TY - JOUR A1 - Han, Weijia A1 - Reiter, Sebastian A1 - Schlipf, Jon A1 - Mai, Christian A1 - Spirito, Davide A1 - Jose, Josmy A1 - Wenger, Christian A1 - Fischer, Inga A. T1 - Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence T1 - Stark verbesserte Empfindlichkeit von CMOS-kompatiblen plasmonischen Titannitrid-Nanoloch-Arrays für die Brechungsindex-Messungen unter nicht-senkrechtem Lichteinfall N2 - Titanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. Our systematic simulation-based investigation of the sensitivity of the TiN NHA/SiO2/Si stack under varied conditions reveals that very large sensitivities up to 2305 nm per refractive index unit (nm RIU−1) are predicted when the refractive index of superstrate is similar to that of the SiO2 layer. We analyze in detail how the interplay between plasmonic and photonic resonances such as surface plasmon polaritons (SPPs), localized surface plasmon resonances (LSPRs), Rayleigh Anomalies (RAs), and photonic microcavity modes (Fabry-Pérot resonances) contributes to this result. This work not only reveals the tunability of TiN nanostructures for plasmonic applications but also paves the way to explore efficient devices for sensing in broad conditions. N2 - Titannitrid (TiN) ist ein CMOS-kompatibles Material mit großem Potenzial für die Herstellung plasmonischer Strukturen, die sich für die Bauelementintegration eignen. Die vergleichsweise großen optischen Verluste können sich jedoch nachteilig auf die Anwendung auswirken. In dieser Arbeit wird ein CMOS-kompatibles TiN-Nanoloch-Array (NHA) auf einem Mehrschichtstapel vorgestellt, das für die integrierte Brechungsindexmessung mit hoher Empfindlichkeit bei Wellenlängen zwischen 800 und 1500 nm eingesetzt werden kann. Der Stapel, bestehend aus dem TiN NHA auf einer Siliziumdioxid (SiO2)-Schicht mit Si als Substrat (TiN NHA/SiO2/Si), wurde in einem industriellen CMOS-kompatiblen Prozess hergestellt. Das TiN NHA/SiO2/Si zeigt Fano-Resonanzen in den Reflexionsspektren bei schrägem Einfallswinkel, die durch Simulationen sowohl mit Finite-Differenzen-Zeitbereichsmethoden (FDTD) als auch Rigorous Coupled Wave Analysis (RCWA) gut reproduziert werden. Die aus den spektroskopischen Charakterisierungen abgeleiteten Empfindlichkeiten nehmen mit zunehmendem Einfallswinkel zu und stimmen gut mit den simulierten Empfindlichkeiten überein. Unsere systematische simulationsbasierte Untersuchung der Empfindlichkeit des TiN NHA/SiO2/Si-Stapels unter verschiedenen Bedingungen zeigt, dass sehr große Empfindlichkeiten bis zu 2305 nm RIU-1 vorhergesagt werden, wenn der Brechungsindex des Dielektrikums oberhalb des NHAs ähnlich dem der SiO2-Schicht ist. Wir analysieren im Detail, wie das Zusammenspiel zwischen plasmonischen und photonischen Resonanzen wie Oberflächenplasmonpolaritonen (SPPs), lokalisierten Oberflächenplasmonenresonanzen (LSPRs), Rayleigh-Anomalien (RAs) und photonischen Mikrokavitätsmoden (Fabry-Pérot-Resonanzen) zu diesem Ergebnis beiträgt. Diese Arbeit zeigt nicht nur die Abstimmbarkeit von TiN-Nanostrukturen für plasmonische Anwendungen, sondern ebnet auch den Weg für die Erforschung effizienter Geräte für die Erkennung unter verschiedensten Bedingungen. KW - TiN KW - Plasmonics KW - Plasmonik KW - Plasmonik KW - Photonik KW - Titannitrid KW - Plasmonics KW - Photonics Y1 - 2023 U6 - https://doi.org/10.1364/OE.481993 ER - TY - THES A1 - Reichmann, Felix T1 - Germanium, Zinn und (Zink-) Galliumoxid für fortschrittliche Mikro- und Optoelektronik : Einblicke in die elektronische Struktur der Oberfläche mit Photoemissionstechniken T1 - Germanium, tin and (zinc) gallium oxide for advanced micro- and optoelectronics : insights into the surface electronic structure with photoemission techniques N2 - Historically, Ge is one of the oldest materials in the semiconductor industry and its (001) surface has been the subject of extensive investigations by photoelectron spectroscopy. I am going to challenge the predominant attribution of a semi-conducting nature of the Ge(001) surface in this thesis. My investigations reveal the presence of a Ge(001) surface state above the Fermi-level, occupied at room temperature. Employing time- and temperature-dependent angle-resolved photoelectron spectroscopy, I will demonstrate that the presence of this surface state is evidence for the conducting nature of the surface at room temperature. Sparked by the remarkable properties of the GeSn-alloy and a trend towards Ge-Sn-related multiquantum well fabrication, I investigate the surface electronic structure of Ge(001) after adsorption and incorporation of Sn. With an in-depth analysis of surface core-level shifts, I will extend the growth model of the Sn wetting layer formation by also detailing structural changes in the subsurface region. At the same time, the modifications of the electronic structure will be detailed, observing the removal of the Ge(001) surface states, the creation of a new, Sn-related surface state and the initial stages of the Schottky barrier formation. β-Ga2O3 is a transparent semi-conducting oxide that has sparked a lot of interest over the last decade, because it offers an ultra-wide band gap and high break down voltage. However, due to its monoclinic crystal structure, device fabrication is rather challenging and researchers are already looking into alternative materials. One of these candidates is ϵ-Ga2O3 and this work presents a combined study by photoelectron spectroscopy and ab initio calculations of its electronic structure. (Hard) X-rays reveal the impact of photoelectron recoil and the absence of a band bending to the surface, while the dispersion of experimentally determined valence states compares favorably with the calculations based on hybrid density-functional theory. Another alternative to β-Ga2O3 could be ZnGa2O4 and I will present an investigation on the electronic structure of its (100) surface. Due to the novelty of ZnGa2O4 single-crystals, I am first going to explore the preparation of a clean and well-ordered surface by standard in-situ sputtering and annealing. I will show that already low annealing temperatures induce Zn-deficiency, leading to non-stoichiometric surfaces, further exacerbated by sputtering. By changing the sputtering parameters and the annealing conditions, the preparation of a surface with sufficient quality for subsequent investigations will be demonstrated. The results by photoemission techniques compare favorably with the expectations from theory and allowing the first fundamental insights into the surface electronic structure. N2 - Ge ist eines der ältesten Materialien in der Geschichte der Halbleiter-Industrie und die Ge(001) Oberfläche wurde bereits umfassend durch Photoelektronenspektroskopie untersucht. Die dominierende Zuschreibung einer halbleitenden Eigenschaft der Oberfläche werde ich in dieser Dissertation anfechten. Meine Untersuchungen zeigen einen Ge(001) Oberflächenzustand oberhalb des Fermi-Niveaus, der bei Raumtemperatur besetzt ist. Durch zeit- und temperaturabhängige, winkelaufgelöste Photoelektronenspektroskopie werde ich zeigen, dass die Beobachtung dieses Zustands der Beweis für die leitende Eigenschaft der Oberfläche, bei Raumtemperatur, ist. Inspiriert von den außergewöhnlichen Eigenschaften der GeSn-Legierung und einem Trend hin zu Ge-Sn-basierten Multi-Quantentopfstrukturen, werde ich die Modifizierung der Ge(001) Oberflächenbandstruktur nach Adsorption von Sn untersuchen. Mit einer detaillierten Analyse von Energie-Niveau-Verschiebungen, der inneren Elektronen der Oberflächenatome, werde ich das Modell des Sn-Wachstums auf der Ge (001) Oberfläche, um die darunter liegenden Schichten erweitern. Gleichzeitig werden Änderungen in der elektronischen Struktur gemessen. So kann die Entfernung von Ge(001) Oberflächenzuständen, die Entstehung eines neuen, Sn-basierten Oberflächenszustands und die ersten Stufen der Formation der Schottky-Barriere beobachtet werden. β-Ga2O3 ist ein transparentes halbeleitendes Oxid, welches im vergangenen Jahrzehnt dank seiner extrem breiten Bandlücke und hohen Durchbruchspannung großes Interesse geweckt hat. Jedoch ist die Herstellung von Bauteilen aufgrund der monoklinischen Kristallstruktur eine Herausforderung und Wissenschaftler suchen bereits nach alternativen Materialien. Ein möglicher Kandidat ist ϵ- Ga2O3 und in dieser Arbeit wird dessen elektronische Bandstruktur mit einer Kombination aus Photoelektronenspektroskopie und ab initio Berechnungen untersucht. (Harte) Röntgenstrahlung erlaubt die Beobachtung von Rückstoßeffekten der Photoelektronen und die Abwesenheit von Bandverbiegungen, während die Dispersionen der experimentell gemessenen Valenzbandzustände Berechnungen mit hybrid-density-functional-Theorie bestätigen. Eine andere Alternative zu β-Ga2O3 könnte ZnGa2O4 sein und ich werde eine Untersuchung der elektronischen Struktur, der (100)-Oberfläche präsentieren. Aufgrund die Neuartigkeit von ZnGa2O4-Einkristallen werde ich zuerst die Vorbereitung einer sauberen und kristallinen Oberfläche mittels in-situ Sputtern und Heizen untersuchen. Ich werde zeigen, dass es selbst bei niedrigen Heiztemperaturen zu Zn-Mangel in der Oberfläche kommt, welcher sich durch Sputtern verschlimmert. Durch das ändern der Sputterparameter und der Bedingungen beim Heizen, werde ich eine Oberfläche mit hinreichender Qualität für eine weitergehende Charakterisierung der elektronischen Struktur demonstrieren. Die Ergebnisse aus der Photoelektronenspektroskopie passen zu theoretischen Berechnungen der Bandstruktur und liefern somit die ersten Einsichten in die elektronische Struktur der Oberfläche. KW - Angle-resolved photoemission spectroscopy KW - X-ray photoelectron spectroscopy KW - Germanium-tin KW - Zinc gallium oxide KW - Surface science KW - ARPES KW - Gallium-Zink-Oxid KW - XPS KW - Halbleiteroberfläche KW - Bandstruktur KW - Elektronenstruktur KW - Germaniumverbindungen KW - Galliumverbindungen KW - ARPES KW - Röntgen-Photoelektronenspektroskopie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-62080 ER - TY - THES A1 - Yang, Penghui T1 - Impact of alkali treatments on the surface and interface properties of Chalcopyrite thin-film solar cell absorbers T1 - Der Einfluss von Alkalibehandlungen auf die Oberflächen- und Grenzflächeneigenschaften von Chalkopyrit-Dünnschicht-Solarzellabsorbern N2 - This thesis focuses on the investigation and characterization of the surfaces and interfaces of chalcopyrite-based Cu(In,Ga)Se2 (CIGSe) thin film solar cells using various x-ray and electron spectroscopies. In particular, the impact of alkali post deposition treatments (PDT) on the chemical and electronic surface and interface structure of CdS/CIGSe absorbers is studied. The structure of “real world” CdS/CIGSe interfaces and how they are impacted by different alkali PDTs was investigated by a combination of different x-ray spectroscopies. The interface formation is characterized by studying sample sets with different CdS thicknesses. The chemical environment for indium and cadmium is revealed by deriving the modified Auger parameter α'(In) and α'(Cd) using the kinetic energy of most prominent Auger line together with the binding energy of the chosen core level. A more complex situation is found for CdS/CIGSe samples that underwent NaF+KF PDT, where a K-In-Se compound is initially present on top of the chalcopyrite absorber. The conversion of the K-In-Se type species into a Cd-In-(O,OH,S,Se) interface compound is recorded at short CBD-CdS deposition times. It appears the majority of K that is present at the surface of the NaF+KF PDT CIGSe absorber is dissolved in the CBD and partially re-deposited as K-O type species. The Cd/S ratio clearly deviates from the stoichiometry expected for CdS, and a Cd(O,OH,S)-like compound is likely formed. The electronic structure of CdS/CIGSe interface is similarly more complex for the NaF+KF PDT compared to the NaF PDT case, where only Cd(O,OH,S) buffer was formed. In an attempt to shed more light into this complex situation, the impact of evaporated alkali metals (K, Rb, Cs) on the surface structure of CIGSe was studied in-system by synchrotron-based hard x- ray photoelectron spectroscopy (HAXPES), aiming at understanding the underlying mechanism of the interfacial effect of alkalis on the performance of CIGSe devices. In the case of K deposition, two K species are observed by x-ray absorption near-edge structure (XANES) and HAXPES, one of which species disappears at high annealing temperature. Furthermore, three new In contributions (In-O and K-In-Se, metallic In species) can be observed after K evaporation. The evolution of chemical contribution supports the formation of a K-In-Se and Cu-poor CIGSe (1:3:5) bilayer structure that is similar to what was reported for “real world” NaF+KF PDTs. Deposition of heavy alkali metals (Rb, Cs) induced the formation of alkali selenide phases after alkali evaporation and during low temperature annealing. Similar chemical changes as seen for the K composition (i.e. presence of metallic In, In-O, and alkali-O) are observed. However, detailed analysis of the Alk/Se ratio and composition provide direct evidence for the formation of a Alk-(In)-Se and (Cu,Alk)(In, Ga)Se2 bilayer. The insights from these studies promise to provide crucial aid to fully exploit alkali pre-treatments in scientific and industrial CIGSe production, and will deliberate use of this means of surface/interface tailoring to push efficiencies even further. N2 - Diese Dissertation konzentriert sich auf die Untersuchung und Charakterisierung der Ober- und Grenzflächen in Chalkopyrit-basierten Cu(In,Ga)Se2 (CIGSe) Dünnschicht-Solarzellen mit verschiedenen Röntgen- und Elektronenspektroskopien. Insbesondere werden die Auswirkungen von Alkali-Nachbehandlungen (post deposition treatments, PDT) auf die chemischen und elektronischen Oberflächen- und Grenzflächenstrukturen in CdS/CIGSe Schichtstapeln untersucht. Die Eigenschaften von “realen” CdS/CIGSe Grenzflächen und wie verschiedene Alkali-PDTs diese beeinflussen, wurde durch eine Kombination verschiedener Röntgenspektroskopien untersucht. Die Ausbildung der Grenzfläche wurde mittels einer CdS-Dickenserie untersucht. Die chemische Umgebung von Indium und Cadmium wurde durch die Betrachtung der modifizierten Auger-Parameter α'(In) und α'(Cd) identifiziert. Für CdS/CIGSe-Proben bei denen der CIGSe Absorber vor der CdS Abscheidung einer NaF+KF PDT unterzogen wurde finden wir eine komplizierte Grenzflächenstruktur. Die K-In-Se-Verbindung die sich durch das PDT zunächst auf dem Chalkopyritabsorber ausbildet wandelt sich in der Anfangsphase der CdS Abscheidung im chemischen Bad in eine Cd-In-(O,OH,S,Se) Grenzflächenverbindung um. Zudem scheint es, dass die Mehrheit des vorhandenen Kalium, sich im chemischen Bad löst und teilweise als K-O Verbindung wieder auf dem CIGSe Absorber abgelagert wird. Das Cd/S Verhältnis weicht deutlich von der für CdS erwarteten Stoichiometrie ab, und es bildet sich wahrscheinlich eine Cd(O,OH,S) ähnliche Verbindung für lange Abscheidezeiten aus. Die elektronische Struktur der CdS/CIGSe Grenzfläche ist für den NaF+KF PDT Fall ähnlich komplexer als im NaF PDT-Fall, wo wir quasi eine abrupte Grenzfläche zwischen Absorber und Cd(O,OH,S) Puffer finden. Um mehr Licht in diese komplexe Situation zu bringen, wurden entsprechende Modellsystem unterscucht. Hierfür wurden die Alkalimetalle (K, Rb, Cs) direkt auf die Oberflächenstruktur von CIGSe aufgedampft und im gleichen Vakuumsystem mittels synchrotron-basierter Hart-Röntgen-Photoelektronenspektroskopie (HAXPES) untersucht. Nach der Abscheidung von Kalium konnten wir zwei K Spezies identifizieren, von denen eine bei hohen Temperaturen thermischer Nachbehandlung verschwindet. Darüber hinaus können drei neue In-Verbindungen (In-O und K-In-Se, metallisches In) nach der Abscheidung von K beobachtet werden. Die Entwicklung der chemischen Struktur mit höher werdenden Temperaturen während der thermischen Nachbehandlung unterstützt das Bild einer K-In-Se/Cu-arme CIGSe (1:3:5) Doppelschicht-Struktur – ist also ganz ähnlich was für “reale” NaF+KF PDT CIGSe Proben berichtet wird. Die Abscheidung von schweren Alkalimetallen (Rb, Cs) induziert die Bildung von Alkaliselenidphasen. Ähnliche chemische Veränderungen wie im K-Experiment (d.h. Vorhandensein von metallischem In, In-O und Alkali-O) werden auch hier beobachtet. Eine detaillierte Analyse des Alk/Se-Verhältnisses und der Zusammensetzung liefert jedoch direkte Beweise für die Bildung einer Alk-(In)-Se/(Cu,Alk)(In, Ga)Se2 Doppelschicht. Die Erkenntnisse aus dieser Arbeit können dazu beitragen, Alkali-Vorbehandlungen auch in der industriellen CIGSe-Produktion einzusetzen und voll auszuschöpfen. Ein bewusstes Nutzen der identifizierten Oberflächen-/Grenzflächenanpassung könnte die Wirkungsgrade entsprechender Solarzellen sogar noch steigern. KW - Alkali PDT KW - Surface KW - Interface KW - Grenzflächen KW - Alkali-Nachbehandlungen KW - Oberflächen KW - CIGSe KW - Solarzelle KW - Oberfläche KW - Alkalien KW - Grenzfläche Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-51772 ER - TY - THES A1 - Schlykow, Viktoria Diana T1 - Selective growth and characterization of GeSn nanostructures on patterned Si wafers T1 - Selektives Wachstum und Charakterisierung von GeSn Nanostrukturen auf strukturierten Si Wafern N2 - Over the past seven decades Si microelectronics have developed rapidly. The success of the growing microelectronic industry is also caused by the expansion of materials in addition to Si. Open challenges are the monolithic integration of group IV devices on Si photonics as well as overcoming the size mismatch between electronic parts in the nm range and photonic parts in the µm scale. In this thesis the future application of GeSn NIs on Si as a photodetector is evaluated. The key element required for high performance optoelectronic devices is the formation of high-quality GeSn nano-islands (NIs), i.e. overcoming growth challenges such as introduction of defects due to lattice and thermal mismatch between GeSn and Si substrate as well as suppression of Sn precipitation caused by the limited solid solubility of Sn in Ge. To achieve high-quality nanostructures, the selective growth of GeSn NIs on Si(001) seeds via molecular beam epitaxy is investigated, exploiting the advantages of nanoheteroepitaxy (NHE), i.e. growth on nano-patterned substrates. The best compromise between selective growth of GeSn on Si nano-pillars at significant higher growth temperature than the eutectic temperature of GeSn and the incorporation of Sn into the Ge lattice was achieved at 600°C. X-ray diffraction studies confirmed the substitutional incorporation of 1.4at.% Sn into the NIs avoiding considerable Si interdiffusion from the substrate. Transmission electron microscopy images have shown that dislocations and stacking faults caused by plastic relaxation of the GeSn NIs are located near the NIs/substrate interface and thus, dislocation-free GeSn NIs can be formed, due to gliding out of the threading arms triggered by the NHE approach. The high crystal quality of the GeSn NIs, enables the investigation of the bandgap by μ-photoluminescence (PL) analyses, demonstrating the shrinkage of the direct bandgap with increasing Sn content in the quasi-direct semiconductor. All NIs however feature a β-Sn droplet on their nano-facets. To suppress the out-diffusion of Sn and hence increase the Sn concentration of the GeSn alloy, the GeSn NIs were overgrown with a thin Ge cap layer. The Ge cap successfully hinders the formation of Sn segregates on top of the NIs. Capping at 600 °C and 650°C results in an enrichment of Sn at the surface, forming a GeSn crust with 8±0.5at.% Sn. This wetting layer both enhances the optoelectronic properties of the NI core and exhibits a relatively strong PL emission attributed to direct radiative recombination. Finally, a first demonstration of a GeSn NIs based photodetector was successful, due to the utilization of Al nano-antennas exhibiting an enhanced light coupling into the GeSn NIs at a wavelength of 700nm. The responsible mechanisms is the local plasmonic field enhancement of the incoming light. The manipulation of the resonance wavelength into the telecommunication regime, i.e. >1550nm, have to be investigated in future studies. N2 - In den letzten sieben Jahrzehnten hat sich durch den Einsatz neuer Materialien die Si-basierte Mikroelektronik-Industrie enorm weiterentwickelt. Offene Fragestellungen sind die monolithische Integration von Gruppe-IV-basierten Bauteilen auf Si-Photonischen Chips sowie die Größendiskrepanz zwischen elektronischen und photonischen Bauteilen. Im Rahmen dieser Doktorarbeit soll untersucht werden, ob GeSn-Nano-Inseln (NI) auf Si Wafern für die Verwendung als Photodetektor geeignet sind. Ein wesentlicher Aspekt zur Realisierung von optoelektronischen Hochleistungsbauteilen ist das Wachstum von hoch kristallinen GeSn-NI, d.h. die Einbringung von Defekten aufgrund von Gitter- und thermischer Fehlanpassung zwischen den GeSn-NI und dem Si-Substrat sowie Sn-Segregation aufgrund der geringen Löslichkeit von Sn in Ge müssen vermieden werden. Unter der Verwendung des Nanohetereopitaxie (NHE) Ansatzes wird das selektive Wachstum von GeSn-NI mithilfe von Molekularstrahlepitaxie untersucht. Der beste Kompromiss zwischen selektivem GeSn Wachstum auf nanostrukturierten Si(001) und dem Einbau von Sn in das Ge-Gitter wurde bei 600°C erreicht, was bei weitem die eutektische Temperatur von GeSn überschreitet. Analysen mithilfe von Röntgendiffraktometrie ergaben einen substitutionellen Einbau von 1.4at.% Sn in die NI ohne erhebliche Si-Interdiffusion aus dem Si Substrat. Aufnahmen mittels von Transmissionselektronenmikroskopie zeigten, dass sich Versetzungen und Stapelfehler aufgrund plastischer Relaxation nur an der NI/Substrat-Grenzfläche befinden, da Versetzungsarmen aufgrund NHE herausgleiten können. Die hohe Kristallqualität der versetzungsfreie GeSn-NI ermöglicht es, die Bandlücke mithilfe von Photolumineszenz (PL) Spektroskopie zu charakterisieren. Dabei konnte festgestellt werden, dass es zu einer Verringerung der direkten Bandlücke mit steigendem Sn-Gehalt im quasi-direkten Halbleiter kommt. Alle Inseln weisen β-Sn-Tropfen auf ihren Nano-Fazetten aufgrund der Diffusion des überschüssigen Sn auf. Um den Sn-Gehalt in der GeSn-Legierung zu erhöhen, wurden die GeSn-NI im Nachhinein mit einer dünnen Ge-Deckschicht überwachsen. Diese Ge-Deckschicht verhindert die Bildung von β-Sn-Segregaten auf den GeSn-NI. Zusätzlich bildet sich bei 600°C und 650°C eine GeSn Kruste mit 8±0.5at.% Sn aus. Diese Benetzungsschicht verbessert die optoelektronischen Eigenschaften des Inselkerns und weist gleichzeitig eine relativ starke PL Emission aufgrund der direkten Bandlücke auf. Schließlich war eine erste Demonstration eines Photodetektors basierend auf GeSn-NI durch die Verwendung von Al-Nano-Antennen erfolgreich, um eine verstärkte Lichteinkopplung in die GeSn-NI bei einer Wellenlänge von 700nm zu erreichen. Der zugrundeliegende Mechanismus ist die lokale plasmonische Feldverstärkung des einfallenden Lichtes. Die Manipulation der Resonanzwellenlänge in den Telekommunikationsbereich, d.h. >1550nm, sollte in zukünftigen Studien untersucht werden. KW - Group IV KW - Nanoheteroepitaxy KW - Photoluminescence KW - Selective growth KW - Gruppe IV KW - Nanoheteroepitaxie KW - Photolumineszenz KW - Selektives Wachstum KW - Germanium KW - Zinn KW - Silicium KW - Heteroepitaxie KW - Photodetektor Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-48860 ER - TY - THES A1 - Melnik, Nauka T1 - Untersuchung des Strahlungsdrucks auf dünne Folien unter Weltraumbedingungen T1 - Investigation of radiation pressure on thin foils under space conditions N2 - Trifft elektromagnetische Strahlung auf einen Körper, geben die Photonen ihren Impuls ab, bei einer idealen Reflexion sogar den doppelten Impuls. Auf die Oberfläche des bestrahlten Körpers wird somit eine Kraft ausgeübt. Dieser Strahlungsdruck ist extrem gering, jedoch ergeben sich unter speziellen Bedingungen, wie bei einer Anwendung im luftleeren Raum des Weltalls, konkrete effektive Einsatzbereiche. Die Anwendung des Strahlungsdrucks als Antriebsmittel im Bereich der Raumfahrt ist der Ausgangspunkt folgender Dissertation. Großflächige reflektierende Folien können den Strahlungsdruck der Sonne als spezielles Antriebsmittel für Raumfahrzeuge, sogenannte Sonnensegler, nutzen. Ziel dieser Arbeit ist die Entwicklung einer Messeinrichtung zur Analyse der Kraftwirkung durch sonnenähnliche Strahlung auf dünne, reflektierende Folien. Des Weiteren wird die Messeinrichtung durch verschiedene Messreihen verifiziert, auftretende Effekte werden charakterisiert. Die Messeinrichtung ist in einer Hochvakuumkammer installiert. Der Strahlungsdruck wird durch eine 1600W Xenon Lampe mit sonnenähnlichem Spektrum auf eine 7,5 µm dicke, mit Aluminium beschichtete Kaptonfolie ausgeübt. Die resultierende Krafteinwirkung auf die Folienoberfläche wird mittels einer Präzisionswaage gemessen. In mehreren Testreihen werden Folienproben unterschiedlichen Bestrahlungsstärken ausgesetzt. Die experimentell ermittelten Messdaten bestätigen die theoretisch berechneten Werte des Strahlungsdrucks. Darüber hinaus zeigt sich im Verlauf der Experimente ein bisher unbeachteter Effekt. An der Folienoberfläche haften unter Atmosphäre Wassermolekülschichten, welche im Vakuum zunächst an der Folie haften bleiben. Diese Moleküle werden erst bei Bestrahlung von der Oberfläche desorbiert. Der Impuls durch die entweichenden Moleküle ist um ein Vielfaches größer als der Impuls der Photonen. Dieser Effekt beeinträchtigt die Strahlungsdruckmessung. Um die störenden Einflüsse zu eliminieren, sind in einer Testprozedur Randbedingungen definiert worden. N2 - Photons of electromagnetic radiation transfer their momentum on bodies; an ideally reflecting surface doubles the value of the momentum. Thus, a force is acting on the radiated surface of that body. The value of this radiation pressure is rather small, but under special condition, like use in exhausted outer space, there is real effective range of application. The initial point of this thesis is the application of radiation pressure as space propulsion. Large areas of reflective thin films can use the solar radiation pressure for a special type of propulsion in spacecraft applications like the so-called solar sails. The object of this thesis is to develop a measuring facility for analysis the acting force on thin reflective foils by solar like radiation. Furthermore, the facility will be verified by series of measurements, occurring effects will be characterized. This measuring system will be built up and operate in a vacuum chamber. A 1600W Xenon lamp with an AM0 spectrum will illuminate a 7.5 µm thick kapton foil coated with aluminum. A high precision balance measures the acting force on foil surface. In different measurement sequences foil samples are irradiated at different energy fluxes. The measured values correspond to the theoretical value of radiation pressure. Also, in the experiment appears a so far disregarded effect. Under atmosphere and still in vacuum water molecules adhere to the foil surface. These molecules desorb due to first strike of the radiation. The momentum by desorbing molecules is much higher than the momentum of photons. This influence affects radiation pressure measurement. Therefore, relevant boundary conditions are defined in a test procedure to eliminate disturbing influences. KW - Strahlungsdruck KW - Sonnensegel KW - Präzisionswaage KW - Desorption KW - Radiation pressure KW - Solar sailing KW - High precision balance KW - Desorption KW - Strahlungsdruck KW - Sonnensegel KW - Extraterrestrische Physik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-45847 ER - TY - THES A1 - Hempel, Maria T1 - Development of a novel diamond based detector for machine induced background and luminosity measurements T1 - Entwicklung eines neuen diamantbasierten Detektors für Messungen von maschineninduziertem Hintergrund und Luminosität N2 - The LHC is the largest particle accelerator and storage ring in the world, used to investigate fundamentals of particle physics and to develop at the same time the technology of accelerators and detectors. Four main experiments (ATLAS, ALICE, CMS and LHCb) , located around the LHC ring, provide insight into the nature of particles and search for answers to as yet unexplained phenomena in the universe. Two proton or heavy ion beams circulate in the LHC and are brought into collision in the four experiments. The physics potential of each experiment is determined by the luminosity, which is a ratio of the number of the events during a certain time period to the cross section of a physics process. A measurement of the luminosity is therefore essential to determine the cross section of interesting physics processes. In addition, safe and high-quality data-taking requires stable beam conditions with almost no beam losses. Each experiment has its own detectors to measure beam losses, hereafter called machine induced background. One such detector is installed in CMS, BCM1F. Based on diamond sensors it was designed and built to measure both, the luminosity and the machine induced background. BCM1F ran smoothly during the first LHC running period from 2009-2012 and delivered valuable beam loss and luminosity information to the control rooms of CMS and LHC. At the end of 2012 the LHC was shut down to improve the performance by increasing the proton energy to 7TeV and decreasing the proton bunch spacing to 25ns. Due to the success of BCM1F an upgrade of its sensors and readout components was planned in order to fulfil the new requirements. The upgrade of the sensors comprises a two pad instead of one pad metallization. 24 instead of the previous 8 single crystal diamond sensors were foreseen for the new BCM1F to enhance the robustness and redundancy. To instrument BCM1F, 59 sensors were electrically characterized by measuring the leakage current, signal stability and charge collection efficiency. Quality criteria were defined to select sensors for the final installation. An overview of these measurements including a summary of the results is given in this thesis. In addition, an upgraded amplifier was developed within the collaboration in 130nm CMOS technology. It has a peaking time of 7ns instead of the 22ns of the one previously installed. A BCM1F prototype comprising a two pad sensor and the upgraded amplifier was tested at the DESY-II accelerator in a 5GeV electron beam. Results of these test-beam measurements are presented in this thesis as well as simulations to interpret the measurements. The installation of the upgraded BCM1F was completed in 2014. In 2015 BCM1F was commissioned and started to measure luminosity and machine induced background. At the end, the thesis will describe both types of measurements with the focus on machine induced background demonstrating the functionality of BCM1F. N2 - Der LHC ist der größten Teilchenbeschleuniger und -speicherring der Welt. Er wurde gebaut, um Teilchenphysik bei höheren Energien zu erforschen bei gleichzeitiger Entwicklung der Beschleuniger- und Detektorphysik. Vier große Experimente (ATLAS, ALICE, CMS, LHCb) befinden sich am LHC, welche einen Einblick in die grundlegenden Strukturen des Universums und der Teilchenphysik geben. Zwei Protonen- oder Schwerionenstrahlen kreisen im LHC und werden in den vier Experimenten zur Kollision gebracht. Das Physikpotential in den jeweiligen Experimenten wird durch die Luminosität bestimmt. Die Luminosität ist das Verhältnis der Zahl der Ereignisse während einer bestimmten Zeiteinheit zum Wirkungsquerschnitt eines physikalischen Prozesses. Die Messung der Luminosität ist daher notwendig, um die Wirkungsquerschnitte interessanter Prozesse zu messen. Eine sichere und hochwertige Datennahmen benötigt stabile Strahlbedingungen, möglichst ohne Strahlverluste. Jedes Experiment hat seine Strahlverlustmonitore. Einer dieser Detektoren im CMS ist der BCM1F, welcher Diamantsensoren verwendet. BCM1F ist in der ersten LHC Laufzeit von 2009-2012 problemlos gelaufen und lieferte wertvolle Strahlverlust- und Luminositätsinformationen zum CMS- und LHC-Kontrollraum. Ende 2012 beendete der LHC seinen Betrieb für das Upgrade auf 7TeV und der Reduzierung des Abstandes der Protonenpakete 25ns. Um diese neuen Anforderungen zu erfüllen, wurde ein Upgrade der BCM1F Sensoren und Ausleseelektronik durchgeführt. Auf die Oberfläche der Sensoren wurden zwei Metallelektroden, genannt Pads, aufgebracht, um die Zählrate zu halbieren. Die Robustheit und Redundanz von BCM1F wurde gesteigert, indem die Anzahl der Sensoren von 8 auf 24 erhöht wurde. Insgesamt wurden 59 Sensoren elektrisch charakterisiert, was Messungen von Leckstrom, Signalstabilität und Ladungssammlungseffizienz beinhaltet. Qualitätskriterien für die Auswahl von Sensoren wurden definiert. Ein Überblick dieser Messungen wird mit einer Zusammenfassung der Resultate in dieser Arbeit gegeben. Zusätzlich wird ein verbesserter Verstärker in 130nm CMOS Technologie und einer Anstiegszeit der Ausgangsspannung (proportional zur Eingangsspannung) von 7ns, statt der vorherigen 22ns, zur Signalauslese verwendet. Ein BCM1F Prototyp mit Zweikanalauslese und dem verbesserten Verstärker wurde am DESY-II Beschleuniger bei einem Elektronenstrahl von 5GeV Elektronen getestet. Resultate dieses Testes werden in dieser Arbeit gezeigt und mit Simulationen verglichen. Die Installation des neuen BCM1F Systems fand 2014 statt und 2015 startete BCM1F seine Messungen der Luminosität und der Rate von Teilchen des Strahlhintergrundes, der im Beschleuniger anfällt. Am Ende wird diese Arbeit Resultate der Messungen zeigen, sich dabei aber auf den maschinen-induzierten Hintergrund konzentrieren und dabei die sichere Funktionsweise von BCM1F demonstrieren. KW - BCM1F KW - Diamond KW - Sensor KW - Beam loss KW - CMS KW - BCM1F KW - Diamant KW - Sensor KW - Stahlverlust KW - CMS KW - LHC KW - Luminosität KW - Strahlungsdetektor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-42865 ER - TY - THES A1 - Holla, Markus T1 - Defektcharakterisierung von Halbleitermaterialien für die Photovoltaik T1 - Defect characterization of semiconductor materials for photovoltaics N2 - Zur Deckung des stetig steigenden Energiebedarfs und unter Berücksichtigung des Umweltschutzes werden unter anderem Solarzellen genutzt. Defekte in Solarzellen können die Effizienz verringern. In dieser Arbeit wird das Defektverständnis von Silizium basierten Solarzellen erweitert. Neue experimentelle Erkenntnisse konnten zu folgenden Schwerpunkten gewonnen werden: • Siliziumnitrid- und Siliziumkarbidausscheidungen in multikristallinem Silizium • Rekombinationsaktivität in dünnen Siliziumschichten • Charakterisierung der Rekombinationsaktivität von Germanium als Modellmaterial für die Siliziumkristallisation • Rekombinationsaktivität und Verspannung an Korngrenzen Um Ergebnisse experimenteller Defektcharakterisierung auf allgemein gültige Parameter der Rekombination wie z.B. Ladungsträgerdiffusionslänge oder Oberflächenrekombinationsgeschwindigkeit zurückführen zu können, wurden zu folgenden Phänomenen Modelle entwickelt und Simulationen durchgeführt: • Getterzonen an Korngrenzen • Ermittlung von Diffusionslänge und Diffusionskoeffizient in Dünnschichtmaterial • 3D-Raumladungseffekte Die Nutzung der gewonnenen Erkenntnisse über die Rekombinationseigenschaften der Defekte liegt in einer möglicherweise zukünftigen kontrollierten Defektbeeinflussung und somit einer Effizienzverbesserung von Solarzellen. N2 - Solar cells are one possibility to meet the increasing energy requirement. Defects in solar cells can decrease the solar cell efficiency. The defect understanding of silicon based solar cell material is the aim of the present work. New experimental knowledge is achieved in the following topics: • silicon nitride and silicon carbide in multicrystalline silicon • recombination activity in thin silicon layers • characterization of germanium recombination activity as model material for silicon crystallization • recombination activity and stresses at grain boundaries Models and simulations are developed to conclude results from experimental defect characterization to generally valid recombination parameters for example charge carrier diffusion length or surface recombination velocity. The simulation chapters focus on the following issues: • getter zones at grain boundaries • estimation of diffusion length and diffusion coefficient in thin film material • 3D-space-charge-effects Possibly in future the new knowledge about recombination properties of defects could be used to influence the defects controlledly and increase the solar cell efficiency. KW - Defekt KW - Defect KW - Halbleiter KW - Semiconductor KW - Festkörperphysik KW - Halbleiter Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-36384 ER - TY - THES A1 - Mankovics, Daniel T1 - Luminescence investigation of bulk solar silicon and silicon thin films on glass substrate T1 - Lumineszenz-Untersuchungen von bulk-Solarsilizium und Silizium-Dünnfilmen auf Glassubstrat N2 - The aim of this work is to study the optical properties of crystal defects in multicrystalline solar silicon and poly-/microcrystalline silicon thin films on glass substrate. First a setup for photoluminescence imaging on multicrystalline silicon solar wafers was developed. This system is suitable for detecting band-to-band luminescence as well as defect-related luminescence at room temperature on large-scale wafers at different stages of their processing. Spectroscopic photoluminescence investigations of multicrystalline silicon solar wafers indicated a new intense luminescence line at ≈ 0.91 eV at room temperature. The origin of this line is probably found in a specific grain boundary. Furthermore, luminescence in the region of 0.8 eV was investigated in detail, and it was found that probably oxygen is responsible for a peak at 0.77 eV at 80 K. Electroluminescence investigations at room temperature at both materials exhibit extended defect structures such as grain boundaries. Furthermore, it can be concluded that electroluminescence imaging in reverse bias mode indicate on serious breakdown points in solar cells, which can lead to destruction of solar cells and modules. By comparing defect-related and reverse bias electroluminescence images, a difference in the spatial distribution of defects emitting D1 radiation and defects emitting light under reverse bias beyond -12 V is detectable. In addition, there seems to be a correlation in the distribution of non-doping impurities and photoluminescence. Concerning this, vertical slabs of two silicon blocks were examined by means of Fourier-transform infrared spectroscopy and photoluminescence. A correlation of the distributions of interstitial oxygen and the band-to-band luminescence profiles could be found. Additionally, a correlation between D3/D4 luminescence profile and nitrogen distribution in the blocks was observed. Finally, the growth process, particularly the transition from amorphous to microcrystalline silicon by PECVD, was studied by combined photoluminescence and Raman investigations. Formation of silicon nano-grains was detected by means of photoluminescence and Raman spectroscopy. N2 - Das Ziel dieser Arbeit ist es, die optischen Eigenschaften von Kristalldefekten in multikristallinem Solarsilizium und poly-/mikrokristallinen Silizium-Dünnschichten auf Glas-Substrat zu studieren. Zuerst wurde ein Aufbau für Photolumineszenz-Imaging an multikristallinem Silizium-Solarwafern entwickelt. Dieses System eignet sich zur Erfassung von Band-zu-Band-Lumineszenz sowie Defekt-Lumineszenz bei Raumtemperatur großer Solarwafer nach verschiedenen Prozessschritten. Spektroskopische Photolumineszenz-Untersuchungen von multikristallinen Silizium-Solarwafern zeigte eine neue intensive Lumineszenzlinie bei ≈ 0.91 eV bei Raumtemperatur. Der Ursprung dieser Linie liegt wahrscheinlich in einer bestimmten Korngrenze. Weiterhin wurde die Lumineszenz im Bereich von 0.8 eV im Detail untersucht, und es wurde gefunden, dass wahrscheinlich Sauerstoff für einen Peak bei 0.77 eV bei 80 K verantwortlich ist. Elektrolumineszenz Untersuchungen bei Raumtemperatur an beiden Materialien zeigen ausgedehnte Defektstrukturen wie Korngrenzen. Darüber hinaus kann der Schluss gezogen werden, dass das Elektrolumineszenz-Imaging im Rückwärtsvorspannungs-Modus auf schwerwiegende Durchbruchstellen in Solarzellen hinweist, die zur Zerstörung von Solarzellen und Modulen führen kann. Durch Vergleich von Defektlumineszenz- und Sperrvorspannungs-Elektrolumineszenz-Bildern ist ein Unterschied in der räumlichen Verteilung der Defekte, die D1 emittieren, und der Durchbruchlumineszenz unter Sperrvorspannung über -12 V erkennbar. Außerdem gibt es Hinweise auf einen Zusammenhang bei der Verteilung von nicht-dotierenden Verunreinigungen und der Lumineszenz. Hierzu wurden vertikale Scheiben zweier Siliziumblöcke mittels Fourier-Transformations-Infrarotspektroskopie und Photolumineszenz untersucht. Eine Korrelation der Verteilung von interstitiellem Sauerstoff und den Band-zu-Band-Lumineszenz-Profilen konnte gefunden werden. Außerdem wird eine Korrelation zwischen dem D3/D4 Lumineszenzprofil und der Stickstoffverteilung in den Blöcken beobachtet. Schließlich wurde der Wachstumsprozeß, insbesondere der Übergang von amorphem zu mikrokristallinem Silizium mittels PECVD, durch Kombination der Photolumineszenz- und Raman-Methoden untersucht. Bildung von Silizium-Nanokörnern wurde mittels Photolumineszenz- und Raman-Spektroskopie detektiert. KW - Silicon KW - Defects KW - Photoluminescence KW - Luminescence imaging KW - Silicon thin films KW - Silizium KW - Defekte KW - Photolumineszenz KW - Lumineszenz-Imaging KW - Silizium-Dünnfilme KW - Silicium KW - Dünnschichttechnik KW - Solarzelle KW - Fehleranalyse Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-35196 ER - TY - THES A1 - Krause, Christoph T1 - Investigation of particular crystal defects in solar silicon materials using electron beam techniques T1 - Untersuchung ausgewählter Kristalldefekte in Solarsilizium unter Verwendung von Elektronensondenverfahren N2 - The aim of this work is to describe and explain the properties of defects in multicrystalline (mc) and thin-film solar silicon (Si). For this reason, investigations with scanning electron microscope methods were performed, namely cathodoluminescence (CL), electron beam induced current (EBIC), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, photoluminescence (PL) and reverse-biased electro luminescence (ReBEL) measurements were also conducted. Through correlation of PL, ReBEL and EBIC, it was possible to localize breakdown sites at mc-Si solar cells. Problems that occurred during the thin-film EBIC investigations could be demonstrated and explained. For the first time cross sectional EBIC investigations could be performed on thin-film silicon tandem cells. At mc-Si, it was possible to observe the oxygen related P-line next to the common D1-line luminescence at 10 K clearly distinguishable from each other at once. Furthermore, a hitherto not comprehensively discussed intense luminescence line at 0.93 eV could be described in detail. Through correlation of PL, CL, EBIC, EBSD, and TEM measurements, the origin of the now named Di luminescence at 0.93 eV is postulated to be in connection with Frank partial dislocations, with two energetic levels inside the band gap, one at 112±9 meV below the conduction band and the other at 93±10 meV above the valence band. Finally, it was attempted to explain the behavior of twin boundaries at temperatures below 30 K, where these show an enhanced collection efficiency in comparison to the surrounding grains. An alteration of the local “freeze out” temperature, possibly by a local band gap narrowing, is suggested as a reason. Another conceivable explanation is a breakdown of the diode potential at the grains. N2 - Das Ziel dieser Arbeit ist es, das Auftreten von verschiedenen Defekten sowohl in multikristallinem als auch in Dünnschicht-Solar Silizium zu beschreiben. Die vielfältigen Möglichkeiten wie Defekte im Material auf Grund ihrer Eigenschaften nachgewiesen werden können wurden eingehend untersucht. Dazu wurden Rasterelektronenmikroskopie Verfahren wie Kathodolumineszenz (CL), Elektronenstrahl-induzierte Strom (EBIC) Messungen, rückgestreute Elektronenbeugungsuntersuchungen (EBSD) und Transmissionselektronenmikroskopie (TEM) durchgeführt. Außerdem wurden auch Ergebnisse aus Photolumineszenz (PL) und Elektrolumineszenz unter Sperrvorspannung (ReBEL) zur Defektcharakterisierung herangezogen. Durch die Korrelation von ReBEL, PL und EBIC Daten war es möglich, Durchbruchstellen in mc-Si Solarzellen zu lokalisieren und mögliche Ursachen für diese aufzuzeigen. Die Anwendung von EBIC an dünnen Siliziumschichten sowie die damit verbundenen Präparations-, Mess- und Analyseprobleme konnten gezeigt und erläutert werden. Es war außerdem erstmals möglich EBIC Messungen an Querschnitten von Dünnschicht-Silizium-Tandemzellen erfolgreich durchzuführen und dadurch Informationen über die Rekombinationsaktivität von Defekten in unterschiedlichen Schichten der Zellen zu sammeln. Bei der Durchführung von CL Messungen an mc-Si bei 10 K konnte gezeigt werden, dass die in der Literatur mit Sauerstoffpräzipitaten in Verbindung gebrachte Lumineszenz bei 0.77 eV (P-Linie), auch parallel zur D1-Linie klar unterscheidbar auftreten kann, was bis dahin in dieser Art noch nicht publiziert wurde. Neben der P-Linie konnte eine intensive Lumineszenz bei 0.93 eV festgestellt werden, die ebenfalls bei Raumtemperatur messbar ist. Diese bis dahin nicht umfassend beschriebene Lumineszenz, welche im Laufe der Arbeit die Bezeichnung Di-Linie erhielt, wurde detailliert untersucht und beschrieben. Dazu wurden die Ergebnisse von PL, CL, EBIC, EBSD und TEM miteinander korreliert. Durch die umfassenden Untersuchungen konnte ein Zusammenhang mit Frank Partialversetzungen postuliert werden. Für diese Defektlumineszenz könnten zwei Defektlevel in der Bandlücke, bei 112 ± 9 meV unterhalb des Leitungsbandes und 93 ± 10 meV oberhalb des Valenzbandes, verantwortlich sein. Im letzten Teil der Arbeit wurde versucht, das Sammlungsverhalten von Zwillingskorngrenzen bei Temperaturen unterhalb von 30 K zu erklären. In diesem Temperaturbereich zeigen Zwillingskorngrenzen eine erhöhte Sammlungseffizienz im Vergleich zu den umgebenen Körnern. Als Ursache dafür wird ein lokaler Unterschied in der “Ausfriertemperatur” der Ladungsträger vermutet. Um eine derartige Schwankung auszulösen, könnte eine lokale Verkleinerung der Bandlücke, möglicherweise spannungsinduziert, in Frage kommen. Eine ebenfalls in Betracht kommende Erklärung wäre ein Zusammenbruch des Diodenpotentials im Bereich der Körner. KW - Defects KW - Silicon KW - EBIC KW - CL KW - Di luminescence KW - Defekte KW - Silizium KW - EBIC KW - CL KW - Di Lumineszenz KW - Solarzelle KW - Silicium KW - Zuverlässigkeit Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-34846 ER - TY - THES A1 - Zwierz, Radoslaw T1 - Plasma enhanced growth of GaN single crystalline layers from vapour phase T1 - Plasmaunterstützte Züchtung von einkristallinen GaN-Schichten aus der Gasphase N2 - Gallium nitride (GaN) is a III-V semiconductor, characterized by direct, wide band gap of 3.4 eV at RT. As a material of particular interest for opto- and power electronics applications, it has been thoroughly studied in recent years. Utilization of GaN homoepitaxy in manufacturing of laser diodes (LDs), light-emitting diodes (LEDs), power devices, etc. would be beneficial in terms of reducing defect density, thus improving their lifetime and performance. Yet cost-effective process for providing native GaN substrates has not been established so far. The focus of this work is put on development of a new method to grow single crystalline GaN layers from Ga vapour. Our approach exploits microwave (MW) plasma as a source of excited nitrogen species, in contrast to classical physical vapour transport (PVT)-based technique, in which ammonia (NH3) serves as a source of reactive nitrogen. Novelty of MW plasma enhanced growth of GaN from vapour lies in MW nitrogen plasma formation in the vicinity of the seed, at moderate pressure (200 – 800 mbar range), and concurrent physical vapour transport of Ga to the growth zone. Simulations of the growth setup (HEpiGaN software) and of the MW plasma source (CST Microwave software) have followed the extensive investigations of material properties. The growth setup and the MW plasma source, with the resonance cavity being its crucial part, have been constructed and implemented into the existing growth reactor. The stability of MW plasma in function of temperature and pressure has been studied along with its influence on the seed temperature, and thus on the growth conditions. Furthermore, optical emission spectroscopy (OES) has been utilized for in-situ characterization of the growth atmosphere. Studies on the interaction of Ga vapour with the nitrogen discharge were interpreted on the basis of the level structure of lower excited states of Ga. Deposition experiments have been conducted, using sapphire seeds, GaN, AlN and AlGaN templates, while GaN single crystalline layers have been grown on sapphire and GaN templates. Characterization of GaN layers have been done by various methods, i.e. structure of layers by scanning electron microscopy (SEM), their composition by energy dispersive X-ray spectroscopy (EDX) and secondary ion mass spectrometry (SIMS), and crystal quality by high resolution X-ray diffraction (HRXRD). Results of the characterization together with outcome of OES measurements revealed importance of carbon for the sub-atmospheric MW plasma enhanced growth of GaN from vapour. In addition, this fact was confirmed by experiments in the setup with reduced carbon content. Possible routes for GaN synthesis have been discussed, with the most probable being CN-assisted GaN formation. While CN was detected in the plasma spectra, there was no evidence for the existence of GaN molecules in vapour phase. N2 - Galliumnitrid (GaN) ist ein III-V-Halbleiter, der durch seine direkte, breite Bandlücke von 3.4 eV bei Raumtemperatur gekennzeichnet ist. Als Material von besonderem Interesse für Anwendungen in der Opto- und Leistungselektronik, wurde es in den letzten Jahren umfangreich untersucht. Die Verwendung der GaN-Homoepitaxie in der Herstellung von Laserdioden (LDs), Leuchtdioden (LEDs), Leistungsbauelementen etc. wäre günstig bezüglich der Verringerung die Defektdichte, um ihre Lebensdauer und Leistung zu verbessern. Ein kostengünstiges Verfahren zur Bereitstellung von GaN-Eigensubstraten wurde jedoch bisher nicht etabliert. Der Schwerpunkt dieser Arbeit ist die Entwicklung einer neuen Züchtungsmethode um einkristalline GaN-Schichten herzustellen. Unsere Vorgehensweise nutzt Mikrowellen (MW)-Plasma als Quelle angeregter Stickstoff-Spezies, im Gegensatz zu dem klassischen physikalischen Gasphasentransport (PVT) basierten Verfahren, in dem Ammoniak (NH3) als Quelle für reaktiven Stickstoff dient. Die Neuheit des MW-Plasmas gestützten Wachstums von GaN aus Gallium(Ga)-Dampf liegt in der MW-Plasmaerzeugung in der Nähe des Keims bei mittlerem Druck (200 - 800 mbar) und gleichzeitigen physikalischen Transport von Ga-Dampf in die Wachstumszone. Den Simulationen des Aufbaus (HEpiGaN Software) und der MW-Plasmaquelle (CST Microwave Software) folgten die umfangreichen Untersuchungen der Materialeigenschaften. Der Aufbau und die MW-Plasmaquelle, die als wesentliche Komponente den Hohlraumresonator enthält, wurden konstruiert und in den vorhandenen Wachstumsreaktor implementiert. Die Stabilität des MW-Plasmas als Funktion von Temperatur und Druck wurde zugleich mit ihrem Einfluss auf die Keimtemperatur und damit auf die Wachstumsbedingungen untersucht. Außerdem wurde die Optische Emissionsspektrometrie (OES) zur in-situ Charakterisierung der Wachstums-Atmosphäre verwendet. Die Wechselwirkung des Ga-Dampfes mit der Stickstoffentladung wurde auf der Basis der Energieniveau-Struktur der unteren angeregten Ga-Zustände interpretiert. Die Abscheidungs-Experimente wurden unter Verwendung von Saphir-Keimsubstraten, GaN- , AlN- und AlGaN–Templates durchgeführt. Die GaN-Schichten wurden auf Saphir-Keimsubstraten und auf GaN-Templates gewachsen und mit verschiedenen Methoden charakterisiert: die Struktur mit der Rasterelektronenmikroskopie (SEM), die Zusammensetzung mit der Energiedispersiven Röntgenspektroskopie (EDX) und der Sekundärionen-Massenspektrometrie (SIMS) und die Kristallqualität mit der hochauflösenden Röntgenstrukturanalyse (HRXRD). Die Ergebnisse der Charakterisierung zeigten zusammen mit den Resultaten der OES-Messungen die Bedeutung von Kohlenstoff für das MW-Plasma gestützte, subatmosphärische Wachstum von GaN aus der Gasphase. Zusätzlich wurden sie durch die Experimente im Aufbau mit reduziertem Kohlenstoffgehalt bestätigt. Mögliche Wege der GaN-Synthese wurden diskutiert, wobei die CN-unterstützte GaN-Bildung der wahrscheinlichste ist. Während CN in den Plasmaspektren nachgewiesen wurde, gab es keine Beweise für die Existenz von GaN-Molekülen in der Dampfphase. KW - GaN KW - Vapour growth KW - Microwave plasma KW - Züchtung aus der Gasphase KW - Plasma KW - Galliumnitrid KW - Gasphase KW - Plasma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-30710 ER -