@phdthesis{SojkaPiotrowska2016, author = {Sojka-Piotrowska, Anna}, title = {On the applicability of short key asymmetric cryptography in low power wireless sensor networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-39453}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {The growing popularity of Wireless Sensor Networks (WSN) makes the spectrum of their applications very wide. A great number of the application areas like health monitoring or military applications require a high level of security and dependability from the wireless sensor network. Solving these issues can be supported by providing cryptographic solutions into WSN applications. Since the WSNs mainly consist of low power devices, cryptographic solutions ideal for WSNs should provide computationally lightweight security mechanisms producing small data packets and ensuring confidentiality. Cryptographic mechanisms that have both these features are considered in this thesis, which main objective is the analysis of the applicability of the short key elliptic curve cryptography in WSN environments. Reduced key lengths require modification of the standard ECC security algorithms to provide authentication and also a novel solution for a cryptographic secure pseudo-random number generator. The proposed solution is based on the standard ECC, but it differs in several aspects. The main difference is that the parameters of the used elliptic curve have to be kept secret. This is due to the fact that solving the Discreet Logarithm Problem (DLP) for such short parameters can be done in short time. Additionally, using shorter parameters for the underlying elliptic curves excludes also the use of standard hash functions, what mainly influences the mechanisms for generating the digital signature. Hash functions require large input values and produce relatively large output data that is inapplicable in the shortECC environment. Thus, within this thesis a modified version of standard Elliptic Curves Digital Signature Algorithm is proposed, which does not require any hash function. The shortECC needs pseudo-random numbers in the encryption and the digital signature protocols, but since it operates on numbers that are significantly shorter than the ones used by other cryptographic approaches, pseudo-random number generators for standard approaches are not suitable for shortECC. Thus, the new pseudo-random number generator not involving any additional hardware besides the modules available on the used test platform and operating on 32-bit long integers, is proposed. The randomness of the numbers generated by the proposed algorithm and their applicability for cryptographic purposes was evaluated using the NIST test suites. The shortECC approach was also subjected to cryptanalysis in order to proof its security and determine the circumstances and constraints for its application.}, subject = {ECC; Sensor Networks; PRNG; Lightweight cryptography; Elliptische Kurven; Drahtlose Sensornetze; Zufallszahl Generator; Drahtloses Sensorsystem; Zufallsgenerator}, language = {en} } @phdthesis{Stecklina2016, author = {Stecklina, Oliver}, title = {A secure isolation of software activities in Tiny Scale Systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-40362}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {With the introduction of the Internet at the end of the last century the modern society was fundamentally changed. Computer systems became an element of nearly all parts of our daily live. Due to the interconnection of these systems local borders are mostly vanished, so that information is accessible and exchangeable anywhere and at anytime. But this increased connectivity causes that physical fences are no longer an adequate protection for computer systems. Whereas the security of commodity computer systems was improved continuously and similarly with their increased connectivity, deeply embedded systems were then and now mostly protected by physical fences. But the ubiquitous availability of embedded systems in personal and commercial environments makes these systems likewise accessible and moves them strongly into the focus of security investigations. Deeply embedded systems are usually equipped with tiny scale micro controllers, which are limited in their available resources and do not feature secure mechanisms to isolate system resources. Hence, a single error in a local software component is not limited to the component itself, instead the complete system may be influenced. The lack of resource isolation makes tiny scale systems prone for accidental errors but in particular vulnerable for a broad variety of malicious software. For a safe and secure operation of computer systems it is strongly recommended that software components are isolated in such a manner that they have access only to those resources, which are assigned to them. Even though a substantial number of approaches in the context of embedded system's safety were investigated during the last fifteen years, security was mostly neglected. This thesis is focused on security aspects where malicious software wittingly tries to bypass available protection mechanisms. The thesis introduces a security platform for tiny scale systems that enforces an isolation of software components considering security aspects. Due to the limited resources of tiny scale systems the proposed solution is based on a co-design process that takes the static and predefined nature of deeply embedded systems into account and includes hardware, compile-time, and run-time partitions to reduce the number of additional run-time components, to avoid performance drawbacks, and to minimize the memory as well as the components footprint overhead. To prove the applicability of the presented platform it was applied and evaluated with two real applications. In addition, an investigation of technologies of commodity computer systems that are suitable to build secure systems is presented. The thesis analyzes their enforcement based on the features provided by the introduced security platform. The contributions of this thesis include an enforcement of a security isolation of system resources on tiny scale systems and enable the development of a broad variety of secure tiny scale system applications.}, subject = {Security; Embedded systems; Memory protection; Hardware software co-design; Role-based access control; Eingebettete Systeme; Sicherheit; Speicherschutz; Rollen-basierte Zugriffskontrolle; Hardware-Software Co-Design; Eingebettetes System; Speicherzugriff; Zuverl{\"a}ssigkeit}, language = {en} }