@phdthesis{Glišić2010, author = {Glišić, Srđan}, title = {Design of fully integrated 60 GHz OFDM transmitter in SiGe BiCMOS technology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-22062}, school = {BTU Cottbus - Senftenberg}, year = {2010}, abstract = {The goal of this thesis is the analysis of the challenges and finding solutions for the design of mm-wave transceivers. The work presented here is focused on design of transmitter (TX) components, which are critical for the performance of the whole analog front-end. Phase-locked loop (PLL) phase noise is optimized, an image-rejection filter and a high 1 dB compression point (P1dB) power amplifier (PA) are designed. The PLL phase noise optimization is presented and different PLL topologies are compared. A new optimized recipe for calculating PLL parameters of a forth order PLL is presented. Using this approach the spurious sidebands can be reduced by up to 10 dB. The image-rejection filter chapter analyzes the challenges related to the design of the integrated image-rejection filter. The analysis presented here is the first on integrated filters for the 60 GHz band, because the previously published work dealt with on-board filters. The main problems related to the design of integrated filters arise from the low quality factor of the integrated resonators. The effects are high insertion loss and low selectivity. Two measures to reduce the insertion loss of the image-rejection filters were suggested. One is to design the filter as broadband. This measure deteriorates selectivity, so the minimum required image-rejection will limit the width of the passband. The second measure is to design the filter as broadband with non-equidistant transmission zeros (i.e. asynchronously tuned filter). This measure will improve both the insertion loss and the image-rejection. The challenges related to the design of mm-wave PAs with high P1dB are analyzed and the procedure of the PA design is presented. The difficulties related to the PA design and layout are discussed and optimum solutions presented. Limits of different power combining techniques for integrated PAs are discussed. Effects of poor on-chip ground connection are analyzed. Different causes for P1dB degradation are analyzed. The produced PA features a differential cascode topology. The layout is symmetrical and presents a virtual ground on the symmetry line for the differential signal. The optimized schematic and a symmetrically drawn layout resulted in a 17 dBm measured P1dB. It was the highest reported P1dB in 60 GHz SiGe PAs when it was published. The fully integrated TX was used for data transmission with data rate of 3.6 Gbit/s (with coding 4.8 Gbit/s) over 15 meters. This is the best result in the class of 60 GHz AFEs without beamforming.}, subject = {OFDM; Hochfrequenztechnik; Sender; 60 GHz; Leistungsverst{\"a}rker; SiGe; OFDM; Transmitter; 60 GHz; Power Amplifier; SiGe; OFDM}, language = {en} }