TY - THES A1 - Hund, Johannes T1 - Entwurf eines robusten drahtlosen Kommunikationssystems für die industrielle Automatisierung unter harten Echtzeitbedingungen auf Basis von Ultrawideband-Impulsfunk T1 - Design of a robust wireless communication system for industrial automation with hard real-time constraints based on ultra-wideband impulse radio N2 - Ziel dieser Dissertation war es, die Eignung von Ultra-Breitband-Pulsfunk (IR-UWB) für die drahtlose Kommunikation in der Sensor/Aktor-Ebene der Fertigungsautomatisierung zu untersuchen. Dazu wurde ein drahtloses Kommunikationssystem auf Basis standardisierter Protokolle entworfen und untersucht. Diese Anwendung erfordert die Erfüllung harter Echtzeitfähigkeit im Bereich weniger Millisekunden in industriellen Umgebungen. Ein solches Umfeld stellt aufgrund eines hohen Rauschpegels und vieler metallischer Oberflächen, die Multipfad-Effekte verursachen, sehr hohe Ansprüche an das Latenzverhalten und die Robustheit. Deshalb waren die Hauptziele die Reduzierung von Latenz und gleichzeitige Erhöhung der Robustheit für den existierenden, auf IR-UWB basierenden Standard IEEE 802.15.4a. Dieser Standard ist unter anderem deshalb vielversprechend, da er sich mit sehr preisgünstigen, nicht-kohärenten Empfängern von geringer Komplexität umsetzen lässt, die trotzdem relativ robust gegenüber Multipfad-Effekten sind. Es wurde gezeigt, dass sich auch mit diesen günstigen Geräten durch Optimierung des Standards eine hohe übertragungssicherheit bei geringer Latenz realisieren lässt. Es wurden Modifikationen zur Optimierung der Robustheit und Latenz des bisher üblichen Designs von nicht-kohärenten IR-UWB-Empfängern vorgestellt. Durch Ergänzungen zu der im Standard beschriebenen Modulation und Kodierung konnte die Verlässlichkeit zusätzlich gesteigert werden. Um diese optimierte PHY-Schicht effizient einsetzen zu können, wurde eine spezialisierte MAC-Schicht für die Automatisierung, die in einem Entwurf für den kommenden Standard IEEE 802.15.4e beschrieben wird, eingesetzt. Da bei dieser MAC-Schicht die Kommunikationsmuster im Voraus bekannt sind, war weitere schichtübergreifende, applikations-spezifische Optimierung möglich, die eine weitere Reduzierung der Latenz sowie eine Erhöhung der Robustheit erbrachte. Im Zuge der Arbeit wurde ein flexibel konfigurierbarer Simulator für IR-UWB auf Basis von industriell akzeptierten Kanalmodellen erstellt. Dieser Simulator wurde auch zur Evaluation und Verifikation der Forschungsergebnisse benutzt. Das entworfene Gesamtsystem ist über mehrere Parameter konfigurierbar und dadurch an weitere Anwendungen in der Automatisierung anpassbar. Eine dieser Konfigurationen wurde durch Simulation evaluiert. Sie zeigt mindestens die gleiche und zum Teil bessere Performance als bisherige drahtlose oder drahtgebundene Lösungen für die Sensor/Aktor-Ebene der Fertigungsautomatisierung, wie z.B. AS-Interface, Bluetooth I/O oder WISA. Für den repräsentativen Fall von 32 Teilnehmern mit jeweils einem Byte Prozessdaten erreicht sie eine Zykluszeit von 1,88 ms. Damit kann eine eine mittlere Reaktionszeit von 985 µs erreicht werden und eine harte Echtzeitschranke von 15 ms mit einer Fehlerwahrscheinlichkeit unter 10^-9 eingehalten werden. Das Kommunikationssystem wurde auch in Hardware auf FPGA-Basis implementiert. Da das benutzte analoge Front-End, ein früher Prototyp eines IEEE 802.15.4a-kompatiblen Front-Ends, noch keine repräsentativen Messungen zuließ, wurde die Funktion durch eine Basisbandverbindung über Kabel verifiziert. N2 - Goal of this thesis was to investigate the suitability of Ultra-Wideband Impulse Radio (IR-UWB) for wireless communication in the sensor-actuator layer of industrial factory automation by designing and evaluating a wireless communication system based on this technology. Another requirement was that the system should be using standardized protocols or products wherever possible. The application scenario results in hard real-time constraints in the order of few milliseconds. Those are to be fulfilled in rough environments with high noise figures and many metallic objects, that are causing a lot of multipath effects. Thus, the primary subjects were to reduce latency and improve robustness for the existing IR-UWB based standard IEEE 802.15.4a. A very appealing feature of that standard is that it allows the use of very cheap, low complexity non-coherent devices. It was discovered, that it is possible to improve the robustness of transmissions while still using these low-cost, low-complexity devices with only few additions to the existing standard. Several contributions to the state of the art of low-cost, low-complexity receiver design for IR-UWB and changes in modulation and coding were made to enhance the robustness of the existing standard. To use the resulting improved PHY layer efficiently, an exisiting specialized MAC layer for factory automation, as described in the draft standard IEEE 802.15.4e, was used. This MAC layer enabled further application specific cross-layer improvements that exploit the known communication pattern to provide a lower latency and higher resilience. The resulting communication system is configurable to adopt to different automation applications and provides at least equal and partly better performance than existing wire-bound or wireless solutions for the sensor-actuator level of industrial factory automation, like e.g. AS-Interface, Bluetooth I/O or WISA. For the representative case of 32 slave nodes with one byte of payload data each, the system provides a cyce time of 1.88 ms. It therefore allows to fulfill a hard realtime boundary of 15 ms with an error probability below 10^-9. During the work, a highly configurable simulator for IR-UWB based on industry-grade channel models has been developed to verify the results. The communication system was implemented in hardware based on FPGA. Since the RF-frontend was not ready for test, the verification of MAC and baseband functionality was acomplished using a baseband back-to-back test method. KW - Drahtloses lokales Netz KW - Ultraweitband KW - Breitbandübertragung KW - Echtzeitverarbeitung KW - UWB KW - Automatisierung KW - Echtzeit KW - Impulsfunk KW - IEEE 802.15.4a KW - UWB KW - Automation KW - Real-time KW - Impulse radio KW - IEEE 802.15.4a Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus-25219 ER - TY - THES A1 - Kreiser, Dan T1 - Optimierung und Erweiterung des IEEE 802.15.4a UWB-Standards für den Einsatz in Automatisierungssystemen T1 - Optimization and extension of the IEEE 802.15.4a UWB standard for usage in automation systems N2 - Der Einsatz funkbasierter Steuerungs- und Überwachungssysteme wird sich in den nächsten Jahren in der Automatisierungsindustrie wesentlich erhöhen. Funkbasierte Systeme sind flexibel, das heißt skalierbar, leicht rekonfigurierbar und mobil. Außerdem sind Funksysteme kostengünstig, insbesondere bei der Wartung. Dennoch müssen diese Systeme hohen Anforderungen genügen, wie Sicherheit, Zuverlässigkeit, Energieverbrauch, Geschwindigkeit und Wirtschaftlichkeit. Besonders wichtig für den Einsatz drahtloser Funktechnologien in Automatisierungssystemen ist die harte Echtzeitfähigkeit bei Zykluszeiten im Bereich von unter 1 ms bei Netzwerkgrößen von bis zu 127 Knoten bei einer bidirektionalen Kommunikation mit einer Nutzdatenmenge von bis zu 48 Byte je Sensorknoten. Eine weitere Herausforderung ist die Integration dieser Systeme in bestehende Infrastrukturen, wo Koexistenz mit bereits vorhandenen drahtlosen Systemen ein kritischer Faktor ist. Ziel dieser Arbeit ist es, die IR-UWB Funktechnik basierend auf dem Standard IEEE 802.15.4a so zu verbessern, dass sie die hohen Anforderungen der Automatisierungsindustrie erfüllt. Dabei soll gewährleistet werden, dass die Abweichungen im Vergleich zum Standard möglichst gering ausfallen und dass die Vorgaben der Regulierungsbehörden nicht verletzt werden. Diese Anforderungen begrenzen die Möglichkeiten der Optimierungen stark, was die Aufgabe noch schwieriger macht, aber zugleich wird damit sichergestellt, dass die Lösungen auch in realen Systemen eingesetzt werden können. In dieser Arbeit wurden sowohl komplexe theoretische Ansätze als auch Optimierungen der Implementierung ausgearbeitet, in Matlab simuliert und in einem FPGA implementiert. Anschließend wurde ein ASIC gefertigt. Um die hohen zeitlichen Anforderungen zu erfüllen, wurden die einzelnen Teile des UWB-Frames optimiert. Um dies zu erreichen mussten neue Synchronisations- und Datenübertragungs-Verfahren entwickelt werden. Dieses Verfahren ermöglicht eine parallele bidirektionale Kommunikation mit einer variablen Anzahl an Sensorknoten (bis zu 127). Eine Kombination verschiedener Fehlerkorrekturverfahren (Reed-Solomon-Code und Hamming-Code) wurde untersucht, um die Zuverlässigkeit zu erhöhen. Zusätzlich wurde ein Fehlerkorrekturverfahren für ternäre Impulssequenzen mit geringem Overhead ausgearbeitet. Dieses Verfahren erlaubt eine ausreichend gute Fehlerkorrektur und erlaubt im Gegensatz zu der Fehlerkorrektur mit dem Reed-Solomon-Code das Einhalten der zeitlichen Anforderungen. Das Hauptergebnis dieser Arbeit ist ein für IR-UWB optimiertes Übertragungskonzept, welches eine zuverlässige und energieeffiziente Datenübertragung von unter 1 ms für einen Master und 127 Slaves ermöglicht. Teile dieses Verfahrens wurden in Hardware gefertigt und experimentell evaluiert. Wenn alle vorgeschlagenen Optimierungen verwendet werden, kann die Zykluszeit im Vergleich zum IEEE 802.15.4a Standard, um 95% reduziert werden. Der Energieverbrauch des gesamten Netzwerkes sinkt dabei um 65%. Einige der vorgeschlagenen Verbesserungen wurden implementiert und für die übrigen wurde gezeigt, wie sie implementiert werden können. Der Einfluss weiterer Faktoren, wie die Umschaltzeit zwischen Sender und Empfänger, und deren Auswirkungen auf den Energieverbrauch wurden untersucht. Im Rahmen dieser Doktorarbeit entstand eine standardkonforme IR-UWB Einzelchiplösung, die um Eigenschaften erweitert wurde, die vom Standard, abweichen, aber notwendig sind um die Anforderungen der Automatisierungsindustrie zu erfüllen. Die gefertigte Variante der Einzelchiplösung enthält nicht alle in dieser Arbeit vorgeschlagenen Optimierungen, ist aber dennoch in der Lage die Zykluszeit um 57% zu verkürzen. Obwohl dieser Chip viele zusätzliche Features bietet, wurde die Komplexität und somit auch die benötigte Chipfläche um 43% reduziert. N2 - The use of radio-based systems in the automation industry will increase in the next years. Radio-based systems offer a number of advantages compared to wired systems, such as flexible network topology, mobility, and lower maintenance cost. However, such systems need to meet high standards of safety, reliability, power consumption, speed and cost. The main requirement of wireless communication in this area is the hard real-time capability with cycle times under 1 ms for a network size of up to 127 sensor nodes and a bidirectional data transmission of up to 48 bytes per sensor node. Another challenge is the integration of these systems into existing infrastructures where coexistence with already present wireless systems is a crucial point. The aim of this work is to empower IR-UWB to fulfill the demanding parameters of automation control based on the IEEE 802.15.4a standard while not violating regulations for UWB. These conditions have a serious impact on optimizations that can be done making this endeavor even more demanding, but ensuring at the same time that the solutions can be used in real systems. In this work, both complex theoretical and practical implementation approaches are elaborated. Some of these approaches were simulated in Matlab, implemented in hardware (FPGA) and an ASIC has been produced. In order to fulfill the high requirements a lot of effort was put into the reduction of the main parts of the UWB communication. To achieve this, a new synchronization method as well as new data transmission method have been developed and optimized. This new scheme supports bidirectional communication with several nodes (up to 127) in parallel. A combination of Forward-Error-Correction methods (Reed-Solomon-Code and Hamming-Code) has been investigated to increase the reliability. In addition an innovative method with a small overhead for correcting errors in pulse sequences has been developed as well. Contrary to the Reed-Solomon-Code, this method makes it possible to fulfill the timing requirements. The result of this work is an optimized transmission concept for UWB. It allows in combination with custom hardware ranging and a reliable, energy-efficient data transmission. The transmission time is less than 1 ms in a network consisting of a master and 127 slaves. If all optimizations proposed in this work are applied, the transmission time for a complete cycle can be reduced by 95% compared to the IEEE 802.15.4a standard. The energy consumption for the whole network can be reduced by 65%. Some of these improvements have been implemented and for others it is shown how they could be implemented. The impact on the energy consumption of factors like switching time between transmitter and receiver have been analyzed. In the course of this work, a single-chip solution has been developed which is compliant with IEEE 802.15.4a standard. It is optimized through some proprietary extensions regarding its potential use in the automation industry. This chip does not contain all proposed optimizations but is capable of reducing the transmission time of a cycle by 57%. Even with these additional features the complexity has been considerably reduced so that the used area could be reduced by 43%. KW - UWB KW - Synchronisierung KW - Automatisierungssystem KW - Vollduplex KW - Zuverlässig KW - IEEE.802.15.4a KW - Synchronization KW - Broadcast KW - Multicast KW - Ultraweitband KW - Synchronisierung KW - Automatisierungssystem KW - IEEE 802.15.4 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:co1-opus4-38703 ER -