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Preface 

 

This dissertation on the applicability of imaging spectrometry for contaminated site 
detection and investigation is based on an idea of my advisor, Prof. Dr.-Ing. 
Wolfgang Spyra, who considered imaging spectrometry as a tool for contaminated 
site detection and investigation as early as 1998. I am grateful that he entrusted this 
interesting topic to me and gave me the freedom to work largely independent on it. 
Also, I am grateful for his advice and discussions on the directions to take.  

Due to the complexity and huge variety of “contaminated sites” that will be outlined 
in this thesis, it was found necessary to confine the work to the detection and 
investigation of one ubiquitous type of contamination: fuel hydrocarbon 
contaminations of soils. However, the general applicability of imaging spectrometry 
with respect to other important types of contaminated sites is considered and briefly 
discussed herein. 

Because this dissertation is likely to be the basis for application projects of imaging 
spectrometry for contaminated site detection and investigation, and also the starting 
point for additional research work, it is written to provide a comprehensive basis and 
contain all necessary information for these purposes. Therefore, some information, in 
particular in the introductory part on optical spectrometry and remote sensing 
imaging spectrometry, might be well-known to some readers and can be skipped 
when reading this work. All relevant data acquired during this work are found on the 
enclosed CD-ROM in different data formats ready for use in spectral libraries or for 
additional research. Therefore, it does not contain an extensive appendix with spectra 
and other data. 

This dissertation describes work done between May 2000 and March 2005 at the 
Chair of Chemical Engineering and Hazardous Wastes of Brandenburg University of 
Technology at Cottbus, under the supervision of Prof. Dr.-Ing. Wolfgang Spyra. 

Except where stated otherwise, this dissertation is the result of my own work and 
contains nothing which is the outcome of work done in collaboration. This 
dissertation has not been submitted in whole or in part for any degree or diploma at 
this or any other university. Also, no parts of this dissertation have been published 
previously. 

I would like to thank my colleagues, friends and family for their support during the 
time that I spent working on this dissertation, in particular for taking over parts of my 
tasks and duties during the final months of its realization. 

 
 
Kay Winkelmann 
April 2005 
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Abstract 
Based on laboratory investigations and data interpretation experiments, this study 
investigates the applicability of remote sensing in general and imaging spectrometry in 
particular, for contaminated site detection and investigation with a focus on fuel hydrocarbon 
soil contaminations. 

Laboratory experiments were conducted to obtain reflectance spectra of organic and 
inorganic chemicals, natural and man-made materials, and twelve selected organic 
contaminants at three different concentrations in seven different soil types (sands, clays, 
organic soils) at three different moisture levels in a range of wavelengths from 0.38 µm to 
2.5 µm. Based on the results, characteristic absorption features of different organic 
chemicals as well as natural and man-made materials are described, detection limits for fuel 
hydrocarbon contaminants in different soil types at different moisture levels are defined, and 
the separability of hydrocarbon soil contaminations from other hydrocarbon-bearing 
materials is described.  

Data interpretation experiments using an imaging spectrometry dataset were conducted to 
assess the applicability of established data interpretation algorithms for imaging 
spectrometry data and to develop a method of detecting and separating different classes of 
hydrocarbons in imaging spectrometry datasets. A detection method based on characteristic 
band differences with respect to aliphatic and aromatic hydrocarbon absorption features is 
proposed. 

 

Zusammenfassung 
Gegenstand dieser Arbeit ist die Untersuchung der Anwendbarkeit von Methoden der 
Fernerkundung, insbesondere der Anwendung der abbildenden Spektrometrie zur Detektion 
und Untersuchung von Mineralölkohlenwasserstoff-Kontaminationen von Böden. 

Laboruntersuchungen zur Gewinnung von Spektren von organischen und anorganischen 
Stoffen, natürlichen und anthropogenen Materialien sowie zwölf ausgewählten 
Kontaminanten in drei Konzentrationsstufen in sieben unterschiedlichen Bodentypen (Sande, 
Tone, organische Böden) mit unterschiedlichen Bodenfeuchtegehalten im Bereich von  
0,38 µm bis 2,5 µm wurden durchgeführt. Aufgrund der Ergebnisse dieser Versuche werden 
charakteristische Absorptionsmerkmale von verschiedenen Gruppen organischer Stoffe und 
Materialien anthropogenen und natürlichen Ursprungs beschrieben, Detektionsgrenzen von 
organischen Schadstoffen in kontaminierten Böden definiert und die Unterscheidbarkeit von 
Mineralölkohlenwasserstoff-Bodenkontaminationen von anderen organischen Materialien 
untersucht. 

Versuche zur Datenauswertung von abbildenden Spektrometerdaten wurden durchgeführt, 
um die Anwendbarkeit von bestehenden Interpretationsmethoden von abbildenden 
Spektrometerdaten für die Detektion und Separierung von unterschiedlichen 
Kohlenwasserstoffmaterialien zu untersuchen. Eine Methode zur differenzierten Detektion 
von aliphatischen und aromatischen Kohlenwasserstoffmaterialien in abbildenden 
Spektrometerdaten basierend auf charakteristischen Absorptionsmerkmalen wurde 
entwickelt. 
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1 - Introduction 
 

Contaminated areas on industrial and military brownfields, soil contaminated by 
accidental or deliberate release of organic or inorganic chemicals, and salinized soils 
pose severe problems worldwide. Basic natural resources such as groundwater and 
soil that are the basis for human life and intact ecosystems are endangered in many 
regions of the world due to increasing anthropogenic contamination. 

The main areas affected are metropolitan and industrial centers and their 
surroundings in both industrialized and developing countries worldwide. The causes 
of contaminations, however, are different in industrialized and developing countries. 

In industrialized countries, both the economic structural changes from industrial 
production towards service-oriented societies, and the end of the Cold War in the 
early 1990s left large industrial facilities and military installations abandoned. These 
sites – several thousand square kilometers in Germany alone – typically lie fallow 
after closure. Although environmental legislation requires investigation and 
remediation of such sites in order to make them available for reuse often nothing 
happens for decades. In most cases, the sites fall into a state of hibernation. This state 
of hibernation often is due to legal uncertainties for former owners and potential 
investors concerning responsibilities and costs for site investigation and site clean-
up. 

In developing countries, the reasons for the contamination of natural resources are 
different. A lack of environmental legislation or poor enforcement of existing 
environmental legislation, poor access to (expensive) environmental technology, 
overexploitation or uncontrolled exploitation of natural resources, requirements of 
the economic catching-up process, the price regime at international commodity 
markets, and basic needs of a growing population are some of the reasons for 
pollution and overexploitation of the environment in urban and rural areas. 

Despite differing reasons for the remediation and redevelopment of brownfields and 
soil contaminations in developing and industrialized countries, these are quite similar 
from a scientific point of view taking into account chemistry, pedology, geology, 
hydrogeology and toxicology. They all represent a distribution of typically low but 
varying amounts of organic or inorganic contaminants of anthropogenic origin in 
environmental abiotic media, in particular soil and water. The contaminated media 
may be hidden in the subsurface or exposed at the surface – thus soils may or may 
not be open to direct access. Depending on climate, soil properties and the intensity 
of a contamination, soils may or not be covered by vegetation. 

Contaminated sites may include any of the following: large industrial areas (steel 
production, coal conversion, energy production, chemical and pharmaceutical 
industry, glass production, galvanization, etc.), mining areas (salts, ores, coal, tar 
sands – surface and subsurface mining), crude oil production and petroleum refining 
facilities, controlled waste dumps or uncontrolled burials containing liquid and solid 
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wastes (municipal wastes, industrial wastes, overburden), and post-war areas 
(battlefields, military training areas, armament factories, etc.). In some cases, rural 
agricultural areas might also be considered contaminated. This may be due to 
salinization from inappropriate irrigation or fertilization, excessive use of pesticides, 
or airborne contaminants released from nearby industrial areas. Depending on the 
region considered, one or more of these typical contaminated sites may occur or 
predominate. 

With the above considerations, it becomes clear that contaminated sites are a globally 
relevant problem, endangering many vital environmental resources such as drinking 
water and arable land. This problem affects industrialized countries as well as 
developing countries with varying regional patterns. 

Contaminants are as diverse as the variety of chemical substances invented and used. 
A substance’s significance as an environmental contaminant is determined by the 
amount used and/or its human or environmental toxicity. Its physical and chemical 
properties determine its behavior once released into the environment. It follows that 
that fuel hydrocarbons (crude oil and its refinery products), which are the group of 
chemicals most widely used worldwide as fuels, lubricants, solvents and basic 
substances in chemical industry, are also the most important contaminants 
worldwide. Besides fuel hydrocarbons, there are other organic and inorganic 
chemicals that are of importance as contaminants. These will be considered later in 
more detail. 

In many countries, a methodological approach for the treatment of contaminated sites 
has been developed. It traditionally consists of several steps including site 
registration, historic investigation, sampling and non-sampling site investigation, risk 
assessment, remediation planning, site clean-up and remediation, and finally, 
monitoring the success of the remediation. While this approach has proven 
successful for tens of thousands of sites worldwide, problems remain in particular 
with respect to the investigation of large industrial or military brownfields. These 
sites, which typically comprise from one or two square kilometers to sometimes 
more than two hundred square kilometers, are difficult to deal with using the 
traditional site investigation and clean-up approach outlined above. Historic 
investigations may still be possible for these sites and provide useful results, 
depending on secrecy of the facility and the availability of historic files, maps and 
aerial photographs. However, the costs of field sampling and chemical analysis often 
are economically impossible if applied comprehensively on the site. 

The costs for sampling and analysis could be substantially reduced if an alternative 
means of detection could be used to locate “hot spots” with high contaminant 
concentrations on these sites. By using non-contact technologies for overview 
investigation, the area that requires sampling and analysis could be dramatically 
reduced, thus reducing the investigation costs to a similar extent. 

The Chair of Chemical Engineering and Hazardous Wastes of the Brandenburg 
University of Technology at Cottbus considers remote sensing techniques one 



 3

possible approach to achieve this objective. During recent years, the work of the site 
investigation group of the Chair has focused on different remote sensing techniques, 
investigating them for their suitability for the investigation of large industrial and 
military brownfield with respect to land use analysis and contamination (“hot spot”) 
detection and mapping. Among the methods and systems tested were airborne laser 
scanning, thermal remote sensing, color infrared aerial photographs, multispectral 
imaging and imaging spectrometry (also known as hyperspectral imaging). 

Imaging spectrometry means the “acquisition of images in hundreds of registered, 
contiguous spectral bands such that for each picture element of an image it is 
possible to derive a complete reflectance spectrum” [Goetz 1992]. Typically, 
between 100 and 300 spectral bands with a bandwidth of two to ten nanometers are 
sampled in the 400 nm to 2,500 nm wavelength region. Recent applications of 
imaging spectrometry include, among others, mineralogical exploration, geologic 
mapping, vegetation analysis for precision agriculture, military target detection and 
terrain analysis, soil mapping, vegetation mapping, monitoring of inland, coastal and 
marine water bodies, and other environmental applications [e.g., Curran 1994, 
Clevers 2001, Messinger 2004, Pavlin 1996, Ben-Dor 2001a, Curran 2000, van der 
Meer 2001c, Gallagher 2003b]. 

The objective of this study is to investigate the fundamentals of optical spectrometry 
in the visible to mid-infrared wavelength regions for the detection of soil 
contaminations. In doing this, I will assess the applicability of imaging spectrometry 
for overview site investigations and the detection and mapping of hot spots. The 
study focuses on investigations of brownfields or other possibly contaminated sites 
with particular consideration of fuel hydrocarbon soil contaminations. 

The problem addressed in this thesis can be summarized as follows: Detection of low 
contaminant concentrations in a soil matrix with varying background parameters 
such as soil constituents, soil moisture and vegetation cover by means of 
environmental remote sensing, in particular imaging spectrometry. 

The subsequent sections of this thesis will:  

• Consider different types of common contaminated sites and the spatial 
distribution of contaminants and indicators of contamination in three-
dimensional space with a focus on fuel hydrocarbon contaminations as the 
most abundant contamination type world-wide (section 2) 

• Outline the principles of imaging spectrometry and describe the absorption 
features of contaminants as target materials to be detected in the  
0.4 µm – 2.5 µm wavelength region with a focus on fuel hydrocarbons and 
data interpretation techniques available for the interpretation of complex 
imaging spectrometry datasets (section 3) 

• Give a summary of state-of-the-art applications of imaging spectrometry to 
environmental problems (section 4) 
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• Discuss the general applicability and instrument requirements (spatial, 
spectral or radiometric resolution) of imaging spectrometry for contaminated 
site detection and investigation, considering the organic contaminants, their 
concentration, the composition and moisture of the contaminated materials 
(soils), the type of surface cover, and the separability of fuel hydrocarbons 
from other hydrocarbon-bearing materials (in particular plastics, vegetation 
and wood) (section 5) 

• Describe and discuss results from laboratory and field experiments carried 
out to determine the detection threshold of different contaminants of the fuel 
hydrocarbon group in different soil types with varying soil moisture content 
(section 6) 

• Investigate the detectability of fuel hydrocarbons and related materials in an 
imaging spectrometer dataset of the former military training area Döberitzer 
Heide using different data interpretation approaches described in section 3, 
and develop a method for the improved detection and separation of 
hydrocarbon classes in imaging spectrometry data (section 7) 

• Based on the description of typical contaminated sites and spatial distribution 
patterns of soil contaminations (section 2), the results obtained in the 
laboratory and field experiments (section 6) and the interpretation of the 
imaging spectrometer dataset (section 7) conclude on the possibilities and 
limitations of imaging spectrometry for contaminated site detection and 
investigation (section 8) 

• Give recommendations for applications of imaging spectrometry in the field 
of contaminated site detection and investigation, outline fields for future 
research with respect to the application of imaging spectrometry for 
contaminated site detection and investigation and develop visions for the 
application of imaging spectrometry and its integration with other data and 
tools for real-time environmental monitoring (section 8) 
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2 – The problem of contaminated site investigation 
 

According to recently published data, in Germany alone there are more than 360,000 
civilian sites that are considered possibly contaminated sites. This number comprises 
approximately 260,000 industrial brownfields and 100,000 old waste deposits. It 
does not include armament facilities and military installations such as barracks, 
airfields and military training areas [SRU 2004]. The number of contaminated sites 
that resulted from armament production was estimated at 5,000 – 5,500 in 1993 
[Thieme 1993]. However, for the federal state of Brandenburg (Germany) with a 
total number of 21,300 potentially contaminated sites alone, about 42 % of these sites 
(almost 9,000 sites) are listed as former military sites or sites of armament 
production [MLUR 1998]. 

For the United States, it is not possible to derive a total number of potentially 
contaminated sites due to a diversified allocation of responsibilities to different 
national, federal, regional and private institutions. However, two numbers may 
illustrate that the situation in the US can be considered similar to that in Germany. 
The United States Environmental Protection Agency reports nearly 440,000 
confirmed underground storage tank releases between 1988 and 2003, 303,000 of 
which have since been cleaned up. Every year between 6,000 and 14,000 new 
leakages from underground storage tanks are reported in the United States. Most of 
the underground storage tank leakages include a release of fuel hydrocarbons into 
both soil and groundwater [US EPA 2004a]. Also for the United States, more than 
90,000 sites of improper hazardous waste disposal are reported. These sites include 
the disposal of hazardous organic and inorganic chemicals as well as the improper 
disposal of radioactive wastes. The total cleanup costs for these sites are estimated at 
a minimum of $195 billion [Watts 1997]. For the period 2004 – 2033, the US 
Environmental Protection Agency estimates a total number of 235,000 – 355,000 
(average 294,000) hazardous wastes sites that will need to be remediated in the 
United States, assuming current regulations and practice. This number includes 
77,000 sites that have already been discovered plus a projected (average) 217,000 
sites that will be discovered in the future based on the rate of discoveries in the late 
1990s and early 2000s. The total cost for the site investigation and cleanup efforts in 
the 2004 – 2033 period is estimated at 170 – 250 billion US-$ [US EPA 2004b]. 

One must note that the numbers given for Germany and the United States are not 
comparable. While the German statistics on contaminated sites take only those sites 
into account that have already been registered as potential contaminated sites, the 
numbers of the US Environmental Protection Agency are estimates of future clean-
up needs based on the experience of the past decade. For the given number of 
potential contaminated sites in Germany, it is expected from experience that only  
10 – 15 % of the recent 360,000 potential contaminated sites will undergo detailed 
site investigation, risk assessment and remediation (i.e. 36,000 – 54,000 potential 
sites) [SRU 2004]. 
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In most cases, armament factories and military installations comprising severe 
contamination of soil and groundwater are omitted from the statistical data or site 
clean-up measures given to civilian sites for two reasons. First, these sites often 
include the additional hazard of explosives, warfare agents, unexploded ordnance 
and abandoned ammunitions. Due to the risks involved with these hazards, they must 
be addressed separately and have a priority over the investigation and remediation of 
conventional contamination of environmental media. Second, the conventional 
approach for site-investigation, based on technologies developed to deal with 
common contaminants, sources and contamination patterns, is usually non-
transferable to armament factories, military installations and facilities. A historical 
investigation of a non-military brownfield typically includes resources such as site 
inspections, analysis of company files, maps, aerial photographs etc., which often 
yield useful results upon which further testing can be based. These resources, 
however, are often unavailable for military installations due to secrecy reasons. 
Furthermore, the pattern and intensity of land use, as well as the hazardous materials 
handled at armament factories and military installations were often subject to 
fluctuations influenced by the onset of wars or expansions in military and warfare 
technology. Military and armament facilities are included in this investigation for 
two important reasons. First, the purpose of this thesis is to investigate the 
applicability of a remote sensing, i.e. a non-contact investigation technique to 
contaminated site investigation. Therefore, contaminations of soil can be addressed 
separately from explosives, ammunition, and warfare agents, since the use of remote 
sensing techniques prevents human contact with these hazards. Second, new 
approaches are needed to take into account the historical significance of 
contaminated sites resulting from armament and military use in the pasts. The 
dimension of this problem becomes clear when considering the federal state of 
Brandenburg (Germany). A total of 2,000 square kilometers (approximately 10 % of 
the state area) have been used for armament and military facilities in the past, former 
military training areas making up the largest part of this portion [MLUR 1998]. Not 
included in this number are the major battlefields of the final stages of World War II, 
which still pose severe hazards in some areas of the state. 
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2.1 – Types and characteristics of contaminated sites 

In the United States and Germany alone, the huge number of contaminated sites of 
different origins indicate the dimension of the problem and the fact that contaminated 
sites may originate from every stage or sector of modern industrial economy: 

• Raw material production (mining, crude oil production, industrial agriculture) 

• Energy production (electricity generation, conversion of fuels, etc.) 

• Production of intermediate products (chemical industry, steel production, 
etc.) 

• Construction 

• Production of industrial, military and consuming goods 

• Crafts and service industry (transport, cleaning, building, painting, etc.) 

• Waste disposal 

Important industrial brownfields, contaminated sites and hazardous wastes sites 
subject to site investigation, site assessment and remediation efforts are, among 
others 

• Landfills and uncontrolled burials of household wastes 

• Landfills and uncontrolled burials of industrial wastes 

• Oil fields 

• Underground and open-cast mines (metals, coal, tar sands, etc.), in particular 
when associated overburden dumps and technical facilities 

• Industrial production facilities where hazardous materials have been used for 
production or hazardous wastes were usually generated during the production 
(e.g. refineries, coking plants, glassworks, electroplating plants, 
pharmaceutical and chemical industry, etc.) 

• Military training areas 

• Armament factories, in particular plants for the production of explosives, 
chemical warfare agents and nuclear weapons 

• Accidental spills during the transport and intermediate storage of hazardous 
materials 

With respect to the objective of this thesis, the investigation of imaging spectrometry 
and its applicability for contaminated site investigation, the terms “industrial 
brownfields”, “hazardous wastes”, and “potentially contaminated sites” are 
subsumed under the term “contaminated sites”. The term “contaminated sites” as 
used in this thesis refers to suspected or existing contamination of soil and/or 
groundwater with organic or inorganic contaminants regardless of their sources or 
development. 
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The investigation and remediation of contaminated sites is typically divided into 
several stages. A typical approach that may vary to some extend from country to 
country and case to case includes (1) a registration of suspicious sites based on 
formal evidence, (2) a historical investigation to assess the potential of 
contamination, (3) an overview (sampling and analysis) investigation to confirm or 
preclude the contamination of soil or groundwater, (4) a detailed investigation 
applying non-sampling, sampling and analysis techniques to develop a detailed 
description a confirmed contamination, (5) a risk assessment based on the results of 
the detailed investigation, (6) an assessment of applicable remediation technologies, 
the determination of remediation targets and remediation planning, (7) remediation, 
and (8) a post-remediation monitoring. (1) – (5) are sometimes referred to with the 
more general term “site characterization”. 

Site registration, site investigation and characterization, and risk assessment are 
usually based on historic investigations, sampling, and analysis investigations. 
Historic investigations typically include historical maps, aerial photographs, 
company and administration files, and other written information such as classified 
directories. Based on the information retrieved, suspicious areas on a potential 
contaminated site may be identified and in the next step, the overview investigation, 
samples from potentially affected media such as soil and groundwater might be 
taken. These samples are then analyzed using state-of-the-art instrumental analytical 
methods. If a suspected contamination is verified, detailed site investigation with 
systematic sampling of affected media (usually soil and groundwater) and 
comprehensive chemical analyses are part of the next step: detailed site investigation 
and risk assessment. The objective of this step is to derive a comprehensive and 
detailed description of the contamination at a site in order to enable a precise risk 
assessment. Apart from sampling and analysis techniques, non-sampling 
investigation methods such as geophysics and remote sensing might also be applied 
for detailed site investigation. Based on experiences from site investigations carried 
out by the Chair of Chemical Engineering and Hazardous Wastes of the Brandenburg 
University of Technology, costs for conventional overview and detailed site 
investigation of a contaminated site using non-sampling, sampling and analysis 
techniques may, depending on the type and depth of the contamination, exceed 
$50,000 per hectare, i.e. $5,000,000 US per square kilometer in case of heavily 
contaminated areas such as the industrial facility Schwarze Pumpe in Brandenburg / 
Northern Saxony (Germany). 

Based on its origin and development, contaminated soil and groundwater must to be 
distinguished into three main classes. These three classes are (1) unsecured deposits 
or deliberate releases of hazardous wastes or materials into the environment, in 
particular onto or into the soil, (2) minimal, usually unintentional leaching of 
hazardous materials into the soil or subsurface water resources over a long period of 
time which, over years, added up to a substantial contamination (e.g. at production 
facilities, where minimal losses can be considered normal and are usually not 
detected), and (3) accidental spills of larger quantities of hazardous materials over a 
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short period of time. In any case, the result is the anthropogenic contamination of soil 
and, through migration of the contaminants through the vadose zone into the 
saturated zone, also the contamination of groundwater with one or more organic or 
inorganic contaminants. 

Although we define “contaminated sites” generally as areas where hazardous 
materials have spilled into soil and/or groundwater or have been deposited 
improperly, it should be stressed that every contaminated site is unique, even if the 
environmental media affected and the contaminants involved are identical. Apart 
from the contaminant type, their concentration and mixture, contaminations occur in 
varying geological conditions (varying combinations of solid rock or sedimentary 
layers), in different soil types with differing quantities of basic compounds such as 
silica sand, clay minerals, organic matter, iron, and soil moisture, and in different 
hydrogeological environments. External conditions such as climate (e.g., 
temperatures, precipitation), aside from the principal chemical and physical 
properties of the involved contaminants and matrices, may determine the 
environmental fate of the contaminants. 

Contaminated sites may be covered by vegetation or by built structures such as 
roads, technological installations, and buildings. If a contaminated site is covered by 
vegetation, the rhizosphere of the vegetation may or may not reach into contaminated 
soil or groundwater. Vegetation covering contaminated sites may be different from 
the vegetation in a nearby uncontaminated area, and may exhibit vegetation stress or 
even enhanced growth if the anthropogenic contaminant is a nutrient to a specific 
vegetation species. Contamination may also inhibit normal plant growth, leaving 
open voids in an otherwise closed canopy, or supporting specialized species different 
from the native vegetation. If the plant cover of a contaminated site or soil is 
different from that of the uncontaminated area, it can be regarded as a vegetation 
anomaly. 

The size of a contaminated site can vary from a few square meters to several hundred 
square kilometers. It may comprise a single source or multiple sources with similar 
or different contaminants. A contamination may affect soil, groundwater or both. The 
surface structure or macro scale “texture” of a contaminated site may be 
homogeneous over large areas or heterogeneous with many different, small and 
diversified structures. The following examples will illustrate typical contaminated 
sites and their characteristics as these are important for subsequent considerations on 
the applicability of imaging spectrometry for contaminated site investigation. The 
sites described have been subject to projects of the Chair of Chemical Engineering 
and Hazardous Wastes of the Brandenburg University of Technology Cottbus during 
the years 2000 – 2004. 
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Oilfields, Absheron peninsula, Azerbaijan 

Industrial Sector:  Crude oil production 

Location:  Absheron Peninsula / Caspian Sea, larger Baku area, 
Azerbaijan 

Plants: Oil production facilities, pipelines, storage facilities, refineries 

Contaminants: Crude oil, fuel hydrocarbons 

Operation time: ca. 1850 – today (industrial crude oil production) 

Area: ca. 200 sq. km 

Site description:  Onshore oil production from shallow wells since the medieval 
ages. Industrial production of crude oil since the middle of the 
19th century. In the late 19th century, the oilfields around Baku 
on the Absheron Peninsula produced more than 11 million 
tons of light crude oil, nearly 50 % of the annual world 
production at that time [Mir-Babayev 2002, Narimanov 1995, 
Jacobson 1999]. 

 Today, light crude oil is produced from onshore fields on the 
Absheron Peninsula together with salty ground water from 
wells and separated by density separation in staple tanks. 
Significant leakage of both crude oil and salt water occurs 
from wells, tanks and pipelines. Drilling mud containing crude 
oil is usually deposited near the production wells. Carbonate 
and sand soils on the oilfields are usually highly contaminated 
with light crude oil. Fuel hydrocarbon concentrations in soil is 
typically between 20 g/kg and 50 g/kg but may also exceed 
100 g/kg. Often, liquid crude oil is found at the surface in 
combination with salt water and salt crystallizations. Plant 
cover is absent on the oil fields [Winkelmann 2003a]. 
Contamination of this type and genesis has occurred ever since 
the start of oil production in the mid-1850s [Mir-Babayev 
2002]. Widespread and intense contamination can be found 
over extremely large areas on the whole Absheron pensinsula.  

 The oil fields are located in and around the Baku area on the 
Absheron peninsula which extends from the lower Caucasus 
into the Caspian Sea. The oil fields reach well into urban 
areas. However, the oil fields themselves are usually large and 
relatively homogeneous areas that are separated from 
settlements and other industrial or commercial facilities 
[Winkelmann 2003a]. 
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Figure 2-1: Oilfields on the Absheron Peninsula in Azerbaijan. Top: Subset of an IKONOS 
satellite image (false-color-infrared) of the northern suburbs of Baku, the capital of Azerbaijan 
with a spatial resolution of four meters. The belt of oilfields is clearly visible in this satellite 
image, appearing grayish to black without any vegetation. Bottom left: Enlargement of a part of 
the oilfields (IKONOS PAN, 1 meter spatial resolution). Staple tanks and crude oil spills and 
basins are clearly visible, intersected by a network of unpaved roads. Bottom left: Oil pump in 
the area with typical surrounding soil contaminations. 
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Industrial site “Schwarze Pumpe”, Brandenburg/Saxony, Germany 

Industrial Sector: Conversion of lignitic coal (brown / soft coal) 

Location: 30 km south of Cottbus, Brandenburg, Germany 

Plants: Briquetting plants, power plants, coking plant, gasworks, 
workshops, wastewater treatment plants 

Contaminants: Polynuclear aromatic hydrocarbons (PAH), phenols, benzene, 
fuel hydrocarbons 

Operation time: ca. 1950 – today 

Area: ca. 6 sq. km 

Site description:  Conversion of lignitic coal into electricity, lignite coke, town 
gas, and briquettes. Conversion plants for electricity 
generation, briquetting, coking and gasification plus auxiliary 
installations are part of the industrial site. Workshops and fuel 
storage for nearby open cast lignite mines located on-site. 
Water treatment plants and landfill sites for residual and waste 
products from gasworks and coking plant (in particular tar, 
water containing phenols and benzene) have been erected on-
site and nearby. Gravel pits that were exploited during the 
erection of the industrial facilities in the 1950s were used as 
landfills for tar and other waste products without top or bottom 
sealing. Extensive road and railway networks connect the 
facilities onsite with external landfills and open cast lignite 
mines. Due to lowering for mining, the groundwater table has 
been reduced to an average fifteen metres below ground 
surface. Huge quantities of contaminants have leaked over 
more than 40 years into the subsurface, in particular from a 
relatively small source areas at the gasworks’ gas purification 
installations and the wastewater treatment plant. A large 
groundwater plume of circa four by two kilometers has 
developed with benzene and phenols as the major 
contaminants. Surface contaminations of soils and 
anthropogenic surfaces (roads, ballast road and track beds, 
concrete surfaces) are limited to major transportation pathways 
of waste products. Large areas are sealed with anthropogenic 
materials (concrete, asphalt, pavement, buildings). Several 
smaller groundwater plumes including contaminants such as 
fuel hydrocarbons and chlorinated hydrocarbons originate 
from other installations on the site [Spyra 2001-2004, 
Winkelmann 2001a]. 
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Figure 2-2: Industrial facility Schwarze Pumpe in a panchromatic aerial photograph from 1996. 
As of 2004, many of the old facilities have been demolished, in particular the three old power 
plants, the tar basins, a briquetting plant and parts of the gasworks. A huge groundwater plume 
with high concentrations of benzene and phenols extends from the gasworks purification plant 
to the western border of the facility [Courtesy aerial photograph: Landesvermessung Sachsen 
1996]. 
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Former military training area Döberitzer Heide near Berlin, Germany 

Industrial Sector:  Military training area 

Location: 10 km west of Berlin-Spandau 

Plants: Barracks, workshops, fuel storage facilities, airfield, and firing 
ranges for small arms, artillery and tanks 

Contaminants: Uncontrolled waste and scrap deposits, explosives and 
unexploded ordnance, chemical warfare agents (burials), fuel 
hydrocarbons 

Operation time: ca. 1890 - 1994 

Area: ca. 50 sq. km 

Description: The former military training area Döberitzer Heide was used 
by German forces since approximately 1890 until the end of 
World War II. From the 1950s until 1994 it was used by 
Soviet forces. Since the withdrawal of Soviet forces, a small 
portion of the former military training area (ca. 20 %) serves 
as a training area for the German Bundeswehr. The parts that 
are no longer used for military purposes have become a natural 
reserve in 1994. 

 Due to its proximity to Berlin, the Döberitzer Heide was not 
only used for standard military training (in particular artillery, 
tanks and infantry), but also for the development and testing of 
new warfare technologies. During World War I, the Kaiser 
Wilhelm Institute of Physical Chemistry and Electrochemistry 
used parts of the Döberitzer Heide for testing of newly 
developed chemical warfare agents. During World War II and 
the interwar years, the site was used for the development and 
testing of new infantry weaponry and equipment. 

 Due to long-term military use, land use structures of the 
Döberitzer Heide must be viewed as highly heterogeneous, if 
not chaotic. Intensive shooting exercises with artillery and 
tanks, driving exercises with heavy equipment, blasting of old 
structures and expired ammunition, exercises with vehicles in 
the field including maintenance and digging of emplacements 
and infantry trenches, and the uncontrolled dumping of 
household, commercial and ammunition wastes from three 
major barracks in the neighborhood have created a highly 
diversified landscape. Furthermore, like other military training 
areas, the Döberitzer Heide was regularly restructured to meet 
new the requirements of military strategy and tactics, 
equipment and weaponry. Restructuring included: changes to 
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road systems, the installation of new shooting ranges and the 
closure of old ones, dismantling of old installations and 
buildings and extensive earthworks in order to form the 
training facilities to meet requirements. 

 Therefore, the land use patterns are highly diversified. Typical 
structures, such as unpaved and concrete roads, heather 
landscapes, open soil, moors, succession woodlands of oak, 
alder, birch, poplar and (rarely) pine, old forests, shooting 
ranges, waste deposits, vehicle emplacements etc., change 
from one to another within several meters over the whole site. 

 Based on information gathered in previous investigations, 
uncontrolled waste dumps are usually found in the vicinity of 
one of three barracks on the outskirts of the Döberitzer Heide. 
Unexploded ordnance is found everywhere on the site with 
accumulations on shooting ranges and in the vicinity of 
barracks. However, due to unconventional disposal or 
unknown historical activities, larger amounts of ammunition 
could be found everywhere on the site. Chemical warfare 
ammunition was buried near two known proving grounds used 
during World War I. Soil contaminated with fuel hydrocarbons 
is typically found near filling stations at the barracks or on the 
site and, randomly distributed, over the whole site. However, 
the latter have to be considered as small-scale contaminations 
resulting from field refueling or maintenance exercises 
[Winkelmann 2001d, Spyra 2004]. 
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Figure 2-3: Panchromatic aerial photograph of 1953 of the former military training area 
Döberitzer Heide west of Berlin illustrating the highly diversified and heterogeneous land use 
structures. Today, only the small area in green borders is still used for military training. The 
largest part of the site is now a natural reserve. Today, the open spaces are in large part covered 
by heather and succession forests [Courtesy aerial photograph: Landesvermessung 
Brandenburg]. 
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Uncontrolled waste dump, Rio Unare Basin near Puerto La Cruz, Venezuela 

Industrial Sector:  Waste disposal 

Location: ca. 50 km southwest of Puerto La Cruz, Venezuela in the 
River Unare catchment area 

Plants: None 

Contaminants: Uncontrolled deposit of household and commercial wastes 

Operation time: ca. 1990 - today 

Area: ca. 100 meters by 300 meters 

Description: Household and commercial wastes of all kinds are being 
deposited on an area of circa 100 meters by 300 meters of 
open soil with some minor areas covered by vegetation. 
According to visual inspection, the wastes deposited consist of 
the following major fractions: plastics, metal, organic material, 
wood, paper, and containers containing artificial and natural 
waste materials. Accumulations of wastes are burning or 
smoldering. The maximum age of the waste deposit was 
estimated at ten years. However, as people are obviously 
sorting, re-using and burning parts of the wastes, the age of the 
deposit can not be dated exactly. The groundwater level at the 
site is estimated at two to four meters below ground surface. 
Groundwater contamination is likely [Winkelmann 2001b]. 

 

 
Figure 2-4: Photograph of the uncontrolled wastes dump in the Rio Unare Basin in Venezuela 
with a variety of household and commercial wastes on open soil, in parts burning and 
smoldering. 
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Mingecevir rocket fuel depot, western Azerbaijan 

Industrial Sector:  Military fuel depot 

Location: Western Azerbaijan, 20 km west of Mingecevir, southern 
shoreline of Mingecevir reservoir 

Plants: Storage tanks for several fuels, lubricants and propellants used 
by the military 

Contaminants: Triethylamine, xylidines, isopropyl nitrate, red fuming nitric 
acid 

Operation time: ca. 1960 - today 

Area: ca. 200 meters by 400 meters 

Description: Different fuels (diesel, kerosene, gasoline, lubricants, liquid 
missile propellants, etc.), and liquid missile propellants are 
stored in large storage tanks above surface. An inventory of 
the liquid rocket fuels stored (as of January 2003) stated that 
380 metric tons of oxidizers (red fuming nitric acid), 290 
metric tons of samine (50 % triethylamine + 50 % xylidines) 
and 24 metric tons of isonite (isopropyl nitrate) are stored at 
the Mingecevir depot. The oxidizers are stored in about 15 
large storage tanks (20 – 40 m³), most of which are lying on 
the bear ground. Leaks and traces of spills (rusty-brown, open 
soil) are visible, usually covering an area of about 100 – 200 
square meters around a tank. 

 Samine is stored in similar storage tanks that are lying in an 
open pit two meters deep in contact with groundwater together 
with other tanks containing a mixture of kerosene and 
gasoline. Due to contact with water, the steel tanks show 
severe corrosion. A characteristic smell and floatings on the 
water in the open pit are evidence for leakage of samine and 
fuel hydrocarbons (kerosene, gasoline) from the storage tanks 
in the pit. Because of the high groundwater level of about one 
to two meters below ground surface and the long term storage 
in this condition, groundwater contamination is expected. Dark 
red coloring of the soil surrounding the storage pit point to 
larger spills of samine as the constituents of samine typically 
form dark red complexes with soil constituents. However, the 
dark red colored soil is covered by wind-deposited fine 
sediments, and it becomes only visible if the covering layer 
(about 2 – 5 millimeters thick) is removed [Spyra 2003, 
Winkelmann 2004]. 



 19

 
Figure 2-5: Steel storage tanks containing liquid rocket fuels (samine, kerosene, gasoline), stored 
in an open pit in contact with the groundwater. Fuels that leaked from the tanks are floating on 
the water. 

 
Figure 2-6: Red complexes in the soil indicating leakages of samine. At the Mingecevir depot, 
this indicator of soil contamination with samine is largely covered by wind deposited fine 
sediments. 

 
Figure 2-7: Leaking oxidizer (red fuming nitric acid) tank. Due to the leakage of the acid, soil 
iron has been oxidized – visible through red-brown coloring of the soil. 
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Crude oil spill on marshland soil, Abadan, Iran 

Industrial Sector:  Crude oil spill (pipeline spill) 

Location: Southern Iran on the Iran-Iraq border in the Shatt al-Arab 

Plants: Pipeline crossing the spill area 

Contaminants: Crude oil 

Operation time: NA 

Area: Several square kilometers 

Description: During the Iran-Iraq war in the 1980s, a crude oil pipeline on 
Iranian territory in the Shatt al-Arab was destroyed by Iraqi 
armed forces. Crude oil spilled from the pipeline into a 
protected marshland near the town of Abadan on the shores of 
the Persian Gulf. 

 Large parts of the contamination remain visible at the surface 
(heavy crude oil that solidifies at low temperatures and 
liquefies at high temperatures). In some parts, the 
contaminated marshland soil has been covered by atmospheric 
and maritime deposition of fine sediments. Some parts of the 
contaminated area are sparsely covered by salt marsh plants, in 
particular halophytic grass species [Spyra 2002]. 

 

 
Figure 2-8: Heavy crude oil leaked from a pipeline. destroyed in the Iran-Iraq wars, into 
protected maritime wetlands in the Shatt al-Arab in southern Iran. 
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Illegal waste dump Groß Pinnow, northern Brandenburg, Germany 

Industrial Sector:  Illegal gravel/sand pit and waste dump (waste burials) 

Location: 20 km north of Schwedt, northern Brandenburg 

Plants: None 

Contaminants: Fuel hydrocarbons, asbestos, sewage sludge containing 
increased heavy metal concentrations 

Operation time: ca. 1990 - 1998 

Area: ca. 100 meters by 200 meters 

Description: In the boundary area of a German national park, a building 
contractor established an illegal sand and gravel pit and used 
the pit for the illegal disposal of construction and demolition 
wastes as well as sewage sludge and scrap metal. The site is 
located about 50 meters south of an old, abandoned landfill 
within farmland used for agriculture (2001: rapeseed). The site 
is characterized by topography and vegetation anomalies. The 
prevailing species found on the site are typical to fallow lands. 
Contaminated soil is mainly found at depths between one and 
four meters. The surface is covered with local sediments and 
inert construction wastes similar to sandy soils. Groundwater 
contamination is unlikely considering the low groundwater 
level (> 20 meters below the surface) and the contaminants 
involved [Spyra 2001b]. 

 

 
Figure 2-9: Photograph of the illegal waste burial site within an agricultural field (rapeseed) in 
2001. The burial is characterized by a vegetation anomaly with species typical of fallow land. 
The picture was taken from the old landfill that lies on a natural cliff northwest of the burial 
site. 
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Figure 2-10: False-color infrared aerial photograph of the village of Groß Pinnow, the old 
landfill and the gravel deposit on an agricultural field was illegally exploited and later backfilled 
with wastes [Courtesy aerial photograph: Landesvermessung Brandenburg 1992]. 
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Abandoned glassworks Haidemühl, southern Brandenburg, Germany 

Industrial Sector:  Glassworks 

Location:  ca. 30 km southwest of Cottbus, southern Brandenburg, 
Germany 

Plants: Gasworks for gas production (furnace heating), fuel oil tanks, 
industrial waste dump, two large tank furnaces for glass 
melting, maintenance workshops, storage and processing 
facilities for raw materials 

Contaminants: Tar / polynuclear aromatic hydrocarbons (PAH), heavy metals 
(in particular arsenic, cobalt, chromium, copper), fuel 
hydrocarbons 

Operation time: 1837 - 1996 

Area: ca. 200 meters by 400 meters 

Description: The former glassworks Haidemühl have been producing 
household glassware for more than two centuries with a focus 
on clear, milk, blue and green glass. While in the early days 
wood was used for heating the glass melting furnaces, from 
the 1870ies on, gas produced in two on-site gasworks and later 
heavy fuel oil and gas produced off-site were used as fuels. 
Raw materials used for glass production apart from the major 
inert constituents such as silica sand like arsenic oxide, 
chromium oxide, and cobalt oxide were stored in processed in 
a glass batch house. 

 Most parts of the glassworks facility except the on-site landfill 
are covered by concrete pavements, railroad tracks, and 
buildings.  

 Wastes generated in the production process, such as cullet, 
residues of raw materials and in particular huge quantities of 
ashes and tars from the two on-site gasworks were disposed 
off on two on-site landfills that were continuously enlarged. 
While the smaller landfill has been built over with auxiliary 
facilities, the larger landfill lies fallow and is largely covered 
by grass and similar vegetation with few exceptions where 
deposited glass cullet prevents vegetation growth. 

 Two heavy fuel oil contaminations are located under the tank 
furnace buildings, with both contaminations reaching at least 
eight meters below the basement of the buildings. A third fuel 
oil contamination is expected at the site of surface fuel oil 
tanks that were removed during the 1980s. Groundwater 
contamination is not expected because the groundwater level 
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has been lowered to more than 20 meters below ground for 
decades because of lignite mining in the vicinity. 

 Because of the area of the Haidemühl village was utilized for 
open cast lignite mining, the abandoned facility will be 
demolished in 2006 [Spyra 2001a]. 

 

 
Figure 2-11: Aerial photograph (panchromatic, 1996) of the former Haidemühl glassworks. 
While housing several severe soil contaminations and waste deposits with contaminants like fuel 
hydrocarbons, tars (PAH), and heavy metals, none of these contaminations are directly evident 
at the surface [Courtesy aerial photograph: Landesvermessung Brandenburg]. 
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Ordchodnikidse manganese mining district, Ukraine 

Industrial Sector:  Manganese metallurgy industrial waste dumps 

Location: 130 km southwest of Dnepropetrovsk, central Ukraine 

Plants: Metallurgical plant for extraction of manganese from 
manganese oxide and carbonate ores from nearby open cast 
mines 

Contaminants: Manganese metallurgy wastes, probably heavy metals 

Operation time: ca. 1930 - today 

Area: ca. 500 meters by 1500 meters 

Description: Large quantities of manganese ores (manganese carbonates 
and manganese oxides) are produced from open cast mines in 
the Ordchonikidse region in central Ukraine. The manganese 
ores are processed in a local metallurgical plant in order to 
extract the manganese. Large quantities of metallurgical 
wastes, both liquid and solid, are produced during the 
manganese extraction. Although floating liquid wastes are 
disposed of in large embankments, solid wastes are disposed 
of in a large dump at the factory. 

 An elution of heavy metals associated with the manganese 
ores is reported from the dump. The dump extends over an 
area of approximately 500 meters by 1,500 meters. The make-
shift dump of residuals, resulting from the extraction of 
manganese from its ores, is not covered by any vegetation, 
while the surrounding landscape is dominated by grasslands 
[Winkelmann 2001c]. 
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Small diesel filling station, Rio Unare Basin, Venezuela 

Industrial Sector:  Diesel filling station on unpaved ground with underground 
storage tank 

Location: circa 60 km southwest of Puerto La Cruz, Venezuela 

Plants: Underground storage tank and petrol pump 

Contaminants: Diesel fuel 

Operation time: ca. 1970 – today (estimated) 

Area: ca. 10 meters by 10 meters 

Description: A diesel filling station consisting of an underground storage 
tank and a petrol pump is situated on a country road in the Rio 
Unare catchment area. The filling station, probably used for 
more than 30 years, is erected on unpaved soil. Dark coloring 
and a characteristic smell indicate heavy diesel fuel 
contamination of the soil surrounding the petrol pump on an 
area of approximately 10 by 10 meters. 

 Based on the water level of the nearby river, the groundwater 
level is estimated at three to five meters below ground surface. 
Based on the age of the pump and the degree of the surface 
contamination, a groundwater contamination is likely – 
regardless of unknown leakages from the underground storage 
tank [Winkelmann 2001b]. 

 

 
Figure 2-12: Photo of the small diesel filling station in the Rio Unare Basin in Venezuela, with 
clearly evident heavy diesel fuel contamination. 
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From the above descriptions of some typical contaminated sites it becomes clear that 
contaminated sites are not objects with a homogenous appearance or contamination 
pattern but rather individual, and in some cases even unique situations that occur in 
the anthropogenic environment. However, most contaminations can be categorized in 
one of the following classes by their overall description, outer appearance, and size: 

 

• Large, homogeneous areas with repeated contamination patterns with surface 
expression (examples: oilfields Absheron Peninsula, Azerbaijan; metallurgy 
industrial waste dump near Ordchonikidse, Ukraine) 

• Large, heterogeneous, almost “chaotic” sites with many small contaminations 
that do not necessarily exhibit surface expressions (example: military training 
area Döberitzer Heide) 

• Industrial facilities (built-up areas) with surface sealing of large areas, severe 
contamination but only few surface expressions (example: industrial facility 
Schwarze Pumpe) 

• Areas of covered contamination such as burials or covered landfills (example: 
illegal waste dump / burial Groß Pinnow) 

• Relatively small contaminated areas (hot spots) in larger, uncontaminated 
areas of similar appearances (example: refined product pipeline leakage into 
permeable soil) 

• Relatively small contaminated areas (hot spots) in larger, uncontaminated 
areas of different appearances (examples: diesel filling station and 
uncontrolled waste dump in Venezuela) 

• Relatively low contaminant concentrations (percentage) over large areas 
(example: downwind areas of large industrial facilities) 

• Large contaminated areas of homogeneous surface but with no or only partial 
expressions of the contamination at the surface (example: Abadan marshland 
oil spill, Iran) 

 

When comparing different contaminated sites it also becomes obvious that soil 
contaminations and their surface expression also occur in different geometric 
patterns. Contaminations and/or their surface expressions typically occur as point, 
linear or area (polygon) contaminations. 

Point soil contaminations occur, for example, at the sites of accidental liquid 
contaminant spills. Liquid contaminants infiltrate quickly into the soil and do not 
spread on the surface (soil). This is due to chemical and physical properties of both 
soil and contaminant. A typical example for this case is the leakage of low-viscosity 
fuel hydrocarbons into coarse sand soil on even surfaces. 
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Linear contaminations typically occur along the major axis of infrastructure facilities 
such as roads, railways or pipelines that are used for the transport of hazardous 
goods. Small quantities of contaminants continuously lost during transport add up to 
substantial contamination over time. Examples include, among others: the main 
railroad line from Baku (Azerbaijan) to Georgia, which is used for crude oil exports 
and where obviously leaky tank cars are used for transport; the railway tracks of the 
Schwarze Pumpe facility in Germany that were used for the transport of waste 
products such as tar sludge in open rail cars or leaky pipelines; and the border region 
of Iran and Iraq, which were affected by wartime events. 

Polygon contaminations involve larger areas that are more or less homogeneously 
affected by a contamination of one type or origin. Typical examples include oilfields, 
landfills, overburdened dumps, and areas of salinized soils. 

However, depending on the scale applied to the considerations concerning one or 
more contaminated sites or regions, no clear dividing line can be defined between 
point, linear and polygon contaminations. Depending on the scale, point or linear 
contamination could be considered as a polygon (area) contaminations and vice 
versa. 

 

Furthermore, the contaminations described above also indicate that, according to 
their genesis, contaminations can be class into the following groups: 

• Burials of wastes (landfills and uncontrolled/illegal burials containing 
household, commercial, industrial or hazardous wastes) 

• Industrial facilities where relatively small quantities of contaminants leaked 
over a long time of operation, thus resulting in a considerable contamination 
of soil and/or groundwater 

• Mining areas (in particular for metal mining), where acid-generating and 
heavy-metal-containing minerals are disposed on unsecured overburdened 
dumps that are subject to leaching processes resulting in soil and/or surface 
water and groundwater contaminations 

• Spill sites where large quantities of (usually liquid) contaminants leaked over 
a short period of time into the environment accidentally, and depending on 
local conditions and environmental media affected, result in minor or major 
contaminations of soil and/or surface water and groundwater 

 

Contamination of soil and groundwater can result from short-term, singular events as 
well as long-term exposure to contaminants. The latter case applies to many sites that 
have been subject to long-term use for industrial production and experience changes 
in land use or production technology, or change due to the development of new 
products and the erection of new facilities at the site. In such long-term use 
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situations, multi-layer, superimposed contaminations appear where only parts of a 
contamination or contaminations might show surface expressions. 

The above considerations are summarized in figure 2-13. A soil contamination that is 
largely covered in the subsurface might:  

• Show no surface expression if it is covered by uncontaminated soil or 
anthropogenic surfaces (pavements etc.) 

• Exhibit contaminated soil or waste at the surface 

• Be covered by unstressed native vegetation if the species are insensitive to 
the contaminants or concentrations levels found in the rhizosphere of the 
plants 

• Be covered by stressed native vegetation if contaminants or concentrations in 
the rhizosphere of the plants are above the specific sensitivity and below the 
maximum specific tolerance level of the vegetation species affected 

• Be covered by vegetation species that are adapted to the site conditions 
(contaminants / contaminant concentrations) and that are different from the 
normal, “native” vegetation 

In addition, depending on physicochemical soil and contaminant properties, a 
groundwater contamination could develop due to percolation and leaching processes 
from the soil contamination and extend over large areas without exhibiting any 
surface expression. 

 

 
Figure 2-13: Illustration of different cases of soil and groundwater contaminations exhibiting 
different or no surface expressions. 
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2.2 - Site registration and site investigation 

In most industrialized countries, in particular in the G8-countries (except Russia), 
and countries of the European Union, Australia and New Zealand, the problem of 
contaminated sites has been addressed for more than two or three decades. The 
problem is still being ignored, however, in most developing countries, newly 
industrialized countries and oil-exporting countries. Examples are Eastern and 
Southeastern European countries, countries of the former Soviet Union, oil-
producing countries in the Middle East, the Southeast-Asian “Tiger” countries, China 
and South America with their booming industry and developing countries in Africa, 
South and Central America. Typically, the importance of environmental protection is 
acknowledged by the wider public in these countries. However, legislation and 
enforcement are usually of minor overall interest compared to the prioritized issues 
of economic growth. In most cases, legislation and enforcement are directed at 
preventive measures for environmental protection in the economic catching-up 
process that often takes a considerable toll on natural resources. Therefore, 
contaminated sites that require considerable technological efforts and expenses for 
investigation and clean-up are typically not an important issue on the environmental 
agenda of these countries. 

This might change as the effects of improper waste disposal, industrial waste water 
discharge into streams and rivers, and site contaminations due to “dirty” industrial 
production become obvious because basic natural resources become heavily affected 
in particular in fast-growing metropolitan areas and centers of industry. In particular 
the contamination of drinking water resources and agricultural soils might prove to 
be a critical issue in these areas and raise the awareness for contaminated sites. 

While the problem of contaminated sites is being addressed with time-consuming 
and highly expensive methodologies and technologies for site registration, site 
investigation, risk assessment and site clean-up in the industrialized countries, it is 
obvious that these methodologies and technologies could not be applied in 
developing and newly industrialized countries. Therefore it will be necessary to 
develop new methods and technologies that are adapted to the problems arising and 
the possibilities of these countries. Because usually no inventory of potential 
contaminated sites is maintained, it will be necessary to start with the systematic 
registration of potential contaminated sites once the problem is acknowledged. For 
contaminated site registration it will be necessary to develop technologies to reliably 
detect unknown contaminations and to map larger, known contaminations. In order 
to improve the process of contaminated site investigation it would be desirable to 
enable a preliminary site characterization with the data acquired for site registration. 
A further step that could be derived from the preliminary site characterization could 
be the development of a priority list for subsequent measures with respect to 
contaminated site characterization and clean-up.  

A technology developed for this purpose could also prove useful in industrialized 
countries. Even though the problem of contaminated sites is has been addressed in 
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most industrialized countries for more than two decades, many sites have only been 
registered as potential contaminated sites without subsequent investigation, risk 
assessment or clean-up. Many sites, in particular larger sites in remote areas, lie 
fallow because of lacking economic interest and a lack of public resources for the 
characterization and clean-up of these sites. Here also, the development of cost-
effective new methods and technologies for site investigation is desirable. 

 

 

2.3 - Contaminants 
Chemical substances are usually considered as relevant contaminants of important 
natural resources such as soil, surface water and groundwater because of their 
toxicity, their overall abundance or their physicochemical properties that enable fast 
and widespread distribution and therefore fast and widespread contamination of 
natural resources. Among the contaminants that are of special interest in 
contaminated site investigation and clean-up because of their acute or chronic 
toxicity or their proven or presumed cancerogenicity are, among others: 

• Chemicals of the group of persistent organic pollutants (POPs) such as 
dioxins, DDT, polychlorinated biphenyls, and hexachlorobenzene that have 
served for different purposes such as pesticides, transformer oil, 
flameproofing agents in the past or that are byproducts in incomplete 
combustion processes 

• Volatile organic compounds, many of which are halogenated hydrocarbons 
such as trichloroethylene (TCE) and perchloroethylene (PCE) that have been 
used extensively as dry-cleaners, solvents and degreasing agents 

• Polynuclear aromatic hydrocarbons (PAH) that are the important components 
of tars and heavy crude oils and are generated in incomplete combustion 
processes 

• Petroleum or fuel hydrocarbons with their subgroups aliphatic (alkanes, 
alkenes, alkynes, cycloalkanes) and aromatic (monoaromatics and PAH) 
hydrocarbons as the most important fuels and basic compounds of 
industrialized societies 

• Heavy metals such as arsenic, chromium, lead and mercury that are relevant 
in metal mining areas, but also as contaminants at electroplating facilities, 
metallurgical plants and paint production facilities 

• Radionuclides and nuclear wastes containing uranium, plutonium, and 
radioactive isotopes of other elements (although in some countries dealt with 
separately from hazardous wastes and contaminated sites, e.g., in Germany) 

The environmental behavior and fate of contaminants in the environmental media 
soil, water and atmosphere is determined by their physicochemical properties, 
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namely water solubility, melting and boiling point temperature, specific gravity, 
vapor pressure, viscosity, reactivity / half-life and partition coefficients. Depending 
on their physicochemical properties and the actual environment in which they are 
released, contaminants can be mobile or immobile and therefore spread or not spread 
in the environmental media. They may undergo biotic or abiotic transformation or be 
persistent, and might have to be considered toxic or non-persistent and considered 
non-toxic. Depending on their human and environmental toxicity and the exposure 
pathways that are to be considered, the concentration from which a chemical is 
considered a contaminant in a given matrix (soil, surface water, groundwater, air) 
might vary considerably.  

 

 

2.4 - Fuel hydrocarbons as environmental contaminants 

Among the chemicals that are relevant as environmental contaminants, fuel 
hydrocarbons are of particular significance. In 2003, more than four billion cubic 
meters of crude oil were produced in more than 50 countries worldwide [OPEC 
2004, EIA 2004a]. Crude oil and refined crude oil products are utilized in all 
countries of the world for heating, as feedstock for the chemical industry, as a fuel 
for power plants and as fuels for all means of transportation vehicles and machinery. 
In most countries, crude oil and refined crude oil products are the primary fuel and 
therefore the basis of the economy. In more than 16 countries worldwide, more than 
one million barrels (≈159,000 m³/d) of crude oil are produced every day [OPEC 
2004]. 

Crude oil and refined crude oil products therefore occur at almost every location on 
earth at the different stages of crude oil production, handling, transportation, refining 
and consumption: 

 

• Crude oil production 

• Transport and intermediate storage of crude oil 

• Refining 

• Transport and intermediate storage of refined products 

• Distribution of refined products (filing stations) 

• Use of refined products as fuels 

• Use of refined products as base materials in the chemical industry (e.g., 
intermediate products, solvents, plasticizers, etc.) 

The historical development of total world crude oil production in million cubic 
meters per day and billion cubic meters per year is illustrated in table 2-1. 
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Table 2-1: Annual world production of crude oil in cubic meters per day and per year for 
selected years between 1960 and 2003. 

Year Million 
m³/day 

Billion 
m³/year 

1960 3.34 1.22 
1970 7.30 2.66 
1980 9.48 3.46 
1990 9.63 3.51 
2000 10.87 3.97 

2003* 11.05 4.03 
*The International Energy Agency reports a daily 
production of 12.65 million m³/day for 2003, 
equivalent to 4.62 billion m³/year. 

[Based on EIA 2004a, IEA 2004a] 

 

The historical development of world crude oil production is illustrated in figure 2-14. 
Apart from two relatively short periods that became known as the oil crises in the 
mid-1970s and the early 1980s, the production of crude oil has continuously 
increased from 1.22 billion cubic meters per year in 1960 to 4.03 billion cubic meters 
in 2003. 
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Figure 2-14: Graph of the development of crude oil production since 1960 [Based on data of 
OPEC 2004, EIA 2004a]. 
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With the continuing and accelerated growth of economies in Asia (in particular 
China, India and Southeast-Asian countries), Eastern Europe and South America, a 
continuing growth of the world population from 6.3 billions in 2003 to 7.4 – 10.6 
billions in 2050, and proven world oil reserves of more than 180 billion cubic meters 
(as of 2003), it is expected that the annual production of crude oil will continue to 
rise until at least 2025 [UNWPP 2003, OPEC 2004, EIA 2004a]. In contrast to this 
prognosis, some analysts also predict that after a short-term increase in world oil 
production, oil production will sharply decrease until 2050. They argue that because 
fewer new oil reserves are discovered, production costs will increase sharply as new 
reserves are more difficult to exploit and therefore crude oil prices raise further 
[Heinberg 2003]. 

However, with a total of more than 134 billion cubic meters of crude oil produced 
between 1960 and 2003 alone and recent world production rates of 13.26 million 
cubic meters of crude oil per day, the significance of crude oil and refined crude oil 
products as a potential contaminant is apparent [EIA 2004a, EIA 2004b, BGR 2002]. 

Because of the huge quantities involved, it is also evident that fuel hydrocarbon 
contaminations are to be expected almost everywhere due to accidents or improper 
handling during production, processing or distribution. For example, leakages or 
losses during the production of crude oil from wells, offshore oil spills, pipeline 
leakages, leakage from underground storage tanks, accidents of vehicles transporting 
fuel hydrocarbons, and drop losses at filling stations occur daily in uncounted 
locations worldwide.  

Some examples have been described above: the filling station in Venezuela, the oil 
fields on the Absheron peninsula in Azerbaijan and the Abadan pipeline spill in Iran. 
At each of the sites described, the fuel hydrocarbon contamination is detectable by 
simple organoleptic examination at the surface. Fuel hydrocarbon concentrations are 
known or expected to exceed 5 % of dry soil weight at each of these sites. Fuel 
hydrocarbon contamination may affect the surface as well as the subsurface. Due to 
the production from many wells over a large area and the high viscosity of crude oil, 
onshore crude oil contamination typically remain at the surface and spread over 
larger areas. In contrast to this, refined product contaminations typically affect only 
small surface areas but spread in the subsurface due to a relatively low viscosity and 
a specific gravity lower than that of water. Therefore, floating product is often 
observed on the groundwater table at sites where refined fuel hydrocarbon byproduct 
has been spilled. 

Some realistic scenarios for fuel hydrocarbon spills into or onto soil and groundwater 
at the sites of pipelines, filling stations and oilfields are illustrated in figure 2-15. It 
stresses that the largest parts of fuel hydrocarbon contamination of soil and 
groundwater are usually hidden in the subsurface and that only the contamination 
source areas (hot spots) might be evident at the surface. Oilfields, where large 
quantities of crude oil are produced from many wells over a large area, can be 
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considered an exception in this respect because crude oil usually does not infiltrate 
into the subsurface due to its physicochemical properties. 

 

 
Figure 2-15: Sources and distribution pattern of typical fuel hydrocarbon contaminations of soil 
and groundwater. 

 

Fuel hydrocarbons have been selected as the model contaminant for the investigation 
of this thesis because of their overall relevance as environmental contaminants. Fuel 
hydrocarbons are ubiquitously used in vast quantities almost everywhere in the 
world. Fuel hydrocarbon spills are common everywhere worldwide and therefore 
occur in every climactic, geologic, vegetation and topographic region. From a 
chemical point of view, fuel hydrocarbons are relatively homogeneous with six main 
subgroups (alkanes, alkenes, alkynes, cycloalkanes, monoaromatics, polynuclear 
aromatics). However, fuel hydrocarbons for commercial bulk use (fuels) are usually 
mixtures consisting of chemical compounds of all subgroups. Due to their 
physicochemical properties, fuel hydrocarbons biodegrade relatively slowly in soil 
and groundwater and occur as surface contaminants as well as subsurface 
contaminants.  

 

The considerations of this chapter can be summarized as follows.  

Contaminated sites, i.e. contaminations of soil and groundwater and the improper 
disposal of hazardous wastes, pose severe problems worldwide. Contaminations of 
soil and groundwater are endangering important natural resources such as drinking 
water and arable land in both industrialized and developing countries. 
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Soil and groundwater contaminations cover varying areas from several square meters 
up to hundreds of square kilometers. They occur in complex structures of built areas 
as well as in relatively homogeneous rural areas. Sites of industrial facilities or 
military installations may host several independent contaminations of different origin 
and genesis. Soil contaminations may be exhibited at the surface level, or may be 
covered by soil, anthropogenic surfaces or by stressed or unstressed vegetation. 
Typically, the majority of a contamination is hidden in the subsurface, and only parts 
of the contamination are revealed at the surface, either as affected soil or stressed 
covering vegetation.  

Among all contaminants that are of interest because of their toxicological potential, 
their physicochemical properties that enable fast spreading in the environmental 
media soil and groundwater, and their overall abundance, fuel hydrocarbons must be 
considered the most important contaminants. Every year, more than four billion 
cubic meters of fuel hydrocarbons are produced and consumed worldwide. 

The methods and technologies that have been developed for contaminated site 
investigation and clean-up in the industrialized countries require considerable 
technological efforts, resources, and expenses. While in most industrialized countries 
the problem of contaminated site investigation is already being addressed, the 
problem is still being ignored in most developing and newly industrialized countries. 
At the same time, a considerable backlog with respect to the investigation and clean-
up of contaminated sites is not likely to be overcome in most industrialized countries 
when applying conventional methods and technologies that require considerable 
resources. Therefore, the development of new methods and techniques for 
contaminated site investigation and clean-up is necessary. 
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3 - Principles and technology of imaging spectrometry 
 

The roots of remote sensing go back to the 1860s, when panchromatic photographs 
were first taken from balloons. In 1908, the first panchromatic photograph was taken 
from one of the motor-powered aircrafts of the Wright brothers in Italy. Soon after 
that, remote sensing in the form of panchromatic aerial photographs was extensively 
used for mapping purposes, and, during the First and Second World War, for military 
photo-reconnaissance purposes [Jensen 2000]. After the Second World War the 
development of new remote sensing technologies led to many new applications for 
environmental remote sensing. Simple electro-optical and thermal remote sensing 
systems were developed and applied for meteorological remote sensing of cloud 
cover in the 1960s. Color and false-color near infrared photographic films were used 
for cartography, habitat mapping, forest inventory, urban planning, archaeology and 
many other applications. The first electro-optical, multispectral satellites for land 
remote sensing, the Landsat series, were launched during the 1970s and continue to 
map the Earth’s surface today. Multi-spectral satellite systems provide relatively 
low-resolution digital image data for large areas in a range of typically four to ten 
broad wavelength bands, thus enabling land cover classifications using digital image 
interpretation techniques. With magnified computing capacities during the 1980s and 
1990s, the spatial, spectral and radiometric resolution of remote sensing systems was 
improved, enabling more and more applications and complex interpretation of digital 
remote sensing data. Radar imaging applying microwave radiation was also 
developed during the 1970s and 1980s, enabling remote sensing of clouded areas and 
the derivation of low-resolution surface elevation models. Recent developments in 
remote sensing that were made possible by the developments in the computing and 
electronics sectors include airborne laser scanning of surfaces for the derivation of 
high-resolution digital elevation models, digital cameras for aerial photography with 
improved spatial and radiometric resolution, and high spectral resolution imaging 
spectrometry for qualitative and quantitative analysis of surface materials [Lillesand 
1999, Jensen 2000]. 

The subject of this study is the applicability of imaging spectrometry, a high spectral 
resolution remote sensing method, for the detection and investigation of 
contaminated sites. 

Imaging spectrometry means the “acquisition of images in hundreds of registered, 
contiguous spectral bands such that for each picture element of an image it is 
possible to derive a complete reflectance spectrum” [Goetz 1992]. Typically, 
between 100 and 300 spectral bands with a bandwidth of two to ten nanometers are 
acquired in the 400 nm to 2,500 nm wavelength region. The spatial (ground) 
resolution of airborne imaging spectrometry systems typically ranges from  
1 to 30 meters. The concept of imaging spectrometry is illustrated in figure 3-1. 
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Figure 3-1: Concept of imaging spectrometry (alias hyperspectral imaging): an image of the 
surface under investigation is acquired in hundreds of small bands typically covering the 
wavelength region between 0.4 µm and 2.5 µm. Thus, every pixel of the dataset acquired is 
represented by an individual spectrum containing information about the surface materials and 
fractions covering the pixel surface. 
 

Imaging spectrometry is sometimes also referred to as “hyperspectral imaging” or 
“imaging spectroscopy” which are used as synonyms in the remote sensing 
terminology, even though the meaning is different (spectrometry – “measuring”, 
spectroscopy – “seeing”, hyperspectral – “too many bands”) [van der Meer 2001e]. 
However, the term imaging spectroscopy is, in most cases, applied to extraterrestrial 
applications in astronomy and the terms “imaging spectrometry” and “hyperspectral 
imaging” are mainly used in terrestrial remote sensing. 

Many surface materials of the Earth have diagnostic absorption features in the  
400 nm to 2,500 nm wavelength spectrum that are 20 nm to 40 nm wide at half the 
band depth [Hunt 1980]. This means that solar radiation that interacts with the 
Earth’s surface is reflected as a function of wavelength and surface material 
absorption and reflectance characteristics. Depending on the absorption and 
reflection properties of the surface material and the wavelength of the incident 
radiation, the reflected radiation over the wavelengths shows characteristic 
absorption features.  

Hyperspectral imaging systems sampling this wavelength region with a spectral 
resolution of two to ten nanometers in hundreds of contiguous bands therefore 
produce digital data sets that are sufficient for qualitative material detection or 
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identification and quantitative material mapping. Multispectral imaging systems that 
sample selected wavelength regions over a spectral range (bandwidth) of 100 nm to 
300 nm do not resolve these characteristic absorption features [Goetz 1985, Vane 
1988a]. With its capabilities for high-resolution material identification and 
quantification, imaging spectrometry can be considered a remote sensing analytical 
chemistry method that is applied in an uncontrolled environment [Goetz 1996a]. 
However, it must be stated that not all surface materials exhibit characteristic 
absorption features and that therefore not all surface materials can be identified 
unambiguously. Furthermore, if a material has diagnostic absorption features, it must 
be present at a minimum concentration or coverage in a pixel to be detected. 

The datasets that are produced by imaging spectrometers are huge and highly 
complex, containing large amounts of information. Due to often similar spectral 
characteristics in neighboring bands, as well as and similar materials over large 
image scenes, datasets also contain much redundant information. Besides data 
compression and data processing with appropriate software tools, the reduction of 
redundancy in the data while at the same time conserving the unique information in 
the scenes and the interpretation of the datasets pose considerable challenges 
[Boardman 1995b]. Furthermore, depending on the spatial resolution and the 
structure of the surface investigated, spectra for individual image pixels may not 
represent a pure spectrum of one singular material, but a mixed spectrum consisting 
of spectral responses of the various materials that cover the area sampled on the 
ground. Various data interpretation software tools have been developed for a variety 
of applications and have the ability to perform supervised and unsupervised 
classification and mapping, detection of targets, detection of subpixel targets, and 
spectral unmixing of “mixed” pixels [Chang 2003b]. 

Another issue is the derivation of surface reflectance from imaging spectrometer 
data. Imaging spectrometers covering the 0.4 µm to 2.5 µm region of the 
electromagnetic spectrum record radiance spectra that depend on both solar 
illumination and atmospheric absorption. The process of deriving surface reflectance 
data from imaging spectrometer data is referred to as atmospheric correction based 
on sophisticated correction algorithms [Goetz 1997]. 

Recent applications of imaging spectrometry include, among others, mineralogical 
exploration, geologic mapping, vegetation analysis for precision agriculture, military 
target detection and terrain analysis, soil mapping, vegetation mapping, monitoring 
of inland, coastal and marine water bodies, and other environmental applications 
[e.g., Curran 1994, Clevers 2001, Messinger 2004, Pavlin 1996, Ben-Dor 2001a, 
Curran 2000, van der Meer 2001c, Gallagher 2003b]. 

The subsequent sections will provide an overview on the basics of imaging 
spectrometry, its application in remote sensing, recent imaging spectrometry 
systems, data processing and data interpretation approaches and methods. 

For the subsequent considerations of laboratory spectroscopy and remote sensing 
imaging spectrometry it must be noted that the definition of wavelength regions used 
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in the field of remote sensing is different from that used in the field of analytical 
chemistry. While the definition used in analytical chemistry is based on classes of 
energy-matter interactions and physical properties of the wavelengths involved, the 
remote sensing classification takes into account additional properties such as 
radiation sources and atmospheric windows that prohibit the use of certain 
wavelength regions for remote sensing. Figure 3-2 depicts the two wavelength region 
definitions and the background for the definitions used in the field of remote sensing. 

 

 
Figure 3-2: Wavelength region definitions for analytical chemistry and remote sensing 
compared, with atmospheric windows and radiation sources used for passive remote sensing. 
The comparison shows important differences concerning the “availability” of radiation for 
sensing and atmospheric interferences in remote sensing. 
 

The wavelength regions and applications in remote sensing are mainly determined by 
the permeability of the atmosphere for electromagnetic radiation. Because of 
absorption by atmospheric gases and vapors, in particular water vapor, carbon 
dioxide, oxygen, and ozone, the atmosphere is impermeable for electromagnetic 
radiation in most parts of the spectrum between 0.1 µm and 25 µm. The wavelength 
regions in which the atmosphere is (at least partially) permeable for electromagnetic 
radiation are referred to as atmospheric windows. Another factor influencing the 
nomenclature of wavelength regions in the field of remote sensing are the energy 
sources. In the ultraviolet (0.18-0.4 µm), visible (0.4-0.8 µm), near infrared  
(0.8-1.3 µm) and mid or shortwave infrared (1.3-2.5 µm) wavelength regions, 
incident solar radiation is transmitted through the atmosphere and reflected by the 
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Earth’s surface. In the thermal infrared I (3 – 5 µm) and thermal infrared II  
(8 – 15 µm) wavelength regions, energy in the form of long-wave infrared radiation 
is emitted by objects on the Earth’s surface, objects of around 800 Kelvin (~520 °C) 
and around 300 Kelvin (~ 20°C), respectively [Lillesand 1999, Jensen 2000]. The 
energy sources in the ultraviolet through mid infrared, thermal infrared I and thermal 
infrared II wavelength regions are depicted in figure 3-2 with their approximate 
intensities. 

Table 3-1 summarizes the wavelength according to the remote sensing definition 
regions and remote sensing applications in these wavelength regions. 

 
Table 3-1: Remote sensing definitions and applications of wavelength regions between 0.18 µm 
and 1,000 µm wavelength. 

Wavelength 
Region 

Remote Sensing 
Nomenclature Remote Sensing Applications 

0.18 – 0.4 µm Ultraviolet Light 
Imaging spectrometry,  
multispectral imaging 

0.4 – 0.8 µm Visible Light 
Panchromatic and color aerial photography, 
multispectral imaging, imaging spectrometry 

(cartography, mapping) 

0.8 – 1.3 µm Near Infrared False color near infrared aerial photography, 
imaging spectrometry (vegetation studies) 

1.3 – 2.5 µm 
Mid Infrared 

(Shortwave Infrared)
Multispectral imaging & imaging spectrometry 

(geology studies) 

3.0 – 5.0 µm Thermal Infrared I 
Thermal remote sensing (emission temperature 
range of red-hot objects, e.g. fire monitoring, 

volcanism, etc.) 

8.0 – 14 µm Thermal Infrared II 
Thermal remote sensing (emission temperature 

range of earth-temperature objects, e.g., moisture, 
heat leakages, geologic mapping, etc.) 

14 – 1,000 µm Far Infrared No remote sensing applications (atmosphere 
impermeable for electromagnetic radiation) 
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3.1 – Spectrometry basics 

The remote sensing technique of imaging spectrometry has its roots in infrared and 
near infrared laboratory spectroscopy that have been used for qualitative analysis of 
organic molecules and quantitative analysis in process monitoring respectively for 
several decades. Both are based on characteristic vibrations of chemical bounds in 
molecules. 

Near infrared and infrared spectroscopy are absorption spectroscopy methods. 
Infrared radiation is absorbed by the chemical bonds of molecules which, depending 
on atoms and type of chemical bond involved, are excited to exhibit characteristic 
vibrations. The wavelength and amount of infrared radiation absorbed in this process 
can be measured and is referred to as absorption bands. 
 

Electromagnetic radiation 

According to the wave-particle duality, electromagnetic radiation and light as a form 
of electromagnetic radiation can be considered a wave of characteristic frequency  
ν [s-1] and wavelength λ [m] that propagates by the velocity of light, c [m s-1] and at 
the same time as small, discrete light quanta (photons). The velocity of light is a 
universal constant in vacuum, that is 2.9979 × 108 m/s. Wavelength and frequency 
are related to the speed of light by the equation [Atkins 2001, Ball 2003]: 
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In the ultraviolet and visible wavelength regions, the wavelength is typically given in 
nanometers [10-9 m = 1 nm], and in the near infrared and infrared region, in 
micrometers [10-6 m = 1 µm]. 

 
Figure 3-3: Wavelength definitions and analytical methods according to [Otto 1995]. 
 

The electromagnetic spectrum is divided into various regions according to the 
properties of the electromagnetic radiation. Figure 3-3 illustrates the subdivision of 
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the electromagnetic spectrum in the 0.18 µm to 25 µm region for purposes of 
laboratory spectroscopy. It comprises the ultraviolet (UV), visible (VIS), near 
infrared (NIR), and infrared (IR) wavelength regions. However, it should be noted 
that depending on the application, the definitions of wavelength regions vary 
considerably.  

For practical purposes of spectrum interpretation, the wavenumber [cm-1] denotation 
is used in infrared spectroscopy in the 4000 cm-1 (2.5 µm) to 400 cm-1 (25 µm) range 
instead of the wavelength [µm] denotation. In UV, VIS and NIR spectroscopy, the 
wavelength denotation (nm or µm respectively) is used. The wavenumber ν~  [cm-1] 
describes the number of electromagnetic waves of a certain wavelength λ that fits 
into one centimeter according to the following equation: 
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Energy – matter interactions 

Most, if not all matter interacts with electromagnetic radiation in one way or another. 
Electromagnetic radiation that is incident onto any kind of matter may be reflected, 
absorbed or transmitted. For many wavelength regions, specific light interactions of a 
certain wavelength with specific matter can be observed. While at one wavelength 
electromagnetic radiation incident onto a specific matter may be reflected almost 
completely, it might be absorbed at another wavelength or partially absorbed while 
the rest is reflected at a third wavelength. 

The energy-matter interactions in the ultraviolet, visible, near infrared and infrared 
wavelength regions can be used for qualitative and quantitative chemical analysis of 
chemical compounds and mixtures. However, it must be noted that only organic 
molecules, water and most gases exist in energy states that are able to absorb UV, 
VIS, NIR and IR wavelengths. Metals and most inorganics are incapable of 
absorbing electromagnetic radiation at these wavelengths. Therefore, metals and 
most inorganics exhibit no characteristic absorption features in these wavelength 
regions [ASD 2003]. 

The methods that were developed for chemical analysis utilizing UV, VIS, NIR and 
IR light are referred to as optical spectroscopy. According to the wavelength region 
used for analysis, they are differentiated into UV, VIS, NIR and IR spectroscopy. UV 
and VIS spectroscopy utilize the absorption of short-wave ultraviolet and visible 
light in the 0.18 µm to 0.4 µm and 0.4 µm to 0.8 µm wavelength region, respectively. 
UV and VIS spectroscopy are typically applied for quantitative laboratory analysis 
based on the extinction of light of a certain wavelength passing through a sample. To 
some extent, UV and VIS spectroscopy are also applied in qualitative analysis, in 
particular purity tests and structure elucidation [Otto 1995]. NIR and IR spectroscopy 
are referred to as vibrational spectroscopy. Both are based on the absorption of near 
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infrared and infrared radiation by molecular vibrations.  While infrared spectroscopy 
is mainly used for qualitative laboratory analysis, near infrared spectroscopy is 
mainly used for quantitative laboratory and industrial process analysis. Advantages 
of NIR spectroscopy over IR spectroscopy are that it requires no sample preparation, 
that measurements are non-destructive and non-contact, and that it allows real-time 
measurements and is therefore suitable for on-line, in-situ monitoring and analysis of 
many kinds of compounds, mixtures and materials. In contrast, IR spectroscopy is a 
laboratory analysis method that requires considerable sample preparation. While IR 
spectra can be interpreted directly, NIR spectra must be compared to calibration data 
sets. Usually, complex chemometrics software packages are used for the 
interpretation of NIR spectra [Otto 1995, Günzler 2002]. 

 

Interaction mechanisms 

In the ultraviolet and visible wavelength regions, energy-matter interactions are 
based on the absorption of electromagnetic radiation by the valence electrons of σ-, 
π-, and n-bonds of organic molecules or the d- or f-electrons of metal ions, 
respectively. Furthermore, the valence electrons of atoms can be excited by incident 
ultraviolet and visible electromagnetic radiation. The so-called electronic absorption 
bands of compounds in the UV and VIS wavelength regions are typically very broad 
and consist of several superimposed bands merged together [Otto 1995, Atkins 
2001]. 

In the near infrared and infrared wavelength regions, the interactions of 
electromagnetic radiation and matter are based on the absorption of infrared radiation 
by specific vibrations of (organic) molecules. Molecules, i.e. combinations of 
different atoms linked together by chemical bonds, are not rigid but can vibrate in 
different modes. The atoms of molecules can, for example, shift their positions 
relative to one another, thus moving closer together or drifting apart. Furthermore, a 
whole molecule can rotate. The total number of vibrational modes of molecules (Z) 
consisting of a given number of atoms (N) is described by the following equations 
[Günzler 2002]: 
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The vibration modes of a molecule can be excited independently from one another. 
Each vibration has a characteristic vibrational frequency. It must be noted that only 
those vibrations that result in a change of the dipole moment of a molecule can be 
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excited by infrared radiation and are therefore visible in infrared spectra. Usually, 
only asymmetric stretch vibrations and deformation vibrations fulfill this 
requirement; these are referred to as “IR-active” [Günzler 2002, Atkins 2003]. 

 

The vibrational modes can be illustrated with 
the water molecule (gaseous state) as an 
example. The water molecule as a non-linear 
molecule has three normal modes of 
vibration plus a rotation of the whole 
molecule. 

The vibration ν1 is a symmetric stretching 
vibration (denotation νs) that does not induce 
a change in the dipole moment of the water 
molecule and is therefore not detectable in 
infrared spectra. The vibrations ν2 
(deformation vibration with changed in bond 
angles, denotation δ) and ν3 (antisymmetric 
stretching vibration, denotation νs) both 
result in a change of the dipole moment of 
the water molecule. Therefore they are both 
detectable in infrared spectra. They can be 
observed in the infrared spectrum at 
wavenumbers of 1595 cm-1 and 3756 cm-1, 
respectively [Günzler 2002, Otto 1995, 
Atkins 2003, Banwell 1999].  

Figure 3-4: H2O molecular vibrations. 

 

Apart from the so-called fundamental vibrations that typically occur in the 4000 cm-1 
to 400 cm-1 (4 µm – 25 µm infrared) spectral region, overtones and combination 
bands can be observed at higher wavenumbers (smaller wavelengths) in the near 
infrared. As the absorptions (fundamentals and overtones) are quantum mechanical 
in nature, only discrete energy amounts can be absorbed [ASD 2003]. Because of 
this, overtones are always observed at approximately multiple wavenumber values of 
the fundamental vibrations, although generally at somewhat lower values than the 
exact multiple values due to the so-called anharmonicity effect. Overtones result 
from transitions into higher energy levels and thus higher vibration modes. Because 
of their lower probability compared to fundamental vibrations, their intensities are 
much lower than those of the fundamental vibrations. Taking into account the 
anharmonicity effect that can be described by a shift of one to five percent towards 
lower wavenumbers, the overtone absorption bands can be calculated using the 
following equation [Otto 1995]:  
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Combination bands occur when two or more different fundamental vibrations are 
excited simultaneously and their frequencies are combined. As for the overtone 
bands, combination bands occur at somewhat lower wavenumbers (higher 
wavelengths) due to the anharmonicity effect. The position of combination bands can 
be calculated using the following equation [Otto 1995, Günzler 2002]: 
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Using the above equations and the fundamental vibrations of the gaseous water 
molecule ν2 and ν3, cited before, the overtones and combination bands listed in table 
3-2 can be calculated.  
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Table 3-2: Overtone and combination bands of the water molecule in gaseous state. 
Gaseous H2O 

Molecule 
Vibration 

Fundamental 
[cm-1] 

1st Overtone 
[cm-1] 

2nd Overtone 
[cm-1] 

3rd Overtone 
[cm-1] 

ν2 1,595 (6.3µm) 3,158 (3.2 µm) 4,689 (2.1 µm) 6,189 (1.6 µm) 

ν3 3,765 (2.7 µm) 7,455 (1.4 µm) 11,069 (0.9 µm) 14,608 (0.7 
µm) 

+ Binary combination band ν2 + ν3 @ 5306 cm-1 (1.9 µm) 
 

The overtone absorption band at 1.4 µm and the combination band at 1.9 µm are 
well-known water absorption bands in the field of remote sensing as atmospheric 
water denies the transmission of infrared radiation in these wavelength regions. 

 

Absorption features of organic compounds 

Carbon-hydrogen-bonds (C-H, C-H2, C-H3), hydroxy groups (O-H), double and 
triple bonds of aliphatics and aromatics, carboxyl groups (C=O), ester groups  
(C-O-C), amino groups (N-H) and other structural groups of organic chemicals 
exhibit characteristic fundamental vibrations that are evident in the 4,000 cm-1  
(2.5 µm) to 1,500 cm-1 (6.67 µm) wavelength region of the infrared spectrum. 
Furthermore, they exhibit overtone and combination bands in the infrared and near 
infrared spectrum between 20,000 cm-1 (0.5µm) and 1,500 cm-1 (6.67 µm) [Otto 
1995, Atkins 2003, Günzler 2002, Hesse 1991, Gauglitz 2004a, Banwell 1999, ASD 
2003, Nyquist 2001a, Nyquist 2001b]. 

Table 3-3 lists some important fundamental vibrations of typical organic molecules 
and compounds, their wavenumbers and their calculated first, second, and third 
overtones. From the table it becomes clear that the fundamental and thus most 
intense absorption bands are limited to the infrared wavelength region beyond  
2.5 µm (4000 cm-1) and are thus limited to observation by infrared spectroscopy. 
Most 1st overtone bands and almost all 2nd and 3rd overtone bands, however, occur in 
the near infrared wavelength region of the electromagnetic spectrum  
(0.8 µm – 2.5 µm according to the wavelength region definitions for analytical 
chemistry). As the intensity of overtone bands is generally much less intense than 
that of fundamental vibration bands, not all overtone bands are observable in near 
infrared spectra. 
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Table 3-3: Important fundamental and resulting overtone vibrations of organic molecules. 
Overtone and combination bands are calculated based on literature values for the fundamental 
vibrations. Calculated based on values from [Cloutis 1989, Atkins 2003, and Nyquist 2001a]. 

Vibration 
Type 

Fundamental 
Wavenumbers 

[cm-1] 

Fundamental 
Wavelengths 

[µm] 

1st Overtone 
Wavelengths

[µm] 

2nd Overtone 
Wavelengths 

[µm] 

3rd Overtone 
Wavelengths

[µm] 
Aromatic  

C-H-
stretch 

3000-3100 3.22-3.33 1.61-1.67 1.08-1.11 0.81-0.83 

Alkane C-
H stretch 2960-2850 3.38-3.51 1.69-1.75 1.13-1.17 0.84-0.88 

C-H bend 1465-1340 6.83-7.46 3.41-3.73 2.28-2.49 1.71-1.87 
C-C 

stretch 1250-700 8.00-14.29 4.00-7.14 2.67-4.76 2.00-3.57 

C=C 
stretch 1680-1620 5.95-6.17 2.98-3.09 1.98-2.06 1.49-1.54 

C≡C 
stretch 2,260-2,100 4.42-4.76 2.21-2.38 1.47-1.59 1.11-1.19 

O-H 
stretch 3,650-3,590 2.74-2.79 1.37-1.39 0.91-0.93 0.68-0.70 

C=O 
stretch 1,780-1,640 5.62-6.10 2.81-3.05 1.87-2.03 1.40-1.52 

C≡N 
stretch 2,275-2,215 4.40-4.51 2.20-2.26 1.47-1.50 1.10-1.13 

N-H 
stretch 3,500-3,200 2.86-3.13 1.43-1.56 0.95-1.04 0.71-0.78 

Hydrogen 
bonds 3,570-3,200 2.80-3.13 1.40-1.56 0.93-1.04 0.70-0.78 

 

Figure 3-5 illustrates fundamental and overtone absorption bands of several 
important functional groups of organic compounds in the near infrared and infrared 
wavelength regions. From the illustration it becomes clear that in the 4,000 cm-1  
(2.5 µm) to 1,500 cm-1 (6.7 µm) wavelength region (infrared) absorption features are 
clearly distinguishable from one another, while in the 12,500 cm-1 (0.8 µm) to  
4,000 cm-1 (2.5 µm) wavelength region (near infrared) highly complex spectra of 
many overlapping overtone bands are to be expected. Furthermore, figure 3-5 does 
not take into account combination bands that typically also occur in the near infrared 
wavelength region. The wavelength region beyond 1,500 cm-1 (6.7 µm) to 900 cm-1 
(11.1 µm) is referred to as the “spectral fingerprint region” in infrared spectroscopy 
because in this wavelength region also highly complex combinations of spectral 
bands are observed that are characteristic for every single chemical compound. In 
infrared spectroscopy, visual interpretation of the 4,000 cm-1 to 1,500 cm-1 
wavelength region alone allows conclusions on the structural elements of a 
compound under investigation, while matching the fingerprint region to a library of 
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known spectra allows the reliable identification of a substance [Günzler 2002, Hesse 
1991, Gauglitz 2004a, Otto 1995]. 

 

 
Figure 3-5: Location and intensity of important vibrations of organic molecules and compounds. 
Calculated based on values from [Cloutis 1989, Atkins 2003, Nyquist 2001a]. 
 

In summary, the wavelength regions of infrared and near infrared spectra can be 
characterized as follows (table 3-4): 

 
Table 3-4: Relevant wavelength regions with respect to the identification of organic molecules in 
infrared and near infrared spectroscopy. Based on [Günzler 2002, Hesse 1991, Gauglitz 2004a, 
Otto 1995]. 

Wavelength Region Absorption Features 
900 – 400 cm-1 

(11.1 – 25.0 µm) 
Fundamental bands of aromatic structures and bonds of heavy 
atoms (> 20 g/mol), e.g. carbon-halogen vibrations 

1,500 – 900 cm-1 
(6.7 – 11.1 µm) 

Spectral fingerprint region, complex interacting vibrations, no 
identification of structural or functional groups possible 

2,500 – 1,500 cm-1 
(4.0 – 6.7 µm) 

Fundamental bands, stretching vibrations of double and triple  
bonds, e.g. C=O, C=C, C=N, C≡C, C≡N, etc. 

4,000 – 2,500 cm-1 
(2.5 – 4.0 µm) 

Fundamental bands, stretching vibrations involving movements of 
light atoms (< 20 g/mol), e.g., C-H, O-H, N-H, etc. 

12,500 – 4,000 cm-1 
(0.8 – 2.5 µm) 

Overtones and combination bands of fundamental bands in the 
4,000 cm-1 – 2,500 cm-1 wavelength region, i.e. C-H, O-H, N-H 
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NIR Spectroscopy of organic chemicals 

From the above considerations it is obvious why NIR spectroscopy is primarily 
applied for quantitative analysis (“chemometrics”) and not for qualitative analysis, 
for which IR spectroscopy is the better choice. However, despite the fact that NIR 
spectra of organic chemicals are often highly complex due to many overlapping 
overtone and combination absorption features, they still contain information on 
functional and structural groups of the chemicals under investigation. 

Figure 3-7 shows spectra of four basic organic compounds: n-Octane (alkane, 
C8H20), 1-Octene (alkene, C8H19), benzene (monoaromatic, C6H6), and 2-Octanol 
(alcohol, C8H19OH). Figure 3-6 illustrates the structural formulas of the compounds. 

 

 

Figure 3-6: Structural formulas of four basic organic compounds. See figure 3-7 for the 
according near infrared spectra. 
 

The spectra shown in figure 3-7 were acquired using an Analytical Spectral Devices 
Field Spec Pro FR® instrument. The spectra represent a dual pass through one 
millimeter of the respective liquid compound. The spectra were acquired over the 
whole 0.38 µm to 2.5 µm wavelength region. 

In the spectra, important absorption bands that represent certain structural or 
functional groups of the compounds are annotated. Characteristic bands for alkanes, 
alkenes, aromatic rings and alcohols are clearly distinguishable in the near infrared 
spectra. 
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Figure 3-7: Sample near infrared spectra of important organic compounds and functional 
groups. 
 

The spectra show that several important groups of chemicals are clearly 
distinguishable in near infrared spectra. Table 3-5 summarizes the possibilities and 
restrictions of the identification of pure organic compounds in the 0.25 µm to 2.5 µm 
wavelength region.  

All organic substances show intense absorption bands in the 2.35 µm, 1.75 µm, and 
1.35 µm wavelength region and, often, in the 1.2 µm wavelength region. Generally, 
the intensity of absorption bands decreases with decreasing wavelengths. While the 
2.35 µm and 1.75 µm absorptions bands can be considered strong, the 1.2 µm and 
1.35 µm absorption bands must be considered medium in intensity. Below 1.2µm, 
only weak absorption bands appear. 
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Table 3-5: Assessment of possibilities and restrictions with respect to the identification of 
organic chemicals in near infrared spectra. 

Substance Group Possibilities Restrictions 

Aliphatics 
(Alkyl-C-H group) 

Alkanes, alkenes, alkynes can be 
clearly distinguished 

All alkanes show similar spectra. 
For alkenes and alkynes it might be 
possible to estimate the relation of 
saturated and unsaturated bonds. 

Monoaromatics 
(Aryl-C-H group) 

Benzene and monoaromatics with 
alkyl groups are clearly 
distinguishable – depth of 
neighboring absorption doublets also 
allows to determine the presence of 
substituted alkyl groups on the 
aromatic rings 

Liquid monoaromatics and solid 
polynuclear compounds can be 
easily distinguished while similar 
liquid compounds (e.g., toluene and 
methylnaphthalene) are hard to 
distinguish. 

Explosives 

(NO2 group) 

Spectra of explosives (consisting 
usually of C-N, C-C, C-H, N-O, and 
N-H structural compounds) appear 
relatively complex and unique.  

Nitro groups of explosives are 
generally hard to distinguish from 
substituted mono-aromatics and 
polynuclear compounds. 

Alcohols 
(OH group) 

Alcohols generally show strong, 
broad absorption features that allow 
for the identification of the O-H 
group.  

The strong, broad absorption 
features often interfere with the 
identification of other structural or 
functional groups of alcohols. 

Phenols 
(Aryl-OH group) 

Like alcohols, phenols show strong 
and broad absorption features that 
allow the identification of the O-H 
group. For phenols, the aryl-C-H-
stretch is usually still detectable in 
these overlapping features. 

The strong, broad absorption 
features often interfere with the 
identification of other structural or 
functional groups of phenols. 

Fuels & Crude Oil 

As complex mixtures of many 
different hydrocarbon classes, fuels 
and crude oils usually exhibit only 
three or four major absorption 
features that mainly represent C-H-
stretches (2.35, 1.75, 1.35 1.2 & 0.93 
µm). Only an identification as fuel 
hydrocarbons and estimation of the 
ratio of aliphatics and aromatics 
seem feasible. 

The determination of functional or 
structural groups of single 
compounds is to be considered 
impossible 

Ketones, Aldehydes 
& Carboxylic 

Acids 
(C=O group) 

Minor common absorption features 
occur in the 1.9 µm – 2.2 µm 
wavelength region. 

Although all compound groups 
contain a C=O group, no common, 
strong, and specific absorption 
feature can be identified. 

Chlorinated 
Organics 

(C-Cl group) 

Chlorinated organics generally show 
sharper and deeper absorption 
features than unchlorinated organics. 
The absorption features are often 
shifted towards shorter wavelengths 
by 50 nm to 150 nm in comparison 
to C-H-stretch absorption features. 

No clear, unambiguous 
identification of C-Cl absorption 
features seems possible in the 0.25 
µm – 2.5 µm wavelength region, 
even though sharp absorption 
features at 1.1 µm and 2.15 – 2.25 
µm often hint at C-Cl groups. 
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The absorption features of important constituents of basic organic compounds in the 
visible and near infrared wavelength regions between 0.5 µm and 2.5 µm wavelength 
are summarized and illustrated in figure 3-8, based on own laboratory measurements 
of circa 70 organic compounds using an ASD Field Spec Pro FR® instrument. The 
width of the observed absorption features is represented by the width of the bars, and 
the intensity of their color, with red representing strong absorption features (> 50 % 
of the 100 % reflection), orange representing medium absorption features (min. 20 % 
of the 100 % reflection), and yellow weak absorption features.  

 

 
Figure 3-8: Important absorption features of important basic organic compounds and 
functional groups in the near visible through shortwave infrared wavelength regions. 
 

Although it is not a subject of this investigation, it should to be noted that the data 
acquired in laboratory measurements of more than 70 organic compounds suggest 
that spectra in the 0.25 µm to 2.5 µm wavelength region represent a spectral 
fingerprint of individual organic chemical compounds or at least groups of skeletal 
isomers. This would allow the identification of at least the substance group if not the 
exact chemical compound or isomer group of relatively simple chemical compounds 
if the spectrum of an analyte is compared to a comprehensive spectral library. 
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NIR analysis of petrochemicals 

The analysis of fuel hydrocarbons by means of near infrared spectroscopy dates back 
from the 1920s to 1940s, when the first publications described the analysis of 
structural groups of hydrocarbons (methyl, methylene, methine, aromatic C-H 
groups). The 1.2 µm absorption feature was used to determine the average number of 
various C-H-groups. In 1989, NIR spectroscopy in the 700 nm to 2500 nm 
wavelength region was reported useful for the simultaneous estimation of the major 
classes of hydrocarbon constituents (aliphatics, aromatics, olefinics). Furthermore, 
the determination of octance number, MTBE (tert-butyl methyl ether) and methanol 
content was shown to be possible with NIR spectroscopy [Workman 1996, Buchanan 
1992, Stark 1992]. 

Since the early 1990s, NIR spectroscopy has gained an important role in the analysis 
of hydrocarbon production processes and products because it is an analytical method 
that can be applied in automated, on-line mode, requiring no sample preparation (in 
situ measurement) and returning reliable and repeatable results. It is also highly cost-
effective. In the petrochemistry industry, NIR spectroscopy is used, among others, 
for the monitoring of feedstock composition, the polymerization of isobutene, 
ethylene, etc. in polymerization plants, the determination of the octane number, and 
the composition with respect to major hydrocarbon classes [Cermelli 1992, 
Workman 1996, Buchanan 1992]. 

However, it must be noted that before their continuous application in production 
processes, all applications require comprehensive and often difficult calibration using 
other analytical methods (IR, NMR, GC, MS) [Cermelli 1992].  

Figure 3-9 illustrates the capabilities of NIR spectroscopy in the field of 
petrochemical analysis and process control, depicting the spectra of the four 
compounds of the BTEX group isomers (benzene, ethylbenzene, toluene, and a 
mixture of xylene). Based on the comparison of the spectra it can be stated that NIR 
spectroscopy allows the differentiation of the four basic BTEX compounds. The  
1.14 µm and 1.19 µm absorption features of a dual-pass measurement through 1 mm 
of medium (using an ASD Field Spec Pro FR instrument) represent the abundance of 
aromatic and aliphatic C-H-stretches (2nd overtone), respectively. 

The 1.14 – 1.15 µm absorption feature (center) represents the number of aromatic  
C-H-stretches (2nd overtone of the 3.25 µm fundamental). As summarized in table 3-
6, the absorption increases with the number of aryl-C-H stretches, from 85 % relative 
reflectance for xylene with four aryl-C-H stretches to 76 % relative reflectance for 
benzene with six aryl-C-H stretches. Simultaneously, a small shift towards longer 
wavelengths is found with an increase in the number of substituted alkyl-C-H 
groups: from 1.140 µm for benzene (n alkyl-C-H stretches) to 1.148 µm for xylene 
(6 alkyl-C-H stretches). 

Similar behavior is found for the 1.19 µm absorption feature representing the number 
of aliphatic C-H- stretches (2nd overtone of the 3.45 µm fundamental). The 
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absorption increases with the number of alkyl-C-H stretches from 90 % relative 
reflectance for toluene with three alkyl-C-H stretches to 84 % relative reflectance for 
xylene with six alkyl-C-H stretches. 

 

 
Figure 3-9: Absorption spectra of benzene, toluene, ethylbenzene, and xylene in the 0.38 µm – 
2.5 µm wavelength region indicating their separability in this wavelength region.  
 



 56

Table 3-6: Characterization and separation of BTEX compounds in NIR spectra based on the 
1.2 µm region absorption feature. 

Substance Benzene Toluene Ethylbenzene Xylene 

Structural 
Formula 

H
H

H

H
H

H

 
 

CH3

H

H

H

H

H

 
 

CH2

CH3

H

H
H

H

H

 
 

CH3

CH3

H H

HH

(Figure:  
o-Xylene) 

Aromatic C-H 
stretches 6 5 5 4 

Aliphatic C-H 
stretches 0 3 5 6 

2nd overtone 
aryl-H-stretch 

[µm] 
1.140 1.142 1.143 1.148 

2nd overtone 
aryl-H-stretch 

[% reflectance] 
76 81 83 85 

2nd overtone 
alkyl-H-stretch 

[µm] 
N/A 1.189 1.188 1.190 

2nd overtone 
alkyl-H-stretch 
[% reflectance] 

N/A 90 88 84 

 



 57

Absorption features of inorganics 

Unlike organic substances, for which many important structural and functional 
groups are evident in near infrared spectra, most inorganic substances do not show 
any absorption features that allow a definite identification. 

The reason for this is that most inorganics apart from water and some gases such as 
carbon dioxide, oxygen and ozone do not possess electrons in chemical bonds that 
are able to absorb near infrared wavelengths [ASD 2003]. This is evident in the 
spectra of six representative inorganic substances (metals, salts, oxides) depicted in  
figure 3-10. 

 

 
Figure 3-10: Example spectra of members of different groups of inorganics (e.g., metals, salts, 
oxides) proving the absence of characteristic absorption features for inorganics. 
 

Aluminum (gray line) and zinc (blue line) as representatives for metals do not show 
major absorption features. Both exhibit a medium reflectance in the visible 
wavelength region (approximately 50 – 65 % reflectance) that increases towards 
longer wavelengths beyond 800 nm and 1,000 nm, respectively. The reflectance in 
the visible wavelength regions between 400 nm and 800 nm represents simply the 
color of the substance. With a reflectance of 50 to 65 % in the visible wavelength 
regions, both aluminum and zinc appear light gray or silvery gray. 

The copper oxide measured (black line) was a dark black powder. This is again 
evident in the visible wavelength regions where almost no radiation is reflected. 
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Towards longer wavelengths beyond 800 nm, the reflectance of copper oxide 
increases but never exceeds 25 %. 

Sodium chloride, a white crystalline substance (red line), shows no absorption 
features except two water absorption features at around 1,400 nm and 1,900 nm due 
to its moisture content. This is valid for all crystalline salts measured. All are white, 
crystalline substances that reflect almost 100 % of incident radiation in the 250 nm to 
2,500 nm wavelength range with slightly decreasing reflectance beyond 2,000 nm. 

Iron sulphate hydrate, a bluish-green, crystalline salt (green line) shows a triple peak 
in the 350 nm to 600 nm visible wavelength region, reflecting 60 – 70 % of the 
incident radiation while absorbing almost all radiation beyond 600 nm and therefore 
appearing bluish-green. Beyond 600 nm, reflection is generally lower than 15 % with 
two broad but weak peak/absorption features around 1,400 nm and 1,900 nm, 
obviously due to hydrated water. 

Water free sodium hydroxide, measured as white pellets, are an exception compared 
to the other inorganics. Reflecting 75 – 80 % in the visible wavelength regions and 
therefore appearing white, reflectance decreases almost linearly beyond 1,000 nm 
(80 % reflectance) towards 2,500 nm (< 5 % reflectance). In contrast to the other 
inorganics investigated, sodium hydroxide exhibits two sharp and relatively strong 
absorption features at 950 nm and 1,400 nm, respectively. Obviously, these two 
bands are O-H stretch overtones (that can not be compared to the O-H absorption 
overtones of alcohols described above). 

The results presented here are consistent with the spectra measured for more than 40 
inorganic substances including elemental non-metals, metals, oxides, acids, and salts 
in laboratory reflectance measurements using an ASD Field Spec Pro FR. 

 

 

Summary: Capabilities of NIR spectroscopy 

As shown above, near infrared spectroscopy does not only hold a huge potential for 
quantitative analysis but also for qualitative analysis or combinations of both 
qualitative and quantitative chemical analysis. 

Many, though not all, groups of organic chemical compounds (aliphatics, olefins, 
alkynes, aromatics, alcohols) can be easily distinguished using near infrared 
spectroscopy. If calibration standards are used, the identification of known 
substances in a mixture and the determination of their concentrations are also 
possible. Furthermore, it seems likely that the identification of substances based on 
their near infrared spectra in the 0.2 µm to 2.5 µm wavelength region is possible. 
This would require a comparison of the analyte spectrum to a spectral library 
containing spectra of the analyte or related substances. However, it seems unlikely 
that isomers can be differentiated using near infrared spectroscopy. 
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Inorganic compounds can usually not be distinguished or detected using near infrared 
spectroscopy because they usually exhibit not characteristic absorption features in 
the 0.2 µm to 2.5 µm wavelength region. 

To what extent the possibilities of near infrared spectroscopy for qualitative and 
quantitative analysis of fuel hydrocarbons can be utilized in remote sensing imaging 
spectrometry of soils contaminated with fuel hydrocarbons will be investigated in 
sections 5, 6 and 7. 

 

 

3.2 – Remote sensing imaging spectrometry 

Near infrared spectroscopy was transferred from the laboratory to field applications 
and even adapted for remote sensing applications because it works in the wavelength 
ranges between 0.2 µm and 2.5 µm (in which range the sun also illuminates the 
Earth’s surface and where the atmosphere is transparent for the most part) and 
because no sample preparation is required. This remote sensing technology is now 
known as imaging spectrometry, imaging spectroscopy or hyperspectral imaging. It 
was developed beginning in the 1970s and required significant developments with 
respect to data acquisition systems, data processing, data correction, and data 
interpretation. Now sharing only the fundamentals of infrared and near infrared 
spectroscopy with the laboratory methods described above, it has become a full-
grown remote sensing tool that has opened completely new possibilities in remote 
sensing of the Earth’s environment. However, terrestrial near infrared spectroscopy 
in field applications is still an important tool for the calibration (“ground-truthing”) 
of remote sensing imaging spectrometry data. 

Remote sensing imaging spectrometry (or hyperspectral imaging) is the application 
of near infrared spectroscopy as a remote sensing method from both aircrafts and 
spacecraft platforms. Instead of acquiring multitemporal measurements in the same 
location or medium (i.e. repeated single spectra at scheduled times) remote sensing 
imaging spectrometry means the acquisition of spectra for hundreds of sampling 
areas (pixels) simultaneously. Thus, imaging spectrometry data may be represented 
as both spectra for single pixels and images for single spectral bands. While the 
emphasis of near infrared laboratory or process analysis is quantitative analysis 
against comprehensive calibration models, the objective of remote sensing imaging 
spectrometry is both qualitative and quantitative analysis. In laboratory analysis or 
process control near infrared spectroscopy measurements, the environmental 
conditions are usually controlled and optimized with respect to near-optimal 
conditions for measurement. In contrast, remote sensing imaging spectrometry is an 
analytical chemistry method carried out in an “uncontrolled environment” [Goetz 
1996a]. Both the target materials (varying areas of the Earth’s surface with different 
land cover types) and the atmosphere, with considerably varying water vapor 
content, contribute to the “uncontrolled environment” and present considerable 
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challenges with respect to data acquisition, data processing and data interpretation. 
While the objective of laboratory or process control of near infrared spectroscopy is 
typically quantitative analysis of mixtures with known constituents, the objective of 
remote sensing imaging spectrometry is usually both qualitative and quantitative 
analysis of unknown target materials. 

Because imaging spectrometry in the 0.2 µm to 2.5 µm wavelength region is the first 
remote sensing technology that provides analytical chemistry possibilities and 
precision in the field of remote sensing, many new applications have been developed 
and are still being developed. Where aerial photographs and multispectral remote 
sensing data allowed only the differentiation of major classes of vegetation (e.g. 
coniferous forest, deciduous forest, shrub land, etc.), imaging spectrometry now 
allows the identification of vegetation species rather than classes comprising many 
different species. Providing new possibilities to map vegetation biochemistry and 
detect vegetation stress and its sources (e.g., nutrient stress, water stress, pest stress, 
heavy metal stress, etc.), imaging spectrometry is also a promising technology for 
precision agriculture and forestry (forest damage mapping, pest infestation, etc.). 
With its proven potential for geologic mapping and mineral and hydrocarbon 
exploration, imaging spectrometry has already become a state of the art technology 
in industrial geologic exploration. Soil type and soil properties mapping, the remote 
sensing investigation of limnic, coastal and marine water bodies (e.g. determination 
of suspended matter, phytoplankton, bathymetry, submerged vegetation mapping, 
coral species and coral health mapping, etc.) are other applications that are gaining 
interest. Mostly unknown are the military applications of hyperspectral remote 
sensing and its implementation. However, recent publications hint at applications 
such as friend-foe identification (using paints with characteristic absorption features 
(“fingerprints”) in the 0.2 – 2.5 µm region to reduce so-called “friendly fire” 
incidents), battlefield (terrain) analysis, land mine detection, and the detection of 
chemical warfare agents (atmospheric application of imaging spectrometry). In the 
law enforcement sector, imaging spectrometry can be assumed to have gained 
significance in the detection and mapping of drug plant plantations (a special 
application of vegetation species mapping) in Central and South America but also 
other regions of the world. Still under investigation are atmospheric and urban 
applications of imaging spectrometry. Both fields of application pose considerable 
challenges. Because of the atmospheric interference measured against the terrestrial 
background from airborne and spaceborne imaging spectrometry systems, 
atmospheric applications make up only a fraction of the overall signal received 
compared with the terrestrial background. Nevertheless, the potential of imaging 
spectrometry data for atmospheric water vapor mapping, the mapping of atmospheric 
gases and larger exhaust plumes has been demonstrated in several studies. Urban 
applications pose considerable challenges because the target area is typically highly 
complex with many different surface materials varying over small areas (numerous 
different pavement and roofing materials, varying vegetation, water bodies, plastics, 
paint (cars), etc.). However, urban environment mapping, urban planning and tax 
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adjustment are considered as potential applications of imaging spectrometry 
investigations of urban areas. 

Environmental applications with respect to the detection and/or mapping of 
contaminated sites, stressed vegetation, waste deposits or areas with other undesired 
anthropogenic impacts are typically special applications of the imaging spectrometry 
investigation of soil, geology, vegetation or urban areas. The subjects of 
environmental applications in the original field of imaging spectrometry are, for 
example: 

• Soil salinisation detection, quantification and mapping (soil) 

• Oil spill detection on water (water) 

• Oil contamination mapping of soil and detection of geogenic hydrocarbon 
micro-seepage and macro-seepage in hydrocarbon exploration (geology) 

• Analysis of lignite overburden dumps and metal mining overburden dumps 
with respect to acidic drainage and heavy metal release 

• Vegetation stress mapping as an indicator for soil contamination that is 
induced by metals, salt and organic contaminants or general vegetation stress 
around known hazardous waste sites such as landfills (vegetation/agriculture) 

• Wildfire damage and post fire succession monitoring (vegetation/forestry) 

• Detection of illegal dumps (environment) 

• Asbestos sheeting detection and mapping (urban) 

Environmental applications with a focus on the detection of contaminated sites and 
soil contaminations, in particular with organic contaminants will be investigated in 
detail in section 4. Based on the objective of this study, this summary of a 
comprehensive literature survey will focus on the spectral properties and the imaging 
spectrometry investigation of soil properties (moisture, soil type, soil contamination, 
salinisation, etc.), vegetation stress related to contaminated soil (heavy metals, salts, 
organic contaminants), the detection of fuel hydrocarbons in the environment, the 
detection of waste deposits, and the detection of acidic leachates from metal mining 
overburden dumps. 

In the context of recent applications of imaging spectrometry and their development, 
it should be noted that the first generation applications of imaging spectrometry were 
limited to highly homogeneous systems, namely to the mapping of surface 
mineralogy in arid regions. The mapping of the mineralogy of arid regions depends 
on only one variable, namely different minerals and their spectra. Soil moisture 
(water), vegetation cover or anthropogenic materials are typically nonexistent here. 
Mixed pixels in these applications therefore represent only mixtures of different 
minerals. 

Mineral spectra (arid regions) = f (mineralogy) 
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In the second generation of applications, imaging spectrometry was extended to other 
homogeneous systems, namely vegetation analysis (natural vegetation and 
agricultural vegetation), and the investigation of water bodies. For vegetation species 
mapping, measured spectra are compared to spectra from spectral libraries in order to 
match the measured spectra to known vegetation species. For vegetation stress 
mapping, usually applied to stands of homogeneous species, anomaly detection 
algorithms are applied. In water body investigation, minor spectral signatures of 
suspended matter, chlorophyll and other parameters of interest are detected in a 
dominating but homogeneous water background spectrum (even among different 
water bodies). Water and vegetation spectra are, therefore, determined by the 
following variables with water and vegetation species being the dominant factor 
determining the spectra. The “normal” water and vegetation species spectra can be 
considered the background in which “anomalies” are detected or mapped: 

 

Water spectra = f (water, suspended matter/turbidity, chlorophyll, submerged 
vegetation) 

Vegetation spectra = f (vegetation species, moisture, water / nutrient / contaminant 
stress) 

 

The third generation of imaging spectrometry applications, namely the investigation 
of complex and inhomogeneous systems or targets such as urban areas and 
environmental contaminations involves many different variables. Typically, soil 
contaminations occur near or in urban areas, in particular industrial zones. Often 
contaminated sites are located on abandoned industrial brownfields. While urban 
areas are always heterogeneous, abandoned industrial brownfields are often even 
more heterogeneous with different pavement and roofing materials, varying 
vegetation cover (species, canopy closure, health) due to succession, material and 
waste deposits, painted and rusting metal structures, etc. In this heterogeneous 
background, different contaminants subject to such an investigation, are typically 
found in relatively low concentrations (usual contaminant concentrations of less than 
3 wt.%). Furthermore, the extent of surface contaminations apart from waste deposits 
(that might even be covered) is usually small. Sometimes, contaminations are, as 
discussed earlier, limited to the subsurface without any surface expression as 
contaminated soil or stressed vegetation. Spectra of contaminated soil are therefore 
determined by four major variables of which the contaminants are typically the least 
dominant: 

 

Contaminated soil spectra = f (soil, vegetation cover, moisture, contaminant(s)) 
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In both urban applications of imaging spectrometry and the mapping/detection of 
contaminated sites, mixed pixels combining the spectra of different materials (either 
occurring as spatially neighboring materials or as mixtures) must to be considered 
normal, thus increasing the complexity of the detection problem. 

 

Data acquisition and processing 

Besides careful mission planning considering the objectives of an imaging 
spectrometry campaign and the technological possibilities, data acquisition and post-
flight data processing are of particular importance in imaging spectrometry. 

Imaging spectrometry utilizes reflected solar radiation in the 0.4 µm – 2.5 µm 
wavelength region as illumination source. As described in section 3 and illustrated in 
figure 3-2, the total radiance decreases from its maximum of approximately  
1,500 W m-2 µm-1 at 0.7 µm to 100 W m-2 µm-1 and less between 2.0 µm and 2.5 µm. 
The radiance intensity is further decreased by atmospheric absorption bands of water 
vapor, carbon dioxide, oxygen, ozone and – in urban areas – atmospheric pollutants. 
Haze (water vapor or smog) attenuate the reflected solar radiation considerably, 
making data acquisition in perfect weather conditions (clear sky, dry atmosphere) 
preferable. Atmospheric interference is also crucial to the signal-to-noise ratio of 
imaging spectrometry data. The higher the absolute radiance is during data 
acquisition, the higher the signal-to-noise ratio will be and vice versa. 

Post-flight data processing consists of three major components, namely atmospheric 
correction, conversion of radiance data to reflectance data, and geometric correction. 

After being reflected by the target, usually the Earth’s surface, the radiation passes 
through the atmosphere between the target and the sensor. On this path, atmospheric 
gases interact as described with the reflected radiation containing the target 
information, adding additional absorption features to the spectrum. In order to 
retrieve the radiation-surface interactions it is therefore necessary to remove these 
atmospheric absorption features from the data on a band by band basis because the 
atmospheric absorption is highly wavelength-dependent. Several atmospheric 
correction methods and algorithms based on different atmospheric radiative transfer 
models have been developed for this purpose. One common method is based on the 
comparison of the spectra of calibration targets measured by the airborne instrument 
and a ground based spectrometer. Subtracting the airborne measurement from the 
ground measurement yields the atmospheric interference that can then be subtracted 
from every pixel in the remote sensing imaging spectrometry data. Because this 
method does not take into account spatial atmospheric variations due to wind, 
topography or different ground cover, some instruments measure atmospheric 
calibration spectra for each ground spectrum or line of ground spectra collected 
(horizontal or off-axis measurement of atmospheric spectra). These atmospheric 
reference spectra are then used for a pixel-by-pixel correction of atmospheric effects 
in hyperspectral data. 
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For visual interpretation of hyperspectral spectra, and for most digital data 
interpretation methods, it is necessary to convert the acquired radiance spectra, which 
in most cases represent the solar irradiation curve, with the Earth’s surface 
absorption bands into normalized relative reflectance spectra. In most cases, the 
radiance-to-reflectance conversion is now implemented in atmospheric correction 
models taking into account the solar radiation curve derived based on atmospheric 
data. 

The geometric distortions of airborne scanner data that result from the unsystematic 
roll, crab and pitch movements of the platform are usually corrected using time-
coded three-dimensional orientation data from the aircraft’s inertial navigation 
system (INS). In a second step after the correction of these unsystematic distortions, 
systematic distortions such as the tangential distortion and resolution cell size 
variations in across-track scanner data can be corrected using simple mathematical 
models. 

 

 

3.3 – Imaging spectrometry systems 

More than 100 imaging spectrometry systems have been developed since the 1970s 
when the development of imaging spectrometry began in the wake of the advent of 
digital multispectral imaging systems (e.g., the first LANDSAT satellites) [Harrison 
2003]. While most systems were developed in research and development projects in 
the United States, several commercial systems have been developed since the mid-
1990s in the United States, Australia, Canada, and Finland. 

In comparison to multispectral remote sensing systems such as the well-known 
spaceborne LANDSAT and SPOT systems, hyperspectral remote sensing systems 
required considerable advancements with respect to system optics, system 
mechanics, data compression and storage and data transfer. In contrast to 
multispectral systems that record electromagnetic radiation over a broad range of 
around 100 nm to 300 nm in four to ten independent bands, hyperspectral remote 
sensing systems record electromagnetic radiation in dozens to hundreds of small, 
contiguous bands. This implies several consequences with respect to the design and 
data handling in hyperspectral remote sensing systems. First, hyperspectral remote 
sensing systems produce multiple data volumes compared to multispectral systems 
with a similar spatial resolution. Second, the total radiance that is recorded in each 
band is only a fraction of that recorded by multispectral systems. While multispectral 
imaging systems integrate radiation over a wavelength range of 100 nm to 300 nm, 
hyperspectral remote sensing systems integrate electromagnetic radiation over bands 
that are typically only 2 nm to 10 nm wide. 

To date, all known imaging spectrometry systems are passive system acquiring 
spectra in the 0.4 µm to 2.5 µm wavelength region (VIS, NIR, SWIR). As discussed 
before, the radiation received by an airborne or spaceborne instrument in this 
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wavelength region is sunlight reflected by the Earth’s surface. However, the 
development of active hyperspectral imaging systems with an independent 
illumination source integrated in the system to enable the acquisition of hyperspectral 
data at nighttime and in adverse weather conditions for military purposes are under 
investigation [Nischan 2000]. 

Recently, several instruments have been developed that acquire spectra in the 
thermal infrared wavelength regions between 3 – 5 µm and 8 – 12 µm, respectively. 
As the main focus of these instruments is the investigation of atmospheric, fire and 
geologic features, they are not discussed in detail here. 

 

Imaging spectrometry systems designs 

Three major types of imaging spectrometry systems must be distinguished: across-
track scanners (whisk-broom), along-track scanners (push-broom) and framing 
cameras [Harrison 2003, Puschell 2000].  

Across-track scanners scan a single pixel at a time, with the scanning element 
moving continuously at right angles to the platform flight line. The radiation thus 
collected over the 0.4 – 2.5 µm range is dispersed using an optical grating, prism or a 
similar dispersing element and is detected, wavelength by wavelength, by a line 
detector array. Thus, across-track scanners have one detector element for each 
wavelength (spectral band) recorded. The size of the ground element recorded is 
referred to as instantaneous field of view, varying with the scan angle. The advantage 
of across-track scanning systems is that they are easily calibrated. Their main 
disadvantage is a relatively short residence or dwell time over each pixel. This design 
has been implemented in several imaging spectrometry systems such as AVIRIS and 
HyMap [Lillesand 1999, Goetz 1992a, Puschell 2000, Kruse 2000a, Harrison 2003]. 

Along-track scanners record a whole line of an image rather than a single pixel at a 
time using a two-dimensional dispersing element (grating) and a two-dimensional 
detector array. The main advantage compared to across-track scanners is their much 
higher dwell time for each pixel, thus increasing the signal-to-noise ratio 
considerably. The disadvantage of this kind of system is the difficult and time-
consuming calibration of the two-dimensional detector array [Goetz 1992a, Puschell 
2000, Harrison 2003]. 

Hyperspectral framing cameras (also: step-stare imagers) acquire hyperspectral data 
for an area simultaneously using one area array detector for every spectral band, thus 
taking dozens or hundreds of pictures in different wavelength bands simultaneously. 
The opto-mechanical challenge in the design of this type of instrument is 
considerable as the incoming radiation has to be split into wavelength bands for 
whole images. Furthermore, the system is required not to move relative to its target 
area during the necessary acquisition time. This design concept has to date only been 
implemented in the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) 
[Harrison 2003, Puschell 2000]. 
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The detectors used in imaging spectrometers are generally photovoltaic 
semiconductor detectors, so-called charge-coupled devices (CCD’s). Semiconductor 
line or area arrays typically used in imaging spectrometers include silicon (Si) arrays, 
indium antimonide (InSb) arrays, mercury cadmium telluride (HgCdTe) arrays and 
indium gallium arsenide (InGaAs) arrays. Silicon arrays are sensitive to radiation in 
the 0.4 – 1.0 µm wavelength range, InSb, HgCdTe and InGaAs arrays at longer 
wavelengths between 1 µm and 5 µm. In some instruments, several different and 
overlapping detector elements are used for optimized sensitivity in different 
wavelength regions [Goetz 2000a]. 

 

Important System Parameters 

The main system parameters to describe the capabilities of imaging spectrometers 
include the spectral range over which the instruments operate, the number of bands 
sampling the spectrum, the bandwidth (also referred to as spectral resolution), the 
signal-to-noise ratio, and the radiometric resolution. These main parameters are 
explained below. 

 

Spectral range The spectral range describes the wavelength areas covered 
by an imaging spectrometer. Most imaging spectrometers 
cover the whole 0.4 µm – 2.5 µm region, while some 
instrument that are tailored to vegetation analysis cover 
only the visible and near infrared wavelengths between  
0.4 µm and 1.0 µm. Most imaging spectrometers do not 
acquire data in the spectral bands around the 1.4 (±0.05) µm 
and 1.9 (±0.05) µm atmospheric water vapor absorption 
bands. 

Band number The number of bands is one of the main parameters of 
hyperspectral systems. Most hyperspectral systems now 
have between 10 and 50 spectral bands over a 100 nm range 
of the electromagnetic spectrum or 100 – 250 spectral bands 
in total. However, the band number is not the only and 
decisive criterion. Some imaging spectrometers sampling 
certain, selected wavelength regions have only 20 – 50 
spectral bands. The second important criterion is bandwidth 
(see below). 

Bandwidth The main criterion of the definition of imaging 
spectrometers or hyperspectral systems is the bandwidth, 
also referred to as spatial resolution. In order to resolve 
typical absorption features of natural and man-made 
structures that are typically between 20 nm and several 
hundred nanometers wide, it is necessary to sample 
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(integrate) the spectrum over short intervals. The bandwidth 
is a parameter that is defined as the full width at half 
maximum (FWHM) response to a spectral line source, 
describing the narrowest spectral feature that can be 
resolved by an imaging spectrometer [ASD 2002a]. 
Bandwidth should not be interchanged with the spectral 
sampling interval, indicating the spectral distance between 
two contiguous bands without referring to their bandwidth. 

Signal-to-Noise-Ratio The signal-to-noise ratio (SNR or S/N) is the ratio of the 
radiance measured to the noise created by the detector and 
the instrument electronics. For imaging spectrometers, the 
signal-to-noise ratio is always wavelength-dependent 
because of overall decreasing radiance intensity towards 
longer wavelengths and atmospheric interferences 
(atmospheric absorption bands). 

Spatial resolution The spatial resolution is defined as the ground area that is 
represented by one image pixel. Except for spaceborne 
instruments, the spatial resolution is not fixed. The 
parameter most commonly used to describe the spatial 
resolution of an instrument is the aperture angle for a single 
pixel or instantaneous field of view (IFOV), usually given 
in milliradians [mrad]. Multiplying the IFOV in radians 
with the platform (flying) height in meters yields the actual 
spatial resolution in meters. However, this is only valid at 
Nadir, i.e., exactly vertically below the platform. Airborne 
instruments typically yield a spatial resolution between  
0.5 m and 20 m, spaceborne instruments between 30 m and 
1,000 m. 

Radiometric resolution Radiometric resolution is the ability of the sensor to resolve 
the signal intensity. It is usually expressed in digitization 
levels (bits). Recent imaging spectrometers digitize radiance 
data in 4,096 levels (12 bit) to 65,536 levels (16 bit), with 
the levels also being referred to as digital number (DN) 
values. 

Platforms Most recent imaging spectrometers are airborne instruments 
that are usually applied from flying heights between  
1,000 m and 5,000 m. Some coarse spatial resolution 
imaging spectrometers are spaceborne (e.g., MODIS with a 
spatial resolution of 250 – 1,000 m aboard the EO-1 
satellite). A high spatial resolution spaceborne imaging 
spectrometer is the military Warfighter-1 instrument aboard 
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the OrbView-4 satellite delivering 8-m spatial resolution 
hyperspectral data from space.  

 

Ten important recent and operational imaging spectrometry systems and important 
system parameters are summarized in table 3-7. 
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Table 3-7: System characteristics of important recent imaging spectrometry instruments. For the systems DAIS 7915, EPS-H, and MODIS, spectral bands in the thermal 
wavelength regions beyond 2.5 µm are left out. 

System Spectral 
Bands 

Spectral 
Range [µm] 

Bandwidth 
[nm] 

IFOV 
[mrad] 

Spatial 
Resol. [m] 

Radiometric 
Resol. [bit] SNR Platform Funding / 

Ownership 
Company/ 
Country 

AISA Eagle 1 244 0.4 – 0.97 2.9 0.5 – 0.7 ca. 0.5 – 0.7 
(@1,000 m) 12 N/A airborne commercial 

Specim/ 
Finland 

AISA Hawk 1 254 1.0 – 2.4 8 1 
ca. 1 

(@ 1,000 m) 
14 N/A airborne commercial 

Specim/ 
Finland 

AVIRIS 2, 10 224 0.41 –2.45 9.4 – 9.7 1 
2 (low alt.) - 
20 (high alt.) 

12 150 – 1,100 airborne  research 
Jet Propuls. 
Laboratory/ 

USA 

CASI-3 3 1 - 288 0.4 – 1.05 ~2.2 0.49 
ca. 0.5 

(@ 1,000 m) 
14 ~480 : 1 

(peak) airborne commercial 
Itres Res./ 

Canada 

DAIS 7915 4 72 
1 

0.43 – 2.5 
3 – 5 

15-45 
2 

3.3 5 - 20 15 N/A airborne commercial / 
reserach 

GER/ 
USA 

EPS-H 5 76 
64 

0.4 – 1.01 
1.0 – 2.5 

8 
16-50 

1.25 - 5 
1.25 – 5 

(@ 1,000 m) 
16 150 - 300 airborne commercial 

GER/ 
USA 

HyMap 6, 10 128 0.4 – 2.504 10 - 20 1 - 3 1.5 – 13.5 12 –16 > 500 : 1 airborne commercial 
Int. Spectr./ 

Australia 

Hyperion 7 220 0.4 – 2.5 10 N/A 30 N/A N/A spaceborne research 
NASA/ 
USA 

MODIS 8 36 
0.46 – 2.5 
8 – 14.39 

10 – 50 
30 – 300 

N/A 250 – 1,000 12 57 – 1,087 : 1 spaceborne research 
NASA/ 
USA 

Warfighter 9, 10 280 0.45 – 5.0 11.3 – 25.0 ~0.02 8 N/A 50 - 400 spaceborne military 
US DOD/ 

USA 
[Sources: 1www.specim.fi, 2www.aviris.jpo.nasa.gov, 3www.itres.com, 4www.op.dlr.de/dais/dais-ser.htm, 5www.ger.com, 6www.intspec.com, 7www.eo1.gsfc.nasa.gov, 
8www.modis.gsfc.nasa.gov, 9 www.fas.org, 10Scriptum Short Course Hyperspectral Imaging & Data Analysis, CSES; University of Colorado 2000] 
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3.4 – Imaging spectrometry data interpretation 

The objective of imaging spectrometry data interpretation, as for all remote sensing 
data interpretation, is the derivation of information on surface composition and 
properties from the image data. Because of its high spectral resolution, imaging 
spectrometry data can be analyzed for both qualitative and quantitative surface 
composition information and yield results that go beyond that of other remote 
sensing methods. In contrast to broadband spectral data, imaging spectrometer data 
can be used (in principle) to uniquely characterize and identify many materials 
[Shaw 2002, Goetz 1992a]. Depending on the objective of the investigation, the data 
interpretation might be targeted at a full-scale analysis of a particular scene resulting 
in a full-scale land cover analysis, the detection of known or expected spectral 
signatures or the detection of anomalies, i.e. unexpected spectra. 

However, besides its possibilities, imaging spectrometry data also represents 
considerable challenges with respect to data interpretation. One of the main problems 
is coping with the high spectral dimensionality of imaging spectrometer data 
resulting in huge datasets that contain much redundant information and pose 
considerable computational challenges [van der Meer 2001b].  

The general approach to imaging spectrometry data interpretation comprises the 
reduction of data redundancy, the identification of pure spectra in the dataset under 
investigation, and, finally, the identification of the spectral constituents of every 
single pixel over the whole scene. 

The subsequent paragraphs will outline the general data interpretation approaches, 
problems, terminology and data interpretation techniques used in imaging 
spectrometry data interpretation. 

 

Data interpretation objectives 

The objectives of an investigation using imaging spectrometry can be organized 
according to the following application specific tasks [Shaw 2002a, Landgrebe 2002, 
Richards 1999, Chang 2003b, van der Meer 2001b, Manolakis 2002a]: 

 

Classification Grouping of pixels of a hyperspectral data set into classes 
according to common spectral properties using user-defined 
classes (supervised classification) or calculated classes of 
similar spectra (unsupervised classification) 

Imaging spectrometry data allows, in contrast to 
multispectral data classification, a more detailed 
classification (e.g. classification of vegetation species rather 
than vegetation classes such as “grass”, “deciduous forest” 
and “coniferous forest”). Using spectral libraries, many 



 71

different vegetation species, minerals and man-made 
materials can be uniquely identified using classification 
methods developed for the interpretation of imaging 
spectrometry data. 

 

Mapping Distribution mapping of abundant materials with known 
spectral characteristics (“ground-truthing” or image 
derived) in a scene, e.g., dominant surface materials or 
vegetation species in a scene that are easily identified or 
known. 

 

Anomaly detection Detection of spectral anomalies in a “normal”, i.e. relatively 
homogeneous spectral background without a priori 
knowledge about the spectral characteristics of the 
“anomaly”  

Typically, spectral anomalies are small compared to other 
objects or surface materials in the scene investigated. 
Usually, “anomalous” spectra can be identified after 
detection using spectral libraries. 

 

Target detection Detection of expected (or known) spectral signatures in a 
large, homogeneous or heterogeneous background 

Usually, the target is small and its occurrence of low 
probability compared to the spectral background, i.e. it 
covers only few small areas of an imaging spectrometry 
dataset. Because of this, classification approaches based on 
statistical approaches are not applicable. If the target is 
actually smaller than a pixel, i.e. hidden in larger pixel, it is 
referred to as subpixel target detection. Target detection 
always requires a priori knowledge or assumptions about 
spectral characteristics of the target. Typically, target 
spectra searched for in imaging spectrometry dataset are 
taken from spectral libraries. 

 

Abundancy mapping Quantitative analysis with respect to the fractions of 
different materials that make up a pixel  

Depending on the spatial resolution of an imaging 
spectrometry dataset, more or less pixels represent “mixed” 
spectra of different surface materials that were integrated 
into one pixel or spectrum. Spectral unmixing algorithms 
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that identify and quantify the spectral fractions of different 
materials in a pixel can be used to estimate the fractions of 
surface materials that make up a pixel. Spectral unmixing 
always requires the identification of the major spectral 
constituents that make up a spectrum (see below, spectral 
unmixing). 

 

Change detection Determination of changes between two or more 
multitemporal imaging spectrometry datasets of the same 
area, e.g. phonological changes of vegetation during 
different seasons or urban development between different 
years 

 

Classification and mapping are qualitative analysis methods with a focus on spatial 
distribution, while anomaly detection and target detection are qualitative analysis 
methods with a focus on detection. Abundancy mapping is a quantitative and 
qualitative analysis method with a focus on quantitative distribution mapping. 
Change detection comprises elements of both quantitative and qualitative analysis as 
changes might be both quantitative (e.g. increase in the density of certain surface 
materials) and qualitative (e.g., appearance of new surface materials). 

 

Spectra 

For the subsequent discussion of hyperspectral data characteristics, data 
interpretation preprocessing, and analytical processing techniques, several concepts 
with respect to the definition and description of spectral absorption features need to 
be described (figure 3-11). 
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Figure 3-11: Important concepts, definitions and characteristics of near infrared spectra. 
 

Absorption features are local minima in the reflectance spectra. They are described 
by both their position, i.e. the wavelength of their reflectance minimum, and their 
width. Because absorption features are usually wide at top and narrow towards the 
bottom, the width used to describe is the full-width-at-half-maximum (FWHM). It is 
defined as the width at half the absorption feature depth. Typical absorption features 
of solid and liquid surface materials observed in imaging spectrometry data are 
between several tens to a few hundreds of nanometers wide [Clark 2003b, Goetz 
1996a]. 

In some cases, spectra are normalized for the investigation and comparison of 
absorption features by removing the continuum covering the spectrum. The 
continuum is defined as a convex hull fit over the top of a spectrum utilizing straight 
line segments that connect local spectra maxima [RSI 2001]. 

 

Characteristics of imaging spectrometry datasets 

Spectra recorded in imaging spectrometry or hyperspectral data are usually 
oversampled, i.e., single absorption features are typically covered by several and not 
only single wavelength bands (hyperspectral – “too many bands”). General 
oversampling of imaging spectrometry data is necessary in order to ensure that 
narrow absorption features of all kinds of different surface materials can be recorded 
simultaneously. Therefore, imaging spectrometry spectra contain an abundance of 
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redundant information where single absorption features are covered by multiple 
wavelength bands. 

As described above, depending on the spatial resolution, spectra of an imaging 
spectrometry dataset represent mixed spectra consisting of several constituents (pure 
substances, so called spectral endmembers) that covered the ground area represented 
by the pixel at the time of acquisition. For the spectral unmixing process described 
above, it is important whether a spectral mixture is based on linear or nonlinear 
mixing processes. Usually, linear mixing models are assumed for spectral unmixing.  

 

 
Figure 3-12: Spectral mixing concept with two basic mechanisms: linear mixing (c) and non-
linear mixing (d) of two single components. 
 

 

Figure 3-12 depicts two spectral mixing models. Figure 3-12 a and b represent two 
spectral endmembers and their spectral responses. Figure 3-12 c represents a linear 
mixing of the two spectral endmembers where pure A covers 3/4 of the pixel and 
pure B covers 1/4 of the pixel. The spectrum that results fulfills the linear mixing 
concept as a linear combination of the endmember spectra weighted by their area 
coverage fraction. The absorption feature depth of A is reduced to 3/4 and the 
absorption feature depth of B is reduced to 1/4. Figure 3-12 d illustrates a nonlinear 
mixing of the two components that is usually observed if two components are 
intimately mixed. In this case, absorption features might result in nonlinearly mixed 
spectrum where the absorption feature of B is less than 1/4 of the full absorption 
feature and the absorption feature of A is more than 3/4 of the full absorption feature. 
Two reasons for nonlinear mixing processes are, among others, absorption effects 
where one component is absorbed by the other and therefore not exposed at the 
surface and masking effects where the absorption spectrum of one component 
dominates over the other. Generally, nonlinear spectral mixtures occur if the 
endmember materials are mixed on a spatial scale that is smaller than the path length 
of photons in the mixture [Keshava 2002b, van der Meer 2001b]. 
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Although it is not of particular importance for the investigation of the spectral 
response of soil (i.e. moisture) contaminant systems it should be noted that for some 
surface materials, the surface reflectance response (intensity) is highly dependent on 
the illumination and viewing angles. It is of particular importance for vegetation 
studies, resulting from architectural patterns and general orientation of plant canopies 
induced for example by wind and rain. Vegetation is therefore referred to as an 
anisotropic scatterer, reflecting radiance differently in different directions. This effect 
is described by the bi-directional reflectance distribution function (BRDF). The 
BRDF is a mathematical description of how reflectance varies for all possible 
combinations of illumination and viewing angles at a given wavelength [Kumar 
2001a, Schott 1997, van der Meer 2001b]. 

 

Data interpretation preprocessing 

Probably the most important step of preprocessing of imaging spectrometry data 
prior to image analysis is redundancy (or dimensionality) and noise reduction. The 
objective is to reduce the computational requirements for subsequent image analysis 
steps, to eliminate noise from the data that interferes with the interpretation, and to 
determine the inherent dimensionality (or information content) of the data. 

The minimum noise fraction (MNF) algorithm developed for this purpose is a 
method of generating a reduced number of new, uncorrelated datasets or bands with 
accumulated information content from hyperspectral datasets consisting of hundreds 
of often highly correlated spectral bands. MNF utilizes the fact that while the spectral 
information content in hyperspectral data sets is often highly correlated, noise 
inherent in the data is typically uncorrelated. The MNF approach is based on the 
principal components transformation that was developed to uncorrelate multispectral 
datasets [Richards 1999, Goetz 2000a].  

As described above, an imaging spectrometry dataset consists of m pixels each 
comprising n spectral bands. Each spectral band has an associated brightness value 
that was registered as the spectral response of the sampled area (pixel) by the 
instrument and can also be referred to as its digital number (DN) value. Thus, single 
spectra can be considered n-dimensional vectors with n indicating the number of 
spectral bands. 
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The vector concept assumed for imaging spectrometry data is illustrated in  
figure 3-12. Figure 3-13 a illustrates the concept for a three-dimensional (three-band) 
case. Expanding the concept to the number of n bands of a hyperspectral dataset 
yields an n-dimensional vector for each pixel spectrum of a dataset. The n-
dimensional pixel vector can be defined by either n values or an angle and a length in 
n-dimensional space. Figure 3-12 b depicts a so called two-dimensional scatterplot in 
which all pixels of a scene are mapped according to their DN values in two user-
selected bands. The pixel distribution pattern shown in b illustrates a case commonly 
observed when mapping multi- or hyperspectral data in scatterplots. Obviously, the 
DN values of the pixels in the spectral bands x and y are correlated linearly. Figure 
3-13 c finally illustrates the principle of the principal components transformation. 
Based on the data (in this case for the two-dimensional case), a new orthogonal 
coordinate system is calculated thus that the data is uncorrelated in the new 
coordinate system. By means of linear combination of original, correlated bands, 
uncorrelated bands are produced [Richards 1999, Goetz 2000a, RSI 2001]. 
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Figure 3-13: Concepts of n-dimensional spectrum (pixel) vectors (a) and coordinate 
transformations for dimensionality reduction (b), (c). 

 

The MNF transformation developed for hyperspectral datasets that are more complex 
than multispectral data sets is essentially two cascaded principal components 
transformations. In MNF transformations, the first transformation is used to 
eliminate noise in the data while the second is used to apply a principal components 
transformation on the noise-whitened data. 

The resulting MNF output bands are sorted by decreasing signal-to-noise-ratio 
(SNR), with the first band containing the highest information content and the last 
bands containing virtually only noise. The information content of MNF output bands 
is assessed by comparing the eigenvalues of the output bands, with high values 
indicating a high information content and eigenvalues around one indicating bands 
that contain almost only noise [Richards 1999, RSI 2001, Goetz 2000a]. 

 

Analytical data interpretation 

Following the comprehensive preprocessing of the data including atmospheric 
correction, geometric correction, noise removal and redundancy reduction as 
described above, data interpretation can be carried out. Typically, data interpretation 
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techniques applied to imaging spectrometry data include elements of both 
classification approaches originally developed for the interpretation of multispectral 
data and spectrum interpretation methods developed for qualitative and quantitative 
chemical laboratory analysis. Some important data interpretation approaches applied 
to imaging spectrometry data will be discussed subsequently. 

The primary objective of every analytical data interpretation applied to imaging 
spectrometry data is the identification of spectral signatures and their assessment 
with respect to quantitative abundance. This general approach is always valid, 
regardless of the overall objective of the imaging spectrometry campaign, be it 
mapping, classification, target detection, anomaly detection or abundance mapping. 
However, many specific methods have been developed that are optimized for 
mapping, classification or detection purposes. 

The selection of spectral endmembers is an important step in data analysis except for 
anomaly detection where the “target” spectrum is unknown by definition. Spectral 
endmembers are “spectrally pure”, i.e. single-component spectra of which all or most 
mixed spectra found in a scene are composed. For target detection, endmembers can 
also be expected target spectra derived from earlier investigations or spectral 
libraries. Spectral endmembers can be chosen from an existing spectral library (e.g., 
for target detection) or extracted from a dataset using tools such as the pixel purity 
index (PPI), an algorithm that extracts “extreme” (pure) pixels from n-dimensional 
spectral vector datasets. Another data analysis approach is to compare every single 
pixel spectrum of an imaging spectrometry dataset to comprehensive spectral 
libraries calculating similarities. For some applications, e.g. classification, it might 
also be sufficient to build classes from an imaging spectrometry dataset first and then 
identify the classes. The subsequent paragraphs will outline the principle of some 
important analytical tools for imaging spectrometry data. 

 

Spectral library comparison techniques 

The simplest approach to imaging spectrometry data analysis is the comparison of 
image spectra to spectra from a spectral library on a band by band basis and 
calculating an overall similarity for an image spectrum with respect to spectral 
library matches. This approach has a number of drawbacks. First, this approach 
requires virtually indefinite spectral libraries covering all kinds of surface materials 
that are encountered in the image scenes under investigation. Second, the comparison 
is computationally demanding as the similarity of an image pixel must be calculated 
for every single spectrum in the spectral library. Third, usually only pure materials 
are covered by spectral libraries. Therefore, simple library comparison on a band by 
band basis does not identify spectral mixtures but rather calculates a high similarity 
value for the dominating material in a pixel. In some cases, results may be inaccurate 
because spectral mixtures might resemble spectral responses of materials not present 
in the pixel.  
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Binary encoding was 
developed in an early 
stage of imaging 
spectrometry data 
analysis to reduce the 
computational loads 
required for a band by 
band comparison of 
image and library 
spectra. In binary 
encoding, the 
spectrum is encoded 
into two values, zero 
and one based on a 
threshold value.  

 

 

 
Figure 3-14: Concept of 1-bit and 2-bit binary encoding. 

 

For example, all reflectance band values above 0.5 are assigned the value “1”, all 
reflectance values below 0.5 are assigned the value “0”. By applying binary encoding 
to both imaging spectrometry data and spectral libraries used for comparison, the 
computational load can be reduced considerably as the band by band comparison is 
reduced to a simple yes / no comparison between the image spectrum and the library 
spectra. The most probable match is that with the highest number of matches. 
Because simple binary encoding using only a 1-bit encoding (values 0, 1) and a 
single threshold reduces the separability of spectra of similar materials considerably, 
2-bit binary encoding using four values (00, 01, 10, 11) was developed. With three 
user-defined thresholds and four different values to encode a spectrum, 2-bit binary 
encoding resembles the overall shape of a spectrum much better than 1-bit encoding. 
Figure 3-14 illustrates 1-bit and 2-bit binary encoding for the spectrum of liquid n-
Octane [Richards 1999, Goetz 1992a, Goetz 2000a, RSI 2001]. 
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Figure 3-15: Continuum removal calculated for the spectrum of solid 2-naphthol. Blue: 
reflectance spectrum, red: continuum-removed spectrum. 

 

More advanced forms of image library spectra comparison algorithms are waveform 
characterization and spectral feature fitting (SFF). For these algorithms (see 
above), in a first step the continuum must be removed from the spectra for 
normalization. Figure 3-15 illustrates the effect of continuum removal for the 
reflectance spectrum of 2-Naphthol. In a second step, the normalized spectra are then 
used to characterize the absorption features with respect to their position (minimum 
wavelength), FWHM, depth, slope, and (a)symmetry. These parameters are then 
compared between image and library spectra calculating the similarity. The 
algorithms can usually be restricted to wavelength regions of interest to enhance 
computational efficiency [Clark 2003b, van der Meer 2001b, Richards 1999]. 

 

Spectral angle mapping (SAM) utilizes the angle of the n-dimensional vector 
characterizing the spectral response of a pixel or a group of spectrally similar pixels 
and does not take into account the magnitude (length) of the vector. The method is 
based on the assumption that classes of spectral endmembers are spectrally distinct 
from another such that angles in n-dimensional space are sufficient to differentiate 
groups that are spectrally similar from another. Angles can either characterize the 
mean of predefined classes or boundaries between classes. The spectral angle 
mapping algorithm calculates the similarity between image spectra and library or 
image derived endmember spectra by calculating the n-dimensional angle between 
the spectral endmember and each pixel spectrum. The resulting angle describes the 
similarity between the endmember spectrum and the pixel spectrum. The smaller the 
angle is, the closer the match to the endmember spectrum will be. According to user-
defined threshold values as deviations from the endmember angle, pixels are either 
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assigned to an endmember class or left unassigned (unclassified). The advantage of 
the SAM algorithm is that it is largely insensitive to slope and illumination effects. 
The disadvantage is that SAM does not take into account the intensity of spectral 
absorption bands (vector length) which often plays an important role in spectrum 
discrimination. Figure 3-16 illustrates the spectral angle mapping principle [Richards 
1999, RSI 2001, Goetz 2000a]. 

 
Figure 3-16: Spectral angle mapping classification concept. 
 

 

Target detection techniques 

For target detection, and the detection of known or expected spectral endmembers, 
the matched filtering and mixture tuned matched filtering (MTMF) algorithms 
have been developed. Based on the input of single or multiple endmember spectra, 
the response of the endmember(s) in the image pixel spectra are maximized while the 
spectral responses of background and non-target materials are suppressed. This 
process is also referred to as partial unmixing based on linear unmixing algorithms. It 
returns a single value between approximately 0 and +1 for every image pixel 
spectrum, the value representing the approximate sub-pixel abundance of the 
endmember spectrum under investigation with 1.0 indicating a pure target spectrum 
[RSI 2001]. Unfortunately, matched filtering sometimes returns a considerable 
number of false positives. MTMF is an enhanced matched filtering algorithm that, in 
addition to the result indicating the abundance of the endmember in a pixel, also 
calculates an “infeasibility value” for every pixel. Typically, false positives show a 
high infeasibility value. Correctly detected pixel spectra have both a high matched 
filter score above the background mean and a low infeasibility value [RSI 2001].  
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Anomaly detection 

The objective of anomaly detection algorithms is to distinguish spectra of “unusual” 
materials in a scene from typical background materials without a priori knowledge 
about the target spectra. Anomalies are detected by comparing single pixel spectra of 
an imaging spectrometry dataset to average spectra (“normal spectra”) with a defined 
range of “allowed” deviations of either a whole scene, the wider neighborhood of the 
pixel under investigation or a limited number of abundant or expected spectral 
classes. Which of these three basic approaches is used mainly depends on the 
homogeneity of the scene under investigation. If a spectrum does not fall into the 
“normal” spectra of a scene, it is assigned an anomaly [Stein 2002b, Ren 2002, Penn 
2003, Chang 2003b]. 

 

Spectral mixture analysis 

Spectral mixture analysis is a classification approach that allows the designation of 
several classes to a single pixel based on the unmixing of the sum spectral responses 
of two or more materials covering the area represented by an image pixel. Spectral 
mixture analysis implemented in recent software packages for imaging spectrometry 
data interpretation is usually based on linear spectral unmixing, assuming that all 
spectral mixtures in a scene are linear mixtures [RSI 2001, van der Meer 2001b, 
Richards 1999]. However, as described above (figure 3-12), spectral mixtures can 
only be assumed to be linear mixtures if the two or more components involved are 
not intimately mixed but exist as spatially discrete units in a pixel. If two or more 
components are intimately mixed, spectral mixing processes usually have to be 
assumed non-linear. This fact will be of particular importance for the soil (moisture) 
contaminant mixtures considered in later sections [Keshava 2002b]. In some cases, 
however, non-linear mixture problems are made linear by changing variables [Goetz 
1992a, Keshava 2002b]. 

Spectral mixture analysis requires the identification of all endmembers present in an 
imaging spectrometer dataset. It is then assumed that all pixel spectra of an imaging 
spectrometry dataset are linear combinations of the endmembers identified by the 
user or by automatic means. Based on this assumption, the measured spectra (most of 
which are mixed spectra to some degree) are decomposed into a combination of 
endmembers predefined by the user, and their fractional abundances are determined. 
This process is also referred to as inversion. The results of linear spectral mixture 
analysis are highly dependent on the identification of all correct spectral endmembers 
of an imaging spectrometry dataset, which is often impossible due to the huge 
number of different surface materials found in particular in urban areas. Linear 
unmixing algorithms have been shown to be accurate to approximately 3 – 5 % of 
absolute abundance of a material in a pixel [Keshava 2002b, RSI 1999, Richards 
1999, Goetz 2000a]. 
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Other analysis tools 

Band ratios and band differences are simple transformations based on two spectral 
bands of a dataset that can be used as a quick-check tool for examining hyperspectral 
datasets for the presence of certain materials with known spectral absorption 
features. They are calculated from reflectance or radiance data using two bands in the 
area of sharp and specific absorption features of the target material [Penn 2002b, 
Richards 1999].  

Band ratios should be calculated features for bands that are not more than several 
tens of nanometers apart in order to prevent that uncorrelated absorption features of 
materials other than the target material show up in the band ratio results. Usually, 
spectral bands used for band ratios are located such that one band lies in the center of 
a sharp, intense absorption feature and the other band lies on the shoulder of the 
same feature [Penn 2002b]. 

Neural networks are defined as large numbers of relatively simple processors (or 
neurons / units) that are operating in parallel and that are connected to each other by 
a defined system of links. They are promising alternatives to conventional detection 
and classification approaches based on class statistics and band by band comparison 
of image and library spectra. As far as their principal mode of operation is 
concerned, neural networks resemble animal brains. When a neural network is fed 
with information, the information is split into many small portions and processed in 
parallel over several cascades, with neighboring (connected) processors 
interchanging results. Resembling the animal brain, neural networks cannot be 
programmed to perform certain tasks but have to be trained in order to learn to make 
correct decisions. Training of neural networks means to adjust the parameters of the 
processors and to configure the connections between its processors. Neural networks 
can be implemented as either hardware solutions or software simulating a neural 
network. However, applications of neural networks for the interpretation of imaging 
spectrometry data reported in recent literature show that conventional approaches 
still dominate the interpretation of imaging spectrometry data. Furthermore, the 
application of neural networks to this task is still limited to few experiments for both 
classification and target detection [Carling 1992, Richards 1999, Udelhoven 1998, 
Rogers 1995, RSI 2001]. 

 

Probably the most widely used approach to hyperspectral data interpretation is a 
cascaded combination of the preprocessing and data interpretation techniques 
introduced above. Following atmospheric and geometric correction, an MNF 
transformation is applied to reduce noise in the data. Using the pixel purity index, 
spectral endmembers are then selected by the user. Applying linear unmixing and 
one or several of the data interpretation methods introduced above, endmember 
classes are finally mapped and identified.  
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4 – Environmental applications of imaging spectrometry 
 

Imaging spectrometry has found many applications in different fields during the last 
decade. Originally developed by NASA scientists for geologic mapping in arid 
regions, the potential of imaging spectrometry for military, espionage and law 
enforcement applications was soon recognized in the United States. During the 1990s 
and still today, military interest and funding has been a driving force in the 
technological development of imaging spectrometry. Although only few publications 
are known in this particular field, funding acknowledgements to military and 
security-related government agencies and known instruments and missions (e.g., 
Hydice, Warfighter/Orb-View 4) indicate that much of the development was driven 
by a high interest in military and strategic applications of imaging spectrometry. 
However, civilian applications were also extended to many different fields from its 
early origins concerning the geology of arid regions. Recent applications include 
research and commercial applications in geology and mineral exploration, 
agriculture, forestry and ecology, limnology and oceanography, atmospheric 
sciences, and the military, espionage and law enforcement sectors. The objective of 
this section is to give an overview of imaging spectrometry applications in different 
fields and to provide a detailed analysis of environmental applications, in particular 
the detection and mapping of contaminations, overburden dumps, and waste deposits. 

 

 

4.1 – Applications of imaging spectrometry 

Table 4-1 gives an overview of recent remote sensing applications of imaging 
spectrometry in the different fields of application plus terrestrial applications of 
imaging spectrometry on laboratory scale (imaging spectrometry photography, 
imaging spectrometry microscopy) along with key references. 

 
Table 4-1: Overview of the applications of imaging spectrometry sorted by fields of applications. 

Field of 
Application 

Application Examples and Selected References 

Tactical reconnaissance [Lareau 2002, NN 2002c, Wall 2001] 
Target detection [Ashton 1999, Kailey 2000, Kailey 1996, McGregor 1998, 
Olsen 1997] 
Friend-foe identification (related to target detection) 
Terrain (battlefield) analysis [McGregor 1998] 
Mine detection [Achal 1995, Azimi-Sadjadi 1995, DePersia 1995, Kenton 
1999, Smith 1999a] 
Detection of chemical warfare agents (early warning and risk assessment after 
application) [Ifarraguerri 1999a] 

Military 
and 

Espionage 

Strategic surveillance of mining activity (e.g. for uranium and other strategic 
resources) [Levesque 2000] 
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Detection and mapping of narcotics plantations (e.g. in Central & South 
America, Middle East) [Kailey 2000] 
Border control (target detection of persons and vehicles) [Kailey 2000] 
Policing of agricultural subsidies (mapping of crop species and fallow land 
for subsidies fraud detection) 

Law 
Enforcement 

Tax assessment (e.g. in case of taxes for certain roofing materials, surface 
sealing, etc. in urban areas) 
Geology and mineralogy mapping [Clark 1998b, Hook 1990, Kruse 1988c, 
Kruse 1992b, Swayze 1999, Wang 1998b] 
Mineral and ore exploration [Ma 1998, Sabins 1999, Wu 1996] 
Hydrocarbon exploration (detection of natural micro- and macroseeps) 
[Bammel 1994, De Oliveira 1996, Ellis 2001, van der Meer 2000d, van der 
Meer 2001d] 

Geology 
[van der Meer 
1999b, van der 

Meer 2001c] 

Mapping of swelling clays [Chabrillat 2001, Chabrillat 2002] 
Crop species mapping and phenological characterization [Kneubühler 2001, 
Xiang 1998] 
Crop stress detection in homogeneous stands (nutrient stress, water stress, salt 
stress) [Cassady 2001, Goel 2003a, Kneubühler 2000, Lelong 1998, Lobell 
2003] 
Crop biochemistry (chlorophyll content, leaf nitrogen concentration, leaf area 
index, water content, etc.) [Bach 1994, Blackmer 1996, Boggs 2003, 
Christensen 2004, Haboudane 2004, Oppelt 2000, Strachan 2002] 
Investigation of effects of pesticide applications on target and non-target 
species [Farone 1993, Henry 2004] 
Crop productivity and yield prediction [Fourty 1996, Gat 2000] 
Soil properties mapping (soil salinisation, soil crusting, organic material 
content, iron oxide content, texture, soil moisture, clay content and species) 
[Baumgardner 1985, Ben-Dor 1998a, Dehaan 2002, Dehaan 2003, Howari 
2000, Ingleby 2000, Irons 1989, Metternicht 2003, Nagler 2000, Whiting 
1999, Whiting 2001, Whiting 2003] 
Invasive species and weed detection and mapping [Borregaard 2000, Goel 
2003a, Goel 2003b, Lass 2002, Smith 2003b] 

Agriculture 
[Clevers 1999, 
Clevers 2001] 

Precision agriculture (weed selective spraying, selective fertilization, selective 
irrigation) [Feyaerts 1999, Gat 1999b, Staenz 1998a, Udelhoven 2000] 
Vegetation species detection and mapping [Clark 1995b, Curran 2000, 
Goodenough 2003, Martin 1996, Ustin 2004] 
Forest damage and vegetation stress mapping [Atzberger 1998, Banninger 
1994, Carter 1994, Clark 1995b, Curtiss 1991, Howard 1971, Hoque 1992, 
Jackson 1986, Rock 1990, Singhroy 2000b] 
Succession monitoring [Qiu 1998, Sabol 1996] 
Vegetation senescence and dry plant materials mapping [Ben-Dor 1997b, 
Elvidge 1990a, Ustin 2004] 
Forest biochemistry mapping (chlorophyll content, metal stress, water 
content/stress, weed infestation) [Asner 2001b, Curran 2000, Martin 1993, 
Ustin 2004, Zarco-Tejada 2001b] 

Forestry 
and 

Ecology 
[Ustin 2004, 
Köhl 2001, 

Curran 2000] 

Vegetation – substrate investigations [Howard 1971, van de Ven 2000] 
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Water constituents mapping (chlorophyll, yellow substance, nonchlorophyllus 
particles, turbidity) [Fraser 1998, Jiang 1998, Kallio 2003, Lee 1999, Melack 
2001, Olbert 2000] 
Characterization of acidic residual mining lakes [Boine 1999a, Boine 1999b] 
Bathymetry [Bagheri 1998, Dierssen 2003, Holyer 1996, Kappus 1998, 
Roberts 1999a, Sandidge 1998] 
Submerged vegetation recognition and mapping [Albertonza 1999b,  
Armstromg 1993, Williams 2002b] 
Plankton mapping (phytoplankton) [Lee 2004c, Melack 1992, Oliver 2004, 
Richardson 1999, Richardson 2000, Tester 1998] 
Coral species mapping and coral health / mortality mapping [Andrefouet 
2003a, Clark 2000, Hochberg 2003, Holden 1999, Mumby 2004] 

Limnology  
and 

Oceanography 
[Dekker 2001, 
Mueksch 1998]

Water quality mapping / contamination monitoring (oil spills) [Flanders 1997, 
Hamilton 1992, Kallio 2001, Keller 2001b, Salem 2002, Shafique 2002] 
Urban land cover mapping / classification [Chen 2001, Rössner 1998, Rössner 
2001, Segl 2000] 
Urban environment assessment [Ben-Dor 2001a, Rössner 2000] 

Urban 
Geography 
[Ben-Dor 

2001a] Monitoring of  urban encroachment [Zhang 1998a] 
Contamination mapping [McCubbin 1999, Cloutis 1989, King 1989, Cloutis 
1994, Hörig 2004, Finston 2000, Kühn 2004, Cloutis 1995, Sanchez 2003] 
Detection of illegal waste dumps [Notarnicola 2004] 
Soil contamination mapping (vegetation stress indicator) [Kooistra 2003, 
Lehmann 1990, Wilson 2004] 
Analysis of lignite mining overburden dumps [Kaufmann 1998, Krüger 1998, 
Müller 1996, Olbert 1999, Reinhäckel 1998b] 

Environmental 
Engineering 

Release of acidic mine drainage and mobilization of heavy metals from ore 
mining overburden dumps [Hauff 1999a, Hauff 1999b, Hauff 2000, Kruse 
1996b, Levesque 1997c, Levesque 2000, Livo 1998, Mars 2003, Ong 2002, 
Shang 1999b, Swayze 1996, Swayze 1998a, Swayze 2000] 
Gas plume detection [Gallagher 2003c, Griffin 2000a, Hinnrichs 1999, Lane 
1999, Marion 2004, Miller 2004, Thomas 2002] 
Atmospheric gas distribution mapping [Ben-Dor 1996, Green 1993g, Laan 
2000] 

Atmospheric 
Sciences 

Cloud identification and thickness determination [Adler-Golden 1999a, 
Berendes 1991, Knap 2000, Kuo 1990] 

Planetary 
Sciences 

Compositional analysis of planets and stars using spaceborne and terrestrial 
imaging spectrometers connected to telescopes [Bell 1999, Christensen 2003] 
Food analysis (fruit ripeness, major constituents) [Peirs 2003, Polder 2002, 
Tsuta 2004] 
Geologic exploration (mineral mapping in drill cores) [Kruse 1996a] 
Forensic Sciences (on-site trace characterization) [Drollette 2000b, Malkoff 
2000] 
Pathology (histological examinations, tumor characterization) [Papadakis 
2003, Tsurui 1999] 
Human medicine (cytological and histological examinations, identification of 
bacteria) [Goodacre 1998, Rothmann 1999, Shah 2003, Sowa 2002, 
Wennberg 1999] 
Veterinary medicine (chicken skin tumor detection, heart disease 
characterization) [Chao 2001, Chao 2002] 
Quality assurance in industry (ceramics, plastics, etc.) [Kulcke 2003] 
Concrete analysis [ASD 2002b] 

Non-Remote 
Sensing 
Imaging 

Spectrometry 
Applications 

Food safety (apple diseases, fecal bacteria on surfaces) [Kim 2002b, 
Lawrence 2003c, Lu 2003, Park 2003] 
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4.2 – Environmental applications 
This section aims to review previous work carried out in the field of detection and 
mapping of anthropogenic contaminations of environmental media using imaging 
spectrometry. This section provides an assessment of the possibilities and restrictions 
involved in using imaging spectrometry for environmental applications. Both direct 
and indirect detection of small contaminant concentrations, or contamination 
indicators in dominating matrices such as soil and vegetation cover, will be 
considered along with the detection of anthropogenic deposits (waste dumps, 
overburden dumps, and mine tailings).  

In some cases, there is no clear dividing line between environmental applications and 
other application fields. Therefore, some of the “contamination” examples described 
below could also be assigned to other fields of application. For example, soil 
salinisation is a typical problem that occurs through improper irrigation and high 
evaporation rates. It is, therefore, primarily associated with the field of agricultural 
applications and soil science. However, other anthropogenic impacts, such as the 
production of mixtures of light crude oil and water from oil wells in Azerbaijan and 
their spillage into the surrounding environment, might also result in highly salinized 
soils. Another example is heavy metal stress found in vegetation. This can originate 
from both geogenic and anthropogenic sources. In the first case, the detection and 
mapping of metal-induced vegetation stress might well be associated with geologic 
(mineral mapping) or ecologic applications. In the latter case, it can clearly be 
associated with the detection and mapping of contaminated sites of anthropogenic 
origin. All environment-specific fields of application reviewed below have in 
common that they are related to the investigation, characterization, assessment, and 
monitoring of adverse impacts of anthropogenic origin on the environmental media 
soil and water. The adverse impacts considered in this review are limited to the 
deposition of both organic and inorganic substances of anthropogenic origin 
(wastes), the redeposition of natural materials due to mining activities (overburden 
dumps, mine tailings) and subsequent adverse chemical reactions, and the effects of 
soil contaminations on its vegetation cover. Other adverse anthropogenic impacts 
such as soil compaction and soil erosion will not be considered. 

The focus of this review revolves around the direct and indirect detection, by means 
of remote sensing imaging spectrometry, of soils that have been contaminated with 
fuel hydrocarbons. Because only very few studies have been carried out in this 
particular field, the review also includes the detection of natural hydrocarbon 
seepages (so called microseeps and macroseeps) as they are in some aspects related 
to soil hydrocarbon contaminations of anthropogenic origin. 
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Fuel hydrocarbon soil contaminations 

The first basic investigations on the potential of remote sensing for the detection and 
mapping of terrestrial and extraterrestrial hydrocarbons in the 0.35 µm to 2.6 µm 
wavelength region were carried out in the late 1980s [Cloutis 1989]. With the 
purpose of investigating the planets and their moons for hydrocarbon occurrences 
and aiming to explore and investigate tar containing sands, specific absorption bands 
of hydrocarbons were investigated acquiring laboratory and field spectra. While 
considering the fundamental bands known in the infrared wavelength region (2.5 µm 
– 20 µm) and their combination bands and overtones, it was concluded that the most 
promising absorption features occur near 1.7 µm and between 2.2 µm and 2.6 µm 
wavelength. Laboratory reflectance spectra of Athabasca (Canada) tar containing 
sands were acquired consisting largely of quartz containing sands, clay minerals, 
water and containing bitumen in concentrations of 0 to 15 % by weight. The results 
showed that for low-bitumen samples (0 – 5 %), absorption features characteristic for 
hydrocarbons are barely detectable. These spectra were found to be dominated by 
soil (clay) and water absorption features, in particular around 1.4 µm and 1.9 µm. 
Spectra acquired for the medium-bitumen samples (5 – 10 %) were found to be 
richer in detail and to exhibit significant hydrocarbon absorption features around  
1.7 µm and 2.3 µm. Also, the 2.2 µm to 2.6 µm wavelength region exhibited a 
positive slope in the medium-bitumen samples in contrast to a negative slope 
observed for low-bitumen samples. In addition, the depth of the 1.9 µm water 
absorption band was found to be considerably reduced in comparison to low-bitumen 
samples. High-bitumen sample spectra (10 – 15 %) were found to be dominated by 
intense bitumen absorption features (hydrocarbon, C-H stretch overtone), in 
particular around 1.7 µm and 2.3 µm. The positive slope in the 2.3 µm to 2.6 µm 
wavelength region was more intense than for the medium-bitumen samples. Soil 
(clay) and water absorption bands were virtually absent in these spectra. It was also 
found that for the samples investigated, no simple correlation between spectral 
albedo (overall reflectance intensity) and major phase abundances could be 
established. Comparing clay and hydrocarbon absorption features it was found that 
both exhibit absorption features around 2.3 µm but that clays generally show a 
negative slope in the 2.3 µm to 2.6 µm region while hydrocarbons generally exhibit a 
positive slope in this region. The 1.7 µm absorption features was only found when 
hydrocarbons where present in the sample, independent of the clay and quartz 
content [Cloutis 1989]. Later investigations confirmed that the overall reflectance of 
oil containing sands decreases with bitumen content and thus darker sample colors in 
the visible wavelength range [Cloutis 1995]. Similar results were obtained in another 
study on the spectral responses of mixtures of montmorillonite, a clay mineral, and 
high quantities of different organics, including super unleaded fuel, benzene, toluene 
and trichloroethylene in the 0.8 µm to 3.0 µm wavelength region. Hydrocarbon 
absorption features around 1.7 µm and 2.3 µm were found to be most pronounced in 
spectra of hydrocarbon contaminated soils. While the spectra of montmorillonite 
contaminated with super unleaded fuel, benzene and toluene were found to be similar 
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except for small differences in the hydrocarbon absorption features, trichloroethylene 
exhibited extended and strong absorption bands around 1.7 µm and 2.3 µm plus a 
major absorption feature around 2.4 µm and a minor absorption features around  
1.2 µm [King 1989]. 

Later investigations, mainly aimed at the spectral analysis of extraterrestrial bodies, 
included other materials containing carbon and hydrocarbons. Pure powdered carbon 
samples including natural and synthetic graphite and synthetic carbon black were 
found to exhibit no characteristic narrowband absorption features. Instead, all 
samples showed overall concave shaped spectra with an overall positive slope in the 
0.3 µm to 2.5 µm region. The maximum reflectance of dark samples such as graphite 
and carbon black was found to be low with 10 – 14 % and less than 1 %, 
respectively. Spectral behavior similar to that of graphite (with different shapes in the 
visible range) was found for oil shale and coal tar extract. Coal was found to show a 
behavior similar to that of graphite with minor absorption features in the 2.3 µm 
region. Only dark oil containing sands were found to exhibit distinct C-H stretch 
overtones characteristic for hydrocarbons at around 1.7 µm and 2.3 µm. Accordingly, 
it was concluded that the carbon-hydrogen ratio (or the coalification) governs the 
occurrence and intensity of C-H stretch overtones [Cloutis 1994]. 

A study conducted in 1998 and published in 2001 investigated the detectability of 
hydrocarbons using HyMap imaging spectrometry data. Several material samples 
covering areas between one and 48 square meters, among others bitumen roofing 
felt, plastic tarpaulins and two oil-contaminated sand targets of 4 × 4 m classified 
“highly oil-contaminated” (containing circa 80 g/kg = 80,000 mg/kg lubricating 
oil/sand or 8 wt.%) and “slightly oil-contaminated” (containing circa 20 g/kg = 
20,000 mg/kg of lubricating oil/sand or 2 wt.%) were laid out and mapped by the 
HyMap instrument in 128 bands covering the 0.44 µm – 2.54 µm wavelength range 
with a spatial resolution of approximately 2.3 meters. The study confirmed the 
absorption features near 1.73 µm and 2.31 µm described earlier for bitumen (tar and 
oil sand samples), with the 2.31 µm feature being more pronounced. When it came to 
distinguishing oil contaminated soil and rock from plastics in imaging spectrometry 
data it was found that the 1.73 µm absorption feature is more pronounced for plastics 
samples than for oil contaminated soil and rock samples. The authors also described 
the use of a common method to visualize absorption features of hydrocarbons by 
placing the three display color bands (RGB – red, green, blue) such that the green 
display band is placed in the center of the 1.73 µm absorption feature and both the 
red and the blue display bands on the shoulder of the absorption feature. Thus, all 
surface materials bearing considerable portions of hydrocarbon materials (spectra 
representing hydrocarbon-bearing materials) were displayed in pinkish to reddish 
color. Rather than using atmospherically corrected relative reflectance data, the 
authors applied this method successfully to uncorrected radiance data (raw output 
data from the HyMap imaging spectrometer) [Hörig 2001]. The same authors 
propose a hydrocarbon index (HI) based on their findings that the 1.73 µm 
absorption feature is a specific characteristic for hydrocarbon-bearing materials. 
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Based on continuum removal for the 1.73 µm hydrocarbon absorption feature, the 
hydrocarbon index basically describes the depth of the absorption feature at its local 
minimum. If hydrocarbon materials are represented in the spectrum, the index value 
is generally higher than zero. If no hydrocarbon materials are represented in the 
spectrum, the index is generally expected to equal zero or to yield negative values 
because the absorption feature was found to be characteristic for hydrocarbons. 
Applying the index to an imaging spectrometry dataset and displaying the index as a 
grayscale image with brightness increasing with HI value will display hydrocarbon-
bearing materials as brighter pixels. The output image provided does not allow for 
differentiation between different hydrocarbon materials and serves only as an 
occurrence map including all kinds of hydrocarbon bearing materials such as fuel 
hydrocarbon contaminated soil, plastics, asphalt roads, bitumen roofing felt, artificial 
turf, and paint. The proposed hydrocarbon index can be applied to both radiance and 
reflectance data. However, the authors observed that HI images appear often noisy 
for areas covered by vegetation while HI images for urban areas and bare ground can 
be used to accurately detect hydrocarbon-bearing materials. The index is illustrated 
in figure 4-1 and given in the below equation [Kühn 2004]. 

Figure 4-1: Concept of the hydrocarbon index (HI) [after Kühn 2004] 
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Several publications dated 2000 and 2001 report the investigation of imaging 
spectrometry as a tool for environmental applications such as the detection of oil-
impacted soils, the monitoring of pipeline spills, and hydrocarbon exploration by 
detecting natural hydrocarbon seeps from crude oil deposits (resulting in crude oil 
“contaminated” soil or rock) for hydrocarbon exploration by commercial service 
providers associated with the oil industry. The studies included both instruments in 
the 0.3 µm – 2.5 µm wavelength region and the 3 µm – 5 µm thermal infrared 
wavelength region. One study stated that asphalts and plastics exhibit absorption 
features similar to those observed in natural hydrocarbons which might cause false 
positives in interpretation results. These materials, therefore, need to be eliminated in 
data interpretation. Furthermore, it was observed that calcite and dolomite exhibit a 
pronounced absorption feature in the 2.3 µm wavelength region that is, however, 
different in shape from the hydrocarbon absorption features occurring at 
approximately the same wavelength [Finston 2000, Taylor 2000, Ellis 2001]. 

To date, only few studies have addressed the indirect detection of hydrocarbon soil 
contaminations through vegetation stress response mapping. Historically, the 
detection of non-specific vegetation stress by remote means goes back to the advent 
of false color near infrared aerial photography and multispectral sensor systems; and 
was often based on reflectance ratios between the red and near infrared wavelength 
bands. More recent studies have been focusing on the detection of vegetation stress 
and the determination of its source by means of the affected vegetation spectra. 
While some success has been made with respect to the source-specific detection of 
nutrient and water stress in agricultural stands and heavy metal stress in forest stands, 
no results have been reported concerning the source-specific detection of vegetation 
stress with respect to organic or inorganic contaminants. 

Vegetation stress in natural and agricultural stands or forests can be induced by a 
large number of agents, among others adverse climatic conditions, nutrient 
deficiency, water deficiency or surplus, weed infestation, pest infestation, soil 
salinisation, soil acidification, high carbon dioxide concentrations in soil vapor, and 
contamination with heavy metals or organics [Lerner 1999b, Martini 2000, Brunold 
1996]. Even though agricultural stands are relatively homogeneous over larger areas 
(single species in similar phenological state), natural vegetation stands tend to be 
more diversified (multiple species of different phenological states). For this reason 
one must question whether a source-specific detection of vegetation stress using 
imaging spectrometry data is feasible or to what extent a priori knowledge about 
occurring stress agents is necessary [Martini 2000].  

Investigations showed that both common organic and inorganic soil contaminants are 
stress agents for many species of plants [Wilson 2004, Folkard 1998, Martini 2000]. 
However, it was also acknowledged that some species are insensitive to certain stress 
agents. Nevertheless, there are examples of positive application of imaging 
spectrometry in the detection of contaminations. One study reported the successful 
detection of pipeline leakages by vegetation stress mapping along a known fuel 
hydrocarbon pipeline using imaging spectrometry data [Taylor 2000]. Another study 
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indicated that stress-agent specific detection and mapping of vegetation stress with 
respect to organic contaminants, inorganic contaminants and nutrients might be 
possible, though requiring highly complex research. The study focused on the 
detection of vegetation stress induced by landfill leachates in vegetation surrounding 
the landfills [Folkard 1998]. 

Because the literature survey on spectroscopic analysis and detection of fuel 
hydrocarbons through imaging spectrometry did not return many results, the survey 
was extended to the exploration of natural hydrocarbon resources by imaging 
spectrometry. From petroleum geology it is known that many natural hydrocarbon 
reservoirs exhibit surface expressions. These surface expressions are referred to as 
macroseeps and microseeps. Macroseepage is the visible presence of fuel 
hydrocarbons at the surface due to the upward vertical migration of fuel 
hydrocarbons [van der Meer 2001d]. Macroseeps have been observed on land and at 
sea in many regions worldwide, among others in Azerbaijan [Zeinalov 2000]. 
Macroseeps are similar to soil contaminations by fuel hydrocarbons; hence they have 
been included in the above section. Microseeps, however, are different. 
Microseepages can be described as a near-vertical, long-term, continuous leakage of 
small quantities of typically light hydrocarbons from their underground deposits to 
the surface. Microseeps are associated with geochemically induced alterations of 
surface and near-surface mineralogy, some of which are listed below [Schumacher 
1996, Saunders 1999]: 

• Formation of “paraffin dirt” as a product of microbial oxidation of 
hydrocarbons 

• Mineralogical changes such as the formation of calcite, pyrite, elemental 
sulfur, iron oxides and iron sulfides 

• Clay mineral alterations (alteration of illite to kaolinite) 

• Biogeochemical and geobotanical anomalies  

The formation of “paraffin dirt” as a product of microbial oxidation of hydrocarbons 
in soils is typically observed in humid to temperate climates where these yellow-
brown waxy appearing soils containing large quantities of dead cell walls can be 
observed at the surface [Schumacher 1996]. “Paraffin dirt” soils can therefore be 
expected to exhibit absorption features similar to those of soil contaminated with 
hydrocarbons. Microbial degradation of light hydrocarbons percolating through soils 
consumes either free or chemically bound oxygen (sulphates, nitrates). Depending on 
the local conditions, “paraffin dirt” can be produced in both aerobic and anaerobic 
conditions, in any case altering geochemical conditions towards more reducing 
conditions.  

As a by-product of hydrocarbon oxidation and its changes to the surrounding 
mineralogical environment (release of carbon dioxide  reaction of carbon dioxide 
with water to form hydronium ions  dissolution of subsurface calcite or gypsum  
release of calcium ions), diagenetic carbonates (calcite CaCO3, siderite FeCO3) are 
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formed near and at the surface. Other reaction products associated with geochemical 
processes at hydrocarbon microseepages include pyrite, elemental sulfur, uraninite, 
and iron sulfides [Klusman 1992, Schumacher 1996, Saunders 1999]. According to 
recent studies, these mineralogical anomalies can be detected by means of imaging 
spectrometry if exhibited at the surface [van der Meer 2000d, Yang 1999b, Yang 
2000b, van der Meer 2002a]. 

The release of light hydrocarbons has also been observed to result in geobotanical 
anomalies at the location of hydrocarbon microseeps. The microbial degradation of 
light hydrocarbons in the soil matrix decreases soil oxygen concentration while 
significantly increasing the concentration of carbon dioxide and organic acids. 
Increased acidity results in the mobilization of some trace elements and metals, thus 
increasing their availability to plants while reducing the availability of alkaline 
(earth) elements such as potassium, calcium, strontium and barium [Bammel 1994, 
Saunders 1999, Schumacher 1996]. In investigations focusing on the spectral 
response of plant species and communities at the sites of hydrocarbon 
microseepages, observations showed vegetation stress expressing itself in a shift of 
the so called red edge (the edge observed in spectra between 0.7 µm to 0.8 µm 
wavelength between the absorption minimum in the red and the maximum in the near 
infrared) and an overall decrease of reflectance in stressed vegetation. In all studies, 
vegetation stress was attributed to inorganic stress agents that resulted from 
geochemical changes induced by the seeping hydrocarbons. Stress-agent specific 
spectral responses or significant correlations between vegetation stress and the 
occurrence or absence of hydrocarbons in the soil matrix were not found. 
Furthermore, other factors such as soil-moisture were found to have generally a more 
pronounced effect on vegetation stress than the presence of hydrocarbons [Bammel 
1994, Yang 1999b, Yang 1999c, van der Meer 2002a, Klusman 1992, Cwick 1995]  

In summary, it must be stated that most effects described for hydrocarbon 
microseepages are uncommon at sites with anthropogenic hydrocarbon 
contaminations. Both the formation of “paraffin wax” and altered mineralogy require 
long-term exposure to hydrocarbons on a scale of centuries to millennia. However, 
changes in soil geochemistry, expressed as vegetation stress, can be expected at the 
sites of hydrocarbon spills, since these processes occur on a scale of months to years. 
The stress expressions depend on the contaminant’s biodegradability, the availability 
of electron donors, nutrients for the microorganisms involved, and other 
environmental parameters such as moisture and temperature. 

 

Heavy metal soil contaminations 

Heavy metals (e.g., Pb, Cu, Ni, Zn, Cr, Cd, Co, Mo, As, Hg) as soil contaminants 
typically occur in concentrations well below 1 % (10,000 mg/kg dry soil). Depending 
on soil geochemical conditions (pH, pE) and the presence of inorganic anions such as 
sulphate, carbonate, nitrate, etc., heavy metals tend to form different types of soluble 
cations and anions with more or less soluble carbonates, hydroxides, oxides, 
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chlorides and sulfides. Furthermore, as discussed above (section 3), inorganics in 
general do not exhibit characteristic absorption features in the 0.3 µm to 2.5 µm 
wavelength region. For these reasons it is considered impossible to directly detect 
general inorganic soil contaminants, in particular heavy metals, by means of imaging 
spectrometry. Therefore, most studies have focused on the detection of vegetation 
stress caused by increased heavy metal concentrations in the soil. Some studies also 
have addressed the mapping of certain clay minerals or mud that had been known to 
correlate with heavy metal concentrations. 

Vegetation stress caused by heavy metal toxicity can have different expressions, 
depending on the heavy metal type, its concentration and the sensitivity of the 
species affected. Effects typically observed include physiological, morphological and 
ecological changes such as chlorosis (reduced production of chlorophyll and hence 
reduced photosynthetic activity), leaf wilting, needle retention, decrease in branch 
density, defoliation, growth inhibition, flowering and fruiting changes, dwarf growth 
and gigantism, changes in plant species distribution and the establishment of adapted 
species, and the dying-off of whole plants or communities. In some cases, whole 
areas might stay void of vegetation due to highly toxic concentrations of heavy 
metals1 [Press 1974, Jackson 1986, Curtiss 1991, Horler 1980]. However, as 
mentioned above, all these effects could also be observed resulting from other stress 
agents.  

All studies on the spectral response of heavy metal stressed vegetation observed 
differences between the spectra of metal-stressed vegetation and unstressed controls. 
These effects usually included a blue-shift of the red edge of metal-stressed 
vegetation, increased reflectance in the 0.4 µm to 0.7 µm (signs of reduced 
photosynthetic activity due to chlorosis) and decreased reflectance in the 0.7 µm to 
2.5 µm wavelength region [Curtiss 1991, Lehmann 1991, Yost 1971, Banninger 
1990, Rothfuß 1994, Horler 1980, Howard 1971, Kooistra 2003, Schuerger 2003]. 
Vegetation stress symptoms that could be correlated specifically to heavy metal 
stress have not been reported. Some heavy metals considered as contaminants are 
also essential micronutrients to all vegetation species, in particular copper and zinc. 
Therefore, in some cases even positive effects in reflectance spectra could be 
observed where one of the elements under investigation obviously was a 
micronutrient with limited availability. Such effects included a red-shift of the red 
edge and decreased reflection in the visible wavelength region (indicating increased 
photosynthetic activity) [Horler 1980]. 

Several studies have addressed the detection of heavy metal stress in plants and have 
reported successful applications of imaging spectrometry to perform this task. 
However, no instance has reported metal-stressed vegetation being specifically 
detected without a priori knowledge of the occurrence of metal stress in the particular 
                                                 
1 The latter was utilized for mineral exploration by means or remote sensing as early as the 1930s, 
when large parts of the “Copperbelt” region in Rhodesia and Katanga (today’s Zimbabwe and SE 
Congo) were mapped with panchromatic photography in the search for vegetation clearings resulting 
from metal toxicity associated with large copper deposits [Press 1974]. 



 95

area of investigation. However, stressed vegetation was always distinguishable as 
“anomalous vegetation” from unstressed background vegetation, and usually other 
stress agents such as nutrient deficiency, water deficiency or pest infestation could be 
ruled out using additional information. Thus, for known locations of metal-induced 
stress, the spatial distribution and extent can usually be mapped using imaging 
spectrometry data. 

Although metals, in particular at low concentrations, do not have detectable 
absorption features, another study proposes a direct mapping of heavy metal 
concentrations based on direct correlations between heavy metal concentrations and 
organic material and clay content of bare soils in river floodplains. Earlier 
investigations have shown that the clay content and the content of organic material 
can be determined through the interpretation of imaging spectrometry data. The 
method has been applied toward predicting elevated metal concentrations in 
floodplains along the river Waal in the Netherlands. However, the method requires a 
certain number of reference samples from the area under investigation in order to 
correlate metal concentrations with organic material and clay content in soils. This 
must be accomplished before quantitative predictions and spatial distributions can be 
mapped by means of imaging spectrometry [Kooistra 2000]. A similar approach was 
applied following the mining accident that endangered the Doñana National Park in 
Spain, in which large wetland areas upstream of the national park were covered with 
sludge containing high concentrations of heavy metals and cyanides. Here, residual 
sludge was mapped in order to predict heavy metal concentrations. Using chemical 
analysis of the sludge and imaging spectrometry to map sludge occurrence, mapping 
showed areas of remaining heavy metal contaminations after major clean-up 
operations [Kemper 2000]. 

 

Soil salinisation 

Soil salinisation mainly occurs in arid and semi-arid regions and can have natural 
(e.g., evaporation of near-surface groundwater) or anthropogenic causes (improper 
irrigation, discharge of salt water onto soil). Usually, soil salinisation expresses itself 
as mineral crystallizations (salts) on soil, with the most important mineral types 
being chlorides, sulfates and carbonates [Baumgardner 1985, Metternicht 2003]. 

Pure salt spectra (e.g., halite / sodium chloride, potassium chloride) are usually 
featureless, while other salt spectra (sulfates, carbonates) exhibit minor absorption 
features. The spectral signature of a saline soil however, can be a result of the salt 
itself (salt crystals), or indirectly from other chromophores related to the presence of 
the salt (e.g., organic matter). It can also be a result of masking of other absorption 
features (e.g., masking of ferric ion absorption features in the visible wavelength 
region) or changes in surface roughness of soils due to soil crystallization [Ben-Dor 
1998a, Metternicht 2003]. Soil salinity expressing itself in salt crystals typically 
increases the overall reflectance (albedo) of the affected soil in comparison to non-
salinized soil of similar composition. Comparing reflectance over wavelength 
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regions or for single bands with respect to brightness can be used to characterize soil 
salinisation [Ben-Dor 1998a, Baumgardner 1985, Metternicht 2003, Whiting 1999]. 
However, some studies also report a contrary behavior with decreasing reflectance as 
an indicator of soil salinisation, obviously due to salinisation of high reflectance soils 
where the salt crystals lead to increased diffuse scattering and decreased reflectance 
[Dehaan 2002, Zhou 2003]. Other studies conclude that dominant salt crystallization 
on soils (halite, calcium carbonate, gypsum, sodium bicarbonate) and highly saline 
soils can be identified and distinguished to some extent although salts have only 
minor absorption features (in particular around 1.78 µm and 2.2 µm) and although 
non-linear mixture processes where observed when several different salt species 
were involved [Howari 2000, Dehaan 2002, Dehaan 2003]. 

Vegetation affected by salt shows stress symptoms similar to those induced by heavy 
metals. Hence, the above mentioned considerations for the remote sensing imaging 
spectrometry detection of heavy metal-induced stress are also valid for the detection 
of salt-induced vegetation stress. In addition, the use of halophytic vegetation species 
as indicators for soil salinisation has been proposed [Lauten 1992, Dehaan 2002, 
Dehaan 2003].  

 

Mine tailing characterization (ore mining) 

The application of imaging spectrometry to the characterization of mine tailings from 
ore mining was one of the first environmental engineering applications of imaging 
spectrometry. As will be outlined below the characterization of mine tailings is based 
on mineral and geologic mapping of dominating minerals in non-vegetated areas, 
which is the origination of imaging spectrometry. Analysis is conducted with respect 
to the mineralogy and associated concentrations of inorganic contaminants found in 
mine tailings and their oxidation state, the formation of acidic mine drainage, and the 
distribution of fluvially distributed mine tailing sediments.  

The most common metal ores of elements like iron, lead, copper, zinc, nickel, lead, 
chromium, uranium, and others are sulfides and oxides, and, to a lesser extent, 
carbonates. Due to natural concentration processes, ores usually do not occur as 
single elements or mineral species but are associated with other metals and minerals. 
Ore mining usually yields small quantities of target ore encapsulated in large 
quantities of non-target minerals and rock (spoil). Although the “spoil” fraction, 
usually generated when accessing ore veins, is usually dumped on spoil dumps at the 
surface, the fraction containing the target ore is typically processed on-site to 
concentrate the ore and thus reduce transportation costs. There are several ways ores 
may be treated in order to separate them from spoil rock, such as flotation by means 
of surfactant agents or by water and pressurized air processing to separate fine-
pulverized ore from non-target residues. Cyanidation of pulverized raw ore with 
sodium cyanide is also used to dissolve target elements like metal-cyanide complexes 
for precipitation with non-noble metals like zinc. Leaching of pulverized raw ore 
with sulphuric acid is another way to dissolve target elements like metal sulphate for 
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electrolytic separation. Finally, liquifaction refining conducted by heating the ores to 
above the melting point of the target separates it from the non-target rock that 
remains solid [Mortimer 1987, King 2000b]. Depending on the ore treatment process 
applied, large quantities of wastes are generated, including smelter slags, highly 
acidic wastewater, sludge containing cyanides or organic surfactants, and fine 
pulverized tailings. Typically, these wastes are stored on-site, forming huge mine 
tailings, spoil and smelter slag deposits, and sludge landfills. In the past, acidic 
wastewaters from ore leaching were typically discharged into streams and rivers. The 
wastes generated by ore treatment usually contain large quantities of sulfide minerals 
(e.g., pyrite) and non-target heavy metals that are associated with every type of target 
ore plus agents used for ore processing, including sulfuric acid, cyanide, mercury and 
surfactants. Deposited at the surface and exposed to water and oxygen, sulfide 
minerals are oxidized to form sulfuric acid This process is usually enhanced by 
microbiological processes also referred to as bioleaching. Thus, leaching processes 
continue in spoil deposits and mine tailings, generating acidic mine drainage that 
contains high concentrations of heavy metals that are released at increased rates 
relative to unmined areas with lower exposure of sulfide minerals sensitive to these 
processes. All processes and wastes described above, whether natural or man-made, 
include alterations of minerals and the deposition of minerals typically only 
occurring in the subsurface. In addition mine tailings, spoil and slag deposits usually 
remain void of vegetation unless recultivated. This is due to their high acidity, high 
concentrations of heavy metals, low water retention and virtually no substrate 
suitable for plant colonization [Mortimer 1987, King 2000b]. Common 
countermeasures to prevent the formation of acidic drainage and the release of heavy 
metals in mine tailings and spoil dumps include the application of limestone or 
recultivation including the construction of a surface sealing [Levesque 1997c]. The 
fact that mine tailings and other affected areas are typically free of vegetation and 
their limited water retention capacity holds little moisture, makes them highly 
suitable for remote sensing investigations and particularly the application of imaging 
spectrometry. This is because endmember spectra mainly comprise minerals and only 
few mixed pixel spectra are expected to occur in these types of areas. 

As for heavy metal soil contaminations, imaging spectrometers can not directly map 
heavy metals or acidity. Imaging spectrometry can, however, be applied to map 
surface mineralogy and minerals that are found at the surface as a result of ore 
treatment and weathering, oxidation, other alteration processes, and countermeasures 
such as the distribution of limestone on deposits [Levesque 1997c, Kruse 1996b]. 

Several studies have demonstrated the ability of imaging spectrometry data to detect 
and map mine tailings based on the known presence of characteristic primary 
minerals or secondary alteration minerals (e.g., illite as an alteration product of 
muscovite at the location of a lead and zinc mine; dolomite, limestone and 
phosphoritic mudstone at the location of a phosphorite mine) [Hauff 1999b, Mars 
2003]. The potential of imaging spectrometry to map acidic mine drainage based on 
the formation and precipitation of different secondary iron-bearing minerals has been 
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demonstrated in other investigations. This approach utilizes the fact that acidic mine 
drainage is continually neutralized as it drains away from its point of origin, 
depositing different secondary iron-bearing minerals whose type is controlled by pH, 
degree of oxidation, moisture content, and solution composition. Among others, the 
iron mineral of interest for this application are jarosite, schwertmannite, ferrihydrite, 
goethite, and haematite. The reflectance spectra of each of these and other iron-
bearing secondary minerals have been shown to be characteristic. Mapping their 
abundance around mine tailings and along river valleys into which acidic mine 
drainage has been discharged can therefore be used to derive information on 
correlated geochemical parameters [Swayze 1996, Farrand 1997a, Farrand 1997b, 
Farrand 1995, Shang 1999a, Shang 1999b, Cudahy 2000, Hauff 2000, Swayze 2000]. 
Further correlating heavy metal concentrations and mobility from laboratory analyses 
with the occurrence of these iron minerals has been used to map heavy metal 
concentrations and mobility [Fenstermaker 1994, Hauff 1999b]. Correlating the 
occurrence of secondary iron-bearing minerals to the pH value range in which they 
occur can be used to indirectly map soil surface pH [Ong 2002]. Similar to the 
approach of mapping heavy metal-contaminated soil through vegetation stress 
mapping in imaging spectrometry data, areas affected by heavy metals released from 
mine tailings or mine wastewater discharge have been mapped using vegetation 
stress as an indicator [Mars 2003]. 

Similarly, the spread of other minerals from mining areas and the buffering potential 
of sediments and rocks occurring naturally in its surroundings (e.g., dolomite, 
calcite) can be mapped to assess environmental impacts of mining activities [Livo 
1998]. 

 

Overburden dump and residual lake characterization (surface lignite mining) 

Surface mining for lignite is common in Germany with the Lusatian lignite mining 
district, the Central German lignite mining district and the Rhine lignite mining 
district being the major mining regions. In the Lusatian and Central German mining 
districts, extensive surface mining for lignite during the time of the former German 
Democratic Republic has left a legacy of more than 440 square kilometers (as of 
1995) of devastated land, which has not been recultivated [Wittig 1998, Vogler 
1995]. As described above for mine tailings, oxidation of pyrite from tertiary 
sediments and associated acidification of overburden pose severe problems with 
respect to the recultivation of these areas. 

An investigation of the applicability of imaging spectrometry for the geochemical 
and mineralogical characterization of lignite mining overburden dumps has 
demonstrated that major constituents of overburden substrates such as clay minerals, 
quartz, organic carbon, and pyrite can be detected and quantitatively determined. The 
study was carried out using imaging spectrometry data of a 79-channel imaging 
spectrometer covering the visible through thermal infrared wavelength regions 
(DAIS 7915), field and laboratory spectral measurements and analyses of 
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representative soil samples of two overburden dumps in the Central German Lignite 
Mining District (Zwenkau, Espenhain). Based on reflectance spectra and specific 
absorption features, kaolinite and organic carbon occurring in a range between  
0 – 15 wt.% and 0 – 60 wt.%, respectively, were mapped with an accuracy of 2 wt.%. 
Pyrite occurring in concentrations between 0 – 4 wt.% was determined with an 
accuracy of 0.8 wt.% [Kaufmann 1998, Krüger 1998]. Other parameters such as 
secondary iron-bearing minerals or the correlation of mineral abundance to 
geochemical parameters such as pH were not investigated. 

Another study investigated the applicability of imaging spectrometry data for the 
investigation of residual mining lakes left behind by lignite surface mining. These 
lakes are typically characterized by low pH values, high concentrations of Fe(II) and 
low concentrations of phytoplankton, hence low chlorophyll concentrations. Results 
show that indicators of iron content, pH, and chlorophyll content can be derived from 
imaging spectrometry data in the 0.4 – 0.9 µm wavelength region. Highly acidic 
lakes containing high iron concentrations were shown to have a low reflectance 
maximum (< 5 % reflectance) near 0.65 µm, while near-neutral lakes with a low iron 
content exhibited a high reflectance (ca. 20 % reflectance) with a maximum near  
0.6 µm [Boine 1999a, Boine 1999b]. 

 

Water contamination monitoring 

While considerable research has addressed the application of imaging spectrometry 
to the characterization of water bodies (suspended matter content, phytoplankton 
concentration, submerged vegetation mapping and identification), only few studies to 
date have addressed the detection and monitoring of dynamic contamination 
processes and plumes in rivers, lakes, estuaries and at sea. 

The detection and characterization of oil spills on water with respect to oil film 
thickness and oil type has been shown to be possible in a recent study. Water spectra 
in the 0.5 µm to 0.85 µm wavelength region generally have a low reflectance with a 
peak around 0.55 – 0.6 µm. Oil floating on water was found to result in a sharp 
absorption feature centered around 0.68 µm and associated with a second peak at 
around 0.71 µm [Salem 2002]. 

An earlier laboratory study investigated the reflectance spectra of several industrial 
liquid wastes and their effect on water spectra if discharged into natural waters. The 
study included liquid cannery wastes, milk wastes, municipal sewage, tannery 
wastes, sulphite liquor, and paper mill wastes. Spectra were acquired for a 
wavelength range of 0.2 µm to 1.2 µm. Significant differences between the waste 
spectra were found with respect to both absorption features and overall reflectance. 
Experiments with 0.5 %, 2.0 % and 8.0 % solutions of liquid paper mill wastes in 
natural water showed that even though the overall reflectance is low (< 12 %), the 
different concentrations could clearly be distinguished in reflectance spectra [Mishev 
1986]. 
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Another investigation addressed the characterization of an ocean wastewater plume 
(discharge of treated wastewater into the ocean) with respect to photosynthesis rates, 
suspended matter, and transport [Hamilton 1992]. 

 

Other Applications 

Other applications of imaging spectrometry remote sensing for environmental 
engineering applications include the identification and mapping of asbestos concrete 
roof sheeting consisting of approximately 80 % concrete and 20 % asbestos fibers. 
Using relatively low spectral resolution data with 92 bands covering the 0.3 µm to 
2.5 µm wavelength region, a classification accuracy of 92 % was obtained [Marino 
2000]. Asbestos minerals such as chrysotile and amphibole exhibit characteristic 
absorption features around 2.3 – 2.4 µm. 

Another application addressed the assessment and monitoring of iron ore dust 
(mainly consisting of iron oxides) that is covering mangrove vegetation near a 
loading dock for iron ores. Iron ore dust was found to reduce the overall reflectance 
of the vegetation affected. Utilizing a specific iron oxide absorption feature at around 
0.9 µm and the decrease in reflectance in comparison with field sampling of iron dust 
loads on leaves, a correlation was established that allows for the determination and 
spatial distribution mapping of iron ore dust on mangrove vegetation in units of 
milligrams of iron dust per square centimeter of mangrove foliage [Ong 2003]. 

 

Summary, conclusions, and critique on recent applications 

The above summary of recent applications of imaging spectrometry to environmental 
applications with respect to the detection, mapping and characterization of organic 
and inorganic contaminants in the environment shows that research and applications 
in this field are still limited. An exception is the investigation and characterization of 
(ore) mine tailings which is closely related to the origins of imaging spectrometry in 
the mapping of surface mineralogy in arid regions. However, reported research 
results indicate the potential that imaging spectrometry holds for direct and indirect 
mapping of numerous effects related to environmental pollution. Also, the limitations 
of imaging spectrometry with respect to the direct and specific determination of 
inorganic contaminants and vegetation stress agents have been shown. In any case, 
the objectives of an application must be considered carefully, and the potential of 
imaging spectrometry for the particular investigation must be assessed thoroughly by 
preliminary laboratory investigations prior to field applications. 

As far as the detection of fuel hydrocarbons is concerned, it must be stated that until 
now, only high concentrations of fuel hydrocarbons (>> 2 – 5 wt.%) in single soil 
and rock matrices have been investigated with respect to their detectability by means 
of imaging spectrometry with a focus on two major absorption features around  
1,730 nm and 2,350 nm. 
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The following issues that are important for the detection and mapping of fuel 
hydrocarbon contaminations of soil have not yet been investigated: 

• Distinction of fuel hydrocarbon classes by optical spectrometry in the 0.4 – 
2.5 µm wavelength region 

• Differentiation between classes of hydrocarbons, in particular the 
differentiation of plastics and fuel hydrocarbons in imaging spectrometry data 

• Detection limits for different fuel hydrocarbons in a non-interfering matrix 
(pure silica sand) 

• Detection limits for fuel hydrocarbons in different soil types (e.g., sands, 
clays, organic soils) with different moisture grades 

• Characteristics of spectral mixing processes of fuel hydrocarbons, soils and 
soil moisture 

Even though some experiments have already addressed the detection and mapping of 
pure liquid and solid fuel hydrocarbons and fuel hydrocarbon contaminations of soils 
by means of imaging spectrometry, no systematic approach has yet been made to the 
differentiation of different types of (fuel) hydrocarbons (chemical types, solids, 
liquids, natural hydrocarbons, plastics, refined hydrocarbons), their discrimination in 
different background matrices (different soil types and moisture levels) and detection 
limits in environmental media, in particular soil. 

The objective of this study is to investigate the applicability of imaging spectrometry 
with respect to the detection and mapping of fuel hydrocarbon soil contaminations. 
General considerations of imaging spectrometry’s application for contaminated site 
detection and investigation, the experimental approach to this problem, and the 
results obtained will be described in the next chapters. 

 



 102

5 – Applicability of imaging spectrometry for contaminated 
site detection and investigation 
 

Fuel hydrocarbon contaminations of soil can be considered as a mixture of varying 
fractions of soil, water (soil moisture), fuel hydrocarbons, and sometimes other 
minor constituents such as salt. For the purpose of remote sensing and, in particular, 
the detection and investigation of soils contaminated by fuel hydrocarbon through 
imaging spectrometry, it is necessary to consider the composition and properties of 
the components of a fuel hydrocarbon contamination along with their interactions 
and marcro- and microscopic distribution. 

 

 

5.1 – Soils and soil spectral properties 

 

Soils 

Soils are highly differentiated. Depending on the parent rock's mineral composition 
and physico-chemical properties, on climatic conditions, local biocenosis and 
topography, soils may range from purely organic to purely mineral, from dry to moist 
soils and with different mineralogical composition and varying geochemical 
conditions. For pedological, agricultural and forestry purposes, soils are typically 
characterized by macroscopic properties describing their fertility and water capacity. 
The main parameters are the structure of its horizontal layers (horizons), layer color, 
layer texture, grain size distribution, visually identifiable components (e.g., iron 
concretions, organic material) and soil moisture. However, only the open surface of 
top soils in accessible to retrieve information on the soil by means of remote sensing 
investigation. Top (top) soil can be considered a mixture of different solid, mineral 
and organic constituents of varying grain size mixed with water in varying 
proportions. 

The dominating primary minerals in most soils worldwide are quartz (amorphous 
SiO2), feldspars (orthoclase, plagioclase), mica (muscovite, biotite), and dark 
minerals (e.g., augite, hornblende). Important secondary minerals formed as a 
product of weathering and pedogenesis from primary minerals include carbonates 
(calcite, dolomite), gypsum, iron oxides and hydroxides (hematite, goethite, 
gibbsite), and silicate clay minerals (e.g., kaolinite, illite, montmorillonite). In 
addition, oxides and hydroxides of other elements such as aluminum, manganese and 
titanium may occur. Depending on the state of pedogenesis, certain primary or 
secondary minerals might dominate in a soil or single horizons of a soil. Minor 
fractions of soils typically below 2 wt.% may also include heavy minerals, salts (e.g., 
chlorides, nitrates), and sulfides [Schachtschabel 1998, Miller 2001, Kuntze 1994, 
Bohn 2001]. 
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Organic materials in soils and on soil surfaces may include more or less dry organic 
matter (dead plant material), itself consisting of lignin, cellulose, proteins, tannins, 
sugars, cuticular wax, and other plant constituents. These substances, together with 
biochemically altered plant material in various stages of decomposition, which often 
form highly complex organic molecules or complexes, usually make up the largest 
part of soil organic matter, also referred to as humus. Depending on the 
environmental conditions, mineral soils that make up about 98 % of the world’s soils 
typically contain between 0.5 wt.% and 10 wt.% organic matter. Organic soils (e.g., 
peat) mainly contain organic material and only minor fractions of minerals 
[Schachtschabel 1998, Miller 2001, Kuntze 1994, Bohn 2001]. 

In geology and soil science, sediment soils are classified by their dominating grain 
size fraction and their grain size distribution. The major classes of sediments textures 
by grain size are, from coarse to fine: gravel, sand, silt, and clay, each representing a 
soil parent material and/or stage of pedogenesis. Each textural class can also be 
categorized into major mineral classes. Gravels, as the coarsest class (grain size > 2 
mm) consists of fluvially transported and rounded pieces of different rocks, including 
plutonites such as granite, vulcanites such as basalt, sedimentary rocks such as shale 
or breccias and metamorphic rocks such as gneiss or dolomite. Gravels contain many 
different minerals, depending on their parent materials. Sand (grain size 0.05 – 2 
mm) is typically a weathering product of gravel, containing small particles of pure 
minerals of its parent material. Most sands mainly consist of quartz (amorphous 
SiO2) and contain smaller quantities of feldspars, mica, carbonate, and other 
minerals. Silt (grain size 0.002 – 0.05 mm) consists of even finer mineral particles 
with a composition similar to that of sand. Silt typically contains fine grained quartz, 
silica and carbonate minerals. Clay (grain size < 0.002 mm) consists of weathered 
silica minerals known as clay minerals such as kaolinite, illite, and montmorillonite. 
Mixtures of sand, silt and clay are referred to as loam, containing varying quantities 
of all single compounds (minerals) of the three major classes [Schachtschabel 1998, 
Kuntze 1994, Miller 2001]. The approximate composition of sands, silts and clays 
with respect to the main components quartz, primary silicates (e.g., feldspar, mica), 
secondary silicate minerals (clay minerals) and other secondary minerals (e.g., iron 
oxides, iron hydroxides, etc.) is illustrated in figure 5-1 [Irons 1989]. 

Surface soil color is mainly determined by the presence of iron, geochemical soil 
conditions (moisture, pH, Eh), and the iron oxides, hydroxides, or sulfides formed. 
Also, organic material can influence soil color considerably. Surface soil colors 
typically range from bright to dark, yellowish-white to shades and mixtures of 
brown, red, gray and black [Schachtschabel 1998, Sponagel 1994]. 
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Figure 5-1: Composition of sand, silt and clay of quartz, primary and secondary silicate minerals, and 
other secondary (e.g., iron) minerals [after Irons 1989]. 

 

The surface exposed by soils often can not be considered to be representative for the 
properties of subsurface soil. Precipitation, soil encrustments, wind deposition, and 
the formation of salt cystalizations due to irrigation or discharge of salt water, form 
surface structures and encrustments that are different in composition from the 
subjacent and even near-surface soil layers. 

 

Water (soil moisture) 

Depending on the soil type and structure (sand, silt, clay, loam) as well as local 
climatic and topographic conditions, soils contain different quantities of water, also 
referred to as soil moisture. The water contents of soil typically ranges between 
slightly above zero for sands in arid regions to approximately 60 wt.% for clays and 
organic soil in temperate and humid climate regions. While the largest part of soil 
water (retained water) can be evaporated in higher temperatures, small quantities of 
water remain in the soil as crystal water, adsorbed onto grain surfaces and as 
capillary water [Scheffer 1998, Kuntze 1994]. Again, surface soil moisture does not 
usually represent the soil moisture of deeper soil horizons because the surface is 
directly exposed to precipitation, solar irradiation, diurnal temperature changes and 
wind. All these factors result in short-term alterations in soil moisture at the surface.  

However, approaches have been made to correlate soil properties exhibited at the 
surface to subsurface soil properties, thus making them detectable by imaging 
spectrometry remote sensing.  
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Spectral properties of soils 

All the above components, namely minerals (in particular iron oxides, carbonate and 
clay minerals), organic matter, surface structures (grain size), surface crusts (salt) 
and water (soil moisture) contribute to the reflectance spectra of soils. In this section, 
the spectral response of different soil types will be considered, taking into account 
different conditions and considerations of the spectral responses of single 
components, as well as soils as linear mixtures of certain components in the 0.4 µm 
to 2.5 µm wavelength region. 

The interaction of electromagnetic radiation with a soil surface can be described as a 
multiple-scattering by different atoms, molecules, and crystals. The sum of all single 
radiation-matter interactions within the field of view of a given sensor is the 
reflectance spectrum of the soil over the wavelength region sampled. Grain size has 
an effect on the overall spectral response as illustrated in Figure 5-2. Typically, 
absorption features of soils of similar mineral composition are more pronounced for 
coarse grain soils than for fine grain soils. This is observed because of multiple 
scattering at different grains in coarse grain soils while in fine grain soils a more 
direct reflection is observed. Accordingly, the overall reflectance is lower for coarse 
grain soils compared to similar chemical composition fine grain soils because of 
increased absorption. Some light entering coarse textures of soils can even be 
assumed to be extinguished in the process [Ben-Dor 1998a, Baumgardner 1985, 
Irons 1989]. 

 
Figure 5-2: Influence of soil texture on reflectance, in particular the intensity of each absorption 
feature. 
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The overall spectral response of soils in the 0.4 µm – 2.5 µm wavelength region is 
typically described by a more or less convex hull with two major absorption features 
due to water absorption at around 1.4 µm and 1.9 µm. In the near infrared and 
shortwave infrared wavelength regions, reflectance is typically higher than towards 
the ends of the spectrum at 0.4 µm and 2.5 µm. Depending on soil color, reflection in 
the visible wavelength region might vary. Absorption features that allow for the 
specific identification of many minerals are mainly found in the 2.1 µm to 2.5 µm 
wavelength region. Several smaller specific absorption features that are related to 
specific minerals, organic matter, and water, can be found in the 0.5 µm – 2.0 µm 
region. 

Spectral reflectance measurements of several hundred soil samples of mineral soils 
have shown that five major groups of soil spectral reflectance curves stand out with 
respect to basic soil composition (figure 5-3): organic dominated soils (organic 
carbon >>4%, iron oxide <1%, fine texture, E), minimally altered soils (organic 
carbon <2%, iron oxide <1%, B), iron affected soils (organic carbon <2%, iron oxide 
1..4%, C), organic affected soils (organic carbon >2%, iron oxides <1%, A), and iron 
dominated soils (iron oxides >>4%, D) [Stoner 1981]. Figure 5-3 shows the average 
reflectance spectra of these five major soil reflectance classes. 

 

 
Figure 5-3: Typical reflectance of five major groups of soil types [from Ben-Dor 1998, after 
Stoner 1981]. 

 

Spectral reflectance of soils in the visible wavelength region, or color, can be related 
to certain physical and chemical properties of soils [Baumgardner 1985]. In contrast 
to the common method of comparing soil color to Munsell color chips, imaging 
spectrometry can be used to acquire measurements of soil reflectance in the visible 
wavelength, providing an unambiguous and objective measure of surface soil color. 
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To a great extent, soil moisture determines the shortwave infrared spectra of soils. 
Two dominating water absorption bands appear around 1.45 µm and 1.95 µm and an 
overall decreasing reflectance occurs with increasing soil moisture. Minor absorption 
bands attributed to liquid water are observed at 0.97 µm, 1.2 µm and 1.77 µm [Ben-
Dor 1998a, Irons 1989, Baumgardner 1985]. 

Soil organic matter has a strong influence on soil reflectance, with overall soil 
reflectance strongly decreasing with increasing organic matter content. With 
increasing organic matter content, usually associated with low reflectance and dark 
colors in the visible wavelength range, absorption features of other materials are 
masked, i.e. extinguished from the spectrum. Different minimum values for soil 
organic matter content were found to have a masking effects, ranging from 2 % to as 
high as 9 %, depending on the type of soil organic matter. Soils with high contents of 
organic matter rarely exhibit a relative reflectance above 20 %, with soil moisture 
further decreasing overall reflectance [Baumgardner 1985, Ben-Dor 1998a, Irons 
1989]. Recent investigations have found that imaging spectrometry data can be 
utilized to predict soil organic matter content and provide some information on the 
degree of decomposition of soil organic matter [McMorrow 2004, Ben-Dor 1998a, 
Ingleby 2000]. 

Most soil minerals, such as the most abundant minerals in soil feldspars, mica, 
carbonates, clay minerals, iron oxides and iron hydroxides, exhibit specific 
absorption spectra allowing their identification in hyperspectral remote sensing data. 
Only quartz, the most ubiquitous mineral and main component of most inorganic 
soils, and some other primary silicate minerals, do not exhibit any absorption 
features that allow for their identification in the 0.4 µm – 2.5 µm region. Only minor 
absorption features are exhibited by apatite and orthoclase. All clay minerals, mica, 
carbonate, dolomite, gypsum and hematite, however, exhibit unique absorption 
features that allow for their identification. These absorption features, mainly located 
in the 2.2 µm – 2.5 µm region, are attributed to the OH-groups found as part of the 
mineral structure (Si-OH) or adsorbed water in the clay mineral layers. Carbonates 
exhibit specific absorption features at 2.16 µm (only calcite), 2.23 µm – 2.27 µm and 
2.31µm – 2.35 µm (calcite and dolomite) ranges. Magnesium and impurities of iron 
have been shown to shift the latter absorption feature towards shorter and longer 
wavelengths, respectively. A double absorption feature at 1.87 µm and 1.99 µm is 
not visible in remote sensing data or spectra of wet carbonates due to the 1.9 µm 
atmospheric water absorption band [Ben-Dor 1998a, Baumgardner 1985]. 

Iron oxides and hydroxides that are abundant in many soils exhibit broad absorption 
features in the visible and near infrared wavelength regions between 0.5 µm and  
1.3 µm. However, the iron content of soils has also been shown to have an influence 
on the overall spectral response of soils, obviously due to its typically fine 
distribution on the surface of larger soil particles. Therefore, linear relationships were 
also found between iron contents and the reflectance at shortwave infrared 
wavelengths [Ben-Dor 1998a]. 
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Soluble salts, among others sodium chloride, sodium carbonate and magnesium 
chloride, often encrust soil surfaces resulting in overall increased soil reflectance 
compared to spectra of similar soils without a salt encrustment. Other non-soluble 
salts such as gypsum exhibit specific absorption features that allow for their direct 
identification [Ben-Dor 1998a]. 

It has been shown in many different applications that, although often no specific 
absorption features are known, close relationships between spectral response and soil 
constituents or properties could be found. These properties include, for example, soil 
encrusting and infiltration rates, soil pH, soil organic matter content, soil surface 
moisture, inorganic soil carbon, soil degradation, and different minerals at low 
concentrations (minimum 1 %) [Kaufmann 1998, Whiting 2003, Leone 1999, Leone 
2000, Ben-Dor 2003a]. To some extent it is therefore possible to draw conclusions 
on the constituents and geochemical properties of the relatively homogeneous topsoil 
layers (upper 15 – 30 cm) by using surface soil properties (spectral response of the 
upper 1 µm – 2 mm) and imaging spectrometry data. 
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5.2 – Fuel hydrocarbons and their spectral characteristics 
 

Fuel hydrocarbons 

The absorption features of basic organic compounds of the fuel hydrocarbon group 
(alkanes, alkenes, alkynes, aromatics, alcohols, carbonyls, carboxyls, chlorinated 
organics, nitrated organics) were discussed in section 3. However, although used in 
large quantities as feedstock in the chemical industries these pure, single compounds 
of the group rarely occur as soil contaminants. Rather, they are found as groundwater 
contaminants due to leaking pipeline systems at production facilities in the chemical 
industry. Most soil contaminations are a result of spills, leakages and deposition of 
crude oil, fuels, fuel oils, lubricants, and refinery and coking residues during 
production, transport, storage and use. These fuel hydrocarbons are highly complex 
mixtures of a variety of basic compounds. The spectral response of mixtures of 
single fuel hydrocarbon compounds adds up to form the spectral response of the 
mixture. Therefore, the composition of several important commercial fuel 
hydrocarbon compounds will be considered here in addition to the spectral response 
of single compounds discussed in section 3. 

Crude oils are yellowish to black liquids consisting of more than 500 single 
compounds, mainly alkanes (usually CH4 – C30H62), cycloalkanes (usually 
cyclopentane, cyclohexane, and cycloheptane) and aromatics (usually 
alkylbenzenes). Depending on the deposit and its genesis, either aromatic or aliphatic 
compounds may dominate. The boiling point of compounds contained in crude oil 
typically ranges from 50°C to 350°C. The density ranges from 0.65 g/cm³ to  
1.02 g/cm³, with most crude oils in the range of 0.82 g/cm³ and 0.94 g/cm³. The 
viscosity of crude oil ranges from liquid to viscous, since longer exposure to 
atmospheric conditions results in the evaporation of volatile compounds, thus 
increasing viscosity [Römpp 1995]. 

Important commercial fuels used for fueling all kinds of vehicles, power generation 
and heating include regular gasoline (95 fuel), premium gasoline (98 fuel), kerosene, 
diesel, light fuel oil, and heavy fuel oil. Depending on their composition of volatile 
or non-volatile, low or high density, mobile liquid or viscous to solid compounds, 
fuel hydrocarbons, when spilled, exhibit a different environmental behavior with 
respect to their distribution in terrestrial, aquatic and atmospheric systems. Table 5-1 
summarizes important properties of widely used commercial fuel hydrocarbon 
products. 
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Table 5-1: Characteristics of important fuel hydrocarbon products [Compiled from Römpp 
1995, HSDB 2004]. 

 Main 
Components Color 

Boiling 
Range 
90% 
[°C] 

Melting 
Point 
[°C] 

Density 
[g/cm³] Viscosity

95 Fuel 

alkanes, 
cycloalkanes, 

monoaromatics 
(C5-C12) 

clear, 
colorless – 

slightly 
yellow 

80 – 130 -90 - -95 0.72 – 0.76 mobile 
liquid 

98 Fuel 

monoaromatics, 
alkanes, 

cycloalkanes 
(C5-C9) 

clear, 
colorless 80 – 130 -90 - -95 0.72 – 0.76 mobile 

liquid 

Kerosene 
alkanes (C10-

C16), aromatics 
(C6+C10) 

clear, 
colorless - 

yellow 
180 – 270 N/A ca. 0.8 

mobile – 
oily 

liquid 

Diesel 

alkanes, 
cycloalkanes, 

alkenes, 
naphthenes 

clear, dark 
yellow – 

light brown 
170 - 360 70 – 100 0.83 – 0.86 

mobile – 
oily 

liquid 

Lubricating 
Oil 

(Mineral 
Oil) 

medium – high 
molecular 

weight aliphatics

clear, yellow 
- brown > 260 > -60 0.8 – 1.0 

oily – 
slightly 
viscous 
liquid 

Synthetic 
Lubricating 

Oil 

polyethers, 
phosphate esters, 

silicone oils 

clear, yellow 
- brown > 260 > -60 0.8 – 1.0 

oily – 
slightly 
viscous 
liquid 

Light Fuel 
Oil 

alkanes, 
aromatics 

(1-3 rings) 

clear, light 
brown, often 

dyed (red, 
green) 

282 – 338 ≥ -6 0.86 – 1.10 

oily – 
slightly 
viscous 
liquid 

Heavy Fuel 
Oil / 

Bunker Oil 

refinery 
residues, long-
chain alkanes, 
polynuclear 
aromatics 

dark brown - 
black > 300 ≥ 10 > 1.10 viscous 

liquid 

Tar 
mainly 

polynuclear 
aromatics 

dark brown 
– black > 210 > 80 > 1.0 

viscous 
liquid – 

solid 

Bitumen / 
Asphalt 

high molecular 
weight 

hydrocarbons 
(aliphatics & 
aromatics) 

dark brown 
– black > 700 > 90 1.0 – 1.18 solid 
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Based on the parameters given in table 5-1, fuel hydrocarbon products can be 
categorized in the following classes: 

• Highly mobile, volatile and colorless fuel hydrocarbons consisting mainly of 
monoaromatics (95 fuel, 98 fuel) 

• Mobile and colorless fuel hydrocarbons consisting mainly of alkanes 
(kerosene, light fuel oil) 

• Oily to slightly viscous, dark fuel hydrocarbons consisting mainly of alkanes 
(lubricating oil, heavy fuel oil) 

• Viscous to solid, black fuel hydrocarbons, consisting mainly of high 
molecular weight aromatics and/or aliphatics (heavy fuel oil, coal tar, 
bitumen/asphalt) 

All fuel hydrocarbons share in common their hydrophobic nature and hence are 
almost insoluble in water. Water solubility for these materials ranges from one to ten 
milligrams per liter. Typically viscosity, melting point and boiling points increase 
with increasing lengths of the carbon skeleton chain. Whereas fuel hydrocarbons 
with smaller carbon skeleton chain lengths usually range from clear and colorless to 
yellowish, longer chained carbon skeleton fuel hydrocarbons tend be brown to black. 
The density of all clear and only slightly colored fuel hydrocarbons (clear, colorless 
to clear, brown) is lower than that of water (< 1 g/cm³). 

 

Spectral response of fuel hydrocarbons 

Apart from the prominent C-H-stretch overtone vibrations of liquid and solid fuel 
hydrocarbons that were discussed in sections 3 and 4 (at around 2.3 µm, 1.7 µm,  
1.4 µm and 1.2 µm), not many results concerning the spectral response of fuel 
hydrocarbons and their distinction ability in visible, near and shortwave infrared 
spectra have been published. Also, the ability to decipher liquid and solid fuel 
hydrocarbons from other natural and synthetic organic materials containing 
hydrocarbons has not been explicitly addressed. However, much research has 
addressed the NIR analysis of organic (food) materials, plastics, and fuel 
hydrocarbon products in industrial process analysis. These works were usually 
focused on chemometric applications of NIR analysis in controlled environments, 
determining correlations between selected parameters and reflection or transmission 
at certain wavelengths. These works generally did not address characteristic 
absorption features of different hydrocarbon classes and other products containing 
hydrocarbons [Workman 1996, Buchanan 1992, Stark 1992, Cermelli 1992, Murray 
1992, Burns 1992, Hildrum 1992].  
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5.3 – Fuel hydrocarbon soil contaminations and spectral properties 

 

Fuel hydrocarbon soil contaminations 

For the purpose of remote sensing imaging detection and investigation of fuel 
hydrocarbons in and on surface soils it is necessary to consider the distribution of 
fuel hydrocarbons in and on soil, their interactions with soil particles and soil 
moisture, and the typical concentration range of fuel hydrocarbons observed in soil 
contaminations on a microscopic scale. Although soil contaminations visible at the 
surface typically make up only a small part of a fuel hydrocarbon soil contamination, 
the macroscopic distribution and environmental behavior of fuel hydrocarbon 
contaminations of soil and groundwater, as discussed in section 2, must be 
considered, even though the largest part of the contamination is usually hidden in the 
subsurface. However, from a remote sensing point of view, only the behavior and 
interactions of fuel hydrocarbons and the soil matrix on a microscopic scale are of 
interest because only the upper few micrometers to millimeters of a soil surface 
interact with electromagnetic radiation in the visible, near infrared and shortwave 
infrared wavelength regions, returning the reflectance spectrum to an imaging 
spectrometry sensor system. 

Fuel hydrocarbon contaminations of soils are typically observed in a concentration 
range between 100 mg/kg (0.01 wt.%) and more than 100,000 mg/kg (10 wt.%), with 
the actual concentration depending on exposure history and soil and fuel 
hydrocarbon properties. In Germany, typical remediation threshold concentrations 
for fuel hydrocarbons in soils are in the range of 1,000 mg/kg (0.1 wt.%), and soils 
with concentrations above 100 mg/kg (0.01 wt.%) are required to be monitored on a 
regular basis. However, fuel hydrocarbon concentrations in spill centers or heavily 
contaminated soils readily exceed 10,000 mg/kg (1.0 wt.%). The concentration of 
fuel hydrocarbons observed in soils some period of time after the actual spill is 
usually referred to as the residual concentration. The residual concentration is 
defined as the quantity of fuel hydrocarbons held in the soil matrix against the force 
of gravity by capillary forces or adsorbed to soil particle surfaces. Several processes 
further decrease the concentration of fuel hydrocarbons in the soil matrix over time. 
Volatile compounds (C1-C8 alkanes, monoaromatics) tend to evaporate over time, 
and percolation of water through the soil matrix dissolves soluble compounds and 
washes insoluble compounds into deeper soil horizons. With increasing viscosity, 
smaller quantities penetrate into the soil matrix and higher quantities are held back as 
residual concentration. Microbial activity results in the degradation of biodegradable 
compounds. Adaptation of the microflora to fuel hydrocarbons has been observed to 
result in the degradation of less biodegradable compounds over longer periods of 
time. However, viscous and high molecular weight hydrocarbon compounds (long-
chain aliphatics, polynuclear aromatics, heavy oils, bitumen, tars, asphalt) are 
typically not dissolved, washed out, evaporated or biodegraded and thus remain in 
the soil matrix over long periods of time. 
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Different classes of hydrocarbons, soil types and moisture levels must be considered 
concerning the distribution and behavior of fuel hydrocarbons in a soil matrix with 
its mineral and organic components, soil constituents and water (soil moisture) on a 
microscopic scale. Generally, fuel hydrocarbon spills occur on more or less moist 
soils, i.e. fuel hydrocarbons are added to a system of fine-grained mineral or organic 
soil particles containing water adsorbed to the particle surfaces or trapped in the pore 
spaces between the soil particles. Depending on their viscosity, soil properties (grain 
size distribution, soil crusts) and environmental (climatic) conditions, fuel 
hydrocarbons may or may not penetrate the soil matrix. Usually, light crude oils and 
refined fuels (95 fuel, 98 fuel, diesel, kerosene, fuel oil) penetrate into the soil 
matrix, while viscous fuel hydrocarbons (heavy fuel oil, heavy crude oil, tars, 
bitumen, asphaltics) tend not to penetrate the soil matrix and cover the soil surface. 
Because their density is generally lower than that of water and because fuel 
hydrocarbons are generally hydrophobic, fuel hydrocarbons that penetrate into the 
soil matrix are expected to mainly "float" on the soil moisture covering the soil 
particles and fill void spaces (soil-vapor filled) in the pore volume of the soil. Dry 
soil particles, usually found at the surface in arid regions, might adsorb fuel 
hydrocarbons to their surfaces, thus being coated or "impregnated" against soil 
moisture. Although quartz and primary silicate minerals are not expected to adsorb 
fuel hydrocarbons except to their surfaces if dry, secondary silicate (clay) minerals 
and organic material in soils can be expected to strongly absorb fuel hydrocarbons 
into voids in the mineral structure (clay) or to adsorption sites of humic substances 
(organic matter). Fuel hydrocarbons may even displace other adsorbed chemicals in 
these structures. Adsorption (residual concentration) is generally expected to increase 
in the case of decreasing soil particle size and increasing fractions of secondary 
silicate minerals and soil organic matter on the one hand, or also in the case of 
increasing viscosity and increasing boiling temperatures of the fuel hydrocarbons 
involved. 

When covering the soil surface as a separate phase, the state of aggregation of the 
fuel hydrocarbons might undergo diurnal changes, being solid during the night and 
melting into liquid state with increasing temperature during daylight. 

In the event of precipitation, if pools of water form on the fuel hydrocarbon 
contaminated soil surface, small quantities of free fuel hydrocarbon from the pore 
spaces and the soil surface can be expected to be released and float on the water’s 
surface. 

In arid regions, contaminations of soils with fuel hydrocarbons are often covered by 
a thin layer of fine soil particles from the erosion of adjacent areas of open soil and 
atmospheric deposition of the particles. These particles are held at the surface of the 
contaminated area by adhesive forces of liquid and largely viscous fuel 
hydrocarbons. Thus, no hydrocarbon contaminated soil may be exhibited at the 
surface although only covered by a thin layer of uncontaminated soil. 
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In the case of high concentrations of fuel hydrocarbons in soils, plant growth may be 
prevented due to the toxicity of certain fuel hydrocarbons, decreased availability of 
water in the rhizosphere (caused by impregnation of the soil matrix with hydrophobic 
fuel hydrocarbons), and increased carbon dioxide and decreased oxygen 
concentrations in soil vapor due to microbial degradation of fuel hydrocarbons. 

 

Expected spectral behavior of soil contaminated with fuel hydrocarbons 

Based on the above considerations of the composition and physico-chemical 
properties of soils and fuel hydrocarbons, the spectral response of soils and fuel 
hydrocarbons as single components, and the distribution pattern and environmental 
behavior of fuel hydrocarbons as contaminants in soils, the following assumptions on 
the spectral response of soil contaminated with fuel hydrocarbons can be made. For 
the subsequent assumptions it is anticipated that both uncontaminated soil and soil 
contaminated with fuel hydrocarbons that are exposed at the surface are relatively 
homogeneous media over larger areas. 

Because of the adsorption of fuel hydrocarbons to soil organic matter and clay 
minerals, it is expected that contaminations of soils containing large amounts of 
either soil organic matter or clay minerals (humic soils, boulder till, clays) are 
spectrally masked, i.e. the absorption features of fuel hydrocarbons are attenuated 
considerably or even undetectable in reflectance spectra in the 0.4 µm – 2.5 µm 
wavelength region. On the other hand, a reverse effect can be expected for mineral 
soils containing large fractions of quartz and primary silicate minerals without 
adsorptive capacities. In this case, the presence of fuel hydrocarbons may be 
pronounced because the contaminants are covering the mineral surfaces and 
"floating" on the soil moisture, thus masking the spectral response of water (soil 
moisture) and that of the mineral soil matrix. The spectral response of individual fuel 
hydrocarbons, particularly with respect to the intensity of the prominent absorption 
bands in the 1.73 µm and 2.35 µm wavelength region and the overall reflectance, are 
also expected to play an important role in the ability to detect typically low 
concentrations of fuel hydrocarbons in a soil matrix. 

In either case, spectral mixing can be assumed to be non-linear. 

For every imaging spectrometry application aimed at the detection of fuel 
hydrocarbon soil contaminations, the possibility that areas of contaminated soil have 
been covered with uncontaminated material due to natural erosion and deposition 
processes should be considered. 
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5.4 – Research objectives 

 

Fuel hydrocarbon spectra 

While prominent absorption features of fuel hydrocarbons as a major chemical class 
have been described (1.7 µm, 2.3 µm) and applied in remote sensing imaging 
spectrometry, it has not yet been determined to what extent different classes of 
typical fuel hydrocarbons occurring as soil contaminants can be distinguished in 
reflectance spectra and imaging spectrometry data in the 0.5 µm – 2.5 µm region. 
Furthermore, it has not been investigated in detail if the deposition of other natural 
and synthetic organic materials on soil surfaces (dry organic matter such as 
wood/lignin, cellulose, etc. and plastics) can result in false positives when trying to 
detect fuel hydrocarbon soil contaminations using only single prominent absorption 
features or single band correlations. Therefore, the ability to separate different 
hydrocarbon classes including fuel hydrocarbons, plastics and natural materials 
needs to be investigated. 

 

Spectral response of fuel hydrocarbon soil contaminations 

Recent research on the application of imaging spectrometry and reflectance 
spectroscopy for the detection of fuel hydrocarbons in soils has been limited to the 
qualitative detection of rather high concentrations of fuel hydrocarbons in single soil 
matrices. Also, detection limits for different classes of fuel hydrocarbons (e.g., 
aliphatics, aromatics) and related compounds (e.g., phenols, chlorinated 
hydrocarbons, explosives) in different soil types (i.e., sand, silt, clay, humic soil) 
composed of different mineral and organic constituents and at different moisture 
grades have not yet been addressed and require investigation. 

 

Instrumentation and remote sensing parameters 

With the development of instruments that allow for user-defined spectral resolution 
(FWHM) and sampling intervals, variable spatial resolution depending on instrument 
foreoptics and flight altitude during data acquisition and user-defined radiometric 
resolution, it becomes possible to adapt imaging spectrometry instruments to the 
application rather than the application to the instrument. Therefore it is necessary to 
define instrumentation and data acquisition parameters with respect to spectral and 
radiometric resolution based on the absorption features observed in the target 
material (i.e., fuel hydrocarbon contaminated soils) in order to ensure both the 
detection and separation of different absorption features. Since the occurrence and 
intensity of mixed spectra in imaging spectrometry data largely depends on spatial 
resolution (variability of surface materials typically increases with sampled area, in 
particular in urban areas) and because fuel hydrocarbons as soil contaminants 
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typically occur in relatively low concentrations (see above), high spatial resolution of 
imaging spectrometry data is preferable from a solitary spectrometry point of view. 
On the other hand, the data volume of imaging spectrometry datasets increases 
exponentially with spatial resolution, setting limitations with respect to data 
acquisition (data storage during data acquisition) and data processing and 
interpretation. Therefore, recommendations for required spatial, spectral and 
radiometric resolution for the application of imaging spectrometry for the detection 
and investigation of fuel hydrocarbon soil contaminations need to be derived based 
on spectral properties and spatial distribution patterns observed. 

Because soil moisture is expected to play an important role in the detectability of fuel 
hydrocarbons in different soil types, it is also necessary to derive recommendations 
with respect to pre-data-acquisition weather conditions. 

 

Possibilities and restrictions of remote sensing in contaminated site investigation 

Given the ability to determine the possibilities and limitations of imaging 
spectrometry in the 0.4 µm – 2.5 µm wavelength region and to define the 
instrumentation and data acquisition parameters for the detection and analysis of fuel 
hydrocarbon soil contaminations, it must be said that the results obtained are only 
valid for scenes consisting of relatively large and homogeneous entities of soil and 
fuel hydrocarbon contaminated soil and minor abundances of other spectral 
endmembers. Therefore, it is especially important to extend the considerations of the 
applicability of imaging spectrometry for contaminated site detection and 
investigation to common patterns and environments at brownfields and contaminated 
sites. Also, the total area of contaminated sites, the exposure of contaminants, wastes 
and contaminated media at the surface, the overall homogeneity and distribution 
pattern of different surface materials (spectral variability), and secondary indicators 
that might hint at subsurface contaminations (vegetation stress) should be taken into 
account. Additional environmental applications should be considered together with 
findings concerning the ability to separate different classes of fuel hydrocarbons, 
other synthetic hydrocarbon-bearing materials and organic materials, and their 
detection limits. 

The limitations and restrictions of imaging spectrometry and other remote sensing 
methods for contaminated site detection and investigation also should be considered 
in the context of surface structures, exposition and distribution patterns of 
contaminations and waste deposits. On the other hand, the possible fields of 
applications should be outlined. 

 

Data interpretation approaches 

Finally, the issue of data interpretation needs to be addressed. Because soil 
contaminations are typically limited to relatively small areas within larger scenes, 
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and because the “contamination-specific” spectral response is expected to be 
relatively small compared to background features (e.g., soil matrix), appropriate data 
interpretation methods have to be applied. Considering contaminated sites as an 
anomaly within a normal background and hydrocarbon soil contaminations as a more 
or less known target spectrum, anomaly and target detection algorithms need to be 
tested and adapted. Furthermore, a general algorithm for data interpretation with 
respect to the detection of fuel hydrocarbon soil contaminations needs to be outlined. 
However, data interpretation is not the primary focus of this study, which aims 
primarily at the applicability of imaging spectrometry for contaminated site 
investigation rather than the development or enhancement of data interpretation 
methods and techniques for this purpose. 

 

The laboratory and field spectrometry and data interpretation experiments presented 
in the subsequent sections address the problems outlined above. Based on the results 
obtained in these experiments and the description of typical contaminated sites 
provided in section 2, conclusions are drawn and the possibilities and limitations of 
application of imaging spectrometry for contaminated site detection and investigation 
are determined. Furthermore, recommendations for the application of imaging 
spectrometry for contaminated site investigation with respect to remote sensing 
instrumentation, data acquisition and data interpretation are derived. 
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6 – Spectrometry experiments 
 

To address the problems outlined in section 5 involving the application of imaging 
spectrometry for the detection and investigation of contaminated sites, particularly 
those sites with fuel hydrocarbon soil contaminations, a series of laboratory 
spectrometry, field spectrometry and data interpretation experiments was designed 
and carried out. While this section addresses the laboratory and field spectrometry 
experiments and their results, the data interpretation experiments will be addressed 
separately in section 7. 

The laboratory experiments were designed to provide results with respect to the 
ability to separate and detect spectra in the 0.4 µm – 2.5 µm wavelength range 
depending on the following variables: 

• Different classes of hydrocarbon compounds (alkanes, monoaromatics, 
polynuclear hydrocarbons, alcohols, explosives, chlorinated organics, etc.) 

• Different inorganic compounds (metals, metal oxides, salts, etc.) 

• Different commercial fuel hydrocarbon products as mixtures of different 
classes of hydrocarbon compounds,  

• Hydrocarbon compounds and fuel hydrocarbon products from other natural 
and anthropogenic hydrocarbon-bearing materials (plastics, wood, paper, etc.) 

• Different soil types (dry and at different moisture levels) 

• Selected, representative fuel hydrocarbon compounds at typical contaminant 
concentrations in different soil types at different moisture levels 

In addition, spectra from several authentic samples of contaminated soils were 
measured in the laboratory and in the field at the former glassworks Haidemühl, an 
industrial brownfield. These spectra were measured to test the results of the 
laboratory experiments against real-life soil contaminations and the applicability in 
the field. Four major groups of experiments were conducted under defined 
experimental conditions: 

• Spectral measurements of a variety of organic and inorganic chemical 
compounds, and commercial chemical products and materials (potential 
contaminants) 

• Spectral measurements of different soil types (dry and different moisture 
contents) 

• Spectral measurements of seven different soil types contaminated with twelve 
representative contaminants of the fuel hydrocarbon group at different soil 
moisture levels 

• Spectral measurements of samples of contaminated soils from different 
industrial brownfields 
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In the subsequent sections, first the chemicals, soils, substances, products and 
materials used in the experiments will be described. Then, the experimental methods, 
instrumentation and the experimental set-up will be described along with sample 
preparation procedures, and sample nomenclature. Finally, the results obtained for 
artificially contaminated soil samples, detection thresholds, and real-life 
contaminated soil samples will be discussed. 

 

6.1 – Sample materials 

 

Organic and inorganic chemicals 

In order to identify specific absorption features and spectral properties of different 
classes of hydrocarbons and to determine the spectral uniqueness of fuel 
hydrocarbons from other classes of chemicals, spectra of more than 120 selected 
chemical compounds, commercial chemical products and fuel hydrocarbons were 
acquired in experiments under controlled laboratory conditions. In order to assess the 
applicability of imaging spectrometry for detecting contaminations with inorganic 
pollutants and to assure their distinction from hydrocarbons in spectra in the 0.4 µm 
to 2.5 µm wavelength region, a number of inorganics with a focus on heavy metal 
compounds and salts was also included. Although they were expected to be 
spectrally featureless, major classes of organics included aliphatics, monoaromatics, 
polynuclear aromatic hydrocarbons, alcohols, phenols, explosives, chlorinated 
hydrocarbons, fuel hydrocarbons and other commercial products consisting of 
hydrocarbons. Major classes of inorganics included elemental metals and heavy 
metals, metal oxides, metal sulfates, metal salts, and salts. 

Table 6-1 lists the compounds and products included in the experiments. Liquid and 
solid compounds are listed in separate columns because the measurement methods 
applied varied depending on the state of aggregation and the opacity or 
transmissivity of the sample. Those chemicals selected for the subsequent 
experiments on soil contaminations are highlighted in the table.  

 

Anthropogenic materials 

In order to determine the uniqueness of fuel hydrocarbon contaminants from 
materials of anthropogenic origin abundant in urban scenes of remote sensing data, 
spectra of about 30 wide-spread anthropogenic materials were acquired (plastics, 
paints, ceramics, paper, fabric, wood products) in a large number of varieties 
(different colors, surface structures, material thickness, etc.). Anthropogenic 
materials that were expected to exhibit similar spectral characteristic as soils (brick, 
concrete) were also included in the measurements. Table 6-2 lists the materials 
included in these measurements. 
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Table 6-1: Chemicals and chemical products investigated with respect to their spectral 
characteristics in the 0.38 µm to 2.5 µm wavelength region. Those compounds and products 
selected as contaminants for the soil – moisture contaminant experiments are marked bold and 
italic. 

Group Liquid Compounds Solid Compounds 

Aliphatics n-Hexane, n-Heptane, n-Octane,  
1-Octene, 1-Octyne 

 

Monoaromatics Benzene, Toluene, Ethylbenzene, 
Xylene, 1,2,4-Trimethylbenzene 

1,3,5-Trimethylbenzene,  
1,2,4,5-Tetramethylbenzene 

Polycyclic 
Aromatic 

Hydrocarbons 

1-Methylnaphthalene,  
1-Acetylnaphthalene 

Naphthalene, 1-Naphthol,  
2-Naphthol, 2-Methylnaphthalene 

Alcohols Methanol, Ethanol, 1-Octene-3-ol,  
1,8-Octanediol, 2-Octanol, 3-Octanol 

 

Phenols 

2,4-Dimethylphenol Phenol, 2,5 / 2,6 / 3,4 / 3,5-
Dimethylphenol, 2-Amino-4-
Methylphenol, 4-Chloro-3,5-
Dimethylphenol, Pyrogallol 

Explosives 
4-Nitrotoluene 2,4,6-Trinitrotoluene (TNT) , 

Hexogen, 2,4-Dinitrotoluene, 
Octogen 

Chlorinated 
Hydrocarbons 

Dichloromethane, Trichloromethane, 
Chlorobenzene, 1,2-Dichlorobenzene, 
1,2,4-Trichlorobenzene 

1,2,3,4-Tetrachlorobenzene 

Fuel 
Hydrocarbons 

Regular Gasoline (95), Premium 
Gasoline (98), Diesel, Kerosene  
F-34, Kerosene R-1, Fuel Oil, 
Synthetic Motor Oil, Crude Oil, 
Waste Oil 

 

Lubricants, 
Cleaning Fluids, 

Sealings 

Cleaners Naphtha, Bitumen Lacquer, 
Cutting Oil, Mechanics Lubricant Oil, 
Precision Mechanics Lubricant Oil, 
Boiled Linseed Oil 

Bitumen Paste, All-Purpose Grease 

Other Organics 

Acetic Acid, Acetone, Glycerin, 
Sodium Acetate, 1-Octanal,  
2-Octanone, 3-Octanone, Octanoic 
Acid 

Triphenylarsine 

Metals, Metal 
Sulfates, Metal 
Oxides, Metal 

Salts, etc. 

 Al (powder), AlO, AlCl2, Cu 
(powder), CuO, CuSO4, CuSO4•H2O, 
CuCl2, Zn (powder), ZnO, ZnCl2, 
ZnSO4, Fe (powder), FeCl2, Fe2O3, 
FeSO4•H2O, MnCl2, V2O5, As2O3, 
CoCl2, Pb(NO3)2, AgCl2 

Salts NaCl solution (aq.), KCl solution 
(aq.) 

NaCl, NaNO3, KCl, KBr, KNO3, 
NH4NO3 

Others 
Inorganics 

NH3 (aq.), H2O B(OH)3, NaOH, NaN3, NaHSO3, 
CO(NH2)2, SiO2, S, C (powder, 
graphite) 
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Table 6-2: Anthropogenic hydrocarbon-bearing materials investigated to determine their 
uniqueness when compared to fuel hydrocarbon soil contaminations. 

Group Materials 

Paints Acrylic Lacquers, Alkyd Paint, Synthetic Resin Varnish, ZK-Pur Lacquer 
(different colors of each) 

Plastics 
Acrylic Plastic (PMMA), Polyethylene (PE-LD), Polypropylene (PP), 
Polystyrene (PS), Polyurethane (PU), Polyvinyl chloride (PVC), Latex, 
Nitrile, Nylon, Rubber, Silicone, Styrofoam (different colors of each) 

Paper & 
Cardboard 

Cardboard, Cellulose Fiber Cloth, Paper (different colors of each) 

Fabric Cotton Cloth 
Natural 

Materials 
Cork bark, Wood 

Concrete & 
Ceramics 

Brick (red, yellow), Concrete 

Metals Aluminum Sheet, Brass Sheet, Copper Sheet, Steel Sheet (not oxidized) 
 

All granular or powdered solid and all liquid substances were prepared in Duroplan 
glass Petri dish bottoms with an inner diameter of 68 millimeters for the spectral 
measurements. For translucent liquids, the samples were prepared with a thickness of 
one millimeter, equivalent to 3.6 ml of liquid in the Petri dish bottom and yielding an 
effective absorption path length (dual-pass) of two millimeters. Non-transparent 
liquids and solids were prepared to cover the whole bottom of the Petri dish. 

Other material samples (e.g., plastic sheets, wood, paper, painted materials, metal 
sheets, etc.) were prepared in squares of minimum 8 × 8 centimeters. 

 

Soil samples 

For the experiments on the detectability and separability of different fuel 
hydrocarbons in soils at different soil moisture contents, six different soil types were 
selected. The soils were selected to contain different fractions of quartz, primary 
silicate minerals, secondary (clay) minerals, iron, and soil organic matter.  

The soil types included pure silica sand (commercial product, laboratory grade), fine 
sand containing quartz and primary silicate minerals, coarse sand containing some 
organic matter and iron in addition to quartz and primary silicate minerals, boulder 
till containing quartz, clay and organic matter, clay, and humic topsoil dominated by 
organic matter and containing high concentrations of iron. 

Because the handling of clay, even if ground, proved highly difficult with respect to 
sample homogenization when adding water for soil moisture and contaminants, clay 
granulate (fine grain clay cat litter, a commercial product) was included in the 
experiments. 
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For each soil, the following parameters were determined (where applicable): natural 
(sampling) moisture content, ignition loss (organic material), grain size distribution, 
carbonate content, iron content, and background concentration of fuel hydrocarbons. 
The soil types, their sampling sites and their physico-chemical properties (table 6-3) 
are described as follows. Each soil type was assigned a symbol to identify it in the 
experiments. 

 

Sea Sand (symbol SS) 

Description:  Fine sea sand, washed and purified with acid and calcined at 
1,000 °C to yield pure silica sand, color yellowish-white, 
sieved, grain size 0.1 – 0.3 mm 

Source:  VWR International, order no. 1.07712.5000 

 

Fine Sand (symbol fS) 

Description:  Yellowish-gray fine grain sand with darker and brighter 
grains (primary silicate minerals), sieved, maximum grain 
size 0.4 mm 

Sampling site:  Gravel and clay pit at Calau-Plieskendorf ca. 25 kilometers 
southwest of Cottbus (Brandenburg / Germany) 

Sampling coordinates:  13.9660 °E (approx.) 

(WGS84, decimal) 51.7187 °N (approx.)  

 

Coarse Sand (symbol cS) 

Description:  Yellowish – brown, mainly coarse sand with smaller 
fractions of medium sand and gravel 

Sampling site:  Heathland near Taubendorf ca. 23 kilometers northeast of 
Cottbus (Brandenburg / Germany) 

Sampling coordinates:  14.59037 °E 

(WGS84, decimal) 51.88763 °N 
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Boulder Till (symbol BT) 
Description:  Fine to medium grain soil with medium to coarse gravel 

portions, containing organic matter 

Sampling site: Agricultural field (corn) on the “Hornoer Berg” ca.  
19 kilometers northeast of Cottbus (Brandenburg / 
Germany) 

Sampling coordinates:  14.58543 °E 

(WGS84, decimal) 51.84074 °N 

 

Clay (symbol Cy) 

Description:  Light gray (some parts dark gray and yellowish-brown), 
mainly clay, highly cohesive, high water content  

 The clay deposit is reported to consist mainly of kaolinite 
with smaller fractions of mica, montmorillonite, and 
halloysite [Schroeder 1995]. 

Sampling site:  Gravel and clay pit at Calau-Plieskendorf ca. 25 kilometers 
southwest of Cottbus (Brandenburg / Germany) 

Sampling coordinates:  13.96655 °E 

(WGS84, decimal) 51.71874 °N 

 

Humic Soil (symbol Hu) 

Description:  Dark brown – black, fine to medium grain soil with high 
organic material content, obviously high iron content, and 
small fine sand fraction 

Sampling site:  Pasture land at Peitzer Laßzinswiesen ca. 16 kilometers 
northeast of Cottbus (Brandenburg / Germany) 

Sampling coordinates:  14.43984 °E 

(WGS84, decimal) 51.88291 °N 

 

Clay Granulate (symbol Cg) 

Description:  Medium gray, natural clay granulate (bentonite), grain size 
1 – 2 mm (cat litter “Catsan”) 

Source:  Masterfoods GmbH, “Catsan Ultra Klumpende 
Katzenstreu”, article no. 947765 D/A 
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Table 6-3: Important characteristics of the soils used for the soil – moisture – contaminant experiments. 

Grain Size 
Soil Type Symbol 

[mm] [%] 

CaCO3 

[%] 
Fe 

[mg/kg] 
FHC 

[mg/kg] 
Ignition Loss 

[%] 

Natural 
Moisture 

[%] 
Color 

> 2 0 
0.3 - 2 0 

Sea Sand 
(pure silica sand) 

SS 
0.1 – 0.3 100 

max. 0.02 max. 10 0 max. 0.05 ca. 10 light gray - 
white 

>2 0 
0.4 - 1 0 Fine sand fS 
< 0.4 100 

0.41 730 6.6 0.1 – 0.3 ca. 10 light gray – 
yellowish 

> 2 11.6 
1 – 2 8.7 Coarse sand cS 
< 1 79.7 

0.41 3,620 7.9 1 3 – 4 yellow – 
brown 

> 1 34.5 
Humic topsoil Hu 

< 1 65.5 
N/A 20,200 12 25 – 55 50 – 70 dark brown – 

black 

> 1 3.9 
Boulder till BT 

< 1 96.1 
0.46 4,370 9 2 – 3 6 - 7 brown 

> 1 0 
Clay Cy 

< 1 100 
0.57 14,900 12 5 – 7 20 – 22 gray 

> 2 0 
Clay granulate Cg 

1 – 2 100 
N/A N/A 0 7 – 8 ca. 12 gray 
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In preparation of the soil / moisture / contaminant experiments, the soils were oven-
dried at 105°C for a minimum of 24 hours. All materials with a diameter of more 
than two millimeters were separated from the dry soils by sieving. Because of the 
small scale of the laboratory spectral measurements (samples in Petri dishes with a 
diameter of 68 mm), the maximum particle size was further reduced to a maximum 
of one millimeter by sieving. The grain size distribution of this fraction used for the 
subsequent experiments was determined in a grain size analysis. Not included in this 
analysis were pure silica sand (SS, grain size 0.1 – 0.3 mm) and clay granulate (Cg, 
grain size 1 – 2 mm) because the grain size distribution was known and clay (Cy) 
because the grain size was too small for sieving analysis. The results for fine sand 
(fS), coarse sand (cS), boulder till (BT) and humic soil (Hu) are presented in  
table 6-4. 

 
Table 6-4: Particle size distribution 0.04 mm – 1.0 mm of fine sand, coarse sand, boulder till, 
and humic soil. 

Particle Size 
Fine Sand 

(fS) 
[%] 

Coarse Sand
(cS) 
[%] 

Boulder Till 
(BT) 
[%] 

Humic Soil 
(Hu) 
[%] 

1 - 0.63 mm 0.00 16.95 6.14 17.48 
0.63 - 0.25 mm 47.35 53.06 25.68 41.35 

0.25 - 0.125 mm 46.46 23.92 37.58 32.53 
0.125 - 0.080 mm 3.99 2.86 14.78 4.76 
0.080 - 0.040 mm 0.64 0.66 9.09 2.90 

< 0.040 mm 1.56 3.45 6.73 0.98 
 

Based on this analysis, the soils can be described as follows: 

Sea sand (SS):  pure silica (quartz) sand, fine grain sand, containing no iron, 
carbonate or organic matter 

Fine sand (fS):  fine grain sand consisting of quartz and primary silicate 
minerals, low iron content, free of organic matter 

Coarse sand (cS): coarse grain sand, quartz-dominated, medium iron content, 
containing small fraction of organic matter 

Boulder till (BT): fine grain soil containing quartz and secondary silicate 
minerals, with medium iron and organic matter content 

Clay (Cy): finest grain soil, consisting of secondary silicate minerals, 
containing high concentrations of iron and no soil organic 
matter (loss on ignition due to evaporation of crystal water)  

Humic Soil (Hu): organic soil with high iron content 

Clay Granulate (Cg):  fine grained clay consisting of secondary silicate minerals 
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In the analyses, all soil samples were found to be virtually free of fuel hydrocarbons 
with concentrations in the range of 6 mg/kg – 12 mg/kg that can be attributed to 
hydrocarbon-bearing soil organic matter. However, the concentrations found are 
irrelevant compared to the target concentrations investigated in the soil / moisture / 
contaminant experiments. 
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6.2 – Experiment design – fuel hydrocarbon contaminated soils  

 
Soil moisture level selection 

For the investigation of soil spectra of different moisture grades contaminated with 
fuel hydrocarbons, the seven soil types described above were prepared at three 
defined moisture contents and mixed with twelve selected (fuel) hydrocarbons at 
three different concentrations. Based on pretests (mixing the dry, sieved soils < 1mm 
grain size with different quantities of water) and the natural moisture content of the 
soil samples, the moisture levels listed in table 6-5 were selected for these 
experiments. An important criterion was to prevent liquid water floating on the 
samples to ensure the comparability of the spectral measurements. For coarse sand 
(cS), clay (Cy) and boulder till (BT), the maximum soil moisture for the experiments 
was selected to coincide with the moisture of the soil samples taken in the field, 4 %, 
20 % and 6 %, respectively. For humic soil (Hu), the soil moisture of the field 
samples was about 60 %. However, the sieved fraction < 1 mm used for the 
experiments was found to take up only about 30 % moisture at maximum without 
liquid water floating on the sample. Therefore, the maximum soil moisture for humic 
soil was selected at 30 %. To determine the maximum soil moisture content of sea 
sand (SS) and fine sand (fS), several samples of oven-dried soil were saturated with 
water and drained for three days. The soil moisture determined for these samples was 
about 20 % for both soils. However, when mixing these saturated samples with 
contaminants, liquid water formed on the surface. Therefore, the maximum soil 
moisture level for sea sand (SS) and fine sand (fS) was selected to be 10 %. In 
addition to the selected maximum soil moisture level, experiments were conducted 
with soil samples containing half of the maximum soil moisture level selected and 
with dry soils (oven-dried at 105°C). 

 
Table 6-5: Soil moisture levels selected for the experiments for the different soil types.  

Soil Type Dry Soil 
[%] 

Moisture Level 1 
[%] 

Moisture Level 2 
[%] 

Sea Sand (SS) 0 5.0 10.0 
Fine Sand (fS) 0 5.0 10.0 

Coarse Sand (cS) 0 2.0 4.0 
Boulder Till (BT) 0 3.0 6.0 
Humic Soil (Hu) 0 15.0 30.0 

Clay (Cy) 0 10.0 20.0 
Clay Granulate (Cg) 0 10.0 20.0 

Note: For soil moisture calculations, the US definition was applied (soil moisture [%] = water content 
[g] / dry soil [g] * 100) rather than the German definition according to DIN 18121 (soil moisture [%] 
= water content [g] / moist soil [g] * 100). 
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Contaminant selection 

Based on the comparison of the spectra of different classes of fuel hydrocarbons, 
twelve different hydrocarbon compounds and commercial fuel hydrocarbon products 
were selected as contaminants for the experiments. Basic chemical compounds 
(alkane, monoaromatics, polynuclear aromatic hydrocarbons), important functional 
groups as well as important and representative classes of environmental 
contaminants where included in the selection such as fuel hydrocarbons, chlorinated 
hydrocarbons, persistent organic pollutants, phenols, explosives, polynuclear 
aromatic hydrocarbons. The selected compounds exhibited distinct absorption 
features that allowed their identification, at least with respect to major compounds 
(alkane, aromatics, functional groups). 

The selected contaminants are known to be resident in soils (i.e. adsorb to soil 
minerals and organic matter and not to volatilize easily or dissolve in water). Volatile 
and water-soluble contaminants were not selected because they can be expected to be 
evaporated or washed out of the soil matrix over short periods of time, therefore 
being irrelevant as soil contaminants that are typically expected to be detected at the 
surface for longer periods of time. Where the primary target substance exists as a 
solid under standard conditions, a related, liquid compound exhibiting similar 
spectral characteristics was selected as an additional contaminant when possible 
(phenol / 2.4-dimethylphenol and naphthalene / 1-acetylnaphthalene). The 
contaminants selected for the experiments are listed in table 6-7. 

 
Contaminant concentrations selection 

The contaminant concentrations for the experiments were selected based on both 
realistic contaminant concentrations observed at contaminated sites and pretests with 
varying concentrations of the selected contaminants in the different soils and at 
different soil moisture levels. The minimum concentration was selected to be 
detectable only in some soil samples and under certain environmental conditions. 
The maximum concentration was selected to be detectable in every soil type at least 
at one moisture level. As a result, the following contaminant concentration levels 
(mg contaminant per kg dry soil or %) were selected for the experiments (Table 6-6): 

 
Table 6-6: Contaminant concentration levels selected for the experiments. 

Concentration mg / kg dry soil mg / 50 g dry soil mg / 30 g dry soil 
0.5 % 5,000 250 150 
1.0 % 10,000 500 300 
3.0 % 30,000 1,500 900 

Note: Analogously to the soil moisture definition, the calculation basis applied was (contaminant [%] 
= g contaminant per g uncontaminated dry soil). 
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Table 6-7: Contaminants selected for the experiments with composition, structural formula and 
state of aggregation in standard (experiment) conditions. 

Contaminant Symbol Class Structural formula State of 
Aggregation

n-Octane OCT Alkane CH3

CH3

 
liquid 

Xylene XYL 
Monoaromatic, 
substituted with 

alkyl group 

CH3

CH3

 

liquid 

Naphthalene NAP Polynuclear 
hydrocarbon 

 
solid 

Kerosene KER 
Jet fuel: mainly 

aliphatics + some 
aromatics 

N/A liquid 

Diesel DIS Automotive fuel: 
mainly aliphatics N/A liquid 

Waste Oil WO Waste product: 
mainly aliphatics N/A liquid 

Crude Oil CRO Light crude oil: 
mainly aliphatics N/A liquid 

1-
Acetylnaphthalene ANA 

Polynuclear 
hydrocarbon, 

substituted with 
acetyl (CO-CH3) 

group 

O CH3

 

liquid 

Phenol PHE 

Phenol, 
monoaromatic, 
substituted with 

OH group 

OH

 

solid 

2,4-
Dimethylphenol DMP 

Phenol, 
monoaromatic, 
substituted with 
OH group and 

alkyl (CH3) 
groups 

OH
CH3

CH3  

liquid 

1,2,4-
Trichlorobenzene TCB 

Monoaromatic, 
substituted with 

chlorine 

Cl
Cl

Cl  

liquid 

Dinitrotoluene DNT 

Explosive, 
monoaromatic, 
substituted with 

nitro groups 
(NO2) 

CH3

NO2

NO2  

solid 
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6.3 – Sample Preparation 

With twelve different organic contaminants, three contaminant concentration levels, 
seven soil types and three soil moisture levels, a total of 756 single samples with a 
unique combination of soil type, contaminant, contaminant concentration, and soil 
moisture level had to be prepared and the spectrum measured. For quality assurance, 
25 % of the experiments were repeated independently once, and 5 % of the 
experiments were repeated independently twice. Comparison of the spectra of 
independently repeated measurements showed that the repeatability of the 
measurements was good. 

 

Sample Description System 

In order to uniquely identify every sample and every single spectrum measured, the 
following sample description system was used. The first two letters describe the soil 
type. The two following digits indicate the soil moisture in whole percentages, and 
the next two digits the contaminant concentration as a percentage. The two or three 
letter symbol following indicates the contaminant used, and the final six digit 
combination is the date of sample preparation and the spectrum measurement 
(generally on the same day). The three digit file suffix identifies the number of a 
spectrum measured in a series. The sample descriptions were also used as file names 
for the spectrum files saved. Examples: 

cS-02-05-OCT_041012.009 coarse sand, 2 % moisture, 0.5 % n-octane, spectrum 
no. 009 measured on Oct. 12, 2004 

Hu-15-30-ANA_041117.084 humic soil, 15 % moisture, 3.0 %  
1-acetylnaphthalene, spectrum no. 084 measured on 
Nov. 17, 2004 

The additional file suffix *.sco after the file/spectrum number indicates that the 
splice correction function of the ASD View Spec Pro® software was applied to the 
spectrum to correct for erroneous offsets between the three different sensors of the 
instruments (at 1,000 nm and 1,780 nm). 

 

Preparation of moist soil samples 

The dry, sieved soil with grain sizes < 1 mm prepared as described above was used 
for the experiments with dry soil and contaminants at different concentrations and to 
prepare soils with the defined moisture levels. For this, one kilogram of soil was 
given into a 2-liter PE-LD wide-mouth bottle and the appropriate quantity of distilled 
water was added to the sample. The sample was then shaken thoroughly to mix water 
and soil homogeneously. To allow for an equal distribution of the water in the soil 
matrix, the soils were left to rest for a minimum of 24 hours and shaken from time to 
time. Table 6-8 lists the moisture levels and water quantities added to prepare the 
moist soil samples. 
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Tabelle 6-8: Soil moisture level sample preparation. 
Moisture Level 1 Moisture Level 2 

 
[%] ml H2O / kg 

dry soil [%] ml H2O / kg 
dry soil 

Sea Sand (SS) 5 50 10 100 
Fine Sand (fS) 5 50 10 100 

Coarse Sand (cS) 2 20 4 40 
Boulder Till (BT) 3 30 6 60 

Clay (Cy) 10 100 20 200 
Clay Granulate (Cg) 10 100 20 200 

Humic Soil (Hu) 15 150 30 300 
 

 

Preparation of soil samples with liquid contaminants 

For the spectral measurements of liquid contaminants in dry and moist soil samples, 
defined quantities of dry or moist soil were weighed into Petri dish (bottoms) so that 
every Petri dish contained the same quantity of soil (without moisture), generally 
50.00 ±0.01g for the mineral soils, and 30.00 ±0.01 g for the humic soil (Hu). 
Depending on the soil moisture content, different quantities had to be weighed out 
for every individual soil type and moisture level. For each contaminant, three soil 
samples of all three moisture levels were prepared, and 0.5 %, 1.0 % and 3.0 % of 
the contaminant under investigation were added to the soil samples (equivalent to 
250 mg, 500 mg, and 1,500 mg for mineral soils and 150 mg, 300 mg, and 900 mg 
for humic soil). The relatively small quantities of liquid contaminant were generally 
added to the samples using a micropipette and a laboratory balance to double-check 
the quantity of contaminant added to the sample. The sample containing soil and 
contaminant was then thoroughly mixed for a minimum period of three minutes 
using a glass rod to assure a homogeneous distribution of the components in the 
sample. To prevent the volatilization of contaminants and moisture from the samples, 
the Petri dishes were generally covered with the Petri dish top when the sample was 
not being worked on. 

Table 6-9 gives an overview of the soil samples prepared for the experiments with 
every liquid contaminant. 
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Table 6-9: Soil quantities and contaminant quantities used to prepare soil samples with defined 
contaminant concentrations. 

0.5 % Contaminant  
(-05) 

1.0 % Contaminant 
(-10) 

3.0 % Contaminant  
(-30) Soil / 

Moisture 
Level g soil mg 

contaminant g soil mg 
contaminant g soil mg 

contaminant
SS-00 50.0 250 50.0 500 50.0 1,500 
SS-05 52.5 250 52.5 500 52.5 1,500 
SS-10 55.0 250 55.0 500 55.0 1,500 
fS-00 50.0 250 50.0 500 50.0 1,500 
fS-05 52.5 250 52.5 500 52.5 1,500 
fS-10 55.0 250 55.0 500 55.0 1,500 
cS-00 50.0 250 50.0 500 50.0 1,500 
cS-02 51.0 250 51.0 500 51.0 1,500 
cS-04 52.0 250 52.0 500 52.0 1,500 
BT-00 50.0 250 50.0 500 50.0 1,500 
BT-03 51.5 250 51.5 500 51.5 1,500 
BT-06 53.0 250 53.0 500 53.0 1,500 
Hu-00 30.0 150 30.0 300 30.0 900 
Hu-15 34.5 150 34.5 300 34.5 900 
Hu-30 39.0 150 39.0 300 39.0 900 
Cy-00 50.0 250 50.0 500 50.0 1,500 
Cy-10 55.0 250 55.0 500 55.0 1,500 
Cy-20 60.0 250 60.0 500 60.0 1,500 
Cg-00 50.0 250 50.0 500 50.0 1,500 
Cg-10 55.0 250 55.0 500 55.0 1,500 
Cg-20 60.0 250 60.0 500 60.0 1,500 

 

 

Preparation of soil samples with solid contaminants 

To ensure a homogeneous distribution of the solid contaminants (naphthalene, 
phenol, 2,4-dinitrotoluene) in the soil samples, it was necessary to first dissolve the 
contaminants in an organic solvent, add the solvent to dry soil samples in the amount 
required to reach the desired contaminant concentrations in the soil samples and then 
evaporate the solvent from the soil samples. Only after the contaminant had been 
added to the soil sample and the solvent removed, was distilled water added to adjust 
the required soil moisture level. 

To ensure high volatility even from soil samples containing high levels of adsorptive 
material (clay minerals, organic matter), trichloromethane and diethylether, which 
were also found to dissolve large quantities of the three solid contaminants, were 
selected as solvents. 
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Twenty grams of naphthalene was dissolved in non-polar trichloromethane and had a 
total volume of 100 ml in a measuring flask. Forty grams of phenol and 30 grams of 
2,4-dinitrotoluene were each dissolved in diethylether, a more polar solvent, which 
allowed for higher concentrations of the contaminants to be dissolved, also with a 
total volume of 100 ml in the measuring flask. One hundred grams of dry soil of each 
type were measured into washing bottles and the total weight was noted. Next, 
depending on the concentration of the solution, different volumes of contaminants 
were added to the washing bottles to yield concentrations of 1.0 % and 3.0 %, 
respectively. The solution was thoroughly mixed with the soil and flushed with 
pressurized air under a venting hood until weight equilibrium was reached. Usually, 
small differences (± 0.2 g) to the expected sum weight of soil and contaminant 
(101.00 g @ 1.0 % and 103.00 g @ 3.0 %, respectively) were observed, obviously 
due to the absorption of the solvent or fine soil particles being blown out of the 
washing bottle. The dry soil samples containing the contaminant at concentrations of 
1.0 % or 3.0 % were then weighed into Petri dishes, and distilled water was added to 
reach the soil moisture levels defined for each soil type. Finally, the sample was 
manually homogenized before measurement as described above. 

 

Table 6-10: Contaminant-solvent mixtures added to dry soil to prepare defined contaminant 
concentration soil samples with solid contaminants. 

 
Solution / 100 g Dry Soil for
Contaminant Concentration

1.0 % 

Solution / 100 g Dry Soil for 
Contaminant Concentration

3.0 % 
Solution  

20 g Naphthalene /  
100 ml Trichloromethane 

5.0 ml 15.0 ml 

Solution  
40 g Phenol /  

100 ml Diethylether 
2.5 ml 7.5 ml 

Solution  
30 g 2,4-Dinitrotoluene /  

100 ml Diethylether 
3.33 ml 10 ml 

 

Because of difficulties concerning the homogeneous distribution of relatively low 
quantities of liquid contaminants in the dry soil samples (1,25 ml – 2,5 ml / 100 g dry 
soil), samples containing 0.5 % of contaminant were only prepared for solid 
contaminants that could be dissolved in a highly volatile solvent and for some liquid 
contaminants with a very low viscosity. 
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6.4 – Instrumentation and measurement set-up 

For the laboratory spectral measurements, and Analytical Spectral Devices, Inc. Field 
Spec Pro FR® spectrometer (instrument no. 6199, calibration 1) covering the  
0.38 µm to 2,5 µm wavelength region was used. Being a passive sensor instrument, a 
Lowel ProLamp® was used for the illumination of the samples. Because the 
instrument measures the intensity of light and thus needs a reference standard for the 
computation of relative reflectance, a 3.6 inch (9.1 cm) diameter dish of white 
Spectralon® was used as a white reference for the spectral measurements. 

To prevent stray light from other sources of illumination and reflections of non-
sample materials being measured by the instrument, the lamp, sensor and target were 
set up in a housing of black cotton cloth. In order to prevent overheating of the 
Lowel ProLamp® illumination source, the outer body of the reflector was 
continuously ventilated with pressurized air. 

 

 
Figure 6-1: Measurement setup for laboratory reflectance measurements. 
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The illumination source was adjusted at a distance of 40 cm from the sample with an 
illumination angle of 30° off the vertical. The sensor was oriented at an angle of 90° 
to the illumination source with a viewing angle at the sample of about 10 – 15° off 
the vertical, to prevent shadows on the sample during the measurement, and a 
distance to the sample of about 5 – 6 centimeters. With the sensor orientation and 
sensor at a given sample distance, the diameter of the sensor field of view was about 
2.5 centimeters. Figure 6-1 depicts the measurement set-up. 

Prior to the measurements, the instrument was allowed to warm up for a minimum of 
60 minutes. Before the first and during the measurements at intervals of about five 
minutes, the instrument was optimized and a new white reference was taken. 

For each recorded spectrum, 64 single spectra were acquired and averaged by the 
instruments. For the dark current measurement 128 single measurements were 
averaged, for white reference measurements 64 measurements were averaged. To 
determine the number of spectra to be averaged, an experiment was conducted with 
1, 2, 4, 8, 16, 32, 64, 128, and 256 spectra of the same sample at the same viewing 
geometry being averaged for each spectrum saved. As expected, noise in the data, in 
particular at the infrared wavelengths between 2,000 nm and 2,500 nm was observed 
to decrease with an increase in the number of spectra averaged for each spectrum 
saved. However, limitations of the instrument required to set the maximum of spectra 
averaged for each spectrum averaged to 64. At higher numbers of spectra averaged, 
the instrument was experienced to return errors that necessitated a re-start of the 
instrument without the spectrum averaged being saved. 

At the beginning and at the end of each measurement series, three standard materials 
were measured and their spectra saved for measurement quality assurance, namely 
transparent Mylar film, transparent NIST 126635A plastic film, and white polyester 
NIST 126636. 

Samples of clear, translucent liquids in Petri dishes were placed on the white 
reference for the measurements. The optimization and the white reference 
measurements for these samples were conducted with an empty Duroplan Petri dish 
on the white reference to include the (weak) absorption of the Petri dish glass in the 
white reference measurement. With a liquid thickness of one millimeter, the effective 
absorption path length for the measurement was two millimeters: 1 mm sample – 
glass – white reference – glass – 1 mm sample. 

Samples of opaque materials (opaque liquids, soil samples, powdery or granular 
solids, solid material samples) were placed directly under the sensor. Optimization 
and white reference measurements prior to the spectral measurements were 
conducted with only the white reference material. 
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Each spectral measurement was documented immediately after the measurement in a 
laboratory journal using the sample description system explained above. The sample 
description was later used as the file name for each spectrum. In some cases, offset 
errors between the three detectors of the instruments (occurring at 1,000 nm and 
1,780 nm) had to be corrected using the splice correction function of the processing 
and viewing software ASD View Spec Pro®. 
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6.5 – Results and Discussion 

The spectra of organic and inorganic chemicals, dry and moist soils, soils 
contaminated with different contaminants at varying concentrations and moisture 
levels, different anthropogenic materials (plastics, paper, paint) and natural materials 
(wood, cork, bark, cotton, etc.) were interpreted with respect to specific absorption 
features. The primary objective of the interpretation was to determine whether 
specific absorption features allow for the unambiguous identification of individual 
compounds and chemical groups in remote sensing applications, as well as to 
identify similarities between contaminants and related (non-contaminant) materials, 
and to determine detection of limits in different soil types at different moisture 
levels. 

The result is a description of the possibilities and restrictions of the detection, 
detection limits and discrimination of organic contaminants in soils by means of 
imaging spectrometry remote sensing. In addition, a comprehensive spectral library 
is compiled, consisting of about 100 different chemicals (contaminants), seven 
different soils, related anthropogenic materials, and contaminated soils with twelve 
different contaminants in seven different soil types and at three moisture levels for 
remote sensing applications. 

 

Spectral characteristics of major groups of organic chemicals 

A first step in this process included an investigation of the absorption features of the 
major organic chemical classes, particularly focusing on fuel hydrocarbons. For basic 
organic compounds, like alkanes and aromatics, six wavelength regions with major 
absorption features could be identified at around 900 nm, 1,200 nm, 1,380 nm,  
1,700 nm, 2,150 nm, and 2,300 nm. Usually, the first three exhibit only weak to 
medium absorption features, while the latter three are typically strong absorption 
features. Except for in the 2,150 nm wavelength region, where only aromatics and 
not aliphatics exhibit absorption features, both aliphatics and aromatics exhibit 
absorption features in these regions. However, the absorption features of aliphatics 
and aromatics in these regions are typically distinct with respect to the minimum 
position of an absorption feature, its width (FWHM) and its intensity. For alkanes 
(aliphatic C-H-stretch), the absorption feature in the 900 nm region the minimum is 
observed between 914 nm and 930 nm wavelength. The corresponding absorption 
feature of aromatics (aryl-C-H-stretch) is shifted by about 40 – 50 nm towards 
shorter wavelengths and can be observed between 870 nm and 880 nm. The 
absorption feature of aromatics is usually more intense compared to that of aliphatics 
but sharper (smaller FWHM). Likewise, a shift towards shorter wavelengths by about 
50 – 60 nm is observed in the 1,200 nm region where aliphatics typically exhibit 
absorption features between 1,190 and 1,210 nm, and aromatics exhibit absorption 
features between 1,140 and 1,150 nm. In the 1,380 nm wavelength region, absorption 
features of aromatics are observed at both longer and shorter wavelengths than those 
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of aliphatics (at around 1,390 nm). However, because these absorption features 
overlap with the prominent, intense absorption bands of liquid water and water 
vapor. Therefore, this absorption feature is not suitable for both field spectrometry 
and remote sensing applications. 

A similar spectral behavior is observed for the strong absorption feature at around 
1,700 nm. The absorption feature minima of aromatic compounds are shifted by 
about 25 – 65 nm towards shorter wavelengths (1,670 nm – 1,700 nm) compared to 
aliphatics (around 1,725 nm). 

The strong and relatively sharp absorption feature at around 2,150 nm is observed 
only for aromatic compounds. The absorption feature at around 2,300 nm shows a 
reverse behavior with a small shift of about 10 – 20 nm towards longer wavelengths.  

Another absorption feature that is only observed for aromatics is the aromatic  
C=C-stretch absorption feature between 2,400 nm and 2,500 nm that is about 100 nm 
wide. However, this feature is often superimposed by stronger and broader aliphatic 
C-H-stretch absorption features of substituted alkyl groups or aliphatics in mixtures 
with aromatics (strong, broad absorption feature with a minimum at around 2,305 nm 
extending from 2,200 nm to well beyond 2,500 nm). 

Table 6-11 compares the absorption features of basic aliphatics (alkanes) and 
aromatics in the six wavelength regions discussed above with respect to the position 
of the absorption feature minimum, the full-width-at-half-maximum (FWHM) of the 
absorption features and its intensity (W – weak, M – medium, S – strong). 

 
Table 6-11: Characteristic differences of aromatics and aliphatics in the absorption feature wavelength 
regions. 

 

900 nm Region 1,200 nm Region 1,380 nm Region 
 Min. 

[nm] 
FWHM 

[nm] 
Inten
-sity

Min. 
[nm] 

FWHM 
[nm] 

Inten
-sity

Min. 
[nm] 

FWHM 
[nm] 

Inten
-sity

ALIPHATICS 914-
930 20-30 W 1191-

1208 20-60 M 1388-
1391 50-90 W-

M 

AROMATICS 872-
878 10-20 W-M 1139-

1148 20-80 M-S 1381-
1410 70-160 W-

M 

1,700 nm Region 2,150 nm Region 2,300nm Region 
 Min. 

[nm] 
FWHM 

[nm] 
Inten
-sity

Min. 
[nm] 

FWHM 
[nm] 

Inten
-sity

Min. 
[nm] 

FWHM 
[nm] 

Inten
-sity

ALIPHATICS 1723-
1725 90-110 M-S - - - 2300-

2309 250 S 

AROMATICS 1670-
1700 30->300 S 2140-

2180 70-80 S 2320-
2330 250 S 
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Figure 6-2 depicts the spectra of n-octane, benzene and xylene, illustrating individual 
absorption features, the shifts of common absorption features of both groups and the 
combinations of the absorption features in xylene, a monoaromatic compound 
substituted with two methyl groups (here: spectrum of a mixture of the three isomers 
ortho-, meta- and para-xylene). 

 

 
Figure 6-2: Spectra of n-octane, benzene and xylene illustrating characteristic absorption 
feature differences. 

 

While different substituted monoaromatics have been shown to be distinct in spectra 
in the 350 nm to 2,500 nm wavelength region, it has been found impossible to 
discriminate different alkanes (n-hexane, n-heptane, n-octane) in these spectra. 
However, different groups of aliphatics (alkanes, alkenes, alkynes) and many 
functional groups (alcohols, substituted chlorine, nitro-groups, and aldehydes) have 
been found to exhibit distinct absorption features that allow for the determination and 
discrimination of different functional groups. Table 6-12 summarizes the results 
obtained with respect to spectral absorption features that allow for an identification 
of structural groups of organic chemicals in 0.35 µm – 2.5 µm spectra. Figures 6-3 
and 6-4 illustrate the distinguishing absorption features of several functional and 
structural groups of organic compounds. 
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Figure 6-3: Spectra of alkanes, alkenes, and alkynes (n-octane, 1-octene, and 1-octyne, 
respectively). 

 

 
Figure 6-4: Spectral characteristics determined by functional groups (-OH, -Cl, -NO2) 
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Table 6-12: Characteristics absorption features of functional groups compared to basic organic compounds. 
Group Characteristic Absorption Features of Functional Groups Compared to Basic Compounds (Alkanes & Monoaromatics) 
C=C 

(Alkenes) • sharp, strong absorption features at 1,634 nm, 2,115 nm and 2,230 nm  

C≡C 
(Alkynes) • 1,533 nm sharp, strong absorption feature 

OH 
(Alcohols) 

• broad, intense absorption feature between 1,400-1,650 nm 
• relatively broad (FWHM 100 – 150 nm), strong absorption feature at 2,070 – 2,090 nm, in aromatic compounds (phenols) overlapping with 

2,150 nm absorption feature 

CHO 
(Aldehydes) 

• 1,390 nm alkyl-C-H absorption feature shifted towards longer wavelengths (~1,420 nm), overall reflectance decreased by ca. 5 % in the 1,420 
- 1,600 nm region compared to alkanes 

• Sharp absorption feature of medium intensity at 2,200 nm, overall reflectance decreased by approx. 10 – 15 % in the 2,000 nm to 2,250 nm 
region compared to alkanes 

CO • Weak to medium, but sharp absorption features at around 1,930 – 1,950 nm and 2,120 – 2,160 nm, in organic acids superimposed by OH-
absorption features 

Aryl-NO2 
(Explosives) 

• absorption feature doublets at 865 nm + 905 nm and at 1,130 nm + 1,185 nm 
• broad, intense absorption feature around 1,400nm, more pronounced than similar absorption feature of aliphatics and aromatics 
• C-NO2 absorption feature (1,640 – 1,690 nm) shifted towards shorter wavelengths compared to C-H absorption features (~1,700 - 1,724 nm), 

generally broader than that of C-H 

Alkyl-Cl 

• Alkyl-Cl absorption feature (1,150 nm & 1690 nm) shifted towards shorter wavelengths compared to comparable alkane C-H absorption 
features (~1,200 nm & 1,724 nm) 

• Alkyl-Cl absorption feature around 1,410 – 1,430 nm, shifted towards longer wavelengths compared to Alkyl-H (~ 1,390 nm) 
• One or more sharp absorption features (FWHM 50 – 80 nm) in the 2,200 – 2,500 nm wavelength region rather than broad absorption features 

as observed for alkanes 

Aryl-Cl 
• Aryl-Cl absorption feature (1,127-1,139 nm) shifted towards shorter wavelengths compared to Aryl-H absorption feature at 1139 nm 
• Aryl-Cl (1,660-1,667 nm) absorption feature shifted towards shorter wavelengths compared to Aryl-H absorption feature at 1,673 nm nm 
• 2,150 nm absorption feature of Aryl-Cl sharper than Aryl-H absorption feature 
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Spectral uniqueness of organic contaminants and other materials 

Also under investigation was the ability to distinguish between chemical compounds 
occurring as soil contaminants in the environment from natural and synthetic 
materials containing hydrocarbon compounds. For this purpose, the spectra of 
aliphatics and aromatics were compared to the spectra of hydrocarbon-bearing 
materials such as paper, plastics (polymers of aliphatics or aromatics), rubber, paints 
and natural materials such as wood, bark and cotton. The six wavelength regions 
around 900 nm, 1,200 nm, 1,380 nm, 1,700 nm, 2,150 nm and 2,300 nm were the 
focus of this investigation because the major characteristic absorption features of 
organic compounds in general and fuel hydrocarbons in particular are observed in 
these regions.  

As expected, plastics consisting of either aromatic or aliphatic compounds were 
found to exhibit absorption features in the same wavelength regions as liquid or solid 
aliphatics and aromatics. Usually, the absorption features of plastics were found to be 
much stronger and often also sharper than those of the chemical compounds, in 
particular in the 1,200 nm, 1,380 nm, and 1,700 nm regions. Remarkably, it was also 
observed that that the position of absorption features of plastics consisting of 
aromatic compounds were found to coincide with those of aliphatic chemical 
compounds; and the absorption features of plastics consisting of aliphatic chemical 
compounds coincided with those consisting of aromatic chemical compounds. 
Rubber types were found to behave spectrally similar to (aliphatic) plastics with 
usually somewhat lower intensities of absorption features.  

The comparison of aliphatic and aromatic compounds spectra with spectra of paper, 
cardboard, wood, bark, cork, and cotton showed that single absorption features of 
hydrocarbon-bearing compounds coincide with single absorption features of the 
chemicals. However, while some materials had some similarities with one absorption 
feature (e.g., the spectra of cork and aliphatics match at around 1,725 nm and  
2,305 nm), the overall spectra where found to be distinct and no complete or near-
complete matches of whole spectra or all major absorption features were observed. 
Usually, the absorption features of these natural materials were also found to be 
weaker but at the same time sharper than those observed for the chemical 
compounds. Generally, the hydrocarbon absorption features at around 900 nm and 
1,200 nm are observed as strong absorption features for all natural and synthetic 
materials consisting of hydrocarbons or containing large fractions of hydrocarbons. 
These absorption features do not appear in the spectra of hydrocarbon contaminated 
soils and are therefore a distinguishing feature of separate natural and synthetic 
hydrocarbon bearing materials (plastics, wood, paper, etc.) from hydrocarbon 
contaminated soils. In this context it should be noted that pure solid or liquid organic 
chemicals do exhibit similar absorption features.  

It also should be noted that a number of dark hydrocarbon-bearing materials were 
found to exhibit virtually no characteristic absorption features and only reflect a 
small fraction of the incident radiation over the whole wavelength region sampled 
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(0.38 µm – 2.5 µm), even though they were known to consist mainly of aliphatics 
and aromatics as basic compounds. This was found in particular for gray and black 
rubber materials, black plastics and dark paints. As the behavior is similar to that 
observed for pure black carbon such as graphite, coal and activated carbon, it can be 
assumed that lampblack used as a coloring agent in these materials absorbs 
electromagnetic radiation at a constant rate over the whole sampled wavelength 
region. 

Table 6-13 summarizes the findings of the comparison of contaminant spectra with 
hydrocarbon-bearing materials of anthropogenic and natural origin. 
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Table 6-13: Comparison of absorption features of natural and man-made hydrocarbon bearing materials and hydrocarbon compounds. 

900 nm Region 1,200 nm Region 1,380 nm Region 1,700 nm Region 2,150 nm Region 2,300nm Region 
 Min.

[nm]
FWHM 

[nm] 
Inten-

sity 
Min.
[nm]

FWHM
[nm] 

Inten-
sity 

Min.
[nm]

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min.
[nm]

FWHM
[nm] 

Inten-
sity 

Min.
[nm]

FWHM 
[nm] 

Inten-
sity 

ALIPHATICS 914-
930 20-30 W 

1191
-

1208
20-60 M 

1388
-

1391
50-90 W-M 

1723
-

1725 
90-110 M-S - - - 2300-

2309 250 S 

AROMATICS 872-
878 10-20 W-M 

1139
-

1148
20-80 M-S 

1381
-

1410
70-160 W-M 

1670
-

1700 
30->300 S 

2140
-

2180
70-80 S 2320-

2330 250 S 

PAPER - - - 
1200

-
1210

40 W - - - - - - - - - 2330 40-60 W-M 

PLASTICS 
ALIPHATICS 

910-
930 20-30 M 

1190
-

1210
20-60 S-M 

1390
-

1420
50-100 M-S 

1720
-

1730 
100-150 S - - - ca. 

2310 200 S 

PLASTICS 
AROMATICS 875 10-20 M 1143 20-40 W-M ca. 

1410 50-100 S-M ca. 
1680 50-150 M-S ca. 

2165 50-100 M-S ca. 
2310 100-200 S 

RUBBER - - (W) 
1200

-
1210

50-80 M 
1390

-
1420

80-100 M 
1720

-
1730 

ca. 100 M-S - - (W) ca. 
2310

100 – 
250 M-S 

ca. 
1210 50-100 W-M 

ca. 
1370

 
20-40 W ca. 

1725 50-80 W-M ca. 
2100 50-100 W-M ca. 

2303 100-200 M-S NATURAL 
MATERIALS - - M 

(cork, cotton, wood) (cotton, wood) (cork, wood) (cotton, wood) (cork, wood) 

PAINTS - - - 1190-
1220 50-70 W - - - 

1700
-

1720 
50-80 W-M ca. 

2139 50 (W) 
2264

/ 
2304

250 M-S 

W – weak (1..10 % rel. absorption), M – medium (10 .. 40 % rel. absorption), S – strong (> 40 % rel. absorption) 
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Spectral characteristics of selected soil contaminants 

The spectra of the contaminants selected for the soil contamination experiments can be 
distinguished in three major groups. The first group of fuel hydrocarbons, comprising n-
octane, diesel, kerosene, crude oil and waste oil, is dominated by aliphatic compounds. 
This becomes evident when comparing the spectrum of n-octane to those of the other 
fuel hydrocarbons. However, diesel, kerosene and crude oil seem to contain small 
fractions of aromatic hydrocarbons, which is indicated by a small absorption feature that 
appears at 2,150 nm in the spectra characteristic for aromatic hydrocarbons. The 1,200 
nm absorption feature of diesel and kerosene also exhibits a shoulder in the aliphatic C-
H-stretch overtone absorption below 1,200 nm. The position of the minimum of this 
shoulder at around 1,150 nm (i.e., shifted towards smaller wavelengths) indicates that the 
small overlapping absorption feature is caused by aromatics, probably small quantities of 
monoaromatics and/or naphthalene in these fuel hydrocarbons. The spectra of n-octane 
and the fuel hydrocarbons used for the soil contamination experiments are depicted in 
figure 6-5. 

The second group comprises xylene and naphthalene, a monoaromatic compound 
substituted with two alkyl (methyl) groups, naphthalene, a two-ring polynuclear aromatic 
hydrocarbon and 1-acetylnaphthalene, a naphthalene molecule substituted with an acetyl 
(COCH3) group. However, as discussed above, C=O groups exhibit only minor 
absorption features in spectra in the visible, near infrared and shortwave infrared 
wavelength regions and therefore resemble the spectrum of the basic compound, in this 
case naphthalene. Because of this, and because  
1-acetylnaphthalene is, in contrast to naphthalene, a liquid compound and therefore 
easier to handle, 1- acetylnaphthalene was selected for the experiments. Comparing the 
spectra of the three compounds it is obvious that xylene unites both the absorption 
features of aliphatics and aromatics. The spectrum is dominated by the aromatic 
absorption features with minima at 1,149 nm, 1,705 nm, and 2,168 nm. The aliphatic 
absorption features however, are also pronounced, with absorption feature minima at 
1,190 nm, 1,743 nm, and 2,320 nm. A shift of the aliphatic absorption features towards 
longer wavelengths (e.g., 1,725 nm  1,743 nm) is obvious. Comparing the spectra of 
the two polynuclear aromatic compounds, naphthalene and 1-acetylnaphthalene to the 
spectrum of xylene shows that the aromatic absorption features are generally shifted 
further towards shorter wavelengths in polynuclear compounds (e.g., 1,147 nm for 
xylene compared to 1,140 nm for naphthalene and  
1-acetylnaphthalene, 1,698 nm compared to 1,680 nm, and 2,168 nm compared to  
2,150 nm - 2,153 nm, respectively). Furthermore, it is observed that the absorption 
features of the solid naphthalene (clear crystals) are much stronger than the absorption 
features of the dual-pass through one millimeter of liquid  
1-acetylnaphthalene. The same effect was observed for solid phenol and liquid  
2,4-dimethylphenol (see below). The spectra of xylene, naphthalene and  
1-acetylnaphthalene are depicted in figure 6-6. 

The third group comprises aromatics that have been substituted with either only 
functional groups (-OH, -NO2, -Cl) or functional groups and alkyl rests. Namely, solid 
phenol, liquid 2,4-dimethylphenol, liquid 2,4-dinitrotoluene, and liquid  
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1,2,4-trichlorobenzene have been selected and investigated in this group. The spectra of 
these compounds are, along with the spectrum of xylene as a reference, depicted in the 
figures 6-7 and 6-8. The aliphatic and aromatic absorption features of  
2,4-dimethylphenol are almost identical with those of xylene, which is hardly surprising 
since both comprise a benzene ring with two substituted methyl groups. However, the 
aromatic absorption features of 2,4-dimethylphenol are slightly weaker than those of 
xylene, probably due to the reduced number of aryl-H-stretches (four in xylene, three in 
2,4-dimethylphenol). Additionally, 2,4-dimethylphenol exhibits two strong and broad 
absorption features with minima at 1,440 nm and 2,160 nm, covering the wavelength 
regions between 1,390 nm – 1,630 nm and 1,890 nm – 2,160 nm, respectively. The 1,390 
nm – 1,630 nm absorption feature comprises both the dominating O-H stretch absorption 
feature (first overtone) with a minimum at 1,440 nm and a weaker, unexplained 
absorption feature that expresses itself in a shoulder in the O-H stretch absorption feature 
at around 1,550 nm. The second large absorption feature between 1,890 nm and 2,160 
nm obviously also consists of two combined absorption features. Also, the 2,150 nm 
aromatic absorption feature is overlapping with this absorption feature. Solid phenol 
exhibits the same absorption features as 2,4-dimethylphenol, which are more 
pronounced. In addition, a third broad and strong absorption feature appears in the 
spectrum of solid phenol in the 1,450 nm – 1,950 nm region, fully overlapping with the 
hydrocarbon absorption feature around 1,700 nm. 

Compared to the spectrum of xylene, the major aromatic C-H absorption features in the 
spectra of both 2,4-dinitrotoluene and 1,2,4-trichlorobenzene are considerably shifted 
towards shorter wavelengths. In contrast to aromatics substituted with alkyl groups, 2,4-
dinitrotoluene absorbs electromagnetic radiation beyond 2,100 nm almost completely 
and does not exhibit the characteristic aromatic 2,150 nm absorption feature. The 1,200 
nm, 1,380 nm and 1,700 nm absorption features clearly exhibit characteristic aromatic 
absorption features. At the same time, these absorption features are stronger and broader 
than those of alkyl-substituted aromatics. Also, an increased absorption in the 1,750 nm 
to 2,100 nm region is observed while the overall shape remains similar to that of alkyl-
substituted aromatics. 1,2,4-trichlorobenzene exhibits, although only half of the 
molecules’ hydrogen atoms are substituted by chlorine atoms, sharp, single absorption 
features at 1,126 nm, 1,660 nm, 2,150 nm, 2,400 nm, and 2,435 nm. The 1,380 nm 
absorption feature is very weak. Besides the two absorption features mentioned above, 
the  
2,000 nm – 2,500 nm wavelength region comprises several sharp absorption features of 
medium strength. 

The hydrocarbon absorption features including the characteristic shifts of all selected 
contaminants for the soil contamination experiments are summarized in table 6-14 
(absorption features of basic aliphatic and aromatic compounds). The absorption features of 
the functional groups are summarized in table 6-12 (see above). 
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Figure 6-5: Spectra of aliphatics-dominated contaminants selected for the experiments. The 
circles indicate minor aromatic absorption features observed in the spectra of the fuels, hinting 
at small fractions of aromatics. 
 

 
Figure 6-6: Spectra of the aromatic contaminants selected for the experiments, namely xylene, 
naphthalene and 1-acetylnaphthalene.  
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Figure 6-7: Spectra of phenol (solid) and 2,4-dimethylphenol (liquid), selected as contaminants, 
compared to the spectrum of xylene. 

 

 
Figure 6-8: Spectra of 1,2,4-trichlorobenzene and 2,4-dinitrotoluene, also selected as 
contaminants, compared to the spectrum of xylene. 
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Table 6-14: Exact location of aliphatic and aromatic absorption features of the selected contaminants. 
900 nm Region 1200 nm Region 1380 nm Region 1700 nm Region 2150 nm Region 2300nm Region 

 Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

Min. 
[nm] 

FWHM
[nm] 

Inten-
sity 

OCT 930 20 W 1208 50 M 1390 80 M 1723 90 S - - - ~2300 250 S 

DIS 921 30 W 1196 55 M 1390 85 M 1724 100 S 2172 50 W 2309 250 S 

KER 914 25 W 1193 60 M 1391 90 M 1723 90 S 2172 30 W 2309 250 S 

CRO - - - 1191 30 W 1390 70 W 1725 110 M 2172 40 W 2309 250 S 

WO - - - 1191 20 W 1388 50 W 1724 90 M - - - ~2300 250 S 

XYL 878/ 
912 10-20 W 1147/ 

1189 80 M 1383 80 M 1698 50 S 2168 50 S 2319 > 150 S 

NAP 874 14 M 1141 35 S 1409 160 M 1680 110 S 2153 > 100 S 2362/ 
2391 250 S 

ANA 873 30 W 1140 32 M 1383 110 W 1680 60 S 2150 60 M 2270 250 S 

DMP - - - 1148/ 
1192 80 M 1440 150 M 1700 110 S 2158 > 100 S 2316 250 S 

DNT 855/ 
890 20 W 1120/ 

1176 80 M 1371 > 100 M 1647 150 S 2000 50 M 2288 300 S 

PHE 870 15 M 1136 35 S - - - 1674 > 300 S 2150 > 200 S 2200-
2500 300 S 

TCB - - - 1125 20 W - - - 1660 30 S 2150/ 
2190 25/30 S/M 2309 20 M 

W – weak (1..10 % rel. absorption), M – medium (10 .. 40 % rel. absorption), S – strong (> 40 % rel. absorption) 
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Spectral characteristics of selected soils 

The soil types selected for the soil contamination experiments can be distinguished 
into three groups: quartz-dominated sand soils, clays, and organic matter dominated 
soils. The spectra of dry and moist soils, their characteristic absorption features and 
similarities will be discussed subsequently. 

 

Dry soil spectra 

The spectra of dry soils (oven-dried at 105°C for 24hrs), depicted in figure 6-9, 
exhibit absorption features that result from the soil mineralogy, soil organic matter 
and iron content, and adsorbed, crystal water in the soil matrix that is not evaporated 
when heated to 105 °C. 

 

 
Figure 6-9: Spectra of the seven soils selected for the experiments (dried soils). 

 

The spectra of all dry and moist soils have in common that the reflectance generally 
increases throughout the visible wavelengths up to 750 nm - 1,000 nm, reaching a 
more or less flat plateau in the near infrared wavelength regions beyond 1,000 nm 
and decreasing beyond 2,200 nm towards 2,500 nm. Exceptions from this general 
spectral behavior are soils that are dominated by soil organic matter (exhibiting a 
positive slope throughout the spectrum), and pure silica sand (sea sand), which 
exhibits a positive slope beyond 2,200 nm. 
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The highest overall reflectance is observed for yellowish-white sea sand, with a 
reflectance of circa 70 % in the infrared. Fine and coarse sand, both containing some 
iron, finer materials and organic matter, show an overall reflectance between 55 % 
and 65 % in the infrared. Similarly, both clays reflect about 50 % of the incident 
radiation in the infrared with reflectance decreasing considerably beyond 2,100 nm. 
Boulder till and humic soil, both having their spectral behaviors determined by larger 
quantities of soil organic matter, show an overall increasing reflectance from the 
visible towards the shortwave infrared. The reflectance of boulder till increases from 
about 5 % at 350 nm to a maximum of 42 % at 2,140 nm, decreasing only slightly 
beyond this wavelength range. The reflectance of humic soil shows a similar 
behavior, but on a lower level, increasing from about 2 % at 300 nm to 18 % at  
2,120 nm. 

All dry soil spectra have a water absorption feature at 1,915 nm in common. The 
second important water absorption feature at 1,417 nm is evident in all dry soils 
except for sea sand. It can be assumed that only very low quantities of adsorbed or 
crystal water remained on the sea sand (pure silica) soil particles, thus only 
exhibiting the generally stronger water absorption feature at 1,915 nm. However, for 
boulder till and humic soil, the absorption feature in the 1,400 nm region is very 
weak, probably due to masking effects by dark material (soil organic matter). These 
are similar to those masking effects observed in dark plastics and rubber, where pure 
carbon reduced the overall absorption to a relatively even level while at the same 
time masking all absorption features. Fine and coarse sand and both clay types 
exhibit relatively strong water absorption features, hinting at crystal water in the 
samples. 

Mineral absorption features in the soils selected are limited to the 2,100 nm to  
2,300 nm wavelength range. The three sands (SS, fS, cS) and the two clays (Cg, Cy) 
exhibit relatively strong absorption features, all with a minimum between 2,200 nm 
and 2,210 nm.  

Clay (Cy) exhibits a characteristics absorption feature with a minimum at 2,205 nm 
and a shoulder in the same absorption feature at 2,165 nm. This absorption feature 
coincides with that of kaolinite. The absorption feature of clay granulate (Cg) has its 
minimum at 2,208 nm and a shoulder at 2,231 nm. This absorption feature coincides 
with that of montmorillonite (based on a comparison with spectral library spectra of 
clay minerals), a clay mineral known for its swelling capacity and likely to be 
utilized as cat litter. Both fine sand and coarse sand exhibit a mineral absorption 
feature with a minimum at 2,202 nm, a broader shoulder towards shorter 
wavelengths and a steeper one towards longer wavelengths. However, the absorption 
feature could not be identified uniquely but it can be assumed that small quantities 
primary and secondary clay minerals, probably muscovite and kaolinite, contribute to 
this absorption feature because both minerals have an absorption feature with a 
corresponding minimum and are likely to occur in the two soil samples. The fine 
sand sample was taken from the same gravel and clay pit as the clay (Cy), which has 
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been proven to consist mainly of kaolinite and is known to contain mica. The coarse 
sand is likely to contain muscovite because of its geologic origin. 

No mineral absorption feature is observed in the spectrum of humic soil (Hu). 
Boulder till, even though known to contain larger fractions of clay minerals besides 
quartz, primary silicate minerals and soil organic matter, exhibits only a weak, minor 
absorption feature in the 2,100 nm – 2,300 nm wavelength region. As with other 
absorption features, it must be assumed that the mineral absorption features are 
masked by the soil organic matter content. 

Except for the few absorption features (water, minerals) described above, the (dry) 
soil samples have been found to exhibit no significant absorption features that 
interfere with the characteristic absorption features of hydrocarbons. However, 
smaller shoulders in the increasing reflectance in the visible wavelength regions, in 
particular observed in coarse sand (cS), can be attributed to iron absorption features 
but can not be considered major absorption features. 

 

Moist soil spectra 

The spectra of the all soil types, two of which (coarse sand and clay), are depicted at 
different moisture levels in Figures 6-10 and 6-11 have in common that the overall 
reflectance decreases with increasing moisture content. An exception to this 
observation is the humic soil sample, which exhibits an increasing reflectance at low 
to medium moisture contents compared to the reflectance of dry samples which 
decreases with increasing moisture level.  

The two major water absorption features around 1,400 nm and 1,900 nm broaden 
with increasing moisture content. Their absorption depth also increases relative to 
overall reflectance. At high moisture contents other smaller water absorption features 
are observed to appear at around 980 nm, 1,190 nm, and 1,780 nm. Also, the 
negative slope generally observed beyond 2,200 nm increases.  

At the same time, as the moisture content increases, other absorption features (e.g., 
mineral features) in the spectra are observed to become weaker or even to be 
extinguished from the spectra completely. 
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Figure 6-10: Spectra of dry (red) and moist (green, blue, black) coarse sand samples containing 
0 %, 2 %, 4 % and 10 % moisture, respectively. 

 

 
Figure 6-11: Spectra of dry (red) and moist (green, blue) clay samples containing 0 %, 10 % and 
20 % moisture, respectively.  
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Contaminated soil experiments 

The spectra acquired of seven different soils at three different moisture levels 
contaminated with twelve different contaminants at three concentration levels were 
interpreted with respect to: 

• Detection limits in different soils at different soil moisture levels  

• Possibilities and limitations of remote sensing quantitative analysis 

• The ability to distinguish different groups of contaminants 

• The ability to distinguish hydrocarbon-contaminated soils from plastics 
(wastes) distributed on soil 

• The nature of spectral mixing of the components soil and contaminant in dry 
and moist soils 

• The influence of viewing geometry and the ability to reproduce 
measurements 

In a spectral library found on the enclosed CD-ROM and in the Excel files prepared 
for the interpretation, spectra of all measured soil contaminant concentrations can be 
found, along with spectra from the contaminants themselves, the dry and moist soils 
used for the experiments, additional potential contaminants, natural and 
anthropogenic materials exhibiting properties similar to those of the contaminants or 
contaminated soils, and a selection of spectra of contaminated media from 
contaminated sites. 

 

General observations 

The overall shape of the contaminated dry and moist soil spectra is usually 
determined by the spectrum of the respective soil sample, keeping in mind its 
particular  level of moisture. Depending on the contaminant concentration, the 
overall reflectance of the soil sample and the soil moisture content, the contaminants 
are found to more or less alter the overall reflectance of the sample and / or the 
reflectance in the region of their specific absorption features. Noise in the spectra is 
found to sharply increase with overall decrease in reflectance. In particular the 
wavelength region beyond 2,200 nm is heavily affected by noise expressing itself in 
random peaks of usually one or two and up to four percent of total reflectance. The 
noise ratio is observed to increase towards longer wavelengths. It was also found to 
be increased by increasing soil moisture contents and overall decreasing reflectance 
of soil samples, usually due to high content of organic material (“black material”). 
Noise is generally expected to increase in this wavelength region because the 
artificial illumination source used for the experiments – like the sun as the 
illumination source in remote sensing applications – emits comparably low quantities 
of energy in the wavelength regions beyond 2,000 nm (comparable to the solar 
irradiation curve, figure 3-2). The noise in this wavelength region thereby obscures 
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important absorption features of organic chemicals and fuel hydrocarbons in the 
2,300 nm and 2,400 nm wavelength region. Between 2,000 nm and 2,200 nm, noise 
is generally found to equal 0.1 % to 0.5 % of total reflectance. Noise in the other 
wavelength regions smaller than 2,000 nm is generally found to be smaller than  
0.1 % of total reflectance, except for in the case of humic soil, which exhibit an 
overall reflectance of less than 20 % and thus sharply increased noise levels (see 
figure 6-12). 

 
Figure 6-12: Absorption features of xylene at different concentrations in dry and moist sea sand. 
 

In general, liquid and solid contaminants added in increasing concentrations to soil 
samples of similar moisture contents are found to decrease the overall reflectance of 
the sample if measured under identical conditions (illumination source, viewing 
geometry). Exceptions with an unchanged or even increased overall reflectance are 
rarely observed for solid and liquid contaminants that are added to dark soil types 
(humic soil, boulder till) or clays. This is obviously due to the formation of crystals 
or oil films on the soil surfaces, which exhibit a higher reflectance than the pure soil 
sample. To quantify this effect, the total relative reflectance of spectra was measured 
at 850 nm, a wavelength region that is typically unaffected by absorption features of 
organic chemicals. Because the overall reflectance depends on viewing geometry, 
including sample orientation and sensor viewing angle, as well as the strength of the 
illumination source and other external factors, the overall change in reflectance 
caused by contaminants is not a suitable measure to detect and quantify the 
concentration of a contaminant. However, under certain circumstances it might be 
used in remote sensing applications to correlate contaminant concentration to overall 
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reflectance (see below). Tables 6-15 and 6-16 summarize and illustrate the 
reflectance observed at a wavelength of 850 nm for sea sand and clay at different 
moisture levels, contaminated with different concentrations of crude oil and diesel 
fuel, respectively. 

 
Table 6-15: Effects of crude oil contaminations of sea sand on the reflectance intensity 
(measured at 850 nm) at different moisture and contaminant concentration levels. A general, 
overall decrease in reflectance is observed. 

Contaminant 
Concentration Dry 5 % 

Moisture 
10 % 

Moisture 
0.0 % 72 % 62 % 57 % 
0.5 % 60 % 54 % 52 % 
1.0 % 54 % 48 % 46 % 
3.0 % 37 % 38 % 36 % 

 

Table 6-16: Effect of diesel fuel contaminations of clay on the reflectance intensity (measured at 
850 nm) at different moisture and contaminant concentration levels. A general, overall decrease 
in reflectance is observed.  

Contaminant 
Concentration Dry 10 % 

Moisture 
20 % 

Moisture 
0.0 % 46 % 36 % 27 % 
0.5 % 43 % 36 % 23 % 
1.0 % 41 % 34 % 22 % 
3.0 % 44 % 25 % 18 % 

 

Typically, only the medium and strong absorption features observed in pure 
contaminant spectra (see table 6-14) can also be observed in contaminated soil 
spectra. Generally, the weak 900 nm absorption feature observed in pure contaminant 
spectra is not found in contaminated soil spectra. Both the 1,200 nm and 1,380 nm 
absorption features that are observed in the spectra of aliphatic and aromatic 
contaminants are only observed in contaminated soil spectra at high contaminant 
concentrations or at medium concentrations in dry (oven-dried) contaminated soils. 
In moist contaminated soil samples, both absorption features overlap with the  
1,200 nm and 1,400 nm water absorption bands. While the 1,380 nm absorption 
feature is generally fully masked by the water absorption band, the 1,200 nm feature 
is typically found at the edges of the water absorption feature, thus being observable 
even in moist soil samples. The prominent 1,700 nm and 2,300 nm hydrocarbon 
absorption features, along with the aromatic 2,150 nm absorption feature, are the 
strongest absorption feature of organic contaminants observed in contaminated soil 
samples. Aromatic compounds are also observed to exhibit absorption features in the 
2,400 nm region that are, however, often obscured by increased noise levels in this 
wavelength region. 

The minima of contaminant absorption features are generally found to appear at the 
same wavelength (± 3 nm) as in pure contaminant spectra, i.e. the 1,700 nm feature is 
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found to appear at wavelengths smaller than 1,700 nm for aromatic compounds and 
at wavelengths larger that 1,700 nm for aliphatic compounds. This, in turn, allows for 
an identification of the contaminant group. The same observation can be made for 
the 2,300 nm absorption feature. 

The absorption feature depth is generally found to increase with increasing 
contaminant concentration in a soil sample. With increasing soil moisture, clay, and 
organic (“black”) matter content, the total depth of absorption feature caused by 
similar contaminant concentrations is found to decrease, obviously due to masking 
effects and contaminant absorption in clay minerals and organic matter. 

Aliphatic contaminants (OCT, DIS, KER, CRO, WO) and aromatic compounds that 
are substituted with alkyl groups (XYL, DNT, DMP) were found to exhibit doublet 
absorption features at both the 1,700 nm and 2,300 nm absorption features because of 
both alkyl-H (CH2 / CH3) and aryl-H stretch overtones present in the molecules. The 
intensity of the two peaks in the doublet was found to depend on the number and 
relation of alkyl-H and aryl-H present in the molecules. Aromatics that contained no 
or only minor fractions of substituted alkyl groups (NAP, ANA, PHE, TCB) were 
found to exhibit single absorption peaks in the 1,700 nm and 2,300 nm absorption 
feature regions. The 2,150 nm absorption feature was only observed for aromatic 
compounds and always appears as a single absorption feature. In soils containing 
secondary silicate minerals, the 2,150 nm aromatic absorption feature was usually 
observed to overlap with characteristic and strong absorption features of these 
minerals, thus being obscured by these dominating matrix absorption features. 
Figures 6-13 and 6-14 illustrate these effects. 

Despite the local, intense absorption features in the 2,300 nm wavelength region, all 
organic contaminants used in the experiments were found to increase the overall 
absorption in the 2,100 nm to 2,500 nm wavelength region. While the effect was 
particularly pronounced in dry soils, it was found to decrease with increasing soil 
moisture and to diminish at high soil moisture levels. The 2,300 nm absorption 
feature is also observed to diminish with increasing soil moisture and decreasing 
overall reflectance. 

While increasing contaminant concentrations were found to further increase the 
absorption in the minimum of the water absorption bands, the contaminant 
concentration was found to have no influence on the width or shape of the water 
absorption bands. However, as will be discussed later, reflectance in the water 
absorption bands in not important in remote sensing applications because of the 
impermeability of the atmosphere in these water (vapor) absorption bands. 
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Figure 6-13: Absorption features of different contaminants in dry fine sand. The absorption 
feature minima appear at the same wavelengths as for pure contaminants (subset of the 1,200 
nm – 2.500 nm wavelength region). 
 

 
Figure 6-14: Effects of soil moisture and soil type on absorption feature depths. Dry sea sand 
contaminated with n-octane (0.5%, 1.0%, 3.0%) and boulder till at different moisture levels 
(0%, 3%, 6%), contaminated with 3 % 1-acetylnaphthalene. 
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The overall detectability that will be discussed in more detail in the next paragraphs 
was found to be best in dry, sandy (quartz / primary silicate) soils and was found to 
decrease with increasing content of secondary silicate (clay) minerals, soil organic 
matter, and soil moisture. All contaminants were found to be almost undetectable in 
dry and moist humic soil (Hu) samples in the more than 150 combinations of humic 
soils with moisture and contaminants investigated. 

 

Spectral mixing behavior of soil / moisture / organic contaminant spectra 

For the following discussion addressing the detection limits of fuel hydrocarbon 
contaminations in dry and moist soils and the prospects of remote quantitative 
analysis, it is necessary to determine the spectral mixing behavior of fuel 
hydrocarbon soil contaminations and their single spectral constituents soil, water and 
hydrocarbon contaminants. As discussed in section 3, linear spectral mixing has been 
proven to be most common for geological, agricultural and urban applications, as 
well as vegetation analysis where different materials and surfaces are present in one 
pixel. Examples include spatially separated units of roofing material, pavement and 
green vegetation that might be combined in a random pixel from an urban imaging 
spectrometry scene or mixtures of soil and vegetation in an agricultural imaging 
spectrometry scene where the vegetation canopy covers the soil only partially. These 
components covering the surface area of a pixel in different proportions are linearly 
spectrally combined to form a common pixel’s spectral response. Applying linear 
spectral unmixing algorithms, these spectra can be unmixed to yield the endmember 
spectra that make up the combined pixel spectrum. To describe the linear 
composition of spectral responses to a spectrum consisting of two components, the 
following equation can be applied to both the whole spectrum and to the reflectance 
at single wavelengths: 

 

RMIX = fA × RA + (1-fA) × RB 

 

where 

RMIX – spectral response of a mixed spectrum 

fA – factor describing the abundance of material A in the pixel 

RA – spectral response of material A 

RB – spectral response of material B 

 

For fuel hydrocarbon soil contaminations, however, non-linear spectral mixing was 
expected due, on one hand to masking effects in soils with high adsorptive capacities 
such as organic soils and clays, and on the other hand to the exhibition of fuel 
hydrocarbons on soils with low adsorptive capacities (section 5). 
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This expectation is confirmed by the results of the measurements of the different 
combinations of soil, moisture, contaminant type and contaminant concentration. 
Different liquid contaminants (n-octane, xylene, diesel, crude oil) were found to 
exhibit similar absorption feature depths as shown for the examples of dry sea sand 
contaminated with different concentrations of n-octane, xylene, diesel and crude oil 
at the 1,700 nm absorption feature in Table 6-17. Minor differences in the absorption 
feature depth at similar concentrations can be attributed to different colors (e.g. dark 
crude oil, clear n-octane). This results in changes of overall reflectance and viscosity 
(e.g. viscous crude oil vs. liquid n-octane) which, in turn, results in a different 
distribution in the soil matrix. 

 

Table 6-17: Absorption feature depth (total reflectance percentage) of the 1,700 nm feature of 
different contaminants at different concentrations in an identical matrix (dry sea sand). 

 SS-00-
XX-OCT

SS-00-
XX-XYL

SS-00-
XX-DIS 

SS-00-
XX-CRO 

XX = 0.5 % 0.70 1.57 2.52 2.02 
XX = 1.0 % 4.31 3.86 4.33 3.31 
XX = 3.0 % 10.73 10.94 11.10 8.33 

 

At the same time, the absorption feature depth of similar contaminants in different 
matrices (different dry soils) was found to differ considerably as shown for the  
1,700 nm absorption feature of n-octane in four different matrices in table 6-18. 
Also, soil moisture was found to have a significant effect on the reflectance of 
similar contaminant concentrations in identical soil types with different moisture 
levels as shown in table 6-19. 

 
Table 6-18: Absorption feature depth (total reflectance percentage) of the 1,700 nm feature of n-
octane in different dry soil types. 

 SS-00-
XX-OCT

cS-00-
XX-OCT

Cy-00-
XX-OCT

BT-00-
XX-OCT 

XX = 05  0.70 0.53 0.29 0.00 
XX = 10 4.31 1.80 0.77 0.18 
XX = 30 10.73 6.79 1.56 0.84 

 

Table 6-19: Absorption feature depth (total reflectance percentage) of the 1,700 nm feature of 
crude oil in a soil sample with different moisture levels (fine sand dry and with 5 % and 10 % 
moisture, respectively). 

 fS-00-
XX-CRO

fS-05-
XX-CRO

fS-10-
XX-CRO 

XX = 05  1.90 1.20 1.05 
XX = 10 4.74 2.59 1.74 
XX = 30 8.40 6.27 4.31 
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In summary, the absorption feature depth of different contaminants in different 
matrices was found to primarily depend on soil type and soil moisture level rather 
than contaminant type. A similar behavior was found for solid contaminants. This 
behavior was found to be valid throughout the experimental series and proves that 
spectral mixing for fuel hydrocarbons in soils is non-linear. Furthermore, 
hydrocarbon concentrations were found to contribute to absorption feature intensities 
that do not equal their proportion as a constituent of the sample measured as assumed 
in linear mixing models. 

To further demonstrate the non-linear nature of spectral mixing processes of soil, 
moisture and contaminant combinations, linear mathematical combinations of the 
pure component spectra of contaminants and soils were compared to contaminated 
soil spectra according to the above equation. Figure 6-15 depicts the spectra of pure 
n-octane (dual-pass absorption through 1 mm of liquid n-octane) and dry sea sand 
together with the spectrum measured for dry sea sand contaminated with  
3 wt.% n-octane and two spectral math spectra that were calculated to model the 
spectral response of the latter through combinations of the pure sea sand and n-
octane spectra. There are two limitations to the model. First, the n-octane spectrum 
used is an absorption spectrum rather than a reflectance spectrum (which is 
impossible to obtain for a clear liquid such as n-octane except at extremely low 
temperatures). Second, there is full absorption of liquid n-octane in the pure n-octane 
spectrum beyond the 2,200 nm wavelength. Nevertheless, the results demonstrate the 
non-applicability of the linear mixing model to fuel hydrocarbon soil contaminations. 
However, the application of the dual-pass absorption feature is justified because the 
dual-pass absorption spectrum of n-octane is expected to exhibit even stronger 
absorption features than a theoretical spectrum of solid n-octane because of its larger 
optical thickness compared to a (hypothetical) solid, and because the absorption 
feature depths observed at hydrocarbon absorption features of more than 3 % at 3 % 
contaminant concentration. 

The comparison of the calculated spectra for n-octane-contaminated dry sea sand and 
the spectrum measured for n-octane-contaminated dry sea sand shows that the 
spectral mixing behavior of hydrocarbons and soils does not fulfill the paradigm of 
linear spectral mixing where components are supposed to contribute to the resulting 
spectrum according to their proportional abundance (figure 6-15). This is best 
demonstrated for the 1,726 nm absorption feature of n-octane. Linear mixtures of  
97 % dry sea sand spectrum (factor 0.97) and 3 % n-octane spectrum (factor 0.03) 
yield a spectrum (dark red line) which, as is to be expected, does not differ much 
from the spectrum of pure dry sea sand (light blue line) and is not comparable to the 
spectrum measured for dry sea sand contaminated with 3 % n-octane (green line). 
When calculating a mixed spectrum with fractions of 85 % dry sea sand (factor 0.85) 
and 15 % n-octane (factor 0.15), and multiplying this with a factor of 0.85, the 
resulting spectrum matches the spectrum measured for dry sea sand contaminated 
with 3 % of n-octane in the wavelength range between 750 nm and 2,200 nm with 
only minor deviations. In the visible (350 nm – 750 nm) and shortwave infrared 



 162

wavelength region (2,200 nm – 2,500 nm), the spectrum still does not match the 
measured spectrum. The much lower reflectance of the measured spectrum versus 
the calculated spectrum in both wavelength regions indicates that the spectral mixing 
of soil and contaminant combinations is not only non-linear, but also wavelength-
dependent. Furthermore, the doublet absorption feature observed in the spectrum 
measured for the contaminated sample appears neither in the absorption feature of 
pure n-octane nor in the spectrum of the calculated spectra due to the high absorption 
of pure n-octane in this wavelength region. 

Table 6-20 shows the absorption feature depths of the 1,726 nm absorption feature 
for the one measured and two calculated spectra for comparison. Each is compared to 
the reflectance at 1,650 nm at the shoulder of the absorption feature, which is not 
affected by the hydrocarbon concentration in the soil matrix.  

 
Table 6-20: Absorption feature depths of measured and calculated spectra for dry sea sand 
contaminated with 3.0% n-octane. 

 Reflectance @ 
1650 nm 

Reflectance @ 
1726 nm 

Delta R = 
Absorption 

feature depth 
SS-00-30 OCT 

(measured) 0.6146 0.5131 0.1015  
(10.15 %) 

SS-00-30-OCT 
(calculated 97% SS, 3%OCT) 0.7187 0.7024 0.0163 

(1.63 %) 
Calculation adapted to match the 
measure spectrum SS-00-30-OCT 0.6033 0.5175 0.858 

(8.58 %) 
 

In the case of dry sea sand and other contaminated soil samples lacking moisture and 
adsorptive capacities, the absorption features have been found to be stronger than 
expected when assuming linear mixture models (figure 6-15). The reverse effect has 
been found in soils with high adsorptive capacities and high moisture levels. In these 
samples, the absorption feature depths were found to be weaker than expected when 
assuming linear mixture models. This is demonstrated in Table 6-21 and figure 6-16 
by the example of boulder till with 3 % moisture and contaminated with 3 % xylene. 
The endmember spectra used were the spectrum of moist boulder till with a moisture 
content of 3 % and the transmittance spectrum of xylene. In this case, the best fit for 
the measured spectrum was calculated with fractions of 98 % moist boulder till 
(factor 0,98) and 2 % xylene (factor 0.02), and this combination was raised to a 
power of 1.4. The resulting spectrum matches the measured spectrum well with only 
minor deviations that occur in particular at the wavelengths of the 1,693 nm and 
2,320 nm absorption features of xylene. Again, as already observed for the sea sand 
and n-octane spectrum combinations, the 2,300 nm feature is weaker in the 
calculated spectrum compared to the measured spectrum. 
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Table 6-21: Absorption feature depths of measured and calculated spectra for moist boulder till 
contaminated with 3.0% xylene. 

 Reflectance @ 
1650 nm 

Reflectance @ 
1693 nm 

Delta R = 
Absorption 

feature depth 
BT-03-30 XYL 

(measured) 0.2579 0.2529 0.0050 
(0.5 %) 

BT-03-30 XYL 
(calculated) 0.3720 0.3656 0.0064 

(0.64 %) 
Calculation adapted to match the 
measure spectrum BT-03-30 XYL 0.2504 0.2445 0.0059 

(0.59 %) 
 

A similar behavior was found for other soil/moisture/contaminant combinations with 
each belonging to one of two major groups. Generally, contaminants in dry soils with 
low adsorptive capacities (namely sands) were found to exhibit absorption features 
that are stronger than expected when assuming linear mixing models. On the 
contrary, contaminants in moist soils and soils with high adsorptive capacities 
(namely clays and soils with high organic matter contents) were found to exhibit 
absorption features that are weaker than expected when assuming linear mixture 
models. The results thus indicate that the spectral response of organic contaminants 
depends largely on soil properties rather than contaminant properties and 
concentration. Also, spectral mixing for soil/moisture/contaminant combinations 
must be assumed to be wavelength-dependent.  
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Figure 6-15: Measured spectra of pure n-octane, dry sea sand and dry sea sand contaminated with 3% n-octane compared to calculated spectra. The 
comparison proves the non-linear mixing behavior of contaminants and soils. 
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Figure 6-16: Measured spectra of pure xylene, moist boulder till, and moist boulder till contaminated with 3% xylene compared to calculated spectra. 
The comparison proves the non-linear mixing behavior of contaminants and soils. 
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Detection limits 

For the detection of fuel hydrocarbon contaminations in soils, the detection limit is a 
crucial parameter. However, unlike in analytical chemistry where measurements are 
carried out in a controlled environment with carefully prepared calibration models 
(constant illumination and viewing geometry, diluted sample in well-described 
solute) where detection limits can be determined using standards and statistical 
analysis, the definition of a detection limit for remote sensing applications is more 
difficult.  

In remote sensing imaging spectrometry applications, the measurement environment 
is uncontrolled, with changing illumination, atmospheric effects and viewing 
geometry (that can be corrected), and hundreds to thousands of different surface 
materials with an almost infinite number of combinations of factors in single pixel 
spectra. Therefore, aside from imaging spectrometry applications over large, uniform 
areas (e.g., large, mono-cultured agriculture fields), it is impossible to develop 
universal calibration models.  

This is particularly true for the problem of detecting fuel hydrocarbon soil 
contaminations discussed here. Because of the non-linear nature of spectral mixing 
demonstrated above and the spatial variability of soils and soil properties (e.g. soil 
moisture and organic material content variations due to topography and land use 
effects), it would be necessary to develop calibration models for each soil type and 
moisture level. 

However, for the interpretation of remote sensing imaging data interpretation and the 
application of linear unmixing and spectral feature detection algorithms, it has been 
reported that, as a minimum, 3 – 5 % levels of a material in a pixel can be reliably 
detected in imaging spectrometry datasets (see above, section 3). Assuming the linear 
mixing model, it follows that in order for the absorption feature of a material or 
substance to be detected in a remote sensing dataset it must contribute at least  
3 – 5 % to the total spectrum. That is to say, the characteristic absorption features of 
the substance or material to be detected must exhibit a depth of at least 3 –5 % 
relative to the spectrum continuum.  

Accordingly, a 3 % detection limit can be defined for a contributor to a spectral 
response with respect to the qualitative detection of fuel hydrocarbon contaminants 
in soils. As shown above, two major effects can be observed in the spectra of soils 
contaminated with fuel hydrocarbons compared to uncontaminated soil samples of 
identical composition. First, a decrease in the overall reflectance of a sample is 
typically observed. Second, several characteristic absorption features appear in the 
contaminated soil spectra, most prominently the hydrocarbon absorption features 
around 1,700 nm and 2,300 nm. While an overall decrease in reflectance can result 
from different factors such as increased soil moisture or slope effects, the 1,700 nm 
and 2,300 nm absorption features have been found to be characteristic for 
hydrocarbons. Therefore, the 3 % threshold with respect to the absorption depth as a 
detection limit should be applied to these absorption features. With this detection 
limit, absorption features of fuel hydrocarbons in soil spectra can typically be 
detected visually in soil spectra. 
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To determine the detection limits of fuel hydrocarbon soil contaminations in different 
soil and moisture matrices with the 3 % absorption feature threshold, the absorption 
feature depth of the 1,700 nm and 2,300 nm (and other important absorption features 
where applicable) was determined for all spectra measured for the contaminants n-
octane, xylene, diesel, crude oil, naphthalene, and phenol. In total, the absorption 
feature depths were determined for about 400 spectra of the investigated 
soil/moisture/contaminant combinations. The absorption feature depths were 
determined by reading the reflectance at both the individual reflectance minimum of 
the absorption feature (1,725 nm in figure 6-17) and its shoulder, which was selected 
to be both on the direct shoulder of the absorption feature and also not be affected by 
the fuel hydrocarbon concentration in the sample (1,650 nm in figure 6-17). The 
reflectance at the feature minimum was then subtracted from the reflectance on the 
feature’s shoulder and normalized for the reflectance difference observed in the  
uncontaminated but otherwise identical sample spectrum. This corrected any 
differences caused by soil features. The feature depth determination and 
normalization with respect to the uncontaminated sample is illustrated for the 
example of fine sand in figure 6-17. 

 

 
Figure 6-17: Illustration showing the absorption feature depth determination and normalization 
applied to the analysis of contaminated soil sample spectra. 

 

With the defined threshold detection limit of a 3 % contribution to a spectral 
response, the detection limit also becomes dependent on the overall reflectance of a 
sample. The relative reflectance and resulting detection limits of 3 % of 
uncontaminated soil samples of various moisture levels measured in the important 
1,700 nm and 2,300 nm wavelength regions are listed in Table 6-22. The detection 
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limits, calculated in terms of reflectance percentage, show that the detection limits 
generally decrease with overall decreasing reflectance (i.e., increasing moisture 
content or increasing adsorptive capacities). Considering the above discussion of the 
spectral mixing behavior, this does not indicate that lower contaminant 
concentrations are detectable.  

 
Table 6-22: Relative reflectance of different soil samples at different moisture levels in the 
important 1,700 nm and 2,300 nm wavelength regions. The detection limit is defined as 3% of 
the relative reflectance measured at the respective wavelength. 

Moisture Wavelength  SS 
[%] 

fS 
[%] 

cS 
[%] 

Cy 
[%] 

Cg 
[%] 

BT 
[%] 

Hu 
[%] 

Reflectance 71.6 67.5 60.7 50.2 53.3 39.4 17.1 1700 nm  
Detection Limit 2.1 2.0 1.8 1.5 1.6 1.2 0.5 

Reflectance 77.3 68.2 55.8 41.5 31.3 41.4 16.3 
Dry 

2300 nm 
Detection Limit 2.3 2.0 1.7 1.2 0.9 1.2 0.5 

Reflectance 54.7 50.1 51.2 37.5 45.7 36.9 18.4 1700 nm  
Detection Limit 1.6 1.5 1.5 1.1 1.4 1.1 0.6 

Reflectance 42.4 36.9 41.5 27.9 24.2 37.2 16.5 

Moisture 
Level 1 
(M1) 2300 nm 

Detection Limit 1.3 1.1 1.2 0.8 0.7 1.1 0.5 
Reflectance 43.4 39.0 40.7 25.2 37.7 29.8 15.4 1700 nm  

Detection Limit 1.3 1.2 1.2 0.8 1.1 0.9 0.5 
Reflectance 29.4 24.4 28.5 14.9 18.4 29.3 13.3 

Moisture 
Level 2 
(M2) 2300 nm 

Detection Limit 0.9 0.7 0.9 0.4 0.6 0.9 0.4 
 

To determine the detection limits of the contaminant concentration in a given 
soil/moisture matrix, the absorption feature depths of the 1,700 nm level for different 
soil/moisture combinations contaminated with crude oil were compared to the 
detection limits calculated and listed in table 6-23. 
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Table 6-23: Detection limits of crude oil in different soil type and moisture matrices for the 
1,700 nm absorption feature. Absorption feature depths marked bold and italic are above the 
individual detection limit determined by the reflectance of the soil-moisture combination 
contaminated. 

 XX = SS XX = fS XX = cS XX = Cy XX = Cg XX = BT XX = Hu
XX-00-05-CRO 2.02 1.90 1.17 0.14 0.62 -0.01 -0.08 
XX-00-10-CRO 3.31 4.74 1.78 0.21 0.97 0.06 -0.04 
XX-00-30-CRO 8.33 8.40 4.09 0.48 2.61 0.62 0.04 

 
XX-M1-05-CRO 1.11 1.20 0.95 0.01 0.54 0.12 0.00 
XX-M1-10-CRO 1.99 2.59 1.80 0.30 0.65 0.27 0.05 
XX-M1-30-CRO 5.72 6.27 4.64 1.01 1.33 0.77 0.14 

 
XX-M2-05-CRO 0.89 1.05 0.87 0.21 0.25 0.16 0.03 
XX-M2-10-CRO 1.65 1.74 1.54 0.35 0.62 0.30 0.06 
XX-M2-30-CRO 4.31 4.31 3.94 1.04 1.29 0.90 1.16 

 

Similarly, the absorption feature depths were determined for the 2,300 nm absorption 
feature and summarized in table 6-24. However, the detection limits defined in  
table 6-24 were found to be too low because of the increased noise levels beyond 
2,200 nm discussed earlier. Instead, a minimum absorption feature depth (absolute 
reflectance) of 2 % in sand soils and 3 % in clay and organic matter soils was found 
to be necessary to detect fuel hydrocarbon contaminations using the 2,300 nm 
feature, despite increased noise levels in this wavelength range. In tables 6-23  
to 6-26, the absorption features marked bold and italic are above the detection limit. 

 
Table 6-24: Detection limits of crude oil in different soil type and moisture matrices for the 
2,300 nm absorption feature. Absorption feature depths marked bold and italic are above the 
individual detection limit determined by the reflectance of the soil-moisture combination 
contaminated. 

 XX = SS XX = fS XX = cS XX = Cy XX = Cg XX = BT XX = Hu
XX-00-05-CRO 9.96 7.71 3.40 0.58 0.85 0.18 0.05 
XX-00-10-CRO 14.67 15.23 5.65 0.57 1.55 1.45 0.36 
XX-00-30-CRO 26.12 21.24 11.89 1.41 2.90 3.05 0.37 

 
XX-M1-05-CRO 2.49 1.42 2.51 0.27 -0.05 0.29 0.72 
XX-M1-10-CRO 3.66 3.43 4.74 0.44 0.49 1.30 0.47 
XX-M1-30-CRO 10.77 7.66 8.99 2.11 1.81 2.84 1.14 

 
XX-M2-05-CRO 1.73 0.73 0.98 -0.21 0.24 0.21 -0.26 
XX-M2-10-CRO 2.79 1.62 2.79 0.82 0.30 0.49 -0.59 
XX-M2-30-CRO 6.24 3.83 5.89 0.69 0.24 3.13 -0.43 

 

The investigation of the 1,700 nm and 2,300 nm absorption features of diesel fuel 
returned similar results (table 6-25 and 6-26). 

 

 



 170

Table 6-25: Detection limits of diesel in different soil type and moisture matrices for the  
1,700 nm absorption feature. Absorption feature depths marked bold and italic are above the 
individual detection limit determined by the reflectance of the soil-moisture combination 
contaminated. 

 XX = SS XX = fS XX = cS XX = Cy XX = Cg XX = BT XX = Hu
XX-00-05-DIS 2.52 2.75 1.32 0.31 0.35 0.15 -0.01 
XX-00-10-DIS 4.33 4.92 2.32 0.40 1.70 0.21 0.00 
XX-00-30-DIS 11.20 11.26 5.46 0.98 2.65 0.95 0.17 

 
XX-M1-05-DIS 1.43 1.52 0.90 0.40 0.60 0.23 0.09 
XX-M1-10-DIS 2.48 3.52 2.33 0.39 0.93 0.43 0.07 
XX-M1-30-DIS 6.52 6.90 5.47 1.20 2.06 1.00 0.17 

 
XX-M2-05-DIS 1.08 1.08 0.85 0.13 0.55 0.19 0.06 
XX-M2-10-DIS 1.79 1.92 1.82 0.33 0.60 0.34 0.16 
XX-M2-30-DIS 4.24 3.73 3.87 1.42 1.43 0.97 0.21 

 

Table 6-26: Detection limits of diesel in different soil type and moisture matrices for the  
2,300 nm absorption feature. Absorption feature depths above the individual detection limit 
determined by the reflectance of the soil-moisture marked bold and italic combination 
contaminated. 

 XX = SS XX = fS XX = cS XX = Cy XX = Cg XX = BT XX = Hu
XX-00-05-DIS 11.53 9.39 4.38 0.16 0.52 1.10 0.76 
XX-00-10-DIS 16.72 14.61 6.96 0.91 1.81 1.73 -0.04 
XX-00-30-DIS 30.47 23.59 12.74 2.86 2.18 4.47 1.45 

  
XX-M1-05-DIS 2.76 2.51 2.64 1.59 -0.01 0.72 1.01 
XX-M1-10-DIS 4.74 14.61 5.02 1.75 0.36 1.42 0.96 
XX-M1-30-DIS 10.93 23.59 9.75 2.70 0.69 3.29 0.54 

  
XX-M2-05-DIS 2.05 2.51 1.33 -0.08 0.67 0.62 0.09 
XX-M2-10-DIS 2.83 4.92 2.85 0.21 0.25 1.46 0.47 
XX-M2-30-DIS 5.51 8.62 5.24 1.22 0.63 2.74 0.16 

 

The results show that fuel hydrocarbon contaminations in primary silicate (sand) 
soils with low adsorptive capacities can usually be detected at concentrations of more 
than 1.0 wt.% (10,000 mg/kg). Under certain circumstances, even lower 
concentrations of 0.5 wt.% (5,000 mg/kg) can be detected, particularly in dry to 
moderately moist soils. In soils with high adsorptive capacities (clays, humic soils 
and soils with increased organic and clay mineral content like boulder till), even high 
concentrations of fuel hydrocarbons can only be detected in some cases. 

In primary silicate (sand) soils, the 2,300 nm absorption feature of fuel hydrocarbons 
is generally found to be stronger than the 1,700 nm absorption feature, often allowing 
for the detection of low contaminant concentrations that cannot be detected through 
the 1,700 nm absorption feature. 

In clay soils, even contaminant concentrations as high as 3.0 wt.% were only 
detectable in some cases with no clear pattern of soil moisture dependence. Based on 
the measured absorption feature depths, it is assumed that fuel hydrocarbons in clays 
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can only be reliably detected if the concentration exceeds 5.0 wt.% (50,000 mg/kg). 
Boulder till containing both primary and secondary silicate minerals and a significant 
amount of organic matter was found to behave similar to clays. In humic soil, all 
contaminants were found to be non-detectable at concentrations of 3.0 wt.%, 
regardless of the soil moisture level. With only minor absorption feature depths even 
at this concentration level, no prediction can be made as to the concentration at 
which hydrocarbon contaminants are detectable in soils with high organic matter 
content. 
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Quantitative analysis 

Experience shows that overall reflectance and absorption feature depths are primarily 
determined by soil properties (adsorptive capacities, organic “dark” material content 
and soil moisture), not by the concentration of the hydrocarbon contaminant in the 
soil. Therefore it is obvious that quantitative analysis based on absorption feature 
depths in imaging spectrometry datasets is not possible, because the soil properties 
are usually unknown and vary within a scene (data set). 

However, for large areas of homogeneous soil types and soil properties, calibration 
models can be established, similar to those used in laboratory analytical chemistry, 
by correlating the characteristics of absorption feature depths to hydrocarbon 
contaminant concentrations determined by standard laboratory analysis. Despite 
minor differences in soil composition (iron content, small quantities of organic 
matter and clay minerals), the results obtained for the sand soils (SS, fS, cS), with 
similar absorption feature depths for similar contaminant concentrations, indicate 
that this approach may also be valid for groups of similar soils like sands or clays. 

If in an area of homogeneous soil type and properties (i.e. homogeneous marshlands 
as described for the Abadan crude oil spill in section 2), where the only variable is 
fuel hydrocarbon abundance or concentration, the detection and quantification might 
also be based on solely the overall reflectance decrease observed, rather than 
characteristic absorption features. 
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6.6 – Field samples of contaminated soils and related materials 

To verify the results of the laboratory experiments with carefully prepared 
contaminated soil samples and to assess the applicability to real contaminated sites in 
field and remote sensing applications, selected samples of contaminated soils from 
contaminated sites were investigated in laboratory and field experiments. 
Additionally, other materials were investigated that are expected to exhibit similar 
absorption features to the fuel hydrocarbon soil contaminations, particularly with 
respect to the characteristic fuel hydrocarbon absorption features. In particular, 
household wastes and plastics were included in these measurements. 

The investigated fuel hydrocarbon contaminated soils included a sample of soil taken 
from the oilfields around Baku in Azerbaijan, which was contaminated with crude 
oil, samples of soils, wood and concrete contaminated with heavy fuel oil, lubricant 
oil and diesel fuel from the site of the former glassworks Haidemühl, and a sample of 
tar-contaminated soil from the site of the former chemical processing plant in 
Cottbus. Soil samples highly contaminated with explosives (mainly trinitrotoluene) 
from the burning site of the former explosives production facilities at Torgau-Elsnig 
were also investigated. 

Materials with related or similar absorption features investigated included unsorted 
household wastes collected in Cottbus, and plastics wastes and wood chips deposited 
on the site of the former glassworks Haidemühl. 

The soil sample from Baku, Azerbaijan, was highly contaminated with crude oil, and 
therefore dark to black in color, showing an overall reflectance of about 20 % at 
maximum. A laboratory analysis of the sample confirmed a high fuel hydrocarbon 
contamination in excess of 200,000 mg/kg (20 wt.%). Both the 1,700 nm absorption 
feature and the 2,300 nm absorption feature were clearly visible in the reflectance 
spectrum with absorption feature depths of 1.87 % and 2.34 %, respectively. With a 
reflectance of 15.6 % and 11.4 % at 1,700 nm and 2,300 nm, the detection limits are 
calculated at 0.5 % and 0.4 % reflectance, respectively. Because of the intensity of 
the 1,700 nm absorption feature and the low noise level observed around 2,300 nm, 
both features can be assumed to be detectable in remote sensing imaging 
spectrometry applications. No water absorption features are observed in the sample, 
obviously due to an impregnation of the soil matrix with hydrophobic fuel 
hydrocarbons contained in high concentrations.  

Tar and fuel hydrocarbon contaminations of concrete pavements and soils at the 
former glassworks Haidemühl and the former chemical plant in Cottbus were found 
to exhibit the characteristic absorption features at 1,700 nm and 2,300 nm where a 
fuel hydrocarbon contamination could also clearly be detected by organoleptic 
means. Typically, the 1,700 nm absorption feature was found to be clearly detectable 
(visible) in these spectra although the overall relative reflectance of the spectra rarely 
exceeded 20 %. The 2,300 nm absorption feature was often obscured by noise in the 
region beyond 2,200 nm and only detectable in approximately half of the samples 
investigated. Figure 6-20 depicts a selection of spectra acquired in laboratory and 
field measurements for contaminated soil and concrete samples from contaminated 
sites. 
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Figure 6-18: Spectra of various samples of soil and concrete contaminated with fuel 
hydrocarbons collected from contaminated sites. 
 
In addition to a variety of fuel hydrocarbon contaminated samples from different 
sites, seven samples contaminated with explosives, explosives burn residues and by-
products from the production of explosives were examined. The samples were taken 
from a dump containing residues from the uncontrolled burning of explosives, 
byproducts and wastes on the peripheries of the explosives production facility at 
Torgau-Elsnig in Saxony, Germany. Here, mainly trinitrotoluene (TNT) but also 
other explosives were produced for several decades. The residues of the burning 
process were piled up in a dump that is today enclosed in a containment for 
environmental safety reasons.  

The samples consisted of dark brown to black, moderately moist soil known to 
contain large quantities of explosives and related compounds, as well as incineration 
residues (soot), which cause the dark color of the material. The explosives are not 
distributed finely in the soil. Instead, the explosives are typically found in the form of 
solid yellow particles with a diameter of one to several millimeters. The seven 
samples were taken from different locations in the dump during a sampling 
procedure in July 2004. 

The spectra of the seven samples acquired in laboratory measurements were all 
found to exhibit a low relative reflectance of less than 20 %. Also, increased noise 
levels were found in the wavelength region beyond 1,800 nm with extreme noise 
levels (up to 5 % relative reflectance differences over a wavelength range of only 
several nanometers) beyond 2,300 nm. Generally, the spectra were found to resemble 
those measured for humic soil (Hu).  
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In only one out of the seven samples investigated, could a characteristic hydrocarbon 
absorption feature (aromatic C-H) be determined, having a minimum at 1,648 nm 
and an absorption feature depth (shoulder at 1,625 nm – minimum at 1,648 nm) of 
0.36 %. A second, weaker absorption feature can be observed on the longer 
wavelength shoulder of this feature with a minimum at around 1,668 nm. A 
comparison of this absorption feature to the spectra acquired generally for chemicals 
and particularly for explosives showed that only 2,4,6-trinitrotoluene exhibits a 
similar, almost identical pattern of absorption features with minima at 1,648 nm and 
a second feature merged into the first one with a minimum at 1,672 nm. The 
absorption features of dinitrotoluene were also found to be similar. However, the 
second absorption feature of dinitrotoluene is shifted to longer wavelengths, 
appearing at around 1,680 nm. All other aromatic compounds investigated exhibit 
absorption features between 1,670 nm and 1,700 nm only, and aliphatics exhibit 
absorption features in the 1,700 nm region, generally beyond 1,700 nm. The 
spectrum of the sample in which TNT could be detected is depicted in figure 6-21, 
along with five of the other spectra of samples contaminated with explosives. 

 

 
Figure 6-19: Spectra of soil samples containing high concentrations of explosives (obviously 
TNT) and soot. The TNT is detectable in the spectrum (red circle) exhibiting the highest overall 
reflectance. 

 

Although all samples have been proven to contain high concentrations of explosives 
and related compounds, only one spectrum showed a characteristic absorption feature 
that could be related to explosives contained in the sample. This can be attributed to 
two reasons. First, all samples contain large quantities of soot (carbon black) that 
reduces the overall reflectance of the samples and masks absorption features of 
substances and materials contained in the matrix (as observed for humic soils in the 
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systematic experiments described and discussed above). This is supported by the fact 
that the explosive (TNT) was detected in the “brightest” dark brown sample while all 
other (darker) samples did not exhibit characteristic absorption features. Second, the 
explosives are, as described above, found as rather large solid particles in the soil 
matrix. Therefore, only where these particles are exhibited at the surface they can be 
detected by optical spectrometry methods that record the reflectance of a surface 
over a certain wavelength area. Based on the results obtained for the samples from 
Torgau-Elsnig it must be stated that, in general, the detection of explosives and their 
separation from other chemicals in soils is possible only where other materials do not 
mask their presence. Furthermore, a (representative) quantitative analysis for 
particulate target materials in a dominating matrix is generally impossible. 

 

Figure 6-22 depicts an average spectrum calculated from 15 single measurements 
plus two of the extreme spectra of unsorted household wastes collected in Cottbus for 
analysis by the Chair of Waste Management of the BTU Cottbus. Despite waste 
sorting efforts, household wastes still contain mainly plastics and a variety of 
decayed and partially-decayed natural organic materials (wood, food residues), plus 
smaller amounts of paper and cardboard, glass, metal and other materials 
(construction wastes, etc.). However, the main fraction is still made up by natural and 
synthetic materials consisting of or containing large fractions of various 
hydrocarbons. These hydrocarbon materials exhibit the characteristic absorption 
features in the 900 nm, 1,200 nm, 1,700 nm and 2,300 nm wavelength regions. The 
overall shape is determined by the color of the materials present, the hydrocarbon 
absorption features, and the high moisture content of the household. These major 
compounds express themselves in two strong water absorption features around  
1,400 nm and 1,900 nm and decrease overall in reflectance in the shortwave infrared 
wavelength region between 1,300 and 2,500 nm. Beyond 1,800 nm wavelength, 
noise levels are found to increase considerably in the household waste spectra. 
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Figure 6-20: Extreme (green, blue) and average (red) spectra of household wastes containing 
large quantities of plastics and organic materials and exhibiting characteristic hydrocarbon 
absorption features. 
 

The separation of household wastes, natural organic materials and plastics that 
exhibit both the characteristic 1,700 nm and 2,300 nm absorption features used to 
detect fuel hydrocarbon contaminations can be separated from the related materials 
based on the 900 nm and 1,200 nm absorption features that do not appear in 
hydrocarbon contaminated soil spectra. Rather they appear as strong absorption 
features in plastics and natural material spectra. Similarly, strong absorption features 
in the 900 nm and 1,200 nm regions in addition to the absorption features in the 
1,700 nm and 2,300 nm regions were found in field and laboratory measurements of 
plastics and plastics wastes. Although no laboratory analyses were made to correlate 
absorption feature depth and fuel hydrocarbon concentration in the contaminated 
media, the results clearly indicate that imaging spectrometry could be applied to 
detect outdoor fuel hydrocarbon contaminations provided that the contaminated area 
is large enough and the spatial resolution high enough to resolve the characteristic 
absorption features in the spectra of an imaging spectrometry dataset. The results 
also indicate that a differentiation of fuel hydrocarbon soil contaminations and other 
materials exhibiting characteristic fuel hydrocarbon absorption features is possible 
based on the overall shape of the spectra of contaminated soils compared to 
household wastes, plastics, and paints. The latter materials typically exhibit a strong 
1,200 nm hydrocarbon absorption feature that is not observed in fuel hydrocarbon 
contaminated soils.  



 178

7 – Data interpretation 
 

An imaging spectrometry dataset was investigated for hydrocarbon absorption 
features in order to verify the results of the laboratory spectroscopy investigations 
with respect to the detectability of hydrocarbon materials, hydrocarbon soil 
contaminations and the ability to decipher different hydrocarbon-bearing materials, 
and also in order to develop an algorithm for the detection and separation of different 
hydrocarbon materials and classes in imaging spectrometry datasets. 

First, the standard detection and classification methods and algorithms presented in 
section 3 were applied to the dataset for the detection of hydrocarbons. 

Second, an algorithm applying relatively simple operations was developed to detect, 
map, and separate different classes of hydrocarbons. 

Based on the results of the laboratory experiments, two principal approaches can be 
considered to detect hydrocarbons in imaging spectrometry datasets. One is based on 
the comparison of image spectra to an image-derived, non-affected reference 
spectrum. The other is based on information on the target material (hydrocarbons) 
inherent in each spectrum that contains the target material above a certain detection 
limit, that is to say, exhibits characteristic absorption features. 

The first approach is based on the observation that soil contaminations with liquid 
hydrocarbons results in a decrease of the overall reflectance with only a few 
exceptions, which can be considered irrelevant for practical applications (e.g., dark 
humic soils in which fuel hydrocarbons cannot be detected anyway). In an area with 
homogeneous surface coverage over large areas, a simple approach to detect fuel 
hydrocarbon contaminations could be to compare the image spectra to that of a 
uncontaminated reference spectrum that was selected manually. Based on a decision 
criterion, e.g., a reflectance threshold value at a certain wavelength or an average 
reflectance threshold value for the whole spectrum under investigation, a simple 0/1 
decision “contaminated” or “uncontaminated could be made. Although the approach 
requires only minimal computational resources and skills, it would only prove 
applicable where surface coverage is homogeneous over large areas and no other 
target materials with a lower reflectance (e.g., asphalt road pavements, tar roofing) or 
natural variances in vegetation cover or soil reflectance occur (e.g., due to soil 
moisture differences). The approach would even be possible without imaging 
spectrometry data, instead being applied to digital aerial photographs, be it 
panchromatic, RGB or false color infrared aerial photographs or multispectral data. 
From the examples of contaminated sites considered in section 2, this approach 
would only be applicable to the crude oil spill in a marshland near Abadan, Iran, 
where large quantities of black crude oil were distributed over large areas of 
homogeneous marshland without settlements or major infrastructure in the area. 

The second approach is based on the interpretation of characteristic differences 
observed in the response of different spectral bands for certain (target) materials. All 
data interpretation algorithms for imaging spectrometry datasets presented in  
section 2 make use of these absorption features of target materials by comparing the 
whole or only user-selected portions of all image spectra to reference (library) 
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spectra by different means (e.g., binary encoding, spectral feature fitting, spectral 
angle mapping, matched filtering, mixture tuned matched filtering, etc.).  

Considering the examples of a variety of the typical contaminated site types 
introduced in section 2 and the results of the laboratory experiments presented in 
section 6, it is obvious that, depending on the specific case, two different applications 
of imaging spectrometry for the detection or investigation of fuel hydrocarbon 
contaminated soils are possible.  

The first application case is the detection of relatively few and small areas of 
contaminated soil in a larger scene, with the targets to be detected being small-area 
hydrocarbon contaminations or deposits at the surface. Application examples include 
the filling station or the uncontrolled waste dump in Venezuela in the Rio Unare 
basin, hot spots on military brownfields like the former military training area 
Döberitzer Heide or industrial brownfields like the former glassworks Haidemühl 
and the Schwarze Pumpe industrial area. Despite several other problems that 
disallow the detection of contaminations hidden below natural or anthropogenic 
barriers (heterogeneous “chaotic” sites, shadow effects, surface sealing, or plant 
cover), the detection of small characteristic hydrocarbon features in spectra 
dominated by other materials (soil background, plant cover, etc.) is required for this 
application. The comparison of spectra to reference spectra of different mixtures of 
soils and various hydrocarbon contaminants in a spectral library has to be considered 
impossible, because the background spectrum of a hydrocarbon contamination or 
deposit can be made up of a large variety of different soils, concrete or other 
materials. In order for this to be possible, large spectral libraries containing all 
possible combinations of a huge variety of different soils, hydrocarbon contaminants 
and related materials would need to be produced. Therefore, other approaches 
focusing specifically on the characteristic absorption features of hydrocarbons must 
be developed to detect hydrocarbons and separate fuel hydrocarbon soil 
contaminations from related materials or material combinations exhibiting 
comparable spectra in imaging spectrometry datasets, e.g., plastic wastes on soil. 

The second application case is the mapping of hydrocarbon soil contaminations, 
which make up a considerable portion of an imaging spectrometry dataset and 
exhibit significant, relatively homogeneous spectral responses, including some of the 
characteristic absorption features discussed above. In these cases, one example of 
which is the crude oil production on the oilfields of the Absheron Peninsula around 
Baku, Azerbaijan (with many similar areas in the Black Sea and Caspian Sea regions 
and the Middle East), the established remote sensing data interpretation approaches 
(based on statistical methods) can be applied. Generally, as described above, these 
methods are based on user-selected or calculated classes or spectral endmembers 
having a more or less high frequency in the investigated scene (so-called image-
derived endmembers). These classes can thus be considered as a group of materials 
or spectral endmembers dominating the dataset. If fuel hydrocarbon soil 
contaminations make up a considerable part of such a dataset, the approach can 
therefore be applied to map the distribution and abundance of the contamination. 
However, it must be not be forgotton that the spectral mixture analysis and unmixing 
algorithms applied to imaging spectrometry data in these data interpretation 
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algorithms generally utilize linear mixture models, and that the spectral mixture 
behavior of fuel hydrocarbons in dry and moist soils has been proven to be non-
linear in nature (section 6).  

In the subsequent paragraphs, the dataset used for the investigations will be 
introduced, and several established data interpretation techniques will be evaluated 
with respect to the detection of fuel hydrocarbon soil contaminations. In addition, a 
method to detect and separate different classes of hydrocarbons regardless of 
background materials based on simple analysis tools will be developed.  

For data processing and interpretation, ENVI® 3.6, a widely used software package 
for remote sensing data interpretation with a focus on imaging spectrometry data, 
was used. 

 

 

7.1 – HyMap dataset military training area Döberitzer Heide 

The dataset used for the data interpretation experiments was acquired with the 
HyMap instrument during the HyEurope campaign in 1999 on behalf of the 
Geoforschungszentrum (GFZ) Potsdam, Geodesy and Remote Sensing Department, 
Remote Sensing Section, Prof. Dr. Kaufmann. The dataset kindly provided for the 
purpose of this project is a subset of about a quarter of a flightline covering urban 
Potsdam and its northern and southern surroundings. 

The subset covers the southern part of the former military training area Döberitzer 
Heide (today Natural Reserve Döberitzer Heide and Standortübungsgelände Berlin 
of the German Armed Forces) plus part of the Krampnitz barracks, the Krampnitz 
Bullenwinkel facility and the civilian areas of Krampnitz/Lehnitz Lake with the 
adjacent villages of Neu Fahrland and Krampnitz, which lie south of the former 
military training area. The former military training area Döberitzer Heide has been 
subject to a number of research projects of the Chair of Chemical Engineering and 
Hazardous Wastes of the Brandenburg University of Technology Cottbus between 
1998 and 2004. 

The aerial images were acquired on May 19, 1999 at 12.52 pm with the HyMap 
imaging spectrometer. The flight direction was north to south (heading 180.1°), the 
sun’s was azimuth 223° (west-south-west) and the sun’s zenith was 38.8° (off the 
vertical). With a flight altitude of approximately 2,570 meters and a swath width of 
62°, the scene covered is approximately three kilometers wide. The provided scene 
subset was not geo-processed. The weather conditions during the data acquisition are 
described as sunny. 

At that time, the HyMap whiskbroom scanner had the following parameters: 126 
spectral bands with a spectral resolution (bandwidth) of 10 – 20 nanometers covering 
the wavelength regions between 457 nm and 2,480 nm and a signal-to-noise ratio of 
> 1,000 : 1 [Kruse 2000a]. No data was acquired by the instrument in the area of the 
two atmospheric water vapor absorption bands between 1,346 nm and 1,431nm and 
1,802 nm and 1,967 nm, respectively. In these wavelength regions, the spectra are 
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bridged when viewed with ENVI® image processing software, connecting the 
adjacent bands of the water vapor absorption features with a straight line. 

The data were provided as both radiance and reflectance data. The radiance dataset 
comprises the original radiance values for the scene. The reflectance values were 
derived from the radiance dataset by empirical line correction. 

The scene of 512 (west – east) by 956 (north – south) pixels covers a ground area of 
approximately 3.0 kilometers by 4.8 kilometers (14.4 square kilometers). From this, 
a spatial resolution of approximately five to six meters per pixel can be calculated. 
Also, the instantaneous field of view of the sensor (IFOV) can be calculated at 
approximately two milliradians. 

 

 

7.2 – Data interpretation standard procedures 

For data interpretation use with the HyMap dataset described above, the spectral 
library containing spectra of contaminated soils at different contaminant 
concentrations and moisture levels, chemicals, man-made materials, and soils with a 
spectral resolution of one to two nanometers in about 2,200 spectral bands was 
resampled to match the spectral characteristics of the 1999 HyMap sensor (126 
bands, 10 – 20 nm spectral resolution). This was done in order to make it compatible 
with the dataset.  

 

Detection of hydrocarbons 

Among the established imaging spectrometry data interpretation tools that were 
tested with respect to their suitability for the detection and segregation of 
hydrocarbons in imaging spectrometry datasets were: 

 

• Spectral angle mapper (SAM) 

• Spectral feature fitting (SFF) and multi-range spectral feature fitting (MSFF) 

• Matched filtering (MF) and mixture tuned matchted filtering (MTMF) 

• Hydrocarbon index (HI) 

 

Several other tools, in particular linear spectral unmixing and binary encoding tools 
were not tested because they were not considered suitable detection tools based on 
the findings that a huge variety of hydrocarbon/matrix combinations might occur and 
mixture processes of fuel hydrocarbon soil contaminations are generally non-linear 
in nature. Matched filtering (MF) and mixture tuned matched filtering (MTMF) were 
tested although they apply linear spectral unmixing because they allow for spectral 
subsetting of datasets, thus focusing only on features of interest (characteristic 
absorption features). 
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The test was conducted using the HyMap dataset described above, and it was found 
to contain no fuel hydrocarbon soil contamination or pure fuel hydrocarbon spectra 
but a variety of pure and mixed plastics spectra. 

The spectral angle mapper classification tool was used to map hydrocarbon 
abundances in the scene with reference spectra of hydrocarbon materials and fuel 
hydrocarbon contaminated soil samples selected from the spectral library compiled 
from the laboratory experiments. Several trials with different spectral subsets and 
different maximum angles as class threshold values were conducted. Spectral subsets 
included trials limited to 1,000 nm – 2,500 nm to exclude color effects in the visible / 
near infrared wavelength range and trials limited to ±100 nm to the 1,700 nm and 
2,300 nm characteristic hydrocarbon absorption features. The results were found to 
return a large number of false positives if too many reference spectra were selected. 
However, a number of aliphatic and aromatic-based plastics (polyethyelene, 
polypropylene, polyvinylchloride, polystyrene) were found to be detectable when the 
number of input reference spectra was limited and the spectral angle thresholds were 
adapted. The plastic spectra detected were all situated in settlement areas and on the 
lake (boating harbors, boats). Several stationary objects detected could be verified 
despite the time span between data acquisition (1999) and interpretation (2004/5). A 
large area where polystyrene was detected coincided with a greenhouse in 
Krampnitz, while other features, mainly those of polypropylene and 
polyvinylchloride coincided with plastic canopy roofs attached to buildings. Within 
the former military training area Döberitzer Heide, no plastic spectra were detected. 
Test runs with coarse and fine sand (similar sediments to those found in the 
Döberitzer Heide where open soil is exposed) contaminated with different aliphatic 
and aromatic fuel hydrocarbons in different concentrations where found to return a 
large number of false positives of soil sparsely covered with dry vegetation (also 
known to exhibit similar, however not identical, absorption features as fuel 
hydrocarbons). 

The spectral feature fitting algorithm (also known as tetracorder algorithm) was 
applied with similar input spectra from the spectral library as for the spectral angle 
mapper. Both single spectral subsets (1,000 nm – 2,500 nm) and multiple range 
spectral subsets restricted to one to three characteristic absorption features were used 
for several tests of the spectral feature fitting algorithm. It was generally found to 
detect only relatively pure spectra of plastics, while at smaller abundances in a pixel, 
plastics were usually not detected. Furthermore, the spectral feature fitting algorithm 
was found to return a large number of false positives, in particular in the area of 
shadows and water surfaces. 

The matched filtering and mixture tuned matched filtering algorithms were also 
applied to the dataset, both applying linear unmixing to identify pure or partial 
spectra of user-selected endmembers (from either a spectral library or the image). 
With similar spectral endmembers selected from the spectral library and a spectral 
subset for the spectral range between 1,000 nm and 2,500 nm (again to exclude color 
effects in the visible wavelength range) both algorithms were found to detect only 
about half of the known abundances of plastics. However, few if any false positives 
were returned if the correct stretch was applied to the output image. 
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The application of the hydrocarbon index (see section 4 for a detailed explanation) 
as originally proposed by the inventors is generally found to be a suitable tool to map 
most hydrocarbon absorption features. However, as described in section 6, different 
hydrocarbons and plastics exhibit the 1,700 nm absorption feature at different 
wavelengths; aliphatic compounds generally beyond 1,700 nm and aromatic 
compounds (and plastics made from aromatics like polystyrene) generally at 
wavelengths shorter than 1,700 nm. Therefore, when only focused on the 1,730 nm 
aliphatic absorption feature, aromatic absorption features at wavelengths smaller than 
1,700 nm are not detected. In particular, the polystyrene roofing of the greenhouse in 
Krampnitz identified by both the spectral angle mapper and spectral feature fitting 
algorithms is not detected using the hydrocarbon index as originally proposed by the 
inventors, because it exhibits a characteristic aromatic absorption feature around 
1,670 nm. Also, wood and bark chips and some other natural organic materials are 
also found to be registered by the index. Exhibiting relatively strong absorption 
features with a minimum around 1,730 nm, ground truthing at several sites with 
corresponding absorption features in the Döberitzer Heide nature reserve (almost 
unchanged since 1999) showed that the soil surface at these sites was covered by 
wood bark chips, fine wood chips, and pine needles.  

Apart from the detection of small areas affected by hydrocarbons (whether 
contaminated soils or plastics covering the soil), it might be desirable to map 
hydrocarbon abundance in imaging spectrometry datasets where these make up a 
considerable fraction of a scene, rather than occurring as a rare material. For the 
mapping of hydrocarbon contaminations of large areas or covered at least partially 
by plastics (wastes, agricultural covers, etc.), it can be assumed that the application 
of established imaging spectrometry data interpretation methodology consisting of 
several cascaded algorithms is possible. This cascaded methodology, sometimes also 
referred to as operational hyperspectral processing, consists in the correction of the 
input dataset to yield apparent reflectance (atmospheric correction), as well as the 
calculation of a minimum noise fraction for spectral dimensionality reduction, and 
subsequently the calculation of the pixel purity index for spatial data reduction and 
the extraction of spectrally pure pixels. Spectral endmembers for the analysis are 
then selected by the user, and finally the distribution and abundance of the selected 
endmembers is mapped using one of several mapping algorithms such as the spectral 
angle mapper or mixture tuned matched filtering. The method is definitely a 
promising alternative to the detection algorithms tested above where the 
contaminants are spectrally known, occur at high concentrations, and cover large 
areas of a scene. However, it must be noted that linear spectral unmixing is generally 
a core part of this data interpretation methodology. Therefore, while allowing for a 
reliable detection of fuel hydrocarbons in high concentrations and abundances in or 
on soil, this methodology will not allow for a reliable quantification because of the 
proven non-linear spectral mixture behavior of soils and hydrocarbon contaminants. 
If applied for quantitative analysis, fuel hydrocarbon contaminations of soils with 
low adsorptive capacities are expected to be attributed too high hydrocarbon 
concentrations while fuel hydrocarbon contaminations of soils with high adsorptive 
capacities are expected to be attributed too low hydrocarbon concentrations. 
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Because the detection algorithms tested above (spectral feature fitting, mixture tuned 
matched filtering, spectral angle mapper) require a priori knowledge of the 
contaminants to be detected (spectral endmembers), they are generally not well 
suited for the detection of unknown contaminations covering small areas (hot spots). 
As considered earlier, many different combinations of various soils, hydrocarbon 
contaminants and man-made hydrocarbon materials with different spectral 
characteristics, intensities and concentrations may occur, which all cannot be known 
a priori. Therefore, a more methodological approach applying knowledge of the 
general spectral characteristics of groups of important contaminants and materials 
and their interactions with background matrices (soils) will be proposed and 
demonstrated in the subsequent paragraphs. 

 

 

7.3 – Data interpretation for the detection of fuel hydrocarbon soil 
contaminations 

Based on the results of the characteristic spectral features of different fuel 
hydrocarbon materials and related natural and synthetic hydrocarbon-bearing 
materials, and the results obtained in data interpretation tests applying established 
data interpretation tools for imaging spectrometry, the following method is proposed 
to increase the detection rates of hydrocarbons and to separate different classes of 
hydrocarbons in imaging spectrometry datasets. The method proposed is based on 
the following observations and assumptions: 

 

1. Usually, fuel hydrocarbon soil contaminations and related hydrocarbon 
materials of natural or synthetic origin make up only a minor fraction of an 
imaging spectrometry dataset.  

2. Usually, fuel hydrocarbon soil (or concrete) contaminations exposed at the 
surface (open soil) are relatively small, covering only several to few hundred 
square meters. 

3. Fuel hydrocarbon contaminated soils typically exhibit characteristic 
absorption features at around 1,700 nm and 2,300 nm, while the 1,200 nm 
absorption feature is generally weak. 

4. Plastics generally also exhibit absorption features around 1,700 nm and  
2,300 nm plus a medium to strong 1,200 nm absorption feature typically not 
found in the spectra of fuel hydrocarbon contaminated soils but also in the 
spectra of pure, basic hydrocarbon compounds. 

5. The exact minimum locations of the hydrocarbon absorption features and 
additional absorption features (apart from the carbon-hydrogen backbone) 
allow for an identification of major chemical groups (alkanes, alkenes, 
alkynes, monoaromatics, polynuclear aromatics, alcohols, etc.) or groups of 
synthetic hydrocarbon-based materials. 
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6. Established data interpretation methods including the comparison of image 
spectra to reference target spectra selected from spectral libraries or image 
scenes are found to detect only a part of the hydrocarbon bearing materials or 
contaminated soils in the scene. 

7. A huge variety of different hydrocarbon materials in different uses 
(construction/roofing material, lorry tarpaulins, commercial and household 
wastes, boats, painted surfaces, asphalts, etc.) typically occur together in an 
imaging spectrometry dataset. Contaminated soils with different hydrocarbon 
contaminants at different concentrations in different soil types are only one of 
a huge variety of similar hydrocarbon spectra to occur – if they occur in a 
dataset at all. Together, this makes the selection of a comprehensive set of 
reference spectra for data interpretation virtually impossible. 

Basically, the method proposed consists of three major steps. First: the detection of 
all natural and man-made hydrocarbon-bearing materials and hydrocarbon 
contaminations using common absorption features like the 1,700 nm and 2,300 nm 
region absorption features. Second: the separation of different classes of 
hydrocarbons and natural and synthetic materials using specific absorption features 
and shifts of absorption features of the different classes. In particular, false positives 
like plastics and natural materials (wood, certain vegetation species) can be separated 
from other hydrocarbon species using the 1,200 nm absorption feature and 
absorption feature depths of the 1,700 nm and 2,300 nm absorption features that are 
typically deeper for pure hydrocarbon materials and weaker in fuel hydrocarbon soil 
contaminations and natural organic materials. Third: the detailed analysis of the 
selected hydrocarbon spectra of interest with respect to hydrocarbon species and 
background or matrix (soil) spectra. Additional steps might be added to enhance the 
detectability (amplification of characteristic absorption features as described in 
section 6) or to perform a quantitative analysis on pixel spectra of interest if 
appropriate calibration models can be established. 

The detection was found best to be based on simple band differences between 
unaffected bands on the shoulder of characteristic absorption features and typical 
minima of characteristic hydrocarbon absorption features. These absorption features 
are similar to those used earlier for the determination of depths of hydrocarbon 
absorption features rather than spectrum matching methods or the hydrocarbon index 
introduced earlier.  

A comparison of typical spectra of natural and synthetic materials bearing 
hydrocarbons and occurring in imaging spectrometry datasets (depicted in figure 7-1) 
shows that natural materials as well as man-made materials and contaminated soils 
all exhibit hydrocarbon absorption features around 1,200 nm, 1,700 nm, and  
2,300 nm. However, depending on the material type and its basic organic 
(hydrocarbon) compounds, the absorption features are different with respect to their 
minimum position, width (FWHM), depth and the relation to neighboring bands on 
the shoulder of the hydrocarbon absorption features. Additionally, characteristic 
absorption features of some hydrocarbon classes can be observed in the 1,100 nm 
wavelength region.  
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The comparison shows that the target materials of interest in this study exhibit a 
clearly distinguishable absorption feature in the 1,700 nm wavelength region and in 
the 2,300 nm wavelength region. Considering only the 1,700 nm absorption feature, 
a very similar absorption feature with respect to minimum position and depth is 
observed for wood (both ranging from 1,718 nm – 1,730 nm, with depths of about 
5%). Differences between both materials are observed in the 1,200 nm bands, which 
show strong and broad bands for wood and weak for hydrocarbon-contaminated soil. 
Another difference lies in a 2,096 nm absorption feature that is only observed for 
wood but no other hydrocarbon-bearing material. 

For vital and dry vegetation, a 1,700 nm absorption feature with a minimum around 
1,780 nm and a depth of about 2 – 3 % is generally observed. Also, a 1,200 nm 
absorption feature is typically observed in vegetation spectra with a minimum around 
1,190 nm, a high reflectance difference compared to its left shoulder, and a low 
reflectance difference to its right shoulder.  

As discussed earlier, pure hydrocarbon materials, in particular plastics, exhibit a very 
strong 1,700 nm absorption feature plus strong 1,200 nm and 2,300 nm absorption 
features and the characteristic aromatic 2,150 nm absorption feature when aromatic 
compounds are involved. Absorption feature depths are generally in the tens of 
percents rather than single-digit percents, as observed for natural materials and 
contaminated soils where hydrocarbons make up only a minor fraction of the total 
spectrum. Unlike in vegetation spectra, where the left shoulder is typically high and 
the right shoulder low, the 1,200 nm absorption feature of plastics and other pure, 
synthetic hydrocarbons is generally found to exhibit a similar reflectance on both 
shoulders.  
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Figure 7-1: Comparison of absorption characteristics of different natural and man-made hydrocarbon-bearing materials and hydrocarbon soil contaminations.
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The differences outlined above, and described in more detailed in section 6, allow for 
the detection and differentiation of hydrocarbon abundances in imaging spectrometry 
datasets. 

To detect hydrocarbons of different chemical compositions and origins, several 
different band differences were applied to the dataset, targeting characteristic 
absorption features of the different classes of hydrocarbons. Band differences are 
defined as simple subtraction operations where the reflectance at a known 
characteristic absorption feature minimum is subtracted from the reflectance on one 
of its shoulders. When this operation is applied to an imaging spectrometry dataset 
for a known absorption feature, it is expected to return positive values for spectra in 
the dataset containing this absorption feature and negative values or values around 
zero for spectra not containing this absorption feature, thus having a negative slope 
or no slope between the two bands involved in the operation. If applied to a relative 
reflectance dataset with values ranging from 0.0 (0% relative reflectance) to  
1.0 (100 % relative reflectance), the values are generally expected to lie between –
1.0 (positive slope over the full range from 0.0 and 1.0 between the two selected 
bands) and +1.0 (negative slope over the full range from 1.0 and 0.0 between the two 
selected bands). For hydrocarbons however, the values expected are generally in the 
positive range with values between 0.03 (3 % absorption feature depth) and  
0.1 – 0.5 (10 – 50 % absorption feature depth). Of course, the absorption feature 
depth determined by this method does not take into account the hull or the slope on 
which an absorption feature is situated. It simplifies absorption feature depth to a 
simple difference between two bands rather than calculating the convex hull and 
determining the absorption depth at the minimum band compared to the hull 
(compare figure 4-1) In addition, there is no normalized absorption feature depth for 
the reference matrix or background material for slope effects, as was done in 
determining the threshold for hydrocarbon detection in soils in section 6. Such 
normalization is infeasible for an imaging spectrometry dataset comprising spectra of 
dozens to hundreds of materials in different combinations. The bands used for the 
band difference indices need to be carefully selected by the user to ensure that (as far 
as possible) only the target material exhibits a characteristic band difference (or 
absorption feature) in a given wavelength region. In the best case scenario, all other 
materials abundant in a scene will not exhibit a significant band difference between 
the two bands selected. To ensure this, the bands involved in the operation should be 
chosen to be no further apart than 100 nm to 150 nm.  

The result of a band difference applied to an imaging spectrometry dataset can be 
displayed as a color-coded image having different grayscales or colors indicating 
different absorption feature depths. Generally, values below or only slightly above 
zero should be masked out using the stretching functions available in imaging 
processing software. Histogram stretching generally should be applied such that the 
pixels of interest with band difference values higher than 3 – 10 % (0.03 – 0.10) are 
displayed color-coded according to increasing values, while pixels with lower or 
negative values (background, non target materials) are masked. 
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Band differences as outlined above where applied to different characteristic 
absorption features of hydrocarbon-bearing materials in the 1,700 nm wavelength 
region. To specifically adapt the band differences of aliphatics and different 
aromatics, the following band differences were applied covering all possible 
absorption features of natural (except green vegetation) and man-made hydrocarbon-
bearing materials: 

 

Aliphatics 1 / Wood = R(1,656 nm) – R(1,730 nm) 

Aliphatics 2 = R(1,656 nm) – R(1,718 nm) 

Aliphatics 3 = R(1,656 nm) – R(1,706 nm) 

Aromatics 1 = R(1,554 nm) – R(1,694 nm) 

Aromatics 2 = R(1,554 nm) – R(1,681 nm) 

Aromatics 3 = R(1,554 nm) – R(1,669 nm) 

 

with 

R (λ) – relative reflectance at wavelength λ 

 

The resulting output datasets contained data ranges from –0.08 to +0.16, indicating 
maximum absorption feature depths of hydrocarbon absorption features in the 
imaging spectrometry dataset of up to 16 % (in terms of simple band differences). 
For data interpretation, histogram stretching was applied to the single output datasets 
such that all pixels with calculated band differences below 4 % (0.04) were displayed 
as black (masked), the grayscale color table was applied to all absorption feature 
depths between 4 % and 8 % (0.04 – 0.08) and all absorption feature differences of 
more than 8 % (0.08) where displayed in white indicating best hits for characteristic 
hydrocarbon absorption features. Comparing the different datasets, it was found that 
the band difference datasets calculated for different wavelength regions indicated 
different pixels with hydrocarbon absorption features in the 1,700 nm wavelength 
region depending on the wavelength bands for which the difference was calculated. 
However, neighboring difference indices partially returned similar pixels with 
positive values, indicating similar absorption features. 

In order to unite the results obtained from the single band difference calculations, all 
resulting output datasets were added up to a single file in order to display all 
hydrocarbon absorption features detected in one image display. The dataset resulting 
from the addition of all single band differences comprised a data range from –0.17 to 
+0.49. Using the region of interest tools, all pixels of this dataset with a value equal 
to or larger than 0.08 (8 % relative reflectance) were selected using the band 
threshold to region of interest tool of ENVI® and displayed as pixels exhibiting a 
1,700 nm absorption feature (Figure 7-2). A total of 289 pixels of the scene were 
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found to exhibit absorption features with band differences above this threshold. If the 
threshold was increased to 0.1 (10 % relative reflectance), only 217 pixels were 
found to fulfill the criterion, if it was decreased to 0.06 (6 % relative reflectance), 
468 pixels fulfilled the criterion. With the threshold at this lower level, a larger 
number of mixed pixels (neighboring pixels to those also selected with higher 
thresholds) and a larger number of “wood” pixels were detected. Only few false 
positives were observed with the threshold at the lower level. The background image 
is a grayscale image of the 609 nm band of the HyMap dataset in figure 7-2. 

To separate the detected hydrocarbon abundances into two groups, namely 
aromatics-based and aliphatics-based materials, the three single band differences 
calculated for each group were added to yield two output datasets, one for aromatics 
(absorption feature minimum at wavelengths < 1,700 nm) and one for aliphatics 
(absorption feature minimum at wavelengths > 1,700 nm). Both groups are depicted 
in Figure 7-3, the aliphatics-based materials in red and the aromatics-based materials 
in green. The detection threshold selected for both groups was 0.04 (4 % relative 
reflectance), which was half of the threshold value selected for the sum of all six 
datasets. With this threshold, 100 pixels of the dataset were found to contain 
aliphatics-based materials, and 87 pixels were found to contain aromatics-based 
materials. 

The resulting comparison of the positive hits for hydrocarbon absorption features 
shows that the method returns few if any false positives for hydrocarbons. All 
detected hydrocarbon absorption features could be attributed to plausible ground 
targets by comparison to high-resolution aerial photographs from the years 1999 and 
2000 and ground truthing in 2004 and 2005. Most hydrocarbon absorption features, 
in particular the more intensive ones, were found in settlement areas, while for 
vegetated areas and water surfaces no significant absorption features were returned 
by the application of the band difference method. Wood shown to exhibit similar 
absorption features to soils contaminated with aliphatics in the 1,730 nm region 
returned a few areas of interest on the grounds of the former military training area 
Döberitzer Heide. Closer investigation of the spectra, however, showed that all of 
these also exhibited the 2,100 nm wood absorption feature, thus excluding them as 
fuel hydrocarbons or plastics. Ground truthing, the collection of samples and 
laboratory spectrometry of these samples confirmed these results. 
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Figure 7-2: Hydrocarbon abundances (mainly plastics and wood) detected in the HyMap dataset 
of the former military training area Döberitzer Heide from 1999. Hydrocarbon abundances are 
pixels marked red and circled for better visibility. Summation of six band differences calculated 
for the region 1,669 nm – 1,730 nm, with a minimum threshold absorption feature depth (band 
difference) of 0.08 (8 % reflectance). 
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Figure 7-3: Hydrocarbon abundances (mainly plastics and wood) detected in the HyMap dataset 
of the former military training area Döberitzer Heide from 1999 and separated in two groups: 
aliphatics (green pixels, circled green) and aromatics (red pixels, circled red). Summation of 
three band differences calculated each for the region 1,669 nm–1,694 nm and 1,706 nm–1,730 
nm, minimum threshold absorption feature depth (band difference) of 0.04 (4 % reflectance). 
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Band differences were also calculated for the 1,200 nm (plastics, pure hydrocarbons, 
vegetation), 2,100 nm (wood), 2,150 nm (aromatic hydrocarbons) and 2,300 nm 
(aliphatic and aromatic hydrocarbons) ranges in an attempt to separate the different 
classes of hydrocarbon materials. The following band differences were calculated: 

 

1,200 nm Aromatics 1 = R(1,235 nm) – R(1,148 nm) 

1,200 nm Aromatics 2 = R(1,235 nm) – R(1,133 nm) 

1,200 nm Aliphatics 1 = R(1,264 nm) – R(1,207 nm) 

1,200 nm Aliphatics 2 = R(1,264 nm) – R(1,192 nm) 

2,100 nm Wood = R(2,201 nm) – R(2,114 nm) 

2,150 nm Aromatics = R(2,004 nm) – R(2,150 nm) 

2,300 nm Hydrocarbons = R(2,219 nm) – R(2,304 nm) 

 

with 

R (λ) – relative reflectance at wavelength λ 

 

The 1,200 nm band differences were calculated by subtracting the reflectance at the 
known absorption feature minima from the reflectance at a longer wavelength, rather 
than a shorter wavelength as applied for all other calculations, because vegetation 
was found to exhibit an absorption feature in this wavelength region with a high 
shoulder on its left (shorter wavelengths) and a low shoulder on its right (longer 
wavelengths). If the 1,200 nm band difference was calculated accordingly, all 
vegetation was found to return high band difference values. If, on the other hand, the 
1,200 nm band difference was calculated using the lower shoulder as the minuend 
and the minimum as the subtrahend, vegetation was found to return low values 
around zero. However, although the sensitivity for the 1,200 nm vegetation 
absorption feature could thus be considerably reduced, the band differences 
calculated were found to be cross-sensitive to other materials with strong, continuous 
positive slopes in this wavelength region, such burnt red clays (roofing tiles). Despite 
the cross-sensitivity with respect to materials exhibiting a strong positive slope in 
this wavelength region, the 1,200 nm absorption feature was found capable of 
indicating differences between aromatic and aliphatic hydrocarbons in imaging 
spectrometry data interpretation if the investigation of this feature is restricted to 
those pixels also exhibiting a 1,700 nm or another characteristic hydrocarbon 
absorption feature. The 1,200 nm absorption features were found to be specific from 
an absorption depth (band difference) threshold of at least 0.04 – 0.05 (4 – 5 % 
relative reflectance). With these thresholds applied to the band differences, 
vegetation-related false positives were typically not found in the dataset. 
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Investigating the 1,200 nm wavelength bands of different materials in the scene by 
means of band differences, it was also found that the difference calculated for the 
bands at around 716 nm and 1,100 nm (minuends) and at around 791 nm and  
1,200 nm (subtrahends), respectively could be used to simply map areas of open soil 
and areas sparsely vegetated with dry vegetation. This or similar band differences 
could be used to restrict the area of investigation in an imaging spectrometry dataset 
to areas of open soil if the investigation is targeted at the detection of fuel 
hydrocarbon contaminated soils. The region of interest threshold tool referred to 
above could be used to subset the dataset accordingly for further investigation. 

The 2,100 nm wood and 2,150 nm aromatics absorption features were found to be 
almost inseparable by means of band difference calculations, in particular because 
both absorption features are relatively wide and therefore overlapping despite the fact 
that their minimum wavebands are 40 nm to 60 nm apart. Both band differences 
calculated were therefore found to be relatively unspecific and to contain a larger 
number of the other component with values above 0.1 in the difference calculations. 
However, despite wood and aromatic absorption features, no other materials with an 
absorption feature in this wavelength region were found to interfere in the dataset 
under investigation. Based on the laboratory spectrometry experiments, however, 
mineral absorption features of some clays are expected to interfere with these 
absorption features where they are present and exposed to the surface. Although the 
2,100 nm wood and 2,150 nm aromatic absorption features are thus found unsuitable 
with respect to the separation of different classes of hydrocarbon-bearing materials in 
the investigated imaging spectrometry dataset, both might prove a valuable tool for 
the differentiation of aliphatics and aromatics or aliphatics and wood in arid regions 
if the occurrence of one of the two and clay minerals with absorption features in the 
same region can be ruled out. 

The 2,300 nm absorption feature was also found to be sensitive to wood and some 
other natural organic materials (dry vegetation). Therefore, the 2,300 nm absorption 
feature and band differences were found unsuitable for both the detection and the 
separation of hydrocarbons. 

Figure 7-4 depicts the spectra of two hydrocarbon pixels detected and separated as 
aromatic-based and aliphatic based hydrocarbons using the 1,700 nm absorption 
features. The two spectra were selected from the image for identification. Figures 7-5 
and 7-6 show a subset of an RGB aerial photograph acquired from the location of the 
two pixels identified as hydrocarbon-bearing and a subset of the imaging 
spectrometry dataset covering the same area. Ground truthing showed that the pixels 
identified as hydrocarbon-bearing represent a greenhouse with a transparent to white 
plastics roof (identified as aromatic hydrocarbons) and beds covered with transparent 
plastic sheets (identified as aliphatic hydrocarbons). 

The greenhouse pixels identified as aromatic hydrocarbons have an absorption 
feature with a minimum at 1,669 nm (< 1,700 nm), indicating aromatic compounds 
in the material. The band difference calculated is about 0.15 (15 % relative 



 195

reflectance). The aliphatic absorption feature at the greenhouse entrance has an 
absorption minimum at 1,730 nm (> 1,700 nm), indicating aliphatic compounds. The 
absorption feature depth, calculated as band differences, is about 0.05 (5 % relative 
reflectance). 

By comparing the image spectra to laboratory spectra resampled to match the 
wavebands of the HyMap instruments, the aromatic, greenhouse pixel spectra were 
identified as polystyrene (PS). The only other plastic material exhibiting similar 
absorption feature combinations in both the 1,200 nm and 1,700 nm regions was 
found to be acrylic plastic (PMMA). Acrylic plastic could be ruled out because of a 
characteristic absorption doublet of polystyrene at 1,133 nm and 1,207 nm compared 
to a single absorption feature of acrylic plastic with its minimum at 1,177 nm to 
1,192 nm and the 1,700 nm of acrylic plastic slightly shifted towards longer 
wavelengths.  

The aliphatic pixel spectra were identified as polyethylene (PE) based on the position 
of the 1,200 nm and 1,700 nm absorption features that were found to perfectly match 
the image spectrum with respect to the absorption feature minimum positions.  

Most other pixel spectra detected as hydrocarbon spectra were also found to be 
specifically identifiable by means of manual image – library spectra comparison. 
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Figure 7-4: Color aerial image (RGB) acquired in 2000, Krampnitz village, resolution 0.5 m. 
The greenhouse and entrance, detected as aromatic and aliphatic plastic respectively, are noted. 

 

 
Figure 7-5: Subset (zoom) of the HyMap 1999 dataset (5-6 m spatial resolution) of the same 
area. Green pixels indicate aliphatic hydrocarbon features detected by the band difference 
method in the 1,700 nm region, red pixels indicate aromatic hydrocarbon features. 
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Figure 7-6: Comparison of the greenhouse (black) and greenhouse entrance (red) spectra from the imaging spectrometry dataset to the resampled laboratory 
spectra of polystyrene (dashed, black) and polyethylene (dashed, red). 
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The results show that applying simple band differences calculated by using carefully 
selected bands holds the potential for detecting hydrocarbons in imaging 
spectrometry datasets and distinguishing the two major groups, aliphatic and 
aromatic-based materials. Despite several cross-sensitivities to related materials, the 
above results also demonstrate that the proposed method particularly holds the 
potential to further differentiate classes of hydrocarbons. By applying the above 
method, i.e. using expert knowledge and visual analysis in comparing image and 
library spectra, several individual synthetic hydrocarbons were detected and 
identified in the investigated scene. In particular, the method applied was found to be 
return fewer false positives than the hydrocarbon index proposed by other authors 
because it is not only centered around a single absorption feature (1,730 nm). 

Although the method was at first used to detect hydrocarbons in the investigated 
dataset, it could also be applied to map large contaminated areas with known or 
unknown hydrocarbons as contaminants. However, in these cases, matched filtering 
or operational hyperspectral data analysis might be easier and more reliable to apply, 
requiring less manual interpretation work. 

Instead of band differences that were applied here, it would also be possible to adapt 
the hydrocarbon index (determination of continuum-removed absorption band depth) 
proposed by other authors to specifically detect different hydrocarbon classes. 
However, it might prove difficult to adapt the hydrocarbon index because it would 
require the definition of not only the minimum waveband but also the two shoulders 
of each absorption feature – which are found at different positions for different 
hydrocarbons. Therefore, band differences are simpler to apply and probably more 
reliable with respect to the approximate determination of absorption band depths. 

Although the interpretation approach demonstrated here focused on the detection and 
mapping of hydrocarbons in imaging spectrometry dataset, based on manual 
interpretation and band difference calculations, it is possible to develop a cascaded 
automatic interpretation algorithm based on this. It would however, require further 
investigations with respect to cross-sensitivities and the implementation of a process 
chain algorithm. Because of the several varieties of different hydrocarbons and 
hydrocarbon-bearing materials, each with its own spectral characteristics and infinite 
combinations in imaging spectrometry datasets, such automated algorithms should 
still require for the user to determine the absorption features of interest and 
wavebands to be analyzed. This, in turn, will require the user to understand the 
spectra of the materials he is targeting. 
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8 – Synopsis, conclusions and vision 
The subject of this study was the investigation of the applicability of imaging 
spectrometry for contaminated site investigation and particularly the detection of fuel 
hydrocarbon soil contaminations. Imaging spectrometry is defined as a remote 
sensing technique acquiring quasi-continuous reflectance spectra in the visible 
through shortwave infrared wavelength regions. Imaging spectrometry in principle 
allows for a detailed qualitative and quantitative analysis of the Earth’s surface, 
providing high spatial and spectral resolution data. With contaminated sites 
endangering important natural resources like groundwater and arable land and posing 
severe problems worldwide, the potential of imaging spectrometry for the detection 
and investigation of contaminated sites is a potential tool for investigation. 

 

General applicability of remote sensing for contaminated site investigation 

The general advantage of remote sensing methods over other methods based on field-
based data collection is that remote approaches allow for systematic surveys of large 
areas at relatively low costs and can be repeated regularly. Also, inaccessible and 
remote areas can be investigated with relatively few ground reference investigations. 
Since it provides spatial information about the surface, remote sensing methods can 
be applied to overview investigations and temporal monitoring only where relevant 
information expresses itself at the surface. Also, a suitable remote sensing detection 
system or method is required for detecting the concerned features. Thus, remote 
sensing systems provide information on the spatial distribution pattern of targets of 
interest. On the other hand, remote sensing methods have general disadvantages 
compared to ground-based methods. Since all optical remote sensing methods 
provide only information about the surface (the upper few micrometers determine the 
reflectance of a target), generally no direct information on the subsurface can be 
obtained by remote sensing methods. In some cases, indicators (e.g., vegetation 
stress, altered geology) might allow to correlate surface observations to subsurface 
properties. In most cases, however, contaminated sites are found on industrial and 
military brownfields and are usually connected to or covered by infrastructure 
installations or vegetation. Impermeable surfaces (traffic infrastructure), buildings, 
installations and shadowing effects caused by these, along with regrowth of plant 
cover on brownfields after years of lying fallow, prevent direct optical remote 
sensing access to contaminations. Other sites, in particular military training areas as 
an important type of military brownfields, are often highly complex and diversified 
with respect to their surface structure. Here, typically large areas are covered by 
vegetation, making them inaccessible to direct remote sensing investigation. In 
addition to these challenges, hot spots of contaminated soil are typically small, 
covering only a few tens of square meters. Therefore, remote sensing methods are 
best applied to contaminated site detection and investigation where targets 
(contaminated soils, waste deposits, mining wastes, etc.) are expected to be directly 
exposed at the surface.  
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Two basic application cases are under consideration. First, the detection of unknown 
contaminations or wastes deposits, and second, the mapping of known 
contaminations with known contaminants. Detection applications typically include 
imaging spectrometry surveys of larger areas and the application of detection 
algorithms to locate and identify hydrocarbon abundances of different types. 
Mapping applications would typically include imaging spectrometry surveys of an 
area of interest and an investigation of the abundance of one or more specific 
hydrocarbon species. 

Since only surface information is provided, generally only those elements exposed at 
the surface of a contamination or waste deposits, can be detected, given they exhibit 
characteristic absorption features. This method is not applicable to the direct 
detection or mapping of inorganic contaminants (heavy metals, salts, nutrients, etc.) 
or other hazards found on some sites (e.g., unexploded ordnance on military sites and 
battlefields). For this reason, remote sensing and particularly imaging spectrometry 
can only be one of several tools used to detect, map and investigate hot spots of 
certain contaminations and wastes. Remote sensing methods in general do not hold 
the potential for comprehensive site investigation. 

 

Spectral characteristics of fuel hydrocarbons 

In laboratory investigations conducted with different classes of hydrocarbons, 
including basic organic compounds, substituted compounds, and commercial (fuel) 
hydrocarbon products, it has been shown that optical spectrometry in the visible 
through mid infrared spectrum (0.4 µm – 2.5 µm) allows for the identification of 
different groups of hydrocarbons. Above all, the differentiation between aliphatics 
and aromatics is possible and also a number of functional groups can be identified. 
Hydrocarbon absorption features were identified in the 900 nm, 1,200 nm, 1,380 nm, 
1,700 nm, 2,150 nm and 2,300 nm wavelength regions. In general, absorption 
features were found to be strong and wide at longer wavelengths and to decrease in 
both intensity and width towards smaller wavelengths.  

Considering remote sensing applications with respect to the detection and 
quantification of hydrocarbons in imaging spectrometry datasets, it was found that 
the 900 nm absorption feature is usually too weak to be utilized. However, for some 
synthetic hydrocarbon materials (plastics) this feature could play a role in 
identification. The 1,200 nm absorption feature is generally of medium to strong 
intensity in pure hydrocarbon compounds and hydrocarbon-based synthetic materials 
but very weak where hydrocarbons make up only a minor fraction. It was therefore 
found to play a particular role for the detection and identification of plastics and the 
differentiation of plastics from fuel hydrocarbon soil contaminations. The 1,380 nm 
absorption feature generally plays no role in remote sensing applications because it 
overlaps with the strong 1,400 nm atmospheric water vapor absorption band that 
prevents remote sensing in this wavelength region. The 1,700 nm absorption feature 
was found to be a characteristic and specific absorption feature for hydrocarbons. It 
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was not found to overlap with major absorption features of non-hydrocarbon 
materials.  

The 2,150 nm (only aromatic) and 2,300 nm absorption features were found to be 
typically strong. However, both features might be found to overlap with major 
mineral absorption features (mainly of clays). Also, the data acquired in this region 
by imaging spectrometers might exhibit elevated noise levels, depending on 
sampling duration (dwell time) and bandwidth.  

 

Ability to differentiate between different hydrocarbon classes 

The experiments conducted showed that different classes and groups of basic 
hydrocarbon compounds (both pure and as contaminants in soils), man-made 
materials consisting of or containing hydrocarbons (plastics, paints, paper, cardboard, 
etc.) and natural hydrocarbon-bearing materials (wood, dry plant material, etc.) can 
be distinguished in reflectance spectra in the 0.4 µm to 2.5 µm wavelength region 
although different materials might exhibit similar absorption characteristics for single 
absorption features. Comparing two or more different absorption features based on 
minimum position, width, and depth, it was found that all hydrocarbon-bearing 
materials can be differentiated. 

In particular it was found that aromatics and aliphatics and materials composed of 
either aromatics or aliphatics can be easily differentiated in imaging spectrometry 
datasets.  

For the 1,200 nm and 1,700 nm absorption features it was found that aliphatic 
compounds tend to exhibit absorption features at longer wavelengths than aromatic 
absorption features. This was similarly observed for the other absorption features 
mentioned but not as evident as for these two absorption features. 

Plastics were found to exhibit characteristic absorption features, which allow them to 
be differentiated from other targets (natural materials, hydrocarbon soil 
contaminations). Imaging spectrometry can also be used to detect and map 
uncontrolled waste deposits because plastics make up a major fraction of all 
household and commercial wastes disposed off. 

 

Detectability and detection limits of fuel hydrocarbon soil contaminations 

Experiments were conducted with twelve different organic contaminants (fuel 
hydrocarbons, monoaromatics and polynuclear aromatics, aliphatics, phenols, 
explosives, chlorinated aromatics) at three concentration levels (0.5 wt.%, 1.0 wt.%, 
3.0 wt.%) in seven different soils (sands, clays, organic soils) at three moisture levels 
(0 % - max. 30 %, individual levels depending on the soil type). It was found that the 
detectability and the detection limit largely depends on the soil type and soil 
properties, in particular soil moisture, clay content, particle size, and organic matter 
content, and not on spectral characteristics of the contaminant and its concentration. 
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In laboratory investigations, different hydrocarbon contaminants were found to 
exhibit similar absorption feature characteristics in similar soil samples at similar 
concentrations. Absorption feature depths at identical contaminant concentrations in 
identical soil samples were found to sharply decrease with increasing soil moisture. 
Similarly, absorption feature depths were found to sharply increase with increasing 
contaminant concentrations in identical soil samples with identical soil moisture 
levels.  

Generally, it was found in the laboratory investigations that hydrocarbon soil 
contaminations can be detected if the absorption feature depth is at minimum 3 % of 
the absolute reflectance at the absorption feature wavelength position. Because of 
this requirement, only the relatively strong 1,700 nm and 2,300 nm absorption 
features of fuel hydrocarbons are suitable for detection purposes in soil matrices. 

While the detectability in primary silicate mineral soils (sand) was found to be good, 
the detectability in secondary silicate mineral (clay) and organic soils (humic soil, 
boulder till) was found to be generally poor. In sand soils, fuel hydrocarbon 
concentrations of 1.0 wt.% (10,000 mg/kg) were generally detectable using the  
1,700 nm absorption feature, regardless of soil moisture levels. When using the  
2,300 nm absorption feature, even the 0.5 wt.% (5,000 mg/kg) concentration was 
found to be detectable in most cases. 

In clay soils, even contaminant concentrations as high as 3.0 wt.% were only 
detectable in some cases with no clear pattern with respect to soil moisture 
dependence. Based on the absorption feature depths measured, it is assumed that fuel 
hydrocarbons in clays can only be reliably detected if the concentration exceeds  
5.0 wt.% (50,000 mg/kg). Boulder till containing both primary and secondary silicate 
minerals and a significant amount of organic matter was found to behave similar to 
clays. In humic soil, all contaminants were found to be typically non-detectable at 
concentrations of 3.0 wt.% regardless of the soil moisture level. With only minor 
absorption feature depths even at this concentration level, no prediction can be made 
of the concentration at which hydrocarbon contaminants are detectable in soils with 
high organic matter content.  

 

Imaging spectrometry quantitative analysis of soil contaminations 

The experiments conducted proved that fuel hydrocarbons in dry and moist soil 
samples generally exhibit a non-linear spectral mixing behavior. Therefore, linear 
mixing models widely used for imaging spectrometry data unmixing and quantitative 
analysis cannot be applied to fuel hydrocarbon contaminated soil spectra.  

However, if larger areas with identical or similar soil types (with respect to soil 
composition and soil properties) are to be investigated for fuel hydrocarbon 
contaminations, calibration models could be developed to enable quantitative 
analysis of fuel hydrocarbon concentrations in soils.  
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Linear mixing models are applicable only if surfaces covered with pure, non-
transparent hydrocarbons contribute to larger pixel spectra also comprised of other 
surface materials or where plastics (wastes) occur together with other materials that 
contribute to a common pixel spectrum.  

 

Remote sensing implications 

Considering the traits of the major characteristic absorption features concerning the 
detection of hydrocarbons as contaminants in soils and as pure hydrocarbon 
materials, the following requirements for remote sensing applications with respect to 
instrumentation and data acquisition parameters can be defined: 

 

• Because hot spots of fuel hydrocarbon soil contaminations are typically 
small, and cover only a few to tens of square meters, spatial resolution of 
imaging spectrometry data acquired for their detection should be high, i.e. 
two or three meters per pixel. The higher the spatial resolution, the purer the 
pixel spectra, the lower the spatial resolution, the more spectral endmembers 
are typically combined in a pixel spectrum. This is particularly true for 
complex, diversified surface structures of contaminated sites. 

• The absorption feature widths (FWHM) in the spectral regions up to  
1,700 nm are often between ten and a few tens of nanometers. Therefore, the 
spectral resolution (FWHM bandwidth) of instruments used for data 
acquisition should be five nanometers in order to ensure a minimum of two, 
but more favorably five bands to cover a single absorption feature and 
determine the minimum position with a deviation of ± 5 nm. This is required 
due to specific absorption band positions of different hydrocarbon 
compounds and materials (aliphatics, aromatics, etc.). With absorption 
feature widths of 50 nm up to 250 nm in the wavelength regions beyond 
1,700 nm, the minimum spectral resolution in this region should be ten 
nanometers.  

• Because the visible wavebands do not contain important information about 
hydrocarbons, it is not necessary to cover this wavelength region with the full 
spectral resolution. A few bands to provide reference imagery (PAN, RGB, 
CIR) for the analysis will be sufficient. If, however, vegetation absorption 
features in this wavelength region (vitality, chlorophyll absorption, red edge, 
etc.) or soil color are of interest, this wavelength region should be covered 
spectrally. 

• Radiometric resolution and signal-to-noise ratio should be as high as possible 
to ensure the detectability of low contaminant concentrations at wavelengths 
beyond 2,000 nm and to allow for the amplification as proposed. However, 
due to restrictions of the illumination source in remote sensing, atmospheric 
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interferences and thus the uncontrolled environment in which the method is 
applied, measurements cannot be repeated indefinitely like in analytical 
laboratory chemistry to eliminate noise. Due to the nature of remote sensing, 
the dwell time for each pixel is limited and noise in the data cannot always be 
prevented or eliminated. Increasing bandwidths and thus the wavelength 
region over which radiation is integrated during data acquisition in a single 
band may also be helpful in reducing noise in the data, particularly at longer 
wavelengths. However, the negative correlation of spatial resolution and 
radiometric resolution and signal-to-noise ratio requiring trade-offs have to be 
observed. 

 

Data interpretation for hydrocarbon detection, mapping and separation 

Established data interpretation approaches for imaging spectrometry data 
interpretation, such as spectral angle mapper, matched filtering, mixture tuned 
matched filtering, and spectral feature fitting were found to be unsuitable in detecting 
fuel hydrocarbon abundances in imaging spectrometry datasets. This is due to the 
huge variety of hydrocarbons exhibiting different specific absorption features with 
shifts of up to 100 nm for a single feature, depending on the chemical characteristics 
(aromatic, aliphatic, etc.), and because hydrocarbons typically make up only a minor 
fraction of the materials present in the datasets. It is therefore impossible to 
determine and select all relevant endmembers for these analysis approaches from 
spectral libraries. Also, the hydrocarbon index developed for the 1,730 nm aliphatic 
absorption feature was found to detect only a fraction of the many synthetic 
hydrocarbons present in a scene. It also returned a considerable number of false 
positives (vegetation, wood). 

As an alternative, a data interpretation approach was developed, which applied 
several different simple band ratios with carefully selected bands at the expected 
absorption feature minimum and on of the shoulders of the major characteristic 
hydrocarbon absorption feature around 1,700 nm. When this method was applied to 
an imaging spectrometry dataset containing a number of hydrocarbon spectra 
(plastics), the method was found to correctly detect the abundance of synthetic 
hydrocarbons. By using characteristic shifts around the 1,700 nm absorption feature, 
this method also allowed for the differentiation of aromatic and aliphatic 
hydrocarbons. It also clearly limited the number of false positives when the detection 
threshold was reduced to a minimum of 3 – 4 % absolute reflectance. 

This method was also shown to allow for the differentiation of different classes of 
natural and man-made hydrocarbon-bearing materials when other absorption 
features, in particular those around 1,200 nm and 2,150 nm, are included in the 
analysis.  
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Applicability to contaminated site types 

The results obtained in the laboratory and data analysis experiments have clearly 
demonstrated that imaging spectrometry can detect organic contamination in soils, 
well justifying further investigation and development of field methods for detection. 
Considering the examples of contaminated sites introduced in section 2, this means 
that the uncontrolled waste dumps in the Rio Unare Basin in Venezuela, hydrocarbon 
soil contaminations observed at the diesel filling station (also in the Rio Unare Basin 
in Venezuela), and the soil contaminations at the Mingecevir fuel depot in 
Azerbaijan could all be detected by imaging spectrometry. In the latter case, soil 
color changes caused by the oxidation of iron in soil due to leakages of nitric acid 
could also be detected by analyzing the visible wavelength region of an imaging 
spectrometry dataset and comparison to unaffected, neighboring soil pixel spectra. A 
more detailed investigation apart from the detection is infeasible, due to the small 
size of these contaminated sites. 

Imaging spectrometry can also be considered a feasible option for the detection, 
mapping, and investigation of large contaminated sites, in particular large mining 
dumps where organic wastes are also disposed, and the contamination of large areas 
from spills during production and transportation of crude oil. The large mining 
dumps in the manganese-producing district of Ordshonikidse in the Ukraine, the 
contamination of several hundred square kilometers of open soil with crude oil from 
oil production on the Absheron Peninsula in Azerbaijan, and the pollution of a 
marshland with crude oil after the destruction of a pipeline during the Iran-Iraq war 
near Abadan in southern Iran, as introduced in section 2, all fall in this category. For 
these large, homogeneous areas, quantitative analysis can be considered a feasible 
option as calibration models could be established for large areas of a similar matrix 
(soil) contaminated with one or few different contaminants. 

Imaging spectrometry should not be considered for the detection and investigation of 
soil contaminations at industrial brownfields where large areas are covered with 
buildings, plants, and traffic infrastructure or are hidden in the shadow of 
installations and buildings. Although soil and groundwater contaminations are 
frequently observed at these sites, they are typically covered and not exposed at the 
surface. Although a few points of interest could be detectable if exposed at the 
surface, it must be assumed that the vast majority is not detectable by remote sensing 
methods. Imaging spectrometry – along with other remote sensing techniques – has 
therefore been deemed inapplicable to industrial brownfields like the former 
glassworks Haidemühl or the Schwarze Pumpe industrial facility introduced in 
section 2. 

Similarly, the applicability to sites of buried wastes or sites with large fractions 
covered by vegetation is limited. The uncontrolled waste burials near Groß Pinnow 
or the former military training area Döberitzer Heide in Brandenburg fall into this 
category. Here, soil contaminations are typically not directly detectable because the 
soils are covered by vegetation. Apart from the direct detection of contaminants in 
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soils, however, the use of imaging spectrometry data can aid in the location of 
vegetation stress indicators. 

Because soil moisture and vegetation cover limit the detection of fuel hydrocarbons 
in soils, the applicability in general must be assumed better in arid and semiarid 
regions, where both factors have limited influence and do not interfere as much as in 
humid and temperate climate regions. The higher solar radiance and the lower 
atmospheric interferences (due to lower atmospheric water vapor concentrations) 
also allow for higher signal-to-noise ratios and better detectability of concerned 
targets in these regions.  

 

Vision 

Based on laboratory results, imaging spectrometry could be applied immediately to 
(1) the detection, mapping and quantification fuel hydrocarbon contaminations in soil 
or surface area in regions where crude oil is produced (e.g., Middle East, Caspian 
Sea Region, Siberia, Northeastern Venezuela) and (2) to the detection and mapping 
of locations of uncontrolled waste dumping found at the surface in virtually every 
region of the world.  

Similarly, the use of portable field spectrometers could be applied in the detection 
and identification of organic soil contaminants during overview site investigations in 
order to identify hot spots for further investigation.  

With further research on the effects of different organic and inorganic contaminants 
on vegetation (short and long-term vegetation stress, species shifts, etc.) the 
application of imaging spectrometry for contaminated site detection could be 
extended to areas covered by vegetation and thus to humid and temperate climate 
regions.  

With further research and development into the automated analysis of imaging 
spectrometry datasets for (environmental) features of interest, imaging spectrometry 
could also be applied toward continuous monitoring of the environment with 
repeated, regular imaging spectrometry data acquisition. Applications could include 
the detection of soil contaminations, waste deposits, general environmental damage 
assessment, vegetation pest infestation, and others for environmental management 
and law enforcement. The applicability and results could be considerably enhanced if 
imaging spectrometry data is fused with data of other remote sensing methods 
(thermal imaging, airborne laser scanning, high resolution digital aerial 
photography). With the automation of analysis methods, real-time (in-flight, on-
board) environmental monitoring and mapping would become feasible.  
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Future research topics 

Based on the results and the vision for future applications of imaging spectrometry, 
the following topics for future research are identified: 

• Development of a full scale field method of imaging spectrometry data 
collection and analysis for the detection of organic contaminants in soils. 

• Development of an automatic (programmed) detection and separation 
algorithm for hydrocarbons in imaging spectrometry datasets based on the 
band difference data interpretation method proposed.  

• Investigation of the effects of organic and inorganic contaminants on 
vegetation (short and long-term vegetation stress, species shifts, indicator 
species, insensitivity of certain vegetation species to certain contaminants or 
concentration levels, responses of different plant species to similar 
contaminants, etc.). 

• Fusion and combined interpretation of imaging spectrometry data with other 
remote sensing data, in particular airborne laser scanning data, thermal 
imaging data, high-resolution digital aerial photography. 

• Application of self-training neural networks as a promising data interpretation 
tool to detect, differentiate, and identify fuel hydrocarbon contaminants in 
soils, synthetic hydrocarbon materials and natural hydrocarbon-bearing 
materials. 

• Investigation of spectra of fuel hydrocarbon contaminants spectra, synthetic 
hydrocarbon materials, and natural hydrocarbon-bearing materials in the  
3 µm – 5 µm wavelength region (thermal infrared I), where hydrocarbons 
typically exhibit their fundamental vibrations, which allow for better 
identification and analysis. Imaging spectrometry in this wavelength region is 
already applied to identify and map silicate minerals that do not exhibit 
absorption features in the 0.4 µm to 2.5 µm wavelength region despite 
generally low irradiance in this region (thermal emission rather than 
reflectance of incident solar radiation). 
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