TY - THES A1 - Jia, Guobin T1 - Characterization of electrical and optical properties of silicon based materials T1 - Charakterisierung der elektrischen und optischen Eigenschaften von Silizium-basierten Materialien N2 - In this work, the electrical and luminescence properties of a series of Si based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL). Photovoltaic Si produced by block casting has been investigated by EBIC on wafers sliced from different parts of the ingot. The impact of selected solar cell processing steps on the material properties has been evaluated by EBIC utilizing adjacent wafers from the ingot. The temperature dependence of dislocations’ EBIC contrast was measured to assess the degree of dislocation contamination with impurities, yielding low dislocation contamination for the middle of the block and high contamination in the top and bottom regions. This is in agreement with the impurity distribution in the block. It was found that phosphorus diffusion gettering (PDG) followed by SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. The improvement is attributed to both PDG of metal impurities and a passivation effect of SiN firing. In order to better understand the factors limiting the properties of thin polycrystalline Si layers prepared by the Aluminum induced layer exchange (Alile) technique, epilayers grown on (111) and (100) monocrystalline Si substrates were used as a model system to investigate the impact of processing temperature (Ts) and type of substrate. It was found that no dislocations are formed for epilayers on (100) Si, while a high density of dislocations was detected on epilayers prepared on (111) Si at 450 °C. The dislocation density decreases with increasing TS. The diffusion lengths extracted from the energy dependent EBIC collection efficiencies reveal an improvement of the epilayer quality with increasing TS during growth from 450 °C to 650 °C, and a decrease of the epilayer quality at 700 °C. This is attributed to a reduction of the dislocation density with increasing TS and a formation of precipitates during the process. Precipitate formation of at 700 °C is limited because the metal impurities are very mobile at high TS, resulting in a homogeneous distribution of the impurities. Because the impurities are effective lifetime killers of the minority carriers, so the diffusion length decreases. PL measurements on epilayers grown on Si substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while intense characteristic DRL lines D1 - D4 have been detected in the sample prepared by the Alile technique. This indicates that dislocations in the Alile sample are relatively clean. The possible reason for the purification of the Alile samples is Al induced gettering during the polycrystalline Si layer growth. The diffusion length in the thin top layer of Si-on-insulator (SOI) samples has been successfully measured by EBIC employing suppression of the surface recombination at the buried oxide layer and at surface of the top layer by biasing. The measured diffusion length is several times larger than the layer thickness. Dislocation networks produced by Si wafer direct bonding have been investigated with regard to their electrical properties by EBIC. The networks were observed to show charge carrier collection and electrical conduction. Inhomogeneities in the charge collection were detected in n- and p-type samples under appropriate beam energy. The EBIC contrast behavior can be understood under the consideration of the positively charged oxide precipitates along with dislocations charged with majority carriers, where the appearance of the contrast in dark or bright depends strongly on the ratio of the collection and the recombination loss of the carriers.The luminescence properties of Si nanostructures (Si nanowires, Si nano rods, porous Si, and Si/SiO2 multi quantum wells (MQWs)) are another important subject of this work. Sub-bandgap infrared (IR) luminescence around 1570 nm has been found in Si nanowires, nano rods and porous Si. PL measurements with samples immersed in different liquid media, for example, in aqueous HF (50%), concentrated H2SO4 (98%) and H2O2 established that the sub-bandgap IR luminescence originates from the Si/SiOx interface. Its origin was explained in terms of a simple recombination model through radiative interface states. EL in the sub-bandgap IR range has been observed in simple diodes prepared on porous Si and MQWs at room temperature. The results show the possibility to fabricate an efficient light emitter around 1570 nm wavelength based on the radiative recombination at the Si/Si oxide interface. Based on the knowledge about radiative transitions via the interface states, an improved understanding of luminescence in dislocated samples was proposed. N2 - In der vorliegenden Arbeit werden die elektrischen und Lumineszenzeigenschaften von verschiedenen Si-basierten Materialien mit Hilfe von Elektronenstrahlinduziertem Strom (EBIC), Kathodolumineszenz (CL), Photolumineszenz (PL) und Elektrolumineszenz (EL) untersucht. Die elektrischen Eigenschaften von Blockguss-Solar-Si wurden mittels EBIC an Proben aus verschiedenen Blockhöhen untersucht. Durch EBIC-Messungen an Parallelproben, die im Block unmittelbar benachbart waren, aber unterschiedlichen thermischen Prozessen unterzogen wurden, konnte die Wirkung ausgewählter Prozessschritte auf die Materialeigenschaften verfolgt werden. Aus den gemessenen Temperaturabhängigkeiten des EBIC-Kontrastes der Versetzungen lässt sich ableiten, dass in der Mitte des Blockes die Kontamination der Versetzungen mit metallischen Verunreinigungen gering ist, am Boden und in der Kappe aber deutlich höher. Das ist in guter Übereinstimmung mit der Höhnenverteilung der Verunreinigungen im Block. Es wurde festgestellt, dass Phosphordiffusionsgetterung (PDG) mit anschließendem Feuern einer aufgebrachten SiN-Schicht die Rekombinationsaktivität der ausgedehnten Defekten bei Raumtemperatur deutlich reduziert und gleichzeitig die Volumenqualität verbessert. Die Verbesserung wird auf Getterung von metallischen Verunreinigungen infolge PDG und die Passivierungswirkung des SiN-Feuerns zurückführt. Um die Faktoren, die die Eigenschaften dünner polykristalliner, mittels sogenannter Al-induzierter Schichtaustauschtechnik (Alile) hergestellter Si-Schichten besser verstehen zu können, wurden als Modellsystem für die Untersuchung des Einflusses von Substrate und Prozesstemperatur Epischichten auf (111)- und (100)-orientierten einkristallinem Si abgeschieden. Es wurde festgestellt, das Epischichten auf (100) Si versetzungsfrei wachsen nachgewiesen hat, während Epischichten auf (111) Si eine hohe Versetzungendichte bei 450 °C aufweisen. Die Dichte der Verstzungen nimmt mit steigender Substrattemperatur (TS) ab. Die aus der energienabhängigen Messungen der EBIC-Sammlungseffizienz ermittelten Diffusionslängen zeigen für (111) Si eine Zunahme der Schichtqualität mit steigender TS bis 650 °C, und einen Abfall für 700 °C. Das Abfallen der Diffusionslänge bei 700 °C deutet daraufhin, dass die Ausscheidungsbildung nicht effektiv ist und sich die Verunreinigungen fast gleichmäßig in der Schicht verteilen. Da die Verunreinigungen aktive Rekombinationszentren und Lebensdauerkiller für Minoritätsladungsträger sind, nimmt so die Diffusionslänge ab. PL-Messungen an auf (100)- und (111)-Si gewachsenen Epischichten haben keine versetzunginduzierte Lumineszenz (DRL) D1-D4 nachgewiesen. In der Alile-Probe tritt dagegen ein intensives DRL-Siganl auf. Dies bedeutet, dass die Versetzungen in der Alile-Probe relativ sauber sind, was wahrscheinlich auf eine Al-induzierte Getterung von Verunreinigungen zurückzuführen ist. Die Diffusionslänge in der dünnen oberen Schicht von SOI-Proben wurde erfolgreich mittels EBIC gemessen, indem die Oberflächenrekombination an der Oberfläche und an der vergrabenen Oxidschicht mit Hilfe angelegter Spannungen unterdrückt wurde. Die gemessene effektive Diffusionslänge ist mehrfach länger als der Schichtdicke. Durch direktes Bonden von Si-Wafern hergestellte Versetzungsnetzwerke wurden mit EBIC hinsichtlich ihrer elektrischen Eigenschaften untersucht. Es wurde beobachtet, dass die Netzwerke Ladungssammlung und elektrische Leitung zeigen. Bei bestimmten Strahlenergien wurden Inhomogenitäten der Ladungssammlung nachgewiesen. Das Verhalten des EBIC-Kontrastes dieser Inhomogenitäten kann unter der Berücksichtigung der positiv geladenen Sauerstoffausscheidungen im Netzwerk und der mit Majoritätsträgern beladenen Versetzungen verstanden werden. Das Auftreten von Dunkel- oder Hellkontrast hängt stark vom Verhältnis zwischen Ladungssammlung und Rekombinationverlust am Netzwerk ab. Die Lumineszenzeigenschaften von Si-Nanostrukturen (Si-Nanodrähte, Nanostäbe, poröses Si und Si/SiO2 Multi-Quantentöpfe (MQW)) sind ein anderes wichtiges Thema der Arbeit. Ein infrarotes Lumineszenzband im „sub-bandgap“-Bereich wurde in Si-Nanodrähten, Nanostäben und porösem Si entdeckt. PL-Messungen in flüssigen Medien wie HF (50%), H2SO4 (98%) und H2O2 ergaben, dass das Lumineszenzband von der Si/SiOx-Grenzfläche stammt. Zur Erklärung dieses Bandes wurde ein einfaches Rekombinationsmodel via Grenzflächenzustände vorgeschlagen. EL-Messungen an Dioden aus porösem Si und MQW zeigten infrarote Lumineszenz im „sub-bandgap“-Bereich bei 300 K. Die Ergebnisse demonstrieren die Möglichkeit, einen effizienten Lichtemitter bei 1570 nm Wellenlänge auf der Basis strahlender Rekombination an der Si/SiOx-Grenzfläche herzustellen. Basierend auf dem Wissen über strahlende Rekombination an der Si/SiOx-Grenzfläche, wurde ein modifiziertes Verständnis der Lumineszenz in versetztem Si vorgeschlagen. KW - Siliciumverbindungen KW - Werkstoffkunde KW - Silicium KW - Elektrische Eigenschaft KW - Optische Eigenschaft KW - Versetzungsnetzwerk KW - Elektrische Leitfähigkeit KW - Diffusionslänge in SOI-Schichten KW - Solarzellen KW - Infrarote Lumineszenz im Sub-bandgap-Bereich KW - Dislocation network KW - Electrical conductivity KW - Diffusion length in SOI layer KW - Solar cells KW - Sub-bandgap infrared luminescence from Si/SiOx interface Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-14030 ER - TY - THES A1 - Oriwol, Daniel T1 - Die Versetzungsstruktur von multikristallinem Silicium aus der industriellen VGF-Blockkristallisation T1 - The dislocation structure of multicrystalline silicon made by industrial block casting N2 - Die vorliegende Arbeit befasst sich mit der Struktur und der Entwicklung von Versetzungen in multikristallinen Siliciumblöcken aus der gerichteten Blockkristallisation. Versetzungen können für die Rekombination von Ladungsträgern verantwortlich sein und damit den Wirkungsgrad von Solarzellen und -modulen mindern. Die experimentelle Arbeit gliedert sich bezüglich ihrer Fragenstellung und der Methodenwahl in drei Teile und wird in den Kapiteln 2 bis 4 behandelt. In Kapitel 2 wird die Defektstruktur vieler Siliciumblöcke mittels automatisierten Verfahren untersucht. Die Analysemethoden umfassen dabei die Auswertung der Wafertextur und der Infrarot-Durchlichtbilder sowie Ätzgrubendichtezählung (EPD) und Photolumineszenz (PL). Der Betrachtungsabstand ist makroskopisch und die Ergebnisse geben das Verhalten von vielen Versetzungen wieder. Die Versetzungsstruktur in multikristallinem Silicium ist geprägt durch scharf abgegrenzte Bereiche mit sehr hoher Versetzungsdichte. Diese sog. Versetzungscluster bestehen aus einem Netzwerk aus Versetzungs-Pile-ups (Kleinwinkelkorngrenzen) und können in sogenannte leichte und dichte Cluster unterschieden werden. Die Versetzungscluster haben im Siliciumblock einen Ausgangspunkt, von dem aus sie sich ausbreiten. Dieser befindet sich hauptsächlich an Korngrenzen und generiert sich spontan während der Erstarrung in der Nähe der Phasengrenze. Das Auftreten von leichten und dichten Clustern ist abhängig von der Kornorientierung parallel zur Wachstumsrichtung. Körner mit Orientierungen nahe <111>, <211> und <311> neigen dazu leichte Cluster auszubilden, während Körner mit Orientierungen um <110>, <331> und <531> eher dichte Cluster ausbilden. Kornorientierungen um <100> und <511> sind unauffällig bzgl. der Ausbildung von Versetzungsclustern. Der Zusammenhang liegt in der Orientierung der Gleitebenen begründet. Kapitel 3 behandelt die strukturelle Untersuchung der Versetzungen mit der Transmissionselektronenmikroskopie (TEM) sowie der Synchrotron- Röntgentopographie (WB-XRT). Die Versetzungen formen streng geordnete Pile-ups, welche letztendlich Kleinwinkelkorngrenzen entlang der Wachstumsrichtung ausbilden. Der Versetzungsabstand beträgt etwa 30 bis 800 nm, was mit einer Verkippung in der Kristallorientierung von 0,3 bis 0,07 ° korrespondiert. Die Rotation der Kristallorientierung verläuft hauptsächlich um eine Achse parallel zur Wachstumsrichtung. Anhand dieser Beobachtungen wurde ein Modell zur Abschätzung der Versetzungsdichte aufgestellt. Für die leichten Cluster beträgt diese ca. 2*10^5 cm^2 und für die dichten Cluster etwa 3*10^7 cm^2. Die Auswirkungen der Versetzungsstruktur auf die elektrischen Eigenschaften werden in Kapitel 4 behandelt. Mit Electron Beam Induced Current (EBIC) und Dunkel-Lock-In-Thermographie (DLIT) wurde herausgestellt, dass vor allem solche Versetzungen elektrisch aktiv sind, welche sich zu Kleinwinkelkorngrenzen angeordnet haben. Ein niedriger Versetzungsabstand innerhalb der Subkorngrenzen scheint nur eine Bedingung für eine elektrische Aktivierung zu sein. Ein Zusammenhang zwischen dem Betrag der Verkippung einer Subkorngrenze und dem EBIC-Kontrast konnte nicht hergestellt werden. In der abschließenden Diskussion (Kap. 5) wird ein Modell zur Entstehung und Evolution von Versetzungsclustern vorgeschlagen. Die Versetzungscluster generieren sich hauptsächlich an Korngrenzen. Dabei werden die Kleinwinkelkorngrenzen durch die Restrukturierung von Versetzungen sekundär gebildet. Die Ergebnisse legen nahe, dass dies während der Erstarrung unmittelbar nach der Phasengrenze geschieht. Die treibenden Kräfte sind demnach thermische Spannungen an der Erstarrungsfront. Die Versetzungen und damit die Subkorn-Strukturen erreichen die Phasengrenze und bleiben bei der weiteren Kristallisation erhalten, sodass die kontinuierlich auftretenden thermischen Spannungen mit neuen Versetzungen und damit mit erneuter Bildung von Versetzungen und Subkorngrenzen abgebaut werden müssen. Durch diesen Vererbungseffekt erhöht sich die Versetzungsdichte stetig mit steigender Blockhöhe. Im Abschluss werden Maßnahmen zur Reduktion der Versetzungsdichte im Kristallisationsprozess diskutiert. Beim Ankeimen am Tiegelboden oder während der Erstarrung sollten geeignete Kornorientierungen bevorzugt werden. Eine weitere Maßnahme ist die Reduktion der radialen thermischen Spannungen während der Kristallisation. Unbekannt bleibt die genaue, atomare Ursache der erhöhten Versetzungsgeneration an Korngrenzen und die damit verbundene spontane Bildung von Versetzungsclustern. Weiterhin bleibt offen, ob und in welchem Umfang Lomer-Cottrell-Versetzungen innerhalb der Subkorngrenzen gebildet werden und welchen Einfluss diese auf die elektrische Aktivität haben. N2 - This work deals with the structure and evolution of dislocations in multicrystalline silicon ingots made by industrial block casting. Dislocations can act as recombination active centres and therefore be detrimental for the solar cell efficiency. Concerning the topics the experimental work can be divided into three parts treated in chapter 2 to 4. In chapter 2, the defect structure is investigated in dependence of the grain structure by automatized methods. These are the analysis of texture and IR-transmission pictures as well as etch pit density measurements and photoluminescence. The macroscopic viewing distance provides information about the behaviour of many dislocations. The dislocation structure is characterized by regions of high dislocations density lying site by site to regions with low dislocation densities. These so called dislocation clusters are made of a network of pile-up (low angle subgrain-boundaries) and can be divided into two types, called light clusters and dense clusters. The clusters are formed spontaneously mostly at grain boundaries in the vicinity of the liquid-solid interface during the crystallization. The occurrence of the two types of clusters depends on the crystal grain orientation parallel to the growth direction. Grains with orientations near <111>, <211> and <311> tend to build light clusters, whereas grains with orientations near <110>, <331> and <531> tend to build dense clusters. Grains with orientations near <100> and <511> appear to have a small tendency to build clusters at all. This correlation may be explained by the orientations of the slip systems. If two independent {111} glide planes are oriented parallel or nearly parallel to the growth direction a tendency to build dense cluster is given. With higher deviation from this condition the grains tend to build light clusters. Chapter 3 deals with the structural investigation by means of transmission electron microscopy and white-beam X-ray topography. It is shown that dislocations arrange into up pile ups and eventually build up subgrain boundaries lying along growth direction. The dislocation distances within the subgrain boundaries ranges from 30 to 800nm which corresponds to a rotation in the crystal orientation from 0.3 to 0.07 °. The rotation axis lies parallel to the growth direction. With these observations, an estimation of the dislocation density within the subgrain boundaries has been developed. The dislocation densities amount to 2*10^5 cm^2 for light clusters and 3*10^7 cm^2 for dense clusters, respectively. The impact of the dislocation structure on the electrical properties is treated in chapter 4. It is shown by means of electron beam induced current (EBIC) and dark lock-in thermography (DLIT) that subgrains within the dislocations clusters are the main recombination active defects. Regions of low dislocation density have no electrical effect for photovoltaic application. A small dislocation distance within the subgrains seems to be only one condition for the electrical activity. A correlation between the misorientation due to the subgrain and the EBIC-contrast could not be found. A decoration of the dislocations by impurities (in particular transition metals) is necessary as well. Furthermore, the influence of Lomer-Cottrell dislocations is discussed. A model for the generation and evolution of a dislocation cluster is given. These clusters are mainly generated at grain boundaries, although the exact source could not be identified. It is evidenced by the experimental results that the dislocations build up subgrain boundaries in the vicinity of the phase boundaries. The driving force for the dislocation generation is the thermal stress at the interface. During the crystallization, the dislocations reach the interface and are forced to growth further due to the proceeding interface. Thus the thermals stresses at the interface have to be released by the generation of new dislocations and subgrain boundaries. Due to this inheritance effect the dislocation density increases continuously during the crystallization. In the final part, methods for the reduction of the dislocation density are discussed. During seeding and crystallization the grain orientation along growth direction should be influenced. Grains growing in orientations near h100i are recommended, but grains with orientations about h110i should be avoided. A further method to reduce the dislocations density is to avoid radial thermal stresses. This work and its classification of dislocations clusters is a basis for further investigations. Extensive investigations by means of TEM and WB-XRT would be necessary to obtain closer information of the composition of subgrain boundaries. The nature of the source of dislocation clusters within the grain boundaries remains unexplained. Furthermore, it might be an interesting question how much Lomer-Cottrell dislocations play a role regarding the electrical activity of subgrain boundaries. KW - Versetzungen KW - Multikristallines Silicium KW - Gerichtete Erstarrung KW - Synchrotron Röntgentopographie KW - Transmissionselektronenmikroskopie KW - Dislocation KW - Multicrystalline silicon KW - Directional soldification KW - Synchrotron X-Ray topography KW - Transmission electron microscopy KW - Silicium KW - Polykristall KW - Versetzung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-31553 ER - TY - THES A1 - Arguirov, Tzanimir Vladimirov T1 - Electro-optical properties of dislocations in silicon and their possible application for light emitters T1 - Elektro-optischen Eigenschaften von Versetzungen in Silizium und deren mögliche Anwendung für Licht-Emitter N2 - This thesis addresses the electro-optical properties of silicon, containing dislocations. The interest in those properties is driven mainly by two practical reasons. One is the optical characterisation of multicrystalline silicon for solar cells, and the other is the design of light emitting diodes based on silicon by enhancement of silicon radiative properties via introduction of dislocations. The work demonstrates that dislocation specific radiation may provide a means for optical diagnostics of solar cell grade silicon. It provides insight into the mechanisms governing the dislocation recombination activity, their radiation, and how are they influenced by other defects present in silicon. We demonstrate that photoluminescence mapping is useful for monitoring the recombination activity in solar cell grade silicon and can be applied for identification of contaminants, based on their photoluminescence signatures. It is shown that the recombination at dislocations is strongly influenced by the presence of metals at the dislocation sites. The dislocation radiation activity correlates with their electrical activity. Thus, photoluminescence mapping at room temperature may provide a means for revealing and characterising of dislocation-rich regions in multicrystalline silicon. It is shown that the dislocation and band-to-band luminescence are essentially anti-correlated. The band-to-band intensity being related to the diffusion length of minority carriers can be used for measurements of diffusion length, as long as the surface recombination rate is controlled. Moreover, photoluminescence mapping can be used for the detection of optically active defects in solar grade materials. Thus, betaFeSi2 precipitates, with a luminescence at 0.8 eV, were detected within the grains of block cast materials. They exhibit a characteristic feature of quantum dots, namely blinking. The second aspect of the thesis concerns the topic of silicon based light emitters for on-chip optical interconnects. The goal is an enhancement of sub-band-gap or band-to-band radiation by controlled formation of dislocation-rich areas in microelectronics-grade silicon as well as understanding of the processes governing such enhancement. For light emitters based on band-to-band emission it is shown, that internal quantum efficiency of nearly 2 % can be achieved, but the emission is essentially generated in the bulk of the wafer. On the other hand, light emitters utilizing the emission from dislocation-rich areas of a well localized wafer depth were explored. Three different methods for reproducible formation of a dislocation-rich region beneath the wafer surface were investigated and evaluated in view of their room temperature sub-band-gap radiation: (1) silicon implantation and annealing, (2) epitaxially grown SiGe buffer, and (3) direct wafer bonding. The most promising dislocation-based emitter appears the utilization of a dislocation network produced by wafer bonding. It is shown, that monochromatic D1 radiation (wavelength 1.5 µm) can be generated in a well localised depth of the wafer. The radiation is not absorbed in silicon and such localized emitter can, potentially, be coupled with silicon waveguides and Ge-based detectors for optical interconnects. N2 - Diese Dissertation befasst sich mit den elektro-optischen Eigenschaften von Silizium mit Versetzungen. Das Interesse an den Versetzungseigenschaften beruht vor allem auf zwei praktischen Gründen: Die versetzungsspezifische Lumineszenz erlaubt einerseits optische Charakterisierung von multikristallinen Silizium für Solarzellen und anderseits die Entwicklung einer Silizium-basierten Leuchtdiode. Die Arbeit untersucht zunächst den Einsatz der Versetzungs-spezifische Lumineszenz für die optische Diagnostik von multikristallinen (Versetzungsreichen) Silizium für Solarzellen. Sie liefert Erkenntnisse über die Mechanismen für die versetzungsbedingte Rekombination, Versetzungsstrahlung, und darüber, wie diese durch andere Defekte im Silizium beeinflusst werden. Es wird gezeigt, dass Photolumineszenz-Mapping anwendbar ist für eine großflächige Analyse der Rekombination in Solarzellen-Silizium und für die Identifizierung von Verunreinigungen angewendet werden kann. Es wird gezeigt, dass metallische Verunreinigungen starken Einfluss auf die Rekombination im Bereich der Versetzungen haben und dass die Strahlungsaktivität mit ihrer elektrischen Aktivität korreliert. Versetzungs- und Band-Band-Lumineszenz sind im Wesentlichen antikorrelieret. Die Band-Band-Intensität ist abhängig von der Diffusionslänge der Minoritätsladungsträger. Daher kann Band-Band Strahlung als Maß für die Diffusionslänge benutzt werden, sofern die Oberflächenrekombination bekannt ist. Darüber hinaus kann Photolumineszenz-Mapping auch für den Nachweis von optisch aktiven Defekten in Solarzellen-Silizium verwendet werden. So wurden betaFeSi2 Ausscheidungen, mit einer Strahlungsenergie von 0,8 eV, innerhalb der Körner von Blockguss Silizium nachgewiesen. Sie zeigen ein charakteristisches Merkmal von Quantenpunkten, das sogenannte Blinken. Der zweite Aspekt der Forschung steht im Zusammenhang mit der Suche nach Silizium-basierten Licht-Emittern für On-Chip optische Interconnects. Das Ziel ist, durch kontrollierte Bildung von versetzungsreichen Gebieten in der Silizium Wafer eine Erhöhung des Sub-Bandgap oder Band-Band-Strahlung zu erreichen und die Prozesse, welche für eine solche Erhöhung verantwortlich sind zu verstehen. Es wird gezeigt, dass Band-Band Licht-Emittern eine interne Quanten-Effizienz von fast 2% erreichen können, aber die Emission entsteht im Wesentlichen im gesamten Volumen des Wafers. Licht Emitter, welche die Emission von versetzungsreichen Gebieten ausnutzen, können dagegen in einer definierten Tiefenschicht eingeschränkt werden. Drei verschiedene Methoden zur reproduzierbaren Bildung der versetzungsreiche Regionen unterhalb der Wafer-Oberfläche wurden untersucht und im Hinblick auf ihre Raumtemperatur Sub-Bandgap-Strahlung bewertet: (1) Silizium-Implantation und Ausheilen, (2) epitaktisch gewachsene SiGe-Puffer, und (3) direktes Wafer-Bonding. Wafer-Bonding erscheint am besten geeignet für versetzungsbasierte Lichtemitter. Es wird gezeigt, dass monochromatische D1-Strahlung (Wellenlänge 1,5 mm) erzeugt werden kann in einer gut lokalisierten Tiefe der Wafer. Die Strahlung wird nicht in Silizium absorbiert und solche lokalisierten Emitter sind möglicherweise geeignet für die Kopplung mit einem Silizium-Wellenleiter und Ge-Detektor für eine optische Interconnects. KW - Silicium KW - Versetzung KW - Lumineszenz KW - Lumineszenz KW - Versetzungen KW - Silizium KW - Luminescence KW - Dislocations KW - Silicon Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-5837 ER - TY - THES A1 - Trushin, Maxim T1 - Electronic properties of interfaces produced by silicon wafer hydrophilic bonding T1 - Elektronische Eigenschaften durch hydrophiles Bonden von Siliziumwafern erzeugter Grenzflächen N2 - The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. Practical interest for the investigations in this area issued – first of all – from the potential application of such dislocation networks in microelectronics as all-Si light emitter for on-chip interconnection. Besides, dislocation networks may serve as a perfect model object to get new information about the fundamental properties of dislocations and grain boundaries in Si, what is of particular importance for multicrystalline silicon solar cells performance. Despite of a long story of studying of dislocations in silicon, a new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle (~0,5°), but with four different twist misorientation angles Atw (being of <1°, 3°, 6° and 30°, respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1° and 3°, whereas the prevalent deep levels – in LA-samples with Atw of 6° and 30°. The critical twist misorientation angle separating SA- and LA- interfaces was estimated as Atw*≈ 3,5±0,5°, what agrees quiet well with the results of previous PL and TEM investigations. - For the dominating shallow traps in SA-samples (denoted as ST1/ST3 traps) a new phenomenon – that is ‘giant Poole-Frenkel effect’ of enhanced carrier emission due to dislocations elastic strain field was observed for the first time. Performed theoretical calculations have shown that in the investigated samples such an effect should be ascribed to the row of 60° dislocations rather than to the mesh of screw ones. In this respect, shallow traps ST1/ST3 were identified either with shallow 1D bands (directly or as being coupled with them) or with shallow stacking fault states on splitted 60° dislocation. - From the comparison and correlations of measured DLTS spectra with the results of PL and TEM investigations it was established, that shallow ST1/ST3 traps participate in D1 radiative recombination and that the structural elements, responsible for D1 luminescence of small-angle DNs, are the triple knots (intersections with screw dislocations) along the 60° dislocations. However, the optimal density of 60° dislocations as well as of triple knots, in other words – the optimal tilt and twist misorientation angles for maximal D1 intensity – needs further clarification. N2 - Die Doktorarbeit stellt Ergebnisse von Untersuchungen der elektronischen Eigenschaften und Defektzustände von durch direktes Waferbonden erzeugten Versetzungsnetzwerken in Siliziumwafern vor. Praktisches Interesse an diesen Untersuchungen resultiert vor allem aus der möglichen Nutzung solcher Versetzungsnetzwerke als Si-basierte Lichtemitter für die On-Chip-Datenübertragung in der Mikroelektronik. Außerdem können solche Versetzungsnetzwerke als perfektes Modellobjekt dienen, um neue Informationen über die grundlegenden Eigenschaften von Versetzungen und Korngrenzen in Si zu erhalten, die von erheblicher Bedeutung für die Leistungsfähigkeit der multikristallinen Si-Solarzellen sind. Trotz einer Vielzahl von vorangegangenen Untersuchungen an Versetzungen in Si konnte ein neuer Beitrag zum Verständnis der interessanten Eigenschaften von Versetzungen geleistet werden, der wesentlich auf der Nutzung eines neuen, kürzlich entwickelten Verfahrens zum Waferbonden aufbaut, mit dem es möglich geworden ist, ein regelmäßiges Versetzungsnetzwerk mit vordefinierten Versetzungstypen und Versetzungsdichten zu erzeugen. Die Proben für die Untersuchungen wurden durch hydrophiles Waferbonden hergestellt. Alle Proben wurden mit dem gleichen kleinen Fehlorientierungskippwinkel von ca. 0,5° gebondet, jedoch mit vier verschiedenen Fehlorientierungsverdrehungswinkeln von <1°, 3°, 6° und 30°, aus denen sich für die einzelnen Proben eine verschiedene Versetzungsmikrostruktur ergab. Der wichtigste experimentelle Ansatz dieser Arbeit ist die Durchführung von Messungen des Stromes und der Kapazität von Schottky-Dioden an Proben, die Versetzungsnetzwerke in einer solchen Tiefe enthielten, dass alle Möglichkeiten der verschiedenen Methoden der Raumladungszonen-Spektroskopie (wie CV/IV, DLTS, ITS) genutzt werden konnten. Die Zielstellungen der Untersuchungen umfassten die Erfassung der elektronischen Zustände in der Bandlücke, die mit dem Versetzungsnetzwerk in Verbindung stehen, deren Abhängigkeit von der graduell modifizierten Geometrie des Versetzungsnetzwerkes, die Untersuchung des Einflusses des elektrischen Feldes auf die Ladungsträgeremission aus den versetzungsbezogenen Zuständen sowie die Herstellung von Korrelationen zwischen elektrischen, optischen (Photolumineszenz – PL) und strukturellen (TEM) Eigenschaften der Versetzungsnetzwerke. Die wichtigsten Schlussfolgerungen aus den experimentellen Untersuchungen und theoretischen Berechnungen können wie folgt formuliert werden: - Die DLTS-Messungen zeigen einen großen Unterschied in der elektronischen Struktur von Netzwerken, die mit kleinem Winkel (SA) oder großem Winkel (LA) der Fehlorientierung gebondet wurden. Flache Zustände und etwa 6-7 tiefe Niveaus wurden in SA-Proben mit Verdrehungswinkeln von 1° und 3° gefunden, während für LA-Proben mit 6° und 30° Verdrehungswinkel tiefe Zustände vorherrschen. Der kritische Winkel, welcher die SA- von den LA-Proben trennt, ist etwa 3,5 ± 0,5 °, was auch mit den Ergebnissen der bisherigen PL- und TEM-Untersuchungen übereinstimmt. - Für die dominierenden flachen Zustände in den SA-Proben (bezeichnet als ST1/ST3- Haftstellen) wurde erstmalig ein neues Phänomen beobachtet – der so genannte "Riesen-Poole-Frenkel-Effekt" der verstärkten Ladungsträgeremission infolge des elastischen Verzerrungsfeldes der Versetzungen. Durchgeführte theoretische Berechnungen haben gezeigt, dass in den untersuchten Proben dieser Effekt nicht den Schraubenversetzungen, sondern den 60°-Versetzungen zugeschrieben werden muss. In diesem Zusammenhang konnten die flachen Haftstellen ST1/ST3 entweder als flache 1-D Bändern oder als flache Stapelfehlerzustände an aufgespaltenen 60°-Versetzungen identifiziert werden. - Durch Vergleich und Korrelation der gemessenen DLTS-Spektren mit den Ergebnissen der PL- und TEM-Untersuchungen wurde festgestellt, dass die flachen ST1/ST3-Haftstellen an der strahlenden D1-Rekombination beteiligt sind und dass die Dreifachknoten (Schnittpunkte) entlang der 60°-Versetzungen die Strukturelemente darstellen, die für die D1- Lumineszenz an Kleinwinkelnetzwerken verantwortlich sind. Daher sind für eine hohe Intensität der D1-Luminszenz sowohl Verdrehung wie auch Verkippung wichtig, wobei für die Angabe der optimalen Dreh- und Kippwinkel weitere Spezifizierung nötig ist. KW - Elektronische Eigenschaft KW - Siliciumbauelement KW - Bonden KW - Wafer KW - Silicium KW - Versetzungsnetzwerk KW - Poole-Frenkel Effekt KW - DLTS KW - D1 Lumineszenz Band KW - Dislocation networks KW - DLTS KW - Poole-Frenkel effect KW - D1 Luminescence band Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-22841 ER - TY - THES A1 - Krause, Christoph T1 - Investigation of particular crystal defects in solar silicon materials using electron beam techniques T1 - Untersuchung ausgewählter Kristalldefekte in Solarsilizium unter Verwendung von Elektronensondenverfahren N2 - The aim of this work is to describe and explain the properties of defects in multicrystalline (mc) and thin-film solar silicon (Si). For this reason, investigations with scanning electron microscope methods were performed, namely cathodoluminescence (CL), electron beam induced current (EBIC), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, photoluminescence (PL) and reverse-biased electro luminescence (ReBEL) measurements were also conducted. Through correlation of PL, ReBEL and EBIC, it was possible to localize breakdown sites at mc-Si solar cells. Problems that occurred during the thin-film EBIC investigations could be demonstrated and explained. For the first time cross sectional EBIC investigations could be performed on thin-film silicon tandem cells. At mc-Si, it was possible to observe the oxygen related P-line next to the common D1-line luminescence at 10 K clearly distinguishable from each other at once. Furthermore, a hitherto not comprehensively discussed intense luminescence line at 0.93 eV could be described in detail. Through correlation of PL, CL, EBIC, EBSD, and TEM measurements, the origin of the now named Di luminescence at 0.93 eV is postulated to be in connection with Frank partial dislocations, with two energetic levels inside the band gap, one at 112±9 meV below the conduction band and the other at 93±10 meV above the valence band. Finally, it was attempted to explain the behavior of twin boundaries at temperatures below 30 K, where these show an enhanced collection efficiency in comparison to the surrounding grains. An alteration of the local “freeze out” temperature, possibly by a local band gap narrowing, is suggested as a reason. Another conceivable explanation is a breakdown of the diode potential at the grains. N2 - Das Ziel dieser Arbeit ist es, das Auftreten von verschiedenen Defekten sowohl in multikristallinem als auch in Dünnschicht-Solar Silizium zu beschreiben. Die vielfältigen Möglichkeiten wie Defekte im Material auf Grund ihrer Eigenschaften nachgewiesen werden können wurden eingehend untersucht. Dazu wurden Rasterelektronenmikroskopie Verfahren wie Kathodolumineszenz (CL), Elektronenstrahl-induzierte Strom (EBIC) Messungen, rückgestreute Elektronenbeugungsuntersuchungen (EBSD) und Transmissionselektronenmikroskopie (TEM) durchgeführt. Außerdem wurden auch Ergebnisse aus Photolumineszenz (PL) und Elektrolumineszenz unter Sperrvorspannung (ReBEL) zur Defektcharakterisierung herangezogen. Durch die Korrelation von ReBEL, PL und EBIC Daten war es möglich, Durchbruchstellen in mc-Si Solarzellen zu lokalisieren und mögliche Ursachen für diese aufzuzeigen. Die Anwendung von EBIC an dünnen Siliziumschichten sowie die damit verbundenen Präparations-, Mess- und Analyseprobleme konnten gezeigt und erläutert werden. Es war außerdem erstmals möglich EBIC Messungen an Querschnitten von Dünnschicht-Silizium-Tandemzellen erfolgreich durchzuführen und dadurch Informationen über die Rekombinationsaktivität von Defekten in unterschiedlichen Schichten der Zellen zu sammeln. Bei der Durchführung von CL Messungen an mc-Si bei 10 K konnte gezeigt werden, dass die in der Literatur mit Sauerstoffpräzipitaten in Verbindung gebrachte Lumineszenz bei 0.77 eV (P-Linie), auch parallel zur D1-Linie klar unterscheidbar auftreten kann, was bis dahin in dieser Art noch nicht publiziert wurde. Neben der P-Linie konnte eine intensive Lumineszenz bei 0.93 eV festgestellt werden, die ebenfalls bei Raumtemperatur messbar ist. Diese bis dahin nicht umfassend beschriebene Lumineszenz, welche im Laufe der Arbeit die Bezeichnung Di-Linie erhielt, wurde detailliert untersucht und beschrieben. Dazu wurden die Ergebnisse von PL, CL, EBIC, EBSD und TEM miteinander korreliert. Durch die umfassenden Untersuchungen konnte ein Zusammenhang mit Frank Partialversetzungen postuliert werden. Für diese Defektlumineszenz könnten zwei Defektlevel in der Bandlücke, bei 112 ± 9 meV unterhalb des Leitungsbandes und 93 ± 10 meV oberhalb des Valenzbandes, verantwortlich sein. Im letzten Teil der Arbeit wurde versucht, das Sammlungsverhalten von Zwillingskorngrenzen bei Temperaturen unterhalb von 30 K zu erklären. In diesem Temperaturbereich zeigen Zwillingskorngrenzen eine erhöhte Sammlungseffizienz im Vergleich zu den umgebenen Körnern. Als Ursache dafür wird ein lokaler Unterschied in der “Ausfriertemperatur” der Ladungsträger vermutet. Um eine derartige Schwankung auszulösen, könnte eine lokale Verkleinerung der Bandlücke, möglicherweise spannungsinduziert, in Frage kommen. Eine ebenfalls in Betracht kommende Erklärung wäre ein Zusammenbruch des Diodenpotentials im Bereich der Körner. KW - Defects KW - Silicon KW - EBIC KW - CL KW - Di luminescence KW - Defekte KW - Silizium KW - EBIC KW - CL KW - Di Lumineszenz KW - Solarzelle KW - Silicium KW - Zuverlässigkeit Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-34846 ER - TY - THES A1 - Mankovics, Daniel T1 - Luminescence investigation of bulk solar silicon and silicon thin films on glass substrate T1 - Lumineszenz-Untersuchungen von bulk-Solarsilizium und Silizium-Dünnfilmen auf Glassubstrat N2 - The aim of this work is to study the optical properties of crystal defects in multicrystalline solar silicon and poly-/microcrystalline silicon thin films on glass substrate. First a setup for photoluminescence imaging on multicrystalline silicon solar wafers was developed. This system is suitable for detecting band-to-band luminescence as well as defect-related luminescence at room temperature on large-scale wafers at different stages of their processing. Spectroscopic photoluminescence investigations of multicrystalline silicon solar wafers indicated a new intense luminescence line at ≈ 0.91 eV at room temperature. The origin of this line is probably found in a specific grain boundary. Furthermore, luminescence in the region of 0.8 eV was investigated in detail, and it was found that probably oxygen is responsible for a peak at 0.77 eV at 80 K. Electroluminescence investigations at room temperature at both materials exhibit extended defect structures such as grain boundaries. Furthermore, it can be concluded that electroluminescence imaging in reverse bias mode indicate on serious breakdown points in solar cells, which can lead to destruction of solar cells and modules. By comparing defect-related and reverse bias electroluminescence images, a difference in the spatial distribution of defects emitting D1 radiation and defects emitting light under reverse bias beyond -12 V is detectable. In addition, there seems to be a correlation in the distribution of non-doping impurities and photoluminescence. Concerning this, vertical slabs of two silicon blocks were examined by means of Fourier-transform infrared spectroscopy and photoluminescence. A correlation of the distributions of interstitial oxygen and the band-to-band luminescence profiles could be found. Additionally, a correlation between D3/D4 luminescence profile and nitrogen distribution in the blocks was observed. Finally, the growth process, particularly the transition from amorphous to microcrystalline silicon by PECVD, was studied by combined photoluminescence and Raman investigations. Formation of silicon nano-grains was detected by means of photoluminescence and Raman spectroscopy. N2 - Das Ziel dieser Arbeit ist es, die optischen Eigenschaften von Kristalldefekten in multikristallinem Solarsilizium und poly-/mikrokristallinen Silizium-Dünnschichten auf Glas-Substrat zu studieren. Zuerst wurde ein Aufbau für Photolumineszenz-Imaging an multikristallinem Silizium-Solarwafern entwickelt. Dieses System eignet sich zur Erfassung von Band-zu-Band-Lumineszenz sowie Defekt-Lumineszenz bei Raumtemperatur großer Solarwafer nach verschiedenen Prozessschritten. Spektroskopische Photolumineszenz-Untersuchungen von multikristallinen Silizium-Solarwafern zeigte eine neue intensive Lumineszenzlinie bei ≈ 0.91 eV bei Raumtemperatur. Der Ursprung dieser Linie liegt wahrscheinlich in einer bestimmten Korngrenze. Weiterhin wurde die Lumineszenz im Bereich von 0.8 eV im Detail untersucht, und es wurde gefunden, dass wahrscheinlich Sauerstoff für einen Peak bei 0.77 eV bei 80 K verantwortlich ist. Elektrolumineszenz Untersuchungen bei Raumtemperatur an beiden Materialien zeigen ausgedehnte Defektstrukturen wie Korngrenzen. Darüber hinaus kann der Schluss gezogen werden, dass das Elektrolumineszenz-Imaging im Rückwärtsvorspannungs-Modus auf schwerwiegende Durchbruchstellen in Solarzellen hinweist, die zur Zerstörung von Solarzellen und Modulen führen kann. Durch Vergleich von Defektlumineszenz- und Sperrvorspannungs-Elektrolumineszenz-Bildern ist ein Unterschied in der räumlichen Verteilung der Defekte, die D1 emittieren, und der Durchbruchlumineszenz unter Sperrvorspannung über -12 V erkennbar. Außerdem gibt es Hinweise auf einen Zusammenhang bei der Verteilung von nicht-dotierenden Verunreinigungen und der Lumineszenz. Hierzu wurden vertikale Scheiben zweier Siliziumblöcke mittels Fourier-Transformations-Infrarotspektroskopie und Photolumineszenz untersucht. Eine Korrelation der Verteilung von interstitiellem Sauerstoff und den Band-zu-Band-Lumineszenz-Profilen konnte gefunden werden. Außerdem wird eine Korrelation zwischen dem D3/D4 Lumineszenzprofil und der Stickstoffverteilung in den Blöcken beobachtet. Schließlich wurde der Wachstumsprozeß, insbesondere der Übergang von amorphem zu mikrokristallinem Silizium mittels PECVD, durch Kombination der Photolumineszenz- und Raman-Methoden untersucht. Bildung von Silizium-Nanokörnern wurde mittels Photolumineszenz- und Raman-Spektroskopie detektiert. KW - Silicon KW - Defects KW - Photoluminescence KW - Luminescence imaging KW - Silicon thin films KW - Silizium KW - Defekte KW - Photolumineszenz KW - Lumineszenz-Imaging KW - Silizium-Dünnfilme KW - Silicium KW - Dünnschichttechnik KW - Solarzelle KW - Fehleranalyse Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-35196 ER - TY - THES A1 - Lublow, Michael T1 - Surface analytical characterization of horizontal and vertical nanotopographies at the silicon/silicon oxide/electrolyte phase boundaries T1 - Oberflächenanalytische Charakterisierung Horizontaler und Vertikaler Nanotopographien an der Silicium/Siliciumoxid/Elektrolyt Phasengrenzfläche N2 - Nanotopography development induced by photoelectrochemical in situ conditioning of silicon is followed using a combination of surface sensitive analysis techniques. In an etching study, vertical nanostructure analysis reveals a buried stressed layer within silicon, identified by Brewster-angle analysis (BAA). In conjunction with in system synchrotron radiation photoelectron spectroscopy (SRPES), a superior quality hydrogen terminated Si(111) surface could be prepared by obliteration of the intermediate stressed layer. Using a novel photoelectrochemical structure formation method, a variety of vertical nanotopographies has been generated and analyzed by in situ Brewster-angle reflectometry (BAR) and scanning probe microscopy (SPM). Shaping of the nanostructures became possible by real-time monitoring using BAR. Appearances range from aligned single nanoislands with improved aspect ratio to connected Si nano-networks. A model was developed to describe the nanostructure formation based on stress-induced selective oxidation. Increased local photo-oxidation is found to result in the formation of extended horizontal micro- and nanostructures with fractal properties. Within a defined light intensity range, the structures reveal the azimuthal symmetry of the investigated crystal planes (111), (100), (110) and (113). The observed features could be reproduced using a model that is based on the interplay of stress in silicon, oxidation by light generated excess holes and locally increased etching in fluoride containing solution. N2 - Die durch photoelektrochemische in situ Verfahren induzierte Nanostrukturbildung auf Silicium wird durch eine Kombination oberflächenempfindlicher Methoden untersucht. Durch schrittweise Abtragung eines Oberflächenoxids und durch die Analyse vertikaler Nanostrukturen wird eine verborgene Streßschicht mit Hilfe der Brewster-Winkel Analyse ermittelt. In Verbindung mit Synchrotron-Photoelektronenspektroskopie kann eine optimierte H-Terminierung von Si(111)-Oberflächen nach Entfernen des gestreßten Bereiches erzielt werden. Durch Anwendung einer neuartigen photoelektrochemischen Methode wurde eine Vielzahl vertikaler Nanostrukturen erzeugt, deren Morphologie Aspekt-optimierte nanoskopische Inseln sowie Nanostruktur-Netzwerke umfaßt. In Modellbetrachtungen wird eine streß-induzierte selektive Oxidation als Bildungsmechanismus vorgeschlagen. Verstärkte lokale Photooxidation wiederum führt zur Bildung ausgebreiteter Mikro- und Nanostrukturen, die in einem mittleren Bereich der Lichtintensität die azimutale Symmetrie der jeweiligen (111), (100), (110) und (113) Kristallorientierungen widerspiegeln. Modellhafte Simulationen basieren auf der Wechselwirkung von Streß im Siliciumkristall, lichtgenerierter Oxidation und erhöhter lokaler Materialabtragung in konzentrierter Ammoniumfluoridlösung. KW - Siliciumdioxid KW - Oberflächenanalyse KW - Silicium KW - Oberflächenanalyse KW - Selbstorganisierte elektrochemische Systeme KW - Optik KW - Silicon KW - Surface analysis KW - Self-organized electrochemical systems KW - Optics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-14390 ER -