TY - CHAP A1 - Segabinazzi Ferreira, Raphael A1 - Nolte, Jörg A1 - Vargas, Fabian A1 - George, Nevin A1 - Hübner, Michael T1 - Run-time hardware reconfiguration of functional units to support mixed-critical applications N2 - System reconfiguration of hardware resources has been done in multiple system domains. Such systems are usually found in the context of FPGAs, where reconfiguration is done usually over its primitives (e.g., LUTs, Flip-Flops). Or even in the context of MPSoC designs, where core management (e.g., lock-step operation in multi-core designs) is the most used approach. However, recent works have shown that configuration at Functional Units (FUs) granularity might come with benefits. For example, it can increase the configuration space due to its finer granularity, and, as a consequence, the options to deal with problems (e.g., due to aging) in the units itself. Within this context, this paper presents a system capable to configure its FUs (e.g., ALUs, multipliers, dividers) into different operation modes. The system uses an Operating System to control HW reconfiguration during process switching time and takes into account the health state of its units in a mixed-criticality applications scenario. Results show that, within this scenario, the system is able to reconfigure itself accomplishing health state modifications of its HW elements. KW - Reconfiguration KW - Functional units KW - Fine-grained KW - Mixed-criticality KW - Run-time KW - Rekonfiguration KW - Laufzeit KW - Funktionseinheit KW - Fehlererkennung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-51804 ER -