Java
implementation of the receiver uses a lowest priority thread using up all remaining CPU
cycles to execute some dummy operation. From the number of dummy operations per
time unit it can defer the CPU load (see Listing A.9). If the determination of the CPU
load could be done with finer granularity the information could be encoded with even
more symbols than just high and low. The counter measure against this covert channel
also generates noise on the channel by randomly generating high CPU load (see List-
ing A.10).

129
130
131
132
133

88 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.1.4 Assertion of Untampered System

Besides harnessing against attacks from code running inside the container, the PGEC
must also defend against external attacks. This form of self-guarding could be compared
with the PE as described in Section 2.4. Obviously, a protection deeply embedded in the
OS can be stronger than anything that could be implemented within a regular process
or even a virtual machine. The efforts shown here shall merely act as a proof of con-
cept. Assuming a clean demarcation between processes, the PGEC’s process consists
of the OS, the JVM, the PGEC itself and the applications within the container. Relying
on the Java sandbox and security model, it can be assumed that these applications will
not have access to the process and therefore not manipulate or access data around the
SecurityManager implemented by the PGEC itself. Manipulation of the PGEC could
be replacement of some of its classes.

By hash checking of the components of the currently running JVM, it can be assured
that the privacy container and its native components are running besides an approved
JVM. Hash checking and code signing of Java code already exists in the JVM and could
be used. Attackers can of course self sign their manipulated version of PGEC or their
very own implementation. Therefore the hash of the PGEC components must be com-
pared to a hash code placed elsewhere than in a publicly readable certificate. Since a
PGEC instance has to authenticate to other remote instances, it must prove knowledge
of some cryptographic key. It is considered as difficult to get the key as to get the hash
code. Further, it may be even more difficult to replace the hash code with the hash of the
falsified implementation or to appropriately pad this implementation to have the same
hash value. The native components may further hash check their callers from within the
JVM to prevent Man-in-the-Middle approaches using an approved JVM. Code attesta-
tion approaches for similar purpose are also proposed by [80] and [55]. The secure hash
checking also ensures that those classes accessing external resources are the ones that
actually do the call for access checking at the SecurityManager. The code in List-
ings 5.12 and 5.13 shows how the task of checking this condition is forwarded to native
code.

Listing 5.12: Passing the task of checking the integrity of the JVM to native code.

private PrivacyManager () throws PrivacyException {
if (!checkSoftwareEnvironment()) {
throw new PrivacyException("there are modules loaded that are not "
+ "allowed, deprecated, manipulated");

The existing implementation (Listing A.1) also hash checks the JVM’s and OS’s libraries
and modules. Doing all this in software is not a 100% secure solution. A Trusted Plat-
form Module (TPM) [55] appears to be a good choice to achieve trust not only in the OS
but further in the JVM and the PGEC.

Since no clean demarcation between processes exists in regular processes, this approach
remains vulnerable to thread injection, memory reading/dumping or other process ma-

2205
2206
2207
2208
2209

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 89

Listing 5.13: Declaration and inclusion of the native code.

public native boolean checkSoftwareEnvironment();

static {
System. loadLibrary ("PGECnative");
}

nipulation. Prevention or protection from those attacks cannot be achieved by such
approach. Means like the Protected Environment (PE) (see Section 2.4) or the self-
guarding techniques used be anti-virus software can be considered.

Even though the present implementation of system assertion cannot provide perfect pro-
tection, it is still crucial. Therefore the assertion is started quite early in the program
flow, that is, in the constructor of the PrivacyManager (see Listing 5.12).

The native code enumerates all modules running within the current process and deter-
mines the files each of them has been loaded from and calculates their hash values. Then
it compares the hashes with those read from a configuration XML file. If a module found
in the current process is not enumerated in the configuration file the check method re-
turns false, which causes the PGEC to abort. The respective interesting code lines are
50, 59, 64, 68, 91, 106, 109, 132, 149 and 153 in Listing A.1.

The modules and libraries that are allowed within the JVM process are enumerated in
an XML file. This contains names, sizes, hash values, base addresses, entry points and
in memory sizes of the allowed components. This also allows to enumerate multiple
versions of a library to reflect various versions of Java, OS or security patches. The List-
ings A.2 and 5.14 display the XML schema and a snippet of an exemplary environment
descriptor file. The environment descriptor shown contains a number of libraries that are
loaded in debugging mode only. During development it is useful to have those allowed.
In a productive environment these must not be allowed since debugging is a privacy leak,
which would allow to extract private data from a running (or suspended) PGEC. Further,
a productive version of the PGEC must not allow to change this descriptor file. A simple
solution was to add another hash check in the PrivacyManager, to assert the integrity
of the environment descriptor. The more secure solution is to migrate the descriptor file
into a Smartcard or similar dongle. It should be even considered to migrate the whole
environment check into hardware dongles or TPMs.

O 0NN AW —

90 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Listing 5.14: Snippet of example environment descriptor.

<?xml version="1.0" encoding="utf-8" 7>
<PGEC xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:schemalocation="PGECEnvironmentDescriptor EnvironmentDescriptor.xsd"
xmlns="PGECEnvironmentDescriptor">
<Module>
<Name>PGECnative.dll</Name>
<Size>34304</Size>
<Hash type="SHA1">0CE2A1C4991ECCF572764EBF425673F63809B625</Hash>
<BaseAddress>268435456</BaseAddress>
<EntryPoint>268446646</EntryPoint>
<MemorySize>49152</MemorySize>
</Module>
<Module>
<Name>privacymanager.netmodule</Name>
<Size>16384</Size>
<Hash type="SHA1">2A017F15A11743EFFDCAD197AD5DA707C12C7564</Hash>
<BaseAddress>335675392</BaseAddress>
<EntryPoint>0</EntryPoint>
<MemorySize>24576</MemorySize>
</Module>
<Module canBeMain="true">
<l--Java 1.6.0_10-rc2-b32-->
<Name>javaw.exe</Name>
<Size>144792</Size>
<Hash type="SHA1">C62DB7635C120D87B790D73CE6ED40DB7FEE6BE3</Hash>
<BaseAddress>4194304</BaseAddress>
<EntryPoint>4228764</EntryPoint>
<MemorySize>147456</MemorySize>
</Module>
<Module>

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 91

5.1.5 API for Data Access

Besides all the mentioned limitations and restrictions to services running inside the
PGEQC, these services shall gain access to private data in order to provide useful service.
An API is provided for controlled access and limited manipulation, see Listing 5.15.

Listing 5.15: Interface implemented by the PrivacyManager to enable controlled ac-
cess of service inside the PGEC to private data of users. The actual implementation
asserts that this interface is accessible only from inner execution environments.

public interface PrivacyAwareAccess {

VAl
* Requests private data from any of the known and connected containers.
* The first response from a container instance is taken as the actual value
of that private data.
* @param name
* @return
*/
public Object getPrivateData(DataItemID name);

public void persistPrivateData(DataltemID name);

public void sendLiteral(ContainerID containerID, String literal);

The most important method getPrivateData() allows to retrieve certain personal
data. The data itself is untyped to support maximum flexibility in the kinds of data.
A data item is identified by an owner, an item name and an instance. The instance num-
ber allows to provide multiple versions or instances of a particular data, e.g., multiple
private addresses or delivery addresses. That way it is even possible for users to act with
fake identities, e.g., to provide different birth dates. After rejection of requests from
outer execution environments (line 1771 of Listing 5.16), the implementation accesses
locally available information (line 1772) or transparently retrieves the information from
remote container instances (lines 1778-1780). This lets the distributed PGEC appear as
one logical unit to services within.

Actual access to particular data from certain service or user of a particular service respec-
tively is checked. Data is provided separately for each execution environment, which
correlates to a particular service, or globally for all environments. If the data item is set,
it is implicitly granted for that service.

Since services are not permitted to have access to system resources like file system, the
data access API provides a method (persistPrivateData()) to persist private data
under control of the PGEC (line 22 of Listing 5.15). The implementation of that method
creates a random key and stores the denoted data item in the local file system of the
current PGEC instance. Thereby the content and the data item identifier are encrypted.
Hence, from the file system can neither the data itself be determined nor which data was
persisted. The created key is stored and managed at the data owner’s PGEC instance.
The data item retrieval method (line 20 of Listing 5.15) allows also transparent access to
persisted versions of data items if no volatile versions can be found.

Finally, this API provides a method (sendLiteral()) to send literals (line 24 of List-

92 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Listing 5.16: Code section implementing one of the methods of the
PrivacyAwareAccess API. This implementation hides the actual implementa-
tions of data access with regard to the source of the data, i.e., local or remote, and with
regard to the storage, i.e., in volatile memory or persistent. Thereby, a transparency of
data access is achieved, which is required for the logical unity of the distributed PGEC.

@Override
public Object getPrivateData(DataltemID name) throws PrivacyException {
Object result = getPrivateData(name, true); // try to find an update
// value in the outside
// world
if (result == null) {
// use a persisted possibly outdated version
result = getPrivateData(name, false);
}
return result;

}

private Object getPrivateData(DataltemID name, boolean onlyFromOutside) {
if (isInner()) {
Object result = getPrivateDatalocally(name, onlyFromOutside);
if (result != null) {
return result;
} else {
// TODO search more intelligent
// use environmentID to determine the containerIDs
for (ContainerID containerID : knownRemoteContainers) {
result = getPrivateDataRemotely(containerID, name, null,
null, onlyFromOutside);
if (result != null) {
return result;
}
}
return null;
}
} else {
throw new PrivacyException(name
+ " may not be accessed outside the privacy container");

ing 5.15). The literal is given as a string, which can easily be compared to check, whether
the particular literal is permitted. Only PGEC instances can be addressees of the literal.
If the addressee is the local PGEC instance, the literal is piped to the outside of the
container. Otherwise, the literal send request is forwarded to the actual addressee via
the mentioned encrypted channel between the PGEC instances. This behaviour can be
found in Listing 5.17.

Key Management

At various places in this work the negotiation and use of privacy contracts have been
mentioned. In favor for the implementation of the actual protection features, a less com-
plex structure to explicitly grant permissions to access data and to display GUI has been
implemented in the existing prototype of the PGEC. It is sufficient to prove the concept
of the built-in protection means, but lacks dynamic for productive use. The structure
allows to specify the access of users, represented by their container instances, to data
items depending on the service they use. A triple of container instance (user), execution

5.1. TECHNICAL ASPECTS AND COMPONENTS OF THE PGEC 93

Listing 5.17: Code section implementing the method of the PrivacyAwareAccess API
that enables to send negotiated literals, as may be required by logically delivering ser-
vices. Also here the logical unity of the distributed PGECis created by hidden forwarding
of literals to remote instances if necessary.

@Override
public void sendLiteral (ContainerID containerID, String literal)
throws PrivacyException {
if (isInner()) {
checkLiteralPermission(containerID, literal);
if (containerID == null) {
sendLiterallocally(literal);
} else {
sendLiteralRemotely(containerID, literal);
}
} else {
throw new PrivacyException("instances running outside the "
+ "container should cope with their literals on their own");

}

private void sendLiterallLocally(String literal) {
try {
this.literalOutletSnd.write(literal);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

private void sendLiteralRemotely(ContainerID containerID, String literal)
throws PrivacyException {

environment (service) and data item that is contained in the relation ReadPermission
permits the particular data item being read by the service running in the stated execution
environment on behalf of the user, which started the particular container instance. This
relation and the related entities are represented in the Entity-Relation-Model depicted
in Figure 5.4. The mentioned relation is additionally attributed with a flag, which rep-
resents whether the permission is valid also for access to persisted versions of the data
item. Each persisted data item is encrypted by a key, which is also stored in that struc-
ture. Finally, there is a relation between container instances and execution environments
(services) representing the permission to display a GUI. The permission relations are not
maintained at single instance. The ReadPermissions are distributed with regard to the
owner of the stated data items. GUIPermissions may even occur repeatedly in multiple
container instances. That is, the display of GUIs is independently permitted by each user
of services, locally at her/his respective container instance. The effective permissions are
calculated as the intersection of the GUIPermission relations of all users. Requests for
permission can be forwarded through the secured channels between the PGEC instances.
On the same way, persistence keys, which are maintained at the container instance of the
owner of the particular data, can be retrieved from a remote permission structure.

When it is considered to persist the granted permissions and the keys assigned to per-
sisted data items, a standard relational database is not feasible. Keys could be read, or
permission entries could be manipulated or injected. The complete permission structure
must be stored in an encrypted way to ensure its security and integrity. The permission

18

20

21
22

23

94 CHAPTER 5. PROTOTYPE IMPLEMENTATION

ReadPermission

< Container: TE

¥ idReadPermission: INTEGER
@ Execution Environrment: INTEGER (FK)

@ Data itemn: TEXT (FK)
< includePersistedyalues: BOOL

XT (FK)

is granted is granted

& —

is granted

©

Execution Environment v
¥ idExecution Environment: INTEGER

Data itemn ¥ Container ¥
¥ idData itern: TEXT ¥ idContainer: TEXT
<& value: BLOB

is encrypted by permitted

<& —

permitted

©

PersistenceKeys & GUI Permission S
% idEncryptionKey: INTEGER ¥ idPermission: INTEGER
@ Data itern: TEXT (FK) @ Container: TEXT (FK)
< encryptionKey: CHAR({16) @ Execution Environment: INTEGER (FK)

Figure 5.4: Entity-Relationship-Model of the permission structure that is implemented

in the PGEC.

structure implemented in the prototype (Listing 5.18) uses mainly cascaded hash tables
and does not support persistence of the permissions and keys.

Listing 5.18: The relations modeled in Figure 5.4 are implemented as nested HashMaps
and HashSets. Appropriate methods to set and delete entries from the relations are

implemented, but omitted in this code snippet.

public class PermissionStructure {

private HashMap<ContainerID, HashSet<ExecutionEnvir

onmentID>> whereGUIisAllowed = new

HashMap<ContainerID, HashSet<ExecutionEnvironmentID>>();

private HashMap<DataltemID, byte[]> persistenceKeys

private HashMap<ContainerID, HashMap<ExecutionEnvir
Boolean>>> permits = new HashMap<ContainerID,
HashMap<DataltemID, Boolean>>>();

= new HashMap<DataItemID, byte[]>()

onmentID, HashMap<DataItemID,
HashMap<ExecutionEnvironmentID,

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 95

5.1.6 Mutual Authentication of Distributed PGEC Instances

The distributed architecture of the PGEC (refer to Section 4.2.2) requires encrypted in-
terconnection between the container instances. Besides assertion of the integrity of the
local PGEC instance and its host runtime environment, the instances have to mutually
authenticate. Otherwise, a PGEC instance might send private information to an intruder
masquerading as a PGEC instance. Even when the communication channel was en-
crypted, the intruder without the PGEC’s protection means can misuse the private data.

The current prototype implementation uses a PSK authentication. The symmetric key
is hard-coded in the PrivacyManagerand also used for the encryption of the commu-
nication between the container instances. Distributed services inside the PGEC are pro-
vided with managed sockets to allow direct communication between their components.
Though currently un-encrypted, they could also use this PSK. From IPsec it can be
learned, that dynamically created key exchanged via the Diffie-Hellman algorithm [52]
appears to be more reasonable.

PSKs provide no appropriate means for revocation if all instances share the same key.
AACS uses a hierarchy of PSKs, which enables certain nodes or subtree to be revoked.
Thereby, series of Blu-Ray players can be disabled from decrypting newer contents.
While the PGEC is likely not to exist from multiple providers or in various series,
this type of revocation appears not feasible. A promising approach is to provide each
PGEC instance with an individually signed certificate. Such certificate can be revoked
in revocation lists. Using these certificates the instances can use the Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) protocol to mutually authenticate and at
the same time exchange a symmetric key for encryption of the mentioned communi-
cation channels between container instances and service components within. While in
Java the SSL sockets are specializations of sockets the PGEC can easily plant such SSL
socket to the service components without notice. The underlying encryption cipher to be
used can be specified upon creation of the SSL socket to ensure appropriate encryption
strength.

5.2 Test Attacks and Effects of Counter Measures

In this section it is described how the implemented test attacks are executed. For each
addressed attack (refer to the Tables 4.1 and 4.2) the involved attacking classes are in-
troduced. Listings of those classes are kept at a minimum or even waived. Depending
on the nature of the attack, the attacking classes may be started under control of the
PGEC, in either an inner or outer execution environment or both. Some attacks are even
executed out of control of the PGEC. That is, such classes are started directly as an
application. The expected results for the case of a successful attack is described as well
as the result of unsuccessful attacks. In the latter case, exceptions are mostly thrown.
Usually exceptions in inner execution environments are suppressed. As mentioned they
might be logged. The logging here includes printing of the exception with its message to

96 CHAPTER 5. PROTOTYPE IMPLEMENTATION

the error stream. According to the counter measure against attack #16, this error stream
is redirected. For debugging purpose, it is redirected into a file instead of the NUL de-
vice. Since the exception and its message are of interest, the stack traces of the thrown
exceptions are omitted for the most of the test attacks.

The existing prototype of the PGEC uses a startup configuration file. It contains de-
scriptions for each execution environment to be opened in the container. An execution
environment has a name, which correlates to the provided service therein. This identifier
is also be used for granting access rights to private data. Hence, in a productive version of
PGEC, this identifier must be trusted, e.g., being signed by a trusted entity. The environ-
ment description contains an arbitrary number of classes that shall be started within that
environment. Each of those classes is started in an own thread. To enable starting of a
class, this must be either an implementation of java.lang.Runnable or must contain a
main method of signature public static void main(String... args). For the
latter, the arguments can be specified in the configuration file as well. Additionally, in-
ner execution environments can be provided with the description of a client class. That
class is not instantiated an started, but can be retrieved by remote PGEC instances to
be started there in a newly opened inner execution environment. It is expected that this
is a GUI implementation for the particular service. Listing 5.19 shows the top of the
startup configuration file, that is used for the test attacks as well as for the introduced
scenario from Section 1.2.4. To run each attack separately the respective blocks have to
be uncommented.

O 0NN WN =

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES

Listing 5.19: Configuration file for startup of PGEC.

97

<?xml version="1.0" encoding="utf-8"?>
<PGECconfig xmlns="http://tempuri.org/PGECconfigSchema.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="PGECconfigSchema.xsd">
<OUTEREnvironment name="attackl">
<CLASS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="MainClassType">
<NAME>com.endosoft.privacyattack.ReplaceSecurityManager
</NAME>
<ARGS />
</CLASS>
</OUTEREnvironment>
<INNEREnvironment name="attackl">
<CLASS xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:type="MainClassType">
<NAME>com. endosoft.privacyattack.ReplaceSecurityManager
</NAME>
<ARGS />
</CLASS>
</INNEREnvironment>
<!--OUTEREnvironment name="attack2and3">
<CLASS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="MainClassType">
<NAME>com.endosoft.privacyattack.FileAccess
</NAME>
<ARGS />
</CLASS>
</OUTEREnvironment >
<INNEREnvironment name="attack2and3">
<CLASS xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="MainClassType">
<NAME>com.endosoft.privacyattack.FileAccess
</NAME >
<ARGS />
</CLASS>
</INNEREnvironment-->

98 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.2.1 Test Regular Attacks

Attack #1 is implemented by class
com.endosoft.privacyattack.ReplaceSecurityManager. It should be started in
an outer or an inner execution environment. The attacking code is able to determine the
currently installed SecurityManager, which should be the PrivacyManager. After-
wards it is replacing the current SecurityManager by
System.setSecurityManager(new RMISecurityManager());.

If the attacking code is executed directly without the PGEC, an output similar to the
following is expected.

currentSecMgr: null
replacedSecMgr: java.rmi.RMISecurityManager@42e816

Since replacement of the SecurityManager must not be allowed by any class, in both
cases a PrivacyException is thrown. The exceptions are caught and printed to the
error stream. This error stream can be seen on the console for outer execution environ-
ments or is redirected to the above mentioned log file.

currentSecMgr: com.endosoft.pgec.PrivacyManager@167d940
DEBUG: Thread[Outer Main Thread (com.endosoft.privacyattack.«
—ReplaceSecurityManager),5,0uter Execution Environment Threads (attackl)] come
—.endosoft.pgec.PrivacyException: no class may create a securitymanager
java.lang.RuntimeException: com.endosoft.pgec.PrivacyException: no class may «
—create a securitymanager

at com.endosoft.pgec.ExecutionEnvironment$MainRunner.run(«

—ExecutionEnvironment. java:289)

at java.lang.Thread.run(Unknown Source)
Caused by: com.endosoft.pgec.PrivacyException: no class may create a «
<—»securitymanager

at com.endosoft.pgec.PrivacyManager.checkPermission(PrivacyManager.«

—java:850)

at java.lang.SecurityManager.<init>(Unknown Source)

at java.rmi.RMISecurityManager.<init>(Unknown Source)

at com.endosoft.privacyattack.ReplaceSecurityManager.main(«

—ReplaceSecurityManager. java:21)

at sun.reflect.NativeMethodAccessorImpl.invoke® (Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)

at sun.reflect.DelegatingMethodAccessorImpl.invoke (Unknown Source)

at java.lang.reflect.Method.invoke (Unknown Source)

at com.endosoft.pgec.ExecutionEnvironment$MainRunner.run(«

—ExecutionEnvironment. java:286)

1 more

Similarly, the content of the log file appears like this.

currentSecMgr: com.endosoft.pgec.PrivacyManager@167d940

Exception raised but don’t tell anything

DEBUG: Thread[Inner Main Thread (com.endosoft.privacyattack.«<
—ReplaceSecurityManager),5,Inner Execution Environment Threads (attackl)] com«
—.endosoft.pgec.PrivacyException: no class may create a securitymanager

Attacks #2 and #3 are implemented by class
com.endosoft.privacyattack.FileAccess. It should be started in an outer or an

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 99

inner execution environment. Since services in outer execution environments are al-
lowed to read and write files, this reflects the successful case of the attack. At first, it
reads an obviously existing file, i.e., C:\boot.ini on Windows systems. The content
of this file is printed to the system output stream. The next step is writing a file named
testfile.Outer.txt. The content of the file becomes

greetings from com.endosoft.pgec.OuterExecutionEnvironment@dd20£f6

When run in an inner execution environment, even reading of files is prohibited. Hence,
the reading fails with a PrivacyException.

com.endosoft.pgec.PrivacyException: inner classes have no permission to read a<
— file
at com.endosoft.pgec.PrivacyManager.checkPermission(PrivacyManager.«
—java:788)
at com.endosoft.pgec.PrivacyManager.checkPermission(PrivacyManager.«
—java:842)
at java.lang.SecurityManager.checkRead (Unknown Source)
at java.io.FileInputStream.<init>(Unknown Source)
at java.io.FileReader.<init>(Unknown Source)
at com.endosoft.privacyattack.FileAccess.<init>(FileAccess.java:24)
at com.endosoft.privacyattack.FileAccess.main(FileAccess.java:59)

The following attempt to write file testfile.Inner.txt will also fail with a
PrivacyException. Because the opening of a file for writing includes test on exis-
tence of the file, which requires a read permission to the file system, the message in the
thrown PrivacyException complains about missing read permission instead of miss-
ing write permission.

com.endosoft.pgec.PrivacyException: inner classes have no permission to read a«<
— file
at com.endosoft.pgec.PrivacyManager.checkPermission(PrivacyManager.«
—java:788)
at com.endosoft.pgec.PrivacyManager.checkPermission(PrivacyManager.«
—java:842)
at java.lang.SecurityManager.checkRead (Unknown Source)

at java.io.FilelWriter.<init>(Unknown Source)
at com.endosoft.privacyattack.FileAccess.<init>(FileAccess.java:45)
at com.endosoft.privacyattack.FileAccess.main(FileAccess.java:59)

If the PGEC would grant read permissions, e.g., selected files and folders, to services in
inner execution environments, the attack would still fail, with a PrivacyException.

com.endosoft.pgec.PrivacyException: inner classes have no permission to write «
—a file

Attacks #4 and #5 are implemented by class
com.endosoft.privacyattack.OpenNetworkConnection. It should be started in
an outer or an inner execution environment. Services in outer execution environments

100 CHAPTER 5. PROTOTYPE IMPLEMENTATION

shall have as little limitations as possible. Hence, they are allowed to open sockets to ini-
tiate or accept network connections. A successful attack would produce similar results
as when run within an outer execution environment. That is, the attack implementation
attempts to open a socket with initiating a Transmission Control Protocol (TCP) con-
nection to a local listener on port 80. The next attempt is to open a User Datagram
Protocol (UDP) socket, capable of sending and receiving packets. Finally, a TCP server
socket listening on port 2048 and accepting network connections shall be created.

TCP Socket successfully created:Socket[addr=localhost/127.0.0.1,port=80,«
—localport=2291]

UDP Socket successfully created:java.net.DatagramSocket@8814e9

ServerSocket successfully created:ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,«
—localport=2048]

All three attempts from inside an inner execution environment will be rejected with
a PrivacyException. In the special case of UDP sockets even the loading of the
socket implementation will fail, due to the prohibition of reading the system property
impl.prefix.

com.endosoft.pgec.PrivacyException: inner classes may not open sockets

Can’t find class: java.net.nullDatagramSocketImpl: check impl.prefix property
com.endosoft.pgec.PrivacyException: inner classes may not open sockets

com.endosoft.pgec.PrivacyException: inner classes may not open sockets

Attacks #6 and #16 are implemented by class
com.endosoft.privacyattack.SystemStreams. It should be started in an outer or
an inner execution environment. Actually there is only one system stream for outputs and
one for errors. The PGEC integrates a filter in these streams to support differentiation
between inner and outer execution environments. That is, data put into the streams from
outer environments may still pass as usual, while data from inner execution environ-
ments are redirected to the NUL device. In this prototype for display and for debugging,
they are redirected into a file. In this file the suppressed output and printed stack traces
of thrown exceptions can be read. To prevent circumvention of the installed filter, system
streams may not be changed neither from inner nor from outer execution environments.
The implemented attack prints to both system streams first. Then it creates two files
outputstream.txt and errorstream.txt to which it redirects the respective system
streams. A successful execution results in the following outputs. On the console:

If you can read this I have access to the OUTPUT stream
If you can read this I have access to the ERROR stream

In a file outputstream. txt:

Written to redirected OUTPUT stream

Finally, in a file errorstream. txt:

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 101

Written to redirected ERROR stream

When executed in an outer execution environment on the console can be read:

If you can read this I have access to the ERROR stream
If you can read this I have access to the OUTPUT stream
com.endosoft.pgec.PrivacyException: System streams may not be changed

Written to redirected OUTPUT stream
com.endosoft.pgec.PrivacyException: System streams may not be changed

Written to redirected ERROR stream

The mentioned files are created but remain empty. Inner execution environments redirect
all system streams into a log file, prohibit file creation and stream redirection. Thus, the
console remains empty, the mentioned redirection files are not created and the log file
contains the following:

If you can read this I have access to the OUTPUT stream

If you can read this I have access to the ERROR stream
com.endosoft.pgec.PrivacyException: inner classes have no permission to write «
—a file

com.endosoft.pgec.PrivacyException: System streams may not be changed

Written to redirected OUTPUT stream
com.endosoft.pgec.PrivacyException: System streams may not be changed

Written to redirected ERROR stream

Attack #7 s implemented by classes
com.endosoft.privacyattack.PrintSomething and
com.endosoft.privacyattack.PrintSomething2. Java provide two separate APIs
for printing. The two attack implementations use these APIs respectively. Both should
be started in an outer or an inner execution environment. While printing is permitted
in outer execution environments, an execution in there represents the successful case.
The result of PrintSomething will be a page with the content of Figure 5.5. The other
implementation will print a picture from a given file or input stream.

Both approaches to print require a RuntimePermission("queuePrintJob"), which
is not granted to applications and services in inner execution environments. Hence, the
execution of the attack implementations will fail there with the following exception.

com.endosoft.pgec.PrivacyException: inner classes may not print

Attack #8 s implemented by class
com.endosoft.privacyattack.CallNative. It should be started in an outer or an
inner execution environment. The attacking code attempts to load a native library by
System.loadLibrary("dummy") ;. Loading a native library is essential for any call to

102 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.5: Successful print result of PrintSomething.

native code. To prevent calls to native code the loading of native libraries is prevented
to all execution environments. Note, some libraries, i.e., awt, fontmanager, dcpr,
net, nio, jsound and jsoundds, are explicitly permitted. These are required for
displaying GUISs, printing and communication with additional permission. The PGEC
has to ensure that the libraries of those names to be loaded are exactly the one originally
provided with an approved JVM. Successful loading of the library does not produce any
output. Unsuccessful library loading (failed attack) is responded with a thrown excep-
tion, regardless of the execution environment in which the attack is started.

com.endosoft.pgec.PrivacyException: no class may load native code

Attack #9 s implemented by class
com.endosoft.privacyattack.AccessPrivateFieldsMethodsConstructors. It
should be started in an outer or an inner execution environment. Four attack attempts
are implemented. These are access to a static private field, to a private field, a private
method and to the private constructor. A successful attack would present four (return)
values.

permittedNativeLibraries=[Ljava.lang.String;@1270b73
localPort=12345

isPrivileged()=true

new PrivacyManager ()=com.endosoft.pgec.PrivacyManager@e7b241

Even the direct execution of the attack implementation will not be fully successful. For
the non-static fields and methods a reference to an instance of the accessed class is re-
quired. In case of the PrivacyManager, this must be instantiated first. In Section 5.1.1,
conditions are described for instantiation of the PrivacyManager. These conditions
are not fulfilled when running the attacking code directly. Hence, it will not gain a

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 103

PrivacyManager instance and thus cannot access the non-static entities. Similar is true
for the access to the private constructor, which returns no instance due to the adherence
to the same conditions.

permittedNativeLibraries=[Ljava.lang.String;@1270b73

com.endosoft.pgec.PrivacyException: only com.endosoft.pgec.PrivacyManager may <
—instantiate itself

com.endosoft.pgec.PrivacyException: only com.endosoft.pgec.PrivacyManager may <
—instantiate itself

java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance®(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance (Unknown Source)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance (Unknown «
—Source)
at java.lang.reflect.Constructor.newInstance (Unknown Source)
at com.endosoft.privacyattack.AccessPrivateFieldsMethodsConstructors.main(«
—AccessPrivateFieldsMethodsConstructors. java:72)
Caused by: com.endosoft.pgec.PrivacyException: PrivacyManager must be «
—instantiated from its own main method (stacktrace length = 3)
at com.endosoft.pgec.PrivacyManager.<init>(PrivacyManager.java:138)
5 more

Inside PGEC’s execution environments a ReflectPermission is checked. This per-
mission is not granted to services inside the execution environments, but without this per-
mission the Java language access control cannot be bypassed. Thus, private entities can
be detected by reflection, but not be accessed. This results in four PrivacyExceptions.

com.endosoft.pgec.PrivacyException: reflection (suppressAccessChecks) is not «
—allowed in connection with the PGEC

Attack #10 is implemented by class
com.endosoft.privacyattack.ReadWriteSystemProperties. It should be started
in an outer or an inner execution environment. In the first step it enumerates all avail-
able system properties and outputs them with their values. In the second step the system
property user.name is replaced with “Bob”. Finally, the available environment vari-
ables are enumerated and printed with their values. The following shows an excerpt of
the printed results.

java.runtime.name=Java(TM) SE Runtime Environment
sun.boot.library.path=C:\Programme\Java\jre6\bin
java.vm.version=11.0-b15

user.name=maaser
--- Changed system property ---
user.name=Bob

--- Environment variables ---

PROCESSOR_IDENTIFIER=x86 Family 6 Model 14 Stepping 8, GenuineIntel
SESSIONNAME=Console

104 CHAPTER 5. PROTOTYPE IMPLEMENTATION

While in inner execution environments, environment variables and system properties
may neither be read nor written, the system properties may be read and even written in
outer execution environments. That is, when the implemented test attack is run in an
outer execution environment only the retrieval of environment variables is prohibited an
throws an according PrivacyException.

java.runtime.name=Java(TM) SE Runtime Environment
sun.boot.library.path=C:\Programme\Java\jre6\bin
java.vm.version=11.0-b1l5

user.name=maaser

--- Changed system property ---

user .name=Bob

--- Environment variables ---

com.endosoft.pgec.PrivacyException: no class may read environment variables

In inner execution the test attack implementation has no success at all and for all three
attempts a PrivacyException is thrown.

com.endosoft.pgec.PrivacyException: should inner classes be allowed to read «
—system property * ?

--- Changed system property ---
com.endosoft.pgec.PrivacyException: inner classes may not write system «
—properties

--- Environment variables ---
com.endosoft.pgec.PrivacyException: no class may read environment variables

Attack #11 s implemented by class
com.endosoft.privacyattack.ShowGUI. It should be started in an outer or an in-
ner execution environment. Since services in outer execution environment may arbitrary
open GUIs, this will reflect the successful execution of the attack implementation. It
opens a window containing a functional button (see Figure 5.6a). When this button is
clicked a trivial program logic is executed and fills two text labels with some text (see
Figure 5.6b). Services in inner execution environment may only open GUIs if explicitly
permitted, which is not done for the ShowGUT attack code. Thus, the window cannot be
opened but rather a PrivacyException is thrown, causing the respective inner execu-
tion environment not to start.

DEBUG: Thread[main,5,main] Environment could not be started, due to
com.endosoft.pgec.PrivacyException: Environment could not be started, due to

Caused by: com.endosoft.pgec.PrivacyException: inner classes in this executione«
< environment may not open GUI Frames in this container

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 105

Privacy Awa... E|[E| E| Privacy Awa... E|@| E|

Meud berechnen Meud berechnen

Gehurtsdatum Gehurtsdatum 111275 00:00

Wiochentag Wochentag Daonnerstag

Exit

(a) Before button click (b) After button click

Figure 5.6: The GUI that is produced by the test attack implementation.

Attack #12 s implemented by class
com.endosoft.privacyattack.DatabaseConnect. It should be started in an outer
or an inner execution environment. The implementation waives actual reading from or
writing to the database, but simply connects to it. Hence, a successful run as in an outer
execution environment results in the following output.

JDBC Connect Example.
Connected to the database
Disconnected from database

The existing implementation uses SQLite?, which relies on pure file access. Since file
access is prohibited from inner execution environments, the database connection fails
with a PrivacyException referring to file read prohibition.

JDBC Connect Example.
com.endosoft.pgec.PrivacyException: inner classes have no permission to read a«<
— file

When using other database connectors that rely on network connections, e.g., MySQL?,
the connection will fail similarly with a PrivacyException regarding network prohi-
bition.

Attack #13 is implemented by class
com.endosoft.privacyattack.AccessUninstalledPrivacyManager. It should
be started directly without the PrivacyManager. If started within an execution envi-
ronment, the reference to the PrivacyManager can easily be retrieved and the success
of reading the private data “birthdate” depends on the execution environment and the
granted access permissions. These control mechanisms are not of interest here. A di-
rect start will show that currently no SecurityManager is installed, that may hinder

Zhttp://www.zentus.com/sqlitejdbc/
3http://dev.mysql.com/downloads/connector/j/3.1.html

106 CHAPTER 5. PROTOTYPE IMPLEMENTATION

access to some private data. But to access the non-static method getPrivateData(),
an instance of PrivacyManager has to be retrieved. According to the conditions known
from Section 5.1.1, the PrivacyManager will not instantiate here. The attack results in
a PrivacyException.

currentSecMgr: null
com.endosoft.pgec.PrivacyException: only com.endosoft.pgec.PrivacyManager may «
—instantiate itself
at com.endosoft.pgec.PrivacyManager.<init>(PrivacyManager. java:145)
at com.endosoft.pgec.PrivacyManager.getPrivacyManager (PrivacyManager.«
—java:207)
at com.endosoft.privacyattack.AccessUninstalledPrivacyManager.main(«
<—AccessUninstalledPrivacyManager. java:17)

Attack #14 is implemented by classes
com.endosoft.privacyattack.SharedMemory and
com.endosoft.privacyattack.FindOtherExecutionEnvironments.
SharedMemory should be started in an outer and an inner execution environment Si-
multaneously. This class provides a static field, that is supposed to be used as a shared
memory. The instance in the inner execution environment assigns it with some possibly
private information, while the instance in the outer execution environment expects to
read this information from the field. In case of a successful attack, the outer instance
reads and outputs the content written by the inner instance.

I learned the following: This is a secret, please keep it privately.

In fact, due to the different ClassLoaders, the respectively loaded classes are not iden-
tical. Hence, also the static field differs between the execution environments. That is,
the outer instance will read the initialized value:

I learned the following: something I already knew.

While the different ClassLoaders can ensure, that static fields and methods are not
accessible across the borders of execution environments, the attack implemented in
FindOtherExecutionEnvironments attempts to gain access to the other environ-
ments ClassLoaders. This might enable an attacker to get hold of references to classes
or objects within other execution environments and to use these to share information.
The references to sibling ClassLoaders are known only the PrivacyManager, which
will not release this information (see attack #9). The second source of these references
is the parent ClassLoader, which loaded the classes of the execution environments’
ClassLoaders. Just this is attempted by FindOtherExecutionEnvironments. A
successful execution, i.e., a direct start, would print the parent ClassLoader:

sun.misc.Launcher$ExtClassLoader@35ce36

When started in an outer or an inner execution environment an according
PrivacyException is thrown instead.

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 107

com.endosoft.pgec.PrivacyException: classes in execution environments may not <
—retrieve other classloaders than their own executionenvironment

Attack #15 is implemented by class
com.endosoft.privacyattack.ProduceAudio. It should be started in an outer or
an inner execution environment. Outer execution environments do not limit the access
to audio device and hence, execution here will be successful. The first attempt to ac-
cess the audio system is through sampled audio. A down-sampled (8kHz, 8bit mono)
sequence of 0.5 seconds of the notify.wav that ships with windows is played. In the
second attempt a MIDI device is used to play this gamut (Figure 5.7). Executed in an

o)
(" 4 I I
LA | I [[I
[l Fam I I I | &
D] e
c o e f e a b c

Figure 5.7: The gamut to be played on a MIDI device by the attacking code.

inner execution environment the access to audio devices will be suppressed. Besides the
logged information of the InnerExecutionEnvironment ClassLoader

one should not load javax.sound.sampled.AudioSystem within PGEC javax.sound.«
—sampled.AudioSystem

one should not load javax.sound.midi.MidiSystem within PGEC javax.sound.midi.e«
—MidiSystem

the attacking code will fail in retrieving the required audio devices. The redirected sys-
tem streams of the inner execution environment read like this:

available audio mixer devices:0
javax.sound.sampled.UnsupportedAudioFileException: could not get audio input «
—stream from input stream

available MIDI devices:0
javax.sound.midi.MidiUnavailableException: No MIDI available inside the PGEC

Attack #17 This attack does not require a special implementation. During the devel-
opment process of the PGEC, debugging capabilities are indispensable. Therefore, the
environment descriptor (Listing 5.14) contains descriptors for libraries, which are loaded
during debugging only, to permit the PGEC to run in a debugger environment, too. When
this environment descriptor is changed back to the version without debugging libraries,
the use of a debugger will prevent the PGEC from instantiating. The embedded native
code from Listing A.1 detects the running and not permitted library jdwp.dl1l, which
cause a respective PrivacyException.

108 CHAPTER 5. PROTOTYPE IMPLEMENTATION

this process module [jdwp.dll] is not allowed
its File name is: C:\Programme\Java\jre6\bin\jdwp.dll
its File size is: 167936
its base address is: 1832321024
its Entry point address is: 1832439948
its MemorySize is: 167936
Exception in thread "main" com.endosoft.pgec.PrivacyException: there are «
—modules loaded that are not allowed, deprecated, manipulated
at com.endosoft.pgec.PrivacyManager.<init>(PrivacyManager. java:131)
at com.endosoft.pgec.PrivacyManager.getPrivacyManager (PrivacyManager.«
—java:207)
at com.endosoft.pgec.PrivacyManager.main(PrivacyManager.java:668)

5.2.2 Test Covert Channel Attacks

Attack #18 is implemented by class
com.endosoft.privacyattack.ThrowException. It should be started in an outer
or an inner execution environment. The start in an outer execution environment matches
the successful case. That is, an arbitrary Exception can be thrown and, if not caught,
causes the application to stop and print the according stack trace. To ensure undisturbed
execution in other execution environments, also the outer execution environments catch
uncaught exceptions, to gracefully shut down this particular environment.

DEBUG: Thread[Outer Main Thread (com.endosoft.privacyattack.ThrowException),5,«
—Outer Execution Environment Threads (attackl18)] java.lang.Exception: main():e
— greetings from com.endosoft.pgec.OuterExecutionEnvironment@8965£fhb
java.lang.RuntimeException: java.lang.Exception: main(): greetings from com.«
—endosoft.pgec.OuterExecutionEnvironment@8965fb

at com.endosoft.pgec.ExecutionEnvironment$MainRunner.run(«

—ExecutionEnvironment. java:289)

at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.Exception: main(): greetings from com.endosoft.pgec.«
—OQuterExecutionEnvironment@8965£fb

at com.endosoft.privacyattack.ThrowException.main(ThrowException. java:18)

In inner execution environments, the Exception is caught as well and suppressed. For
the aforementioned debugging reasons, the Exception is logged to a file. The content
of that log file reads as follows:

Exception raised but don’t tell anything
DEBUG: Thread[Thread-3,5,Inner Execution Environment Threads (attackl18)] run()«
—: greetings from com.endosoft.pgec.InnerExecutionEnvironment@1£f9dc36

Attack #19 s implemented by classes
com.endosoft.privacyattack.EnumerateThreadsTraitor and
com.endosoft.privacyattack.EnumerateThreads. They should be started in an
inner and an outer execution environment accordingly. The
EnumerateThreadsTraitor spawns a thread named

private data from sun.misc.Launcher$AppClassLoader@fabe9.

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 109

EnumerateThreads enumerates all running threads in a thread group starting with the
group of the current thread and traversing along the parents to the root thread group. If
both classes run side by side in the same JVM without the protection means of the PGEC
it would determine something like the following.

myThread = main
myThreadGroup = main
Thread [0]:main in Group: main
Thread [1]:Thread-0® in Group: main
Thread [2]:private data from sun.misc.Launcher$AppClassLoader@l1b86e7 in «
—Group: main
parent thread group
Thread [0]:Reference Handler in Group: system
Thread [1]:Finalizer in Group: system
Thread [2]:Signal Dispatcher in Group: system
Thread [3]:Attach Listener in Group: system
Thread [4]:main in Group: main
Thread [5]:Thread-0® in Group: main
Thread [6]:private data from sun.misc.Launcher$AppClassLoader@11b86e7 in <
—Group: main

Please note the respectively last enumerated threads in the groups. These represent the
thread with the possibly private information. Inside the PGEC, the following threads are
running.

main

locking boxes

AWT-Shutdown

AWT-Windows

AWT -EventQueue -0

Outer Main Thread (com.endosoft.privacyattack.EnumerateThreads)

Inner Main Thread (com.endosoft.privacyattack.EnumerateThreadsTraitor)
PrivacyManager

private data from com.endosoft.pgec.InnerExecutionEnvironment@91£f005

The PGEC'’s protection means prevent services in execution environments from access-
ing the thread group that is the parent of {Outer|Inner} Execution Environment
Threads. An attempt to access this parental thread group provokes a
PrivacyException.

myThread = Outer Main Thread (com.endosoft.privacyattack.EnumerateThreads)
myThreadGroup = Outer Execution Environment Threads (attackl9)

Thread [0]:Outer Main Thread (com.endosoft.privacyattack.EnumerateThreads) in «
—Group: Outer Execution Environment Threads (attackl19)
com.endosoft.pgec.PrivacyException: you may not break out of your thread group«<
<— inside the execution environment

Attack #20 s implemented by class
com.endosoft.privacyattack.GlobalSynchronization. It should be started con-
currently in an outer and an inner execution environment. A parameter determines the
behavior, i.e., whether it encodes or receives information. The algorithms for encod-
ing and receiving are described in Section 5.1.3. To display the successful case, the

110 CHAPTER 5. PROTOTYPE IMPLEMENTATION

countermeasure of getting all locks on globally available objects is omitted for ob-
jects other than the boxed primitives. Using a second parameter, the attacking code
can use either boxed primitives or some class objects, i.e., PrivacyManager.class,
String.class, Socket.class, for the required synchronization. When run using the
class objects, the sequence of 1-1-0-1-1-0-1-1-0 is correctly transmitted from the inner
execution environment. The code in the outer execution environment outputs then:

ONE
ONE
ZERO
ONE
ONE
ZERO
ONE
ONE
ZERO

When using the boxed primitives, which are locked by the PGEC, the attacking code
deadlocks.

Attack #21 s implemented by class
com.endosoft.privacyattack.GeneratorMemoryLoadManchester and
com.endosoft.privacyattack.ReaderMemoryLoadManchester. They should be
started in an inner and an outer execution environment accordingly. A successful at-
tack outputs the detected detected high and low signals by printing - and - and decodes
the signals to “Hello World” as described in Section 5.1.3. With enabled countermea-
sures (uncomment lines 678 and 679 in PrivacyManager. java), the attack results in a
randomized output like:

e S e S —
S — - == -—-- -—-- -0

e T T -
— ——— === «

S —— - mmmmm——— e === -
S R e
N T T
e o
SN

Attack #22 s implemented by class
com.endosoft.privacyattack.GeneratorCPULoadManchester and

com.endosoft.privacyattack.ReaderCPULoadManchester. They should be started
in an inner and an outer execution environment accordingly. A successful attack can de-
code the signal modulated on the CPU load and outputs it as described in Section 5.1.3.

5.2. TEST ATTACKS AND EFFECTS OF COUNTER MEASURES 111

El Windows Task-Manager

Datei Optionen Ansicht 7

anwendungen | Prozesse | Systemleistung | Metzwerk

CPU-Auslastung Yerlauf der CPU-Auslaskung

(NN I
LA
e LA b a1 0 L

(a) CPU load graph of attack #22 with disabled countermeasures of the PGEC.

E Windows Task-Manager

Datei Optionen Ansicht 7

anwendungen | Prozesse | Systemlsistung | Netzwerk

CPU-Auslastung werlauf der CPU-Auslastung
T r‘.n —||'H|, A '_|I;

1ﬂf \"||| I,|J"""'~'"'-'F'|,|”||\f|| ||||I'\| |||| Ayl || I 'f|'|.|'| i
'u |\ i :

|| |'| i Hll\

(b) CPU load graph of attack #22 with enabled countermeasures of the PGEC.

Figure 5.8: Comparison of the CPU load graphs produced by the implementation of
attack #22 without and with enabled PGEC countermeasures.

In this implementation, “Hello World” should be printed after a minimum duration of
194 seconds. With enabled countermeasures (uncomment lines 680 and 681 in
PrivacyManager. java), the attack results in a randomized output. The effectivity of
the countermeasure against attack #22 is illustrated by the direct comparison of the CPU
load graphs that are produced by the attack. While in Figure 5.8a the transported signal
is quite obvious, it can not be found in Figure 5.8b.

Chapter 6

Summary

In this dissertation scenarios have been introduced and analyzed, in which private data
arise or are used. Based on those, aspects of privacy protection were identified. The first
aspect regards the prevention of generation of private information, such as behavioral
traces. Protection of and control over data actually released to others are the second
aspect of privacy protection. A third aspect concerns only about the deduction of infor-
mation from released or sensed private data [2]. It is considered, that fulfillment of the
first two aspects obsoletes the third. Hence, this dissertation attended just to these two
aspects.

Unsolicited data creation belongs to the first aspect. Such unsolicited creation of private
information is gathering of behavioral profiles, such as sensing of data by sensors out of
the subject’s control [81, 82]. A special case of sensing behavior is to track the usage
of access controlled services. In prevention of this kind of tracking, an access control
technology that provides k-anonymity during the usage of services has been introduced
and described. The approach uses blindly signed certificates, each representing a granted
right and an expiration date. The represented rights and expiration dates remain verifi-
able in spite of the blind signing. The expiration date is kept reasonably low to allow
implicit revocation of certificates. Besides these, other information or constraints can be
certified as long as the information can be expressed as or mapped to a natural number.
This approach is secured against attacks of malicious users trying to gain access, which
is not granted. It is further verified, that a malicious Certificate Authority (CA) is not
able to break the user’s privacy. The presented access control technology guarantees that
the identity of the presenter of such certificate cannot be revealed. The only informa-
tion that can be inferred is, it was one of the k users, to which this particular right was
granted. Thereby, a k-anonymity is gained. In order to provide good privacy protection,
reasonable scenarios have to involve a large number of users and a low number of pos-
sible rights.

The achieved anonymity by the presented access control technology provides a good pri-

113

114 CHAPTER 6. SUMMARY

vacy protection. However, it requires online connection between the service providers
and the CA for any certificate verification. Besides unnecessary network traffic, this
introduces a bottleneck in the verification of large numbers of certificates. Further re-
search will have to find ways for offline verification at the services themselves. The
signature schemes of Elliptic Curve Cryptography (ECC) differ from those of Rivest-
Shamir-Adleman (RSA). It might be possible to release the public keys for verification
without the possibility to misuse them for derivation of validly signed certificates reflect-
ing non-granted rights. The application of ECC for digital signing or more sophisticated
signature key derivation schemes are potential candidates. It must be ensured that the
knowledge of the verification key does not enable to derive another valid signature from
any validly signed certificate.

The proposed certificates were designed for scenarios of anonymous access control. Ad-
ditionally, they can open other interesting application fields, which may require further
research. One of those fields can be proxy voting [83] or other electronic voting and
election scenarios. The usual access control scenarios do not require protection against
double spending, but for proper application in voting and elections, means against dou-
ble spending must be included. This double spending does not only apply to a single
certificate, but rather to a group of certificates. Only one certificate of this group may
be used. An idea to accomplish this is to assign each certificate with a point in a vec-
tor space. While each user is assigned with a curve in this vector space, which may be
uniquely identified by two points, she/he cannot be identified by a single point. That is,
if more than one certificate from a group of a particular user was presented, the identity
of the user may be revealed. E-cash schemes use similar approaches [13].

The second aspect of privacy protection assumes that generation and use of private in-
formation shall not be prevented but are vital for provision of services. That is, private
data has to be released to services. In order to prevent profiling or use of these data for
any other purpose than the expected, the data must not be copied or persisted in any way.
Similar approaches are known from DRM systems. There, data is protected from unau-
thorized copying and usage within a very limited scope of services, which are merely
decoding and playback services for audio and video data. This dissertation presents
the Privacy Guaranteeing Execution Container (PGEC), an approach to allow DRM-like
data protection in conjunction with arbitrary services. The PGEC provides execution
environments for services that ensure access to private data of the service users while
strictly controlling and limiting communication and persistence means. To reasonably
support distributed services across the Internet, making use of powerful infrastructure at
service providers, the PGEC is designed to be used distributed. The privacy protected
environments are logically extended over multiple distributed PGEC instances to enable
a logical unity, which may be compared to Enterprise Java Bean (EJB) containers known
from Java 2 Enterprise Edition (J2EE).

From the investigated privacy protection demands and technical requirements it has been
discovered, that runtime environments, such as the Java Runtime Enviroment (JRE) or

115

.NET, are most suitable for a PGEC implementation. The existing prototype is imple-
mented in Java and adheres to the Java 1.1 security model, which allows for backward
compatibility. Here it shall further be noticed, that the .NET runtime provides similar
concepts of class loading and security management. The class loader in .NET loads only
complete assemblies, that there is only one security manager and both cannot be over-
ridden. Hence, an implementation in .NET, may be not as straightforward as in Java but
still feasible.

A number of attacks against the PGEC or the privacy of users were researched in this
dissertation and repelled by the existing PGEC implementation. The attacks and the re-
spective countermeasures are presented. Most of them are also implemented and tested.
Hence, the protection principles can be shown and the described scenarios can be imple-
mented using the PGEC.

The presented PGEC approach provides means to verify and trust itself and its host run-
time environment. Basically, the permitted libraries and their secure hashes are listed and
checked at startup. It further describes means for mutual authentication of distributed
PGEC instances. The instances share a secret key, which is built-in, to establish mutual
trust. The use of Public Key Infrastructure (PKI) keys is proposed to enable revocation
of individual instances of the PGEC. In either case, secret or private keys embedded in
software are vulnerable to extraction. Hence, the use of hardware dongles storing and
processing the keys and the hash values of the permitted libraries is proposed and should
be considered for implementation of a productive PGEC. Obviously, the existing PGEC
prototype does not provide 100% security. Even a perfect implementation will not be
able to do so. Therefore, economical security has been introduced. That is, data are eco-
nomically secure, if the effort and costs to obtain an unprotected copy are higher than
the data’s value of benefit. Hardware dongles do not provide 100% protection either,
but definitely increase the effort of key extraction, which can improve the economical
security.

A number of issues are still open for further research and development. Those include
usability and security aspects. Features and concepts of distributed systems, e.g., load
balancing, code migration and transparent remote procedure calls, will improve the us-
ability. Hence, an integration with or into existing EJB containers is envisioned for future
development.

The security model of Java evolved to enhance flexibility and security. While the PGEC
implementation highly relies on the Java security model, it should make use of the most
advanced features of this model. In fact, the protection domains introduced by the Java
2 security model are resembled by the PGEC implementation. Further, the Java 2 se-
curity model introduced an AccessController and AccessControlContexts, which
cannot be overridden. These are implemented in native code to have deeper access to
the call stack, which is annotated with information about the current protection domain.
These classes read the respective permissions from a policy file, but the PGEC requires
the permissions/prohibitions rather fixed and out of control of the executor of a PGEC

116 CHAPTER 6. SUMMARY

instance. Therefore, these classes must not be used or their native implementation has to
be replaced. The feasibility to do so, is subject to further research.

Even though Java has broad acceptance, it is desirable to support multiple platforms.
With .NET being a widely accepted platform for managed code, an aim of further re-
search is migration or implementation of the PGEC in the .NET platform. The char-
acteristics of the security model of .NET has to be studied and adapted to match the
PGEC’s protection requirements. The language J# and its .NET compilers provide lan-
guage compatibility to Java. The J# compiler introduces a mapping of the Java class
loading and security management into those provided by .NET. This might allow for
direct compilation of the PGEC in .NET. At least, it promises that a migration of the
PGEC to .NET is possible at all.

While the PGEC is functional and provides a good prove of concept, a few issues were
not addressed, yet. With full access to the hardware of the machine running the PGEC
and services, an attacker might read the contents of the volatile memory. That is, in
memory encryption should be applied. With regard to economical security, the ratio
between effort and value of the private user data to be gained may not be reasonable.
Since the PGEC has not much control over the underlying Operating System (OS) and
its memory management, an attacker could force the PGEC’s memory to be swapped
to the hard-drive, from where it could be read. The OS must further ensure secure de-
marcation of memory segments. In order to address this memory security, the PGEC
shall be rather embedded in the OS, as the Protected Media Path (PMP) in the Protected
Environment (PE) since Windows Vista is.

It has further be determined, that application of dongles or Trusted Platform Modules
(TPMs) can improve the economical security. Integration of such hardware into a Java
implementation of the PGEC is left as an open issue. Here, the possible ways of inte-
gration and appropriate partitioning between hard- and software system has to be inves-
tigated.

In order to determine the actual resilience of the proposed PGEC, a complete imple-
mentation ought to be exposed to the developer and tester community. Besides possibly
discovering other attacks or ways to compromise the PGEC, the community will be able
to build services in and around it. Useful services, e.g., navigation and Location Based
Services (LBSs), social networking or online communication and collaboration tools
like Google Wave', are essential to receive user acceptance.

Despite the open issues, the existing PGEC prototype provides reasonable protection of
provided data, while being able to release them to arbitrary services. As long as the
PGEC can be trusted, users do not have to worry about their private data and service
providers do not have to worry about their technical assertion of compliance to their
own and legal privacy policies. Until a broad acceptance and adoption of PGECs, peo-
ple should not loose a certain amount of sanity and reason and develop a healthy privacy
awareness.

Thttp://wave.google.com

Bibliography

(1]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

Alan F. Westin. Privacy and freedom / [by] Alan F. Westin ; foreword by Oscar M. Rueb-
hausen. Atheneum, New York :, [1st ed.] edition, 1967. [cited at p. 3]

Steffen Ortmann, Peter Langendorfer, and Michael Maaser. Enhancing Privacy by Ap-
plying Information Flow Modelling in Pervasive Systems. In Robert Meersman, Zahir
Tari, and Pilar Herrero, editors, OTM Workshops, volume 4806 of Lecture Notes in Com-
puter Science, pages 794-803, Vilamoura, Algarve, Portugal, November 25-30 2007. In-
ternational Workshop on Privacy in Pervasive Environments (PiPE07), Springer LNCS.
[cited at p. 3, 5, 113]

G. A. Wilkes and W. A. Krebs. Collins English dictionary : an extensive coverage of
contemporary international and Australian English / special Australian consultants, G.A.
Wilkes, W.A. Krebs. HarperCollins, Sydney :, updated 3rd ed. edition, 1995. [cited at p. 3]

Lorrie F. Cranor, Brooks Dobbs, Serge Egelman, Giles Hogben, Jack Humphrey, Marc
Langheinrich, Massimo Marchiori, Martin Presler-Marshall, Joseph Reagle, Matthias
Schunter, David A. Stampley, and Rigo Wenning. W3C: Platform for Privacy Preferences
(P3P) Project. http://www.w3.org/P3P/, November 12 2006. [cited at p. 4, 13]

J. Cuellar, J. Morris, D. Mulligan, J. Peterson, and J. Polk. GEOPRIV requirements. Re-
quest for Comments: 3693, February 2004. [cited at p. 4, 14]

Stefan Krempl and Jiirgen Kuri. Datenschiitzer fordert Ende der Datensammel-
wut. http://www.heise.de/newsticker/Datenschuetzer-fordert-Ende-der-Datensammelwut—
/meldung/99342/, November 21 2007. German only. [cited at p. 4]

Annie 1. Anton, Qingfeng He, and David. L. Baumer. Inside JetBlue’s Privacy Policy
Violations. IEEE Security and Privacy, 2(6):12—18, Nov./Dec. 2004. [cited at p. 4]

Michael Barbaro and Tom Zeller, Jr. A Face Is Exposed for AOL Searcher No.
4417749. http://www.nytimes.com/2006/08/09/technology/09aol.html?ex=1312776000
en=f6161949c6da4d38ei=5090, August 9 2006. [cited at p. 4]

Jirgen Kuri. Millionen Briten von Datenpanne betroffen.
http://www.heise.de/newsticker/Millionen-Briten-von-Datenpanne-betroffen—
/meldung/99315

http://news.bbc.co.uk/2/hi/uk_news/politics/7103828.stm, November 21 2007. German
and English. [cited at p. 4]

117

118

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY
Florian Rotzer. Italienisches Finanzministerium veroffentlichte Einkommenss-
teuererkldrungen aller Biirger. http://www.heise.de/newsticker/Italienisches-

Finanzministerium-veroeffentlichte-Einkommenssteuererklaerungen-aller-Buerger—
/meldung/107281/, May 1 2008. German only. [cited at p. 4]

Stefan Krempl and Peter-Michael Ziegler. Bundestag nickt Abkommen zur Weitergabe
von Fluggastdaten ab. http://www.heise.de/newsticker/Bundestag-nickt-Abkommen-zur-
Weitergabe-von-Fluggastdaten-ab—/meldung/99138, November 16 2007. German only.
[cited at p. 4]

Stefan Krempl and Jiirgen Kuri. EU-Datenschiitzer gehen gemeinsam gegen SWIFT-
Affére vor. http://www.heise.de/newsticker/EU-Datenschuetzer-gehen-gemeinsam-gegen-
SWIFT-Affaere-vor—/meldung/76096, July 28 2006. German only. [cited at p. 4]

Krzysztof Piotrowski, Peter Langendorfer, and Damian Kulikowski. Moneta: An
Anonymity Providing Lightweight Payment System for Mobile Devices. In Proceedings
of the 2nd International Workshop for Technology, Economy, Social and Legal Aspects of
Virtual Goods, 2004. [cited at p. 7, 34, 114]

Redaktion intern.dedie falschen Biicher gekauft?
http://www.intern.de/news/4874.html, October 15 2003. German only. [cited at p. 8]

Shu Wang, Jungwon Min, and Byung K. Yi. Location Based Services for Mobiles: Tech-
nologies and Standards. In IEEE International Conference on Communication (ICC), 2008.
[cited at p. 8]

Lorrie F. Cranor, Marc Langheinrich, and Massimo Marchiori. W3C: A P3P Preference
Exchange Language 1.0 (APPEL1.0). http://www.w3.org/TR/P3P-preferences/, 15 April
2002. W3C Working Draft. [cited at p. 13]

Peter Langendorfer and Rolf Kraemer. Towards User Defined Privacy in location-aware
Platforms. In Proceedings of the 3rd International Conference on Internet Comput-
ing, USA, 2002. 3rd international Conference on Internet computing, CSREA Press.
[cited at p. 14]

Marcel Bennicke and Peter Langendorfer. Towards Automatic Negotiation of Privacy Con-
tracts for Internet Services. In Proceedings of the 11th IEEE Conference on Networks,
pages 312-324. ICON, IEEE Society Press, 2003. [cited at p. 14]

W. Wagealla, S. Terzis, and C. English. Trust-based Model for Privacy Control in Context-
aware Systems. In Proceedings of the 2nd Workshop on Security in Ubiquitous Computing.
2nd Workshop on Security in Ubiquitous Computing, 2003. [cited at p. 14]

Kare Synnes, James Nord, and Peter Parnes. Location Privacy in the Alipes platform.
In Proceedings of the Hawai’i International Conference on System Sciences, Big Is-
land, Hawaii, USA, January 2003. Hawai’i International Conference on System Sciences
(HICSS-36). [cited at p. 14]

Marco Gruteser and Dirk Grunwald. Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In Proceedings of the International Conference
on Mobile Systems, Applications, and Services. ACM/USENIX International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2003. [cited at p. 14, 16]

BIBLIOGRAPHY 119

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Javier Lépez, Antonio Mafia, Ernesto Pimentel, José M. Troya, and Mariemma 1. Yagiie.
Access Control Infrastructure for Digital Objects. In Proceedings of the International Con-
ference on Information and Communications Security (ICICS’02), pages 399-410, Sin-
gapore, December 2002. International Conference on Information and Communications
Security (ICICS’02), LNCS 2513, Springer-Verlag. [cited at p. 14]

Ricardo Haragutchi, Barry D. Nusbaum, Carlos de Luna Sdenz, Nilson Tenorio Batista,
Roberto Morizi Oku, Patrick Schmitt-Heinrich, and Robert Macgregor. IBM Redbook:
Building the Infrastructure for the Internet, chapter Chapter 12 Networked Applications,
page 526. IBM, November 1996. Cryptolope. [cited at p. 14]

Antonio Mana, Javier Lopez, Juan J. Ortega, Ernesto Pimentel, and José M. Troya. A
Framework for Secure Execution of Software. International Journal of Information Secu-
rity, 2(4):99-112, November 2004. Springer. [cited at p. 14]

H. Garcia-Molina, S. Ketchpel, and N. Shivakumar. Safeguarding and Charging for Content
on the Internet. In Proceedings of the International Conference On Data Engineering ’98.
International Conference On Data Engineering, 1998. [cited at p. 14]

N. Huda, Shigeki Yamada, and Eiji Kamioka. Privacy Protection in Mobile Agent based
Service Domain. In Proceedings of the Third International Conference on Information
Technology and Applications (ICITA’05), Sydney, July 4th- 7th 2005. [cited at p. 14]

A. Yannopoulos, Y. Stavroulasa, N. Papadakis, D. Halkos, and T. Varvarigou. A method
which enables the assessment of private data by an untrusted party using arbitrary algo-
rithms but prevents disclosure of their content. In P. Langendoerfer and V. Tsaoussidis,
editors, Proceedings of the 3rd International Conference on Internet Computing. 3rd Inter-
national Conference on Internet Computing, CSREA Press, 2002. [cited at p. 14]

Shigeki Yamada and Eiji Kamioka. Access Control for Security and Privacy in Ubiquitous
Computing Environments. [EICE-Transactions on Communications, E88-B(3):846-856,
March 2005. [cited at p. 14]

Richard Conway and David Strip. Selective partial access to a database. In ACM 76:
Proceedings of the annual conference, pages 85-89, New York, NY, USA, 1976. ACM.
[cited at p. 15]

Georg Treu and Axel Kiipper. Efficient Proximity Detection for Location Based Services.
In Proceedings of 2nd Workshop on Positioning, Navigation and Communication 2005,
Hannover Germany, March 2005. WPNCO05, SHAKER-Publishing. [cited at p. 16]

Marek Fisz. Probability Theory and Mathematical Statistics. John Wiley & Sons, 3rd
edition, January 1 1963. [cited at p. 16]

Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In Proceed-
ings of the ACM SIGMOD Conference on Management of Data, page 439450, Dallas,
Texas, May 2000. ACM Press. [cited at p. 17]

Hillol Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivakumar. On the Privacy
Preserving Properties of Random Data Perturbation Techniques. In Proceedings of the
Third ICDM IEEE International Conference on Data Mining, pages 99-107, Melbourne,
FL, November 2003. [cited at p. 17]

120

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed sen-
sor networks. In CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications security, pages 41-47, New York, NY, USA, 2002. ACM. [cited at p. 17, 18]

Wenbo He, Xue Liu, Hoang Nguyen, Klara Nahrstedt, and Tarek Abdelzaher. PDA:
Privacy-preserving Data Aggregation in Wireless Sensor Networks. In Proceedings of the
26th IEEE International Conference on Computer Communications (INFOCOM 2007),
pages 2045-2053, May 2007. [cited at p. 17, 18, 20]

Maithili Narasimha. Privacy Homomorphisms. http://sconce.ics.uci.edu/docs/ Pri-
vacy %20Homomorphisms.pdf, February 13 2003. [cited at p. 19]

Josep Domingo-Ferrer. A New Privacy Homomorphism and Applications. Information
Processing Letters, 60(5):277-282, 1996. [cited at p. 20]

Ronald L. Rivest, Leonard M. Adleman, and Michael L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation, pages 169—-177, 1978.
[cited at p. 20]

Ernest F. Brickell and Yacov Yacobi. On Privacy Homomorphisms. In Advances in Cryp-
tology EUROCRYPT 87, pages 117-125. Springer Berlin / Heidelberg, 1987. Extended
Abstract. [cited at p. 20]

Roxana Geambasu, Tadayoshi Kohno, Amit Levy, and Henry M. Levy. Vanish: Increasing
Data Privacy with Self-Destructing Data. In Proceedings of the 18th USENIX Security
Symposium, 2009. [cited at p. 22]

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612—-613, 1979. [cited at p. 22]

Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott
Shenker, Ion Stoica, and Harlan Yu. OpenDHT: a public DHT service and its uses. In
SIGCOMM °05: Proceedings of the 2005 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages 73—-84, New York, NY, USA,
2005. ACM. [cited at p. 22]

Tim Moses. eXtensible Access Control Markup Language (XACML) Version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, February
1 2005. [cited at p. 25]

Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan De-
vitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael Kohlhase,
Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen
Watt. Mathematical Markup Language (MathML) Version 2.0 (Second Edition).
http://www.w3.org/TR/MathML2/, 21 October 2003. W3C Recommendation. [cited at p. 24]

D. Richard Kuhn. Role Based Access Control on MLS Systems Without Kernel Changes.
In Third ACM Workshop on Role Based Access Control, pages 25-32, 1998. [cited at p. 26]

Ravi S. Sandhu, Edward J. Coynek, Hal L. Feinsteink, and Charles E. Youmank. Role-
Based Access Control Models. IEEE Computer, 29(2):3847, February 1996. [cited at p. 27]

D.F. Ferraiolo and D. Richard Kuhn. Role-Based Access Control. In 15th National Com-
puter Security Conference, pages 554-563, October 1992. [cited at p. 28, 158]

BIBLIOGRAPHY 121

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial In User
Service (RADIUS). Request for Comments: 2865, June 2000. [cited at p. 27, 29]

J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). Request for
Comments: 1510, September 1993. [cited at p. 27]

Peter Langendorfer, Krzysztof Piotrowski, and Michael Maaser. A Distributed Privacy
Enforcement Architecture based on Kerberos. In WSEAS Transactions on Communications,
volume Vol. 5 (2), pages 231-238, 2000. [cited at p. 28]

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. Request for
Comments: 2401, November 1998. [cited at p. 29]

Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. In IEEE Trans-
actions on Information Theory, volume I'T-22, page 644654, November 1976. [cited at p. 29,
42,95]

Frank A. Stevenson. Cryptanalysis of Contents Scrambling System.
http://www.cs.cmu.edu/~dst/DeCSS/FrankStevenson/analysis.html, November 8 1999.
[cited at p. 30]

John Leyden. Blu-ray DRM defeated - Copy-protection cracked again.
http://www.theregister.co.uk/2007/01/23/blu-ray _drm_cracked/, January 23 2007.
[cited at p. 30]

Trusted Computing Group Administration . http://www.trustedcomputinggroup.org, 2008.
[cited at p. 30, 88, 157]

Microsoft Corporation . Code Signing for Protected Media Components in Win-
dows Vista. http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-
b18336565fSb/PMP-sign.doc, August 25 2006. [cited at p. 31, 158]

Michael Maaser and Steffen Ortmann. Providing Granted Rights with Anonymous Certifi-
cates. In Proceedings of the 15th IEEE International Conference on Electronics, Circuits,
and Systems. IEEE International Conference on Electronics, Circuits, and Systems, August
31 - September 3 2008. [cited at p. 33]

P. Samarati. Protecting Respondents’ Identities in Microdata Release. IEEE Transactions
on Knowledge & Data Engineering, 13(6):1010-1027, 2001. [cited at p. 34]

David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. In
Communications of the ACM 24, pages 84-88. ACM, February 1981. [cited at p. 34]

David Chaum and E. van Heyst. Group signatures. In Advances in Cryptology, pages
257-265. EUROCRYPT °91, Springer-Verlag, 1991. Vol. 547 of LNCS. [cited at p. 34]

Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates - Building in
Privacy. PhD thesis, Institute of Technology, Eindhoven, Netherland, 1999. [cited at p. 34]

Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic framework
for the controlled release of certified data. In Twelfth International Workshop on Security
Protocols 2004. Springer-Verlag, 2004. LNCS. [cited at p. 34]

122

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

BIBLIOGRAPHY

Jan Camenisch, Dieter Sommer, and Roger Zimmermann. A General Certification Frame-
work with Application to Privacy-Enhancing Certificate Infrastructures. In Proceedings of
the IFIP TC-11 21st International Information Security Conference (SEC 2006), Karlstad,
Sweden, May 22-24 2006. [cited at p. 34]

David Chaum. Blind signature systems. In Advances in Cryptology. CRYPTO ’83, 1984.
[cited at p. 34, 35]

D. G. Kendall and R. Osborn. Two Simple Lower Bounds for Euler’s Function. Texas
Journal of Science, 17(3), 1965. [cited at p. 38]

Michael Maaser and Peter Langendorfer. Privacy from Promises to Protection: Privacy
Guaranteeing Execution Container. Mob. Netw. Appl., 14(1):65-81, 2009. [cited at p. 51]

Michael Maaser and Peter Langendorfer. Automated Negotiation of Privacy Contracts. In
Proceedings of the 29th Annual International Computer Software and Applications Con-
ference (COMPSAC), Edinburgh, UK, July 26-29 2005. IEEE Society Press. [cited at p. 53,
58, 59]

Michael Maaser, Steffen Ortmann, and Peter Langendorfer. NEPP: Negotiation Enhance-
ments for Privacy Policies. In W3C Workshop on Languages for Privacy Policy Negotiation
and Semantics-Driven Enforcement, Ispra, Italy, October 17-18 2006. [cited at p. 53, 58, 59]

Michael Maaser, Steffen Ortmann, and Peter Langendorfer. The Privacy Advocate (Pri-
vAd): A Framework for Negotiating Individual Privacy Contracts. In Proceedings of the
3rd International Conference on Web Information Systems and Technologies (WEBIST),
Barcelona, Spain, March 3-6 2007. [cited at p. 53, 58, 59]

Michael Maaser, Steffen Ortmann, and Peter Langendorfer. The Privacy Advocate: Asser-
tion of Privacy by Personalised Contracts, volume 8 of Lecture Notes in Business Informa-
tion Processing, pages 85-97. Springer, Setubal, Portugal, 2008. [cited at p. 53, 58, 59]

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Lenstra, Emmanuel Thom, Joppe
Bos, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Dag Arne Osvik, Herman
te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA modu-
lus. Cryptology ePrint Archive, Report 2010/006, 2010. [cited at p. 55]

Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. In PKC "00:
Proceedings of the Third International Workshop on Practice and Theory in Public Key
Cryptography, pages 446465, London, UK, 2000. Springer-Verlag. [cited at p. 55]

Dieter Spaar. Einmal ein Cracker sein. ¢z, (21):212-217, 2007. [cited at p. 55]

Elke Spiegelhalter. Wibu-Systems im internationalen Wettstreit mit Hacker Ergebnis
zur CeBIT 2007. http://www.wibu.com/press.php?year=2007&num=01, January 2007.
Pressemitteilung. [cited at p. 55]

K. El-Khatib. A Privacy Negotiation Protocol for Web Services. In Workshop on Collab-
oration Agents: Autonomous Agents for Collaborative Environments, Halifax, Nova Sco-
tia, Canada, 2006. NRC Institute for Information Technology; National Research Council
Canada. [cited at p. 58]

BIBLIOGRAPHY 123

[76]

[77]

(78]

[79] .

(80]

[81]

(82]

[83]

Soren Preibusch. Implementing Privacy Negotiation Techniques in E-Commerce. In CEC
'05: Proceedings of the Seventh IEEE International Conference on E-Commerce Technol-
ogy, pages 387-390, Washington, DC, USA, 2005. IEEE Computer Society. [cited at p. 58]

John McHugh. Handbook for the Computer Security Certification of Trusted Systems, vol-
ume NRL Technical Memorandum 5540:062A, chapter Chapter 8: Covert Channel Anal-
ysis. Naval Research Laboratory, Code 5540, Washington, D.C. 20375-5337, February 12
1996. [cited at p. 66]

Idongesit Mkpong-Ruffin, John A. Hamilton, Jr., and Martin C. Carlisle. The New Java
Security Architecture. CrossTalk - The Journal of Defense Software Engineering, Jul 2006.
[cited at p. 72, 160]

IEEE Standard for Information technology - Telecommunications and information ex-
change between systems - Local and metropolitan area networks - Specific requirements
Part 3: Carrier sense multiple access with Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications, December 26 2008. [cited at p. 86]

Arvind Seshadri, Adrian Perrig, and Leendert van Doorn. Using Software-based Attestation
for Verifying Embedded Systems in Cars. In Proceedings of the Embedded Security in Cars
Workshop *04. Embedded Security in Cars Workshop (escar), November 2004. [cited at p. 88]

Steffen Ortmann, Peter Langendorfer, and Michael Maaser. A Self-Configuring Pri-
vacy Management Architecture for Pervasive Systems. In Albert Y. Zomaya and Sherali
Zeadally, editors, Proceedings of the 5th ACM International Workshop on Mobility Man-
agement and Wireless Access (MobiWAC), pages 184—187, Chania, Crete Island, Greece,
October 22 2007. ACM Press. [cited at p. 113]

Steffen Ortmann, Peter Langendorfer, and Michael Maaser. Adapting Pervasive Systems to
Multi-user Privacy Requirements. International Journal of Ad Hoc and Ubiquitous Com-
puting, 3(4):264-276, 2008. [cited at p. 113]

. Modernising Democracy: Innovations in Citizen Participation. M.E.Sharpe, 80 Business
Park Drive, Armonk, NY, 10504, 2006. [cited at p. 114]

Appendices

125

Appendix A

Listings

Listing A.1: Native code gathering information about the current running process and
comparing it with a specified set of libraries and modules

1 |using System;

2 |using System.Threading;

3 |using System.Diagnostics;

4 |using System.Xml;

5 |using System.Xml.Schema;

6 |using System.IO;

7 |using System.Security.Cryptography;

8

9 | public class com_endosoft_pgec_PrivacyManager

10 | {

11 public com_endosoft_pgec_PrivacyManager() { }

12

13 private void ValidationEventHandler (object sender, ValidationEventArgs e)

14 {

15 if (e.Severity == XmlSeverityType.Warning)

16 {

17 Console.Write("WARNING: ");

18 Console.WriteLine(e.Message);

19 }

20 else if (e.Severity == XmlSeverityType.Error)

21 {

22 Console.Write("ERROR: ");

23 Console.WriteLine(e.Message);

24 }

25 }

26

27 /// <summary>

28 /// CheckSoftwareEnvironment will be the method called from within java.

29 /// </summary >

30 public Boolean CheckSoftwareEnvironment ()

31 {

32 XmlReaderSettings readerSettings = new XmlReaderSettings();

33 readerSettings.Schemas.Add("PGECEnvironmentDescriptor"”, "D:/development/«
<—dissertation/PGEC/JNI/CSharp/EnvironmentDescriptor.xsd");

34 readerSettings.ValidationType = ValidationType.Schema;

35 readerSettings.ValidationEventHandler += new ValidationEventHandler («
<—ValidationEventHandler);

36

37 XmlReader xmlr = XmlReader.Create("D:/development/dissertation/PGEC/JINI/CSharp/«
<—EnvDescriptor.xml", readerSettings);

38

127

128 APPENDIX A. LISTINGS

39 XmlDocument xmld = new XmlDocument();

40 xmld.Load (xmlr);

41 XmlNode root = xmld.DocumentElement;

42

43 //Instantiate an XmlNamespaceManager object.

44 System.Xml.XmlNamespaceManager xmlnsManager = new System.Xml.XmlNamespaceManager («
—xmld.NameTable);

45

46 //Add the namespaces used in books.xml to the XmlNamespaceManager.

47 xmlnsManager.AddNamespace ("pgec", "PGECEnvironmentDescriptor");

48 //xmlnsManager.AddNamespace ("pub", "urn:Publisher");

49

50 Process myProcess = Process.GetCurrentProcess();

51 Console.WriteLine("I am Process ID=" + myProcess.Id);

52 ProcessThreadCollection ptc = myProcess.Threads;

53 foreach (ProcessThread pt in ptc)

54 {

55 Console.Out.WriteLine("Thread:" + pt.Id);

56 }

57 try

58 {

59 if (!CheckProcessModule(root, xmlnsManager, myProcess.MainModule, true))

60 {

61 return false;

62 }

63 // Get all the modules associated with ’'myProcess’.

64 ProcessModuleCollection myProcessModuleCollection = myProcess.Modules;

65 // Display the properties of each of the modules.

66 for (int i = 0; i < myProcessModuleCollection.Count; i++)

67 {

68 ProcessModule myProcessModule = myProcessModuleCollection[i];

69 if (!CheckProcessModule(root, xmlnsManager, myProcessModule, false))

70 {

71 return false;

72 }

73 }

74 }

75 catch (Exception exc)

76 {

77 Console.Error.WritelLine(exc.Message);

78 Console.Error.WritelLine(exc.StackTrace);

79 return false;

80 }

81 return true;

82 }

83

84 private Boolean CheckProcessModule(XmlNode root, System.Xml.XmlNamespaceManager «

—xmlnsManager, ProcessModule myProcessModule, Boolean claimsMain)
85 {

86 //TODO cope around with Mainmodule - claimsMain

87 string moduleName = myProcessModule.ModuleName;

88 IntPtr baseAddress = myProcessModule.BaseAddress;

89 IntPtr entryPointAddress = myProcessModule.EntryPointAddress;

90 int memorySize = myProcessModule.ModuleMemorySize;

91 string fileName = myProcessModule.FileName;

92 long fileSize = 0;

93

94 if (File.Exists(fileName))

95 {

96 FileInfo fileInfo = new FileInfo(fileName);

97 fileSize = fileInfo.Length;

98 }

99 else

100 {

101 Console.Error.WriteLine("wie kann ein modul aus einem nicht existierenden <«
—File geladen werden?");

102 //should never occur

103 //TODO raise privacy exception

104 return false;

105 }

106

107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171

129

XmlNodeList allowedModules = root.SelectNodes("descendant::pgec:Module[pgec:Name«

=

IRt

+ moduleName + and pgec:Size=" + fileSize + "]", xmlnsManager);

if (allowedModules != null && allowedModules.Count > 0)

{

byte[] data = File.ReadAllBytes(fileName);

bool processModuleIsAllowed = false;
foreach (XmlNode allowedModuleUnderTest in allowedModules)
{
XmlNode moduleHash = allowedModuleUnderTest.SelectSingleNode("pgec:Hash",«
< xmlnsManager);
string hashType = moduleHash.Attributes["type"].Value;
string hashHexValue = null;
if (moduleHash.FirstChild != null)
{
hashHexValue = moduleHash.FirstChild.Value;
}
else
{
hashHexValue = "NONE";

byte[] hash;

if ("SHA1".Equals(hashType, StringComparison.OrdinalIgnoreCase))
{
SHA1 sha = new SHAICryptoServiceProvider();
// This is one implementation of the abstract class SHAL.
hash = sha.ComputeHash(data);
}
else if ("MD5".Equals(hashType, StringComparison.OrdinalIgnoreCase))
{
MD5 md5 = new MDS5CryptoServiceProvider();
// This is one implementation of the abstract class SHAL.
hash = md5.ComputeHash(data);
}
else
{
hash = new byte[0];
}
StringWriter sw = new StringWriter();
for (int j = 0; j < hash.Length; j++)
{
sw.WriteChash[j].ToString("X2"));
}
if (hashHexValue.Equals(sw.ToString()))
{
//0K fits the hash
//TODO may be check baseaddresse and entrypoint as well
processModuleIsAllowed = true;
break;
}
else
{
// does not fit the hash try another
Console.Error.WriteLine("this process module [" + moduleName + "] is «
<—has hash " + hashType + ":" + sw.ToString(Q));

}

if (processModuleIsAllowed)

{
Console.Out.WriteLine("this process module [" + moduleName + "] is OK");
Console.Out.WriteLine(" it was loaded from "+fileName);
return true;

}

else

{
//the module in the process does not fit the hashes
//it is likely to be manipulated

172

173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

130

APPENDIX A. LISTINGS

Console.Error.WritelLine("this process module [" + moduleName + "] is «
—manipulated");

//TODO raise privacy exception

return false;

}
}
else
{
Console.Error.WriteLine("this process module [" + moduleName + "] is not «
—allowed");
//a module was not listed hence it is not allowed
//TODO this should raise a privacy exception
Console.Error.WriteLine (" its File name is: "
+ fileName);
Console.Error.WriteLine(" its File size is: "
+ fileSize);
Console.Error.WriteLine (" its base address is: "
+ baseAddress);
Console.Error.WriteLine (" its Entry point address is: "
+ entryPointAddress);
Console.Error.WriteLine (" its MemorySize is: "
+ memorySize);
return false;
}

public static int Main(String[] args)

{

new com_endosoft_pgec_PrivacyManager ().CheckSoftwareEnvironment();
return 0;

Listing A.2: XML schema for environment descriptors.

131

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="EnvironmentDescriptor" targetNamespace="PGECEnvironmentDescriptor" <
—elementFormDefault="qualified" xmlns="PGECEnvironmentDescriptor" xmlns:mstns="«>

—PGECEnvironmentDescriptor" xmlns:xs="http://www.w3.0org/2001/XMLSchema">

<xs:element name="PGEC" type="PGECT">
</xs:element>
<xs:complexType name="PGECT">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Module" type="ModuleT">
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="ModuleT">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="Name" type="xs:string">
</xs:element>
<xs:element name="Size" type="xs:positiveInteger">
</xs:element>
<xs:element name="Hash" type="HashT" />
<xs:element name="BaseAddress" type="xs:long" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name="EntryPoint" type="xs:long" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name="MemorySize" type="xs:long" minOccurs="0" maxOccurs="1">
</xs:element>
</Xs:sequence>
<xs:attribute name="canBeMain" type="xs:boolean" use="optional" />
<xs:attribute name="forDebugOnly" type="xs:boolean" use="optional" />
</xs:complexType>
<xs:complexType name="HashT">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="type" type="HashAlgorithms" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="HashAlgorithms">
<xs:restriction base="xs:string">
<xs:enumeration value="MD5" />
<xs:enumeration value="SHA1" />
</xs:restriction>
</xs:simpleType>

</xs:schema>

0NN R W=

[IVS IR SIS SR S I SN S I S E S E SR S o e a e e e e i
N = OO0 UN R WN— OO0 WN—~O\0

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

132 APPENDIX A. LISTINGS

Listing A.3: Overridden class loader spanning execution environments that are unable

to access static references of each other

package com.endosoft.pgec;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.lang.Thread.UncaughtExceptionHandler;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import java.util.HashMap;

import java.util.StringTokenizer;

import java.util.Vector;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.endosoft.pgec.XMLConfigParser.Class.entrytypes;

< <p>
berschrift:
</p>

< <p>
* Beschreibung:
* </p>

< <p>
Copyright: Copyright (c) 2005
</p>

¥ <p>
* Organisation:
</p>

* @author Michael Maaser
“ @version 1.0
~,‘.»/
public abstract class ExecutionEnvironment extends ClassLoader {

private ExecutionEnvironmentID ID = null;

protected Log log = LogFactory.getLog("ExecSpace");

private XMLConfigParser.Environment environmentDescription = null;
private Vector<Thread> environmentThreads = new Vector<Thread>();

// these are used when class is loaded from remote container

private ContainerID remoteClassSource = null;

private String name = null;

private XMLConfigParser.Class classDescription = null;

private byte[] classData = null;

private HashMap<String, Class<?>> loadedclasses = new HashMap<String, Class<?>>();

public ExecutionEnvironment (
XMLConfigParser.Environment environmentDescription) {
synchronized (this) {
ID = new ExecutionEnvironmentID(
this instanceof InnerExecutionEnvironment,
+ this.hashCode()); /*
* TODO what happens if this is
accidentially the same as of
another existing execution
environment started in
another container; refer to
ExceutionEnvironment (Class,
ExecutionEnvironment)
*/

// Permissions all = new Permissions();

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

// all.add(new AllPermission());

// ProtectionDomain outerDomain = new ProtectionDomain(null, all,
// this, null);

// AccessControlContext outerACC = new AccessControlContext(

// new ProtectionDomain[] { outerDomain });

// AccessControlContext currentACC = AccessController.getContext();
// final XMLConfigParser.Class desc = entryPointDescription;

// AccessController.doPrivileged(new PrivilegedAction<Object>() {
// public Object run() {

// startServiceInEnvironment (desc);

// return null;

// '}
// }, outerACC);
this.environmentDescription = environmentDescription;

startServiceInEnvironment () ;

public ExecutionEnvironment (
XMLConfigParser.Environment environmentDescription,
ExecutionEnvironmentID id) {
synchronized (this) {
if (id.isInner() && (this instanceof InnerExecutionEnvironment)) {
this.ID = id;
} else if (id.isOuter()
&& (this instanceof OuterExecutionEnvironment)) {
this.ID = id;

} else {
throw new PrivacyException("attempt to give an "
+ (id.isInner() ? "inner" : "outer")
+ " execution environemnt the id of an "
+ (id.isInner() ? "outer" : "inner") + " one");
}

this.environmentDescription = environmentDescription;
startServiceInEnvironment();

public ExecutionEnvironment(ContainerID remotecontainer,
ExecutionEnvironmentID id, String name,
XMLConfigParser.Class clientClassDescription, byte[] clientclassdata)
synchronized (this) {
if (id.isInner() && (this instanceof InnerExecutionEnvironment)) {
this.ID = id;
} else if (id.isOuter()
&& (this instanceof OuterExecutionEnvironment)) {
this.ID = id;

} else {
throw new PrivacyException("attempt to give an "
+ (id.isInner() ? "inner" : "outer")
+ " execution environemnt the id of an "
+ (id.isInner() ? "outer" : "inner") + " one");
}

this.environmentDescription = null;

this.name = name;

this.remoteClassSource = remotecontainer;
this.classDescription = clientClassDescription;
this.classData = clientclassdata;

public void start() {
this.startServiceInEnvironment (this.classDescription, this.classData);

}

* @param entryPointDescription
*/
private void startServiceInEnvironment () {
ThreadGroup execEnvThreadGroup = new ThreadGroup (

133

134 APPENDIX A. LISTINGS

138 (this instanceof InnerExecutionEnvironment) ? "Inner Execution «
—Environment Threads ("

139 + environmentDescription.getName() + ")"

140 : "Outer Execution Environment Threads ("

141 + environmentDescription.getName() + ")");

142 for (XMLConfigParser.Class entryPointDescription : environmentDescription

143 .getClasses()) {

144 switch (entryPointDescription.getType()) {

145 case RUNNABLE:

146 try {

147 Class<?> entrypointClass = null;

148 entrypointClass = Class.forName(entryPointDescription

149 .getClassName(), true, this);

150 Runnable runnable = (Runnable) entrypointClass

151 .newInstance();

152 Thread environmentThread = new Thread(execEnvThreadGroup,

153 runnable);

154 if (this.getUncaughtExceptionHandler() != null) {

155 environmentThread. setUncaughtExceptionHandler (this

156 .getUncaughtExceptionHandler ());

157 }

158 environmentThread.setContextClassLoader (this);

159 environmentThreads.add(environmentThread);

160 environmentThread.start();

161 } catch (Exception e) {

162 throw new PrivacyException(

163 "Environment could not be started, due to", e);

164 }

165 break;

166 case MAIN:

167 Thread environmentThread = new Thread(

168 execEnvThreadGroup,

169 new MainRunner (entryPointDescription, this),

170 (this instanceof InnerExecutionEnvironment) ? "Inner Main Thread <

("

171 + entryPointDescription.getClassName() + ")"

172 : "Outer Main Thread ("

173 + entryPointDescription.getClassName ()

174 + """

175 environmentThread.setContextClassLoader (this);

176 environmentThreads.add(environmentThread);

177 environmentThread.start();

178 break;

179 }

180 }

181 3

182

183

184

185 * @param entryPointDescription

186 */

187 private void startServiceInEnvironment (

188 XMLConfigParser.Class entryPointDescription, byte[] classdata) {

189 ThreadGroup execEnvThreadGroup = new ThreadGroup (

190 (this instanceof InnerExecutionEnvironment) ? "Inner Execution <«
—Environment Threads ("

191 + getName() + ")"

192 : "Outer Execution Environment Threads (" + getName()

193 + "))

194 Class<?> entrypointClass = defineClass(entryPointDescription

195 .getClassName(), classdata, 0, classdata.length);

196 Thread environmentThread = null;

197 if (entrytypes.RUNNABLE.equals(entryPointDescription.getType())) {

198 try {

199 Runnable runnableClient = (Runnable) entrypointClass

200 .newInstance();

201 environmentThread = new Thread(execEnvThreadGroup,

202 runnableClient);

203 if (this.getUncaughtExceptionHandler() != null) {

204 environmentThread. setUncaughtExceptionHandler (this

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
204
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

.getUncaughtExceptionHandler ());
}
} catch (Exception e) {
throw new PrivacyException(
"Environment could not be started, due to", e);
}
} else {
environmentThread = new Thread(
execEnvThreadGroup,
new MainRunner (entryPointDescription, this, entrypointClass),
(this instanceof InnerExecutionEnvironment) ? "Inner Main Thread ("
+ entryPointDescription.getClassName() + ")"
"Outer Main Thread ("
+ entryPointDescription.getClassName ()

+ ")
}
if (environmentThread != null) {
// environmentThread.setContextClassLoader (this);
environmentThreads.add(environmentThread);
environmentThread.start();
}
}
public synchronized boolean isActive() {
if (environmentThreads == null) {
return false;
} else {

for (Thread envThread : environmentThreads) {
if (envThread.isAlive()) {
return true;

}

return false;

protected UncaughtExceptionHandler getUncaughtExceptionHandler() {
return null;
}

private class MainRunner implements Runnable {

private XMLConfigParser.Class entryPointDescription;
private ExecutionEnvironment myEnvironment;
private Class<?> entrypointClass;

private MainRunner (XMLConfigParser.Class entryPointDescription,
ExecutionEnvironment environment) {
this(entryPointDescription, environment, null);

private MainRunner (XMLConfigParser.Class entryPointDescription,
ExecutionEnvironment environment, Class<?> classdata) {
this.entryPointDescription = entryPointDescription;
myEnvironment = environment;
if (classdata == null) {
try {
entrypointClass = java.lang.Class. forName (
entryPointDescription.getClassName(), true,
myEnvironment) ;
} catch (ClassNotFoundException e) {
throw new PrivacyException(

"Environment could not be started, due to", e);
}
} else {
entrypointClass = classdata;
}
}
@Override

135

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

136 APPENDIX A. LISTINGS

public void run() {
switch (entryPointDescription.getType()) {
case RUNNABLE:
break;
case MAIN:
try {
Thread. currentThread().setUncaughtExceptionHandler (
myEnvironment.getUncaughtExceptionHandler());
Method mainMethod = entrypointClass.getMethod("main",
new Class<?>[] { String[].class });
mainMethod
.invoke (null, new Object[] { entryPointDescription
.getArguments () });
} catch (InvocationTargetException ite) {
throw new RuntimeException(ite.getTargetException());
/%
* if (this instanceof InnerExecutionEnvironment) {
System.err.println("don’t tell anything"); } else { if
(ite.getCause() instanceof PrivacyException) {
ite.getCause().printStackTrace(); } else {
ite.printStackTrace(); } }
*/
} catch (IllegalArgumentException iae) {
iae.printStackTrace();
} catch (IllegalAccessException iae) {
iae.printStackTrace();
} catch (PrivacyException pe) {
pe.printStackTrace();
} catch (SecurityException se) {
se.printStackTrace();
} catch (NoSuchMethodException nsme) {
nsme.printStackTrace();
}
break;

Finds the class with the specified binary name. The
classes that explicitly belong to the container may be loaded via the
parent class loader. Other wise we get a lot of class cast exceptions,
* because the PrivacyManager loaded by the system class loader appears to
be something different from a PrivacyManager loaded by one of the
execution environments.

* @param name
The binary name of the class
* @return The resulting <tt>Class</tt> object
* @throws ClassNotFoundException
If the class could not be found
*/
protected Class<?> findClass(String name) throws ClassNotFoundException {
// Class<?> loadedC = this.findLoadedClass(name);
for (Class<?> partOfPGEC : PrivacyManager.getClassesBelongingToPGEC()) {
if (partOfPGEC.getName().equals(name)) {
return partOfPGEC;
}
}
Class<?> defined = getLoadedClass(name);
if (defined !'= null) {
return defined;
}
byte[] b = loadClassData(name);
if (b !'= null) {
defined = defineClass(name, b, 0, b.length);
} else {
// TODO darf nicht einfach wenn class nicht geladen werden kann
// den system classloader benutzen SICHERHEITSRISIKO
defined = this.getParent().loadClass(name);

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

364

371

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

//TODO new PrivacyManager.InfiniteLock(defined);
}
addLoadedClass (name, defined);
return defined;
// } else {
// // some classes explicitly named should be loaded by original class
// // loaders to allow correct casting
// return this.getParent().loadClass(name);

// '}
}
private String getClassPath() {
if (remoteClassSource != null) {
return null;
} else {
if (getEnvironmentDescription().getClasspath() != null) {

return getEnvironmentDescription().getClasspath() +
+ System.getProperty("java.class.path");
} else {
return System.getProperty("java.class.path");

* TODO load from JAR file or other URL or source

* @param name
String
* @return byte[]
*/
protected final byte[] loadClassData(String name) {
// load the class data from the connection
log.debug("loading class " + name);
if (remoteClassSource != null) {
if (name.startsWith("java.")) {
// since system classes in package java have to be loaded via
// the system class loader anyway
// I don’t need to load it from remote
return null;
}
if (name.equals("com.sun.xml.internal.stream.XMLOutputFactoryImpl")) {
// if I try to load this from remote I need an instance of just
// this class, which I don’t have yet, it’s a hen-egg problem
// solution: load this class locally
return null;
}
if (name.equals("com.sun.xml.internal.stream.XMLInputFactoryImpl")) {
// if I try to load this from remote I need an instance of just
// this class, which I don’t have yet, it’s a hen-egg problem
// solution: load this class locally
return null;
}
return PrivacyManager.getPrivacyManager ()
.loadClassDataFromOtherContainer (remoteClassSource, name);

}

String filename = name.replace(’.’, ’/’) + ".class";

String classpath = getClassPath();

StringTokenizer cpTokenizer = new StringTokenizer(classpath, ";");

while (cpTokenizer.hasMoreTokens()) {
String directory = cpTokenizer.nextToken();
if (!directory.equals("")) {
File classTolLoad = new File(directory, filename);
if (classTolLoad.exists()) {
int classLength = (int) classTolLoad.length();
byte[] out = new byte[classLength];
try {
FileInputStream fis = new FileInputStream(classTolLoad);
int ptr = 0;
while (ptr < classLength) {

137

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

138

APPENDIX A. LISTINGS

ptr = fis.read(out, ptr, classLength);
}
} catch (FileNotFoundException fnfe) {
out = null;
} catch (IOException ioe) {
out = null;
}

return out;

}
}
// System.out.println(this.getClass().getResource("."));
// System.out.println("CLASSPATH="+System.getProperty("java.class.path"));
return null;

}
VAl
* Loads the class with the specified binary name.
* @param name
* The binary name of the class
* @return The resulting <tt>Class</tt> object
* @throws ClassNotFoundException
If the class was not found
®/

public Class<?> loadClass(String name) throws ClassNotFoundException {
return loadClass(name, false);

}
VAl
* Loads the class with the specified binary name.
* @param name
The binary name of the class
* @param resolve
If <tt>true</tt> then resolve the class
* @return The resulting <tt>Class</tt> object
* @throws ClassNotFoundException
If the class could not be found
*/

protected synchronized Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException {
Class<?> ¢ = findClass(name);
if (resolve) {
resolveClass(c);
}
return c;

}

protected final void addLoadedClass(String name, Class<?> clazz) {
synchronized (loadedclasses) {
loadedclasses.put(name, clazz);
}
}

protected final Class<?> getLoadedClass(String name) {
synchronized (loadedclasses) {
if (loadedclasses.containsKey(name)) {
return loadedclasses.get(name);
} else {
return null;

}
}
protected final ExecutionEnvironmentID getID() {
return ID;

}

protected final String getName() {

485
486
487
488
489
490
491
492
493
494
495
496

}

protected final XMLConfigParser.Environment getEnvironmentDescription() {

}

if (this.name != null) {
return this.name;
} else {

return getEnvironmentDescription().getName();

}

return environmentDescription;

139

140 APPENDIX A. LISTINGS

Listing A.4: Support class enumerating via reflection all objects that can be reached from
a given object reference and starting a thread holding a lock on each of their monitors

280 * environment.

281 */

282 public static final Class<?>[] getClassesBelongingToPGEC() {

283 return classesBelongingToPGEC;

284 }

285

286 public static final class InfinitelLock extends Thread {

287 private final HashSet<Object> 1istO0OfObj = new HashSet<Object>(Q);
288 private Object locksEngagedNotify = new Object();

289 private static final HashSet<Object> lockedObjects = new HashSet<Object>();
290 private static final HashSet<Object> criticalObjects = new HashSet<Object>();
291

292 static {

293 criticalObjects.add(Window.class);

294 criticalObjects.add(SecurityManager.class);

295 //criticalObjects.add(System.err);

296 //criticalObjects.add(System.out);

297 }

298

299 private boolean hasStaticSynchronizedMethods(Class<?> clz) {

300 for (Method meth : clz.getDeclaredMethods()) {

301 if (Modifier.isStatic(meth.getModifiers())

302 && Modifier.isSynchronized(meth.getModifiers())) {
303 return true;

304 }

305 }

306 return false;

307 }

308

309 private boolean hasSynchronizedMethods(Object obj) {

310 for (Method meth : obj.getClass().getDeclaredMethods()) {
311 if (Modifier.isSynchronized(meth.getModifiers())) {

312 return true;

313 }

314 }

315 return false;

316 }

317

318 private InfiniteLock() {

319 super ("locking boxes");

320 lockBooleanBoxes();

321 lockByteBoxes();

322 lockIntegerBoxes();

323 lockShortBoxes();

324 lockCharacterBoxes();

325 this.start(Q);

326 synchronized (locksEngagedNotify) {

327 try {

328 locksEngagedNotify.wait();

329 } catch (InterruptedException e) {

330 }

331 }

332 }

333

334 VAl

335 * Due to boxing mechanism the cast of a primitive data type into its
336 * object results in the same object instance for a memory and
337 implementation limited number of values. I lock on all these objects.
338 */

339 private void lockBooleanBoxes() {

340 prepareForLocking ((Boolean) true);

341 prepareForLocking ((Boolean) false);

342 }

343

344

345 Due to boxing mechanism the cast of a primitive data type into its
346 * object results in the same object instance for a memory and

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

368
369
370
371
372
373
374
375
376
377

379
380
381
382
383
384
385
386
387
388
389
390
391

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

“* implementation limited number of values. I lock on all these objects.

*/
private void lockByteBoxes() {
for (byte i = Byte.MIN_VALUE;; i++) {
prepareForLocking ((Byte) i);
if (i == Byte.MAX_VALUE) {
break;

* Due to boxing mechanism the cast of a primitive data type into its
“ object results in the same object instance for a memory and

* implementation limited number of values. I lock on all these objects.

*/
private void lockIntegerBoxes() {
int i = -1;
while (i < Integer.MAX_VALUE) {
i++;
Object A = (Integer) 1ij;
Object B = (Integer) ij;
if (A == B) {
prepareForLocking (A);
// new InfiniteLock(A);

} else {
break;
}
}
i=0;

while (i > Integer.MIN_VALUE) {
i--3
Object A = (Integer) 1ij;
Object B = (Integer) ij;
if (A == B) {
prepareForLocking (A);
// new InfiniteLock(A);
} else {
break;

* Due to boxing mechanism the cast of a primitive data type into its
* object results in the same object instance for a memory and

* implementation limited number of values. I lock on all these objects.

*/
private void lockShortBoxes() {
short i = -1;
while (i < Short.MAX_VALUE) {
i++;
Object A = (Short) ij;
Object B = (Short) ij;
if (A == B) {
prepareForLocking (A);
// new InfiniteLock(A);

} else {
break;
}
}
i=0;

while (i > Short.MIN_VALUE) {

i--3

Object A = (Short) ij;

Object B = (Short) ij;

if (A == B) {
prepareForLocking (A);
// new InfiniteLock(A);

} else {

141

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

142

APPENDIX A

break;

* Due to boxing mechanism the cast of a primitive data type into its
 object results in the same object instance for a memory and

. LISTINGS

* implementation limited number of values. I lock on all these objects.

*/
private void lockCharacterBoxes() {
char i = "\0’;
while (i < Character.MAX_VALUE) {
i++;
Object A = (Character) ij;
Object B = (Character) ij;
if (A == B) {
prepareForLocking (A);
// new InfiniteLock(A);
} else {
break;
}

}

private InfiniteLock(Object obj) {

super ("locking " + obj);

prepareForLocking (obj);

this.start(Q);

synchronized (locksEngagedNotify) {
try {

locksEngagedNotify.wait();

} catch (InterruptedException e) {
}

}

@SuppressWarnings ("unused™)
private InfiniteLock(Object... objects) {
super("locking " + objects[0] + " ...");
for (Object obj : objects) {
prepareForLocking(obj);
}
this.start();
synchronized (locksEngagedNotify) {
try {
locksEngagedNotify.wait();
} catch (InterruptedException e) {
}

}

InfiniteLock(Class<?> clz) {
super("locking " + clz);
// this.obj = clz;
prepareForLocking(clz);
this.start();
synchronized (locksEngagedNotify) {
try {
locksEngagedNotify.wait();
} catch (InterruptedException e) {

@param clz
“ @throws SecurityException
*/

private void prepareForLocking(Class<?> clz) throws SecurityException {

487
488
489
490
491
492
493
494
495
496
497

499
500
501
502
503
504
505
506

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

synchronized (doPrivilegedActionByMyselfLock) {
synchronized (lockedObjects) {
if (!'lockedObjects.contains(clz)
&& !criticalObjects.contains(clz)) {
if (hasStaticSynchronizedMethods(clz)) {
// there are synchronized static methods in Thread
if (clz.isPrimitive()) {

} else {
System.err.println("l:critical object
criticalObjects.add(clz);

+ clz);

}
} else {
lockedObjects.add(clz);
list0fObj.add(clz);
// this.start();
}
for (Field objField : clz.getDeclaredFields()) {
if (Modifier.isStatic(objField.getModifiers())
&& !'Modifier.isPrivate(objField.getModifiers())
&& 'objField.getType().isPrimitive()) {
try {
Object field = objField.get(null);
if (field != null) {
prepareForLocking(field);
// new InfiniteLock(field);
}
} catch (IllegalArgumentException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IllegalAccessException e) {
// TODO Auto-generated catch block
// e.printStackTrace();

}
}
for (Class<?> objInnerClass : clz.getDeclaredClasses()) {
if (Modifier.isStatic(objInnerClass.getModifiers())
&& !'Modifier.isPrivate(objInnerClass
.getModifiers())) {
try {
prepareForLocking(objInnerClass);
// new InfiniteLock(objInnerClass);
} catch (IllegalArgumentException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}
Class<?> superclass = clz.getSuperclass();
if (superclass != null) {
prepareForLocking (superclass);
// new InfiniteLock(superclass);
}
for (Class<?> implementedInterface : clz.getInterfaces()) {
prepareForLocking(implementedInterface);
// new InfiniteLock(implementedInterface);

}
}
}
}
}
* @param obj
* @throws SecurityException

~,t-/

private void prepareForLocking(Object obj) throws SecurityException {
synchronized (doPrivilegedActionByMyselfLock) {
if (obj instanceof Class<?>) {

143

144 APPENDIX A. LISTINGS

557 prepareForLocking ((Class<?>) obj);

558 } else {

559 synchronized (lockedObjects) {

560 if (!lockedObjects.contains(obj)

561 && !criticalObjects.contains(obj)) {

562 if (hasSynchronizedMethods (obj)) {

563 // there are synchronized static methods in Thread
564 if (obj.getClass().isPrimitive()) {

565

566 } else {

567 System.err.println("2:critical object " + obj);
568 criticalObjects.add(obj);

569 }

570 } else {

571 lockedObjects.add(obj);

572 list0fObj.add(obj);

573 // this.start();

574 }

575 Class<?> clz = obj.getClass();

576 for (Field objField : clz.getDeclaredFields()) {
577 if (!'Modifier.isPrivate(objField.getModifiers())
578 && !Modifier.isTransient(objField

579 .getModifiers())

580 && !'objField.getType().isPrimitive()) {
581 try {

582 Object field = objField.get(obj);

583 if (field != null) {

584 prepareForLocking(field);

585 // new InfiniteLock(field);

586 }

587 } catch (IllegalArgumentException e) {

588 // TODO Auto-generated catch block

589 // e.printStackTrace();

590 } catch (IllegalAccessException e) {

591 // TODO Auto-generated catch block

592 // e.printStackTrace();

593 }

594 }

595 }

596 for (Class<?> objInnerClass : clz.getDeclaredClasses()) {
597 if (!'Modifier.isPrivate(objInnerClass

598 .getModifiers())) {

599 try {

600 prepareForLocking(objInnerClass);

601 // new InfiniteLock(objInnerClass);

602 } catch (IllegalArgumentException e) {

603 // TODO Auto-generated catch block

604 e.printStackTrace();

605 }

145

Listing A.5: Transmitting “Hello World” using Manchester Encoding over memory al-

location.

Vi
*/

package com.endosoft.privacyattack;

import java.util.LinkedList;

* It produces high and low memory load in Manchester code.
<—allocate the CPU in

* multi-core environments predictively.

* @author Michael Maaser

%/
public class GeneratorMemoryLoadManchester {
public static int duration = 600;
LinkedList<byte[][]> dummy =
private void producelow() {
if (dummy.size()>0) {
dummy .clear();
System.gc();

new LinkedList<byte[][]1>Q);

}
try {
Thread.sleep(duration);
} catch (InterruptedException e) {
}
}
private void produceHigh() {
if (dummy.size()==0) {

for (int i = 0; i < 128; i++) {

if (Runtime.getRuntime().freeMemory() > 1024 *

dummy . add (new byte[1024]1[1024]);
}
}
}
try {
Thread.sleep(duration);
} catch (InterruptedException e) {
}
}

private void produce(int bit) {
switch (bit){

case 0: produceHigh() ;produceLow();
break;

case 1: producelLow();produceHigh(Q);
break;

}

}

private void produce(char byt) {
for (int i = 0; i < 8; i++) {
if (byt >= 128) {

produce (1) ;
} else {
produce (0);
}
byt &= Ox7F;
byt <<= 1;
}
}
private void produce(String text) {
for (int i =0; i < text.length(Q); i++) {

produce (text.charAt(i));

Unfortunately it does not

1024 * 2) {

67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

146

}

private static long med =0;
private static long low =0;
private static long high =0;
/5

* @param args

*/

APPENDIX A. LISTINGS

public static void main(String[] args) {
GeneratorMemorylLoadManchester me = new GeneratorMemorylLoadManchester();

me.produceHigh();
me.produceHigh();
me.produceHigh();
me.produceHigh();

high = Runtime.getRuntime().freeMemory();

me .producelLow () ;
me.producelLow();
me .produceLow () ;
me.producelLow();

low = Runtime.getRuntime().freeMemory();

med = Chigh +low)/2;
System.out.println("Mem:

low:"+low+" med:"+med+" high:"+high);

me.produce ("Hello World");

147

Listing A.6: Receiving information using Manchester Encoding over memory alloca-

tion.

Vi

*/
package com.endosoft.privacyattack;

@author Michael Maaser

*/
public class ReaderMemoryLoadManchester extends Thread {

private static int duration = GeneratorMemoryLoadManchester.duration;
private static long med =0;

private static long low =0;

private static long high =0;

public void run() {
boolean currentstate = false; //low
int samplingintervall = duration/4;
try {
Thread.sleep(® * (samplingintervall+ 2 * duration));
} catch (InterruptedException e) {
}
long lastStateChange = System.currentTimeMillis()- duration;
int bitcounter = 0;
char byt = 0;
low = Runtime.getRuntime().freeMemory();
high = low - 90000000;
med = Chigh +1low)/2;
int eta = 2;
for (int i = 0; i <1000; i++) {
long fm = Runtime.getRuntime().freeMemory();
long ts = System.currentTimeMillis();
boolean previousstate = currentstate;
currentstate = fm>med;
System.out.print(currentstate?"_":"-");
if (currentstate != previousstate) {
if (ts - lastStateChange > duration * 3.5) {
eta --;
if (eta == 0) {
lastStateChange = ts - duration;
} else {
lastStateChange = ts;
}
}
if (eta == 0) {
if (ts - lastStateChange > duration * 1.6) {
byt <<=1;
if (!currentstate) {
byt +=1;
}
if (++bitcounter == 8) {
System.err.println(byt);
bitcounter = 0;

byt = 0;
}
lastStateChange = ts;
}
}
}
if (currentstate) {
high = fm;
} else {
low = fm;
}
med Chigh +1low)/2;

try {

68

70
71
72
73

148

Thread.sleep(samplingintervall);
} catch (InterruptedException e) {
}

APPENDIX A. LISTINGS

O 0NN R W=

33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

149

Listing A.7: Overloading information encoded in memory allocation with random noise.

* /
package com.endosoft.pgec;

import java.util.LinkedList;
import java.util.Random;

@author Michael Maaser

*/

public class CovertChannelCounterMeasureMemory extends Thread {

private LinkedList<byte[][]> dummy = new LinkedList<byte[][]1>Q);
private Random rand = new Random();
private boolean running = false;

public CovertChannelCounterMeasureMemory() {
super ("CovertChannelCounterMeasureMemory");
this.start();

}

private void producelow() {
if (dummy.size()>0) {
dummy . clear();
System.gc(Q);
}
try {
Thread.sleep(rand.nextInt (4000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private void produceHigh() {
long fm = Runtime.getRuntime().freeMemory() / 1024 /1024;
if (dummy.size()==0) {
for (int i = 0; i < fm; i++) {
if (Runtime.getRuntime().freeMemory() > 1024 * 1024 * 2) {
dummy . add (new byte[1024]1[1024]);
}
}
}
try {
Thread.sleep(rand.nextInt (4000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}

public void finish() {
running = false;

}
@Override
public void run() {
running = true;
while(running) {
produceHigh();
producelow();
}
}

[N e N L SR

150 APPENDIX A. LISTINGS

Listing A.8: Transmitting “Hello World” using Manchester Encoding over CPU load.
Vil

*/
package com.endosoft.privacyattack;

import java.util.Random;

/-,'.— %
It produces high and low CPU load in Manchester code. Unfortunately it does
* not allocate the CPU in multi-core environments predictively.

* @author Michael Maaser

x/
public class GeneratorCPULoadManchester {

public static int duration = 1000;
private static int numberofcores = 2;

private void producelow() {
try {
Thread.sleep(duration);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
private boolean highend = false;

private void produceHigh() {
// Object moni = new Object();
// synchronized (moni) {
highend = false;
@SuppressWarnings ("unused")
int dummy = 0;
final Random r = new Random();
Thread[] th = new Thread[numberofcores + 1];

th[0] = new Thread() {
public void run() {
try {
Thread.sleep(duration);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
highend = true;
}
1
for (int i = 1; i <= numberofcores; i++) {
th[i] = new Thread() {
public void run() {
@SuppressWarnings ("unused")
int dummy = 0;
while (!'highend) {
dummy = r.nextInt();
}
}
b
}

for (int i = 0; i <= numberofcores; i++) {
th[i].setName("CPU load generator ["+i+"]");
th[i].start(Q);

try {
for (int i = 0; i <= numberofcores; i++) {
th[i].joinQ);
}

70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125
126
127

~N N B W =

} catch (InterruptedException e) {
}
// }

}

private void produce(int bit) {

switch (bit) {

case 0:
produceHigh();
produceLow();
break;

case 1:
producelow () ;
produceHigh();
break;

}

private void produce(char byt) {
for (int i = 0; i < 8; i++) {

if (byt >= 128) {
produce (1) ;

} else {
produce (0);

}

byt &= Ox7F;

byt <<= 1;

}
private void produce(String text) {

for (int i = 0; i < text.length(); i++) {
produce (text.charAt(i));

}
}
/ * %
* @param args
* /
public static void main(String[] args) {
try{
numberofcores = Integer.parselnt(args[0]);
}catch(Exception e){}
long start = System.currentTimeMillis();
GeneratorCPULoadManchester me = new GeneratorCPULoadManchester();
for (int i = 0; i < 8; i++) {
me .producelLow () ;
}
for (int i = 0; i < 8; i++) {
me.produceHigh();
}
me.producelLow();
me.produce("Hello World");
System.err.println("finished in "+((System.currentTimeMillis()-start)/1000)+"«
—seconds");
}

151

Listing A.9: Receiving information using Manchester Encoding over CPU load.

package com.endosoft.privacyattack;
import java.util.Random;
public class ReaderCPULoadManchester implements Runnable {

public static void main(String[] args) {

152 APPENDIX A. LISTINGS

8 Thread th = new Thread(new ReaderCPULoadManchester (), "CPU load reader");

9 th.setPriority(Thread.MIN_PRIORITY);

10 th.start(Q);

11 }

12

13 private Random r = new Random();

14 private static int duration = GeneratorCPULoadManchester.duration;

15 private int state = 0;

16 private char byt = 0;

17 private int bitcounter = 0;

18

19 private void appendBit(boolean bit) {

20 byt <<= 1;

21 if (bit) {

22 byt += 1;

23 }

24 if (++bitcounter == 8) {

25 System.err.print (byt);

26 bitcounter = 0;

27 byt = 0;

28 }

29 }

30

31 private void decode(boolean lowsignal, int duration) {

32 switch (state) {

33 case 0:

34 // initial low

35 if (!'lowsignal && duration > 6) {

36 state = 1;

37 }

38 break;

39 case 1:

40 // initial high

41 if (lowsignal && duration > 6) {

42 state = 2;

43 }

44 break;

45 case 2:

46 if (duration == 2) {

47 appendBit (!lowsignal);

48 } else {

49 state = 3;

50 }

51 break;

52 case 3:

53 appendBit (!lowsignal);

54 state = 2;

55 break;

56 }

57 }

58

59 @Override

60 public void run() {

61 @SuppressWarnings ("unused™)

62 int dummy = 0;

63 long end = 0;

64 long count = 0;

65 boolean laststate = false;

66 long start = System.nanoTime();

67 long laststatechangetime = start;

68 boolean currentstate = false;

69 while (true) {

70 start = System.nanoTime();

71 for (count = 1; count <= 50000

72 && (end = System.nanoTime()) < (start + 1000 * 1000 * 500); count++) <
—{

73 dummy = r.nextInt();

74 }

75 // end = System.nanoTime();

76 currentstate = (count * 1000 * 1000 / (end - start)) > 200; // low

77
78
79
80
81
82
83
84
85
86
87
88

if

// CPU
// load

(currentstate != laststate) {

laststate = currentstate;

decode (currentstate, (int) Math

.round((start - laststatechangetime) / 1000.0 / 1000
/ duration));
laststatechangetime = start;

153

[N e N L SR

55
56
57
58
59
60
61
62
63
64
65
66
67
68

154 APPENDIX A. LISTINGS

Listing A.10: Overloading information encoded in CPU load with random noise.

*/
package com.endosoft.pgec;

import java.util.Random;

Vi

* @author Michael Maaser

*/
public class CovertChannelCounterMeasureCPU extends Thread {

private Random rand = new Random();
private boolean running = false;

public CovertChannelCounterMeasureCPU() {
super ("CovertChannelCounterMeasureCPU");
this.start(Q);

}

private void producelow() {
try {
Thread.sleep(rand.nextInt (4000));
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

private boolean highend = false;
private void produceHigh() {
Object moni = new Object();
synchronized (moni) {
highend = false;
@SuppressWarnings ("unused™)
int dummy = 0;
Random r = new Random();
new Thread() {
public void run() {
try {
Thread.sleep(rand.nextInt (4000));
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
highend = true;
}
}.startQ;

while (!highend) {
dummy = r.nextInt();
}

}

public void finish() {
running = false;

}

@Override
public void run() {
running = true;
while(running) {
produceHigh();
producelow();

List of Symbols
and Abbreviations

3G third generation

4G fourth generation

AACS Advanced Access Content System

AES Advanced Encryption Standard

API Abstract Programming Interface

APPEL A P3P Preference Exchange Language

CA Certificate Authority

CD Compact Disc

CGMS-A Copy Generation Management System-Analog

CPDA Cluster-based Private Data Aggregation

CPU Central Processing Unit

CSS Content Scrambling System

DAC Discretionary Access Control

DHT Distributed Hash Table

DRM Digital Rights Management

DVD Digital Versatile Disc

ECC Elliptic Curve Cryptography

EJB Enterprise Java Bean

EPR Electronic Patients Record

GeoPriv Geographic Location/Privacy

GPS Global Positioning System

GSM Global System for Mobile communications (originally from Groupe Spécial Mo-
bile)

GUI Graphical User Interface

HD-DVD High-Definition/Density DVD

HDCP High-bandwidth Digital Content Protection

IETF Internet Engineering Task Force

IPsec Internet Protocol Security

155

156 LIST OF SYMBOLS AND ABBREVIATIONS

J2EE Java 2 Enterprise Edition

JDBC Java Database Connectivity

JRE Java Runtime Enviroment

JVM Java Virtual Machine

KAS Kerberos Authentication Service

LAN Local Area Network

LBS Location Based Service

MAC Mandatory Access Control

MathML Mathematical Markup Language

MIDI Musical Instrument Digital Interface

MP3 MPEG-1 Audio Layer 3

MPEG Moving Picture Experts Group

OASIS Organization for the Advancement of Structured Information Standards

OS Operating System

P3P Platform for Privacy Preferences Project

PACS Picture Archiving and Communication System

PC Personal Computer

PDA Personal Digital Assistant

PE Protected Environment

PET Privacy Enhancing Technologies

PGEC Privacy Guaranteeing Execution Container

PKI Public Key Infrastructure

PMP Protected Media Path

PRIME PRivacy and Identity Management for Europe

PSK Pre-shared key

PUMA Protected User Mode Audio

PVP Protected Video Path

PVP-OPM Protected Video Path - Output Protection Management

PVP-UAB Protected Video Path - User-Accessible Bus

RADIUS Remote Authentication Dial-In User Service

RAM Random Access Memory

RBAC Role Based Access Control

RFC Request For Comments

RSA Rivest-Shamir-Adleman (cryptosystem named by its inventors Ronald L. Rivest,
Adi Shamir und Leonard Adleman)

SMART Slice-Mix-AggRegaTe

SQL Structured Query Language

SSL Secure Sockets Layer

SWIFT Society for Worldwide Interbank Financial Telecommunication

TAN Transaction Authentication Number

TCP Transmission Control Protocol

TGS Ticket Granting Service

TLS Transport Layer Security

TPM Trusted Platform Module[55]

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System
VOD Video On Demand

WiMax Worldwide Interoperability for Microwave Access
WEP Wired Equivalent Privacy

WLAN Wireless LAN

WPA Wi-Fi Protected Access

WSN Wireless Sensor Network

XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

XSD XML Schema Definition

157

List of Figures

1.1

2.1

2.2

3.1

Transfer of patients data using an EPR inside the PGEC. The ring displays
the logical unit of the distributed container, whereas the darker shaded sec-
tors are the instances running on the machines of the respective scenario
participants. The inside of the ring is the environment, in which service can
be executed and access private data depending on the access rights granted
by the data owner. Private data can be filled into the container but never
leave it un-encrypted. (The faded EPR Visualization Service has no actual
function but to provide the Visualization GUI, which in turn implements the
required functionality. This is reasonable due to the transparent distribution
of the container instances.) The numbering reflects the sequence of the calls.
Calls numbered with a and b are triggered by the according API calls to the

Multi-Role relationships [47] in an RBAC system. Access rights to Ob-
Jjects are assigned to respective roles Healer, Intern or Doctor. The roles
include each other by a member _of relationship. That is, a Doctors transi-
tively inherits the access rights from Interns and Healers. Users assigned to
a particular role are explicitly granted with the rights assigned to that role
and implicitly with the rights assigned to the more general roles.

Protected Media Path (PMP) Overview [56]. It displays data and control
flow from the protected digital media to the rendering devices. Decryption of
data happens only within a specially Protected Environment (PE) by trusted
components. Decrypted data may further leave the PE only via Protected
Video Path (PVP) and Protected User Mode Audio (PUMA). This ensures
that no copies of the decrypted streams can be obtained.

A user Bob known to the CA creates an unfinished certificate with right 2
and expiration date 3. He adds a blinded self chosen pseudonym, displayed
as the hatched lock. The pseudonym is part of a key pair, which is like the
blind factor only knowntoBob. 000

28

LIST OF FIGURES

3.2

33

34

3.5

3.6

3.7

3.8

4.1

Bob sends the unfinished certificate to the CA. After identification and au-
thentication of Bob, the CA verifies whether the demanded right and ex-
piration date are granted to Bob. In the successful case, the CA signs the
certificate twice with the key for rights and three times with the key for ex-
pirations dates. e e

Bob uses the inverse of the blind factor, known only to him, to un-blind the
pseudonym after the CA returned the signed certificate (removal of hatch-
ing)). He gains a validly signed certificate, which cannot be mapped to an
identity. Using this, he can prove his right 2 until date 3 without revealing
hisidentity. e

A user wants to use a VOD service without revealing her/his identity. The
service requires the possession of right 2 at the time of usage. For the proof
of ownership of right 2, the user sends her/his certificate to the service. . . .

For verification of the certificate received from the user, the service forwards
it to the CA. The CA applies, according to the claimed right and expiration
date, twice the verification key for rights and three times the verification key
forexpirationdates.

If the verification results in a well-formed pseudonym, the CA returns this
to the requesting service. Otherwise nothing is returned and the service
excludes the user from the serviceusage.

The well-formed pseudonym received from the CA is a public key, which
can be used for verification of legal ownership of the presented certificate.
Therefore, the service generates a random challenge and encrypts it with the
embedded pseudonym. This encrypted challenge is returned to the present-
INZUSET. .« . v v v et e e e e e e e

If the user is legal owner of the certificate, she/he possesses the private key
belonging to the pseudonym. Only with this private key the challenge can be
decrypted. With a correct decrypted challenge the legal possession of rights
can be proven, which entitles for serviceusage.

Architecture of the Privacy Guaranteeing Execution Container (PGEC). It
features a communication interface observing and controlling communica-
tion with external processes or machines. In general external communica-
tion is prohibited. Exceptions can be specified in privacy contracts or data
access agreements. Further, the PGEC provides an arbitrary number of exe-
cution environments. The separate execution environments effectively sup-
presses communication between their applications and services.

159

46

160

42

5.1

5.2

53
54

5.5
5.6
5.7
5.8

LIST OF FIGURES

Architecture of the distributed container. A distributed PGEC consists of
at least two instances of the stand-alone PGEC. These instances are con-
nected through encrypted channels, which tunnel all communication of ser-
vices distributed in these PGEC instances and messages for container man-
agement and control. Mutual authentication mechanisms ensure that only
PGEC instances are the endpoints of those channels. These channels allow
transparent access to private data available in other container instances.

Java 2 Security Model [78]. The evolution of the Java security model even
introduced protection domains, which resemble the execution environments
of the PGEC’s architecture. While the security policy and access permis-
sions define the allowed actions, the protection domain and access control
checking provide the enforcement. In the Java security model, the security
policy and the access permissions are defined by the owner/executor of the
JVM. In contrast to that, in the PGEC these are defined by (negotiated) pri-
vacy contracts and must be immutable by the executor of the JVM running
the PGEC and the services within.
Sequence chart of concurrent threads transferring information by synchro-
nization on globally accessible object monitors. The colors in the chart re-
flect the monitored objects. X - yellow, A - red and B - blue. A solid block
of particular color means that the thread holds the lock on that objects mon-
itor. A thread waiting for a particular lock is depicted as a faded block of
the respective color. Within the critical sections there is not much logic but
merely sleeping. The receiving threads use a shared object to determine
which one is the first to enter the critical section of A or B respectively. The
firstoutputsaOor 1 accordingly.
CPU load chart over time with modulated information.
Entity-Relationship-Model of the permission structure that is implemented
inthe PGEC.
Successful print result of PrintSomething.
The GUI that is produced by the test attack implementation.
The gamut to be played on a MIDI device by the attacking code.
Comparison of the CPU load graphs produced by the implementation of
attack #22 without and with enabled PGEC countermeasures.

64

List of Tables

4.1 Attacks launched via regular API means using Java and respective counter-
measures providedby PGEC 67
4.2 Covert Channels Attacks executed by program code inside the PGEC 68

161

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scenarios
	1.2.1 Anonymous Authentication/Access Control
	1.2.2 Stationary/mobile use
	1.2.3 Exchange of Private Data for Purpose
	1.2.4 Scenario of Accessing Medical Data of Patients

	2 Related Technologies
	2.1 Existing Privacy Protection Technologies
	2.1.1 Declarative Technologies
	2.1.2 Enforcing Technologies

	2.2 Access Control Technologies
	2.2.1 XACML
	2.2.2 DAC
	2.2.3 MAC
	2.2.4 RBAC

	2.3 Authentication Technologies
	2.3.1 Kerberos
	2.3.2 PSK Authentication

	2.4 Digital Rights Management (DRM)

	3 Anonymous Access Control
	3.1 Technology
	3.2 Function Principle
	3.2.1 Requirements
	3.2.2 Mathematical Background
	3.2.3 Attacks by Malicious Users
	3.2.4 Attacks by Malicious CA

	3.3 Performance
	3.4 Simplified Example
	3.4.1 Issuing of Certificates
	3.4.2 Anonymous Authorization and Authentication

	4 Protecting Private Data by Technical Means
	4.1 Terminology
	4.1.1 Service Classification
	4.1.2 Economical Security
	4.1.3 Evaluate Information Load of Literals
	4.1.4 Negotiation of Permitted Data

	4.2 Privacy Guaranteeing Execution Container (PGEC)
	4.2.1 Stand-alone Architecture
	4.2.2 Distributed Architecture

	4.3 Protection Requirements
	4.3.1 PGEC Threat Model

	5 Prototype Implementation
	5.1 Technical Aspects and Components of the PGEC
	5.1.1 PGEC and its Host Runtime Environment
	5.1.2 Other Protection Means
	5.1.3 Covert Channels
	5.1.4 Assertion of Untampered System
	5.1.5 API for Data Access
	5.1.6 Mutual Authentication of Distributed PGEC Instances

	5.2 Test Attacks and Effects of Counter Measures
	5.2.1 Test Regular Attacks
	5.2.2 Test Covert Channel Attacks

	6 Summary
	Bibliography
	A Listings
	List of Symbols and Abbreviations
	List of Figures
	List of Tables

