TY - JOUR A1 - Richter, Jana A1 - Rachow, Fabian A1 - Israel, Johannes A1 - Roth, Norbert A1 - Charlafti, Evgenia A1 - Günther, Vivien A1 - Flege, Jan Ingo A1 - Mauss, Fabian T1 - Reaction mechanism development for methane steam reforming on a Ni/Al2O3 catalyst T1 - Entwicklung eines Reaktionsmechanismus für die Methan-Dampfreformierung an einem Ni/Al2O3-Katalysator N2 - In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steadystate fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios. N2 - In dieser Arbeit wurde ein zuverlässiger kinetischer Reaktionsmechanismus überarbeitet, um die detaillierten Reaktionswege der Dampfreformierung von Methan über einem Ni/Al2O3-Katalysator genau zu reproduzieren. Dazu wurden ein stationäres Festbettreaktorexperiment und ein 1D-Reaktor Katalysatormodell verwendet. Die Besonderheit dieses Experiments ist die Möglichkeit das axial aufgelöste Temperaturprofil des Katalysatorbetts zu messen, wodurch die Reaktionskinetik im Reaktor sichtbar wird. Dies ermöglicht es den tatsächlichen Einfluss der Reaktionskinetik auf das System zu verstehen. Während Messungen der reinen Gaskonzentration am Ausgang des katalytischen Reaktors Bedingungen nahe am Gleichgewicht zeigen, zeigt das hier dargestellte Temperaturprofil, dass es nicht ausreicht, die Entwicklung eines Reaktionsmechanismus auf Daten nahe am Gleichgewicht zu stützen. Die neuen experimentellen Daten ermöglichen es, eine wesentlich höhere Qualität bei der Modellierung zu erreichen. Durch eine sorgfältige Kontrolle der verfügbaren aktiven Oberfläche mittels Verdünnung im Experiment war es außerdem möglich, die Katalysatorumsatzrate zu verlangsamen, was bei der Anpassung der Reaktionskinetik hilfreich war. Um die Genauigkeit des überarbeiteten Mechanismus zu bewerten, wurde auch ein Monolith-Experiment aus der Literatur simuliert. Die Ergebnisse zeigen, dass der angepasste Reaktionsmechanismus in der Lage war, die experimentellen Ergebnisse für verschiedene Einlassmassenströme, Temperaturen und Dampf-Kohlenstoff-Verhältnisse genau vorherzusagen. KW - 1D modeling KW - Reaction rates KW - Methane steam reforming KW - Fixed-bed reactor experiments KW - Nickel catalyst KW - 1D-Modellierung KW - Reaktionsgeschwindigkeiten KW - Methan-Dampfreformierung KW - Festbettreaktor-Experimente KW - Nickel-Katalysator KW - Katalysator KW - Reaktionsmechanismus KW - Festbettreaktor KW - Steamreforming KW - Reaktionsgeschwindigkeit Y1 - 2023 U6 - https://doi.org/10.3390/catal13050884 ER - TY - JOUR A1 - Franken, Tim A1 - Netzer, Corinna A1 - Mauss, Fabian A1 - Pasternak, Michal A1 - Seidel, Lars A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Matrisciano, Andrea A1 - Kulzer, Andre Casal T1 - Multi-objective optimization of water injection in spark-ignition engines using the stochastic reactor model with tabulated chemistry N2 - Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher engine efficiency. The novel approach of this work is the development of a simulation-based optimization process combining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injection. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The application of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well-performing multi-objective optimization and an optimized set of engine operating parameters with water injection and high compression ratio is found. KW - Ottomotor KW - Water injection KW - Genetic optimization KW - Spark-ignition engine KW - Stochastic reactor model KW - Detailed chemistry KW - Wassereinspritzung KW - Prozessoptimierung KW - Stochastisches Modell Y1 - 2019 U6 - https://doi.org/10.1177/1468087419857602 SN - 1468-0874 SN - 2041-3149 PB - SAGE Publications CY - London, England ER -