
A Component-Based Approach to
Human-Computer Interaction

Specification, Composition, and Application to
Information Services

Von der Fakulẗat für Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Thomas Feyer
geboren am 14. September 1972 in Halle

Gutachter: Prof. Dr. rer. nat. habil. Bernhard Thalheim
Gutachter: Prof. Mag. Dr. rer. nat. Dr. h. c. Heinrich C. Mayr
Gutachter: Prof. Dr.-Ing. Hannu Jaakkola

Tag der m̈undlichen Pr̈ufung: 11. Dezember 2003

To my father.

Abstract

The discipline of software engineering is increasingly shifting from classical design
and development tasks towards tasks concerning reuse, adaptation, and integration.
Driving motivations for this shift are (i) decreasing development time and costs and
(ii) increasing quality of design results. Unfortunately, these new tasks are not yet
supported sufficiently. While classical approaches to information system’s design are
quite well suited to a design from scratch, they do not provide powerful concepts con-
cerning reuse. Although encapsulation by means of functions, classes, or sub-systems
provides opportunities for reusing functionality, methods concerning encapsulation of
dialog structures are commonly neglected. On the one hand, an approach to reusing
dialog structures seems quite promising wrt. design time and quality, since interaction
design has been recognized as a complex and time-consuming task. On the other hand,
this approach reveals an inherent complexity which must be resolved. It manifests at
the following questions:

• How to encapsulate interaction by means of components?

• Does component composition enable to derive complex interaction
from elementary?

• How to verify (dynamic) properties of components wrt. quality of
user interaction?

• How to ensure that a composition of components behaves as in-
tended?

• How to adapt components to particular application requirements?

• Which new requirements does a component-based design process
have to meet? In particular:

• How to support the designer in identifying desired components?

• How to identify relations between components as, for example, com-
ponent refinement?

To tackle solutions to these questions, we identified three closely related research ar-
eas as a basis: (i) interaction patterns, (ii) interaction specification and design, and (iii)

i

ii ABSTRACT

component approaches. At the thesis, we selected promising models of these areas,
adapted them to our requirements, and provided an integrated treatment which com-
bines the advantages of all of these approaches. Therewith, we hope that the results
of the thesis will contribute to the currently active research concerning component
technology and methods of reuse.

Acknowledgments

This work has been developed within the last years at the database and information
system’s (dbis) group at BTU Cottbus. I would like to thank everybody who was
contributing to this work by discussions, support, as well as diversions. Especially, I
would like to express my gratitude to the following people:

First of all, I like to thank my advisor Prof. Bernhard Thalheim for his support, inspi-
rations, and hospitality. For their effort to provide the reviewing, I like to thank Prof.
Heinrich Mayr and Prof. Hannu Jaakkola. Particularly, I thank the ”pre-reviewers”
Steffen Jurk, Aleksander Binemann-Zdanovicz, Gunar Fiedler, and Vojtech Vestenický
who contributed to the final appearance of the thesis. I would like to thank Wolfram
Clauß, Jana Lewerenz, Srinath Srinivasa, and the members of the former codesign
team for many fruitful discussions at the initial stage of the thesis. Regarding the ini-
tial stage, I will not miss to thank Prof. Klaus-Dieter Schewe for paving the way to the
BTU. A special thank I would like to send to Marcela Varas and her group at the Uni-
versidad de Concepción. Thank you for the interesting discussions and the perfectly
arranged stay at your group.

I also thank all students which I was allowed to advise — especially to Birk Heinze
for many discussions which provided essential ideas for this work. For discussions as
well as welcome diversions, I like to thank all former and current members of the dbis
team, in particular, our secretary Karla Kersten for her help at any incidents. Troubles
related to system administration were always fixed by Günter Millahn and Thomas
Kobienia. Thanks a lot.

Last but not least, I greatly thank my parents and my wife Christiane for all their
support and motivation.

iii

iv ACKNOWLEDGMENTS

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Interaction Patterns . 2

1.2 Towards Composable Specifications 4

2 A Net-Based Interaction Model 9

2.1 Introduction to Coloured Petri Nets 10

2.2 Definition of Interaction Nets . 16

2.3 Utilization of Interaction Nets . 18

2.4 Composition of Interaction Nets . 20

2.5 Concluding Remarks . 26

3 A Component Perspective 27

3.1 Stream-Defined Component Model 28

3.1.1 Syntax and Semantics . 28

3.1.2 Behavioral Characterization of Composition 36

3.2 Component Semantics of Interaction Nets 38

3.2.1 I/O Behavior . 39

3.2.2 Behavioral Characterization of Net Composition 48

3.2.3 Proof of the Characterization 50

3.3 Components in Environment . 64

3.3.1 Component Refinement . 65

3.3.2 Component Properties and Assertions 68

3.4 Concluding Remarks . 72

v

vi CONTENTS

4 Application to Information Services 73

4.1 A Component-Based Architecture 73

4.2 UI-Components . 77

4.3 UI-Composition Components . 84

4.3.1 Composition of UI-Components 84

4.3.2 Composition Patterns . 90

4.3.3 Refinement and Adaptation 92

4.4 Realization Based on Interaction Nets 97

4.4.1 Context . 97

4.4.2 Context Transition Model 107

4.4.3 UI-View . 112

4.4.4 Assertions . 114

4.4.5 Simulation and Prototyping 115

4.5 Verification of Ergonomic Aspects 118

4.6 A Case Study: Interactive Catalogs 125

4.7 Concluding Remarks . 137

5 Related Work 139

5.1 Design Models for Web Information Services 140

5.1.1 Araneus . 140

5.1.2 OOHDM . 142

5.1.3 Torii . 143

5.1.4 WebComposition Model . 145

5.1.5 View-Centered Design Model 146

5.2 Component Approaches . 147

5.2.1 A Design Perspective . 147

5.2.2 Related Component Models 149

5.3 Design of Information Services . 151

6 Conclusions 153

6.1 A Summary . 153

6.2 Open Problems and Future Directions 154

CONTENTS vii

A Selected Interaction Patterns 157

A.1 Selectable Search Space . 157

A.2 Set-Based Navigation . 159

A.3 Interaction History . 160

Bibliography 163

viii CONTENTS

List of Figures

2.1 Example of an interleaved execution of two user scenario 10

2.2 Abstract execution model of interactive components 10

2.3 Abstract representation of interaction between components 11

2.4 A CP net which provides basic functionality for accessing lists 13

2.5 An interaction net providing event-driven navigation through lists . . 17

2.6 A composite CP net which permits unfair runs 17

2.7 Demonstration of composing interaction nets 22

2.8 Demonstration of renaming interaction net 24

2.9 Dependency resolution by composition components 25

3.1 Abstract representation of a component 29

3.2 Graphical representation of an unbounded buffer 30

3.3 A sequential composition of two components 33

3.4 A non-sequential composition of two components 34

3.5 Composition of components ”UBuffer” and ”AcSum” 35

3.6 Relation between component composition and its i/o behavior 38

3.7 Observing i/o behavior of interaction nets 39

3.8 An observer connected to an unreliable buffer 41

3.9 Representation of streams and stream tuples 44

3.10 An observer that initiates input streams and records responses 44

3.11 Illustration of the behavior of net composition 46

3.12 A general observer . 47

3.13 Relation between interaction net composition and its i/o behavior . . 48

3.14 A unidirectional interaction between two interaction nets 49

3.15 Relation ’�’ on traces corresponds to relation ’⊆’ on markings 51

3.16 Illustration of Lemma 3.1 . 52

ix

x LIST OF FIGURES

3.17 Naming convention according to streams in composite nets 55

3.18 Graphical representation of Lemma 3.4 57

3.19 Graphical representation of Lemma 3.5 59

3.20 An adapted perspective by decomposition of observers 63

3.21 Illustration of a service request queue 65

3.22 Illustration of interface refinement 67

3.23 Illustration of an assertion required by a request queue 69

3.24 Property satisfaction test at the existence of assertions 71

4.1 UI-components provide two interfaces 74

4.2 Composition of dependent ui-components 75

4.3 Embedding ui-components into an environment 76

4.4 Internal structure of ui-components 77

4.5 A view-based approach to ensure consistent context exchange 79

4.6 UI-Component ’List Scrolling’ . 81

4.7 Internal structure of ui-composition components 84

4.8 UI-Component ’Category Selection’ 87

4.9 A concrete ui-composition component 89

4.10 A composition component providing a service queue 93

4.11 Refining and extending ui-components by wrappers 93

4.12 Realization of ui-wrappers by unary ui-composition components . . . 94

4.13 a ui-wrapper that enables circular navigation 96

4.14 Context realization wrt. ’Single-Level Catalog’ 98

4.15 Generic structure of a context component (at global level) 99

4.16 Generic structure of a context component (at a local level) 99

4.17 Interfaces of the transaction service component 100

4.18 Specification of the transaction service component 101

4.19 Extension of the transaction service component 102

4.20 Specification of composition component ”Request Queue” 104

4.21 Specification of composition component ”Request Merger” 104

4.22 Request delegation by use of service request queues 105

4.23 Net-based realization of shared data 106

4.24 Generic structure of the context transition model 108

4.25 Net-based realization of ECA rules 110

LIST OF FIGURES xi

4.26 Net-based realization of the ”Termination Test” 111

4.27 Net-based realization of the ”UI-View” component 112

4.28 Driver-based realization of user interaction 115

4.29 Net-based realization of user interaction 117

4.30 Specification of input type ’string’ 118

4.31 An exemplary dialog structure with missing continuations 123

4.32 Compositional structure of an interactive catalog 127

4.33 UI-Component ’Search Space Adaptation’ 128

4.34 UI-Component ’Interaction History’ 130

4.35 UI-Component ’Set-Based Navigation’ 132

5.1 Araneus design process . 141

xii LIST OF FIGURES

List of Tables

3.1 Selected elements of behavior relationio(UBuffer) 37

3.2 Selected elements of behavior relationio(AcSum) 37

3.3 Selected elements of behavior relationio(UBuffer⊗AcSum) 37

3.4 Two runs of the composite interaction net 42

3.5 Tabular representation of traces of runsr1 andr2 42

3.6 Three elements of behavior relationio(Buffer) (wrt. Figure 3.8) . . . 45

3.7 Selected elements of behavior relations 50

3.8 Naming convention according to streams in composite nets 56

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Design of adaptive and ergonomic user interfaces has been recognized as a complex
and expensive task [Nie94, DFAB98, HLP97, NL95]. In particular, at information ser-
vices available to a large user variety, the acceptance of a system strongly depends on
the adequateness of its user interface. Primarily at the advent of the Web, a large num-
ber of information services were developed and made available to public access. At
an early phase (but partly valid today), usability of user interfaces was often circum-
stantial, inconsistent, and barely intuitive. However, through a successive evolution,
specific dialog structures were identified which proved to enable efficient and intuitive
interaction. They were employed to support, for example, navigation and search sce-
narios, personalization, help facilities, or human error handling. This evolution story
was not only observable according to new challenges of the World-Wide Web. For
example, menu-like interaction structures have been discovered by a similar process
decades ago. When dialog structures were recognized to support ergonomic interac-
tion, they were widely reused. However, reuse was commonly realized in an ad-hoc
manner, i.e., its realization was basically guided by the visual part of user interaction
only. To improve the process of reuse, an abstraction of so-calledinteraction pattern
was introduced [Bor01, Tid98, WT00a, WT00b, DLH02, GPBV99, RSL00] — moti-
vated by the general notion of design patterns [Ale79, GHJV93].

Instead of concrete visualizations, interaction patterns propose guidelines to solve cer-
tain interaction problems. Rather simple patterns that support navigation and search
are known as (cf. [RSL00, HDP02, Tid98, GC00]):

Set-Based Navigation allowing a user to browse through a collection of elements
(typically resulting from a previous search),

Interaction History allowing a user to survey activities performed beforehand and
to return to previous dialog situations,

Guided Tour providing a user with a brief overview of the content and/or services
provided by the system, and

1

2 CHAPTER 1. INTRODUCTION

Selectable Search Spaceallowing a user to decrease large search spaces by choosing
specific categories (comparable to slice and dice facilities of OLAP interfaces
[AGS97, GL97, LST99]).

Although these examples exclusively represent domain independent patterns, an appli-
cation of the approach to domain specific patterns is beneficial as well. For example, a
pattern describing required interactivity of a shopping cart is rather dedicated to com-
mercial domains.

Quality of Service

Today, services provided by human service providers as, for example, travel agencies,
book stores, or dressing shops, often still exceed their according automated services
based on human-computer interaction in (i) effectiveness, (ii) quality of results, and
(iii) user (customer) satisfaction. Reasons therefore are manifold. Human dialogs can
be understood as interactive scenarios, i.e., sequences of utterances of different actors.
For each actor, a dialog usually requires performing several (sub-)tasks to achieve an
intended goal. According to accomplishing a task, actors apply different behavior
patterns which they learned to be effective to achieve the particular task. Examples of
abstract patterns at the area of service provision are: (i) greeting, (ii) expressing a wish,
(iii) expressing/changing requirements, (iv) asking for clarification, (v) performing
transactions, or (vi) aborting transactions.

One reason for lower effectiveness of currently provided user interfaces of (automated)
information services lies in their restricted opportunities of interaction. At human in-
teraction, behavior patterns may be combined flexibly at different dialog situations.
In contrast, modeling of human-computer interaction commonly considers specific in-
teractive paths only which strongly restricts interactive abilities. Interaction patterns
provide a promising candidate to improve this situation. Firstly, adequate realizations
of behavior patterns by means of human-computer interaction may be provided by in-
teraction patterns. Since behavior patterns might correspond to several realizations, it
is the task of the designer to choose appropriate interaction patterns. Secondly, a no-
tion of pattern composition must be supported. It therewith permits a user to flexibly
combine their interactive facilities.

1.1 Interaction Patterns

According to the formulation of interaction patterns, informal descriptions are used
which commonly comprise a pattern name, a problem statement, forces, examples,
solutions, and relations to other patterns (cf., for example, [Bor01, Tid98]):

Name uniquely identifies an interaction pattern within a pattern repository. There
exists several guidelines, how pattern names should be selected. Generally, the

1.1. INTERACTION PATTERNS 3

name should provide a short and comprehensible abstraction of the pattern. In
addition to a repository structuring, it supports retrieval of patterns.

Problem statement describes the general interactive problem which will be resolved.
It may also indicate the situations in which the interaction pattern can be applied
(sometimes also referred to as ’Context’).

Forces discuss existing constraints which must be considered at possible solutions.
For example, a constraint may consider the boundedness of short-term memory
of human users. Possible solutions then must take this constraint into account,
for example, by repeating information at subsequent dialog steps. In addition,
forces may provide indications why the pattern is meaningful in certain situa-
tions.

Examples provide exemplary solutions of the pattern at concrete situations. They are
useful to provide an understanding of the construction of solution according to
the problem.

Solutions describe opportunities how the interactive problem can be resolved. There-
by, it provides a generalization of given examples and may suggest design rec-
ommendations. Besides a description, schematic diagrams may be used to illus-
trate solutions. Formality of diagrams may reach from simple sketches to formal
specifications.

Related patterns (sometimes also referred to as ’References’ or ’Context’) indicate
associations to other patterns within a pattern repository. Common associations
are specialization and aggregation. According to aggregation, suggestions are
proposed which patterns may be used for composition.

As an example, consider the following formulation of interaction pattern [Interaction
History]. It represents an abbreviated version of the interaction pattern introduced in
[Tid98]. (A detailed version of this pattern and others can be found in Appendix A.)

Interaction pattern: [Interaction History]

Problem statement

A user performs a sequence of actions with an artifact, or navigates through it. Should
the artifact keep track of what the user does with it? If so, how?

Forces

• People are forgetful of tedious details; users are not likely to remember just what
they’ve recently done with the artifact, and computers are better at it than people
are.

4 CHAPTER 1. INTRODUCTION

• User may need to know exactly what they have just done, so they can undo their
work or backtrack.

• Users may want a high-level overview of what they have done, to gain under-
standing that they wouldn’t get just from memory.

• Audit logs are sometimes necessary, such as with legal regulatory requirements.

• Highly interactive artifacts may generate huge amounts of recordable detail.

Examples

• The ”history” or ”visited links” feature on a Web browser

• UNIX shell’s saved command history

• Logs of exchanged email or other social exchanges

Solution

Record the sequence of interactions as a ”history”. Keep track of enough detail to
make the actions repeatable, scriptable, or even undoable, if possible. Provide a com-
prehensible way to display the history to the user; most artifacts that implement this
pattern use a textual representation, especially [Composed Command], but that’s not
a requirement. (In fact, a history for [Navigable Spaces] may be better portrayed as a
state diagram, showing single steps, backtracks, etc.) If the artifact is capable of sav-
ing its state, as with [Remembered State], give the user the option of saving the history
from session to session.

Having a history around provides users with a set of milestones that they can use with
Go Back to a Safe Place – but explicitly think about whether you want to actually undo
all the history between the ”present” and the point in the history that the user wants to
fall back to. The answer will depend upon your specific circumstances.

Related Patterns

The pattern may be used together with [Navigable Spaces], [Control Panel], [WYSI-
WYG Editor], [Composed Command], and [Social Space].

1.2 Towards Composable Specifications

While the pattern approach relieves the task of finding and realizing appropriate solu-
tions, it still suffers several shortcomings:

1.2. TOWARDS COMPOSABLE SPECIFICATIONS 5

(i) Some of the approaches as, for example, [DLH02, GPBV99, RSL00], primarily
target Web interfaces. As interface paradigms change over time, interface inde-
pendence is an essential factor for long-term use of patterns (cf. also [SF02]).

(ii) Since interaction patterns are described informally, it is difficult to verify prop-
erties according to their quality.

(iii) For the same reason, it is difficult to verify, whether a concrete realization (or
instantiation) of a pattern complies with its intention.

(iv) Composition of patterns is considered in a rudimentary way only, for example,
by verbal description of relations to other patterns. However, elementary inter-
action patterns commonly cannot comprise the specification of a complete sys-
tem, but only approved sub-structures. To reuse interactive structures for larger
systems as well, compositionality plays an indispensable role. For example, in-
teractive catalogs support the user by flexible navigation structures to search and
explore large, categorized collections. Thus, a catalog pattern comprises several
elementary patterns as, for example, [Set-Based Navigation], [Interaction His-
tory], and [Selectable Search Space]. At current approaches, an opportunity to
verify, if (and how) instantiations of patterns can be composed is missing.

This thesis was inspired by the idea of reusing ergonomic interactive structures in the
context of data intensive information services. To enable verification of the quality
of interaction as well as a meaningful composition, we have decided in favor of a
formal model. There exist several formal models to specify interactive system behav-
ior. Examples of interface independent models are state transition networks (STN)
[New68, Par69, Was85], state charts [HP98], flow charts, petri nets [BP95, CL99],
grammars as BNF or production systems, communicating sequential processes (CSP)
[Ale87, Abo90], or calculi [Sri01]. There also exist interface dependent approaches as,
for example, models dedicated to graphical user interfaces (GUI) [BFJ96], or models
dedicated to Web interfaces [SR98, MAM03, FST98, FP98, FKST00, GC99, FT99,
GGS+99b, HF99].

We employed Coloured Petri nets (CP nets) as a basis for the component model pro-
posed in the thesis because of the following reasons:

• The granularity of input and output elements can be varied by the designer. This
allows to model interaction at different levels of abstraction.

• According to composition, CP nets offer a natural framework to model paral-
lelism and synchronization. Net specifications circumvent the problem of com-
binatorial explosion in case of concurrent dialogs. This problem is known from
state transition approaches, if concurrent events as, for example, ’escape’ facil-
ities have to be added. Thus, concurrency is an essential feature according to
compositionality. Otherwise, composition of dialog structures is rather limited
to the sequential case.

6 CHAPTER 1. INTRODUCTION

• Specifications may be independent from particular user interface paradigms. In
fact, depending on the granularity of user events and system responses, specifica-
tions can be completely independent from, dependent on a class of, or dependent
on specific user interface paradigms (as, for example, HTML). Throughout the
thesis, we mainly concern interface independent specifications, since they ad-
dress a larger class of applications, in particular, future user interface paradigms.

• Besides the opportunity to model user interaction, CP nets may specify interac-
tive behavior in general, and thus, interaction with databases or networks in par-
ticular. According to the domain of data intensive information services, database
interaction plays an important role.

• There exist several opportunities for functional abstraction and specialization,
for example, by refining transitions, arc expressions, or data types.

• CP nets possess a well-defined semantics. It permits to prove dynamic properties
and can be used to validate qualitative aspects of user interaction.

• There exist graphical representations.

To encapsulate interactive behavior, we introduce the following abstractions. Firstly,
we proposeinteraction nets[FT02b] which extend CP nets by interfaces and the fa-
cility of composition. Interaction nets can be interpreted as white-box components as
their ”implementation” is known. The behavior of interaction nets can be analyzed by
standard methods of place/transition nets (cf. [Jen97a, GV02]). Secondly, we derive
a black-box semantics of interaction nets [FT03] which corresponds to the component
framework proposed by Broy et. al. [BS01]. There, components are considered as
black-boxes with (i) an external interface and (ii) a behavior specification which de-
termines the relation between input streams and output streams. Thereby, a stream
represents a finite or infinite sequence of messages. We show that interaction net com-
position and component composition coincide with one another wrt. their external be-
havior. It opens the opportunity to combine the advantages of net-based specifications
with those of component approaches. These include:

(i) Interaction specification and verification based on a net formalism.

(ii) Verification of dynamic properties of composite components, even in the case
that (i) some sub-components are not net specifications, or (ii) the precise net
specification of sub-components is not known.

(iii) Specification of dynamic interface assertions. Besides classical type constraints,
interfaces may be augmented by assertions which must be obeyed by other com-
ponents within a composition. It yields a so-called ”intended” behavior, since
properties of composite behavior can be verified locally (i.e., in advance). In

1.2. TOWARDS COMPOSABLE SPECIFICATIONS 7

other words, components that violate required assertions are excluded, since they
yield composite behavior which cannot be anticipated and might be undesired.
In particular, this opportunity circumvents considerable costs of (re-)analyzing
composite net specifications, after their sub-nets have been analyzed already.
Instead, properties of the composition can be derived from properties of its sub-
components.

(iv) A specialization relation proposed for the component framework can be carried
over to net-based specifications. Thereby, a hierarchical collection can be pro-
vided for later reuse.

To practically apply the formal interaction model to the specification of user interaction
at the area of information services, we introduce an abstraction calledui-components.
They are founded on interaction nets and permit to specify dialog structures at a more
user-oriented level. Particularly, they are used to derive complex dialog structures
from elementary ones by composition. Thereby, dependencies between dialog struc-
ture are specified explicitly. As composition of ui-components scales up to composite
ui-components of any complexity, they are intended to provide a repository of dialog
structures satisfying particular purposes for later reuse. Commonly, dialog structures
at an elementary level should be rather domain-independent — corresponding to inter-
action patterns as, for example, [Set-Based Navigation] or [Interaction History]. Based
on them, higher-level components provide domain adaptation by deriving composite
and adapted dialog structures from elementary ones — corresponding to interaction
patterns as, for example, [Shopping Cart]. Note that besides dialog structures, ”adap-
tations” can explicitly be represented by separate components. Thereby, they permit
adaptations of existing dialogs to requirements of particular tasks and users.

The described concepts are introduced at the thesis by separate chapters. The concept
of interaction nets and their composition is defined in Chapter 2. It also motivates,
how they can be utilized for interaction design. Chapter 3, develops an opportunity
to consider interaction nets as component specifications. More precisely, we propose
an embedding of interaction nets into an existing component model. As an appropri-
ate component model for this task, we identified the model proposed by Broy et. al.
[BS01]. It is briefly introduced at the beginning of Chapter 3. At the end of the chapter,
we discuss semantic issues of composition. While at a syntactical level, composition is
clearly defined by means of interface matching based on specified data types, at a se-
mantical level, composition is unrestricted. In other words, although components can
be composed syntactically, the behavior of the composition might be unintended. As
explained above, we introduce the notion of(interface) assertionswhich restrict com-
position at a semantical level as well. It resembles the notion ofcontractsknown from
component approaches. Afterwards, Chapter 4 introduces the practical application
of above theory. It proposes the abstraction of ui-components and provides example
cases, how dialog structures and their (dependent) compositions can be specified. The
chapter also includes an approach to verify properties of interface quality. Thereby,

8 CHAPTER 1. INTRODUCTION

we focus on selected questions according to ergonomics of dialog structures. For ex-
ample, we consider questions like ”Do dialog specifications (based on ui-components)
correspond to a given task model wrt. completeness and correctness?”

Relations of the introduced approach to other work is presented in Chapter 5. Thereby,
we particularly consider formal design approaches to information services and com-
ponent approaches. While we less emphasize requirements and pragmatism of a com-
ponent-based design approach throughout the thesis, we present a discussion about
related issues there. Finally, we conclude the thesis in Chapter 6 by summarizing the
achievements and indicating open work.

Chapter 2

A Net-Based Interaction Model

An elementary issue of (re-)using dialog structures consists of their integration. As
sequential composition significantly simplifies this issue, components are often con-
sidered as closed sub-systems that comprise an autonomous specification (or imple-
mentation) of required interactive behavior. On the one hand, this approach does not
require a sophisticated model for composition. On the other, its flexibility is limited,
since extensions or adaptations, in particular, according to user interaction can hardly
be incorporated. In this chapter, we introduce a formal model which permits inter-
leaved composition. Thereby, adaptation of interactive behavior as well as resolution
of dependencies (necessary for integration) can be expressed.

Figure 2.1 illustrates a simple example how composite dialog structures may yield in-
terleaving scenarios. It represents three user scenarios in the style of activity diagrams.
The first scenario ”Scrolling” consists of three elementary activities of a user, more pre-
cisely, requesting the next item (”next”), going back again (”prev”), and finally jump-
ing to the first item (”first”) within a collection. It is a possible scenario of interaction
pattern [Set-Based Navigation] which allows users to explore small item collections
through navigation activities (cf. [Tid98, RSL00, HDP02, DLH02]). The second sce-
nario [Shopping Cart] describes activities of collecting and removing items into/from
(virtual) shopping carts. Its general facilities are described in [RSL00, DLH02] by an
according interaction pattern as well. In many commercial information services as,
for example, virtual book stores, both patterns are employed in a composite way. The
third scenario ”Shopping” illustrates a possible integrated execution of the elementary
user scenarios. It is characterized by an interleaved interplay of activities concurrently
enabled by both patterns. Beside the aspect of concurrency, inter-pattern dependencies
have to be resolved in this composition. For example, invocation of an activity ’pick’,
intends to add the current item into the cart. However, for performing this activity the
list position of the ”Scrolling” scenario must be known to the cart pattern. In this case,
the composition has to resolve dependencies, for example, by exchanging contexts.

In this chapter, we introduce interaction nets as a formal model to specify recurring
interaction structures. They can be understood as realizations (or instantiations) of

9

10 CHAPTER 2. A NET-BASED INTERACTION MODEL

undo

undo

drop pick

pick

firstprev

prev first

Scrolling

Shopping dropnext

next

Shopping cart

(composite)

Figure 2.1: Example of an interleaved execution of two user scenario

interaction patterns. To enable concurrent composition, we base on the assumption
that dialog structures can be decomposed into atomic interactive steps (or elementary
activities). In the example above, activities ”next”, ”first”, etc. represent such interac-
tive steps. Thus, an interactive component that realizes a specific interaction pattern,
firstly consumes events (commonly initiated by a user), secondly processes them (for
example, by adapting its internal context), and thirdly generates according actions (for
example, output to the user).

Component 1

Input Output
(User)(User)

Figure 2.2: Abstract execution model of interactive components

This execution model is illustrated in Figure 2.2 whereby the represented component
may be elementary as well as composite. Events initiated at an input channel are con-
sumed by a component that reacts on this event. After processing, output is generated
onto output channels. Figure 2.3 indicates the interaction between components which
is enabled through composition.

2.1 Introduction to Coloured Petri Nets

We base interaction nets on the model of coloured petri nets (CP nets) which is briefly
introduced in the following. For a more comprehensive introduction, we refer to an
introductory book as, for example, [Jen97b]. CP nets represent a commonly applied
extension to elementary place/transition nets. They basically provide a framework to

2.1. INTRODUCTION TO COLOURED PETRI NETS 11

Component 1 Component 2

Component 3

Input
(User)

Output
(User)

Figure 2.3: Abstract representation of interaction between components

model the flow of typed data elements and its successive processing through func-
tions. In contrast to elementary place/transition nets, anonymous tokens are replaced
by complex data elements and arc labels are extended to typed expressions.

Definition 2.1 A (non-hierarchical) coloured petri net (CP net) is a tupleN = (Σ,P,
T,A,N,C,G,E,I) which satisfies the following requirements:

(i) Σ is a finite set of non-empty data types, calledcolor sets.

(ii) P ⊂ P is a finite set of places.

(iii) T ⊂ T is a finite set of transitions.

(iv) A⊂ A is a finite set of arcs.

(v) N : A→ P×T ∪ T ×P is a node function that associates arcs with pairs of
nodes.

(vi) C : P→ Σ is a color function that associates places with data types.

(vii) G : T → EXP is aguard function that associates transitions with expressions
such that:

∀t ∈ T. type(G(t)) = bool∧ type(var(G(t)))⊆ Σ ,

where type(e) denotes the data type of an expression e, type({e1,e2, . . .}) de-
notes the set of data types of expressions e1,e2, . . ., var(e) denotes the set of free
variables of an expression e, and EXP denotes the set of all expression.

12 CHAPTER 2. A NET-BASED INTERACTION MODEL

(viii) E : A→ EXP is anarc expression function that associates arcs with expressions
such that:

∀a∈ A. type(E(a)) = C(p(a))MS∧ type(var(E(a)))⊆ Σ ,

where p(a) is the place of N(a), and ’tMS’ denotes type ’multi-set of type t’.

(ix) I : P→ EXP is aninitialization function that associates places with closed ex-
pressions such that:

∀p∈ P. type(I(p)) = C(p)MS.

Thereby,P, T, andA denote countable infinite sets of places, transitions, and arcs
respectively, such thatP∩T = P∩A = T∩A = {}. In contrast to elementary p/t nets,
an empty net structure is permitted.

Node functionN maps each arc into a pair of nodes where the first element represents
the source node and the second the destination node.

Color function C defines the data type of places. Thereby, a placep may contain
a multi-set of data elements of typeC(p) only. The type system builds up on
base types likeint (integers),real, string, bool, andunit (denoting a single color
represented as ’()’), and enables to define new types by type constructorssubset,
product(tuple constructor),record (named tuple constructor),union, andlist.

Expressions basically correspond to a variant of typed lambda calculus. The language
used for CP nets is CPN ML which is an adapted version of Standard ML (SML)
[Jen97b]. Thus, the evaluation of an expression is defined by means of reducing
the respective expression.

Guards G(t) provide an additional opportunity to control the firing of transitionst.
If the guard expression evaluates to ’false’, the corresponding transition must
not fire. Commonly, missing guard expressions are considered as the closed
expression ’true’.

Arc expression functionE associates each arc with an expression. It controls which
multi-sets of data elements are consumed or produced by transitions.

Initialization function I corresponds to the initial marking of classical p/t nets. It as-
sociates places with expressions that represent accordingly typed data elements.

Figure 2.4 represents an exemplary CP net. The dashed box contains data type def-
initions (i.e. the color sets) and assignments of data types to variables. Initialization
expressions of places are distinguished by underline. Multi-sets are represented by

2.1. INTRODUCTION TO COLOURED PETRI NETS 13

1‘()

1‘3

1‘3

var l,p,s : int;
var e : string;

p
l

int

ss e

p
s

l

[0<s<=l]

[p<l]

p+1

p+1

1‘1

(s,e)

Next

Select string

ElementLengthPosition

color Next = unit;
color Select = int;
color Position = int;
color Length = int;
color Element = product int * string;()

s

1‘(1,"Faust") + 1‘(2,"Carmina Burana") +
1‘(3,"Latin night")

Figure 2.4: A CP net which provides basic functionality for accessing lists

’+’-separated lists of pairs of multiplicity and according data element. For example,
’1‘4 +3‘23’ denotes multi-set{|4,23,23,23|}. As a shorthand, we allow initialization
expressions and arc expressions to evaluate to a single data element ’e’ (not a multi-
set), and interpret them as multi-set ’1‘e’. This shorthand is used in Figure 2.4 by arc
expression ’()’ attached to placeNext.

The represented net realizes a simplified access to lists. Places ’Position’, ’Length’,
and ’Element’ are initialized by the start position, the number of list elements, and the
list elements themselves. Initial elements ’1‘()’ and ’1‘3’ on placesNext andSelect
may indicate that two events were initiated (for example, by a user). If a ’Next’ event
is initiated, the current list position is incremented (if possible), and the corresponding
list element is provided at the output place. In the case of an ’Select’ event, the list
element at the selected position (if existing) is provided.

Net dynamics concerns the flow of data elements. Transitions generate, remove, or
transform data elements. Net dynamics bases on steps which may transform the current
net state into a new state. Thereby, the state of a net is defined by its marking. A state
transition consists of 3 phases: (1) anactivation phasewhere a set of enabled steps is
determined, (2) aselection phasewhere a single step is selected for execution, and (3)
anexecution phasewhere the selected step occurs.

(1) Activation phase:

A set ofenabled stepsis determined.

Definition 2.2 A binding b of a transition t is a function that associates all variables
v ∈ var(t) with data elements in type(v) which guarantees that the guard condition
G(t) < b > is true. Thereby,

14 CHAPTER 2. A NET-BASED INTERACTION MODEL

G(t) < b > denotes an evaluation function which computes the guard expression G(t)
by substituting its free variables var(G(t)) corresponding to binding b — where
binding b is interpreted as a variable substitution,

var(t) denotes the set of free variables that occur in guard expression G(t) or in an
arc expression E(a) of an arc a attached to transition t, i.e.,

∀t ∈ T. var(t) := {v|v∈ var(G(t))∨∃a∈ A(t).v∈ var(E(a))},

where A(t) denotes the set of arcs attached to t.

A binding element be= (t,b) is a pair of a transition t and a binding b.

A step Y is a multi-set of binding elements.

Definition 2.3 A token element (p,c) is a pair of a place p and a data element c∈
C(p). The set of all token elements is denoted by TE.

A marking m is a multi-set over TE. Theinitial marking m0 is the marking obtained
by evaluating the initialization expressions, i.e.,

∀p∈ P. m0(p) := I(p) <> .

We denote the multi-set of data elements associated with a place p in a marking m by
m(p).

Note that there is a slight difference betweenI(p) andI(p) <>. While I(p) denotes a
closed expression,I(p) <> denotes the evaluation of this expression, i.e., a multi-set.

Definition 2.4 A step Y isenabled in marking m, iff the following condition is satisfied:

∀p∈ P. ∑
(t,b)∈Y

E((p, t)) < b > ≤ m(p) , (2.1)

where the summation symbol denotes the union operation on multi-sets.

(2) Non-deterministic selection phase:

An enabled stepY is selected (non-deterministically) from the set computed in phase
(1). The selection of an enabled stepY can be understood as:

(i) selecting a set of transitions which will be executed, and

(ii) selecting bindings wrt. each transition, i.e., selecting particular data elements
which will be consumed from attached places.

2.1. INTRODUCTION TO COLOURED PETRI NETS 15

(3) Execution phase (’firing’):

The execution (oroccurrence) of an enabled stepY transforms the markingm1 of the
net to a markingm2. Roughly, each binding element(t,b) ∈Y yields a transformation
of markingm1. More precisely, data elements determined by arc expressions and bind-
ing b are consumed from/produced into corresponding places attached to transitiont.

Definition 2.5 When a step Y is enabled in a marking m1, it mayoccur. Theoccur-
rence of Y in m1 transforms marking m1 into marking m2 by

∀p∈ P. m2(p) :=

(
m1(p)− ∑

(t,b)∈Y

E((p, t)) < b >

)
+ ∑

(t,b)∈Y

E((t, p)) < b > .

We say that m2 is directly reachable from m1 by the occurrence of step Y, denoted by:
m1[Y〉m2.

The sequence in which transitions are executed does not affect the resulting net mark-
ing m2. Thus, we can think of a parallel execution.

The definition considers the dynamic semantics of the occurrence of a single step only.
We extend this definition to occurrence sequences.

Definition 2.6 Anoccurrence sequence is a finite or infinite sequence of markings and
steps:

m[Y1〉m1[Y2〉m2[Y3〉m3 . . . ,

such that m[Y1〉m1, mi [Yi+1〉mi+1 for all 1≤ i < n+1 assumed that n∈ IN ∪{∞} rep-
resents the number of steps within the sequence.

We call the corresponding sequence of steps r= 〈Y1,Y2, . . .〉 a run, if the occurrence
sequence starts with initial marking m0.

Thereby, we assume the common arithmetic laws onIN ∪∞. In particular,∞ +k = ∞
and∞−k = ∞ for each constantk∈ IN.

As an example, we reconsider the net in Figure 2.4. Bytnext, tsel, andtelem, we denote
the transitions connected to placesNext, Select, andElementrespectively. Then, the
following sequencesr1, . . . , r6 represent runs of the net:

r1 = 〈{|bnext|}〉,
r2 = 〈{|bnext|},{|belem2|},{|bsel|},{|belem3|}〉,
r3 = 〈{|bnext|},{|bsel|},{|belem2|},{|belem3|}〉,
r4 = 〈{|bnext|},{|bsel|},{|belem3|},{|belem2|}〉,
r5 = 〈{|bnext|},{|bsel|},{|belem2,belem3|}〉,
r6 = 〈{|bsel|},{|belem3|}〉,

16 CHAPTER 2. A NET-BASED INTERACTION MODEL

if we assume the following binding elements:

bnext = (tnext,{(p,1),(l ,3)}),
bsel = (tsel,{(s,3),(p,1),(l ,3)}),
belem2 = (telem,{(s,2),(e, ′′CarminaBurana′′)}),
belem3 = (telem,{(s,3),(e,′′LatinNight′′)}).

Note that runs do not necessarily reach a final marking where no further steps are
enabled. For example, steps{|belem2|} and{|bsel|} are enabled at the final marking of
run r1.

2.2 Definition of Interaction Nets

Since we intend to compose nets, we extend net specifications by an interface. The
interface consists of places which are used to receive data from or provide data to
externally connected components.

Definition 2.7 An interaction net N i = (N ,Pi ,Po) is defined by a CP netN = (Σ,
P,T,A,N,C,G,E,I) and two disjunctive place sets Pi ,Po⊆ P, assumed thatN satisfies
the following conditions:

∀a∈ A, p∈ P, t ∈ T. (t, p) ∈ N(a) ⇒ p 6∈ Pi , (2.2)

∀a∈ A, p∈ P, t ∈ T. (p, t) ∈ N(a) ⇒ p 6∈ Po. (2.3)

The union Pi∪Po is denoted by Pio. Elements of Pi , Po, and Pio are calledinput places,
output places, andinput/output places (or i/o places) respectively.

Input and output places can be accessed by the environment of the net. I.e., external
processes may produce data elements onto input places and may consume data ele-
ments from output places. Thus, i/o places are used as an interface of the interaction
net to its environment. Conditions (2.2) and (2.3) ensure that input places are exclu-
sively used for receiving data and output places are exclusively used for providing
data, i.e., an interaction net does neither generate data elements onto input places nor
consume data elements from output places. Figure 2.5 represents an interaction net
that results from extending the CP net in Figure 2.4 by an interface. There, i/o places
are distinguished by dashed circles. Input places (asNextandSelect) are distinguished
from output places (asOut put) by accordingly directed arcs. For readability, we ap-
plied the following abstractions: (i) We represent the initial marking by simple dots
within places. Each dot might represent a single data element. (ii) We omit an ex-
plicit assignment of data types to variables. If omitted, we generally assume that data

2.2. DEFINITION OF INTERACTION NETS 17

types of variables are implied by the types of attached places (wrt. according arcs).
(iii) The definition of data types (i.e. color sets) is directly incorporated into the net
representation.

p
l

int

(s,e)

ss

p+1

e

p
s

l

[0<s<=l]

[p<l]

int
Length: Element:

int*string
p+1

Next:
unit

Select:
int

Output:
string

Position:
int

s

()

Figure 2.5: An interaction net providing event-driven navigation through lists

According to dynamic semantics, we employ the semantics of CP nets introduced
above. In addition, we apply a fairness condition. For a motivation, consider CP
nets in Figure 2.6. Colors for places and variables are not significant and may be, for
example,int. (Note: we will always apply this assumption in the following, if data
types are omitted.) Obviously, any run of netN1 contains a firing of transitiont1.
However, if we consider both netsN1 andN2 as a single netN , there exist infinite
runs, where transitiont1 does never fire. These runs consist of executions of transition
t2 only. This situation generally occurs, if transitions or complete sub-nets are excluded
from processing at all. Suchunfair runsare characterized by the following definition
(cf. [Rei98]):

N 2

d
1 t

d
2

d

dt

N 1

N

Figure 2.6:A composite CP net which permits unfair runs although its sub-nets do not

Definition 2.8 LetN be a CP net, and let t be a transition ofN .

(i) A run r of N neglects fairness for t, iff t occurs only finitely often in r and is
enabled infinitely often in r.

18 CHAPTER 2. A NET-BASED INTERACTION MODEL

(ii) A run r of N respects fairness for t, iff r does not neglect fairness for t.

(iii) A run r of N is fair, iff r respects fairness for each transition ofN .

Thereby, we say that a transition tis enabled in step Y, iff there exists a binding element
(t,b) ∈Y. A transition toccurs in step Y, iff Y occurs, and t is enabled in Y . These
conventions are extended to runs by step-wise application.

In other words, a run is unfair, if there exist steps which are enabled for an infinite
time, but are never selected for occurrence. Since situations as illustrated in Figure 2.6
may easily result from compositions, we exclude unfair runs from our considerations.

In contrast to dynamic semantics of CP nets, we permit empty steps. This relaxation
provides some rather technical advantages wrt. net composition. However, it does not
permit meaningless runs of empty steps as long as fairness is respected.

2.3 Utilization of Interaction Nets

At a pragmatic point of view, we distinguish input places, output places, context places,
and transitions:

Input places are i/o places where external components may write into. Examples are
input places which correspond to (i) events initiated by a user – for example, log-
ging in, (ii) parameters published by another net – for example, the task history
of the current session, or (iii) controlling information used for synchronization –
for example, an activation signal.

Output places are i/o places where external components may read from. The in-
teraction net conveys information via output places. If an external component
connected to an output place represents a subsystem (or driver), output places
represent an abstraction of external actions. For example, if an output place is
externally consumed by a user interface driver or database manipulation driver,
producing elements into an output place corresponds to outputting information
to the user or initiating a manipulation request to a database. Depending on de-
sign and verification requirements, actions can be excluded from the interaction
net by using drivers as mentioned above but can be included as well by simulat-
ing their behavior within the interaction net. For example, database management
can be represented within the net by representing tables by tuple valued places
and simulating database operations by transitions. Besides excluding or includ-
ing drivers completely, they may be realized partially as well.

Context places are non-i/o places. They represent the internal context of the net dur-
ing the execution of interactive scenarios. They can be interpreted as situation

2.3. UTILIZATION OF INTERACTION NETS 19

predicates, since data elements in each context place characterize a single facet
of the current situation. For example, elements in context places may represent
which subtasks a user has already accomplished within an interactive task as
well as preferences of the current user. If we consider the interaction net in Fig-
ure 2.5, markings of placesPosition, Length, andElementessentially determine
the internal dialog situation (or context). Depending on the context, the exter-
nally observed behavior changes. For example, if the pointer reached the end of
the list (i.e.,m(Position) = {|3|}), nextevents will be ignored.

Transitions define context changes. In particular in user interaction, the context of
interacting parties changes after each utterance [Ben98, McC93, Bun99]. To
act/react properly, these changes must be reflected in the system. They are real-
ized by transitions that compute the new context by adapting situation predicates
depending on the utterance. Referring to Figure 2.5,nextandselectevents ini-
tiate an adaptation of the list pointer.

The proposed utilization of interaction nets particularly covers a processing of events
in an ECA style:

ON [Event]

IF [Condition]

THEN [Action] .

Thereby, initiation of events is communicated via input places. Conditions are evalu-
ated by the logic of the net. For example,selectevents outside the range are ignored in
Figure 2.5. Similarly, conditions may verify access rights of the current user. Actions
consist of two parts: (i) internal actions concern the context adaptation by recomput-
ing markings of context places, and (ii) external actions concern actions not performed
by the net itself, i.e., the generation of according messages which initiate subsequent
processing by attached components.

Thereby, this approach enables a division of the interaction specification into atomic
interactive steps (or elementary activities) which facilitates concurrent and interleaved
composition. We postpone a detailed treatment, how interaction nets are utilized for
the specification of interaction patterns to Chapter 4.

Dynamic interaction

The specification of ergonomic, data-intensive information services requires dynamic
interaction, for example, to permit user adaptation as well as database interaction.
By dynamic interaction, we understand specifications that contain conditional events
whose conditions cannot be evaluated at design time or compile time. In particular,
it includes user events whose activation depends on the database state which cannot

20 CHAPTER 2. A NET-BASED INTERACTION MODEL

explicitly be represented at design/compile time, since database instances change over
time. As interaction nets cover ECA rules, dynamic interaction may be specified as
illustrated above.

2.4 Composition of Interaction Nets

In this section, we introduce a composition operator on interaction nets which is based
on connecting i/o places. It requires a disjointness condition on interaction nets, such
that their net structures may overlap at i/o places only. However, overlap situations can
easily be resolved by renaming which will be discussed below.

In the following treatment, we assume that places possess distinguished names. To
circumvent an expensive naming formalism, we apply the following convention. We
consider the underlying place setP as a set of distinct place identifiers. Each place
identifier might unambiguously be associated with a place name. Thereby, a place
can equally be denoted by its identifier or its name. Transitions and arcs are treated
accordingly.

For readability, we further apply a notational convention. Constituents of CP netsN
are denoted by attaching the corresponding index. For example, places and transitions
of a CP netN1 are denoted byP1 andT1, places and transitions of a CP netN ′ are
denoted byP′ andT ′. Interaction nets are treated accordingly.

Definition 2.9 Thecomposition N i
1 ◦N i

2 of interaction netsN i
1 = (N1,Pi

1,P
o
1), N i

2 =
(N2,Pi

2,P
o
2) defines an interaction netN i = (N ,Pi ,Po) as

Pi := (Pi
1∪Pi

2)\ (Po
1 ∪Po

2), Po := (Po
1 ∪Po

2)\ (Pi
1∪Pi

2),

Σ := Σ1∪Σ2, P := P1∪P2, T := T1∪T2, A := A1∪A2,

N := N1∪N2, G := G1∪G2, E := E1∪E2,

C := C1∪C2, I := I1 + I2

assumed that the following properties are satisfied

T1∩T2 = A1∩A2 = {} , (2.4)

P1∩P2 = (Pi
1∪Pi

2)∩ (Po
1 ∪Po

2) , (2.5)

∀p. p∈ P1∩P2 ⇒ C1(p) = C2(p) . (2.6)

In the definition, we extended the union operators on sets (∪) and multi-sets (+) to
functions. They are defined as:

2.4. COMPOSITION OF INTERACTION NETS 21

(f1∪ f2)(x) :=


f1(x) : x∈ dom(f1)\dom(f2),
f2(x) : x∈ dom(f2)\dom(f1),
f1(x) : x∈ dom(f1)∩dom(f2) ∧ f1(x) = f2(x),

undefined: otherwise.

(f1 + f2)(x) :=


f1(x) : x∈ dom(f1)\dom(f2),
f2(x) : x∈ dom(f2)\dom(f1),

f1(x)+ f2(x) : x∈ dom(f1)∩dom(f2),
undefined: otherwise.

The union of place setsP1∪P2 implies that equally named places merge. According
to possible naming conflicts, we propose a renaming operation on interaction nets
which will be defined below. Condition (2.4) verifies that transitions and arcs must
not be merged. Condition (2.5) verifies that connections are established between input
places and output places exclusively. Finally, condition (2.6) verifies that connected i/o
places possess the same data type. This condition of type compatibility can further be
relaxed by a sub-type relationship or an explicit type casting. An according discussion
is postponed to Section 2.5. There, we also motivate why we have chosen a rather
restricted variant of net composition.

An exemplary composition of interaction nets is illustrated in Figure 2.7. Figure 2.7(a)
represents three elementary interaction nets. Possible connections are indicated by
dotted lines. Figures 2.7(b) and 2.7(c) demonstrate the subsequent derivation of com-
positionN i

1 ◦ (N i
2 ◦N i

3). Thereby, Figure 2.7(b) represents the intermediate result
N i

2 ◦N i
3 , and Figure 2.7(c) represents the final composite netN i

1 ◦ (N i
2 ◦N i

3). Its
interface consists of a single input placep3 and a single output placep2. Placesp1 and
p5 are no more interface places, since they established connections.

Note that Definition 2.9 is well-defined, i.e., the resulting net is in fact an interaction
net. It is shown by verifying that the constituents of the composite net comply with
Definitions 2.7 and 2.1.

Because of the following proposition, we can generally omit parenthesis in multiple
compositions, and may neglect the order of the composition sequence. Thus, we may
define◦{N i

1 , . . . ,N i
k } := N i

1 ◦ . . .◦N i
k .

Proposition 2.1 The composition operator◦ is associative and commutative.

Proof The proof basically reduces associativity and commutativity to that of set
operators used in Definition 2.9. We first consider associativity. LetN i := (N i

1 ◦
N i

2)◦N i
3 andN ′i := N i

1 ◦ (N i
2 ◦N i

3) be two compositions. We need to show that

N i = N ′i .

22 CHAPTER 2. A NET-BASED INTERACTION MODEL

t1 t2
p1 p3

p5 bool

t5

p5

int bool

N 2

int

p6

t4

N 3 p1

p2

iN1
i

i

(a) Interaction netsN i
1 , N i

2 , andN i
3

t2

p3p5

N 2 N 3

t1
p1p2

t4 t5
p6

boolint p1

int

iN

i i

1

(b) NetN i
1 and composite netN i

2 ◦N i
3

t1 t2

p3p5

(N2

t4 t5

p1

int

p6

bool

p2

i
3N)N1

i i

(c) Composite netN i
1 ◦ (N i

2 ◦N i
3)

Figure 2.7: Demonstration of composing interaction nets

We distinguish two cases: (1)N i is defined, and (2)N i is undefined.

Case (1): ”N i is defined”
We have to prove that (i)N ′i is defined as well, and (ii) both nets are equal. According
to (i), we need to verify the implication: if Conditions (2.4), (2.5), and (2.6) of Defini-
tion 2.9 are valid forN i , then they are valid forN ′i . According to the definition of
N i andN ′i , these implications read as follows:

[
T1∩T2 = A1∩A2 = {} ∧ (T1∪T2)∩T3 = (A1∪A2)∩A3 = {}

]
⇒[

T2∩T3 = A2∩A3 = {} ∧ T1∩ (T2∪T3) = A1∩ (A2∪A3) = {}
]

,

[
P1∩P2 = (Pi

1∪Pi
2)∩ (Po

1 ∪Po
2) ∧

(P1∪P2)∩P3 = (((Pi
1∪Pi

2)\ (Po
1 ∪Po

2))∪Pi
3)∩ (((Po

1 ∪Po
2)\ (Pi

1∪Pi
2))∪Po

3)
]
⇒[

P2∩P3 = (Pi
2∪Pi

3)∩ (Po
2 ∪Po

3) ∧
P1∩ (P2∪P3) = (Pi

1∪ ((Pi
2∪Pi

3)\ (Po
2 ∪Po

3)))∩ (Po
1 ∪ ((Po

2 ∪Po
3)\ (Pi

2∪Pi
3)))
]

,

2.4. COMPOSITION OF INTERACTION NETS 23

[
∀p. p∈ P1∩P2 ⇒ C1(p) = C2(p) ∧
∀p. p∈ (P1∪P2)∩P3 ⇒ (C1∪C2)(p) = C3(p)

]
⇒[

∀p. p∈ P2∩P3 ⇒ C2(p) = C3(p) ∧
∀p. p∈ P1∩ (P2∪P3) ⇒ C1(p) = (C2∪C3)(p)

]
.

They can directly be verified by applying properties of set operators ’∪’, ’∩’, ’ \’. We
exemplarily demonstrate the proof of the first implication in detail:

{} = (T1∪T2)∩T3 = (T1∩T3)∪ (T2∩T3) ,

because of distributivity. It implies that

(T1∩T3) = {} ∧ (T2∩T3) = {} . (2.7)

Furthermore, sinceT1∩T2 = {} is assumed by the implication, andT1∩T3 = {} is
provided by Statement 2.7, we obtain

{} = (T1∩T2)∪ (T1∩T3) = T1∩ (T2∪T3) .

The implication of according conditions on arc setsA1, A2, andA3 is analogous.

Equivalence of netsN i andN ′i can be confirmed by comparing their net structures
according to Definition 2.9. Their place setsP andP′ are equal, since

P = (P1∪P2)∪P3 = P1∪ (P2∪P3) = P′

due to associativity of the union operator. The proof of equality of the color sets,
transitions, etc. can be confirmed analogously by applying properties of set operators.
Note that the introduced extension of operators ’∪’ and ’+’ to functions does preserve
associativity and commutativity.

Case (2): ”N i is undefined”
The proof of this case is analogous to part (i) of Case (1). In contrast, the three impli-
cations must be verified in the opposite direction (applying the principle of contrapo-
sition).

Commutativity is analogously proved by considering according cases (1) and (2). Its
verification is accordingly based on the properties of set operators. 2

Because of Conditions (2.4) – (2.6), there exist interaction nets which cannot be com-
posed directly. As an example, consider the nets represented in Figure 2.8(a). There
exist several conflicts. For example, Condition (2.4) is violated, since transitiont1 oc-
curs inN i

1 andN ′i
2 . Condition (2.6) is violated as well, since placep1 is used as inner

place inN ′i
3 and as input place inN i

1 .

24 CHAPTER 2. A NET-BASED INTERACTION MODEL

However, we may generically resolve such overlap situations by renaming places, tran-
sitions, and arcs. An according renaming operator is defined in the following. Besides
conflict resolution, it can be utilized to specify desired connections. For example, the
renaming applied to nets in Figure 2.8(a) establishes connections betweenp1 of N i

1
andp4 of N ′i

3 , and betweenp2 of N ′i
2 andp5 of N ′i

3 — indicated by dotted lines in
Figure 2.8(b).

t1
p3p1 p2p2

p4 p5 bool

int bool
t1

int

p1

t4 t5

N1
i N’2

i

N’3
i

(a) NetsN i
1 , N ′i

2 , N ′i
3 before renaming

t1 t2
p1 p3

p5 bool

t5

p5

int bool

N 2

int

p6

t4

N 3 p1

p2

iN1
i

i

(b) After renaming:
N i

2 := �f2(N
′i

2), N i
3 := �f3(N

′i
3)

Figure 2.8: Demonstration of renaming interaction net

Definition 2.10 A renaming �f of an interaction net(N ,Pi ,Po) is defined by a to-
tal, injective function f: (P∪T ∪A)→ (P∪T ∪A) with f(P) ⊆ P, f (T) ⊆ T, and
f (A)⊆ A. The renamed interaction net(N ′,P′i ,P′o) := �f (N ,Pi ,Po) is defined as

P′i := f (Pi), P′o := f (Po),

Σ′ := Σ, P′ := f (P), T ′ := f (T), A′ := f (A),

G′ := G◦ f−1, E′ := E ◦ f−1,C′ := C◦ f−1, I ′ := I ◦ f−1,

N′(a′) :=
{

(f (n1), f (n2)) : N◦ f−1(a′) = (n1,n2) ,
undefined: otherwise.

for all a′ ∈ A′,

where f(M) :=
⋃

m∈M
{ f (m)}, f−1 denotes the inverse function of f , and f1◦ f2 denotes

the common function concatenation.

If function f is not total onP∪ T ∪A, we can generally apply a completion off
as f ∪ {m→m |m∈ P∪T ∪A∧ f (m) is undefined}. Definition 2.10 is well-defined,
since renaming does not affect the structure of interaction nets. Therefore, the resulting
net is in fact an interaction net.

2.4. COMPOSITION OF INTERACTION NETS 25

Interaction netsN i
2 andN i

3 in Figure 2.8(b) result from renaming operations�f2(N
′i

2)
and�f3(N

′i
3) with functions f2 := {p2→ p5, t1→ t2} and f3 := {p1→ p6, p4→ p1}.

Overlap situations can generally be resolved by preceding net composition with a
generic renaming operation. Assumed that an interaction net possesses an unambigu-
ous net identifier. A generic renaming then might prefix names of places, transitions,
and arcs by this identifier. Afterwards, a subsequent renaming may be applied to es-
tablish desired connections.

Utilization of Composition

Composition of interaction nets enables to synthesize complex dialog structures from
elementary ones. However, if we established a collection of elementary patterns by
means of interaction nets, composition might require to resolve sophisticated depen-
dencies. For example, consider a composition between two interaction nets realiz-
ing patterns ’Selectable Search Space’ and ’Set-Based Navigation’. Through pattern
’Selectable Search Space’, a user may alter its current view by selecting a different
sub-space. Afterwards (s)he may browse this sub-space by using interactive facilities
provided by pattern ’Set-Based Navigation’. However, this opportunity requires that
the adapted dialog context of ’Selectable Search Space’ is published to pattern ’Set-
Based Navigation’ — otherwise the user will not experience its intended change of
view. For this purpose of resolving inter-pattern dependencies, we propose to employ
specific interaction nets which we will refer to ascomposition components.

iN1 N 2
i

Component
Composition

Figure 2.9: Dependency resolution by composition components

Figure 2.9 indicates how a non-elementary composition of interaction nets can be re-
alized. There, a distinguished interaction net is employed to resolve dependencies
between interaction netsN i

1 andN i
2 . Although, Figure 2.9 represents an elemen-

tary composition of three interaction nets, at a semantic level, it specifies a complex
composition between netsN i

1 andN i
2 . Thereby, the approach scales up, since the re-

sulting composite interaction net may in turn resolve dependencies wrt. other (possibly

26 CHAPTER 2. A NET-BASED INTERACTION MODEL

complex) interaction nets. A detailed treatment of dependency resolution is postponed
to Chapter 4.

2.5 Concluding Remarks

According to the composition of interaction nets, the following extensions are permis-
sible. Firstly, the type condition of interface matching can be relaxed. Thereby, type
equality can be replaced by a sub-type relationship. It requires that data types of the
output places are sub-types of that of connected input places (wrt. thesubtypecon-
structor of CP nets). In this case, the Definition 2.9 must accordingly be rephrased,
such that a merged place is associated with the data type of the former input place
(i.e., the more general data type). However, we did not apply this extension, because
we propose a component perspective of interaction nets in Chapter 3. It is realized
by embedding the model of interaction nets into the component model introduced in
[BS01]. As they assume type equality of interfaces, we currently disregard a relaxed
type restriction.

However, explicit type casting generally provides the opportunity of interface match-
ing. For this purpose, generic interaction nets are employed which compute the cast-
ing. For example, we may wish to cast type ’int ’ into type ’int ∗ int ’ by function
f : int → (int × int) with f (x) := (x,0). This function is then specified by an inter-
action net which receives integer elements and outputs accordingly computed pairs of
integers. Thus, if interaction netsN1 andN2 with type incompatible interfaces should
be composed, a ”mediator” netM is introduced to compute the desired type casting.
Thereafter, the (usual) composition of all three interaction netsN1◦M ◦N2 provides
the desired type matching.

Another possible extension concerns multiple connections at a single interface. Al-
though, composition of interaction nets can iteratively be applied to a set of interaction
nets, composition operator ’◦’ basically applies to pairs of argument nets only. If we
drop this restriction, several interaction nets may be composed via a single i/o place.
However, this opportunity might permit more compact compositions, but it does not
increase expressiveness of composite nets. According n-ary connections can function-
ally be simulated by introducing mediator nets (as illustrated above wrt. type conver-
sion). In addition, properties of commutativity and associativity are not applicable for
the non-binary case.

In addition, there exist further extensions to composition wrt. general place/transition
nets (cf., for example, [Bau96, BDK01]). For example, they permit composition at
(shared) transitions as well. However, they generally do not permit a component per-
spective corresponding to [BS01] which is essential for our proposal.

Chapter 3

A Component Perspective

In this chapter, we propose a black-box semantics of interaction nets. In addition, we
will show that this semantics together with its composition coincides with the stream-
based component model introduced by Broy et. al. [BS01]. Embedding interaction
nets into such a component framework yields several benefits:

• Broy et. al. established a well-founded and accepted component model. Among
others, issues of (black-box) composition and component refinement are inves-
tigated. By embedding the composition model of interaction nets into the com-
ponent model, we may directly adopt their results. For example, we can apply
the notion of behavior and interface refinement to interaction nets, which can
be used to derive a hierarchy of interaction nets. It provides an opportunity to
structure an according repository which supports later reuse.

• Interfaces in general and interfaces between interaction nets in particular com-
monly provide a compatibility condition based on data types. They are employed
to avoid meaningless interaction between connected components. For example,
a component operating on string input will fail to process lists of images. How-
ever, type compatibility only covers one aspect of ”meaningful” interaction (in
terms of semantic policies of composition). Besides type constraints, there often
exist dynamic constraints. For example, two interacting components might ex-
change messages by a policy that received messages must be acknowledged to
the transmitter. Although their interfaces are type-compatible, one component
might ”forget” to acknowledge messages. This failure arises, for example, if a
component is introduced into an environment which does not provide this policy.
To additionally avoid such incompatibilities, we introduce a semantic extension
to interfaces. It is based on the component framework of Broy et. al. [BS01],
and employs the notion of (interface) assertions.

• We can extend the scope of composition. Thus, besides net specifications, com-
ponents specified in different styles may be used for composition.

27

28 CHAPTER 3. A COMPONENT PERSPECTIVE

3.1 Stream-Defined Component Model

3.1.1 Syntax and Semantics

In [BS01], Broy et. al. define a component model based on streams.Streamsare finite
or infinite sequences of data elements, calledmessages. They denote the communica-
tion histories ofdirected channels.

Definition 3.1 Let M be a set ofmessages. A stream s= 〈m1,m2,m3, . . .〉 is a finite
or infinite sequence of messages.M∗, M∞, andMω := M∗∪M∞ denote the set of all
finite streams, the set of all infinite streams, and the set of all streams respectively.

For example, the stream〈m1,m2,m3,m1〉 observed at a communication channel indi-
cates that firstm1 was transmitted, followed bym2 andm3, and finallym1 was transmit-
ted again. Components are connected to input and output channels. Streams received
on input channels are calledinput streams, streams transmitted through output chan-
nels are calledoutput streams(cf. Figure 3.1). An essential aspect of the component
definition is that beside its syntactic structure, the behavior of a component must be
defined formally. Basically:

”The behavior of a component is characterized by the relationship be-
tween input streams and output streams.”

Syntactically, components are defined as follows. An according graphical abstraction
is illustrated in Figure 3.1.

Definition 3.2 An elementary component C consists of

(i) a name,

(ii) a non-empty set offrame labels

(iii) input declarations, i.e., a list〈i1 : I1, . . . , in : In〉 of declarations of input channels
where adeclaration c : T is a pair of a channel name (or channel identifier) c
and a data type T,

(iv) output declarations, i.e., a list〈o1 : O1, . . . , om : Om〉 of declarations of output
channels, and

(v) abody, i.e., a formula in predicate logic.

3.1. STREAM-DEFINED COMPONENT MODEL 29

o : O1 1

o : On nni : I

... ...

i : I

n

11
[labels]

Component

Figure 3.1: Abstract representation of a component

Frame labels impose syntactic and semantic constraints onto a component. Basic frame
labels are ’timed’, ’untimed’, and ’time synchronous’ whose semantics is explained
below. Input and output declarations associate a component with an interface which
accepts messages of according data types. Channel names must be unique within
a declaration list. The body specifies the behavior of a component. It defines the
relationship between input streams and output streams. Besides the use of predicate
logic, Broy et. al. propose different specification styles, for example, a style based on
state transition diagrams.

To specify component behavior by logical formulas, operators and relations on streams
are employed. In the thesis, we will use the following operators and relations:

length#s: provides the length of streams,

concatenations1 _ s2: provides the concatenation of streamss1, s2,

restrt .s: provides streams with its first message removed,

prefix relations1v s2: provides a partial order on streams defined by

s1v s2 ⇔df ∃r. s1 _ r = s2,

truncations|n: provides a stream which consists of the firstn messages of streams,
and

filter A s s: provides the sub-stream ofsobtained by removing all messages ins that
do not occur in setA.

Figure 3.2 graphically represents an untimed component named ”Unbounded Buffer”.
We assume that typeD denotes a set of data elements and typeG := D∪{req} where
req denotes a request message. Thus, the buffer either receives data elements, or re-
quests ’req’ at its input channeli, and produces data elements at its output channel
o. Its intended task is to transmit messages on request in the same order they were
received. It can be specified by the body:

Body: ov Ds i ∧ #o = #({req}s i) . (3.1)

30 CHAPTER 3. A COMPONENT PERSPECTIVE

o : Di : G

[untimed]

Unbounded
Buffer

Figure 3.2: Graphical representation of an unbounded buffer

The left part of Conjunction (3.1) specifies that an output stream must be a prefix of
any input stream. The right part specifies that the number of messages provided at the
output exactly corresponds to the number of requests. Note that Formula (3.1) is not
defined for input streams which carry more requests than actual data messages. To
exclude these cases, the body must be extended by an according condition:

Body: #({req}s i)≤ #(Ds i) ∧
ov Ds i ∧ #o = #({req}s i) .

(3.2)

The complete specification can be represented non-graphically by the following nota-
tion:

Unbounded Buffer [untimed]

in i : G
out o : D

#({req}s i)≤ #(Ds i) ∧
ov Ds i ∧ #o = #({req}s i)

Dynamic semantics of components

We use the following abbreviations:

iS := i1, . . . , in oS := o1, . . . ,om

IS := I1, . . . , In OS := O1, . . . ,Om

IS∞ := I1∞, . . . , In∞ OS
∞ := O1

∞, . . . ,Om
∞

iS∈ IS∞ := i1 ∈ I1∞, . . . , in ∈ In∞ oS∈OS
∞ := o1 ∈O1

∞, . . . ,

BS := Body om∈Om
∞

whereM∞ denotes the set of infinitetimed streamsoverM. Besides messages ofM,
timed streams may contain so-calledtime ticks ’

√
’ . A time tick denotes the end of a

fixed unit of time. For example, consider the infinite timed stream

3.1. STREAM-DEFINED COMPONENT MODEL 31

〈
√

,m1,m2,
√

,
√

,m3,m1,
√

,
√

,
√

, . . .〉 .

It corresponds to a transmission of no message in the first time unit, messagesm1, m2

in the second, no message in the third, messagesm3, m1 in the fourth, and no messages
in the following time units. Its untimed interpretation corresponds to the finite stream
〈m1,m2,m3,m1〉.
By help of the notations introduced above, we represent the syntactic interface of a
component byiS : IS � oS : OS.

Definition 3.3 The denotationJC K of a timed elementary componentC is defined by
the formula:

JC K := iS∈ IS
∞ ∧ oS∈OS

∞ ∧ BS. (3.3)

Free variables in Formula (3.3) correspond to input and output streams of component
C . This open formula determines a predicateRS through

(iS,oS) ∈RS ⇔ BS. (3.4)

The i/o behavior of componentC is then specified by relationRS. The transition
function from component specificationC to its associated i/o behavior relationRS,
we denote byio(C).

Besides timed specifications, components may be declared as untimed and time-synchro-
nous. Both are special cases of the timed case. These classes differ in the interpretation
of their channel identifiers in the body formula. In timed specifications, they denote
timed streams of infinite length, in untimed specifications, they denote untimed streams
of finite or infinite length, and in time-synchronous specifications, they denote untimed
streams of infinite length. Thereby, time-synchronous streams are understood as se-
quences containing exactly one message at each time unit.

The semantics of untimed elementary components is reduced to the timed case. A
generic transformation ’timed()’ is introduced to convert an untimed elementary com-
ponent specificationC into a timed specificationtimed(C). Transformationtimed(C)
is obtained fromC by:

1. replacing the frame labeluntimed by timed, and

2. substituting free variablesv in the body ofC (i.e., identifiers of input and output
streams) by their ”time abstraction” ¯v. The ”time abstraction” operator ’¯’ con-
verts a timed streamv into an untimed stream ¯v by removing all time ticks (

√
)

from v:

32 CHAPTER 3. A COMPONENT PERSPECTIVE

v̄ := M s v,

assumed thatv is declared byv : M.

Then, the denotationJC uK of an untimed elementary componentC u is defined by:

JC uK := Jtimed(C u)K .

Note that although time abstraction operator ¯v converts timed streams into their un-
timed representation, above transformationtimed() in fact converts an untimed com-
ponent specification into a timed specification. The essential step of the transformation
is realized by step (1.) The replacement of frame label ’untimed’ by label ’timed’ im-
plies a change of the data types of all variables. Thereby, variables occurring in the
body formula are afterwards interpreted as timed streams. In other words, the speci-
fication then represents a relation on timed streams. Step (2.) only adjusts the body
formula, such that its intention does not change within the timed perspective.

Reconsider the specification of an unbounded buffer above. It corresponds to the timed
specification:

Unbounded Buffer [timed]

in ī : G
out ō : D

#({req}s ī)≤ #(Ds ī) ∧
ōv Ds ī ∧ #ō = #({req}s ī)

It can be verified easily that pairs of input/output streams
(
〈12, req,7,11, req〉, 〈12,7〉

)
and

(
〈12, req, req,11〉, 〈12,11〉

)
are elements of its (untimed) i/o behavior relation,

while pairs
(
〈12, req,7,11, req〉, 〈13〉

)
and

(
〈12, req,7, req, req〉, 〈12,7〉

)
are not. Se-

mantics of time-synchronous specifications are reduced to the timed case by an analo-
gous transformation (cf. [BS01]).

Note that component specification explicitly permits non-determinism. More pre-
cisely, each input stream may be associated with many possible output streams. For
example, the specification of an unbounded buffer at a timed perspective might not
determine an exact response time for answering requests. Thereby, an input stream
of actual data and requests is related to many output streams — reflecting different
response times. Thereby, non-determinism can be applied as an opportunity to model
incomplete specifications and to characterize component refinement. For example,
consider a specification of a mediator component which receives request from several

3.1. STREAM-DEFINED COMPONENT MODEL 33

clients and provides them successively to a service provider. At a first design, no con-
crete order of occurring client requests might be specified. The according behavior
relation then associates input streams from the clients with several alternative output
streams to the provider — reflecting the different opportunities of ordering received
requests. At a refined specification, an order might be imposed by a ”first-in first-out”
policy which reduces the non-determinism of the first specification. A more detailed
discussion of component refinement is postponed to Section 3.3.

Component composition

The component model permits the composition of components. An essential property
of component composition is that dynamic semantics of the composition is completely
determined by the dynamic semantics of the elementary components.

Definition 3.4 A composite component C = ⊗{C1, . . . , Ck} is defined by a name
and a set of componentsC1, . . . , Ck that satisfy the following condition: if c: T1 and
c : T2 occur in channel declarations of two componentsC ′ and C ′′ ∈ {C1, . . . , Ck}
respectively, then their data types T1 and T2 are equal.

Therefore, composition requires type compatibility of interfaces. The composition es-
tablishes connections between equally named input/output channels. Connected chan-
nels are calledlocal channels. The list of local channels is denoted bylS, their cor-
responding data types byLS. Figures 3.3 and 3.4 demonstrate two exemplary com-
positions. While the first composes components sequentially, the second composes
them by means of feedback. The resulting composite components both provide as
interface two input channels and two output channels. Generally, the interface of a
composite component is unambiguously determined by the union of the interfaces of
all sub-components minus all local channels (i.e., channels that establish connections).

i : I1 1 o : O1 1

2i : I2 l : L2 2 o : O2 2

Component 2Component 1

1l : L1

Figure 3.3: A sequential composition of two components

Definition 3.5 The denotationJC K of a composite componentC = ⊗{C1, . . . ,Ck} is
defined by the formula:

JC K := ∃lS∈ LS
∞. ∧k

j=1 JC jK . (3.5)

34 CHAPTER 3. A COMPONENT PERSPECTIVE

i : I1 1

l : L2 2

2 2i : I

o : O2 2

1l : L1

Component 2Component 1

o : O1 1

Figure 3.4: A non-sequential composition of two components

The existentially quantified channel identifierslS realize the desired semantics that
streams generated onto an output channel of a componentC ′ correspond to streams
received at an input channel of a componentC ′′ connected toC ′. In other words,
streams generated byC ′ are consumed byC ′′ (wrt. a specific channel).

Figure 3.5 demonstrates a composition of two concrete components ”UBuffer” (a
slight adaptation of the buffer defined above) and ”AcSum” (realizing an accumulated
sum). In contrast to the buffer defined above, the single input channel is decomposed
at ”UBuffer” into two channels: one for receiving actual data elements and one for
receiving requests. We introduce data typeR := {req} which exclusively denotes a
single request message. Component ”AcSum” requests numbers from the buffer and,
for each received number, it computes the accumulated sum of all numbers received
so far. The specification of ”UBuffer” is directly derived from ”Unbounded Buffer”:

UBuffer [untimed]

in i : D, i1 : R
out o : D

#i1≤ #i ∧ ov i ∧ #o = #i1

”AcSum” is specified by

AcSum [untimed]

in i : D
out o : D, o1 : R

#i = #o1 ∧ #o = #i ∧
[
∀ j. j ≤ #o ⇒ o. j =

j
∑

k=1
i.k
]

3.1. STREAM-DEFINED COMPONENT MODEL 35

Thereby, we assume thatD denotes a numeric data type. Equality #i = #o1 requires
that the number of initiated requests corresponds to the number of messages received.
For the specification of the accumulated sum, we employ the term ’s. j ’ to denote the
j-th message of a streams.

o : Di : D

[untimed]

i : R1

UBuffer

(a) Component ”UBuffer”

o : Di : D

[untimed]

AcSum

o : R1

(b) Component ”AcSum”

l : R1

[untimed]

l : D

[untimed]

AcSumUBuffer
i : D o : D

(c) Composition (after renaming channel identifiers)

Figure 3.5: Composition of components ”UBuffer” and ”AcSum”

According to the composition of ”UBuffer” and ”AcSum”, we apply a renaming of
channels as illustrated in Figure 3.5(c). The denotation of the composite component
”UBuffer ⊗ AcSum” is derived from Definition 3.5 as

∃l , l1.
[
#l1≤ #i ∧ l v i ∧ #l = #l1

]
∧[

#l = #l1 ∧ #o = #l ∧
[
∀ j. j ≤ #o ⇒ o. j =

j

∑
k=1

l .k
]]

⇔ #o≤ #i ∧
[
∀ j. j ≤ #o ⇒ o. j =

j

∑
k=1

i.k
]
, (3.6)

where we neglected time abstraction for readability. Note that an elementary compo-
nent specification with formula (3.6) as body and an according interface definition is
equivalent to the composite component ”UBuffer⊗ AcSum”. In general, elementary
component specifications do not distinguish from composite component specifications.
Therefore, the component approach iteratively scales up to complex components.

36 CHAPTER 3. A COMPONENT PERSPECTIVE

3.1.2 Behavioral Characterization of Composition

It is straightforward to consider i/o behavior relations specified by a component as
(albeit infinite) database relations. The syntactic interfaceiS : IS � oS : OS defines
an according relation schema by (i) identifying attribute names with channel names
and (ii) identifying attribute domains with streams over according message types. We
denote a corresponding relation schema bySC = (ĩS, õS).

We consider the composition of two componentsC1 andC2. Their according relation
schemes can be represented asSC1 = (ĩS1, l̃S1, õS1) andSC2 = (ĩS2, l̃S2, õS2). Thereby,
l̃S denote local streams,ĩS denote (unconnected) input streams, and ˜oS denote (uncon-
nected) output streams (cf. Figures 3.3 and 3.4). By this agreement, the behavior of
the composition is characterized as follows:

Proposition 3.1 Let C = C1⊗C2 be a composite component with respective i/o be-
havior relations io(C1), io(C2) and associated relation schemes SC1 = (ĩS1, l̃S1, õS1),
SC2 = (ĩS2, l̃S2, õS2). Then, the composite i/o behavior relation io(C) is determined by

io(C) = {(iS1, iS2,oS1,oS2) |
∃lS. (iS1, lS,oS1) ∈ io(C1) ∧ (iS2, lS,oS2) ∈ io(C2)} .

(3.7)

Proof The proposition is directly derived from Definition 3.5 and Statement (3.4).

2

By applying operators of the relational algebra [Cod70], this characterization can be
expressed more compactly (cf. [FT03]). Although database relations are generally
finite, according operators can be applied to infinite relations as well. In particular, we
may apply projection operationπ and natural join operation1.

Proposition 3.2 Let C = C1⊗C2 be a composite component with respective i/o be-
havior relations io(C1), io(C2) and associated relation schemes SC1 = (ĩS1, l̃S1, õS1),
SC2 = (ĩS2, l̃S2, õS2). Then, the composite i/o behavior relation io(C) is determined by
the natural join:

R = πĩS1,ĩS2,õS1,õS2
(io(C1) 1 io(C2))

= io(C1) 1̌ io(C2) ,

where 1̌ denotes the natural join with a subsequent projection onto the non-joined
attributes.

3.1. STREAM-DEFINED COMPONENT MODEL 37

Proof Statement (3.7) of Proposition 3.1 corresponds to the definition of the natural
join operator. In addition, local streamslS are projected out from the result. 2

Reconsider the example at Figure 3.5. Tables 3.1 and 3.2 represent selected elements
of the i/o behavior relations of components ”UBuffer” and ”AcSum”. There, postfix
’. . . ’ at the end of streams is used to denote infinite sequences of time ticks. Note that
by definition, i/o behavior relations are considered in the timed perspective.

io(UBuffer) :

i i1 o

〈5,11,9,
√

,
√

, . . .〉 〈req, req,
√

,
√

, . . .〉 〈5,11,
√

,
√

, . . .〉
〈5,11,9,

√
,
√

, . . .〉 〈req, req,
√

,
√

, . . .〉 〈
√

,5,11,
√

,
√

, . . .〉
〈5,
√

,
√

, . . .〉 〈req,
√

,
√

, . . .〉 〈5,
√

,
√

, . . .〉
.

Table 3.1: Selected elements of behavior relationio(UBuffer)

io(AcSum) :

i o1 o

〈5,11,
√

,
√

, . . .〉 〈req, req,
√

,
√

, . . .〉 〈5,16,
√

,
√

, . . .〉
〈5,11,

√
,
√

, . . .〉 〈req, req,
√

,
√

, . . .〉 〈5,
√

,16,
√

,
√

, . . .〉
〈
√

,5,11,
√

,
√

, . . .〉 〈req, req,
√

,
√

, . . .〉 〈
√

,
√

,5,16,
√

,
√

, . . .〉
.

Table 3.2: Selected elements of behavior relationio(AcSum)

io(UBuffer⊗AcSum) :

i o

〈5,11,9,
√

,
√

, . . .〉 〈5,16,
√

,
√

, . . .〉
〈5,11,9,

√
,
√

, . . .〉 〈5,
√

,16,
√

,
√

, . . .〉
〈5,11,9,

√
,
√

, . . .〉 〈
√

,
√

,5,16,
√

,
√

, . . .〉
.

Table 3.3: Selected elements of behavior relationio(UBuffer⊗AcSum)

Table 3.3 represents corresponding elements of the i/o behavior relation of compo-
sition ”UBuffer ⊗ AcSum”, assumed that channel identifiers are renamed according
to Figure 3.5(c). They are determined by computing the natural join (as shown by

38 CHAPTER 3. A COMPONENT PERSPECTIVE

Proposition 3.2). Thereby, the first element ofio(UBuffer) joins with the first two el-
ements ofio(AcSum), the second element ofio(UBuffer) joins with the third element
of io(AcSum), and the third element ofio(UBuffer) does not join (wrt. the elements
selected). By applying Formula (3.6) at the timed perspective, it can be verified that
the resulting elements correspond to Definition 3.5.

Note that the behavior of components is not necessarily computable completely, since
specification is based on predicate logic.

As illustrated in Figure 3.6, proposition 3.2 indicates that transition functionio() can
be understood as a homomorphism from component specifications (together with com-
ponent composition⊗) to behavior relations (together with behavior composition ˇ1),
i.e.,

io(C1⊗C2) = io(C1) 1̌ io(C2) .

Strictly speaking, the transition does not represent a total homomorphism defined for
any pairs of components, because the operator ’⊗’ is partially defined on components
only. For example, components with type-incompatible interfaces cannot be com-
posed.

(Stream relations,)(Components,)

2ioio1

C2

C2

io()

2io

1ioC

C1

1

Figure 3.6: Relation between component composition and its i/o behavior

3.2 Component Semantics of Interaction Nets

In Chapter 2, we defined formal syntax and semantics of interaction nets. Thereby,
dynamic semantics is specified by a net specification. In this section, we introduce a
characterization of the external net behavior which is based on stream relations. In
contrast to the former, it abstracts from the particular ”implementation” of a net. It

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 39

provides the opportunity to view dynamics of interaction nets as black-box compo-
nents. In the following treatment, we apply the restriction that all output places of
interaction nets are initially empty. This rather technical restriction does not limit their
expressiveness.

3.2.1 I/O Behavior

In the following, we will consider interaction nets as black-boxes. While the internal
net structure is assumed to be unknown, we may obtain information about a black-
box net through its interface only (cf. Figure 3.7(a)). Thereby, theinterfaceof an
interaction net is specified by the setPio of i/o places together with their associated
data types. To investigate the external behavior, we employ the notion of an observer
(cf. [Bau96]). Technically, an observer is an interaction net itself which is connected to
the investigated black-box net. As illustrated in Figure 3.7(b), an observer explores the
behavior of a black-box by recording the relation between sent messages and received
responses. As far as confusion is excluded, we will generally useN in the following
to denote an interaction netN i and its underlying CP net as well.

p1

2p

Black−box

Input

Output

(a) A black-box net

t1
p1

2p Output
(internal)

Input
(internal)

t’1

t2

Black−boxObserver

(b) An observer investigating the i/o behav-
ior of a black-box

Figure 3.7: Observing i/o behavior of interaction nets

Definition 3.6 An interaction netO is calledobserver of N , if N is an interaction
net, and the compositionN ◦O exists. We denote the set of observers ofN by ob(N).

To approach a stream-based characterization of net dynamics, we record the flow of
data elements within runs. We use the intuition that tokens consumed from a placep
by a transitiont at an occurrence of a stepY ”flow” from place p through an arca to

40 CHAPTER 3. A COMPONENT PERSPECTIVE

transitiont. We represent these data flows by so-calledtraces. Traces can be recorded
at arcs and places:

Trace of a step wrt. an arc: comprises all data elements that flow from a place to a
transition (or vice versa) at the occurrence of a step,

Input trace of a step wrt. a place: comprises all data elements that ”join” a place at
the occurrence of a step,

Output trace of a step wrt. a place: comprises all data elements that ”leave” a place
at the occurrence of a step.

If a transition does not fire at a step, then according traces correspond to the empty
multi-set (abbreviated by ’·’). The concept of observed arcs can be considered as an
extension of labeled transitions (cf. [Bau96]) which are used to record the firing se-
quence of transitions in elementary place/transition nets. We usestep(N) to denote
the set of steps of netN , andrun(N) to denote the set of runs ofN . The follow-
ing definition formalizes the notion of traces according to individual steps as well as
sequences of steps.

Definition 3.7 LetN = (Σ,P,T,A,N,C,G,E,I) be a CP net.

Trace tr(Y)[a] of step Y wrt. arc a is defined as the multi-set of tokens transition t
connected to arc a produces/consumes through this arc during an occurrence of step Y,
i.e.,

tr(Y)[a] := ∑
(t,b)∈Y

E(a) < b > .

Input trace tr(Y)[p+] of step Y wrt. place p is defined as the multi-set union of traces
of step Y wrt. all arcs a∈ A with p as its destination node, i.e.,

tr(Y)[p+] := ∑
a∈A,(t,p)∈N(a)

tr(Y)[a] .

Output trace tr(Y)[p−] of step Y wrt. place p is defined as the multi-set union of
traces of step Y wrt. all arcs a∈ A with p as its source node, i.e.,

tr(Y)[p−] := ∑
a∈A,(p,t)∈N(a)

tr(Y)[a] .

Input trace tr(r)[p+] of a sequence of steps r = 〈Y1,Y2, . . .〉 wrt. place p is defined as
the sequence of input traces of steps Yk wrt. place p, i.e.,

tr(r)[p+] := 〈tr(Y1)[p+], tr(Y2)[p+], . . .〉 .

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 41

Output trace tr(r)[p−] of a sequence of steps r = 〈Y1,Y2, . . .〉 wrt. place p is defined
as the sequence of output traces of steps Yk wrt. place p, i.e.,

tr(r)[p−] := 〈tr(Y1)[p−], tr(Y2)[p−], . . .〉 .

Trace tr(r)[N] of a sequence of steps r = 〈Y1,Y2, . . .〉 wrt. net N is defined as the
tuple of input and output traces of sequence r wrt. all places ofN , i.e.,

tr(r)[N] :=
(
tr(r)[p+

1], . . . , tr(r)[p+
k], tr(r)[p−1], . . . , tr(r)[p−k]

)
,

if P = {p1, p2, . . . , pk}.

Trace tr(N) of net N is defined as the set of traces of all runs of netN , i.e.,

tr(N) :=
⋃

r∈run(N)

tr(r)[N] .

The definition accordingly applies to interaction nets. As introduced in Section 2.1, we
employ the summation symbol to denote the union operator on multi-sets. Note that
traces do not depend on actual net markings. In other words, traces may be computed
according to steps which are not necessarily enabled. In particular, computing the trace
of a sequencer = 〈Y1,Y2, . . .〉 of steps does not require thatr is a run, although we will
usually be interested in traces of runs.

To illustrate the definition, we consider the interaction net in Figure 3.8. The figure
represents an observer that investigates the behavior of a buffer. As net dynamics does
not impose first-in/first-out behavior of data elements produced onto places, the buffer
relays received messages in a non-deterministic order.

2p

Buffer NObserver O

1pp’
t t’’t’ dd d d d

Figure 3.8: An observer connected to an unreliable buffer

Table 3.4 represents two runsr1 andr2 of the composite netO ◦N assumed that place
p′ is initialized by multi-set{|1,5,8|}. Table 3.5 represents their corresponding traces
tr(r1)[O ◦N] andtr(r2)[O ◦N]. There, multi-sets are represented by the ’+’ notation.
We omitted traces that exclusively contain empty messages, i.e., traces according to

42 CHAPTER 3. A COMPONENT PERSPECTIVE

Y1 Y2 Y3 Y4

r1 : (t ′,1) (t ′,5)+(t,1) (t ′,8)+(t,5) (t,8)
r2 : (t ′,5)+(t ′,8) (t ′,1) (t,1)+(t,8) (t,5)

Table 3.4: Two runs of interaction netO ◦N

p′− p+
1 p−1 p+

2

tr(r1) : 〈1,5,8, ·〉 〈1,5,8, ·〉 〈·,1,5,8〉 〈·,1,5,8〉
tr(r2) : 〈5+8,1, ·, ·〉 〈5+8,1, ·, ·〉 〈·, ·,1+8,5〉 〈·, ·,1+8,5〉

Table 3.5: Tabular representation of traces of runsr1 andr2

p′+ and p−2 . Since a single variabled occurs in the example net only, we droppedd
from the representation of binding elements in Table 3.4.

Note that we can infer the sequence of net markingsm1,m2, . . . from the trace of a run
r = 〈Y1,Y2, . . .〉, if the initial markingm0 is known. For each placep and each stepYk,
it is inductively computed by

mk(p) = mk−1(p)+ tr(Yk)[p+]− tr(Yk)[p−]

= m0(p)+
k

∑
j=1

tr(Yj)[p+]−
k

∑
j=1

tr(Yj)[p−]

= m0(p)+∑ tr(r)[p+]−∑ tr(r)[p−] , (3.8)

where summation on sequences of multi-sets (as used in Equality (3.8)) is defined as
the multi-set union of their elements.

We adopt the notion of streams and messages from Section 3.1 for the behavior of
interaction nets. We define a(net) messageas a multi-set of data elements of the
same data type. The intuition behind is that a place may receive or emit several data
elements at the occurrence of a single step. Since we use a place-oriented interface,
it is possible to send or receive multi-sets of data elements at a time. We apply the
definitions ofstreams, stream relations, andoperatorson streams from Section 3.1 to
(net) messages. It is straightforward to verify that

(i) the trace of a step wrt. an arc is a message,

(ii) input and output traces of a step wrt. a place are messages,

(iii) input and output traces of runs wrt. a place are streams,

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 43

(iv) a trace of an interaction net wrt. a run is an element of a stream relation, and

(v) a trace of an interaction net is a stream relation.

Therefore, we may use the notion of input/output streams as a synonym for input/output
traces (of runs wrt. places). As traces of nets represent stream relations, we may
adopt the database perspective from Section 3.1.2. According to attribute names of
relation schemes, we use the following convention: ifP = {p1, p2, . . . , pk} is a set
of places, then(P)+ := {p+

1 , p+
2 , . . . , p+

k } are attribute names that denote streams of
corresponding input traces, and(P)− := {p−1 , p−2 , . . . , p−k } are attribute names that de-
note streams of corresponding output traces. Attribute domains are inferred from data
types of their corresponding places. By definingS[N] := (N .P)+ ∪ (N .P)−, each
(non-empty) sub-setS1 ⊆ S[N] represents a relation schema as, for example, schema
S1 = {p′−, p+

1 , p−1 , p+
2 } ⊆ {p′+, p+

1 , p+
2 , p′−, p−1 , p−2 } used in Table 3.5. Note that in

contrast to the external perspective applied in Section 3.1.2,S[N] additionally includes
attributes denoting internal streams. However, in accordance with Section 3.1.2, we
denote the external i/o-streams ofN by schemaSN := (ĩS, õS), whereĩS := (N .Pi)+

andõS := (N .Po)−. We denote the internal schema byS]N [:= S[N] \SN . Elements
of a schemaS1, we denote byxS. The type constraint imposed onxS is represented by
’xS : S1’ which reads ’xS is of typeS1’. We adopted the sub-script ’S’ from Section 3.1
to distinguish a tuple of streamsxS from a single streamx.

Commonly, we are not interested in the complete trace of a netN , but in input or
output traces of some places (in particular, i/o places) only. It corresponds to the
projection operation of the relational algebra. For readability, we define the notation:

tr(N)[S1] := πS1(tr(N)),

if π represents the projection operator, andS1 ⊆ S[N]. The projection operation ac-
cordingly applies to traces of runs (denoted by ’tr(r)[S1]’) as well as to stream tuples
(denoted by ’xS[S1]’).

A graphical abstraction that transforms an interaction net into a view that exclusively
represents its streams is exemplarily illustrated in Figure 3.9. At a first abstraction step,
incoming and outgoing arcs of places are subsumed to input and output streams rep-
resented by distinguished arcs (cf. Figures 3.9(a) and 3.9(b)). At a second abstraction
step, input streams as well as output streams are subsumed to stream tuples represented
by thick circles (cf. Figures 3.9(b) and 3.9(c)).

Figure 3.10 motivates that a single observer usually does not discover the complete
i/o behavior of an interaction net. Obviously, observerO provides only a restricted
view onto the external behavior of interaction netN . In particular, it ignores output at
placep3 as well as possible responses to input at placep4. In addition, input generated
onto placep1 is limited to three specific data elements. Finally, observerO neither
tests responses to sending multi-sets of data elements, nor experiences responses of

44 CHAPTER 3. A COMPONENT PERSPECTIVE

(a) Net representation

x1

x

x2

3

+

+

+

x1

x

x2

3

−

−

−

(b) Stream abstraction

xS
−xS

+

(c) Stream tuple ab-
straction

Figure 3.9: Representation of streams and stream tuples

multi-sets of data elements. Since the external behavior of a net should not depend
on the particular abilities of a specific observerO, it has to comprise input/output
relations recorded byany observer. In the following behavior definition, we use a
slightly adapted tracetr ′() which will be explained below.

t1
1p 3p

4p2p

Observer O

t2
d

dd

d

Black−boxN

Figure 3.10: An observer that initiates input streams and records responses

Definition 3.8 The i/o behavior io(N) of an interaction net N is defined as the
union of traces of compositionsN ◦O over all observersO of N projected to the
interface streams ofN , i.e.,

io(N) :=
⋃

O∈ob(N)

tr ′(N ◦O)[SN] .

Definition 3.9 Let N be a CP net, let r be a sequence of steps wrt.N , and let p∈
N .P. Theshifted traces tr′(r)[p+] and tr′(r)[p−] are defined as

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 45

tr ′(r)[p+] := tr(r)[p+]|#r−1 ,

tr ′(r)[p−] := rt .tr(r)[p−] ,

if #r represents the number of steps of sequence r. Shifted traces extend to schemes
and CP nets by attribute-wise application.

The shifted tracetr ′(r)[N] equals to tracetr(r)[N], but (i) the last message of its
input streams is removed (if finite), and (ii) the first message of its output streams is
removed. According to internal streams of netN , the shifted trace obviously carries
less information than the usual trace, since some messages are removed. However,
if we are interested in theexternalbehavior of a net, it carries the same information,
because

1. the first message of an external output stream is always the empty message ’·’,
since we assumed that output place are initially empty, and

2. the last message of an external input stream of lengthl does not affect the exter-
nal output streams of lengthl , since it cannot be processed by any transition of
netN before stepl +1.

As an example, we reconsider Figure 3.8. Table 3.6 represents selected elements of
the behavior relation of bufferN . Note that some of these elements are not recorded
by the observer used in Figure 3.8.

io(Buffer) :

p+
1 (input) p−2 (output)

〈1,5,8, ·〉 〈·,1,5,8〉
〈1,5,8, ·, ·〉 〈·, ·, ·,1+5+8, ·〉
〈1+5+8, ·, ·,2〉 〈·,8, ·,1+5〉

Table 3.6: Three elements of behavior relationio(Buffer) (wrt. Figure 3.8)

The introduction of shifted tracetr ′() is motivated by the composition of nets. As Fig-
ure 3.11 illustrates, it would be beneficial to know the input/output relation betweeniS1

ando+
S1

instead of the relation betweeniS1 andoS1. When composing two netsN1 and
N2, internal output o+S1

of netN1 corresponds to the external input streamiS2 of net
N2. Since we consider nets as black-boxes, we do not know internal streams. How-
ever, shifted tracetr ′() roughly represents the desired input/output relation betweeniS
ando+

S . Although, the internal outputo+
S1

is not known exactly, the shifted tracetr ′()

46 CHAPTER 3. A COMPONENT PERSPECTIVE

1iS

1iS

N 1

N 2

N 2

N 11So1S
+o

)(2iS

2iS 2S
−i

2S
−i

1S
+o

Figure 3.11: Illustration of the behavior of net composition

will suffice to permit a meaningful behavior composition. It will be derived in Section
3.2.2.

Definition 3.8 requires to investigate any observerob(N) to determine the i/o behavior
of a netN . Therefore, it is natural to ask if there exists a single observer that is able
to reveal the complete i/o behavior of a netN . We call such observersgeneral.

Definition 3.10 An observerOg of N is calledgeneral (wrt. N), iff

∀O ∈ ob(N). tr ′(N ◦O)[SN] ⊆ tr ′(N ◦Og)[SN] .

We denote the set of general observers ofN by obg(N).

By definition, a general observer is able to simulate the behavior of any other observer.
The definition directly implies that the i/o behavior of an interaction netN is deter-
mined by a single general observerOg only (if existing), i.e.,

tr ′(N ◦Og)[SN] = io(N) . (3.9)

Figure 3.12 motivates a generic construction of general observers. The represented
interaction netN provides as interface an input placep1 of some typeT1 and an output
placep2 of some typeT2. ObserverOg connects to each i/o place a single transition
that either produces or consumes messages. Consider, for example, transitiont1. Its
connected arc is labeled by a single variablex. Sincex is ’unbounded’, i.e., it does
not occur in any incoming arc of transitiont1, it may be instantiated by anarbitrary
data element of its domain. As the domain ofx comprises multi-sets on typeT1, x
may be instantiated by an arbitrary (but type-compatible) message at each step. By
a corresponding argument, transitiont2 may consume any message at each step —
restricted by the marking of placep2 only.

The following algorithm generalizes this example to arbitrary interaction nets. More
precisely, it constructs a general observerOg according to a given interaction netN .

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 47

t1
1

color x = T ms;
color y = T ms;2

1

Observer Og

2p :T2

t2

p :T1

y

x

Black−boxN

Figure 3.12: A general observer

Algorithm OBSERVERg(N):

We iteratively construct an observerOg of a given interaction netN as follows. We
start with an empty interaction netOg. For each i/o placep∈N .Pi ∪N .Po:

(i) Add placep to place setOg.P, and adopt its data type, i.e.,Og.C(p) := N .C(p).
If p∈N .Pi , then addp to setOg.Po, otherwise addp to setOg.Pi .

(ii) Introduce a distinct transitiont into Og.T. Introduce a distinct arca into Og.A.

(iii) If p∈N .Pi , then arca directs fromt to p, i.e.,Og.N(a) = (t, p), otherwise arc
a directs fromp to t, i.e.,Og.N(a) = (p, t).

(iv) Introduce a distinct variablex of data typeC(x) = Og.C(p)MS, and apply this
variable as an arc expression ofa, i.e.,Og.E(a) = x.

The following proposition confirms that for each interaction netN , this algorithm
constructs a general observer ofN .

Proposition 3.3 LetN be an interaction net. AlgorithmOBSERVERg(N) computes
an interaction netOg which represents a general observer ofN .

Proof By Definitions 2.1, 2.7, and 3.6, it is straightforward to verify that the algorithm
computes an observer ofN . It is left to prove that observerOg = OBSERVERg(N) is
able to simulate the behavior of any other observerO of N . More precisely, we need
to prove the validity of implication

∀iS,oS. (iS,oS) ∈ tr ′(N ◦O)[SN] ⇒ (iS,oS) ∈ tr ′(N ◦Og)[SN] .

By definition, if (iS,oS) ∈ tr ′(N ◦O)[SN], then there exists a runr of N ◦O such
that

48 CHAPTER 3. A COMPONENT PERSPECTIVE

iS = tr ′(r)[ĩS] and oS = tr ′(r)[õS] .

By its construction, observerOg is able to initiate any input streams forN , and thus,
there exists a runrg which generates traceiS in particular. The same argument applies
for the output streamsoS, assumed that output places possess an according extent of
markings. However, since there exists a runr where netN produced sufficient output,
this condition is fulfilled. 2

3.2.2 Behavioral Characterization of Net Composition

In this section, we investigate if the composition model of interaction nets coincides
with the component framework introduced in Section 3.1. Therefore, we will prove
that the behavioral characterization of component composition recognized in Section
3.1.2 applies to interaction nets as well. More precisely, we need to approve the ques-
tion:

”Does transition function io() represent a (partial) homomorphism from
(Interaction nets,◦) to (Stream Relations, 1̌)?”

The homomorphism mapping is illustrated in Figure 3.13. Analogously to component
composition, the mapping does not represent a total homomorphism defined for any
pairs of interaction nets, because the operator ’◦’ is partially defined on interaction
nets only. A positive answer to this question would permit to embed the interaction net
approach into the component framework introduced.

(Stream relations,)(Interaction nets,)

N 1

N 2

N 2N 1

2ioio

io()

1

1io

2io

Figure 3.13: Relation between interaction net composition and its i/o behavior

To be precise, we need to comment the join operationio(N1) 1̌ io(N2). Its intention is
to join input streams with connected output streams. By definition 3.8, a connected pair

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 49

of input/output streams corresponds to attribute namesp+ andp− respectively. Thus,
they actually differ, and thus, the join operator would not combine them. However, as
a relaxed notation we may safely omit superscripts ’+’ and ’−’ in any relation schema
io(N) without losing uniqueness. Thereby, the join computes as intended.

Before we state an according theorem, we will illustrate a motivating example. Figure
3.14 (left) represents two interaction netsN1 andN2. While N1 duplicates its input,
N2 either eliminates duplicates or replaces its input by constant ’nul’. Their com-
positionN1 ◦N2 represented in Figure 3.14 (right) corresponds to a unidirectional
interaction fromN1 to N2 realized by a single interface place.

1p

2p

2p

1p

N 1

N 2

N 1 N 2

2‘dd

p

p

d2‘d

d nul

dd 2‘d

d nulp

2‘d

Figure 3.14: A unidirectional interaction between two interaction nets

It is straightforward to verify that Table 3.7 represents sub-sets of the i/o behavior
relationsio(N1), io(N2), and io(N1◦N2) respectively. Consider, for example, the
run r1/3 of the composite netN1 ◦N2. It corresponds to a parallel execution of runs
r1 and r3 of the elementary netsN1 andN2. In particular, output streamo of net
N1 equals to input streami of netN2. The same behavior can be observed for runs
r1/4, . . . , r2/7. These examples indicate a condition according to the behavior of the
net composition: if there exist elements(i1,o1) ∈ io(N1) and(i2,o2) ∈ io(N2) with
i2 = o1, then there exists an element(i1,o2) ∈ io(N1◦N2). According to the example
tuples, the behavior in fact corresponds to the join operationio(N1) 1̌ io(N2).
Theorem 3.1 generalizes this example by considering (i) stream tuples instead of a
single stream, and (ii) bidirectional interaction instead of unidirectional. It provides a
positive answer to the question posed at the beginning of this section.

Theorem 3.1 Let N1, N2 be two interaction nets. If the compositionN1◦N2 exists,
then the following equality is valid:

io(N1◦N2) = io(N1) 1̌ io(N2). (3.10)

50 CHAPTER 3. A COMPONENT PERSPECTIVE

Net Run Input stream Output stream

N1 r1 〈1,2,3,4, ·〉 〈·,1+1,2+2,3+3,4+4〉
r2 〈1,2,3,4, ·〉 〈·,1+1, ·,3+3,2+2〉

N2 r3 〈·,1+1,2+2,3+3,4+4〉 〈·, ·,1,2,3〉
r4 〈·,1+1,2+2,3+3,4+4〉 〈·, ·,nul,nul,nul〉
r5 〈·,1+1,2+2,3+3,4+4〉 〈·, ·,nul,2,3〉
r6 〈·,1+1, ·,3+3,2+2〉 〈·, ·,nul,nul,3〉
r7 〈·,1+1, ·,3+3,2+2〉 〈·, ·, ·,1,3〉

N1◦N2 r1/3 〈1,2,3,4, ·〉 〈·, ·, ·,1,2,3〉
r1/4 〈1,2,3,4, ·〉 〈·, ·,nul,nul,nul〉
r1/5 〈1,2,3,4, ·〉 〈·, ·,nul,2,3〉
r2/6 〈1,2,3,4, ·〉 〈·, ·,nul,nul,3〉
r2/7 〈1,2,3,4, ·〉 〈·, ·, ·,1,3〉

Table 3.7: Selected elements of behavior relationsio(N1), io(N2), io(N1◦N2)

The proof of the theorem together with required definitions and lemmas is presented
in the following section. It basically verifies equality 3.10 by considering two cases:

(L) io(N1◦N2) ⊆ io(N1) 1̌ io(N2) , and

(R) io(N1◦N2) ⊇ io(N1) 1̌ io(N2) .

Thereby, (L) can be understood as a property of decomposition and (R) as a property
of composition. Roughly stated, (L) reflects the opportunity that a run observed wrt.
compositionN1 ◦N2, can be ”decomposed” into two sub-runs wrt.N1 andN2. (R)
reflects the opportunity that two runs observed wrt. elementary interaction netsN1 and
N2 can be composed to a run wrt. their compositionN1◦N2. (In addition, according
observers must be taken into account.) The proof is constructive in the sense that
it constructs decomposed runs from composite runs as well as composite runs from
existing elementary runs.

3.2.3 Proof of the Characterization

We introduce a partial order ’�’ on streams which indicates that the multi-set union of
data elements of one stream is a sub-set of that of another stream for each truncation.

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 51

Definition 3.11 The Partial order ’�’ on streams is defined as:

s� s′ ⇔d f #s≤ #s′ ∧

(
∀n.

n

∑
k=1

s|k ⊆
n

∑
k=1

s′|k ∨ n > #s

)
.

It extends to tuples of streams by element-wise application, i.e.,

(s1, . . . ,sk) � (s′1, . . . ,s
′
k) ⇔df s1� s′1 ∧ . . . ∧ sk � s′k ,

where the order of streams is deduced from a predefined order on their attributes.

If not stated differently, we infer a standard order on attributes from a total order on
placesp∈ P together with the convention ’p+ < p−’. For example,p+

1 < p−1 < p+
2 <

p−2 . The partial order ’�’ on streams can be characterized by a condition on net mark-
ings. As indicated in Figure 3.15, we consider two placesp, p′ with input streamsi, i′,
and equal output streamso according to a runr = Y1,Y2, Then,

(
i � i′ ∧m0(p)⊆m0(p′)

)
⇔ ∀k.

(
mk(p)⊆mk(p′) ∨ k > #i

)
. (3.11)

i

p

i’

p’

Figure 3.15: Relation ’�’ on traces corresponds to relation ’⊆’ on markings

In other words, ifs� s′, then the marking of placep is always a subset of the marking
of p′, i.e., the relation� on streams entails the relation⊆ on place markings and vice
versa.

The following lemma states necessary and sufficient conditions which a sequence of
stepsr = 〈Y1,Y2, . . .〉 needs to satisfy to represent a run. It expresses that for each run
and each placep, the input stream ofp must be greater than or equal to its output
stream (if we precede the input stream with the initial marking). The condition is
illustrated at an example net in Figure 3.16.

Lemma 3.1 (’Conditions of runs’) Let N be a CP net, and let r= 〈Y1,Y2, . . .〉 be
a sequence of steps ofN . Then, r is a run ofN , if and only if one of the following
equivalent conditions are valid for all places p∈ P:

52 CHAPTER 3. A COMPONENT PERSPECTIVE

∀k. k < #r ⇒

m0(p) +
k

∑
j=1

∑
(t,b)∈Yj

E(t, p) < b > ⊇
k+1

∑
j=1

∑
(t,b)∈Yj

E(p, t) < b >, (3.12)

〈m0(p)〉_ tr(r)[p+] � tr(r)[p−] . (3.13)

According to places pe with an empty initial marking m0(pe) = {||}, Condition 3.13
corresponds to:

〈·〉_ tr(r)[p+
e] � tr(r)[p−e] , (3.14)

〈·〉= tr(r)[p−e]|1 ∧ tr ′(r)[p+
e] � tr ′(r)[p−e] . (3.15)

Proof We need to prove that Conditions (3.12) – (3.15) are individually equivalent
to the requirement that stepsY1, Y2, . . . are enabled at subsequent markings ofN .
Condition (3.12) states that for each placep, all data elements consumed fromp until
stepYk+1 must be produced intop before, or they must occur in the initial marking. It
inductively reflects the requirement of a step to be enabled (cf. Definition 2.1). Condi-
tion (3.13) simply rewrites condition (3.12) according to Definitions 3.7 (on page 40)
and 3.11 (on page 51). Conditions (3.14) and (3.15) adapt condition (3.13) to the case
in which placepe is initially unmarked. It implies that the first message of the output
stream ofpe must be the empty message. 2

3p

2p

p1

p1

2p

3p
3i

2o

1o

3o

2i

1i

N N (stream abstraction)

Figure 3.16:Illustration of Lemma 3.1:
〈·〉_ i1 � o1, 〈·〉_ i2 � o2, 〈m0(p3)〉_ i3 � o3

To derive properties about composition and decomposition of interaction nets, we in-
troduce operators on steps and runs. While multi-set union operator ’+’ permits com-
position of steps and runs, the projection operator ’[·]’ permits their decomposition.
Thereby, a projection of runs ’r[S]’ corresponds to determining sub-sets of binding
elements which affect streams according to sub-schemaS.

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 53

Definition 3.12 LetN be a CP net, let p∈ P, let S⊆ S]N [be a sub-schema, lets̃∈ S
be an attribute, let Y , Y′ be steps, and let r= 〈Y1,Y2, . . .〉, r′ = 〈Y′1,Y′2, . . .〉 be sequences
of steps ofN . Thecomposition of sequences of steps r + r ′ is defined as

r + r ′ := 〈Y1 +Y′1,Y2 +Y′2, . . .〉 .

If one sequence is finite and shorter than the other, missing steps are treated as empty
multi-sets. Theprojection of a step Y[·] and theprojection of a sequence of steps r[·]
are defined as

Y[s̃] := ∑t∈T[s̃] {|(t,b) ∈Y|} ,

Y[S] := ∑t∈T[S] {|(t,b) ∈Y|} ,

r[S] := 〈Y1[S], Y2[S], . . .〉 ,

where

T[p+] := {t ∈ T |∃a, t.N(a) = (t, p) |} ,
T[p−] := {t ∈ T |∃a, t.N(a) = (p, t) |} ,

T[S] :=
⋃

s̃∈ST[s̃] .

It is straightforward to verify that (i) the composition of sequences of stepsr + r ′ re-
sults in a sequence of steps, (ii) the projectionY[S] of a step onto a schema results
in a step, and (iii) the projectionr[S] of a sequence of steps onto a schema results in
a sequence of steps. Note that the projectionY[p+] of a step onto attributep+ pro-
vides all binding elements which affect the according tracetr(Y)[p+], i.e., all binding
elements of incoming transitions of placep. Accordingly, the projectionY[p−] of a
step onto attributep− provides all binding elements of outgoing transitions of place
p. Therefore, we sometimes use the notion ofaffectivebinding elements wrt.p+ (or
p−). The projection intuitively extends to schemes and sequences of steps. Thereby,
the definition yields the equalitiesY[S]N [] = Y, andr[S]N [] = r. If N = N1◦N2, we
apply the abbreviations

Y[Nk] := Y[S]Nk[] and r[Nk] := r[S]Nk[] (for k∈ {1,2}) .

The following lemma states that input and output traces are exclusively determined by
binding elements of accordingly projected steps.

Lemma 3.2 Let N be a CP net, let r= 〈Y1,Y2, . . .〉 of N be a sequence of steps, let
S⊆ S]N [be a sub-schema, and lets̃∈ S be an attribute. Then,

tr(Yk)[s̃] = tr(Yk[s̃])[s̃] ,
tr(r)[s̃] = tr(r[s̃])[s̃] ,
tr(r)[S] = tr(r[S])[S] .

54 CHAPTER 3. A COMPONENT PERSPECTIVE

Proof The equalities are directly implied from Definitions 3.7 and 3.12. 2

By Definition 3.9, equalities of Lemma 3.2 are valid for shifted tracestr ′() as well.

Lemma 3.3 (’Composition and decomposition of steps’)Let N1, N2 be interaction
nets whose compositionN := N1◦N2 exists, and let Y , Y1, and Y2 be steps ofN , N1,
andN2 respectively. If we apply conventions S:= S]N [, S1 := S]N1[, and S2 := S]N2[,
then

∀s̃∈ S. Y[s̃] =
{

(Y[S1])[s̃] : s̃∈ S1 ,
(Y[S2])[s̃] : s̃∈ S2 .

(3.16)

∀s̃∈ S. tr(Y)[s̃] =
{

tr(Y[S1])[s̃] : s̃∈ S1 ,
tr(Y[S2])[s̃] : s̃∈ S2 .

(3.17)

Y[S1] ∈ step(N1) ∧ Y[S2] ∈ step(N2) , (3.18)

Y1 +Y2 ∈ step(N) . (3.19)

Statements (3.16) – (3.19) analogously apply to sequences of steps. In addition, State-
ment (3.17) is valid for the shifted trace tr′() as well.

Proof

Statement (3.16):
It considers the projection of stepsY[s̃] of a composite netN = N1◦N2 onto a single
attributes̃. It states that if ˜s belongs toN1, thenY[s̃] is completely determined by the
projection ofY to N1 (and vice versa). In other words,

∀s̃∈ S1. Y[s̃] = (Y[S1])[s̃] ∧ (Y[S2])[s̃] = {||} ,
∀s̃∈ S2. Y[s̃] = (Y[S2])[s̃] ∧ (Y[S1])[s̃] = {||} .

(3.20)

It is proved by considering Definitions 3.12. The projection of a stepY[p+] onto
attribute p+ comprises all binding elements(b, t) of transitionst that produce data
elements onto placep. By Definition 2.9 (on page 20), these transition either belong to
sub-netN1 or to sub-netN2. Therefore, binding elements(b, t) according top+ occur
either in projectionY[S1] or in projectionY[S2]. This analogously applies to projection
of stepY[p−] onto attributep−. Together, it implies (3.20), and thus (3.16).

Statement (3.17):
By Definition 3.7, traces of a steptr(Y)[p+] andtr(Y)[p−] are completely determined
by binding elements inY[p+] andY[p−] respectively, i.e.,

∀s̃∈ S. tr(Y)[s̃] = tr(Y[s̃])[s̃] . (3.21)

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 55

It implies thattr(Y)[s̃] = tr(Y[S1])[s̃], if s̃∈ S1, andtr(Y)[s̃] = tr(Y[S2])[s̃], if s̃∈ S2

which proves (3.17).

Statement (3.18):
Consider a binding element(b, t) ∈ Y[S1]. By Definition 3.12,t is a transition of
N1 and (b, t) ∈ Y. Therefore, bindingsb concern arcs attached to transitiont. By
Definition 2.9, all arcs attached tot belong toN1. Therefore, all binding elements
(b, t) are binding elements ofN1. An analogous treatment ofY[S2] implies (3.18).

Statement (3.19):
We need to show that if a binding element(b, t) ∈Y1, then(b, t) is a binding element
of N (and analogously for(b, t) ∈ Y2). Since transitiont is in N , it is sufficient to
realize that all arcs and places attached tot in the composite netN already occur in
sub-netN1. This is ensured by the net composition operator (cf. Definition 2.9). Since
guards and arc expressions are not altered by the net composition,(b, t) is a binding
element ofN as well. An analogous treatment of the case(b, t) ∈Y2 implies (3.19).

Statements (3.16) – (3.19) are valid for sequences of steps as well. In contrast to
runs, sequences of steps do not impose further restrictions. Therefore, verification can
directly be reduced to that of single steps. Note that statements (3.18) and (3.19) must
be adapted such that the result of projection and composition of sequences of steps are
sequences of steps as well.

By Definition 3.9, it can be verified that Statement (3.17) remains valid for shifted
tracetr ′() as well. 2

In the following, we will apply a naming convention according to stream tuples that
occur in runs of composite netsN1◦N2. These names of stream tuples are illustrated
at an abstract net composition in Figure 3.17 and are defined in Table 3.8.

1S
+o 2iS1oS

oS2S12
−liS1

−

N 1

S21
+l

12
+

S21
−l

lSiS1
+oS2

2iS
−

Observer

N 2

O

Figure 3.17: Naming convention according to streams in composite nets

The following lemma is essential for the proof of Theorem 3.1. It states that if there ex-
ist runsr1, r2 of two composable interaction netsN1, N2 then there exists a composite
run r of N1◦N2, assumed that runsr1, r2 fulfill a compatibility condition. Composite
runr corresponds to a parallel execution of local runsr1, r2. Thereby, the compatibility

56 CHAPTER 3. A COMPONENT PERSPECTIVE

Streams atN1 Streams atN2 Interface streams atN1◦N2

iS1 : (Pi
1\P2)+ iS2 : (Pi

2\P1)+ l+S12
: (Po

1 ∩Pi
2)

+

i−S1
: (Pi

1\P2)− i−S2
: (Pi

2\P1)− l−S12
: (Po

1 ∩Pi
2)
−

oS1 : (Po
1 \P2)− oS2 : (Po

2 \P1)− l+S21
: (Pi

1∩Po
2)+

o+
S1

: (Po
1 \P2)+ o+

S2
: (Po

2 \P1)+ l−S21
: (Pi

1∩Po
2)−

Table 3.8: Naming convention according to streams inN1◦N2

condition ensures that netN1 produces ’enough’ input for netN2 and vice versa. The
implication of Lemma 3.4 is graphically illustrated in Figure 3.18.

Lemma 3.4 (’Composition of runs’) LetN1, N2 be interaction nets, LetO1 andO2

be observers ofN1 andN2 respectively withN1.Pio∩O1.Pio = N2.Pio∩O2.Pio, and
let r1 and r2 be runs ofN1 ◦O1 and N2 ◦O2 respectively. If compositionN1 ◦N2

exists, then

tr(r1)[l̃+S12
] = tr(r2)[l̃+S12

] ∧ tr(r1)[l̃+S21
] = tr(r2)[l̃+S21

] ⇒
(r1[N1]+ r2[N2]) ∈ run(N1◦N2) ,

(3.22)

wherel̃+S12
= (Po

1 ∩Pi
2)

+ andl̃+S21
= (Pi

1∩Po
2)+.

Proof We defineN := N1◦N2, S1 := S]N1[, S2 := S]N2[, andr := r1[N1]+ r2[N2] =
r1[S1]+ r2[S2]. First, we show thatr represents a sequence of steps ofN . Therefore,
we apply Lemma 3.3 (3.18) to composite netN1◦O1. It implies thatr1[S1] represents
a sequence of steps ofN1. Analogously,r2[S2] represents a sequence of steps ofN2.
Applying Lemma 3.3 (3.19) to composite netN1◦N2 implies thatr = r1[S1]+ r2[S2]
represents a sequence of steps ofN .

To verify thatr is a run of netN , we will apply Lemma 3.1. Therefore, we have to
confirm the validity of one of the conditions of Lemma 3.1 for each placep∈ P. We
distinguish three cases: (1) non-i/o places ofN1 andN2, (2) i/o places ofN , and (3)
i/o places ofN1 andN2 which established connections.

Case 1: p∈ P1\Pio
1 ∨ p∈ P2\Pio

2 :
We considerp∈ P1\Pio

1 . (The other case is symmetric.) Since both attributesp+ and
p− denote streams withinN1, i.e., p+, p− ∈ S1, we can infer

tr(r)[p+] = tr(r1)[p+] ∧ tr(r)[p−] = tr(r1)[p−] (3.23)

by applying Lemma 3.3 (3.17). Sincer1 is a run ofN1, Condition (3.13) of Lemma 3.1
is fulfilled for placep, i.e.,〈m0(p)〉_ tr(r1)[p+]� tr(r1)[p−]. Because of Equalities
(3.23), condition〈m0(p)〉_ tr(r)[p+]� tr(r)[p−] is fulfilled for sequencer as well.

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 57

(run r)

N 1 O1Observer

N 2

N 1 N 2

N 1 N 21 2(run r [] + r [])
lS21

(2)

lS12

(2)

lS12

(1)

lS12

(1)

lS21

(2)

(run r)1

2

Observer O2

lS21

(1)

Figure 3.18:Graphical representation of Lemma 3.4:
r1[N1]+ r2[N2] is a run ofN1◦N2, if l (1)

S12
= l (2)

S12
∧ l (1)

S21
= l (2)

S21
.

Case 2: p∈ Pio:
We first considerp∈ Pi . By Definition 2.9, then eitherp∈ Pi

1 or p∈ Pi
2. We assume

that p ∈ Pi
1. (The other case is symmetric.) Sincep− is an attribute withinN1, i.e.,

p− ∈ S1, we can infer

tr(r)[p−] = tr(r1)[p−] (3.24)

by applying Lemma 3.3 (3.17). Because of assumptionN1.Pio ∩O1.Pio = N2.Pio ∩
O2.Pio of Lemma 3.4, input placep does not possess any incoming arcs inN1 ◦O1.
Thus, tr(r1)[p+] = 〈·, ·, . . .〉 corresponds to the trivial sequence of empty messages.
Since neitherp+ ∈ S1 nor p+ ∈ S2, tr(r)[p+] = tr(r1[S1] + r2[S2])[p+] = 〈·, ·, . . .〉 as
well. Therefore,

tr(r)[p+] = tr(r1)[p+] . (3.25)

Sincer1 is a run ofN1, Condition (3.13) of Lemma 3.1 is fulfilled for placep, i.e.,
〈m0(p)〉_ tr(r1)[p+]� tr(r1)[p−]. Because of Equalities (3.24) and (3.25), condition
〈m0(p)〉_ tr(r)[p+]� tr(r)[p−] is fulfilled for sequencer as well.

58 CHAPTER 3. A COMPONENT PERSPECTIVE

The treatment of output placesp∈ Po is analogous. There, roles of attributesp+ and
p− are exchanged.

Case 3: p∈N1.Pio∩N2.Pio:
Without restricting generality, we assume that placep is an output place ofN1 and
an input place ofN2, i.e., p∈N1.Po∩N2.Pi . If we apply assumption ’o+

S1
= iS2’ of

Lemma 3.4 to placep, we have

tr(r1)[p+] = tr(r2)[p+] . (3.26)

Since sequencer2 is a run, and interface placep is initially empty, Condition (3.14) of
Lemma 3.1 is valid for placep wrt. run r2, i.e.,

〈·〉_ tr(r2)[p+] � tr(r2)[p−] .

Together with statement (3.26), we infer

〈·〉_ tr(r1)[p+] = 〈·〉_ tr(r2)[p+] � tr(r2)[p−] . (3.27)

Applying Lemma 3.3 (3.17) to attributesp+, p− implies

tr(r)[p+] = tr(r1)[p+] ∧ tr(r)[p−] = tr(r2)[p−] .

Together with Statement (3.26), we obtain〈·〉_ tr(r)[p+] � tr(r)[p−] wrt. sequence
r which verifies Condition (3.14) of Lemma 3.1. 2

The following lemma relates the internal i/o behavior of a netN to its externally
observed i/o behavior. More precisely, as internal i/o behavior, we concern streams
of N internally observed at its input/output places, i.e., streamsl−S21

and streamsl+S12
represented in Figure 3.19. Assumed there exists an observerO and a runr of N ◦O
with internal streamsl−S21

, l+S12
. Then, the (external) i/o behavior relationio(N) will

contain all pairs(iS,oS) for which iS� l−S21
and oS� l+S12

. Intuitively, an observer
may produce more input than internally consumed, and may consume less output than
internally produced. The implication of Lemma 3.5 is graphically illustrated in Figure
3.19.

Lemma 3.5 (’Observable i/o behavior’) Let N be an interaction net, letO be an
observer ofN , and r be a run ofN ◦O. Then, for each stream tuples iS, oS, there
exists an observerOg of N and a run r′ of N ◦Og with

iS � tr ′(r)[l̃−S21
] ∧ oS � tr ′(r)[l̃+S12

] ⇒
r ′[S]N [] = r[S]N [] ∧ tr ′(r ′)[l̃+S21

] = iS ∧ tr ′(r ′)[l̃−S12
] = oS,

(3.28)

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 59

where l̃+S12
= (N .Po ∩O.Pi)+, õS = l̃−S12

= (N .Po ∩O.Pi)−, ĩS = l̃+S21
= (O.Po ∩

N .Pi)+, andl̃−S21
= (O.Po∩N .Pi)−.

lS21

−lS21

−

lS12

+

N ObserverN Observer O

lS12

+

(run r) (run r’)

iS

Og

oS

Figure 3.19:Graphical representation of Lemma 3.5: For eachiS� l−S21
andoS� l+S21

,
there exists an observerOg and an according runr ′.

Proof We employ a general observerOg of N specified by algorithm OBSERVERg

(cf. page 47). By its construction, for each tuple(iS,oS) : (l̃+S21
, l̃−S12

), there exists a
corresponding sequence of stepsrg of Og with

tr(rg)[l̃+S21
, l̃−S12

] = (iS,oS) .

We particularly consider tuple(iS,oS) with

iS � tr ′(r)[l̃−S21
] ∧ oS � tr ′(r)[l̃+S12

] . (3.29)

We definer ′ := r[S]N [] + rg. We then need to verify that (i) the consequence of
Implication (3.28) is fulfilled, and (ii)r ′ is a run ofN ◦Og. By definition of r ′,
r ′[S]N [] = r[S]N []. By Lemma 3.3 (3.17), we obtain

tr ′(r ′)[l̃+S21
] = tr ′(rg)[l̃+S21

] = iS,

tr ′(r ′)[l̃−S12
] = tr ′(rg)[l̃−S12

] = oS,

sincel̃+S21
, l̃−S12
∈ S]Og[. Together with Statement (3.29), it verifies Condition (3.28), i.e.,

tr ′(r ′)[l̃+S21
] = iS ∧ tr ′(r ′)[l̃−S12

] = oS. (3.30)

It is left to show thatr ′ is a run ofN ◦Og. By Lemma 3.3 (3.19),r ′ represents a
sequence of steps ofN ◦Og. To verify thatr ′ is a run, we will apply Lemma 3.1.
Therefore, we have to confirm the validity of one of the conditions of Lemma 3.1 for
each placep ∈ (N ◦Og).P. We distinguish three cases: (1) non-i/o places ofN

60 CHAPTER 3. A COMPONENT PERSPECTIVE

andOg, (2) i/o places ofN ◦Og, and (3) i/o places ofN andOg which established
connections. We omit cases (1) and (2), since they can be treated analogously to cases
(1) and (2) at the proof of Lemma 3.4.

Case 3: p∈N .Pio∩Og.Pio:
Firstly, we consider placep ∈N .Pi ∩Og.Po, i.e., p is an input place ofN and an
output place ofOg. If we apply Statements (3.29) and (3.30) (left conjuncts) to place
p, we obtain

tr ′(r ′)[p+] � tr ′(r)[p−] , (3.31)

sincep+ ∈ l̃+S21
andp− ∈ l̃−S21

. Becausep is an interface place, and thus, initially empty,
it verifies Condition (3.15) of Lemma 3.1.

Secondly, we consider placep∈N .Po∩Og.Pi , i.e., p is an output place ofN and an
input place ofOg. If we apply Statements (3.29) and (3.30) (right conjuncts) to place
p, we obtain

tr ′(r ′)[p+] � tr ′(r)[p−] , (3.32)

sincep+ ∈ l̃+S12
andp− ∈ l̃−S12

. Becausep is an interface place, and thus, initially empty,
it verifies Condition (3.15) of Lemma 3.1. 2

We are now ready to proof Theorem 3.1:

Proof (of Theorem 3.1) Equality (3.10) can be rewritten as an equivalence:

∀xS. xS∈ io(N1◦N2) ⇔ xS∈ io(N1) 1̌ io(N2) .

If we replace functionio() and operator ˇ1 by their definitions, this equivalence cor-
responds to:

∀iS1, iS2,oS1,oS2.

∃O. (iS1, iS2,oS1,oS2) ∈ tr ′(N1◦N2◦O)[·] ⇔
∃O1,O2, l+S12

, l−S12
, l+S21

, l−S21
. l+S12

= l−S12
∧ l+S21

= l−S21
∧

(iS1, l
+
S21

,oS1, l
−
S12

) ∈ tr ′(N1◦O1)[·] ∧
(iS2, l

+
S12

,oS2, l
−
S21

) ∈ tr ′(N2◦O2)[·] ,

(3.33)

if ’ (xS) ∈ tr(N)[·]’ denotes thatxS : S is an element of the accordingly projected trace
tr ′(N)[S]. We denote the left-hand side of equivalence (3.33) by (L) and the right-
hand side by (R).

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 61

Part (i): (L) ⇒ (R)

(L) implies that there exists a runr that generates trace(iS1, iS2,oS1,oS2) = tr ′(r)[·]. If
we extend the projection, we have

(iS1, iS2,oS1,oS2, l
′+
S12

, l ′−S12
, l ′+S21

, l ′−S21
) = tr ′(r)[·] , (3.34)

where thel ′S denote local streams observed at runr according to Figure 3.17. Note
that there is a logical difference between local streamslS in Statement (3.33) and lo-
cal streamsl ′S although their data types correspond to one another. WhilelS denotes
streams observed at runs ofN1◦O1 andN2◦O2 respectively,l ′S denotes streams ob-
served at runr of N1◦N2◦O.

By applying Lemma 3.1 (3.15) to local streamsl ′S observed at runr, we obtain

l ′−S12
� l ′+S12

∧
l ′−S21
� l ′+S21

.
(3.35)

SinceN1◦ (N2◦O) exists,O1 := (N2◦O) is an observer ofN1. Therefore,r is a run
of N1 ◦O1 as well. Lemma 3.5 ensures the existence of an observerO ′1, a runr1 of
N1◦O ′1, and stream tuplesl ′′+S21

, l ′′−S12
with

l ′′+S21
= l ′−S21

∧ l ′′−S12
= l ′−S12

⇒
(iS1, l

′′+
S21

,oS1, l
′′−
S12

, l ′+S12
, l ′−S21

) = tr(r1)[·] ,
(3.36)

sincel ′−S12
� l ′+S12

(cf. Statement (3.35)). Analogously, we obtain an observerO ′2, a run
r2 of N2◦O ′2, and stream tuplesl ′′+S12

, l ′′−S21
with

l ′′+S12
= l ′−S12

∧ l ′′−S21
= l ′−S21

⇒
(iS2, l

′′+
S12

,oS2, l
′′−
S21

, l ′−S12
, l ′+S21

) = tr(r2)[·] ,
(3.37)

sincel ′−S21
� l ′+S21

(cf. Statement (3.35)).

Together, Statements (3.36) and (3.37) provide the consequence

∃O ′1,O ′2, l ′′+S12
, l ′′−S12

, l ′′+S21
, l ′′−S21

. l ′′+S12
= l ′′−S12

∧ l ′′+S21
= l ′′−S21

∧
(iS1, l

′′+
S21

,oS1, l
′′−
S12

) ∈ tr ′(N1◦O ′1)[·] ∧
(iS2, l

′′+
S12

,oS2, l
′′−
S21

) ∈ tr ′(N2◦O ′2)[·] ,

which corresponds to (R).

Part (ii): (L) ⇐ (R)

(R) implies that there exist runsr1 and r2 of N1 ◦O1 andN2 ◦O2 respectively that
generate traces

62 CHAPTER 3. A COMPONENT PERSPECTIVE

(iS1, l
+
S21

,oS1, l
−
S12

, l+S12
, l−S21

) = tr ′(r1)[·] ∧
(iS2, l

+
S12

,oS2, l
−
S21

, l+S21
, l−S12

) = tr ′(r2)[·] ∧
l+S12

= l−S12
∧ l+S21

= l−S21
,

(3.38)

where we distinguish local streams observed at runr2 by underscore. Concerning run
r1 of N1◦O1, Lemma 3.5 ensures the existence of an observerO ′1, a runr ′1 of N1◦O ′1
with r ′1[S]N1[] = r1[S]N1[], and a stream tuplel ′+S21

with

l ′+S21
= l+S21

⇒
(iS1, l

′+
S21

,oS1, l
−
S12

, l+S12
, l−S21

) = tr(r ′1)[·] .
(3.39)

Note that assumptionl ′+S21
� l−S21

of Lemma 3.5 is satisfied, since

l ′+S21
= l+S21

(by assignment in (3.39)),

l+S21
� l−S21

(by Lemma 3.1 (3.15) applied to runr2),

l−S21
= l+S21

(by Statement (3.38)), and

l+S21
� l−S21

(by Lemma 3.1 (3.15) applied to runr1).

Analogously, we obtain an observerO ′2, a runr ′2 of N2◦O ′2 with r ′2[S]N2[] = r2[S]N2[],
and a stream tuplel ′+S12

with

l ′+S12
= l+S12

⇒
(iS2, l

′+
S12

,oS2, l
−
S21

, l+S21
, l−S12

) = tr(r ′2)[·] .
(3.40)

We may assume that observersO ′1 andO ′2 are general observers specified by algorithm
OBSERVERg (cf. page 47). To permit composition of runsr ′1, r ′2 by application of
Lemma 3.4, we employ the following perspective. As illustrated in Figure 3.20, we
decompose both observersO ′1 = O ′e1 ◦O ′i1 , andO ′2 = O ′e2 ◦O ′i2 into an external partOe

and an internal partO i . Decomposition ofO ′1 andO ′2 is based on i/o places:

O ′i1 .P = O ′i2 .P := N1.Pio∩N2.Pio ,

O ′e1 .P := O ′1.P\O ′i1 .P,

O ′e2 .P := O ′2.P\O ′i2 .P.

Attached arcs, transition, etc. belong to the sub-net that contains corresponding places.
Thus,O ′i1 , O ′i2 address connected places ofN1 ◦N2 andO ′e1 , O ′e2 address remaining
unconnected places. It is straightforward to verify thatO ′1 = O ′e1 ◦O ′i1 andO ′2 = O ′e2 ◦
O ′i2 , since the sub-nets are disjunctive interaction nets. We apply Lemma 3.4 through
the following assignment (cf. Figures 3.20 and 3.18):

3.2. COMPONENT SEMANTICS OF INTERACTION NETS 63

N 1

1(run r’)

N 2

l’S21

+

Observer 1O’

lS12

+

l’S12

+

lS21

+

2(run r’)

Observer 2O’ e

e Observer 1O’ i

Observer 2O’ i

Figure 3.20:An adapted perspective ontoN1 ◦O ′1 andN2 ◦O ′2 by decomposition of
observers

N1 ←↩ N1◦Oe
1 ,

N2 ←↩ N2◦Oe
2 ,

O1 ←↩ O i
1 ,

O2 ←↩ O i
2 ,

r1 ←↩ r ′1 ,
r2 ←↩ r ′2 .

Assumptionl ′+S21
= l+S21

∧ l ′+S12
= l+S12

of Lemma 3.4 is provided by Statements (3.39)
and (3.40). (To be precise, the shifted traces, must be replaced by their according
plain traces in Lemma 3.4. However, both equalities are satisfied by the according
plain traces as well.) Lemma 3.4 implies thatr ′ := r ′1[S]N1[] + r ′2[S]N2[] is a run of
(N1◦O ′e1)◦ (N2◦O ′e2). By definition ofr ′1 andr ′2, we obtain

(iS1, iS2,oS1,oS2, l
+
S12

, l−S12
, l+S21

, l−S21
) = tr ′(r ′)[·] ,

and thus, we obtain (L):

∃O. (iS1, iS2,oS1,oS2) ∈ tr ′(N1◦N2◦O)[·] ,

with observerO := O ′e1 ◦O ′e2 . 2

64 CHAPTER 3. A COMPONENT PERSPECTIVE

3.3 Components in Environment

Commonly, components are not autonomous sub-systems, but open system which in-
teract with their environment. Thereby, we consider an environmentE of a component
C as the collection of all components connected toC . Syntactic questions as: ”Does
the syntactic interface of a componentC match its environment?” are determined by
the composition operator⊗. Thereby, a positive answer to the question corresponds to
the existence of compositionC ⊗E . However, to reason about ”meaningfulness” of a
composition, we additionally have to consider the dynamics of composition.

Generally, we may view composition from two perspectives: (i) from the perspec-
tive of a particular component, and (ii) from the perspective of an environment where
a component is introduced into (or replaced). Both perspectives arise distinguished
questions:

Component perspective:

(Q1) Which assertions must be imposed onto an environment, such that a com-
ponent functions as intended?

(Q2) Which properties are provided by a component within an appropriate en-
vironment?

Environmental perspective:

(Q3) How can we verify whether an environment satisfies assertions imposed
by a component (to be embedded)?

(Q4) Under which conditions may we replace components by different versions
within an environment?

As will be shown later, answers to these questions are closely related to one another. In
addition, these answers closely relate to our approach of providing formal solutions to
interaction patterns in terms of interaction nets. As interaction nets can be considered
as components (cf. Section 3.2), the above questions are applicable to this context.
In particular, question (Q3) indicates if different versions of pattern realizations may
replace one another within complex compositions.

To clarify the above questions, we consider an example component specification which
provides a service request queue (illustrated in Figure 3.21). The intention of the re-
quest queue is to provide access of a single service provider to several clients, in par-
ticular, to delegate client requests to the provider and to inform clients about responses.
There are several requirements which an according queue component may assume to
function properly. For example, the service provider is assumed (i) to respond to ini-
tiated requests within a finite time period, and (ii) to provide an according request
identifier of the performed request. At a restricted setting, the queue component might

3.3. COMPONENTS IN ENVIRONMENT 65

furthermore require that an individual client might send a subsequent request only
after a response is received. If according requirements are fulfilled, the queue compo-
nent guarantees properties as, for example, each client request will be delegated to the
provider and answered within a finite time period.

request response

Service Request Queue

request response

request response

Client 1 Client n

Provider

Figure 3.21: Illustration of a service request queue

We will refer to properties a component requires from its environment asassertions.
Thereby, assertions represent dynamic constraints imposed onto the environment. Note
that properties and assertions are commonly associated with a particular (sub-)interface
only. At the example above, different assertions are imposed wrt. the (sub-)interface
to the service provider and wrt. (sub-)interfaces to the clients.

As will be shown in Section 3.3.2, the questions posed above are closely related to
the notion of component refinement. In particular, the replacement of components by
refined versions provides desired properties. According to formalization of interaction
patterns, it motivates an opportunity to derive specialization hierarchies on interaction
nets. In contrast to pattern hierarchies derived from the intuition of a designer, the
formal notion of refinement permits an inference of specialization relationship based
on the actual behavior.

3.3.1 Component Refinement

Broy et. al. [BS01] propose three refinement relations on components: (i) behavioral
refinement, (ii) interface refinement, and (iii) conditional refinement. Thereby, condi-
tional refinement subsumes the others, and interface refinement subsumes behavioral
refinement. The most convenient (but least expressive) refinement relation is the be-
havioral refinement. It provides the feature that if we replace a sub-component of a
complex composition by a refined version, then the resulting complex component is
a refinement of the original as well. This feature is not guaranteed for the other re-
finement relations. However, there exist certain sub-classes of interface refinement
which enable similar statements. We will briefly introduce behavioral refinement and

66 CHAPTER 3. A COMPONENT PERSPECTIVE

interface refinement in the following. Regarding conditional refinement, we refer to
[BS01].

Behavioral Refinement

Roughly, behavioral refinement can be stated as follows. A component specification
S2 is a behavioral refinement of a component specificationS1, if both possess the same
syntactic interface, and each pair of input and output stream that occurs in the behavior
of S2 also occurs in the behavior ofS1. At the logical level, this refinement relation
can be expressed by logical implication.

Definition 3.13 Let S1 and S2 be component specifications with the same syntactic
interface. Relation; of behavioral refinement is defined by the equivalence

(S1 ; S2) ⇔ (JS2K ⇒ JS1K) .

Thereby,S2 refers to the refined specification. According to system development, be-
havioral refinement supports reduction of underspecification. For example, a service
request queueQ2 which prioritizes client requests in a specific way represents a behav-
ioral refinement of a queueQ1 which does not specify an order of processing requests.
Generally, behavioral refinement can be characterized by the subset relationship on
according i/o behavior relations, i.e.,

(S1 ; S2) ⇒ io(S2) ⊆ io(S1) .

An essential feature of component refinement is that component composition⊗ is
monotonic wrt. behavioral refinement (cf. [BS01]). More precisely,

S1 ; S′1 ∧ S2 ; S′2 ⇒ S1⊗S2 ; S′1⊗S′2 .

It implies that if we replace sub-components of a system by refined versions, then the
new system represents a refinement of the original.

Interface Refinement

Interface refinement is a generalization of behavioral refinement. As the name sug-
gests, besides the behavior specification, the interface may be adapted. It is defined as
follows:

3.3. COMPONENTS IN ENVIRONMENT 67

Definition 3.14 Let S1, S2, D, and U be component specifications with the following
syntactic interfaces

S1 ∈ (I1 �O1), S2 ∈ (I2 �O2), D ∈ (I1 � I2), U ∈ (O2 �O1) .

Relation
(D,U)
; of interface refinement is defined as follows:

S1
(D,U)
; S2 ⇔ S1 ; (D⊗S2⊗U) ⇔ JD⊗S2⊗UK⇒ JS1K .

Thereby,S2 refers to the refined specification. Component specificationsD andU are
referred to asrepresentation specifications. As illustrated in Figure 3.22,D andU
provide a translation between i/o streams of the abstract componentS1 and the refined
componentS2. Intuitively, downwards relation Dconverts input streams ofS1 such that
S2 can process them, andupwards relation Ureconverts output stream ofS2 such that
they correspond to output streams ofS1. Thus, interface refinement can be understood
as behavioral refinement modulo an interface conversion.

S1

S2

D U

abstract level

refined level

Figure 3.22: Illustration of interface refinement

According to system development, interface refinement corresponds to such activities
as:

• changing data types of messages, for example, representing messages by more
adequate types,

• changing the granularity of interaction, for example, replacing an interaction
realized by a single step by a multiple step interaction,

• modifying the communication structure, for example, representing one channel
by several, or vice versa,

68 CHAPTER 3. A COMPONENT PERSPECTIVE

• adaptation, for example, changing the interface so that it satisfies environmental
changes,

• adding services, for example, by introducing additional input and output mes-
sages,

• inclusion of exception handling.

A common example of interface refinement is the conversion of message types. For
example, a component which realizes term rewriting consume and produces terms.
Thereby, message types of input and output channels may be character strings. How-
ever, a deployment of this component into an environment might require a represen-
tation of terms by means of XML trees. An according component therefore results
from an interface refinement of the original string processing term rewriting compo-
nent. Thereby, the corresponding downwards relationD converts terms represented by
character strings into their tree representations, and upwards relationU computes the
inverse.

In contrast to behavioral refinement, the composition operator⊗ is not monotonic wrt.
interface refinement in the general case. However, by imposing certain assumptions,
component composition⊗ is monotonic wrt. interface refinement as well. An assump-
tion of practical relevance requires restrictions on representation specificationsD and
U . It assumes thatD andU are so-calledrefinement pairs, i.e.,D must represent the
inverse function ofU and vice versa. For example, representation specificationsD and
U which convert terms between string and tree representation represent a refinement
pair.

A general opportunity to replace components by according refined versions result-
ing from interface refinements is to provide representation specificationsD andU .
The introduction of the refined component then imposes the additional design task of
adapting its environment according to specificationsD andU .

3.3.2 Component Properties and Assertions

The specification of behavioral properties of components can be based on logical for-
mulas. Thereby, an extensionRp of a formula p (i.e., all valid assignments ofp)
reflects according behavioral restrictions. If a component permits an input/output pair
outside extensionRp, this component does not satisfy propertyp. Furthermore, prop-
erties can be used to define assertions. Thereby, an assertion is specified by a property
pa. It is interpreted as: if a componentC requires an assertionpa, then a connected
componentC ′ has to satisfy propertypa. In other words, assertions represent proper-
ties imposed onto connected components.

To associate properties with interfaces, we specify a property by a particular compo-
nent specificationCp. Besides body formulap, component specificationCp associates

3.3. COMPONENTS IN ENVIRONMENT 69

p with a syntactic interfaceIp = (IS�OS) including respective type constraints. For
readability, we will apply representations (i)p, (ii) p wrt. interfaceIp, as well as (iii)
Cp to refer to a property.

Thereby, the questions posed at the beginning of Section 3.3 can be answered as fol-
lows (for readability, we slightly permuted them to Q1, Q3, Q2, Q4):

(Q1) Which assertions must be imposed onto an environment, such that a component
functions as intended?

The specification of an assertion corresponds to a component specificationCa which
states according requirements. As an example, we reconsider the service request queue
illustrated at the beginning of Section 3.3. It requires that a connected service provider
responses to requests within a finite time period. In addition, we might require that
the order of responses corresponds to the order of requests (if multiple requests are
processed by a provider at the same time). This assertion can be defined by a compo-
nent specificationCa with an interface that provides a single input and a single output
channel (cf. Figure 3.23).

Queue Assertion
(wrt. Provider Interface)

Service Request Queue

i:F responserequest o:F

Figure 3.23: Illustration of an assertion required by a request queue

It can be formally represented by the following component specification:

Queue Assertion (wrt. Provider Interface) [timed]

in i : F
out o : F

∀k. ī.k[1] = ō.k[1] ∨ k > #ī

Thereby, we define typeF := tuple(int,string) denoting pairs of integers and charac-
ter strings. We notate an access to tuple components by postfix ’[j]’ where j indicates

70 CHAPTER 3. A COMPONENT PERSPECTIVE

the position within a tuple. According to message typeF , we use integers to repre-
sent unique request identifiers and strings to represent requests as well as responses.
Thereby, above specification ensures that each request is eventually responded, and the
order of requests corresponds to the order of associated responses. Note that assertion
Ca does not specify the actual service function of a particular provider. It corresponds
to the intention of the service request queue to serve any kind of service provider (as-
sumed above assertion will be satisfied).

(Q3) How can we verify whether an environment satisfies assertions imposed by a
component (to be embedded)?

The verification whether an environment satisfies required assertions is reduced to the
test of property satisfaction. More precisely, connected componentsC must satisfy
required properties. The decision problem whether a componentC satisfies a property
p is characterized:

(i) at the logical level: by logical implication, and

(ii) at the component level: by component refinement, more precisely, a component
C satisfies propertyCp, iff Cp ; C , i.e., iff C represents a behavioral refinement
of Cp,

assumed that syntactic interfaces ofC andCp are identical. At a general perspective,
we must permit the case, where interfaceIp of property specificationCp corresponds
to a subset of interfaceI of C only. At the queue example, this case occurs, if a
service provider possesses further sub-interfaces, for example, to request lower-level
services in turn. The interfaceIp of the queue assertion then is a proper subset of
interfaceI of the service provider. As a generalization of this situation, we addition-
ally assume that componentC itself imposes further assertionsa onto its environment.
It represents a generalization, since ”no assertion” can always be represented by the
trivial assertion, i.e., an empty body formula together with an according interface.
Thereby, an empty body formula corresponds to ’true’, and therewith, this component
exhibits an unrestricted behavior at the specified interface. As illustrated in Figure
3.24, the behavior of componentC wrt. interfaceIp is then determined by the com-
positionC ⊗Ca.

Therefore, the property satisfaction test extends to

(ii’) A componentC (which requires assertiona) satisfies a propertyp, iff Cp ;

(C ⊗Ca), i.e., iff C ⊗Ca is a behavioral refinement ofCp.

Sometimes behavioral refinement cannot be achieved. However, the weaker notion of
interface refinement is often applicable. As discussed in Section 3.3.1, a corresponding
solution is to determine representation specificationsD andU and to accordingly adapt
the environment.

3.3. COMPONENTS IN ENVIRONMENT 71

IaInterface

Component C

IpInterface

CaAssertion

refines?

IpInterface

pCProperty

Figure 3.24: Property satisfaction test at the existence of assertions

(Q2) Which properties are provided by a component within an appropriate environ-
ment?

AssumedC represents a component andCa its required assertion. According to the
answer to question (Q3), property satisfaction corresponds to behavioral refinement
wrt. compositionC ⊗Ca. Therefore, an according test must be performed for each
property of interest.

(Q4) Under which conditions may we replace components by different versions within
an environment?

This question is answered by Broy et. al. [BS01] (cf. Section 3.3.1). Component
versions which result from behavioral refinements may be replaced without changing
the environment. The complete system behavior then exhibits a behavioral refinement
as well. In the case of interface refinement, representation functionsD andU must be
provided to adapt the environment accordingly.

Because of Theorem 3.1, answers to above questions analogously apply to interaction
net specifications. Reconsider, for example, question (Q2). In terms of interaction
nets, it states: ”Which properties are provided by an interaction netN within an
appropriate environment?” Firstly, an appropriate environment must be specified. It is
generally realized by a componentCa which reflects required assertions of interaction
net N . Thereby, componentCa can be specified by an interaction netNa which
reflects assertiona. Afterwards, properties of interaction netN ”within an appropriate
environment” are derived from the compositionN ◦Na. More precisely, as behavior
of interaction nets is based on the notion of observer, properties are derived from the
composition ofN ◦Na with a (general) observer.

72 CHAPTER 3. A COMPONENT PERSPECTIVE

3.4 Concluding Remarks

Although properties in terms of logical formulas provide a rather compact behavior
representation, it is often desired to directly observe and analyze the external behavior
in terms of actual messages. For example, it supports testing of finite scenarios as well
as improves the understanding of the behavior, particularly, if external components
have to be deployed. While the behavior definition (cf. Definition 3.8) yields a desired
black-box semantics, it is not always appropriate for human analysis. The reason is
that input/output streams of black-box net behavior are interfered by sub-sequences of
empty messages which decreases readability. It is caused by interaction nets which in-
clude complex internal computations. Thereby, the generation of corresponding output
messages is basically delayed. Therefore, a transformation function on the i/o behav-
ior relation would be beneficial which provides a more compact view. The adapted
representation should abstract from the actual time an interaction net requires for the
computations. A straightforward solution is achieved by removing ”slices” of empty
messages from input/output streams. For example, consider the following element of
the i/o behavior relation of an interaction net.

i : 〈12 · · 17 5 · · · 3 . . .〉
o : 〈· · · · · 12 · 17 5 . . .〉

Its compact representation removes empty messages at positions 2, 3, and 7 com-
pletely:

i : 〈12 17 5 · · 3 . . .〉
o : 〈· · · 12 17 5 . . .〉

Note that the causality between input and output messages is maintained by the trans-
formation. Thereby, it can be interpreted as a transformation which abstracts from
”net time”, whereby net time is considered as advancing at each occurrence of a step.
However, at a more general perspective, the composite behavior should be derivable
from the compact representations as well. More precisely, a transformation functionf
respecting composition needs to satisfy:

f (io(N1)◦ io(N2)) = f (io(N1)) 1̌ f f (io(N2))

with a possibly adapted behavior composition ˇ1 f . Note that the introduced transfor-
mation does not provide this property.

Chapter 4

Application to Information Services

In this chapter, we propose an approach how the component framework introduced in
Chapters 2 and 3 can be applied to user interaction. Thereby, we focus on the do-
main of information services. For this purpose, we introduce an abstraction called
’ui-components’ and an according architecture based on interaction nets. For readabil-
ity, we present the details of the component architecture at a top-down approach. In
Section 4.1, we illustrate the big picture of the approach. Sections 4.2 and 4.3 provide
a more detailed view onto the introduced notions ofui-componentsandui-composition
components. Finally, Section 4.4 demonstrates how the architecture can be realized on
the basis of interaction nets. In addition, in Section 4.5, we discuss how far aspects of
user interface quality can be verified, and in Section 4.6, we provide an according case
study which abstractly specifies interactive catalogs.

4.1 A Component-Based Architecture

We apply the perspective that interaction specification of information services is based
on the composition of elementary specifications. According to elementary interaction
specification, we employ interaction nets as introduced in Section 2.2. They basically
specify system responses to user input together with according context transitions.
Therefore, we call themui-components— where ”ui” is derived from ”user interac-
tion”. As illustrated in Figure 4.1, a ui-component essentially possesses two interfaces
”ui-spec” and ”context”. Note that arrows used in the figure represent the main data
flow only. In addition, they do not necessarily denote single channels, but may corre-
spond to multiple, semantically related channels. According to interfaces which reflect
a client/server policy, we distinguish the direction of service requests by filled arrows.
The opposite direction of service provision is represented as usual by hollow arrows.

Interface ”ui-spec”: Through the interface ”ui-spec”, a ui-component provides a
(declarative) specification of the nextdialog step. In general, dialog steps are

73

74 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

UI−Component

contextui−spec

Figure 4.1: UI-components provide two interfaces

considered as elementary user activities as, for example, initiating a next event,
filling a contract, or initiating a print job. At declarative approaches, these (el-
ementary) dialog steps are specified by the application. A common example
represents HTML code. It declaratively specifies the system output together
with activated user events. Subsequently, the interaction specification is inter-
preted by a user interface controller, in the case of HTML, a Web browser. As
a generalization, interface ”ui-spec”, is not restricted to a particular language as,
for example, HTML, but may provide interaction specifications which serve ar-
bitrary user interfaces. The specification provided through ”ui-spec” generally
comprises system output together with activated user events — possibly enriched
by meta data which primarily reflect style information. Note that we consider
two levels of interaction specification (i) at design time and (ii) at runtime. An
interaction specification at design time specifies user interaction of the complete
system. In our approach, it is defined by interaction nets or components in gen-
eral. An interaction specification at runtime specifies user interaction of a single
dialog step which is afterwards interpreted by a user interface controller. For
readability, we will apply the notion of a dialog step to indicate an according
user activity as well as to indicate its corresponding declarative interaction spec-
ification as far as confusion is excluded.

Interface ”context”: Through interface ”context”, a ui-component may publish its
internal context and may request external context. This interface provides the
basis for the resolution of inter-component context dependencies. Besides con-
text in general, initiated user events are conveyed through this interface as well.
More precisely, user events are associated with specific contexts. Thereby, in-
terface ”context” serves two major purposes: initiation of actions in terms of
context publication, and receiving of user events. Without pre-drawing the de-
tails, we consider the context of an ui-component as a collection of named values
of any data type. We sometimes also refer to a single element of the collection
as context.

The overall behavior of ui-components then corresponds to (i) receiving (user) events,
(ii) adapting the internal context (together with a possible context publication), and (iii)
providing according output to the user in terms of a dialog (sub-)specification. Accord-

4.1. A COMPONENT-BASED ARCHITECTURE 75

ing to the problem of identifying appropriate ui-components, interaction patterns may
provide a promising basis. Since interaction patterns may correspond to different re-
alizations, we commonly have to associate a single pattern with several versions of
ui-components. Depending on application requirements, an appropriate version can be
selected and, if required, be refined.

To derive complex ui-components from elementary ones, we propose so-calledui-
composition components(cf. Figure 4.2) — as previously motivated at the end of
Section 2.4. They basically realize two responsibilities:

Composition of dialog steps: Each elementary ui-component provides an interac-
tion specification of the next dialog step. There exist different opportunities to
integrate these specifications. Besides a straightforward concatenation of spec-
ifications, sophisticated integration rules might be applied. It can be compared
to XML transformation languages as, for example, XSLT which given specifi-
cations (in terms of XML documents) together with a set of style rules, they
produce an integrated specification.

Specification of context dependencies:Commonly within compositions, ui-compo-
nents depend on one another. For example, at a sequential composition of ui-
components, subsequently executed components might require (parts of) the
output of their predecessors. In addition, their mutually dependent activation
must be controlled. According to concurrently activated ui-components, depen-
dencies can be rather more sophisticated. To resolve these inter-component de-
pendencies, ui-composition components must define specific context adaptation
rules. Thereby, if an elementary component initiates a context change, then con-
texts of dependent ui-components are adapted accordingly.

...

...

UI−Composition Component

UI−Component UI−Component

ui−spec context

ui−spec context ui−spec context

UI−Component

Figure 4.2: Composition of dependent ui-components

76 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Figure 4.2 also indicates an essential feature of ui-composition components. The com-
position of a ui-composition component and according ui-components yields itself a
ui-component. In other words, according to their external behavior, we do not distin-
guish elementary ui-components from composite ones. Therefore, the approach scales
up to complex interaction specifications. If a composite interaction specification is
provided, it can be used in turn for higher-level compositions.

Verification and simulation of interaction specifications is then based on verification
and simulation of (possibly complex) ui-components. Besides an autonomous perspec-
tive, analysis of interaction specifications wrt. a targeted environment is applicable as
well. For its support, we embed ui-components into an according environment which
may be configured as required. As illustrated in Figure 4.3, we employ two compo-
nents (i) ui-controller and (ii) user.

UI−Component

UI−Controller

event

User

ui−spec

ui

context

Figure 4.3: Embedding ui-components into an environment

An ui-controller realizes the interface between user and application. It can be com-
pared to the known Model-View-Controller (MVC) architecture (cf., for example,
[DFAB98]). While model and view are provided by (possibly complex) ui-components,
the controller is specified by a distinguished ui-controller component. It realizes ac-
cording responsibilities which basically comprise

1. receiving successive interactions specification from the ui-components,

2. conveying according system output and possible input alternatives to the user,

3. obtaining user events (corresponding to the input specification), and

4. notifying ui-components of received user events (and restart the loop at 1.).

Besides the controller, we may explicitly model the user by a specificuser component.
This component receives system output and activated events from the ui-controller.
Afterwards it provides according user input. The abstraction of users by specific com-
ponents is motivated by several advantages. It permits

4.2. UI-COMPONENTS 77

• prototyping by realizing interaction with a concrete user. Simulators of CP nets
provide facilities to interact with users during net simulation (cf. [Jen02]);

• simulation of predefined user scenarios. It is realized by initializing a user com-
ponent by event sequences of interest;

• imposing behavioral peculiarities of specific user groups. For example, to simu-
late users that prefer a navigational interaction style, a corresponding user com-
ponent may disregard other styles. Thereby, it emulates user’s perception which
focuses on navigation, but suppresses other alternatives.

4.2 UI-Components

As motivated in Section 4.1, we propose ui-components for the specification of user
interaction. Through a common interface, they provide the opportunity of successive
composition. Besides syntactical requirements wrt. their interfaces (cf. Figure 4.1
on page 74), we impose semantic restrictions onto ui-components which essentially
include the specification of (i) assertions that must be provided by the environment,
and (ii) properties that must be satisfied by ui-components.

Before we derive necessary restrictions in Section 4.4, we consider the realization of
elementary ui-components more precisely. As illustrated in Figure 4.4, we propose
to divide the internal structure of elementary ui-components into three essential parts:
”UI-View”, ”Context”, and ”Context Transition Model”. Although these parts rather
represent conceptual constituents of ui-components, they may be defined as encap-
sulated (sub-)components themselves. In general, we may allow any internal struc-
turing. However, the division proposed in Figure 4.4 yields a nice understanding of
ui-components and simplifies their specification and composition.

UI−Component

contextui−spec

UI−View

Context Transition
Model

Context

Figure 4.4: Internal structure of ui-components

78 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

As motivated in Section 4.1, ui-components provide (sub-)model and (sub-)view ac-
cording to the Model-View-Controller abstraction. Thereby, ”UI-View” realizes the
view and ”Context” together with the ”Context Transition Model” realize the underly-
ing model. According to the model, the ”Context” component provides the static part
of the model, i.e., the data. The ”Context Transition Model” provides the dynamic part
of the model, i.e., data transformations. In the following, according responsibilities are
delimited in detail.

UI-View

On external request, the ”UI-View” component computes the specification of the next
dialog step, i.e., according system output together with enabled user events — possibly
enriched by meta data, in particular, style information. It is realized by a function
which requires a view onto the current context (corresponding to the current dialog
situation) as an argument, and provides as output an interaction specification which
can be interpreted by an according user interface controller.

Context

The context component manages the interaction context of a ui-component. Thereby,
it reflects the current dialog situation wrt. the ui-component. For example, a ui-
component that realizes a [Set-Based Navigation], may require (i) a list of elements,
(ii) a pointer of the current list position, and (iii) a visible size, i.e., the number of list
elements represented to the user at the same time. To access the context, the ”Context”
component provides an interface for retrieval and manipulation.

To permit the resolution of context dependencies between ui-components, access can
be provided to externally connected components as well. For example, if a [Set-
Based Navigation] is composed with a ui-component that realizes a [Selectable Search
Space], the underlying list of elements depends on the sub-space chosen by the user
through [Selectable Search Space]. Thus, external adaptations of the element list may
occur and must be imported.

Without according measures, manipulating shared data may cause any type of data
inconsistencies. Therefore, we employ a database perspective and apply respective
methods. Figure 4.5 motivates the fundamental idea to consider ”Context” compo-
nents asdatabase views, or more precisely, as database clients which operate on views.
Consequently, we assume the existence of an integrated database system at the global
level. Thereby, retrieval and manipulation requests initiated by a local ui-component
are iteratively propagated to sub-sequent levels, until they are eventually processed
(and materialized) by the database system. However, it is commonly not required
to integrate the complete context of ui-components. Contexts which are independent
from other ui-components can exclusively be managed locally. Therefore, contexts

4.2. UI-COMPONENTS 79

can be declared asprivateor public. Private context is not visible (and, thus, not ma-
nipulatable) at higher levels. At a pragmatic perspective, context which is not involved
within dependencies is declared as private. As a default, we might declare contexts
as private. If later compositions impose context dependencies, a refinement in terms
of re-declaring contexts as public can be applied. Note that the view perspective im-
plies a minor notational conflict: the (public) contexts of lower-level ui-components
correspond to higher-level views at a database perspective. However, if not stated
differently, we will generally refer to ’higher-level’ and ’lower-level’ relations at the
component perspective.

Context

... ...

...

...

...

request

Context

request

... requestrequest

Context

Database System

(higher level)

UI−Components
(local level)

UI−Component
(global level)

(lower level)

Figure 4.5: A view-based approach to ensure consistent context exchange

To avoid data inconsistencies as well as any kind of anomalies which are caused by
concurrent access on shared data, we apply the notion oftransactionsknown from the
database area (cf., for example, [EN99, Bis95]). Context manipulations, for example,
initiated by ECA rules are then executed within transactions. Thereby, so-called ACID
properties, i.e., atomicity, consistency, isolation, and durability are ensured.

Context Transition Model

The ”Context Transition Model” reflects the dynamic behavior of a ui-component. It
essentially specifies the transition between successive dialog situations. It is realized

80 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

by initiating manipulation requests to the context. There exist two types of events
which may initiate a transition of dialog situations:

• An event provided by the current dialog specification is initiated by a user. For
example, a ”next” event can be initiated by a user according to a ui-component
that realizes a [Set-Based Navigation]. It entails a context adaptation request
”Increase the list pointer by the value of visible size”.

• In case of context dependencies, context manipulation of one ui-component may
require subsequent context adaptation of dependent ui-components. For exam-
ple, if a different sub-space is chosen by a user through a [Selectable Search
Space], the element list of dependent ui-component that realizes [Set-Based
Navigation] must be adapted accordingly.

As motivated in Section 2.3, a natural opportunity to specify context transitions are
provided by the method ofEvent-Condition-Action rules(ECA rules). We utilize them
as follows:

Events correspond to context changes,

Conditions correspond to boolean-valued functions on the context, and

Actions correspond to context manipulation requests.

Note that we represent user events by contexts as well. Thereby, initiated user events
entail context changes which will activate associated rules. To avoid inconsistencies,
the ”UI-View” component is blocked during the execution of the rule system. Other-
wise, it may obtain inconsistent context, since some dependencies might not yet been
resolved completely. The termination of the rule system is considered at a global level.
More precisely, the rule system terminates, if no rule of any of the ui-components is
activated. Note that rule systems can generally be characterized by properties as termi-
nation, confluence, and effect preservation. Since rule systems do not guarantee these
properties at the general case, according restrictions must be applied. For a discussion
about these issues, we refer to Section 4.7.

In the following, we will outline an example. We consider a possible formalization of
interaction pattern [Set-Based Navigation]. An according ui-component named’List
Scrolling’ is specified as follows.

An Exemplary UI-Component: ’List Scrolling’

The realization of ui-component ’List Scrolling’ is based on the specification of its
three sub-components ”Context”, ”UI-View”, and ”Context Transition Model”. An
according graphical abstraction which outlines the essential elements is provided in
Figure 4.6.

4.2. UI-COMPONENTS 81

’first’/’last’ rule
’prev’/’next’ rule

NavVisSize
NavList, NavListPos

NavEvent

Context

in: ’first’, ’last’
’next’, ’prev’

out: part of NavList

Model
Context Transition

ui−spec

UI−View

List Scrolling

context

Figure 4.6: UI-Component ’List Scrolling’

Context:

NavList: represents the underlying list of elements which may be browsed.

NavListPos: represents the current list position (starting at 1).

NavVisSize: represents the number of list elements presented to a user at the
same time.

As we represent events by context, we employ:

NavEvent: represents the initiated user event according to this ui-component.
It comprises events: ’next’, ’prev’, ’first’, ’last’.

UI-View: At a basic level, it provides a plain interaction specification without stylis-
tic information. The specification of (i) the output to the user and (ii) the acti-
vated user events are generated as follows:

Output: Sublist ofNavListstarting at positionNavListPosand comprisingNav-
VisSizeelements. If the sublist exceeds the end ofNavList, it is shortened
accordingly.

Activated events: Depending on the context, user events ’next’, ’prev’, ’first’,
’last’ are activated:

’next’, ’last’: are activated, if

NavListPos+NavVisSize≤ length(NavList) ,

82 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

wherelength() provides the number of elements of a list. Thereby,
event ’next’ corresponds to navigating to the succeeding part of the
list, and event ’last’ corresponds to jumping to the last part of the list
— as specified by the context transition model.

’prev’, ’first’: are activated, if

NavListPos> 1.

Thereby, event ’prev’ corresponds to navigating to the preceding part
of the list, and event ’first’ corresponds to jumping to the first part of
the list.

Context Transition Model: The context is adapted depending on the user event ini-
tiated. According rules essentially adjust the list pointer wrt. the user event.
They are specified as follows:

’first’ rule: Jump to the beginning.

ON updated(NavEvent)

IF NavEvent == ’first’

DO update(NavListPos) by 1

’last’ rule: Jump to the end.

ON updated(NavEvent)

IF NavEvent == ’last’

DO update(NavListPos) by length(NavList) - NavVisSize +1

’next’ rule: Navigate forwards.

ON updated(NavEvent)

IF ((NavEvent == ’next’) &&

(NavListPos + NavVisSize <= length(NavList))

DO update(NavListPos) by NavListPos + NavVisSize

’prev’ rule: Navigate backwards.

ON updated(NavEvent)

IF ((NavEvent == ’prev’) && (NavListPos > 1))

DO {

IF (NavListPos > NavVisSize)

update(NavListPos) by NavListPos - NavVisSize

4.2. UI-COMPONENTS 83

ELSE

update(NavListPos) by 1

}

The chosen pseudo-code syntax to represent context transition rules combines the ECA
style with that of the programming language C. Its intention is to provide an intuition
of the behavior rather than a specification. The formal specification is based on inter-
action nets. However, as discussed in Section 4.4.2, a similarly convenient, but formal
specification language might be provided to generate according interaction nets. Ac-
cording to the syntax deployed above, we represent ECA rules by the following general
frame:

ON <event>

IF <condition>

DO <action>

Events (propagated by context changes) are denoted by boolean-valued expressions

’updated(<contextName>)’.

They evaluate totrueor falsedepending on whether the context identified by its name
was manipulated or not. A retrieval of context values is simply denoted by the name
of the context. A context update is denoted by

’update (<contextName>) by <expression>’

which corresponds to an update of the identified context by the evaluation of the spec-
ified expression.

UI-Component ’List Scrolling’: An Open Perspective

The proposed realization of ui-component ’List Scrolling’ employs an autonomous
perspective. It assumes that its context is locally used only, and may not be adapted
by other ui-components. However, to enable dependencies between ui-components,
we must provide a more liberal (or open) perspective. It is achieved by (i) declaring
contexts as ’public’, and (ii) extending the context transition model by according adap-
tation rules. For example, to allow other components to update or completely replace
the underlying navigation list, contextNavListwill be declared as public. In addition,
the following adaptation rule must be included into the context transition model. It
resets the list pointer, since an update ofNavList might cause the current list pointer
to become invalid, i.e., to point outside the modified list. Intuitively, such adaptations
can be understood as ’repairing actions’. They are applied to re-establish a consistent
state of the local context.

84 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

’List’ rule: Reset list position.

ON updated(NavList)

DO update(NavListPos) by 1

Note that we suppress the condition part of ECA rules, if it constantly evaluates to
true. We will apply this open perspective in the next section, when we compose ’List
Scrolling’ with a ui-component which represents a [Selectable Search Space].

4.3 UI-Composition Components

4.3.1 Composition of UI-Components

As illustrated in Section 4.1, we employ ui-composition components to derive complex
ui-components from elementary ones. They specify dependencies between elementary
ui-components. It includes (i) the composition of the individual dialog step specifica-
tions and (ii) the resolution of context dependencies. Figure 4.7 proposes an internal
structure which basically associates these tasks with according sub-components.

UI−Component

Context Dependency
Model

UI−Composition
Component

Context

...

...

UI−View
Composition

ui−spec context ui−spec context

...

ui−spec context

UI−Component

(Composite)
UI−Component

Figure 4.7: Internal structure of ui-composition components

The responsibilities of the three sub-components ”UI-View Composition”, ”Context”,
and ”Context Dependency Model” can be compared to that of sub-components ”UI-
View”, ”Context”, and ”Context Transition Model” of elementary ui-components. In

4.3. UI-COMPOSITION COMPONENTS 85

addition, they have to provide the integration of attached ui-components. As moti-
vated in Section 4.1, a composite ui-component provides the model and the view ac-
cording to the Model-View-Controller abstraction. Thereby, the view is realized by
the sub-views of attached ui-components together with their integration realized by
sub-component ”UI-View Composition”. Accordingly, the model is realized by the
sub-models of attached ui-components together with their integration realized by sub-
components ”Context” and ”Context Dependency Model”. In the following, according
responsibilities are delimited in detail.

UI-View Composition

The responsibility of this component can be compared with the ”UI-View” compo-
nent of elementary ui-components. It computes the specification of the next dialog
step, i.e., according system output together with enabled user events — possibly en-
riched by style information. In contrast to ”UI-View”, it is realized by (i) receiving
ui-specifications of attached (lower-level) ui-components and subsequently (ii) com-
posing an integrated ui-specification. Thereby, the composition may evaluate style
information provided by elementary ui-specifications as well as context information
retrieved from the context component.

Context

The context component manages the interaction context of the composite ui-component.
At a non-integrated scenario, it basically comprises the union of the public contexts of
attached ui-components which may further be extended, if required. However, there
may also occur situations where

(i) contexts of different ui-components correspond to one another, and

(ii) equally named contexts of different ui-components do not correspond to one
another.

While in case (i) both contexts should be merged at the higher level, in case (ii) both
contexts should be separated. Note that these alternatives represent one opportunity
to specify context dependencies. A more general opportunity is provided through the
context dependency model. Note further that at a general perspective, context integra-
tion at this level corresponds to theview integration problemknown from the database
area (cf., for example, [BCN92] and Figure 4.5 (on page 79)).

Thereby, the context reflects the current dialog situation of the composite ui-component.
It provides retrieval and manipulation interfaces (i) to attached (lower-level) ui-com-
ponents and (ii) to an (higher-level) ui-component. Note that according to the view
perspective in Figure 4.5, we assume retrieval and manipulation requests asdirected

86 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

requests. More precisely, retrieval and manipulation requests are initiated by lower-
level ui-components and passed to higher-level ui-components for processing.

Context Dependency Model

The ”Context Dependency Model” specifies context dependencies between attached
(lower-level) ui-components. Analogous to elementary ui-components, they can be
expressed in terms of ECA rules. Together with the lower-level context transition
models, it reflects the dynamic behavior of the composite ui-component. In other
words, it essentially specifies the transition between successive dialog situations wrt.
the composite ui-component. Therefore, we may denote the union of the (lower-level)
context transition models together with the ”Context Dependency Model” as ”Context
Transition Model” of the composite ui-component.

Together, there exist three alternatives to dependency resolution:

Integration of synonymous concepts: If attached ui-components denote synony-
mous concepts by different names, their integration is specified by the context
component.

Separation of homonymous concepts:If attached ui-components denote distin-
guished concepts by the same name, their integration is specified by the context
component as well.

Complex dependencies: In the case of complex dependencies between attached ui-
components, dependency rules are specified by the context dependency model.

Analogous to elementary, ui-components, ”UI-View Composition” is blocked during
the execution of the rule system to avoid inconsistent views.

In the following, we outline the realization of an exemplary composition. We con-
sider a composition of ui-component ’List Scrolling’ introduced in Section 4.2 which
realizes a [Set-Based Navigation] and a ui-component ’Category Selection’ which re-
alizes a [Selectable Search Space]. To specify their composition, we will first propose
a possible realization of ui-component ’Category Selection’:

UI-Component: ’Category Selection’

The realization of its according sub-components is described in the following. We
assume that the underlying ’search space’ is represented by a base set of elements.
Sub-space division is then represented by a function which given a selected category,
it provides an associated subset of the base set. Figure 4.8 provides an according
graphical abstraction.

4.3. UI-COMPOSITION COMPONENTS 87

Context

SelCatList, SelCatDiv
SelEvent

SelSet, SelSubSet, SelCat

Model
Context Transition

ui−spec

UI−View

Category Selection

out: SelCatList
in: ’category’

’reset’

’category’ rule
’reset’ rule

context

Figure 4.8: UI-Component ’Category Selection’

Context:

SelSet: represents the underlying set of elements.

SelCatList: represents a non-empty list of available categories.

SelCat: represents the category selected currently, or constant ’null’ if no cate-
gory is selected.

SelSubSet: represents the subset associated with the currently selected category
SelCat.

SelCatDiv: determines the division ofSelSetinto subsets according to cate-
gories inSelCatList. It is represented by a list of pairs of a category and its
associated subset.

As we represent events by context, we employ:

SelEvent: represents the initiated user event according to this ui-component. It
comprises elements ofSelCatListand a ’reset’ event.

UI-View: At a basic level, it provides a plain interaction specification without stylis-
tic information. The specification of (i) the output to the user and (ii) the acti-
vated user events are generated as follows:

Output: List of SelCatList.

88 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Activated events: Each element ofSelCatListis activated as user event with the
exception of the currently selected categorySelCat. Thereby, the selection
of a category corresponds to selecting an associated subsetSelSubSet. If
a sub-space is currently selected, a specific ’reset’ event is provided addi-
tionally which permits to reset user’s scope to the initial space.

Context Transition Model: The context is adapted depending on the user event ini-
tiated. According rules essentially adjust the category selectedSelCatand its
associated subsetSelSubSet:

’category’ rule: Select sub-space.

ON updated(SelEvent)

IF (SelEvent in SelCatList)

DO {

update(SelCat) by SelEvent ;

update(SelSubSet) by SelCatDiv[SelEvent]

}

where ’in’ denotes element containment.

’reset’ rule: Select original space.

ON updated(SelEvent)

IF (SelEvent == ’reset’)

DO {

update(SelCat) by ’null’ ;

update(SelSubSet) by SelSet

}

A dependent composition between ’List Scrolling’ and ’Category Selection’ is realized
by the following ui-composition component:

UI-Composition component: ’Category Selection’ + ’List Scrolling’

The intention of this composition is to provide a minimal interactive catalog to users.
They may browse the complete catalog by initiating activities provided by ’List Scrol-
ling’ or may decide for browsing specific sub-spaces of the catalog. There exists a
(directed) dependency from ’Category Selection’ to ’List Scrolling’. If a sub-space is
selected (or deselected) by the user wrt. ’Category Selection’, the according element
list provided by ’List Scrolling’ must be adapted. This dependency is specified by a
context dependency rule (as defined below). The ui-composition component is then
realized as follows. Figure 4.9 provides a corresponding graphical abstraction.

4.3. UI-COMPOSITION COMPONENTS 89

UI−Composition
Component

Context Dependency
Model

UI−View
Composition

out:
in:

ui−spec context ui−spec context

Single−Level Catalog

SelSubSet rule[union]
[union]

Category Select. List Scrolling

Context

SelSubSet, NavList
SelEvent, NavEvent

contextui−spec

Figure 4.9: A concrete ui-composition component

Context: SelSubSetandNavList are assumed to be declared as public by ui-com-
ponents ’Category Selection’ and ’List Scrolling’ respectively. Since events are
initiated by the ui-controller,SelEventandNavEventmust be declared as public
as well. A further extension of the context is not required.

UI-View Composition: At a basic level, interaction composition is provided by the
union of (i) the user outputs and (ii) the activated events of both ui-components.

Context Dependency Model: The dependency is specified by the following rule. It
basically copies the content ofSelSubSetto NavList.

’SelSubSet’ rule: Publish altered sub-space.

ON updated(SelSubSet)

DO update(NavList) by list(SelSubSet)

where ’list()’ denotes type conversion of sets to lists (based on an arbitrary
ordering).

The composition of the ui-composition component together with ui-components ’Cat-
egory Selection’ and ’List Scrolling’ then provides a composite ui-component which
corresponds to a simplified catalog interaction. We call this component ’Single-Level
Catalog’.

90 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

4.3.2 Composition Patterns

The exemplary composition represented in Section 4.3.1 deploys a ui-composition
component which exclusively specifies the dependency between a particular pair of
ui-components. In general, it is not always required to introduce special purpose com-
positions. If a composition reflects a common and recurring policy, it seems promising
to provide ui-composition components which can generically be applied to different
ui-components. We refer to such common policies ascomposition patterns. A char-
acteristic example of composition patterns are policies governing the control flow of
dialogs. A frequent policy is a sequential composition of dialog structures. For exam-
ple, (i) after the details of a journey have been confirmed, dialog steps wrt. the actual
payment are invoked, or (ii) after a student registered for a course, materials may be
downloaded, and messages may be posted at a course-related forum.

We will consider the example of sequential composition in the following to illustrate
how composition patterns can generically be provided by ui-composition components.
Note that there exists a substantial distinction between sequential composition of di-
alog structures and sequential composition of components or interaction nets. While
the later rather corresponds to a subsequent transformation of data elements (compa-
rable to ’pipes’ at command processing), the former concerns the flow of control. We
first consider the case that sequential composition coincides with the structure of ui-
components. More precisely, interactive facilities of one component are activated first.
As soon as a sequence of user interaction reaches a final state wrt. this ui-component,
the second ui-component is activated. We propose two alternative realizations of se-
quential composition distinguished by the allocation of responsibilities.

Sequential composition (by centralized responsibility)

The responsibility of activation and deactivation of ui-components is completely real-
ized by a ui-composition component. It basically comprises two tasks. (1) For each
associated ui-componentX, a private context ’activeX’ is maintained which represents
their current status of activation, i.e., the context indicates which ui-component is cur-
rently activated. If an event indicates a completion of the current sub-dialog, then
activation states are adapted, such that the next ui-component becomes activated. It is
realized by specifying according context dependency rules. (2) The ”UI-View Com-
position” component reflects the current activation by filtering dialog specifications
received from associated ui-components. If an associated ui-component is currently
inactive, then its provided dialog specification is disregarded by the view composition.
A dialog specification received from an currently active ui-component will be provided
to the next higher level only.

As an advantage, this approach is generally applicable. However, it possesses some
drawbacks. Firstly, dialog specifications of inactive ui-components are computed, al-
though they are disregarded later on. As we currently do not focus on aspects of

4.3. UI-COMPOSITION COMPONENTS 91

performance, we less emphasize this issue. Secondly, the responsibility of recogniz-
ing the completion of a sub-dialog wrt. an associated ui-component is realized by the
ui-composition component. However, as the semantics of sub-dialogs is specified by
a particular ui-component, the ui-component itself should commonly be responsible
for recognizing its completion. For example, a ui-component that realizes interactive
scenarios of payment ”knows” by which event and at which dialog situation payment
is completed.

Sequential composition (by localized responsibility)

A refined version that remedies above drawbacks then shifts responsibilities to the as-
sociated ui-components. Thereby, each ui-componentX maintains a particular (and
public) context ’finishedX’ which indicates its completion. In addition, a context ’ac-
tiveX’ is maintained for each associated ui-component as introduced above. While
contexts ’finishedX’ are updated by the respective ui-componentX, contexts ’activeX’
are updated by the ui-composition component. Thereby, ui-components locally respect
context ’activeX’, i.e., they suppress the generation of a dialog specification, as long
as ’activeX’ indicates an inactive status. An ECA rule of the ui-composition compo-
nent which specifies a sequential composition of two ui-componentsA andB reads as
follows:

ON updated(finishedA)

DO {

update(activeA) by ’false’ ;

update(activeB) by ’true’

}

By the introduced realization, sequential composition of ui-components is provided in
terms of generic ui-composition components. Their correct behavior can be verified
through respective specifications on the basis of interaction nets. Note that the local-
ized alternative imposes an assertion onto associated ui-components. They have to
maintain context ’finishedX’ and to respect context ’activeX’. It implies the following
design obligation. For a ui-component which intends to be employed in sequential
scenarios, this property of ”sequentialization” must be provided.

The introduced realization of sequential composition motivates natural generalizations.
Firstly, any number of involved ui-components can be chosen. Then, an according rule
of activation adaption must be specified for each ’finishedX’ event Secondly, gener-
alized alternatives of dialog flow are realizable. By specifying according activations,
any kinds of dialog flow are possible as, for example, cyclic sub-structures. Thirdly,
it may occur that the activation does not concern single ui-components, but sub-sets
of ui-components. For example, we might employ an interaction history throughout a
sequential composition of ui-components. Therefore, at each dialog situation at least

92 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

two ui-components will be active in parallel: (i) the interaction history, and (ii) the ui-
component of the sequential composition. It is straightforward realized by according
activation adaptation rules. Thereby, the activation context of the interaction history
remains active throughout the complete dialog.

General composition patterns

The notion of composition patterns naturally generalizes from the scope of ui-com-
ponents to components in general. We refer to according components which realize
generic composition policies ascomposition components. They commonly play the
role of a mediator between connected components. A typical example are service re-
quest queues. Services provided by certain components are commonly requested by
more than one client. For example, manipulation requests to a database system are
used by several applications and clients. Similarly, at a component-based approach,
database requests will be required by several components. However, we cannot simply
connect several components through a single service interface, because of the defini-
tion of component composition (cf. Definition 3.5 on page 33). While the component
approach of Broy et. al. [BS01] permits such a ”1 channel to many channels” com-
position, its dynamic semantics is not the one required for this purpose. For example,
assume that an output channel of a service provider component is connected to input
channels of several client components. By Definition 3.5, it corresponds to providing
one and the same copy of the output to every connected client. Obviously, this is not
the required behavior. We rather expect that the output is provided to the selected client
who initiated an according service request.

An elegant and flexible solution to this problem is to deploy a generic composition
component which encapsulates the behavior of a service queue. It is flexible, since it
permits to specify the desired policy of a queue. For example, a particular queue com-
ponent might specify the standard behavior of a ”first come, first serve” policy, while
another queue might prioritize requests. Figure 4.10 demonstrates the deployment of
a queue component by a black-box interaction net. Interaction net specifications of
different queue policies will be provided in Section 4.4.

4.3.3 Refinement and Adaptation

At a practical point of view, it might be impossible to provide a repository of ui-
components which satisfies all current and future requirements. A designer will often
be confronted with the situation that there exist ui-components which meet the de-
sign requirements approximately only. In this case, a refinement or an adaptation of
a selected ui-component must be established. Besides the opportunity of adapting
the specification of the ui-component directly, a so-called wrapper approach may re-
lieve the adaptation task significantly. As illustrated in Figure 4.11, a wrapper is a
component which provides a (dynamic) view onto an underlying ui-component. We

4.3. UI-COMPOSITION COMPONENTS 93

...

...

Service Provider

Service Queue

response response

response

request request

request

Client 1 Client n

Figure 4.10: A composition component providing a service queue

denote wrappers used wrt. ui-components asui-wrappers. The figure also indicates
that the composition of a ui-wrapper and its underlying ui-component represents a ui-
component in turn. Thus, analogous to the composition of ui-components, the wrapper
approach scales up to adapted interaction specifications. In other words, adaptation
may be applied iteratively — therewith providing different versions of ui-components.

ui−spec

(Adapted)
UI−Component

UI−Component

ui−spec context

UI−Wrapper

context

Figure 4.11: Refining and extending ui-components by wrappers

As illustrated in Figure 4.12, ui-wrappers can be realized byunary ui-composition
components. They permit adaptation of the view as well as of the underlying model
specification. We slightly rephrased its sub-components (i) ’UI-View Composition’
to ’UI-View Adaptation’, since there is only one argument view, and (ii) ’Context
Dependency Model’ to ’Context Adaptation Model’, since there is only one underlying
model which is adapted through this component. Characteristic adaptations are, for
example:

94 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

• extending the dialog specification by additional output and user events,

• enriching the dialog specification by style information,

• adapting the behavior by according context rules, or

• extending and adapting the context.

Context

ui−spec context

ui−spec context

UI−Component UI−Component

UI−Wrapper

(Adapted)

Context Adaptation
Model

UI−View
Adaptation

Figure 4.12: Realization of ui-wrappers by unary ui-composition components

UI-Wrapper: ’Circular Navigation’

In the following, we illustrate an exemplary situations where the use of ui-wrappers is
beneficial. We consider an adapted requirement according to ui-component ’Set-Based
Navigation’:

”User events ’next’ and ’prev’ should be enabled unconditionally. If the
end of the list is presented to the user, a subsequently initiated ’next’ event
entails a jump to the beginning of the list. If the beginning of the list is
presented, a subsequent ’prev’ event entails a jump to the end of the list.”

An according ui-wrapper which realizes this adaptation wrt. ui-component ’List Navi-
gation’ can be specified as follows. A graphical illustration is provided in Figure 4.13.

Context: corresponds to the context of ui-component ’List Navigation’. A further
context extension is not required.

4.3. UI-COMPOSITION COMPONENTS 95

UI-View Adaptation:

Output: The output specification of attached ui-component ’List Scrolling’ is
provided unchanged.

Activated events: The input specification of attached ui-component ’List Scrol-
ling’ is extended by events ’next’ and ’prev’, if they do not occur.

Context Adaptation Model: According to events ’next’ and ’prev’ the list pointer is
adapted. It is realized by initiating corresponding events ’first’ or ’last’ which
will be processed subsequently by the elementary ui-component ’List Scrolling’.

’next’ adaptation rule: If end of list is reached, jump to the beginning.

ON updated(NavEvent)

IF ((NavEvent == ’next’) &&

(NavListPos + NavVisSize > length(NavList)))

DO update(NavEvent) by ’first’

’prev’ adaptation rule: If beginning of list is reached, jump to the end.

ON updated(NavEvent)

IF ((NavEvent == ’prev’) && (NavListPos = 1))

DO update(NavEvent) by ’last’

As indicated by Figure 4.13, the composition of the ui-wrapper and ui-component ’List
Scrolling’ provides an adapted ui-component we call ’Circular List Navigation’.

User adaptation

Besides a rather task-oriented adaptation of dialog structures, ui-wrappers can be uti-
lized to specify user adaptation. An according ui-wrapper represents a user profile
(including user preferences) by introducing necessary contexts. User adaptation is
then specified at two dimensions: by context adaptation and by user interface adap-
tation. Concerning context adaptation, according adaptation rules must be specified.
As a simple example, consider a boolean option of the user preferences which deter-
mines whether to apply circular navigation or not. Firstly, an according boolean-valued
context ’Circular’ will be introduced which reflects the setting of the option. Sec-
ondly, rules corresponding to above ’next’ and ’prev’ adaptation rules are introduced.
Thereby, their condition parts are extended by the evaluation of option ’Circular’. The
according ’next’ adaptation rule then reads as follows:

96 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Context Dependency
Model

UI−View
Composition

out:
in:

NavVisSize
NavList, NavListPos

NavEvent

ui−spec

ui−spec context

Circular List Navigation

’next’ adaptation

List Scrolling

UI−Wrapper
Circular Navigation

Context

[unchanged]
+ ’next’ + ’prev’ ’prev’ adaptation

context

Figure 4.13: a ui-wrapper that enables circular navigation

’circular(next)’ adaptation rule: If ’circular’ is set and end of list is reached, jump
to the beginning.

ON updated(NavEvent)

IF ((Circular == ’true’) &&

(NavEvent == ’next’) &&

(NavListPos + NavVisSize > length(NavList)))

DO update(NavEvent) by ’first’

While context adaptation mainly permits the adaptation of dialog structures, ”UI-View
Adaptation” mainly focuses on the representation. Thereby, it enables to include style
information as well as to evaluate style information according to the user profile.

Note that the proposed opportunity of user adaptation also provides a contribution
wrt. consistency. More precisely, if user adaptation is correctly specified at a possibly
global level, its context adaptation affects all (lower-level) ui-components. In other
words, user adaptation can be specified globally. Therefore, contradicting adaptations
which occur if specification of user adaptation is distributed over the application can
be prevented.

4.4. REALIZATION BASED ON INTERACTION NETS 97

4.4 Realization Based on Interaction Nets

In this section, we introduce a realization alternative based on interaction nets accord-
ing to the component architecture outlined in Section 4.1 and further elaborated in
Sections 4.2 and 4.3. The specification of a concrete realization essentially intends
to provide a ’proof of concept’. In particular, we neglect aspects of performance at
the moment. For example, we employ a simplified specification for the provision of
a transaction service which can be understood as a ”light-weight” transaction model.
It basically performs transactions sequentially. However, at a semantic level, it corre-
sponds to transaction services that permit concurrent executions.

At the perspective of realization, we barely distinguish between components ”UI-
View” and ”UI-View Composition” as well as between components ”Context Tran-
sition Model” and ”Context Adaptation Model”. They are treated rather analogously.
Discussion about minor distinctions are appended to the end of the respective sections.
Therefore, a formal specification of ”UI-Components” based on interaction nets is ba-
sically provided by the three sub-components ”Context”, ”Context Transition Model”,
and ”UI-View” (cf. Figure 4.4 on page 77). Their specifications are introduced subse-
quently at the following sections.

4.4.1 Context

As motivated in Section 4.2, the context component shall provide access to shared data.
For simplicity, we encapsulate each shared data by a distinguished component which
may be called by an associated context name. For example, listNavList and integer
NavVisSizeoccurring at the context of ui-component ’List Scrolling’ can be encap-
sulated by distinguished components called ’NavList’ and ’NavVisSize’. Through an
according interface, shared data components provide access to the data. As proposed in
Section 4.2, we permit to declare data as private or public. While private data provides
an opportunity for encapsulation, public data is required for dependency resolution.
According to their realization, we apply a database perspective previously motivated
at Figure 4.5 on page 79. Thereby,public datacorresponds to a view onto persistent
data at a higher level. In other words, requests to public data are simply delegated
to the next higher level. Therefore, we also refer to them asview. Private datacorre-
sponds to the actual (persistent) storage of the data. Therefore, we also refer to them as
persistent data. According to the view perspective, data can be declared as persistent
at one selected level only. According to database systems, each data is made persistent
at the database level — which corresponds to the global level (cf. Figure 4.5). How-
ever, to permit encapsulation at each level, we enable a more liberal approach. Data
may be declared as private/persistent at any level. Thereby, private data is accessible
at the same and (possibly) lower levels only.

Figure 4.14 illustrates an example. It reflects a part of the context realization of com-
posite ui-component ’Single-Level Catalog’ represented in Figure 4.9 on page 89. For

98 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

readability, sub-components ’UI-View’ and ’Context Transition Model’ are omitted
from the figure. We emphasized sub-components that provide persistent data by thick
boxes. Corresponding to arrows styles, Figure 4.9 adheres to the convention stipulated
previously. While filled arrows denote the direction of requests, hollow arrows denote
corresponding responses. Thereby, requests represented in the figure primarily denote
retrieval and manipulation requests.

NavVisSize
[persistent]

context

Context

NavListPos
[persistent]

List Scrolling

context

NavList
[view]

NavEvent
[view]

...
Category Selection

context

SelEvent
[view]

SelSubSet
[view]

context context

...

Single−level Catalog

context

UI−Composition

NavList
[persistent]

NavEvent
[view]

Context

SelEvent
[view]

SelSubSet
[persistent]

Component

...

context context

...

...

...

Figure 4.14: Context realization wrt. ’Single-Level Catalog’

Since a direct manipulation of shared data may cause inconsistencies, we include an
elementary transaction management. It is realized by a sub-component called’TA
Service’(’Transaction Service’) which is employed at each context component. Figure
4.15 outlines the generic structure of a context component at the global level. There,
all shared data is persistent.

At an intermediate level, data may be either persistent or realized by a view. The
according transaction service at an intermediate level can be understood as a view
as well — a view onto the global transaction service. It delegates requests to the
next higher level. In contrast to shared data, we only deploy a single ”persistent”
transaction service at the global level. Figure 4.16 outlines the generic structure of a
context component at a local level. The represented declaration of dataD1 as view and
dataDn as persistent should be understood as an example case.

4.4. REALIZATION BASED ON INTERACTION NETS 99

D1Shared Data DnShared Data...

...

...

[persistent] [persistent]

TA Service
[global]

Context (global level)

Figure 4.15: Generic structure of a context component (at global level)

D1Shared Data DnShared Data...

...

...

[view] [persistent]

TA Service
[local]

Context (local level)
...

Figure 4.16: Generic structure of a context component (at a local level)

Transaction Service

We start by specifying the transaction service at the global level. Its main intention is
to prevent data inconsistencies which may occur during concurrent executions of ECA
rules (as defined by the context transition model). A straightforward solution is to en-
force a sequential execution of transactions and, consequently, ECA rules as well. At
a simplified transaction management, we will also neglect features as rollback or re-
covery. This transaction service will be sufficient to fulfill our requirements. However,
it may be replaced by a more advanced system, if required.

Figure 4.17 represents the transaction service component ”TA Service” as a black-box
interaction net. It provides interfaces for the following services:

Begin Transaction: This service is requested by a client, if it wishes to start a trans-
action. The provider waits until no more transaction is running currently. Then,
it increments transaction time and returns a new transaction identifiertid to the

100 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

TA Service

Begin TA Commit TA TA Time

Begin Act End Act

Figure 4.17: Interfaces of the transaction service component

client. By the unique transaction identifier, a client will be permitted to initiate
retrieval and manipulation actions on shared data. The service is mainly used by
ECA rules.

Commit Transaction: This service is requested by a client, if it wishes to commit a
transaction. The provider invalidates the transaction identifier and permits new
transactions to be initiated.

Begin of Action: By this service, the execution of a data retrieval or manipulation
action is requested by a client. The provider verifies the transaction identifier
provided by the client. Only if it corresponds to the identifiertid of the cur-
rently running transaction, a positive response is returned. Requests for ’Com-
mit Transaction’ are postponed, until the end of an action will be declared. This
service is mainly used by services ’Retrieve’ and ’Update’ provided by shared
data.

End of Action: This service declares an action to be finished. Afterwards, further
actions (including transaction commit) may be requested for execution.

Transaction Time: By this service, the current transaction time is provided to a
client. Its realization can be understood as a ’wake up’ call initiated by the
transaction service. More precisely, the client provides a transaction time —
commonly the next transaction time. Afterwards, the current transaction time
is returned to the client, if two conditions become true: (i) there is no transac-
tion currently running, and (ii) the current transaction time equals or exceeds the
transaction time provided by the client. The second condition is motivated by
the following situation. A client who needs to be informed about an advance
of transaction time would have to initiate requests to the ”TA Service” within
a polling loop to finally perceive an increment. Through condition (ii), a client
only needs to initiate a single request. It will be called back automatically by the
transaction service, if transaction time increased.

4.4. REALIZATION BASED ON INTERACTION NETS 101

This service is mainly used by a service called ’Updated’ provided by shared
data. Thereby, service ’Updated’ is essential to realize the ’detection’ of events
(concerning ECA rules). A detailed explanation is postponed to the specification
section of shared data.

An interaction net specification of the transaction service is represented in Figure
4.18. For readability, we additionally emphasized initial place markings by dots within
places.

TA Time

Tid() false

Commit TA

Ready Time

() ()
time

tid

[timeR<=time]

rid (time,rid)(timeR,rid)rid(tid,rid)

TA Service

Action

End of Action Begin of Action

((tid,time),rid)(tid,rid)(tid,rid) (tid,rid)

tid true

false

false
time

true

((tid,ti+1),rid)

Begin TA

1

()
tid tid ti

ti+1false

Figure 4.18: Specification of the transaction service component

To reflect the different states of a transaction, we employ four places called ’Ready’,
’Tid’, ’Action’, and ’Time’ with the following semantics:

Ready: is of type ’unit’ and initially marked by element ’()’. It indicates, if a transac-
tion is currently running. If this place is occupied by a token, then no transaction
is running, and a new transaction may be started.

Tid: is of type ’int’ and initially unmarked. It indicates that a transaction is currently
running. An element at this place indicates the transaction identifier. (It might be
noted that a ’begin transaction’ request generates a random transaction identifier,
since variabletid is unbounded. However, a counter-based realization would
provide the same functionality.)

102 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Action: is of type ’bool’ and initially marked by ’false’. If set to ’true’, it indicates
that a retrieval or update action is currently performed within a transaction. In
this case, ’commit transaction’ requests are postponed.

Time: is of type ’int’ and initially marked by ’1’. It indicates the current transaction
time. It is incremented at each ’begin transaction’ request.

As a standard parameter of each service request, we require a request identification
rid . It is used to permit concurrent initiations of requests. The request identifier then
enables to associate a service response to the requesting client.

Besides transactions, we permit retrieval operations outside transactions. To avoid
inconsistencies, retrieval operations are permitted only, if no transaction is currently
running. It is realized through a slight extension of the transaction service. For read-
ability, this extension is represented by a separate interaction net in Figure 4.19. Thus,
the transaction service should be understood as the union of both interaction nets. The
extension provides an opportunity to declare the beginning and end of (retrieval) ac-
tions outside transactions. This facility will be used by the ’Retrieve’ service of shared
data. Thereby, a non-transactional retrieval request simply provides the void element
’()’ instead of the current transaction identifier.

TA Time

Tid false

Commit TA

Ready Time

TA Service

Action

End of Action Begin of Action

Begin TA

1()

((),rid)

()

((),rid)
(((),time),rid)

false true
true

false
()

time

...

...

... ...

Figure 4.19:Extension of the transaction service component to permit consistent, non-
transactional retrieval

4.4. REALIZATION BASED ON INTERACTION NETS 103

Service Request Queues

The services of the ”TA Service” component may be requested by several clients. For
example, each rule (at the same level) will apply ’Begin Transaction’ and ’Commit
Transaction’ requests. In addition, each ”Shared Data” component (at the same level)
will apply ’Begin of Action’ and ’End of Action’ requests. As proposed in Section
4.3.2, we may deploy generic service queues for this purpose. We will deploy two
sorts of service queues:

Request Queue: Incoming requests of different clients are arranged within a ”first
come, first serve” queue.

Request Merger: All requests are collectively delegated to the service provider. Thus,
the service provider may impose an order, if desired.

Both queues serve a different purpose. The ”Request Queue” is deployed, if the ser-
vice provider equally processes each request. For example, the order of ’Begin Trans-
action’ requests initiated by different clients is not relevant for the service provider
”TA Service”. The ”Request Merger” is deployed, if the service provider itself needs
to impose an order on incoming requests. This situation occurs, if there exist potential
requests which cannot be processed immediately be the service provider. However,
there might concurrently exist requests which could be processed immediately — but
they are waiting in the queue. A ”Request Merger” then prevents such situations of
blockage. According to the ”TA Service”, we deploy a ”Request Queue” wrt. ’Begin
Transaction’ and a ”Request Merger” wrt. each of the other services.

A specification based on interaction nets is represented in Figures 4.20 and 4.21. It
demonstrates the case of two clients which can be generically extended to any number
of clients. We represented requests by variablereq and according responses by vari-
ableres. Note that besides the number of clients, the data types used for requests and
responses are considered as generic parts of the queue specifications. Furthermore,
we use request identifiersrid to distinguish requests. According to the request merger
specified in Figure 4.21, besides identifiers of incoming requestsrid1 andrid2, we
generate a new identifierrid for each request. It is necessary, since we do not re-
quire that request identifiersrid1 and rid2 of different clients are globally unique.
Uniqueness is then provided by identifierrid . Such an integration of identifiers is not
necessary for the ”Request Queue”, since it exclusively performs one request at a time.

By the specification of their interfaces and dynamic semantics, queues scale up to
queues over queues. This property is particularly useful for the delegation of requests
over several levels. We employ this opportunity to delegate requests to the transaction
service and to persistent shared data over several levels. For example, the transaction
service is only realized once at the global level. At local levels, the transaction service
represents a rather virtual service, since it only delegates requests to the next higher
level. The delegation can be realized by request queues. Since the delegation is applied
at each level, we obtain a queue on queue composition as illustrated in Figure 4.22.

104 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

()

Requests of
Client 1 Client 2

Requests of

Request Queue

Request processing by
Service Provider

rid2rid1 () ()

Req1 Req2

(res,rid2)

(req,rid2)

()()

(res,rid2)

Resource
(req,rid1)

(req,rid2)

rid1 rid2

(req,rid1)

(res,rid1)

(res,rid1)

Figure 4.20: Specification of composition component ”Request Queue”

Requests of
Client 1 Client 2

Requests of

Request processing by
Service Provider

Req1 Req2

(res,rid2)
()

RId

(req,rid)

rid1 (rid,rid2)
(res,rid1)

Request Merger

(rid,rid2)(rid,rid1) 1

rid rid

(req,rid1) (req,rid2)

(req,rid)

rid+1rid+1

(res,rid) (res,rid)

Figure 4.21: Specification of composition component ”Request Merger”

4.4. REALIZATION BASED ON INTERACTION NETS 105

Service Request
Queue

Service Request
Queue

Service Provider

...

...
Service Requests

...

... ...

...

...

Level 2

Level 1

Global Level

Service Request
Queue

...
Service Requests

Figure 4.22: Request delegation by use of service request queues

Shared Data

Similarly to the transaction service, (i) shared data declared as public/view is real-
ized by delegation via service request queues, and (ii) shared data declared as pri-
vate/persistent is realized by an interaction net which ”materializes” according ser-
vices. Therefore, we only need to specify generic components realizing persistent
shared data. These components are generic wrt. the data types used for storing par-
ticular data. Any elementary as well as complex data type corresponding to the type
system of CP nets may be deployed.

In contrast to the transaction service, services of shared data are not realized au-
tonomously. More precisely, they in turn request services provided by the transaction
service to guarantee transaction semantics. As specified in Figure 4.23, a shared data
component generally provides three services: (i) ’Update’, (ii) ’Retrieve’, and (iii)
’Updated’. The interaction net employs two places ’Data’ and ’Time of Last Update’.
While ’Data’ stores the current value of the shared data, ’Time of Last Update’ stores
the transaction time of the last update request. Note that the data type of place ’Data’
represents the generic part of the component.

The services provided by shared data components are realized as follows:

Update: updates the data. It is realized by three transitions. The first transition ’be-
gin’ requests the transaction service to perform an action. Thereby, the trans-
action identifier is verified and the current transaction time is provided. Af-
terwards, transition ’update’ performs the actual update of the data and, con-

106 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Time of
last Upd.

1

Shared Data
(Persistent)

Request for
Begin of Action

Request for
End of Action

Request for
End of Action

Request for
TA Time

Update

(tid,rid)

(new,rid)

((tid,new),rid)

((tid,time),rid)
(new,rid)

(tid,rid)

(val,rid)

(val,rid)

((tid,time),rid)

(tid,rid)

Retrieve

(tid,rid)

new

time

old

timeU

(timeR,rid)

(timeR,rid)

(time,rid)

(timeR,rid)

(tid,rid)

(tid,rid)

val

Data

((tid,val),rid)
(tid,rid)

val

begin

upd.

end

begin

read

end

((timeU>=timeR, time),rid)

Request for
Begin of Action

Updated?

(tid,rid)

Figure 4.23: Net-based realization of shared data

currently, adjusts ’Time of Last Update’. Finally, transition ’end’ informs the
transaction service about the accomplishment of the action.

Retrieve: provides the current data. It is realized analogously to service ’Update’.
Instead of updating places ’Data’ and ’Time of Last Update’, it only reads the
current data and provides it to the client. In contrast to updates, retrieval is
permitted outside transactions as well. In this case, the ’Retrieve’ request has to
be initiated by the void element ’()’ instead of the current transaction identifier.
Note that a client cannot initiate a non-transactional update request by initiating
the void element ’()’. It is prohibited by choosing an accordingly restricted data
type for the input place of the update interface. It does exclusively permit clients
to provide integer values.

Updated: answers the question of whether an update occurred at a given transaction
time timeRor (timely) afterwards. This service is requested by ECA rules to

4.4. REALIZATION BASED ON INTERACTION NETS 107

realize the ’detection’ of events. As will be explained later, each rule stores
the transaction time of its last initiation to realize, whether it already processed
an event (i.e., an update) or not yet. The ’Updated’ service is realized by two
transitions. Thereby, the second transition compares the transaction timetimeR
provided by the client with the transaction time of the last update. If the last
update was more recent, then ’true’ is return. Note that according to the function
of service ’Updated’, the second transition would suffice already. However, the
first transition, prevents from initiating ’Updated’ requests without necessity.
If ’Updated’ requests are initiated through a polling loop, there might occur
several requests at the same transaction time. However, if transaction timetimeR
provided by the client is greater than the current transaction time, then the ’TA
Time’ service will delay a response, until the current transaction time proceeds.

The interaction net presented in Figure 4.23 employs interfaces to services ’Begin of
Action’ and ’End of Action’ twice. The connection to the transaction service compo-
nent is then realized by deploying service request queues. Although, a net specification
with single interfaces is possible as well, this method is more convenient and readable.

4.4.2 Context Transition Model

Both the context transition model of elementary ui-components as well as the context
dependency model of ui-composition components are realized by a unified specifica-
tion. Thus, their distinction is reflected at a semantical level only. As represented in
Figure 4.24, the context transition model basically consists of a set of ECA rules —
each encapsulated by a single sub-component. The rules access the context (i) to test
their activation and (ii) to perform actions, i.e., retrieval and manipulation operations.
Besides the rules, there exists a sub-component ”Termination Test” which indicates
the termination of the rules wrt. a specific level. Note that this service only indicates
the current status of the rule system — being either ”running” or ”terminated”. It does
not verify if a rule system will in fact terminate. Thereby, termination is identified wrt.
a level, if no rule at this level is activated and termination wrt. the next lower level is
indicated. Consequently, if termination is indicated by the global level, then no rule of
any ui-component is activated.

Rules

ECA rules are specified by generic interaction nets. One sub-net realizes the recogni-
tion of events and another sub-net specifies the condition and action part by initiating
an according transaction. To realize the termination test, each ECA rule maintains a
transaction timetstable (’last stable time’) which is continuously updated. This time
indicates the transaction time at which two conditions were fulfilled at last:

108 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

R1Rule ...

Context Transition Model

Rule R

Termination

n

Test

...

Context

...

...

Figure 4.24: Generic structure of the context transition model

(a) the rule was testing an occurrence of an event at timetstable, and

(b) the test was negative, i.e., the rule was not activated at timetstable.

This time can be requested by a client through a ’TA Time’ service. Analogously to
the ’TA Time’ services of the transaction service and shared data, it is realized as a
call back service. Therefore, a client has to provide a transaction timetreq, when it
requests the ’TA Time’ service. Iftreq is greater then transaction timetstable, then the
client will be informed only after timetstableadvances. It will be at the earliest at time
treq. However, it might be later, if the rule becomes activated at timetreq. In this case,
time tstable is not advanced immediately, but the rule body is executed by initiating an
according transaction.

In turn, each ”Termination Test” component provides an according service called ’Ter-
minated’. It waits for responses of ’TA Time’ services of (i) all rules of this level and
(ii) all transaction tests of the next lower level. If all responded transaction times are
equal, then this time is reported. Otherwise, the request is restarted with the maxi-
mum timetmax of all received transaction times. Note that if a request returns a time
smaller thantmax, it indicates that an according rule did not perform an activation test
at transaction timetmax. Therefore, the test must be restarted for timetmax.

If a ’TA Time’ request of the transaction test at the global level is finally responded
by an transaction timet f in, then all rules terminated at this time. The received final
transaction timet f in states that each rule at each level performed an activation test at
timet f in which were reported by a negative result. Thus, at timet f in no rule is activated.
In contradiction, we might assume that there exists a ruleR1 which is activated at time

4.4. REALIZATION BASED ON INTERACTION NETS 109

t f in. However, in this caseR1 would not report timet f in as described above through
conditions (a) and (b).

According to a net-based specification, an ECA rule

ON updated(<X>)

IF <condition>

DO <action>

is generically realized by polling the following loop. Note that the loop is continuously
executed independent from client requests initiated through the ’TA Time’ interface.

1. Send an ’Updated’ request to shared data ’<X>’. It returns a truth value and
the current transaction timettest. The truth value states, whether ’<X>’ was
updated after the rule was sending the last ’Updated’ request.

2. If it returns ’false’ (meaning that there did not occur an intermediate update),
then advance the ’stable time’ by assigning:tstable:= ttest and restart the loop at
1.

Otherwise continue.

3. Send a ’Begin Transaction’ request to the ”TA Service” component.

4. Execute an according sub-net which realizes the condition and action part of the
ECA rule. It represents the generic part of the rule. Retrieval and manipulation
requests specified by the body of the rule are realized through according inter-
faces to the context. Their specified control flow is accordingly reflected by the
sub-net. Note that CP nets are Turing complete, such that necessary control flow
constructs can be transformed into an interaction net specification.

5. Send a ’Commit Transaction’ request to the ”TA Service” component and restart
the loop at 1. Thereby, the ’stable time’ is not advanced. It will be updated only,
after the rule reached a stable state, i.e., after a subsequent ’Updated’ request
returns ’false’.

An interaction net specification realizing an ECA rule is represented in Figure 4.25.
Service ’TA Time’ provides a call back service. Given a transaction timetimeR, it
informs the client as soon as the ’stable time’ (which is continuously updated by the
loop) reaches or exceedstimeR. Thereby, the loop starts at transition ’event’ and fin-
ishes at transition ’end’. Transition ’event’ ensures that the test, whether an associated
event did occur, is performed at most once at each transaction time. According to in-
ternally initiated requests, we randomly chose request identifier 1. It is not significant,
since we initiate requests sequentially.

110 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

(tid,1)

Condition and Action specification
Generic part of the rule:

Request for
Updated(<X>)

Context Retrieval &
Requests for

Updates

1

Last
Stable Time

((false,time),1)

((true,time),1)

time

old

Request for
Commit TA

Request for

1

((tid,time),1)

1

tidtid

Begin TA

tid tid

New Time

time
time

event

no ev.

begin

end

timeS+1old

timeS

timeS]

ECA Rule

timeS

1

[old <=timeS]
[timeR <= (timeS+1,1)

(time,1)

(timeR,rid)(timeS,rid)

TA Time

Figure 4.25: Net-based realization of ECA rules

The interaction net is generic at two respects. Firstly, an ’Updated(<X>)’ request is
initiated to the particular context specified by the event clause of a rule. Secondly,
condition and action clause of a rule are specified by a sub-net. Thereby, the sub-net
(i) initiates according context retrieval and manipulation requests and (ii) determines
the control flow. Note that an according sub-net may be generated from an appropriate
rule specification language resembling the pseudo-code syntax deployed in Section
4.2.

Termination Test

Analogously to the ”TA Time” service provided by ECA rules, the ”Termination Test”
component maintains a transaction timetstable(’last stable time’) which is continuously
updated. It indicates the transaction time at which (i) all rules at this level and (ii) all
rules of the next lower level reached a stable state. This time can be requested by
a client through an ’TA Time’ service. It is again realized as a call back service.

4.4. REALIZATION BASED ON INTERACTION NETS 111

Therefore, a client has to provide a transaction timetreq, when it requests the service.
It will be informed as soon as the next stable state is reached.

Figure 4.26, represents an interaction net specification for the case of two rules and
two lower-level ui-components. Thereby, a polling loop (starting at transition ’req’)
continuously updates timetstable, if the next stable state is reached. The loop initiates
requests (i) to the ’TA Time’ service of all rules at this level and (ii) to the ’TA Time’
service of all ”Termination Test” components of the next lower level. For each request,
a transaction time of the next stable state is received. If all responded transaction times
are equal, then a new stable state is reached and timetstable is advanced (by transition
’upd’). Otherwise, the loop is restarted with the maximal transaction time received.

1

Request for
TA Time of
Term. Test 2

Request for
TA Time of
Term. Test 1

Request for
TA Time of

Rule 2

Request for
TA Time of

Rule 1

max(tR1,tR2,
tT1,tT2)

min(tR1,tR2,
tT1,tT2)

Last
Stable Time

Time of
Next Test

Termination Test

timeS
timeS]

[timeR <=

(timeR,rid)(timeS,rid)

old tmax

tmin

tmax

tmax tmin

[tmin<tmax]

tmax

(tR1,1)

(tR2,1)

(tT1,1)

(tT1,1)

timeR

(timeR,1)

(timeR,1)

(timeR,1)

(timeR,1)

tmax+1
[tmin=tmax]

2
req

wait

upd

TA Time

Figure 4.26: Net-based realization of the ”Termination Test”

After a user event was initiated, the ’TA Time’ service at the global level reports about
the termination of the complete rule system. Since ”UI-View” (sub-)components of
each ui-component require this termination information to provide consistent views,
the ’TA Time’ service of the global ”Termination Test” will be accessible by all ui-

112 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

components. To avoid ambiguity, we call this global ’TA Time’ service’Terminated’.
It will be provided by each local ”Termination Test” component through delegation (as
already applied for shared data as well as the transaction service).

4.4.3 UI-View

An ”UI-View” component provides an interface ’UI-Spec’. As soon as the rule system
terminates, a dialog specification is generated wrt. the current context. This specifi-
cation is then provided to the next higher level. There, it is consumed either (i) by
the ”UI-View Composition” component of the next higher level, or (ii) by the ”UI-
Controller” at the global level. Figure 4.27 represents an according interaction net
specification. By requesting the ’Terminated’ service, it delays processing as long as
transition rules are adapting the context according to an initiated user event. After-
wards, a corresponding dialog specification is generated by a sub-net. This sub-net
represents the generic part of the ”UI-View” component. To provide the current dialog
specification, it initiates non-transactional retrieval requests to the contexts required.
Note that consistency is still guaranteed, since non-transactional retrieval requests are
delayed as long as a transaction is running. However, at the time the dialog specifica-
tion is computed, there are running transactions, since all rules terminated.

Generate Interaction Specification
Generic part of UI−View

Last
Stable Time

1

Requests
Context Retrieval

()

()

Request for
Terminated

(timeS,1)timeS

timeS+1 (timeS,1)

UI−View

ui−spec

UI−Spec

Figure 4.27: Net-based realization of the ”UI-View” component

Concrete syntax and semantics of generated interaction specifications depends on the
controller deployed. We will employ the following unified representation adapted from
[Lew00, VLF00]. Commonly, there exist different input and output types which may

4.4. REALIZATION BASED ON INTERACTION NETS 113

be used. Typical input types comprise, for example, character strings, integers, real
numbers, complex forms, or choices. Exemplary output types are headline, table,
character string, number, picture, audio, or video. They are usually further specified
by parameters. For example, an input type ’choice’ expects the actual choice elements
as a parameter. The following elementary structure comprises these opportunities:

Output specification: List of (Output identifier, Output type, Parameters)

Input specification: List of (Input identifier, Input type, Parameters)

Style information: List of (Style identifier, Style type, Parameters)

Identifiers may be used for referencing. For example, style information of type ’In-
put/Output Association’ might associate input elements with output elements by re-
ferring to their identifiers. According to the type system of CP nets, we may apply a
relational style for representing interaction specifications. Thereby, specifications are
represented by data type ’ui-spec’ defined as ’ui-spec := tuple(list(entry), list(entry),
list(entry))’, assumed that ’entry := tuple(string, string, list(list(string)))’. Data type
’entry’ then corresponds to a relational representation of parameters. Note that type
’ui-spec’ is sufficiently expressive to represent any dialog specification of the style
proposed above. To give an example, a concrete dialog specification generated by
ui-component ’List Scrolling’ reads as follows:

(
(’Out:View’, ’STRINGLIST’, [[’Faust’, ’Carmina Burana’, ’Latin Night’]]),
(’In:Scroll’, ’CHOICE’, [[’first’, ’last’, ’next’, ’prev’]]),
()

)

where style information is neglected. Thereby, ’STRINGLIST’ and ’CHOICE’ repre-
sent output and input types respectively which must be understood by the controller.
Note that interaction specifications are not restricted to user interaction. They may
specify arbitrary interaction as, for example, interaction with devices as printers as
well as interaction with remote clients. However, throughout the thesis, we primarily
focus on aspects of user interaction only.

Sub-component ”UI-View Composition” of ui-composition components roughly cor-
responds to the realization of ”UI-View”. As a slight extension, it possesses an inter-
face to ui-components of the next lower level. Therewith, it receives according dialog
specifications. Together with possible context retrieval requests a composite interac-
tion specification is generated.

114 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

4.4.4 Assertions

By the introduced specification, ui-components realize a step-wise processing of el-
ementary user activities. UI-components (i) receive events initiated by the user, (ii)
process them by means of context adaptation, and (iii) provide output to the user and
activate associated events.

Receiving user events: a ui-component initiates external requests according to the
events it has been activating, and waits for responses from the environment.

Adapting dialog context: At occurrence of an event, an associated context transition
rule initiates a context change. Iteratively other context transition rules may be
initiated in turn.

Providing user output and activating events: After context adaptation has been fin-
ished (recognized by the termination of the context rules), an according dialog
specification is generated and provided to the environment.

At the global level, interaction between ui-components and their environment is limited
to the request of initiated user events and a subsequent generation of the next dialog
specification. Necessary context adaptations are realized internally. To guarantee that
ui-components function as intended, the following assertions must be imposed onto
their environment:

• Requests for events have to be answered completely. More precisely, an event
initiation is indicated by the environment (i) by positively answering the request
associated with the initiated event, and (ii) by negatively answering all other
event requests. If an environment deploys a shared data realization introduced
in Section 4.4.1, this assertion will be satisfied.

• A subsequent event initiation may only be indicated by the environment, after it
received the next dialog specification from the ui-component.

At a component perspective, we therefore do not necessarily require a concrete spec-
ification of the environment of ui-components. If an environment is provided, we
exclusively need to verify, if this environment satisfies above assertions. In this case,
the assertions have to be formalized in terms of properties (cf. 3.3.2). Subsequently,
properties of ui-components can be derived based on environmental assertions.

Although, an environment can be characterized in terms of dynamic requirements, we
discuss a concrete environment realization in the following. Thereby, it will provide
desirable opportunities for simulation and prototyping.

4.4. REALIZATION BASED ON INTERACTION NETS 115

4.4.5 Simulation and Prototyping

In this section, we propose two distinguished alternatives for the realization of envi-
ronments. The responsibility of the environment basically comprises the interpretation
of the dialog specifications, receiving user events (corresponding to the specification),
and providing events to ui-components.

Driver-based Realization

The first alternative is based on driver implementations adopted from [CL99, Lew00,
Hei01]. It is mainly intended to provide an opportunity for rapid prototyping. Thereby,
a user may test (complex and adapted) ui-components wrt. a particular user interface.
It is supported by drivers which represent concrete implementations wrt. particular
programming languages and user interfaces. As illustrated in Figure 4.28, a driver
receives as input a (declarative) dialog specification, transforms it into directives of a
respective user interface, and initiates these directives to the user interface. After an
event is initiated by the user, the driver receives the event and returns it to the controller.
Thereby, the controller degenerates to a rudimentary interaction net which exclusively
delegates the received dialog specification to the driver and publishes the user event
received from the driver to the ui-component.

UI−Component

User Interface
(e.g., HTML)

UI−Driver

spec event

ui−spec

ui−spec context

UI−Controller

event

event

User

Figure 4.28: Driver-based realization of user interaction

Consider for example a driver which supports Web interfaces. The specification it re-
ceives from an interaction net is transformed into a HTML page. Thereby, associated
style information is regarded. Afterwards this page is transmitted to a web browser.
If a user initiates an according event, for example, by clicking on a link or submitting

116 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

a form, the driver is reactivated and provides the according event to the requesting
interaction net. Note that an according facility of interaction between drivers (repre-
senting executable code) and interaction nets is supported. For example, the CP net
simulator provided by [Jen02] permits so-called code segments. They can be utilized
to initiate associated drivers. (As a remark, code segments are not intended to gener-
alize CP nets. They were introduced rather to extend the flexibility of net simulation.)
At the codesign project [CT97, Lew00, VLF00], the concept of user interface drivers
which are initiated by net-based specifications has been introduced and prototypically
implemented for command line interfaces, TCL/TK interfaces, and Web interfaces
[See98, Rad01, Hei01].

Net-Based Realization

A realization of the environment based on interaction nets intends to support simula-
tion as well as verification of ui-components. As illustrated in Section 4.1, it is divided
into a user interface controller and a user component. We simulate user interaction
within two consecutive steps:

Event Selection: A (possibly adapted) dialog specification is provided to the user
component. An actual user or a predefined simulation scenario may choose an
event. It is realized by selecting one of the event identifiers occurring at the
specification. The selected event identifier is then returned to the controller.

Event Specification: After an event is chosen by the user, it must be specified further,
if required. For example, if a character string or a choice list was selected, the
actual string or choice must be provided by the user. It can analogously be
provided by an actual user or predefined simulation scenario. The choice is then
returned to the controller.

Although a two step approach might look a bit circumstantial, there exists a mean-
ingful correspondence to practical user interaction. The first step of selecting a user
event corresponds, for example, to moving the mouse pointer or keyboard cursor to the
position of a string field, input form, or link item. The second step then corresponds to
entering a string, filling a form, or clicking a link.

Accordingly, we divide a user component into two (sub-)components: event selection
and event specification (cf. Figure 4.29). While event selection corresponds to a choice
wrt. a finite set of elements, event specification depends on the input type selected.
As indicated by the following exemplary list of selected input types, they possesses
distinguished semantics.

’VOID’ is represented by data type ’unit’. It is used to provide unspecified events.
At concrete user interfaces they correspond to links or buttons.

4.4. REALIZATION BASED ON INTERACTION NETS 117

UI−Component

Event
Specification

Event
Selection

ui−spec

event

ui−spec context

UI−Controller

event

User

Figure 4.29: Net-based realization of user interaction

’BOOL’ is represented by data type ’bool’. It commonly expresses yes/no decisions.

’STRING’ is represented by data type ’string’.

’CHOICE’ is represented by data type ’subset(int)’. It represents a single selection
from a finite list of elements. From the perspective of event specification, it
corresponds to selecting an integer from a finite set of integers. Thereby, the
integer represents the position in the list or an unique element identifier.

’N-CHOICE’ is represented by data type ’list(subset(int))’. It represents a choice
of a sublist from a finite list of elements. For example, choosing a list of desired
departure airports corresponds to this type.

To support their differences, a sub-net may be provided for each input type. Thereby,
these sub-net specify the constraints imposed by the associated input type. Figure 4.30
exemplarily illustrates a realization wrt. input type ’string’. Depending on the mode of
usage, we represent three realizations: (i) simulation of random scenarios, (ii) simula-
tion of predefined scenarios, and (iii) simulation with concrete user interaction. Figure
4.30(a) permits the execution of random scenarios. We assume that the output place of
the interaction net is of data type string. Since variablein is unbounded, an arbitrary
string will be provided on request. Since CP net simulators do not commonly cope with
unbounded variables, an alternative realization based on code segments may be chosen
for simulation purposes. Figure 4.30(b) permits the execution of predefined scenarios.
Thereby, an associated simulator net generates events according to its configuration.
Thus, on request the next event of the predefined scenario is provided. Finally , Figure

118 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

4.30(c) permits concrete user interaction. Thereby, a user may initiate events during
net simulation. It is realized by an external function call ’Read()’ which is executed
through a defined code segments. Function ’Read()’ initiates a request to the user.
Subsequently, user’s input is associated with variablein and provided as output of the
interaction net.

() in

Requests for
string input

(a)String input:
Random
scenarios

() in

in ()

Event Generation

Requests for
string input

(b) String input:
Predefined
scenarios

output (in);
action
 Read(in);

() in

Requests for
string input

C

(c) String input: Interactive
scenarios

Figure 4.30: Specification of input type ’string’

Note that the restriction imposed by input type ’string’, is specified by associating
variable in as well as the according output places by data type ’string’. However,
arbitrary complex restrictions may be specified by complex sub-nets.

4.5 Verification of Ergonomic Aspects

In this section, we investigate how far quality of user interaction can be verified by
analyzing interaction nets. We do not concern analysis of dynamic net properties in
its general sense as this is an independent research topic (cf. [GV02, Bau96, Jen97a]).
We rather focus on the question:

”Which particular aspects of user interaction can be verified, if interac-
tion specification is based on the introduced formalism of ui-components?”

In particular, we investigate which and how far qualitative aspects ofinterface in-
dependentspecifications can be verified. Therefore, we neglect interface dependent

4.5. VERIFICATION OF ERGONOMIC ASPECTS 119

properties as, for example, arrangement of controls and displays. Associated issues
and approaches can be found in text books as, for example, [DFAB98, Nie94, Nie00].

Before we consider specific quality aspects in detail, we discuss general requirements
for their verification. According to task representation, we adopt the model of hierar-
chical task analysis (HTA) introduced by Duncan et. al. [AD67]. Thereby, complex
user tasks may consist of several sub-tasks. Depending on the desired level of detail,
this task division may be applied successively which results in a task hierarchy, i.e.,
a hierarchy of sub-tasks required to accomplish a task. In addition, there might be
alternative opportunities to accomplish a single task. To verify, if a task specifica-
tion coincides with an interaction specification, a relation between the task hierarchy
and the interaction specification must be established. For example, the web-site main-
tenance system ”TANGOW” [CPR01] applies a specific relation between tasks and
specified dialog structures. There, elementary tasks (called simple tasks) are associ-
ated with single pages. More precisely, they define a hierarchic web-site structure and
associate simple tasks with leaf pages and composite tasks with non-leaf pages.

Generally, there exist several alternatives to associate sub-tasks with interaction spec-
ifications. Commonly, elementary tasks are associated with the notion of dialog step
(or activity). Thereby, a dialog step can be characterized by

(i) the output provided by the system together with events initiated by the user, or

(ii) changes of the system state.

While (i) characterizes dialog steps at an external perspective of the user, the second
associates dialog steps with an internal perspective. Reconsider the example above.
Their established relation between tasks and interaction specifications corresponds to
characterization (i). Thereby, Web pages correspond to elementary dialog steps. Ac-
cording HTML code comprises the specification of system output and enabled user
events. They associate complex tasks with inner nodes which corresponds to (sub-
)trees. Since these sub-trees may be browsed in different ways, complex tasks corre-
spond to (alternative) sequences of dialog steps.

Depending on the chosen perspective, dialog steps are reflected by the specification of
ui-components as follows.

External perspective: Dialog steps at the external perspective correspond to elemen-
tary dialog specifications generated by ui-components. They comprise system
output as well as enabled user events according to a particular dialog situation.
To be precise, a dialog step consists of a dialog specification together with an
event initiated by the user. This pair reflects the dynamic characteristics of di-
alog steps. However, if confusion is excluded, we commonly simply identify
dialog steps with elementary dialog specifications.

120 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Internal perspective: A stable system state of ui-components is characterized by the
state of the context after the termination of the rule system. More precisely,
the markings of the ’Data’ places of all context components identify the current
system state. Therefore, changes of the system state correspond to changes of
the context between two consecutive stable states (wrt. the rule system).

In the following, we primarily focus on the external perspective. Thus, we may sim-
ply refer to elementary dialog specifications as dialog steps. We will analyze specific
qualitative aspects of user interaction which permit verification based on interface in-
dependent specifications. Thereby, considered aspects and factors are not intended
to be complete. We rather focus on selected aspects of quality where we identified
possible approaches according to verification.

Ergonomics

Dix et. al. [DFAB98] characterize the issue of ergonomics as:

”A primary focus [of ergonomics] is on user performance and how the
interface enhances or detracts from this.”

Ergonomics is affected by the following aspects:

Efficiency

Efficiency of user interaction concerns the time users need to accomplish certain tasks.
It is an essential quality criteria of interfaces, in particular, if tasks are performed very
often. The following factors primarily affect efficiency.

(Q1) ”How many dialog steps does a user need to perform to accomplish
a particular task?”

Verification approach:The condition of task accomplishment can be stated in differ-
ent terms: (a) in terms of sequences of sub-tasks, (b) in terms of final sub-tasks, or
(c) in terms of final system states. In case (a), we need to investigate user scenarios
by means of sequences of initiated user events. Thereby, each scenario corresponds
to a particular sequence of dialog steps. If an associated sequence of dialog steps
corresponds to an appropriate sub-task sequence that performs the task, its length indi-
cates the requested number. Since dialog steps are externally perceivable, the external
(black-box) behavior of ui-components is sufficient for determining this number. In
particular, if according behavioral properties are determined, the possible scenarios
can be derived without analyzing the net specification. It is particularly beneficial in

4.5. VERIFICATION OF ERGONOMIC ASPECTS 121

the case of composite ui-components. In this case, properties of ui-components can
iteratively be derived from properties of according sub-components.

Case (b) is verified analogously to case (a). In contrast, permitted sequences of dialog
steps do not need to be verified against particular sub-task sequences. It is sufficient to
verify that the final sub-task is accomplished.

In case (c), task accomplishment is stated in terms of a context state (or set of context
states) which corresponds to the dialog situation of task completion. The approach
of determining according scenarios resembles that of case (a). In contrast, the recog-
nition if a task is accomplished, is realized by analyzing intermediate context states.
Since context changes are commonly performed internally, according interaction net
specifications must be analyzed.

Besides the number of dialog steps, their particular durations affect efficiency of task
accomplishment.

(Q2) ”What time does a user need to perform single dialog steps?”

Verification approach:Generally, semantic information about the interactive complex-
ity of dialog steps is required. There is no automatic way to deduce the time needed
to perform dialog steps. At selected specifications, it might be reasonable to deduce
the time from the complexity of the input types. However, answering a boolean typed
”yes/no” question might take the same effort as answering questions of complex input
types. In addition, since we permit abstract user events, elementary input types may
correspond to complex user activities.

To determine a time estimate for an interactive task, the designer must define approx-
imate duration for each dialog step. This task can be relieved by introducing certain
classes as, for example, ”simple fact question” (as requests for name or birthday),
”simple choices” (as requesting a country out of a list), or ”decisions” (as request-
ing to decide the seating in a musical play based on price and assumed impression).
Classes are associated by certain times and can be assigned to dialog steps. The total
time of a scenario then consists of the cumulative duration of the interactive part of di-
alog steps (assumed the duration for performing initiated system actions is comparably
short). Applying this procedure, verification can be reduced to the approach proposed
for (Q1).

Mental workload

Mental workload concerns the amount of information a user needs to keep in mind
while performing an interactive task [HLP97, DFAB98]. For example, while answer-
ing an email request, the user of an email system must keep in mind the content of

122 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

the email read before. To decrease mental workload, dialog steps are commonly aug-
mented by context information (or escort information, see [FST98]). Context infor-
mation is employed to recapitulate and summarize information from the dialog history
which is required to perform the current dialog step. For example, email systems com-
monly provide a visual copy of emails while their response is being prepared.

(Q3) ”Does mental workload exceed a critical threshold?”

Verification approach:Mental workload that is imposed onto a user to perform a dialog
step within a particular dialog situation can roughly be determined by the difference
between the infons required to perform the dialog step and the infons provided at this
step as output to the user. The intuition behind is that information conceivable directly
reduces mental workload, while information that must be kept in user’s short-term
memory temporarily increases it. However, providing every possible information at
each dialog step reduces comprehensibility as well.

As an approach, the designer associates dialog steps by infons required to perform this
step. At the verification, this information can be compared with the corresponding
user output. The inherent problem is that needed information is usually expressed in
abstract terms as, for example, ”seating information for a musical play”. In contrast,
user output is given at runtime in concrete terms as, for example, ”(Les Miserables,
Dress circle, 70 Euro)”. Therefore, an appropriate representation of infons is required
that allows to derive according associations. As an opportunity, according semantic
information may be associated by means of style information.

Completeness

Information systems are designed to solve specific interactive tasks. If all intended
tasks can be interactively performed, the information system is complete in that re-
spect.

(Q4) ”Does there exist user scenarios for accomplishing all required tasks?”

Verification approach:The verification approach proposed for (Q1) applies for this
question. Thereby, given a task, the approach determines corresponding user scenarios.
To positively answer question (Q4), the existence of user scenarios must be verified for
each task.

(Q5) ”Does an interaction specification completely realize a task model?”

Verification approach:In contrast to question (Q4), this question intends to verify, if
there exist user scenarios foreachparticular sequence of sub-tasks specified at the task

4.5. VERIFICATION OF ERGONOMIC ASPECTS 123

model. Figure 4.31 illustrates a counter-example. AssumedA,B,C represent sub-tasks,
and the task model specifies the accomplishment of a taskT by any sequence of of
length 3 that contains sub-tasksA, B, andC. Figure 4.31 proposes a dialog specification
where nodes represent system states (or dialog situations) and arcs represent dialog
step (corresponding to the sub-tasks). Besides others the dialog specification does
not support sequenceB→C→ A. In other words, if a user performs sub-taskB and
reaches dialog situationsB, (s)he will fail in continuing by sub-taskC, sinceC is not
provided insB. Obviously, such situations decrease efficiency and may even prevent
users from accomplishing their intended tasks at all.

A B C

B A

C B

Task T

sB

Figure 4.31: An exemplary dialog structure with missing continuations

Its verification reduces to that of (Q1). Thereby, for each sub-task sequence of the task
model, it must be verified, if there exists a (finite) user scenario.

Consistency

In [DFAB98], Dix et. al. state:

”Consistency is probably the most widely mentioned principle in the liter-
ature on user interface design. [. . .] Consistency is not a single property
of an interactive system that is either satisfied or not satisfied. Instead,
consistency must be appliedrelativeto something.”

To enable meaningful interaction, system responses should closely relate to user’s in-
tentions (or expectations) at each dialog situation.

(Q6) ”Do database views correspond to user’s mental model?”

Dynamic system responses are usually provided through database views. These views
must correspond to the user’s mental model at each dialog situation. More precisely,
contextual restrictions agreed upon in the course of a dialog must be obeyed during
response generation. For example, a travel planning service which intends to provide
the user with a list of events should primarily focus on events that take place during

124 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

the time period of the scheduled journey and which are closely located to the travel
destination. Thereby, the system regards the context of time and location which were
provided by the user at a first step of the dialog.

Verification approach:Because of its inherent complexity, a verification of the ques-
tion cannot be provided for the general case. However, the problem may partially be
solved by selected restrictions. For example, at a simplified mental model of the user,
sub-tasks are associated by contexts. Similarly, [McC93] propose an abstraction ac-
cording to the representation of user scenarios of ”query and reply”. They are specified
by sequences of pairs of an utterance and an associateddiscourse context. Thereby,
the discourse context comprises statements which are assumed to be true at a certain
dialog situation. As an elementary opportunity, we identify discourse contexts by plain
(context) names. At the example stated above, a context name ’Location’ will be in-
troduced into the discourse context, after it is given by a user. Thereby, the association
of a context name with a sub-task is interpreted as: the scope of a user is restricted by
this context. We then consider database views as consistent with user’s context, if they
are restricted by this context. According to ui-components, restrictions on database
views are specified in terms of context dependency rules. To verify view consistency,
according rules must be analyzed, if they correctly specify the adaptation of database
views based on user’s context. Consider, for example, ui-component ”Single-Level
Catalog” introduced in Section 4.3.1. There, the element listNavListpresented to the
user represents a database view. The selected categorySelCatmight be identified as
user’s context. To verify, if the viewNavList correctly adapts to contextSelCat, ac-
cording context rules which specify a dependency betweenSelCatandNavListmust
be evaluated.

(Q7) ”Is the interaction specification consistent wrt. the task model?”

This question represents the counterpart of question (Q5). While (Q5) verifies com-
pleteness of interaction specifications, (Q7) verifies its consistency. Thereby, consis-
tency wrt. the task model is violated, if there exists a user scenario whose correspond-
ing sub-task sequence is not specified by the task model.

Verification approach:Its verification reduces to that of (Q1). In contrast, thecomple-
mentary task modelis analyzed. Thereby, the complementary task model comprises
all task sequences which are not permitted by the task model. A positive answer to
the question is provided, if there exists no user scenario wrt. the complementary task
model.

Security

Although security does not only relate to user interaction, we provide a brief discus-
sion. It is commonly agreed that security can be improved by combining different

4.6. A CASE STUDY: INTERACTIVE CATALOGS 125

methods. While many aspects are related with different areas, one is concerned with
user interaction. An essential aspect of security is to provide a view mechanism to
prevent users from accessing data and/or processes in an unrestricted way. It is com-
monly realized by associating users with roles. For each role, specific system rights
are defined which determine how far certain (sub-)tasks may be performed by a corre-
sponding user.

(Q8) ”Does the interaction specification coincide with security-related re-
strictions?”

Validation approach: It can be reduced to the problem of investigating which se-
quences of sub-tasks are available for which roles. For each role, according restricted
task models must be verified wrt. consistency. It ensures that sequences of sub-tasks
which are not explicitly specified at the task model are not executable. Therefore, the
problem reduces to question (Q7).

Sometimes particular sub-tasks shall exhibit distinguished behavior depending on the
role of the current user. A typical example are views. A view associated with a sub-task
reflects different restrictions depending on user’s role. This problem can be reduced
to the view consistency problem posed in question (Q6). Thereby, we introduce the
current role as a particular context. It then must be verified, if views correctly adapt to
context ’role’.

4.6 A Case Study: Interactive Catalogs

In this section, we discuss a possible approach to develop a complex ui-component
which realizes an interaction pattern called ”interactive catalog”. We stipulate the
following delimitation of ”Interactive Catalogs”.

Interaction pattern: [Interactive Catalog]

Problem statement

An interactive catalog provides a user with opportunities to interactively search a col-
lection for desired entries.

Examples

[amazon.com]: provides products. There concurrently exist several opportunities for
adaptation of scope: (i) selecting specific product categories as, for example, books,
(ii) searching by forms, (iii) searching by keywords, or (iv) following context depen-
dent suggestions.

126 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

[bahn.de]: provides train connections. A rough opportunity of refinement and en-
hancement of scope is realized by a form based interface. A more fine-grained oppor-
tunity of adapting scope is subsequently provided by ’enhance’ and ’select’ operations
on the list of suggested train connections.

[cottbus.de]: provides events with the following interactive opportunities: (i) following
predefined-defined views as, for example, events of today or this week, (ii) searching
by forms, (iii) scrolling forward/backward.

[zdnet.com]: provides daily news. Search is supported by (i) selecting a specific day
from a calendar, (ii) navigating to news of the preceding/following day, (iii) selecting
a topic of interest, or (iv) providing a keyword.

Solution

Employ the concept of avirtual view over the collection. This view is virtual in the
sense that it is not necessarily presented to the user permanently. At the beginning
of interaction, the view comprises the entire collection. The user may successively
adapt the view to his/her needs by applying operations on it. These operations es-
sentially comprise refinement and enhancement of the view. Popular opportunities to
realize refinement are based on categories, forms, keywords, and scrolling. Depending
on the state of interaction, the view may be hidden, presented partially, or presented
completely.

Related patterns

Generally, view refinement and enhancement can be based on patterns [Selectable
Search Space] and [Interaction History] respectively. Pattern [Set-Based Navigation]
provides a more fine-grained opportunity of view adaptation.

The description motivates the development of complex interactive catalogs by compo-
sition of elementary patterns. A detailed formulation of the candidate patterns men-
tioned above can be found in Appendix A. We will employ them at a slightly general-
ized perspective:

Search Space Adaptation:generalizes pattern [Selectable Search Space] wrt. cate-
gories. It might provide multiple sorts of categories at the same time as, for ex-
ample, according to time, location, topic, etc. The user may successively adapt
his/her selections which may yield a refinement as well as an enhancement of the
currently considered sub-space. In addition, the number of available categories
is not limited. It thereby comprises the specification form-based approaches as
well as keyword-based search.

4.6. A CASE STUDY: INTERACTIVE CATALOGS 127

Set-Based Navigation:is considered in a generalized way by extending permitted
user activities. Besides scrolling, it allows activities of changing the visible view
onto the list which, in particular, includes adaptation of the order of display and
fine-grained enhancement/reduction of the current view.

Interaction History: is considered as proposed in [Tid98] (cf. Appendix A.3).

We then specify interactive catalogs as composite ui-components based on these three
patterns. For this purpose, we specify ui-components at a rather abstract perspective.
They are denoted by the same name as the respective patterns. Their composition is
illustrated in Figure 4.32. Thereby, we first compose ui-components ’Search Space
Reduction’ and ’Interaction History’ which provide a composite ui-component we
call ’Search Space Reduction with Backtracking’. A subsequent composition with
ui-component ’Set-Based Navigation’ then provides an interactive catalog.

Set−Based Nav.UI−Composition Component

Search Sp. Adapt.

UI−Composition Component

with Backtracking

Int. History

Search Space Adaptation
Interactive Catalog

contextui−speccontextui−spec

contextui−spec

contextui−speccontextui−spec

Figure 4.32: Compositional structure of an interactive catalog

According ui-components are realized as follows. Thereby, ’Search Space Adapta-
tion’ represents a generalization of ’Category Selection’, and ’Set-Based Navigation’
represents a generalization of ’List Scrolling’.

128 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

UI-Component: ’Search Space Adaptation’

We assume that the underlying ’space’ is represented by a base set of elements. The
current sub-space is then determined by a function which given a user constraint, it
provides a subset of the base set. Figure 4.33 provides an according graphical abstrac-
tion. To be general, we define the type of user input as character strings of arbitrary
length. It permits, for example, to represent any user input to forms by help of an
according encoding (or transformation).

Context

Model
Context Transition

ui−spec

UI−View
out: request
in: ’constraint’

’reset’
SelConstr
SelEvent

’constraint’ rule
’reset’ rule

SelSet, SelSubSet

Search Space Adaptation

context

Figure 4.33: UI-Component ’Search Space Adaptation’

Context:

SelSet: represents the underlying set of elements.

SelCat: represents the constraint currently currently provided by the user, or
constant ’null’ if no restriction is specified.

SelSubSet: represents the subset associated with the currently chosen constraint
SelConstr.

SelEvent: represents the constraint specified by the user or a ’reset’ event.

UI-View: At a basic level, it provides (i) the output to the user and (ii) the activated
user events as follows:

Output: Request to the user.

4.6. A CASE STUDY: INTERACTIVE CATALOGS 129

Activated events: Event ’SelEvent’ is activated as a string input. If a sub-space
is currently selected, a ’reset’ event is provided additionally which permits
to reset user’s scope to the initial space.

Context Transition Model: The context is adapted depending on the constraint spec-
ified by the user. An according rule which recomputes subsetSelSubSetaccord-
ing to the constraint specified.

’constraint’ rule: Recompute sub-space.

ON updated(SelEvent)

DO {

update(SelConstr) by SelEvent ;

update(SelSubSet) by restrict(SelSet, SelConstr) }

where ’restrict()’ denotes a function which determines subsetSelSubSet
depending on constraintSelConstr.

’reset’ rule: Select original space.

ON updated(SelEvent)

IF (SelEvent == ’reset’)

DO {

update(SelConstr) by ’null’ ;

update(SelSubSet) by SelSet

}

There exist two alternatives to represent functionrestrict() used in the ’constraint’
rule:

Autonomous approach: To be general, functionrestrict() is realized by a random
function. A concrete specification of this function then corresponds to a compo-
nent refinement (cf. Definition 3.13 on page 66).

Open approach: The specification of functionrestrict() is required as a separate
component. As a consequence, ui-component ’Search Space Reduction’ pro-
vides a further interface. To enable an analysis of the composite component in
the case where norestrict() function is specified, a general component speci-
fication of functionrestrict() is provided. It corresponds to a random function
as used above. However, the task of specifying a refined version of ’Search
Space Reduction’ is significantly relieved. It simply corresponds to providing a
refinement of therestrict() component.

130 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Note that we base the specification of abstract ui-components on general data types
as, for example, character strings. Thereby, component adaptation according to more
practical representation types, is achievable by interface refinement (cf. Definition
3.14 on page 67). Thereby, the refinement relation can be derived by specifying an
according representation translation.

UI-Component: ’Interaction History’

We apply a straightforward representation of interaction histories in terms of sequences
of events. In fact, more general versions are imaginable based on graph representa-
tions. Figure 4.34 provides an according graphical abstraction of ui-component ’Inter-
action History’.

Context

Model
Context Transition

ui−spec

UI−View

Interaction History

out: HistPath
in: ’extend’

’back’
HistAct
HistPath

’extend’ rule
’back’ rule

HistEvent

context

Figure 4.34: UI-Component ’Interaction History’

Context:

HistPath: represents the sequence of events occurred.

HistAct: represents a user activity which should be ’recorded’ by the interaction
history.

HistEvent: represents the initiated user event according to this ui-component.
It comprises any element listed in the current history pathHistPath.

UI-View: At a basic level, it provides (i) the output to the user and (ii) the activated
user events as follows:

4.6. A CASE STUDY: INTERACTIVE CATALOGS 131

Output: History pathHistPath.

Activated events: Each element ofHistPath is activated as user event. (Note
that for later identification, each event must be internally specified by its
position in the list and optionally by its name.)

Context Transition Model: The context is adapted, if a user activity is published by
another component throughHistAct. An according rule then extends the history
path by this activity.

’Act’ rule: Append an activity to the history path.

ON updated(HistAct)

DO update(NavVisSize) by append(HistPath, HistAct)

where functionappend() appends an element to the end of a list.

’Event’ rule: Backtrack to a previous activity.

ON updated(HistEvent)

DO update(HistPath) by cut(HistPath, HistEvent)

where functioncut() truncates a list at a specified position.

UI-Component: ’Set-Based Navigation’

The underlying model of ’Set-Based Navigation’ resembles that of ’List Scrolling’. It
basically provides an extended functionality wrt. user facilities. Figure 4.35 represents
an according graphical abstraction.

Context:

NavList: represents the underlying list of elements which may be browsed.

NavListPos: represents the current list position (starting at 1).

NavVisSize: represents the number of list elements presented to a user at the
same time.

NavVisInc: represents the number by whichNavVisSizeis enhanced/decreased,
if an ’enhance’ or ’decrease’ event was initiated.

NavOrder: represents the order criteria which is currently applied toNavList.

NavEvent: represents the initiated user event according to this ui-component.
It comprises events: ’next’, ’prev’, ’first’, ’last’, ’enhance’, ’decrease’, ’re-
order[]’.

132 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Context

Model
Context Transition

’navigate’ rules
’sort’ rule
’enhance’/’decr.’ rule

out: part of NavList
in:

’enhance’, ’decr.’
’navigate’, ’reorder’

ui−spec

UI−View

Set−Based Navigation

NavVisSize, NavVisInc
NavList, NavListPos

NavOrder, NavEvent

context

Figure 4.35: UI-Component ’Set-Based Navigation’

UI-View: The specification of (i) the output to the user and (ii) the activated user
events are generated as follows:

Output: Sublist ofNavListstarting at positionNavListPosand comprisingNav-
VisSizeelements. If the sublist exceeds the end ofNavList, it is shortened
accordingly.

Activated events: Depending on the context, user events ’next’, ’prev’, ’first’,
’last’, ’enhance’, ’decrease’, ’reorder[]’ are activated:

’next’, ’last’: are activated, if

NavListPos+NavVisSize≤ length(NavList) ,

wherelength() provides the number of elements of a list. Thereby,
event ’next’ corresponds to navigating to the succeeding part of the
list, and event ’last’ corresponds to jumping to the last part of the list
— as specified by the context transition model.

’prev’, ’first’: are activated, if

NavListPos> 1.

Thereby, event ’prev’ corresponds to navigating to the preceding part
of the list, and event ’first’ corresponds to jumping to the first part of
the list.

4.6. A CASE STUDY: INTERACTIVE CATALOGS 133

’enhance’: is activated, if

NavVisSize≤ length(NavList) .

The event provides an enhancement of the currently presented view.

’decrease’: is activated, if

NavVisSize> 1.

The event provides a reduction of the currently presented view.

’reorder[]’: is always activated. This generic event provides a reordering
of the currently presented view depending on the particular order cri-
teria selected.

Context Transition Model: The context is adapted depending on the user event ini-
tiated. According rules essentially adjust the list pointer wrt. the user event.
They are specified as follows:

’first’, ’last’, ’next’, ’prev’ rules: They correspond to according rules of ui-
component ’List Scrolling’ introduced in Section 4.2 (on page 82).

’enhance’ rule: Enhance visible view.

ON updated(NavEvent)

IF (NavEvent == ’enhance’)

DO update(NavVisSize) by NavVisSize + NavVisInc

’decrease’ rule: Shrink visible view.

ON updated(NavEvent)

IF (NavEvent == ’decrease’)

DO {

IF (NavVisSize > NavVisInc)

update(NavVisSize) by NavVisSize - NavVisInc

ELSE

update(NavVisSize) by 1

}

’reorder[]’ rule: Reorder element list.

ON updated(NavEvent)

IF (NavEvent == ’reorder[]’)

DO {

update(NavOrder) by reorder[] ;

134 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

update(NavList) by sort(NavList, reorder[])

}

wheresort() denotes a function which computes the reordered list based
on the criteria selected by the user. According to functionrestrict() used at
’Search Space Reduction’,sort() may be realized by a specific component.

As we intend to employ ’Set-Based Navigation’ within dependent compositions,
we consider an open approach. We explicitly admit that context ’NavList’ may
be manipulated by other ui-components (e.g., ’Search Space Reduction’). For
this occasion, the following ’repairing rule’ is applied. It resets the list position
and reorders the list according to the currently selected order criteria.

’List’ rule: Reset list position and adapt list order.

ON updated(NavList)

DO {

update(NavListPos) by 1 ;

update(NavList) by sort(NavList, NavOrder)

}

UI-Composition component:
’Search Space Reduction’ + ’Interaction History’

The intention of this composition is to provide a backtrack facility for ui-component
’Search Space Reduction’. There exist dependencies in both directions. (i) If an event
wrt. ’Search Space Reduction’ is initiated, it should be appended to the interaction
history. (ii) If a backtrack event wrt. ’Interaction History’ is initiated, a corresponding
previous dialog situation must be re-established.

Context: ContextsSelSubSet, SelConstr, SelEvent, and contextsHistAct, HistEvent
are assumed to be declared as public by ui-components ’Search Space Adapta-
tion’ and ’Interaction History’ respectively. A further context extension is not
required.

UI-View Composition: Interaction composition is provided by the union of (i) the
user outputs and (ii) the activated events of both ui-components.

Context Dependency Model: The dependencies explained above are realized by two
rules:

Publish rule: Publish event to interaction history.

4.6. A CASE STUDY: INTERACTIVE CATALOGS 135

ON updated(SelEvent)

DO update(HistAct) by SelEvent

’Backtrack’ rule: Re-establish a previous state.

ON updated(HistPath)

DO update(SelConstr) by HistPath[length(HistPath)];

Note that we assume an open perspective. Thereby, an update on contextSelConstr
initiates a repairing rule of ui-component ’Search Space Reduction’ which accordingly
adapts its context. In particular, it has to recompute contextSelSubSet. An according
rule reads as follows:

ON updated(SelConstr)

DO update(SelSubSet) by restrict(SelSet, SelConstr)

The composition of the ui-composition component together with ui-components ’Search
Space Reduction’ and ’Interaction History’ then provides a composite ui-component
’Search Space Reduction with Backtracking’.

UI-Composition component:
’Search Space Reduction with Backtracking’ + ’Set-Based Navigation’

The intention of this composition is to provide an interactive catalog to users. They
may specify a sub-space of interest through an iterative refinement process. If a desired
level of detail is reached, they may browse the selected sub-space or backtrack to
previous situations.

There exists a (directed) dependency from ’Search Space Reduction with Backtrack-
ing’ to ’Set-Based Navigation’. If a sub-space is selected by the user, the according el-
ement list provided by ’Set-Based Navigation’ must be adapted. The dependency cor-
responds to dependency between ’Category Selection’ and ’List Scrolling’ discussed
in Section 4.3.1 (on page 88).

Context: ContextsSelSubSet, SelEvent, HistEvent, and contextsNavList, NavEvent
are assumed to be declared as public by ui-components ’Search Space Reduction
with Backtracking’ and ’Set-Based Navigation’ respectively. A further context
extension is not required.

UI-View Composition: Interaction composition is provided by the union of (i) the
user outputs and (ii) the activated events of both ui-components.

136 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

Context Dependency Model: The dependency explained above is realized by the
rule:

ON updated(SelConstr)

DO update(SelSubSet) by restrict(SelSet, SelConstr)

The composition of the above ui-composition component together with ui-components
’Search Space Reduction with Backtracking’ and ’Set-Based Navigation’ then pro-
vides a composite ui-component’Interactive Catalog’. Thereby, ’Interactive Catalog’
provides according dialog structure at an abstract level. At a practical perspective,
several adapted versions of ’Interactive Catalogs’ should be provided. Commonly,
according adaptations will correspond to refined versions of ui-component ’Interac-
tive Catalog’ in terms of component refinement. While behavior refinement will not
be achieved usually, interface refinement is achievable mostly. Thereby, the follow-
ing selected versions of ui-component ’Interactive Catalog’ represent refinements of
practical relevance:

Multi-dimensional categories: While ui-component ’Category Selection’ provides
a one-dimensional category, common catalog structures are based on multi-
dimensional categories. To refine a search, a user selects a category from a
chosen dimension. It corresponds to drill-down facilities of OLAP interfaces
(cf., for example, [AGS97]). It can be achieved by refining the specification of
sub-component ’Search Space Reduction’.

Predefined refinement scenarios: A common interaction style to support a user in
searching for items in a catalog is provided by predefined scenarios. At each
step a user may select a category wrt. a particular dimension. It corresponds to
a further refinement of multi-dimensional categories.

Keyword-based search: Keyword-based search is realized by a refinement of sub-
component ’Search Space Reduction’ as well. Thereby, the refinement particu-
larly concerns its function ’restrict()’. Depending on the keyword(s) chosen by
the user, function ’restrict()’ computes an associated subset.

If required by the application, ui-component ’Interactive Catalog’ can be used for more
complex compositions in turn. A typical example is the composition of an interactive
catalog within commercial applications providing products. Thereby, ui-component
’Interactive Catalog’ will be composed, for example, with a ui-component representing
interactive facilities of a shopping cart.

A simplified net-based specification of a single-level catalog is proposed in [Hei01].
For its simulation, an environment based on a HTML driver is developed. It permits
a Web-based navigation which generates the underlying list by querying a connected
database. Thereby, it applies a variant of CP nets introduced in [Lew00].

4.7. CONCLUDING REMARKS 137

4.7 Concluding Remarks

Regarding context specification, we permit a distinction between private and public
contexts which supports encapsulation. It might be advantageous to include further
distinctions. For example, attribute ”public” does not state whether a ui-component
actually manipulates this context or only retrieves its state. A distinction between
”read-only”, ”write-only”, and ”read-write” can be used, for example, to derive desired
properties from the underlying rule system. An according discussion about issues of
ECA rules is presented in the following.

To specify dependencies between ui-components, we applied the method of ECA rules.
As shown at the examples, they provide a powerful tool for this purpose. Throughout
the thesis, we generally followed a rather unrestricted perspective wrt. expressiveness.
While expressiveness is naturally desired, there commonly exist trade-offs between
expressiveness and properties which can be guaranteed. Regarding ECA rule sys-
tems, interesting properties are known astermination, confluence, andeffect preser-
vation. Thereby, the termination property guarantees that a specified rule system al-
ways terminates independent from the state and the initiating event. The confluence
property guarantees that for any selected state and any selected event, the rule sys-
tem always reaches the same final state, or it does not terminate at any case. The
property of affect preservation guarantees that a performed update is not invalidated
by the rule system (for example, by ”accidentally” reversing the affect of an update).
These properties have been studied intensively at the database area (cf., for example,
[ST98, ST99, BJ02b, BJ02a, BDR98, AHW95, BW00]). In particular, according re-
strictions have been identified to guarantee particular properties. They can be applied
to our work, if we consider the rule system at a global perspective. More precisely,
according restrictions have to be applied to the rule system which comprises all rules
specified at any level.

However, according to a component perspective, it would be beneficial to verify re-
strictions at a local perspective. While we outline an approach regarding termination
in the following, we currently consider a localized treatment of confluence and effect
preservation as open work. According to termination, we consider a ui-component (or
ui-composition component)U at an arbitrary levelL. As a necessary requirement for
termination, we have to verify that the local rules together with all lower-level rules
terminate. In general, termination is guaranteed if no cycle occurs in the associated
dependency graph. Thereby, nodes of the dependency graph represent the single con-
texts. A directed arc(c1,c2) belongs to the graph, if there exists a rule wherec1 occurs
in its event part andc2 is updated at its body. As a necessary requirement, we have
to ensure that the local rule system does not possess any cycle. At this step, there is
no difference to the general case. However, even if there are no cycles locally, a cycle
might be accomplished by rules defined at a lower level. It can occur, if (i) a rule at
level L updates a contextc, andc occurs in the event part of a rule at a lower level,
and(ii) a rule at a lower level updates a contextc′, andc′ occurs in the event part of a

138 CHAPTER 4. APPLICATION TO INFORMATION SERVICES

rule at levelL. Note that a cycle can only be accomplished by lower level rules, ifboth
conditions are valid for some contextsc, c′. Thus, cycles are generally avoided if one
of the above conditions can be falsified for any contextc. Note that this verification
can be performed locally without considering the complete rule system. To guarantee
termination at the global level, any ui-component needs to verify termination locally.

For example, consider the context dependency between ’Category Selection’ and ’List
Scrolling’. We consider the termination of the rule system of the ui-composition com-
ponent which connects them. It only possess the single ’SelSubSet’ rule. Firstly,
context ’SelSubSet’ occurs in the event part of the ’SelSubSet’ rule. Because sub-
component ’Category Selection’ updates context ’SelSubSet’, condition (ii) is valid.
However, condition (i) is invalid wrt. ’Category Selection’, since there does not ex-
ist a context which is updated by the ’SelSubSet’ rule and which occurs at the event
part of a rule of ’Category Selection’. Secondly, context ’NavList’ is updated by the
’SelSubSet’ rule. Because ’NavList’ occurs at the event part of sub-component ’List
Scrolling’, condition (i) is valid. However, condition (ii) is invalid wrt. ’List Scrolling’,
since there does not exist a context which occurs in the event part of the ’SelSubSet’
rule and which is updated by a rule of ’List Scrolling’.

Chapter 5

Related Work

The introduced approach relates to several research areas. As our work was ini-
tially motivated by the formalization of Web information services, we will provide
an overview of existing research approaches at this area in Section 5.1. Although they
particularly concern Web interfaces, their main goals are closely related to our work.
They commonly provide formal specifications to support service quality, and partially
propose opportunities of reuse. In particular, they explicitly support user interaction
design by formal specifications.

Currently, component approaches are a promising area of research. In the thesis, we
applied a particular component approach based on stream relations [BS01]. A wider
perspective is presented in Section 5.2.

We omit a discussion about existing specification models for user interaction. As mo-
tivated in the introduction, there exist many established specification models. Good
overviews are provided, for example, in [DFAB98, Lew00]. According to place/tran-
sition systems, models of composition are introduced, for example, in [Bau96, BDK01].
They commonly permit rather general versions of composition. We proposed a partic-
ular and restricted model of net composition wrt. CP nets. In contrast to the above, this
composition model permits (i) a characterization of the external behavior, (ii) desired
behavioral properties of the composition, and (iii) an embedding into the component
framework introduced in [BS01].

Throughout the thesis, we applied the notion of interaction patterns at a common per-
spective. Thereby, we focused on an agreed core and neglected peculiarities of the
different approaches [Bor01, Tid98, WT00a, WT00b, DLH02, GPBV99, RSL00]. For
example, [Bor01] extends the structure of interaction patterns by an attribute called
rankingadopted from [Ale79]. It indicates the confidence of the validity of an inter-
action pattern. In particular, if a pattern has been applied successfully within different
contexts, a higher ranking is associated with the pattern. We omit a detailed discussion
of these approaches, since their differences do not affect the general intentions.

139

140 CHAPTER 5. RELATED WORK

5.1 Design Models for Web Information Services

Several approaches to designing Web information services have been proposed in the
last years. Besides design methods and specification models, they commonly provide
an opportunity to execute final design results in terms of executable Web applications.
Depending on the approach, either appropriate mappings of design specifications into
implementations are provided, or particular management systems are developed which
interpret declarative specifications. Approaches which primarily focus on Web-site
management systems are omitted in the following, as they are not as closely related to
our work. According approaches are introduced, for example, in [FLM98, FFK+98,
MAG+97].

In the following, we briefly introduce the following approaches:

Araneus: a Web design methodology which combines design models of relational
database design with design models of hypermedia design (proposed by Atzeni
et. al. [MAM03, AMM98]),

OOHDM: an object-oriented hypermedia design method which adapts a UML ap-
proach to hypermedia design (proposed by Schwabe et. al. [SR98, RSL99,
SREL00]),

Torii: a data-driven approach and tool environment to specification and automatic
generation of data-intensive Web applications (proposed by Ceri et. al. [CFP99,
FP98]),

WebComposition model: a component-oriented approach to web-site design (pro-
posed by Gaedke et. al. [GG00, GGS+99a, GGS+99b]),

View-centered design model: a design model based on generalized database views
which permits user and device adaptation (proposed by Thalheim et. al. [FST98,
FKST00, TBF+98]).

Generally, these models follow rather formal approaches. In addition, a facility of
composition is supported by the WebComposition model and a facility of verification
is provided in [GC99] according to OOHDM. However, in comparison to the approach
introduced in this thesis, non of the above approaches provides both facilities: (i)
compositionality and (ii) verifiability.

5.1.1 Araneus

Araneus [MAM03, AMM98] is a Web design methodology which is supported by de-
sign tools. It provides a data-centered design method, since it proposes to start the
design process by an Entity-Relationship schema (ER schema). This schema is used

5.1. DESIGN MODELS FOR WEB INFORMATION SERVICES 141

as a basis for the following design steps. As illustrated in Figure 5.1, the design model
distinguishes between the design of data structures and the design of hypermedia struc-
tures. Thereby, data structures are evolved by a common database schema refinement
process. It eventually results in a relational database schema. The design of hyperme-
dia structures is supported by a refinement process which is divided into three major
transformations. Each transformation results in a more refined specification. Thereby,
the ER schema is used to derive an hypertext conceptual schema (NCM). It basically
describes the hypermedia structure at an abstract level. It specifies the navigation struc-
ture on concepts rather than on concrete pages. Thereby, a connection to the conceptual
database schema is realized by associating concepts of the NCM schema with types
and attributes of the ER schema. Subsequently, a hypertext logical schema is derived.
It contains the actual page structure and an associated navigation graph. In addition,
a connection to the logical database schema is realized by using attribute names for
the specification of page schemes. Finally, the concrete layout of single pages is spec-
ified by using page templates or a transformation language as XSL. Thereby, a case
tool called ’HOMER’ thoroughly supports the design process. A management system
called ’PENELOPE’ can be used (i) to generate a web-site from the resulting specifi-
cation (compiler approach) or (ii) to execute the specification (interpreter approach).

(ADM)
Hypertext logical schema

Hypertext logical design

Page templates
(HTML)

Database Logical Schema
(Relational schema)

(NCM)
Hypertext conceptual schema

Web−site

Presentation design

Database Conceptual Schema
(ER schema)

Database conceptual design

Database logical design

Hypertext conceptual design

Generation or interpretation

Figure 5.1: Araneus design process

142 CHAPTER 5. RELATED WORK

5.1.2 OOHDM

OOHDM [SR98, RSL99] is an object-oriented hypermedia design model which adapts
an approach based on UML to hypermedia design. It distinguishes four primary de-
sign activities: conceptual design, navigation design, abstract interface design, and
implementation. In comparison to an interface independent UML approach, their dis-
tinguishing features are:

• a notion of navigation objectswhich represent views on conceptual objects
(comparable to the notion of database views),

• a notion ofnavigational contextwhich provides an abstract specification of the
navigation space, and

• the separation of issues of layout from navigational issues.

Their major design steps resemble that of the Araneus approach. As a fundamental
difference, Araneus starts from a conceptual data-oriented schema, and OOHDM start
starts from a conceptual object-oriented schema. In the following, we briefly explain
their four primary design activities.

Conceptual design: The conceptual modeling corresponds to the UML approach.
Peculiarities of Web interfaces are not yet considered at this design step. Its main
design result is a (slightly extended) class diagram. However, other opportunities
of UML as, for example, use case diagrams may be applied additionally.

Navigational design: At this design step, the navigation structure of an application
is developed. It is realized within two steps which logically correspond to the
design steps of ”Hypertext conceptual design” and ”Hypertext logical design” of
the Araneus approach. Firstly, a so-callednavigational class schemais derived
from the conceptual schema. It represents a view on the conceptual schema. De-
rived navigational class schemes thereby reflect a single or multiple user’s per-
spectives onto the conceptual schema. To semantically characterize navigational
classes (i.e., classes of the navigational class schema), there exist predefined
types: node, link, and access structure. Roughly, nodes represent later pages,
links represent a relationship between nodes (interpreted as navigational paths),
and access structure as, for example, indices and guided tours represent possible
ways of accessing nodes. In particular, nodes reflect object-oriented views on
conceptual classes specified by a query language. For example, they may com-
bine attributes from different conceptual classes. Links and access structures
define navigation paths in abstract terms.

At a second step, a so-callednavigational context schemais derived from the
navigational class schema. It further structures the navigation space. Thereby,

5.1. DESIGN MODELS FOR WEB INFORMATION SERVICES 143

nodes are associated withcontexts. A context then further characterizes a node
by means of properties (e.g., only represent books of a certain category) and
navigational opportunities. This refinement step particularly permits that the
visualization of nodes automatically adapts at runtime depending on the current
context within a user scenario.

Abstract interface design: After the navigation space is structured, the layout of
pages is defined in abstract terms by the abstract interface design. In partic-
ular, this step does not include concrete HTML code specifications. For exam-
ple, it associates attributes with layout definitions which specify where attributes
should be placed relative to others. In addition, it defines which objects permit
user interaction.

Implementation: The final implementation concerns the realization of information
items, context, and the user interface. Commonly, conceptual and navigational
objects are mapped into an according database structure. The dynamic notion of
contexts must be realized by an interpreter which particularly computes accord-
ing database views.

Web design frameworks[SREL00], a slight extension to OOHDM, introduce a re-
stricted opportunity to reusing navigational specifications. It extends the approach
by so-calledhotspotsknown from the framework area. Hotspots characterize flexible
elements which may be instantiated by the designer according to application require-
ments. For example, they introduce a hotspot called ”generic context”. It represents
a flexible element of the navigational context schema which may be instantiated by a
concrete navigation context. Thereby, reuse is rather restricted to specifications of the
same application domain, since the navigation schema is associated with a particular
conceptual schema.

Independent from the group of Schwabe et. al., Germán et. al. [GC99] proposed
a formal specification language which permits a representation of OOHDM design
specifications by a high-order logic. Therewith, they enable verification support for
OOHDM designs.

5.1.3 Torii

Torii [CFP99, FP98] provides a data-driven approach and tool environment for the
specification and generation of data-intensive Web applications. As a distinguishing
feature, the Torii approach thoroughly deploys a XML syntax for the representation of
design specifications at all levels. Torii design is structured by the following design
levels which resemble those of the Araneus approach.

Structural model: describes the data structures at the conceptual level by a slightly
extended version of the Entity-Relationship model. The extension permits the

144 CHAPTER 5. RELATED WORK

additional notion of ”target” which specifies an aggregation of elementary con-
cepts. Besides targets specified by a designer, Torii offers two predefined targets
which commonly apply to Web information services. These are called ”Profile”
and ”Metadata”. While target ”Profile” contains information regarding users and
user groups, target ”Metadata” contains meta information as, for example, mod-
ification and usage patterns, and access restrictions. According to a particular
design, these targets can be adapted by specialization.

Derivation model: specifies conceptual views. The designer derives different views
from the conceptual schema according to the various tasks and users of the tar-
geted application. Since specifications at all levels are based on XML, views are
derived from the structural model through an XML query language.

Composition model: specifies the content of each page. By default, each concept
of the derivation model corresponds to a single page. To adapt this default,
the designer may associate single pages with attributes of several concepts or,
conversely, associate single concepts with several pages. Thereby, different as-
signments may be defined for different users.

Navigation model: defines the navigation structure. As a default, Torii assumes that
links between pages are commonly derived from the semantic relationships de-
fined at the structural model. It is referred to ascontextual navigation. In con-
trast,non-contextual navigationdenotes links between pages which are concep-
tually unrelated. To represent a ”one-to-many navigation” (i.e., one object is re-
lated to several objects),navigation modesare specified by determining several
semantic characteristics of the relationship. For example, it specifies the number
of objects presented on the same page, their order, and the mode of browsing as,
for example, forward/backward scrolling. Instead of defining particular naviga-
tion modes, predefined navigation modes may be selected. They comprise, for
example, index navigation, guided tours, or ”show all” — concurrently present-
ing all objects.

Presentation model: The page layout is defined on the basis of XML transforma-
tion rules. They specify the transformation of page specifications to HTML. To
permit prototyping, a default page style is provided based on a simple layout.

Business rules: As a second distinguishing feature, Torii provides so-called business
rules. They are primarily deployed for user adaptation. They are defined in
terms of event-condition-action rules. Events are user events (i.e., the invocation
of another page) or data changes. Conditions evaluate predicates or database
queries. Finally, actions comprise adding or dropping elements from collections,
initiating database updates, sending emails, or assigning users a selected site
view.

5.1. DESIGN MODELS FOR WEB INFORMATION SERVICES 145

Torii is supported by the following tools. At the design layer, modeling tools are pro-
vided. Their design results are subsequently transformed by a pre-runtime processor
into an intermediate representation. It is adapted to the requirements of an performant
execution. At the runtime layer, an interpreter executes the transformed specification.
Thereby, it initiates according database requests, merges retrieved data with the page
templates, and finally computes the transformation to HTML pages.

5.1.4 WebComposition Model

The WebComposition model [GG00, GGS+99a, GGS+99b] is a component-oriented
approach to web-site realization. Its primary intention is to support reuse and main-
tenance of web-sites. The proposed architecture provides management of a compo-
nent repository on the one hand and a document generator on the other. Thereby, the
management system supports the development and retrieval of components. The doc-
ument generator interprets composite components by iteratively assembling outputs
(i.e., fragments of HTML code) of associated sub-components.

A component is basically specified by a list of properties and operations. Thus, com-
ponents are comparable to objects at an object-oriented perspective. While properties
represent a static view onto components, operations provide the dynamics. The most
essential operation each component is obliged to implement is called ’generateCode()’.
This operation specifies the visualization of a component at a certain state. More pre-
cisely, ’generateCode()’ computes a fragment of HTML code on request. Thereby,
components correspond to a model/view paradigm.

Two types of relationship are supported by the WebComposition model: inheritance
and aggregation. Inheritance can be compared with inheritance of classes. It permits
to introduce new properties and operations and to overwrite properties and operations
inherited from a component. Note that components are thereby considered in a dual
sense — as classes and as objects. The aggregation relationship provides two op-
portunities. Firstly, a component aggregated of sub-components may represent their
cumulative output, i.e., an HTML page which is assembled of HTML code fragments
generated by each sub-component. Secondly, aggregation of components may repre-
sent hypertext links. Besides sequential composition of HTML fragments and linkage
of HTML pages, there is no indication how more sophisticated dependencies can be
specified.

Generally, the WebComposition approach exhibits a close relationship to the approach
introduced in the thesis. However, it falls short in respects of (i) user interface inde-
pendence, (ii) verifiability, and (iii) dependency specification.

146 CHAPTER 5. RELATED WORK

5.1.5 View-Centered Design Model

In [FST98, FKST00, TBF+98], a design model based on generalized database views
is proposed. As a distinguishing feature, it provides opportunities for both user adapta-
tion as well as device adaptation. It is mainly based on the notions ofinformation units
andinformation containers. They can be related to the Araneus approach introduced
above. Roughly, information units correspond to elements of the hypertext conceptual
schema (NCM), and information containers correspond to elements of the hypertext
logical schema (ADM). In contrast, information units extend conceptual views by ab-
stract style information and standard functionality used in Web information services.
Information containers extend page specifications by by meta information required for
device adaptation.

Information units

Based on a higher-order Entity-Relationship schema [Tha00, Tha93] (HER schema),
information units are derived in terms of generalized views. They result from three
basic transformations: filtration, summarization, and scaling. Filtration derives a view
on a HER schema in the database sense. It is derived by applying schema transforma-
tions which primarily include omitting types and attributes, composing new types, and
decomposing existing types. By summarization, new attributes may be derived based
on existing ones. It is defined in terms of queries over the schema. Scaling provides an
opportunity of customization. It specifies measure rules, ordering rules, adhesion rules,
and hierarchy meta rules. Measure rules specify the conversion of prices, weights, etc.
Ordering rules specify the ordering of objects wrt. user presentation. By associating
weights, adhesion rules further specify which objects should be presented together, and
which objects might be separated. It provides information for a later device adapta-
tion. For example, devices with small displays might require to split information onto
several pages. Thereby, less associated objects may be represented on different pages.
Hierarchy meta rules specify different abstract views onto objects. According to de-
vice adaptation, more compact representations may be selected, if visual capabilities
of a device are limited.

Besides static semantics of information units, they are associated with interactive fa-
cilities which provide standard functionality used in Web information services. Ex-
amples are generalization and specialization which adapt the level of detail of pre-
sented information (comparable to role up and drill down facilities of OLAP interfaces
[AGS97, GL97]), reordering which adapts the arrangement of information (compara-
ble to pivoting facilities of OLAP interfaces), and browsing functions which permit
navigation within information units.

Information containers

As an extension to pages, they represent abstract interaction specifications. At a con-
crete device, they may correspond to a single page or several pages with an appropriate

5.2. COMPONENT APPROACHES 147

navigation structure. The container metaphor distinguishes between an an ”unloaded”
and a ”loaded” state of a container. At the former, a container is specified by cer-
tain restrictions which reflect limitations of capabilities of a device. These restrictions
are specified in terms of parameters. For example, they define size and type of dis-
plays. At runtime information containers are instantiated based on information units.
Thereby, associated restrictions are considered, for example, by computing possible
page splittings, or representing objects by more compact alternatives.

5.2 Component Approaches

In the thesis, we primarily focused on issues of formal specification and composition of
components. Thereby, we less emphasized on associated issues of the design process.
Besides, relating the applied component model to other work, we provide a survey
about design-related aspects.

5.2.1 A Design Perspective

Component approaches are a topical area of research [LS00, BS01, Szy98, BDH+98,
Fra99, AN01, FT02a], although according visions are proposed already decades ago
(cf, for example, [McI68]). The concept of design by components is essentially mo-
tivated by two aspects: quality and reuse of designs. Thereby, reuse directly implies
an improved efficiency of the design process. As a discussion provided in [BDH+98]
among several known researchers of the component area manifests, there is no com-
mon agreement about a delimitation (or even definition) of the notion of components.
For example, the following distinct component definitions are proposed in [BDH+98]:

K. Koskimies: ”A component is a system-independent binary entity which
implements one or more interfaces. An interface is a collection of
signatures of services belonging logically together.”

C. Szyperski: ”A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject
to composition by third parties.”

Although there does not exist neither an agreement about a particular component def-
inition, nor a form (or specification) by which a component should be provided, there
are certain characteristics of components which are widely agreed upon. They com-
prise

Reusability: The requirement of reusability is the most significant. It partially im-
plies the following properties.

148 CHAPTER 5. RELATED WORK

Compositionality: Components can be composed iteratively. Thereby, it is expected
that the composition is reliable in the sense that it guarantees particular inten-
tions.

Interface specification: Interfaces are provided as a basis for composition. Com-
monly, they represent a static notion of composition, for example, specified by
signatures on data types.

Adaptability: Regarding the deployment of components within different environ-
ments, opportunities of adaptation should be provided. Besides deployment,
adaptability supports maintenance of applications.

Commonly, formal approaches also consider system independence as an important
feature of component models.

Generally, there is a significant difference between a particular component model and
an according component-based design method. In [Fra99], the following requirements
are identified to permit a ”design by components”:

• support for finding desired components within a repository,

• support for semantic understanding of components (wrt. a designer’s perspec-
tive),

• facilities for flexible and reliable component composition, and

• facilities for component adaptation and substitution.

In detail, the following approaches to their support are proposed. Retrieval of desired
components can be supported by syntactically searching through source code, inter-
face signatures, component names, or verbal descriptions as far as they are provided.
Thereby, thesauri may be used as a further supporting structure.

To support semantic understanding of components, formal specifications are usually
not sufficient at a designer’s perspective. Therefore, it is proposed to associate compo-
nents with verbal descriptions possibly enriched by diagrams. However, as the struc-
turing of descriptions strongly influences their comprehension, a suitable and unified
structure must be identified and imposed on authoring. As an opportunity to its re-
alization, [Fra99] proposes to apply design patterns for this purpose. In particular,
design patterns of the style proposed by Gamma et. al. [GHJV95] provide a promis-
ing candidate, since they are accepted to a certain extend. The underlying motivation
is that design patterns provide both a unified textual structure together with diagram-
matic illustrations. In addition, [Fra99] proposes to use according formulations for
supporting component retrieval as well. Note that this approach strongly corresonds to
our proposal. To identify desired ui-components, firstly an identification of according

5.2. COMPONENT APPROACHES 149

interaction patterns supports a designer at the tasks of retrieval as well as comprehen-
sion.

According to composition support, different modes of component provision are sug-
gested: black-box, glass-box, and white-box. While black-boxes hide internal infor-
mation, glass-boxes permit a view onto the internal structure, and white-boxes permit
a direct adaptation of component specifications. The choice of an according mode
usually corresponds to a trade-off between flexibility and reliability. Thereby, relia-
bility concerns the correctness of possible compositions. While a white-box deploy-
ment of components provides maximum flexibility, black-box deployment commonly
promises maximum reliability. At a practical point of view, the adaptation of white-
box components may result in an unexpected behavior of compositions — thus, de-
grading reliability. To guarantee reliability of (black-box) compositions, the notion of
contractswas proposed (cf., for example, [SN99, Szy02]). A contract specifies the
constraints imposed onto an interface. More precisely, it defines dynamic obligations
components connected at a particular interface have to obey. It is interpreted as: if a
client component satisfies its part of the contract, then the provider guarantees a partic-
ular behavior (in terms of service provision). Although, we did not explicitly adopt the
notion of contracts in the thesis, it corresponds to the treatment of properties and asser-
tions introduced in Section 3.3.2. At the perspective of a service provider, assertions
correspond to that part of a contract, a client component has to satisfy. If satisfied, the
provider guarantees particular (dynamic) properties.

According to support (black-box) adaptation, commonly a notion of refinement or in-
heritance is introduced. While rather object-oriented component approaches basically
define inheritance in terms of redefining data types of interfaces, other approaches de-
fine refinement in terms of the dynamic behavior (cf., for example, [BS01]). On the
one hand, the latter approach strongly supports reliability, since it permits to derive
behavioral statements about refined components. On the other hand, it is not a trivial
task to verify the refinement relationship.

5.2.2 Related Component Models

Besides, the component model proposed in [BS01] applied in the thesis, other mod-
els can be found in the literature. According to our concern of formal and system-
independent component models, a good survey on this topic is provided in [LS00]. In
comparison to [BS01], the model proposed by Nierstrasz et. al. [SN99, AN01] pro-
vides the closest relationship. It is based on a formal specification language called
πL -calculus [LAN00]. In contrast to [BS01], they introduce a significantly richer
semantic structuring. Particularly, they propose a layered component approach based
on five layers. In bottom-up order, these comprise: theπL abstract machine, the pic-
cola language, core libraries, architectural styles, and applications. They realize the
following responsibilities:

150 CHAPTER 5. RELATED WORK

πL abstract machine: provides an abstract machine in whichagentsasynchronously
communicateforms through sharedchannels. Thereby, forms represent gener-
alized tuples. They represent the ”values” which are communicated between
agents.

Piccola language: defines syntax and semantics of the composition language. It in-
troduces primitive values, and higher-order abstractions over agents, forms, and
channels. Thereby, abstractions correspond to a translation to the lower level
model. In particular, forms at this level represent component interfaces, argu-
ments (wrt. provided services), and user-defined services.

Core libraries: define basic composition abstractions. For example, it includes con-
trol abstraction as ”if-then-else”, and utilities as an interface to Java.

Architectural style: comprise, for example, streams (at push or pull semantics), GUI
abstractions, as well as glue abstractions.

Applications: defines the adaptation and composition of components to applications.

In comparison to our approach, there are two interesting, open questions. Firstly, does
the approach permit an analogous embedding of interaction nets? Intuitively, the ques-
tion might allow a positive answer, since notions of agents, forms, and channels at
the elementary layer roughly correspond to notions of component specifications, mes-
sages, and channels used in [BS01]. Secondly, since the component model provides a
rich semantic structure, it might be possible to directly specify ui-components and their
dependent composition by higher-level semantic concepts provided by their model,
since they provide a semantic abstraction wrt. the graphical user interfaces. However,
an answer to this question has not yet been followed intensively, and is considered as
an open problem.

Besides the component model of Nierstrasz et. al., a powerful generalization of the
component model of Broy et. al. was proposed in [BRS+00]. It mainly extends the
flexibility of the component model. Thereby, concepts which are originally defined
as static, are replaced by a dynamic notion. More precisely, the following elements
of the model may change during runtime: (i) the set of components deployed for
an application, (ii) the assignment of interfaces to components, and (iii) the assign-
ment of connections between interfaces. Thereby, they denote a particular tuple of
components, interface assignments, and connection assignments as aconfigurationor
instance of theconfiguration space. It particularly increases flexibility, since com-
ponents may be introduced into and removed from an existing configuration during
runtime. It relates to our work, since it permits a more flexible treatment of config-
urations of ui-components. For example, at sequential compositions (wrt. user in-
teraction), activation and deactivation of ui-components can be specified in terms of

5.3. DESIGN OF INFORMATION SERVICES 151

changing configurations. Therefore, such an extended approach requires the specifica-
tion of configuration adaptation. Intuitively, it might yield more compact and readable
specifications.

5.3 Design of Information Services

In the following, we will discuss how a design approach based on ui-components re-
lates to existing design approaches for information services. In particular, we will
relate the component-based approach to the design approach based on the storyboard
metaphor and to the design approach based on codesign of data structures, functional-
ity, and user interface.

A storyboard perspective

According to the design process of information services the metaphor of astoryboard
has been successfully introduced and applied [TD03, NL00, DT02]. It associates el-
ements and activities known from storyboard design at the context of theater play or
movie production with elements and activities occurring at the design process of infor-
mation services. In [TD03], storyboard design comprises modeling of actors, dialog
scenes, transitions between scenes, dialog steps, and media objects. Thereby,actors
correspond to the different user groups.Dialog scenesrepresent activities at a non-
elementary level. Depending on the abstraction level, composite activities as perform-
ing a reservation, accomplishing necessary steps of payment, or processing documents
may represent dialog scenes. Commonly, they comprise several steps which are se-
mantically associated to one another.Scene transitionsrepresent a change from one
scene to another. These changes are initiated by the user and reflect an accomplishment
of the preceding scene. In contrast to storyboards in the context of theater play, scenes
are not exclusively ordered sequentially. There may exist several alternative continu-
ations. Examples of scene transitions are initiating payment after all desired products
are collected, or archiving course information at the end of a semester.Dialog steps
represent elementary interactive units as, for example, filling out a registration form, or
adding a new course to the course schedule of the next semester. Finally,media objects
represent information views. More precisely, information presented to the user at cer-
tain dialog steps is provided through media objects. They can roughly be understood
as views over a database including desired style information.

These basic constituents can be identified at the proposed component approach as fol-
lows: Media objects roughly correspond to the output specification generated by ui-
components. More precisely, output specifications are generated by the ui-view sub-
components by means of context requests. Dialog steps are realized by ui-components.
Thereby, dialog specifications generated by a ui-component corresponds to a particu-
lar dialog step. Thus, ui-component specifications commonly comprise several dialog

152 CHAPTER 5. RELATED WORK

steps. Dialog scenes are represented by composite ui-components. For example, the
dialog scene representing an activity of searching and selecting products corresponds
to a composition of ui-components [Interactive Catalog] and [Shopping Cart]. Tran-
sitions between scenes are basically represented by composition components. By ac-
cording rules, they determine at which context state a transition to a successive dialog
scene may be initiated. Thereby, the current scene is abandoned by deactivating output
of associated ui-components, and a successive scene is opened by activating output of
associated ui-components. Different characteristics of actors as, for example, rights
and preferences, can be represented by the context and context adaptation rules at a
global level. Thereby, according rules specify a masking policy according to dialog
steps as well as user adaptation.

A codesign perspective

The codesign approach concerns an integrated design of data structures, functionality,
and user interaction at all layers of the design process (cf. [BCN92, CT97, Tha00]). In
particular, [BCN92] proposes a view-centered codesign approach. A decomposition
of the targeted application is identified. Resulting parts of the application are design
by means ofgeneralized views. Besides data structures, generalized views comprise
associated functionality and facilities of user interaction. After the generalized views
have been designed, they are integrated iteratively. In fact, ui-components coincide
with this design perspective. UI-components can be considered as generalized views.
Thereby, data structures are specified in terms of an underlying structure of the con-
text. Functionality and user interaction are specified in terms of context rules and the
ui-view. Thereby, a designer may apply a codesign approach to develop elementary
ui-components. The integration of generalized views corresponds to component com-
position. It comprises the integration of all three dimensions which is realized by the
specification of ui-composition components. Data integration is specified by (i) con-
text integration, (ii) definition of context dependency rules, and (iii) possible context
extensions. Functionality is integrated by context transition rules. Finally, interaction
specification is defined by the specification of ”UI-View Composition”. Therefore, the
codesign approach may be utilized to support the design of components.

Chapter 6

Conclusions

In the following, we summarize the achievements of the component-based approach
introduced in the thesis, indicate open problems, and as far as possible, suggest alter-
native directions to their solution.

6.1 A Summary

In abstract terms, the thesis proposes a formal component model which permits mod-
ular specification, composition, and adaptation of dialog structures. Thereby, it dis-
tinguishes between two perspectives (i) the underlying component model and (ii) its
utilization according to user interaction. While the underlying model provides the
basis for formal specification, composition, simulation, and verification, its utiliza-
tion in terms of ui-components and their (semantic) composition supports interaction
specification at the level of design. At selected examples, it could be shown that dia-
log structures formulated in terms of interaction patterns can be formally specified by
ui-components. As motivated at the introduction, composition of interaction patterns
plays an essential role according to the development of pattern repositories and accord-
ing to their deployment for concrete application designs. To this respect, the notion of
ui-composition components (or composition patterns at a generic perspective) was in-
troduced which enables the composition at a semantical level. Thereby, dependencies
between patterns are specified explicitly. At exemplary cases, composite interaction
patterns were derived in terms of complex ui-components which are iteratively com-
posed of elementary components.

Besides a formal model, the thesis motivates aspects related to an according design
approach. In particular, we identified a close relationship to existing design approaches
for information services. Although, our original intention was rather to provide a
formal basis according to interaction patterns, the approach potentially applies to the
design of information services in general.

153

154 CHAPTER 6. CONCLUSIONS

6.2 Open Problems and Future Directions

The introduced approach and component approaches in general represent a wide re-
search field. Therefore, in the thesis, we focused on some essential aspects, but had
to neglect others. In the following, we present a brief discussion about related issues
which have not yet been studied intensively. They are considered as open problems.

Context

Context plays an important role at user interaction. McCarthy et. al. [McC93, MB],
for example, introduce the notion ofdiscourse context. It describes the knowledge
of users at particular dialog situations. Thereby, user scenarios are represented by al-
ternating sequences of user utterances and (accordingly adapted) discourse contexts.
Thereby, utterances commonly enrich the discourse context. They basically represent
contexts by logical formulas which particularly permits reasoning on contexts. At the
thesis, context is represented by two concepts. The static aspect of context is repre-
sented by a set of pairs of a context identifier (e.g., a context name) and an associated
value of any data type. The dynamic aspect of context is represented by rules. Al-
though, it is not obvious whether this representation is less expressive than the above,
it seems to be not as adequate according to the representation of discourse context
(or knowledge). Therefore, it would be beneficial to generalize the approach, such
that more adequate context representations can be employed instead. Besides above
alternative, there exist several approaches to formal context representation (cf., for
example, [BBM95, Guh94, TACS98, KST03, Sow00, Ben98, Tho98]).

Formal verification

The formal component model based on interaction nets provides opportunities of ver-
ification. This applies for the net perspective as well as for the component perspec-
tive. Thereby, white-box verification concerns analysis of net dynamics. However,
according to composition and assertion verification, black-box analysis should be usu-
ally applied. The reasons are twofold. Firstly, white-box and glass-box views might
not always be provided, in particular, in the case of mixed composite specifications,
i.e., specifications that contain sub-components not specified by interaction nets. Sec-
ondly, the effort of net analysis should preferably be applied once, without iteratively
re-analyzing compositions. According to a black-box view, net analysis has to provide
dynamic properties of the external component behavior — for example, in terms of
logical formulas on streams. Thereby, black-box verification at the component per-
spective corresponds to the implication problem of logical formulas. However, al-
though the proposed component model potentially permits verification, it has not yet
been studied which particular classes of properties can be verified in general an which
properties can be verified efficiently.

6.2. OPEN PROBLEMS AND FUTURE DIRECTIONS 155

Design method

Although, the thesis indicates solutions to selected design related aspects, there are
many open questions. Commonly, these questions are concerned with the changed
perspective imposed by a component-based design. For example, at a component
perspective, a pre-design phase should rather provide indications which components
should be deployed — which contrasts issues of classical information system’s design
(cf. [KM98, FVFT01, Tha00, CF98]). Therefore, future work particularly addresses
requirements and design methods according to design activities as component iden-
tification, adaptation, composition, and integration. However, this area currently ex-
periences intensive research (cf., for example, [Szy02, LS00, Fra99]). Thus, results
achieved in the future are expected to apply to our approach as well.

Component provision

Besides reuse of components, there are issues related with the design of the compo-
nents themselves. They comprise questions as, for example, who is providing and
maintaining components, or do there exist opportunities which motivate a partial inte-
gration of activities of component design and actual reuse (cf., for example, [Jaa02]).

We will conclude the thesis by reconsidering visions of software design by compo-
nents. Final goals of component approaches are largely agreed upon and have been
inspired decades ago (cf., for example, [McI68]). Basically, activities of the classi-
cal software design process which rather focus on new development are replaced by
a design activities which focus on reuse. To achieve this goal, the notion of com-
position and, in particular, the notion of ”intention of composition” plays an essential
role. Without an opportunity of guaranteeing properties, component composition loses
much of its attraction, since compositions may exhibit unexpected and undesired be-
havior. Therefore, a formal approach can significantly contribute to component-based
design. Besides other aspects, it provides a formal notion of ”intention” which permits
to derive statements about the behavior of compositions based on elementary compo-
nent behavior.

As we primarily focused on user interaction, we expect that component-based for-
malisms positively affect interface quality. In particular, an improvement according to
usability of the user interfaces can be achieved. User interfaces may exhibit less re-
stricted and thus richer opportunities of interaction — possibly approximating (rather)
non-restricted human interaction. Therefore, component approaches are expected to
significantly improve the current situation at which either (i) interaction is provided
along rather sequential scenarios only — which strongly restricts flexibility in the case
of unexpected situations, or (ii) design of flexible and adaptive interaction structures is
extremely expensive according to the design process and consistency verification.

156 CHAPTER 6. CONCLUSIONS

Appendix A

Detailed Formulation of Selected
Interaction Patterns

The following sections present detailed descriptions of interaction patterns as they
are proposed in [HDP02, Tid98]. Particularly, the presented formulations of patterns
[Selectable Search Space] and [Set-Based Navigation] were introduced in collection
[HDP02], and the presented formulation of pattern [Interaction History] was intro-
duced in collection [Tid98]. Depending on the applied pattern formalism, they slightly
differ in their underlying structure. Note that patterns proposed in [HDP02] primarily
focus on web interfaces. However, the selected pattern formulations apply to other
user interfaces as well.

A.1 Selectable Search Space

Problem statement and examples

Specify a category within which the search should be made or restricted to.

Many times users try accessing information through navigation. Nevertheless, as the
information spaces become bigger, users are not always successful searching for the
desired information. Therefore, having reached a certain point through navigation,
they perform a search to find the desired information.

Every search activity pursues the goal of providing search results with high precision
and high recall. It is also important to note that, with most search engines, it is possible
to trade off precision against recall. If we increase the number of the documents re-
trieved, it is possible that the number of relevant documents retrieved also rises. At the
same time, however, it is also likely that the number of irrelevant documents retrieved
is increased, thus decreasing precision. At this point, the task of tuning a search can
be greatly simplified with an analysis about the information being published and how
it is structured, in order to find groups of semantically related documents/nodes.

157

158 APPENDIX A. SELECTED INTERACTION PATTERNS

Many companies offer their products through their websites. When a user is looking
for something concrete, it is useless to search in product areas different from the one
the desired product belongs to. Suppose a person is interested in buying a certain book,
and the selected website also sells videos and gifts; it would make sense to allow the
user to select the category of products in which the search should be performed.

A more complex case appears when it would be helpful to combine search spaces or
categories. Consider a website that already has its information organized into several
groups. It is possible that some information relevant to a given topic may appear in
more than one of these groupings. It is the case of many companies that apply a given
knowledge or technology in several areas or products, and therefore there may be
reports about several aspects of the topic of search covered in different regions of the
websites or, even in other websites of the same company. In such a scenario, additional
flexibility is needed: combine groups/categories; but since the website already has
several categories, it would be impractical to consider all possible combinations of
areas.

Forces

• Users want to search over large search spaces.

• Precision and recall are mutually opposing measures, whereas effective search
should have high precision and recall.

• Effectiveness of search can be improved by restricting the search space to known
relevant subspaces.

Solution

Provide the user with a mechanism to select which category (sub-space) the user is
going to search into. There are 2 common variants to this solution, according to the
desired functionality:

• Allow users select only one search category at a time. The requirement to imple-
ment this solution is very simple: it should be possible to split the information
space into disjoint sub-spaces. The same piece of information should not belong
to more than one group at a time.

• Allow users to combine search areas. A grouping of checkboxes is presented to
the user, with all possible areas of search. The user may select any combination
of them. Although this approach is more flexible, it should be used only when
the previous one is not feasible, since it requires extra navigation to a search
page to select the desired categories

A.2. SET-BASED NAVIGATION 159

Consequences

Advantages:

• Higher recall and precision rates. Surprisingly, a number of websites with huge
amounts of information neglect to provide their users with selectable search
spaces. Rather, these sites rely on a simplified input field and offer only full
searches over a website, which usually perform poorly since the search space is
much larger. Furthermore, it forces the user to repeatedly refine the search by
providing more detailed keyword information each time, in order to retrieve the
desired information.

• Fewer searches are needed to find the desired topic, thus consuming less com-
puting resources, and increasing user satisfaction.

Disadvantages:

• Categories usually must be determined manually.

• Having too many categories impacts in its usability. Therefore, a certain balance
among the granularity of the search spaces and their quantity must be achieved.

Related patterns:

[Simple Search Interface], is usually enhanced with [Selectable Search Spaces]. It is
also used in combination with [Node In Context] to automatically set the searching
category.

A.2 Set-Based Navigation

Problem statement and examples

Hypermedia applications usually have to manage collections (a set of cities, a writer’s
books, the results of a search operation, etc). Naive designers tend to follow closely
the golden rules of hypermedia design and only define links between entities that are
semantically related; for example they will find the relationship between a book and
its author, a painter and his painting, etc. When the link target is not a simply node,
they will define an index (for example all of Van Gogh’s paintings), and the user will
have to move from the index to a target. To move on to another node, he will have
to backtrack to the index to find another target. This introduces an unneeded burden
when the reader wants to explore the whole set of target nodes. Surprisingly, even well
known commercial applications (such as amazon.com) require this type of annoying
back-and-forth navigation.

160 APPENDIX A. SELECTED INTERACTION PATTERNS

Solution

Consider sets as first class entities in a hypermedia application. Provide intra-set nav-
igation controls to help the user get the ”next” and ”previous” element while he is
traversing the set. Combine set-based navigation with proper indexes to make explo-
ration easier. The set-based navigation pattern shows a simple example in which we
will link nodes opportunistically (because they belong to the same set). In this way,
two different Van Gogh paintings will be connected by a (set) link allowing reaching
them sequentially.

When the same node may appear in two different sets, we use the [Nodes in Context]
pattern; this pattern shows how to decouple basic node’s contents from those related
with the actual navigation context. In this way, each time a node is accessed within
a particular context (set) it will be ”decorated” (in the sense of the [Decorator] pat-
tern) with the information corresponding to that set, such as intra-set navigation links,
and contents related specifically with that context. For example, when we access a
Van Gogh painting in the context of Paintings on Nature, the ”next” and ”previous”
anchors will have a different meaning compared with the same links in the context of
all of Van Gogh’s paintings in chronological order. In addition, it is often desirable to
provide additional comments related solely to a given context. Decoupling the base
information from the one corresponding to a context simplifies the design, and helps
us think about these navigation paths in a more structured way.

A.3 Interaction History

Problem statement

A user performs a sequence of actions with an artifact, or navigates through it. Should
the artifact keep track of what the user does with it? If so, how?

Forces

• People are forgetful of tedious details; users are not likely to remember just
what they have recently done with the artifact, and computers are better at it
than people are.

• Users may need to know exactly what they have just done, so they can undo their
work or backtrack.

• Users may want a high-level overview of what they have done, to gain under-
standing that they would not get just from memory.

• Audit logs are sometimes necessary, such as with legal regulatory requirements.

A.3. INTERACTION HISTORY 161

• Highly interactive artifacts may generate huge amounts of recordable detail.

• Describing certain actions in a human-readable way is difficult.

Examples

• The ”history” or ”visited links” feature on a Web browser

• UNIX shell’s saved command history

• Logs of exchanged email or other social exchanges

Solution

Record the sequence of interactions as a ”history”. Keep track of enough detail to
make the actions repeatable, scriptable, or even undoable, if possible. Provide a com-
prehensible way to display the history to the user; most artifacts that implement this
pattern use a textual representation, especially [Composed Command], but that’s not
a requirement. (In fact, a history for [Navigable Spaces] may be better portrayed as a
state diagram, showing single steps, backtracks, etc.) If the artifact is capable of sav-
ing its state, as with [Remembered State], give the user the option of saving the history
from session to session.

It may not be necessary to record every single transaction. Web browsers keep track of
the visited sites, which is what the user presumably wants to know; they don’t record
printing, saving, or preference changes. But the user should have some control over
how big the history gets. This could take the form of a number of history records to
keep, or an expire time, or a decision to discard the entire history at the close of a
session.

Resulting Context: Now that the artifact has a mechanism to keep track of the his-
tory, the user may expect that those actions are scriptable; consider implementing a
[Scripted Action Sequence] based on those mechanisms. When found in [Navigable
Spaces], it also provides raw material for [Bookmarks], if a user can pore over the
history and pick out certain points of interest.

Having a history around provides users with a set of milestones that they can use with
Go Back to a Safe Place – but explicitly think about whether you want to actually undo
all the history between the ”present” and the point in the history that the user wants to
fall back to. The answer will depend upon your specific circumstances.

Notes: Jakob Nielsen pleads for better visualization of Web browsers’ navigation his-
tories in his November 1, 1997 Alertbox column: ”Well, we can now sort the history
list so that all the pages visited on a given site are listed together, but visualization is
still missing. It would be very useful to have active sitemaps that showed the user’s

162 APPENDIX A. SELECTED INTERACTION PATTERNS

movements with footprints, showed additional detail at the current focus of attention
while collapsing other regions, and also showed connections to other sites with a pre-
view of the relevant sections of these other sites.”

Related Patterns

The pattern may be used together with [Navigable Spaces], [Control Panel], [WYSI-
WYG Editor], [Composed Command], and [Social Space].

Bibliography

[Abo90] Gregory D. Abowd. Agents: Communicating interactive processes. In
3rd Int. Conf. on Human-Computer Interaction – INTERACT’90, pages
143–148, Cambridge, U.K., August 1990. North Holland, Amsterdam.

[AD67] J. Annett and K. D. Duncan. Task analysis and training design.Journal
of Occupational Psychology, 41:211–221, 1967.

[AGS97] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling mul-
tidimensional databases. InData Engineering. IEEE Computer Society
Press, 1997.

[AHW95] Alexander Aiken, Joseph M. Hellerstein, and Jennifer Widom. Static
analysis techniques for predicting the behavior of active database rules.
ACM Transactions on Database Systems, 20(1):3–41, 1995.

[Ale79] Christopher Alexander.The Timeless Way of Building. Oxford University
Press, 1979.

[Ale87] Heather Alexander.Formally-based Tools and Techniques for Human-
Computer Dialogues. Ellis Horwood, London, 1987.

[AMM98] Paolo Atzeni, Giansalvatore Mecca, and Paolo Merialdo. Design and
maintenance of data-intensive web sites. In6th Int. Conf. on Extending
Database Technology – EDBT’98, LNCS 1377, Valencia, Spain, March
1998. Springer, Berlin.

[AN01] Franz Achermann and Oscar Nierstrasz. Applications = components +
scripts: A tour of piccola. In Mehmet Aksit, editor,Software Architec-
tures and Component Technology, chapter 9. Kluwer Academic Publish-
ers, 2001.

[Bau96] Bernd Baumgarten.Petri-Netze: Grundlagen und Anwendungen. Spek-
trum Akademischer Verlag, 1996. (German).

[BBM95] Sasa Buvǎc, Vanja Buvǎc, and Ian A. Mason. Metamathematics of con-
texts. InFundamenta Informaticae, 23(2/3/4). IOS Press, 1995.

163

164 BIBLIOGRAPHY

[BCN92] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe.Conceptual
Database Design. An Entity-Relationship Approach. Benjamin Cum-
mings, Redwood City, CA, 1992.

[BDH+98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frantisek
Plasil, Gustav Pomberger, Wolfgang Pree, Michael Stal, and Clemens A.
Szyperski. What characterizes a (software) component?Software - Con-
cepts and Tools, 19(1):49–56, 1998.

[BDK01] Eike Best, Raymond Devillers, and Maciej Koutny.Petri Net Algebra.
Springer, 2001.

[BDR98] James Bailey, Guozhu Dong, and Kotagiri Ramamohanarao. Decidability
and undecidability results for the termination problem of active database
rules. In17th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, pages 264–273, Seattle, Washington, October
1998. ACM Press, New York.

[Ben98] Johan van Benthem. Shifting contexts and changing assertions. InCom-
puting Natural Language, pages 51–65. CSLI Publications, April 1998.

[BFJ96] Hans-J̈org Bullinger, Klaus-Peter F̈ahnrich, and Christian Janssen.
Ein Beschreibungskonzept für Dialogabl̈aufe bei graphischen Benutzer-
schnittstellen. Informatik – Forschung und Enwicklung, 11(2):84–93,
1996.

[Bis95] Joachim Biskup.Grundlagen von Informationssystemen. Vieweg, Wies-
baden, 1995. (German).

[BJ02a] Mira Balaban and Steffen Jurk. Effect preservation as a means for achiev-
ing update consistency. In5th Int. Conf. on Flexible Query Answering
Systems – FQAS’02, LNCS 2522, pages 28–43, Copenhagen, Denmark,
October 2002. Springer.

[BJ02b] Mira Balaban and Steffen Jurk. Intentions of updates – characterization
and preservation. In2nd Int. Workshop on Evolution and Change in Data
Management – ECDM’02, Tampere, Finland, October 2002. Springer.

[Bor01] Jan Borchers.A Pattern Approach to Interaction Design. John Wiley &
Sons, New York, 2001.

[BP95] Ŕemi Bastide and Philippe A. Palanque. A petri net based environment
for the design of event-driven interfaces. In16th Int. Conf. on Application
and Theory of Petri Nets – ATPN’95, pages 66–83, Turin, Italy, June
1995.

BIBLIOGRAPHY 165

[BRS+00] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig, and
Manfred Broy. A formal model for componentware. In Gary T. Leavens
and Murali Sitaraman, editors,Foundations of component-based systems,
chapter 9. Cambridge University Press, 2000.

[BS01] Manfred Broy and Ketil Stølen.Specification and Development of Inter-
active System. Springer, New York, 2001.

[Bun99] Harry Bunt. Context representation for dialog management. In2nd
Int. and Interdisciplinary Conf. on Modeling and Using Context – CON-
TEXT’99, LNCS 1688, pages 77–90, Trento, Italy, September 1999.
Springer.

[BW00] Elena Baralis and Jennifer Widom. An algebraic approach to static anal-
ysis of active database rules.ACM Transactions on Database Systems,
25(3):269–332, 2000.

[CF98] Wolfram Clauss and Thomas Feyer. Challenges in integrated informa-
tion services design, October 1998. Working Group Proposal at the 7th
Int. Workshop on Foundations of Models and Languages for Data and
Objects – FMLDO’98.

[CFP99] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-driven, one-
to-one web site generation for data-intensive applications. In25th Int.
Conf. on Very Large Data Bases – VLDB’99, pages 615–626, Edinburgh,
Scotland, September 1999.

[CL99] Wolfram Clauss and Jana Lewerenz. Abstract interaction specification for
information services. InInt. Conf. On Managing Information Technology
Resources in Organizations, Hershey, Pennsylvania, May 1999.

[Cod70] Edgar F. Codd. A relational model for large shared data banks.Commu-
nications of the ACM, 13(6), 1970.

[CPR01] Rosa M. Carro, Estrella Pulido, and Pilar Rodrı́guez. Improving web-
site maintenance with TANGOW by making page structure and contents
independent. InWeb Engineering, Software Engineering and Web Appli-
cation Development, LNCS 2016, pages 325–334. Springer, 2001.

[CT97] Wolfram Clauss and Bernhard Thalheim. Abstraction layered structure-
process codesign. In D. Janaki Ram, editor,Management of Data. Narosa
Publishing House, New Delhi, 1997.

[DFAB98] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale.Human-
Computer Interaction, 2nd Edition. Prentice-Hall, 1998.

166 BIBLIOGRAPHY

[DLH02] Douglas K. van Duyne, James A. Landay, and Jason I. Hong.The Design
of Sites: Patterns, Principles, and Processes For Crafting a Customer-
Centered Web Experience. Addison-Wesley, 2002.

[DT02] Antje Düserḧoft and Bernhard Thalheim. Integrating retrieval function-
ality in web sites based on storyboard design and word fields. In6th
Int. Conf. on Applications of Natural Language to Information Systems –
NLDB’02, pages 52–63, Stockholm, Sweden, June 2002.

[EN99] Ramez A. Elmasri and Shamkant B. Navathe.Fundamentals of Database
Systems. Addison-Wesley, 3rd edition, 1999.

[FFK+98] Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and
Dan Suciu. Catching the boat with Strudel: Experiences with a web-
site management system. InACM SIGMOD International Conference on
Management of Data, Seattle, Washington, June 1998. ACM Press.

[FKST00] Thomas Feyer, Odej Kao, Klaus-Dieter Schewe, and Bernhard Thalheim.
Design of data-intesive web-based information services. In1st Int. Conf.
on Web Information Systems Engineering, pages 462–467. IEEE Com-
puter Society Press, June 2000.

[FLM98] Daniela Florescu, Alon Y. Levy, and Alberto O. Mendelzon. Database
techniques for the World-Wide Web: A survey. InACM SIGMOD In-
ternational Conference on Management of Data, volume 27(2), pages
414–425. ACM Press, June 1998.

[FP98] Piero Fraternali and Paolo Paolini. A conceptual model and a tool envi-
ronment for developing more scalable, dynamic, and customizable web
applications. In6th Int. Conf. on Extending Database Technology –
EDBT’98, LNCS 1377, Valencia, Spain, March 1998.

[Fra99] Ulrich Frank. Component Ware – Software-technische Konzepte und
Perspektiven f̈ur die Gestaltung betrieblicher Informationssysteme.In-
formation Management & Consulting, 14(2):11–18, 1999. (German).

[FST98] Thomas Feyer, Klaus-Dieter Schewe, and Bernhard Thalheim. Concep-
tual design and development of information services. In17th Int. Conf.
on Conceptual Modeling – ER’98, LNCS 1507, Singapore, November
1998. Springer, Berlin.

[FT99] Thomas Feyer and Bernhard Thalheim. E/R based scenario modeling
for rapid prototyping of web information services. InInt. Workshop on
the World-Wide Web and Conceptual Modeling – WWWCM’99, LNCS
1727. Springer, Berlin, November 1999.

BIBLIOGRAPHY 167

[FT02a] Thomas Feyer and Bernhard Thalheim. Many-dimensional schema mod-
eling. In6th East-European Conf. on Advances in Databases and Infor-
mation Systems – ADBIS’02, LNCS 2435, Bratislava, Slovakia, Septem-
ber 2002. Springer.

[FT02b] Thomas Feyer and Bernhard Thalheim. A model for defining and com-
posing interaction patterns. In12th European-Japanese Conf. on Infor-
mation Modelling and Knowledge Bases – EJC’02, Krippen, Germany,
May 2002. IOS Press, Amsterdam.

[FT03] Thomas Feyer and Bernhard Thalheim. Component-based interaction
design. In13th European-Japanese Conf. on Information Modelling and
Knowledge Bases – EJC’03, Kitakyushu, Japan, June 2003.

[FVFT01] Thomas Feyer, Marcela Varas, Marta Fernández, and Bernhard Thal-
heim. Intensional logic for integrity constraint specification in predesign
database modeling. In11th European-Japanese Conf. on Information
Modelling and Knowledge Bases — EJC’01, Maribor, Slowenia, May
2001. IOS Press, Amsterdam.

[GC99] D. M. Gerḿan and D. D. Cowan. Formalizing the specification of web
applications. InInt. Workshop on the World-Wide Web and Concep-
tual Modeling – WWWCM’99, LNCS 1727. Springer, Berlin, November
1999.

[GC00] D. M. Gerḿan and D. D. Cowan. Towards a unified catalog of hyperme-
dia design patterns. In33nd Int. Conf. on System Sciences – HICSS-33,
Maui, Hawaii, January 2000.

[GG00] Martin Gaedke and Guntram Gräf. Development and evolution of Web-
applications using the WebComposition process model. InInt. Workshop
on Web Engineering at the 9th Int. World-Wide Web Conf., Amsterdam,
The Netherlands, May 2000. Springer.

[GGS+99a] Martin Gaedke, Hans-W. Gellersen, Ablrecht Schmidt, Ulf Stegemüller,
and Wofgang Kurr. Hypermedia patterns and components for building
better Web information systems. InInt. Workshop on Hypermedia De-
velopment – Design Patterns in Hypermedia – Hypertext’99, Darmstadt,
Germany, February 1999.

[GGS+99b] Martin Gaedke, Hans-W. Gellersen, Ablrecht Schmidt, Ulf Stegemüller,
and Wofgang Kurr. Object-oriented web engineering for large-scale web
service management. In32nd Int. Conf. on System Sciences – HICSS-32,
Wailea, Hawaii, January 1999.

168 BIBLIOGRAPHY

[GHJV93] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides.
Design patterns: Abstraction and reuse of object-oriented design. In Os-
car Nierstrasz, editor,7th European Conf. on Object-Oriented Program-
ming – ECOOP’93, LNCS 707, Kaiserslautern, Germany, July 1993.
Springer.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.De-
sign Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[GL97] Marc Gyssens and Laks V. S. Lakshmanan. A foundation for multi-
dimensional databases. In23rd Int. Conf. on Very Large Data Bases –
VLDB’97, Athens, Greece, August 1997.

[GPBV99] Franca Garzotto, Paolo Paolini, Davide Bolchini, and Sara Valenti.
“Modeling-by-patterns” of Web applications. InInt. Workshop on the
World-Wide Web and Conceptual Modeling – WWWCM’99, LNCS 1727,
Paris, France, November 1999. Springer, Berlin.

[Guh94] Ramanathan V. Guha.Contexts: A Formalization and some Applications.
PhD thesis, Stanford University, 1994.

[GV02] Claude Girault and R̈udiger Valk. Petri Nets for System Engineering. A
Guide to Modeling, Verification, and Applications. Springer, 2002.

[HDP02] Hypermedia design patterns repository. ACM-SIGWEB in collab-
oration with the University of Italian Switzerland, Online version:
http://www.designpattern.lu.unisi.ch/index.htm, 2002.

[Hei01] Birk Heinze. Entwurf adaptiver Informationsdienste unter Benutzung
von Interaktionspattern. Master thesis, Brandenburg University of Tech-
nology at Cottbus, Germany, 2001. (German).

[HF99] Birk Heinze and Thomas Feyer. Entwurf von Informationsdiensten
für das Web: Modellierung von Benutzerszenarien auf Grundlage
des multidimensionalen Datenmodells. In11. Workshop Grundlagen
von Datenbanken, Jeaner Schriften zur Mathematik und Informatik,
Math/Inf/99/16, Luisenthal, Germany, May 1999.

[HLP97] Martin G. Helander, Thomas K. Landauer, and Prasad V. Prabhu, editors.
Handbook of Human-Computer Interaction, 2nd Edition. North Holland,
Amsterdam, 1997.

[HP98] David Harel and Michal Politi, editors.Modeling reactive systems with
statecharts — the STATEMATE approach. McGraw-Hill, New York,
1998.

BIBLIOGRAPHY 169

[Jaa02] Hannu Jaakkola. The extensive role of reuse in software engineering.
In Slovenian Informatics Conference – DSI’02, pages 1–16, Portorož,
Slowenia, April 2002.

[Jen97a] Kurt Jensen.Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 2. Springer, 1997.

[Jen97b] Kurt Jensen.Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1. Springer, 1997.

[Jen02] Kurt Jensen et. al. Design/CPN. A reference manual. Online version:
http://www.daimi.aau.dk/designCPN/, Meta Software and Computer Sci-
ence Department, University of Aarhus, Denmark, 2002.

[KM98] Christian Kop and Heinrich C. Mayr. Conceptual predesign — bridging
the gap between requirements and conceptual design. In3rd Int. Conf. on
Requirements Engineering – ICRE’98, pages 90–100, Colorado Springs,
Colorado, April 1998.

[KST03] Roland Kaschek, Klaus-Dieter Schewe, and Bernhard Thalheim. Mod-
elling contexts in web information systems. In15th Int. Conf. on Ad-
vanced Information Systems Engineering – CAiSE’03, LNCS 2681, Kla-
genfurt, Austria, June 2003.

[LAN00] Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. A formal lan-
guage for composition. In Gary T. Leavens and Murali Sitaraman, ed-
itors, Foundations of component-based systems, chapter 4. Cambridge
University Press, 2000.

[Lew00] Jana Lewerenz.Human-Computer Interaction in Heterogeneous and Dy-
namic Environments: A Framework for its Conceptual and Automatic
Customisation. PhD thesis, Brandenburg University of Technology at
Cottbus, Germany, 2000.

[LS00] Gary T. Leavens and Murali Sitaraman, editors.Foundations of
component-based systems. Cambridge University Press, 2000.

[LST99] Jana Lewerenz, Klaus-Dieter Schewe, and Bernhard Thalheim. Mod-
elling data warehouses and OLAP applications by means of dialog ob-
jects. In18th Int. Conf. on Conceptual Modeling – ER’99, LNCS 1728.
Springer, Berlin, November 1999.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jen-
nifer Widom. Lore: A database management system for semistructured
data. InACM SIGMOD International Conference on Management of
Data, volume 26(3), pages 54–66, Tucson, Arizona, May 1997. ACM
Press.

170 BIBLIOGRAPHY

[MAM03] Paolo Merialdo, Paolo Atzeni, and Giansalvatore Mecca. Design and
development of data-intensive web sites: The araneus approach.ACM
Transactions on Internet Technology, 3(1):49–92, 2003.

[MB] John McCarthy and Sasa Buvač. Formalizing context (expanded notes).
http://www-formal.stanford.edu/jmc/mccarthy-buvac-98/index.html.

[McC93] John McCarthy. Notes on formalizing context. InInt. Joint Conf. on
Artificial Intelligence, Chamb́ery, France, January 1993.

[McI68] M. Douglas McIllroy. Mass produced software components. InNATO
Conference on Software Engineering, pages 138–155, Garmisch, Ger-
many, October 1968. Scientific Affairs Division, NATO.

[New68] William M. Newman. A system for interactive graphical programming.
In Spring Joint Computer Conf. – AFIPS, pages 47–54, Atlantic City,
New Jersey, April 1968. Thomson Book Company, Washington D.C.

[Nie94] Jakob Nielsen.Usability Engineering. Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1994.

[Nie00] Jakob Nielsen. Designing Web Usability. Indianapolis, New Riders,
2000.

[NL95] William M. Newman and Michael G. Lamming.Interactive System De-
sign. Addison-Wesley, 1995.

[NL00] Mark W. Newman and James A. Landay. Sitemaps, storyboards, and
specifications: A sketch of web site design practice. InInt. Conf. on De-
signing Interactive Systems: Processes, Practices, Methods, Techniques
— DIS’00, pages 263–274. ACM Press, New York, August 2000.

[Par69] David L. Parnas. On the use of transition diagrams in the design of a
user interface for an interactive computer system. In24th National ACM
Conference, pages 379–385, 1969.

[Rad01] Michael Radigk.Automatische Generierung graphischer Userinterfaces
unter Beachtung der Benutzer- und Gerätemodelle durch Entwicklung
einer Treiberhierarchie. Master thesis, Brandenburg University of Tech-
nology at Cottbus, Germany, 2001. (German).

[Rei98] Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and
Analysis with Petri Nets. Springer, 1998.

[RSL99] Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. Web applica-
tion models are more than conceptual models. InInt. Workshop on the
World-Wide Web and Conceptual Modeling – WWWCM’99, LNCS 1727.
Springer, Berlin, November 1999.

BIBLIOGRAPHY 171

[RSL00] Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. User interface
patterns for hypermedia application. InInt. Working Conf. on Advanced
Visual Interfaces – AVI’00, pages 136–142, Palermo, Italy, May 2000.
ACM Press, New York.

[See98] Kati Seelig.Zielplattformunabḧangige Konzepte für die Dialogverwal-
tung in einem integrativen Entwurfsmodell. Student research report,
Brandenburg University of Technology at Cottbus, Germany, 1998. (Ger-
man).

[SF02] Ahmed Seffah and Peter Forbrig. Multiple user interfaces: Towards a
task-driven and patterns-oriented design model. In9th Int. Workshop
on Interactive Systems. Design, Specification, and Verification – DSV-
IS 2002, LNCS 2545, pages 118–132, Rostock, Germany, June 2002.
Springer.

[SN99] Jean-Guy Schneider and Oscar Nierstrasz. Components, scripts and glue.
In Leonor Barroca, Jon Hall, and Patrick Hall, editors,Software Archi-
tectures – Advances and Applications, chapter 2, pages 13–25. Springer,
1999.

[Sow00] John F. Sowa.Knowledge Representation: Logical, philosophical, and
computational foundations. Brooks/Cole, 2000.

[SR98] Daniel Schwabe and Gustavo Rossi. Developing hypermedia applications
using OOHDM. InWorkshop on Hypermedia Development, Pittsburgh,
Pennsylvania, June 1998.

[SREL00] Daniel Schwabe, Gustavo Rossi, Luiselena Esmeraldo, and Fernando
Lyardet. Web design frameworks: An approach to improve reuse in web
applications. InInt. Workshop on Web Engineering at the 9th Int. World-
Wide Web Conf., Amsterdam, The Netherlands, May 2000. Springer.

[Sri01] Srinath Srinivasa.An Algebra of Fixpoints for Characterizing Interactive
Behavior of Information Systems. PhD thesis, Brandenburg University of
Technology at Cottbus, Germany, 2001.

[ST98] Klaus-Dieter Schewe and Bernhard Thalheim. Limitations of rule trig-
gering systems for integrity maintenance in the context of transition spec-
ifications.Acta Cybernetica, 13(3):277–304, 1998.

[ST99] Klaus-Dieter Schewe and Bernhard Thalheim. Towards a theory of con-
sistency enforcement.Acta Informatica, 36(2):97–141, 1999.

[Szy98] Clemens A. Szyperski. Emerging component software technologies – a
strategic comparison.Software - Concepts and Tools, 19(1):2–10, 1998.

172 BIBLIOGRAPHY

[Szy02] Clemens A. Szyperski.Component Software. Beyond object-oriented
programming. Addison-Wesley, 2nd edition, 2002.

[TACS98] Manos Theodorakis, Anastasia Analyti, Panos Constantopoulos, and
Nicolas Spyratos. Context in information bases. In3rd Int. Conf. on Co-
operative Information Systems – CoopIS’98, New York City, New York,
August 1998. IEEE Computer Society Press.

[TBF+98] Bernhard Thalheim, Cornell Binder, Thomas Feyer, Thomas Gutacker,
and Srinath Srinivasa. Konzeptioneller Entwurf und Gestaltung von
internet- und kabelnetzbasierten Bürgerinformationsdiensten. InNet-
zinfrastrukturen und Anwendugen für die Informationsgesellschaft –
INFO’98, Potsdam, Germany, October 1998. (German).

[TD03] Bernhard Thalheim and Antje D̈usterḧoft. Systematic development of in-
ternet site: Extending approaches of conceptual modeling. In Patrick van
Bommel, editor,Information Modeling for Internet Applications, chap-
ter 5, pages 80–102. Idea Group Publications, 2003.

[Tha93] Bernhard Thalheim. Fundamentals of entity-relationship modelling.An-
nals of Mathematics and Artificial Intelligence, 7(1–4):197–256, 1993.

[Tha00] Bernhard Thalheim. Entity-Relationship Modeling – Foundations of
Database Technology. Springer, Heidelberg, 2000.

[Tho98] Richmond H. Thomason. Representing and reasoning with context.
In Int. Conf. on Artificial Intelligence and Symbolic Computation –
AISC’98, LNCS 1476, pages 29–41, New York City, New York, Septem-
ber 1998. Springer.

[Tid98] Jenifer Tidwell. Interaction design patterns. InInt. Conf. on Pattern Lan-
guages of Programming – PLoP’98, Monticello, Illinois, 1998. extended
version at www.mit.edu/˜jtidwell/interactionpatterns.html.

[VLF00] Vojtech Vestenicky, Jana Lewerenz, and Thomas Feyer. Modelling the
modification component of an information service. In4th East-European
Conference on Advances in Databases and Information Systems – AD-
BIS’00, Proceedings of Chalenges, pages 195–204, Prague, Czech Re-
public, September 2000. Matfyz Press.

[Was85] Anthony I. Wasserman. Extending state transition diagrams for the spec-
ification of human-computer interaction.IEEE Transactions on Software
Engineering, 11(8):699–713, 1985.

[WT00a] Martin van Welie and Hallvard Trætteberg. Interaction patterns in user
interfaces. InPattern Languages in Program Design – PLoP’00, Monti-
cello, Illinois, August 2000.

BIBLIOGRAPHY 173

[WT00b] Martin van Welie and Hallvard Trætteberg. Patterns as tools for user
interface design. InInt. Workshop on Tools for Working with Guidelines,
pages 313–324, Biarritz, France, October 2000.

