@article{KhanSidorczukBeckeretal.2024, author = {Khan, Muhammad Moman and Sidorczuk, Katarzyna and Becker, Juliane and Aleksandrowicz, Adrianna and Baraniewicz, Karolina and Ludwig, Christina and Ali, Aamir and Kingsley, Robert A. and Schierack, Peter and Kolenda, Rafał}, title = {Characterization of clumpy adhesion of Escherichia coli to human cells and associated factors influencing antibiotic sensitivity}, series = {Microbiology Spectrum}, volume = {12}, journal = {Microbiology Spectrum}, number = {5}, publisher = {American Society for Microbiology (ASM)}, address = {Washington, DC}, issn = {2165-0497}, doi = {10.1128/spectrum.02606-23}, year = {2024}, abstract = {Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and non-pathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80\% decrease and ΔyggT depicted 184\% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13\%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics.}, subject = {Escherichia coli; Clumpy adhesion; Motility; Antibiotic tolerance; Stress; Escherichia coli; Zelladh{\"a}sion; Ph{\"a}notyp; Genanalyse}, language = {en} } @article{AliKhanKolendaetal.2023, author = {Ali, Aamir and Khan, Muhammad Moman and Kolenda, Rafal and Olowe, Olugbenga Adekunie and Weinreich, J{\"o}rg and Li, Ganwu and Schierack, Peter}, title = {The role of AJB35136 and fdtA genes in biofilm formation by avian pathogenic Escherichia coli}, doi = {10.1186/s12917-023-03672-7}, year = {2023}, abstract = {Background Infections caused by avian pathogenic Escherichia coli (APEC) result in significant economic losses in poultry industry. APEC strains are known to form biofilms in various conditions allowing them to thrive even under harsh and nutrient-deficient conditions on different surfaces, and this ability enables them to evade chemical and biological eradication methods. Despite knowing the whole genome sequences of various APEC isolates, little has been reported regarding their biofilm-associated genes. A random transposon mutant library of the wild-type APEC IMT 5155 comprising 1,300 mutants was analyzed for biofilm formation under nutrient deprived conditions using Videoscan technology coupled with fluorescence microscopy. Seven transposon mutants were found to have reproducibly and significantly altered biofilm formation and their mutated genes were identified by arbitrary PCR and DNA sequencing. The intact genes were acquired from the wild-type strain, cloned in pACYC177 plasmid and transformed into the respective altered biofilm forming transposon mutants, and the biofilm formation was checked in comparison to the wild type and mutant strains under the same conditions. Results In this study, we report seven genes i.e., nhaA, fdeC, yjhB, lysU, ecpR, AJB35136 and fdtA of APEC with significant contribution to biofilm formation. Reintroduction of AJB35136 and fdtA, reversed the altered phenotype proving that a significant role being played by these two O-antigen related genes in APEC biofilm formation. Presence of these seven genes across nonpathogenic E. coli and APEC genomes was also analyzed showing that they are more prevalent in the latter.}, subject = {APEC; Biofilm; Gene; Complementation; Transposon mutant; VideoScan; Genkomplementierung; Transposon-Mutanten; Gefl{\"u}gelkrankheit; Escherichia coli; Biofilm; Komplementation; Transponson; Mutant}, language = {en} }