@article{HanReiterSchlipfetal.2023, author = {Han, Weijia and Reiter, Sebastian and Schlipf, Jon and Mai, Christian and Spirito, Davide and Jose, Josmy and Wenger, Christian and Fischer, Inga A.}, title = {Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence}, series = {Optics Express}, volume = {31}, journal = {Optics Express}, number = {11}, publisher = {Optica Publishing Group}, address = {Washington, DC}, issn = {1094-4087}, doi = {10.1364/OE.481993}, pages = {17389 -- 17407}, year = {2023}, abstract = {Titanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. Our systematic simulation-based investigation of the sensitivity of the TiN NHA/SiO2/Si stack under varied conditions reveals that very large sensitivities up to 2305 nm per refractive index unit (nm RIU-1) are predicted when the refractive index of superstrate is similar to that of the SiO2 layer. We analyze in detail how the interplay between plasmonic and photonic resonances such as surface plasmon polaritons (SPPs), localized surface plasmon resonances (LSPRs), Rayleigh Anomalies (RAs), and photonic microcavity modes (Fabry-P{\´e}rot resonances) contributes to this result. This work not only reveals the tunability of TiN nanostructures for plasmonic applications but also paves the way to explore efficient devices for sensing in broad conditions.}, subject = {TiN; Plasmonics; Plasmonik; Plasmonik; Photonik; Titannitrid; Plasmonics; Photonics}, language = {en} } @inproceedings{PechmannHagelauerWengeretal.2023, author = {Pechmann, Stefan and Hagelauer, Amelie and Wenger, Christian and Reichenbach, Marc}, title = {1. Memristor-Symposium 2023}, doi = {10.26127/BTUOpen-6348}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-63489}, year = {2023}, abstract = {The 1.Memristor-Symposium was held from 27-28.02.2023 in Bamberg. Young scientists and PhD students presented their research and covered several topics regarding ongoing memristive research in Germany. Several talks on the topic of memristive devices, their testing, modeling and usage were presented and discussed, covering the whole vertical integration from material and divice up to application level.}, subject = {Memristor; Memristive switching; RRAM; Modeling; Memristisches Schalten; Modellierung; Memristor; Modellierung}, language = {en} } @article{MoralesGertigKotetal.2025, author = {Morales, Carlos and Gertig, Max and Kot, Małgorzata and Alvarado, Carlos and Schubert, Markus Andreas and Zoellner, Marvin Hartwig and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {In situ X-ray photoelectron spectroscopy study of atomic layer deposited ceria on SiO₂ : substrate influence on the reaction mechanism during the early stages of growth}, series = {Advanced Materials Interfaces}, volume = {12}, journal = {Advanced Materials Interfaces}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {2196-7350}, doi = {10.1002/admi.202400537}, year = {2025}, abstract = {Thermal atomic layer deposition (ALD) of cerium oxide using commercial Ce(thd)4 precursor and O₃ on SiO₂ substrates is studied employing in-situ X-ray photoelectron spectroscopy (XPS). The system presents a complex growth behavior determined by the change in the reaction mechanism when the precursor interacts with the substrate or the cerium oxide surface. During the first growth stage, non-ALD side reactions promoted by the substrate affect the growth per cycle, the amount of carbon residue on the surface, and the oxidation degree of cerium oxide. On the contrary, the second growth stage is characterized by a constant growth per cycle in good agreement with the literature, low carbon residues, and almost fully oxidized cerium oxide films. This distinction between two growth regimes is not unique to the CeOx/SiO₂ system but can be generalized to other metal oxide substrates. Furthermore, the film growth deviates from the ideal layer-by-layer mode, forming micrometric inhomogeneous and defective flakes that eventually coalesce for deposit thicknesses above 10 nm. The ALD-cerium oxide films present less order and a higher density of defects than films grown by physical vapor deposition techniques, likely affecting their reactivity in oxidizing and reducing conditions.}, subject = {ALD; Cerium oxide; Growth model; In-situ; XPS}, language = {en} } @article{SenguelReiterLotfietal.2025, author = {Seng{\"u}l, Akant and Reiter, Sebastian and Lotfi, Zahra and Efremenko, Julia and Laroussi, Arwa and Corley-Wiciak, Agnieszka Anna and Ratzke, Markus and Mirsky, Vladimir M. and Wenger, Christian and Fischer, Inga Anita}, title = {Titanium nitride plasmonic nanohole arrays with polymer coating : optical properties and their humidity-induced modifications}, series = {Optical Materials Express}, volume = {16}, journal = {Optical Materials Express}, number = {2}, publisher = {Optica Publishing Group}, address = {Washington D.C.}, issn = {2159-3930}, doi = {10.1364/OME.578871}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-72739}, pages = {184 -- 196}, year = {2025}, abstract = {The use of titanium nitride (TiN) for the fabrication of plasmonic structures such as nanohole arrays (NHAs) can enable their integration into optoelectronic devices on the silicon (Si) platform, for example, for the realization of on-chip chemical sensors and biosensors based on refractometric transduction. With a corresponding functionalization of the TiN nanohole arrays, these ultra-compact devices can be utilized in the development of various affinity sensors and sensor systems, such as cost-effective electronic noses for the early detection of gases in the food industry or agriculture. In this work, we focus on two types of coating for functionalization of TiN nanohole arrays: electrochemically synthesized poly-N-methylaniline and layer-by-layer deposited polyacrylic-acid/poly-allylamine (PAA/PAH). Our investigation comprises the experimental characterization of the optical properties of TiN nanhole arrays coated with polymer layers of different thicknesses as well as a comparison with simulation results. We demonstrate the potential of our setup sensing applications by measuring changes in optical properties of TiN nanohole arrays coated with PAA/PAH upon exposure to air of different humidity.}, subject = {Chemical sensors; Extraordinary optical transmission; Localized surface plasmon resonance; Optical coatings; Optical properties; Refractive index}, language = {en} }