@phdthesis{Schneider2013, author = {Schneider, Anna}, title = {Spatial and temporal development of sediment mass balances during the initial phase of landform evolution in a small catchment}, address = {Cottbus}, issn = {2196-4122}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-40621}, school = {BTU Cottbus - Senftenberg}, year = {2013}, abstract = {The central topic of this dissertation is the 3D spatial description of geomorphic and sediment mass balance development in initial phases of ecosystem development. The introductory chapters give an overview on the consideration of characteristics and relevance of the initial development phase in geomorphological landform development concepts and summarize the state of the art of research for experimental studies on landform development and for 3D soil-landscape modeling approaches. The central aim of the work is a 3D-spatially and temporally resolved description of the development of mass balances of the sediment solid phase during the initial years of ecosystem development and of its dependence on initial and boundary conditions in the 6 ha, artificially-created catchment 'H{\"u}hnerwasser'. This aim is approached using remotely-sensed data, methods of quantitative soil landscape modeling and geomorphic change detection, and the application of a numerical landscape evolution model. The construction of a 3D volume model of the catchment's sediment body based on digital elevation data is described. Possibilities for the quantification of sediment mass balances and for the 3D spatial description of sediment properties within this model are discussed. Digital elevation models based on airborne and terrestrial laser scanning and photogrammetry are evaluated for their suitability for sediment mass balance quantification and reconstruction of initial morphologic development; and methods for the modification and combination of elevation data for improved sediment mass balance quantification are described. The development of the catchment's surface morphometry and of the geometry of the evolving erosion rill network is reconstructed and analysed based on aerial photographs and digital elevation models. Relations between structures of the initial surface and the developing hydro-geomorphic structures are discussed. Effects of initial surface morphology and precipitation characteristics during the initial development phase are further assessed by simulations with a numeric landscape evolution model. Results allow for a quantification of geometry and volume of the catchment's initial sediment body and for a visualization of sediment layers deposited in time intervals. It is shown that a combination of different elevation data, based on their suitability for depicting the sediment surface in areas of different morphologic and vegetation characteristics, allows for an improved quantification of sediment mass balances. Results allow for a characterization of phases of rill network growth, contraction and stabilization and suggest influences of initial morphology, precipitation characteristics, and developing structure-process-interactions on rill network geometry in the catchment. The phases of hydro-geomorphic surface structure evolution can be related to the spatial organization of surface flow patterns during initial phases of landform development.}, subject = {Landscape development; Chicken Creek; Geomorphogenese; Sediment; Massenbilanz; Fernerkundung; Bodenlandschaftsmodell}, language = {en} }