@phdthesis{Jozefik2016, author = {Jozefik, Zoltan}, title = {Application of ODT to turbulent combustion problems in incompressible and compressible regimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-38653}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {The one-dimensional turbulence (ODT) model is applied to a reactant - to - product counterflow configuration as well as to a shock tube configuration in non-reactive flow and in deflagration and detonation regimes. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers in the counterflow configuration and corresponding to the tube length in the shock tube configuration. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved. In the counterflow configuration, comparisons between model and DNS results for spatial mean and root-mean-square (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition. To carry out the shock tube simulations, the ODT methodology is extended to include an efficient compressible implementation and a model for capturing shock-induced turbulence is presented. The necessary algorithmic changes to include compressibility effects are highlighted and the model for capturing shock-turbulence interaction is presented. To validate the compressible solver, results for Sod's shock tube problem are compared against a finite volume Riemann solver. To validate the model for shock-turbulence interaction, comparisons for a non-reactive and a reactive case are presented. First, results of a shock traveling from light (air) to heavy (SF6) with reshock have been simulated to match mixing width growth data of experiments and turbulent kinetic energy results from LES. Then, for one-step chemistry calibrated to represent an acetylene/air mixture, the interaction of a shock wave with an expanding flame front is simulated, and results with 2D simulation (2D-sim) data for flame brush formation and ensuing deflagration-to-detonation transitions (DDT) are compared. Results for the Sod shock tube comparison show that the shock speed and profile are captured accurately. Results for the nonreactive shock-reshock problem show that interface growth at all simulated Mach numbers is captured accurately and that the turbulent kinetic energy agrees in order of magnitude with LES data. The reactive shock tube results show that the flame brush thickness compares well to 2D-sim data and that the approximate location and timing of the DDT can be captured. The known sensitivity of DDT characteristics to details of individual Wow realizations, seen also in ODT, implies that model agreement can be quantified only by comparing Wow ensembles, which are presently unavailable other than in an ODT run-to-run sensitivity study that is reported herein.}, subject = {Turbulence; Combustion modeling; One dimensional turbulence (ODT); Counterflow; Shock tube; Turbulenz; Verbrennungsmodellierung; Gegenstrom; Stoßrohr; Turbulente Str{\"o}mung; Gegenstr{\"o}mung; Stoßwellenrohr; Simulation}, language = {en} }