@phdthesis{Mandal2008, author = {Mandal, Dipankar}, title = {Ultra-thin films of a ferroelectric copolymer: P(VDF-TrFE)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-5628}, school = {BTU Cottbus - Senftenberg}, year = {2008}, abstract = {Spin-cast films of the ferroelectric copolymer P(VDF-TrFE) are attractive for various applications. For such films the question arises whether there exists a depending on film thickness of ferroelectric functionality. In this work, ultra-thin films of P(VDF-TrFE) up to 0.35nm of thickness have been successfully spin coated, which is quite promising in respect of low cost approach in the electronic industry. This thesis focuses on the preparation of the ultra-thin P(VDF-TrFE) copolymer film and its characterizations to find out a scientific guideline for the suitable application as a non-volatile memory element. Therefore, the ultra-thin film preparations have been investigated initially. Optimization of annealing parameters has been done to get the ferroelectric beta phase and thickness determination is also done carefully. The copolymer layer thickness could be determined down to about 0.35 nm. Photoelectron spectroscopy is used extensively for the characterization of the thin film. Eventually, longer time X-ray irradiation of the P(VDF-TrFE) sample may cause a phase change from ferroelectric to paraelectric. Therefore the X-ray irradiation time was also optimized. With photoelectron spectroscopy, the interface chemistry of the P(VDF-TrFE) copolymer and different electrode materials was studied. The interfaces aluminum/P(VDF-TrFE) and PEDOT:PSS/P(VDF-TrFE) are compared. PEDOT:PSS is a conducting polymer, Poly(3,4-ethylenedioxidethiophene): poly(styrenesulfonate). This data suggested that an interface layer is formed for electrodes, made of aluminum. An interface reaction occurs in both cases: for aluminum as top and as bottom electrode. In contract, the organic PEDOT:PSS electrode shows no chemical interaction with the P(VDF-TrFE) copolymer. The much lower reactivity of organic electrode, compare to aluminum, gives a direct hint to improved functional properties of thin organic ferroelectric films. In terms of a low cost approach for electronics, based on organic devices, the introduction of organic non volatile memories is of great importance. P(VDF-TrFE) copolymer is the material with a very hopeful perspective. In next part electrical measurements with P(VDF-TrFE) have been done. By capacitance voltage measurements, the ferroelectric behavior of the polymer by measurements at elevated temperatures (Curie-Point) is confirmed, a threshold for remanent poalrization for films below 100 nm is found, if aluminum electrodes are used, but with inert electrodes, a downscaling of a low coercitive field was possible down to ten nm. This is very important, because due to the high coercitive field of the copolymer (>50 MV/m), ultrathin films for low operation voltages are needed. A prerequisite for memory applications is a high retention time, this was also confirmed. By the help of Near edge X-ray Absorption Spectroscopy (NEXAFS) the possible ferroelectric dipole orientation have been also investigated. The average dipole orientation (perpendicular to the substrate) is observed up to 0.35 nm P(VDF-TrFE) copolymer films when PEDOT:PSS/Si substrate is used. The ferroelectric properties of ultrathin films down to a layer thickness of 10nm were characterized using spectroscopic (F1s NEXAFS) and electrical methods (Capacitance voltage). The results indicates an extrinsic switching mechanism with a much lower opera-tion voltage than for a collective intrinsic switching. Both independent methods agree that there is no critical thickness for spincoated copolymer films down to 10 nm, if an adapted system of electrodes is used.}, subject = {Grenzfl{\"a}chenchemie; Photoelektronenspektroskopie; Polymerfilm; Ultrad{\"u}nne Filme; Dipolorientierung; Nichtfl{\"u}chtige Speicher; P(VDF/TrFE) Copolymer; Ultra-thin film; Dipole orientation; Non volatile memory application; P(VDF/TrFE) copolymer}, language = {en} }