TY - RPRT A1 - Schmidt, Johannes A1 - Buhl, Johannes A1 - Fügenschuh, Armin ED - Fügenschuh, Armin T1 - A finite element approach for trajectory optimization in Wire-Arc Additive Manufacturing T1 - Einsatz der Finite-Elemente-Methode zur Pfadoptimierung in Wire-Arc Additive Manufacturing N2 - In wire-arc additive manufacturing (WAAM), the desired workpiece is built layerwise by a moving heat source depositing droplets of molten wire on a substrate plate. To reduce material accumulations, the trajectory of the weld source should be continuous, but transit moves without welding, called deadheading, are possible. The enormous heat of the weld source causes large temperature gradients, leading to a strain distribution in the welded material which can lead even to cracks. In summary, it can be concluded that the temperature gradient reduce the quality of the workpiece. We consider the problem of finding a trajectory of the weld source with minimal temperature deviation from a given target temperature for one layer of a workpiece with welding segments broader than the width of the weld pool. The temperature distribution is modeled using the finite element method. We formulate this problem as a mixed-integer linear programming model and demonstrate its solvability by a standard mixed-integer solver. N2 - Beim Fertigungssprozess des Wire-Arc Additive Manufacturing (WAAM) wird ein Werkstück schichtweise durch eine sich bewegende Wärmequelle aufgebaut, die Tropfen aus geschmolzenem Schweißdraht auf eine Grundplatte aufbringt. Um Materialansammlungen zu reduzieren, sollte die Trajektorie der Schweißquelle zusammenhängend sein, aber Bewegungen ohne Schweißen, Deadheading genannt, sind ebenfalls möglich. Durch die enorme Hitze der Schweißquelle werden große Temperaturunterschiede verursacht, die zu einer Spannungsverteilung im Bauteil führen. Dadurch entsteht Verzug und sogar Risse können auftreten. Deshalb verringern große Temperaturunterschiede die Qualität des Werkstücks. Wir untersuchen das Problem, eine Trajektorie der Schweißquelle mit minimaler Temperaturabweichung von einer gegebenen Zieltemperatur für eine Lage eines Werkstücks mit Schweißsegmenten, die breiter als die Breite des Schweißbads sind, zu finden. Die Temperaturverteilung wird mit Hilfe der Finiten-Elemente-Methode modelliert. Wir formulieren dieses Problem als ein gemischt-ganzzahliges lineares Optimierungsmodell und demonstrieren seine Anwendbarkeit durch einen Standardlöser für gemischt-ganzzahlige Optimierungsprobleme. T3 - Cottbus Mathematical Preprints - 18, 2021 KW - Additive manufacturing KW - Heat equation KW - Path optimization KW - Finite element method KW - Mixed-integer linear programming KW - Additive Fertigung KW - Pfadoptimierung KW - Wärmeleitungsgleichung KW - Finite-Elemente-Methode KW - Gemischt-ganzzahlige lineare Programmierung KW - Rapid Prototyping KW - Wärmeleitungsgleichung KW - Bahnplanung KW - Ganzzahlige lineare Optimierung KW - Finite-Elemente-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-55753 ER - TY - RPRT A1 - Beisegel, Jesse A1 - Buhl, Johannes A1 - Israr, Rameez A1 - Schmidt, Johannes A1 - Bambach, Markus A1 - Fügenschuh, Armin T1 - Mixed-integer programming for additive manufacturing T1 - Gemischt-ganzzahlige Programmierung für die additive Fertigung N2 - Since the beginning of its development in the 1950s, mixed integer programming (MIP) has been used for a variety of practical application problems, such as sequence optimization. Exact solution techniques for MIPs, most prominently branch-and-cut techniques, have the advantage (compared to heuristics such as genetic algorithms) that they can generate solutions with optimality certificates. The novel process of additive manufacturing opens up a further perspective for their use. With the two common techniques, Wire Arc Additive Manufacturing (WAAM) and Laser Powder Bed Fusion (LPBD), the sequence in which a given component geometry must be manufactured can be planned. In particular, the heat transfer within the component must be taken into account here, since excessive temperature gradients can lead to internal stresses and warpage after cooling. In order to integrate the temperature, heat transfer models (heat conduction, heat radiation) are integrated into a sequencing model. This leads to the problem class of MIPDECO: MIPs with partial differential equations (PDEs) as further constraints. We present these model approaches for both manufacturing techniques and carry out test calculations for sample geometries in order to demonstrate the feasibility of the approach. N2 - Die gemischt-ganzzahlige Programmierung (GGP) wurde seit Beginn ihrer Entwicklung in den 1950er Jahren für eine Vielzahl praktischer Anwendungsprobleme, wie beispielsweise die Reihenfolgeoptimierung, eingesetzt. Exakte Lösungstechniken für GGPe, allen voran Verzweige-und-Begrenze-Techniken, haben (im Vergleich zu Heuristiken wie Genetischen Algorithmen) den Vorteil, dass sie Lösungen mit Optimalitätszertifikaten generieren können. Das neuartige Verfahren der Additiven Fertigung eröffnet eine weitere Perspektive für deren Einsatz. Mit den beiden gängigen Verfahren "Additive Fertigung mit Drahtlichtbogen" und "Laser-Pulverbett-Schmelzen" lässt sich die Reihenfolge planen, in der eine vorgegebene Bauteilgeometrie gefertigt werden sollte. Dabei ist insbesondere der Wärmeübergang innerhalb des Bauteils zu berücksichtigen, da zu hohe Temperaturgradienten beim Abkühlen zu Eigenspannungen und Verformungen führen können. Zur Integration der Temperatur werden Wärmeübergangsmodelle (Wärmeleitung, Wärmestrahlung) in ein mathematisches Reihenfolgemodell integriert. Dies führt zur Problemklasse von GGPPDGL: GGPe mit partiellen Differentialgleichungen (PDGLn) als weitere Nebenbedingungen. Wir stellen diese Modellansätze für beide Fertigungstechniken vor und führen Testrechnungen für Probegeometrien durch, um die Machbarkeit des Ansatzes zu demonstrieren. T3 - Cottbus Mathematical Preprints - 23, 2021 KW - Wire arc additive manufacturing KW - Laser powder bed fusion KW - Mixed-integer programming KW - Partial differential equations KW - Finite element method KW - Additive Fertigung mit Drahtlichtbogen KW - Laser-Pulverbett-Schmelzen KW - Gemischt-ganzzahlige Programmierung KW - Partielle Differenzialgleichungen KW - Finite-Elemente-Methode KW - Rapid Prototyping KW - Ganzzahlige Optimierung KW - Finite-Elemente-Methode KW - Partielle Differentialgleichung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-57317 ER - TY - RPRT A1 - Bähr, Martin A1 - Buhl, Johannes A1 - Radow, Georg A1 - Schmidt, Johannes A1 - Bambach, Markus A1 - Breuß, Michael A1 - Fügenschuh, Armin ED - Fügenschuh, Armin T1 - Stable honeycomb structures and temperature based trajectory optimization for wire-arc additive manufacturing N2 - We consider two mathematical problems that are connected and occur in the layer-wise production process of a workpiece using Wire-Arc Additive Manufacturing. As the first task, we consider the automatic construction of a honeycomb structure, given the boundary of a shape of interest. In doing this we employ Lloyd’s algorithm in two different realizations. For computing the incorporated Voronoi tesselation we consider the use of a Delaunay triangulation or alternatively, the eikonal equation. We compare and modify these approaches with the aim of combining their respective advantages. Then in the second task, to find an optimal tool path guaranteeing minimal production time and high quality of the workpiece, a mixed-integer linear programming problem is derived. The model takes thermal conduction and radiation during the process into account and aims to minimize temperature gradients inside the material. Its solvability for standard mixed-integer solvers is demonstrated on several test-instances. The results are compared with manufactured workpieces. N2 - Wir betrachten zwei verbundene mathematische Probleme, welche bei der schichtweisen Herstellung eines Werkstücks mittels des Lichtbogendraht-Auftragschweißen, einem additiven Fertigungsverfahren, auftreten. Als erste Aufgabe betrachten wir die automatische Konstruktion einer Wabenstruktur unter Berücksichtigung des Randes einer gewünschten Form. Dabei setzen wir Lloyds Algorithmus in zwei verschiedenen Varianten ein. Zur Berechnung der einbezogenen Voronoi-Parkettierung betrachten wir die Verwendung einer Delaunay-Triangulation und alternativ dazu der Eikonal-Gleichung. Wir vergleichen und modifizieren diese Ansätze mit dem Ziel, ihre jeweiligen Vorteile zu kombinieren. In der zweiten Aufgabe wird dann, um einen optimalen Weg für das Werkzeug zu finden, der eine minimale Produktionszeit zusammen mit einer hohen Qualität des Werkstücks garantiert, ein gemischt-ganzzahliges lineares Programm (MILP) hergeleitet. Das Modell berücksichtigt Wärmeleitung und Strahlung während des Prozesses und zielt darauf ab, Temperaturgradienten innerhalb des Materials zu minimieren. Die Lösbarkeit für Standard-MILP-Löser wird in mehreren Testfällen demonstriert. Die Ergebnisse werden mit real gefertigten Werkstücken verglichen. T3 - Cottbus Mathematical Preprints - 10, 2019 KW - Eikonal equation KW - Centroidal Voronoi tessellation KW - Additive manufacturing KW - Heat transmission KW - Mixed-integer linear programming KW - Geometric optimization KW - Additive Fertigung KW - Gemischt-ganzzahlige Programmierung KW - Geometrische Optimierung KW - Eikonal-Gleichung KW - Zentrierte Voronoi-Parkettierung KW - Wärmeleitung KW - Rapid Prototyping KW - Eikonal KW - Ganzzahlige Optimierung KW - Geometrische Optimierung KW - Wärmeleitung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-50796 SN - 2627-6100 ER -