@phdthesis{Gerlich2016, author = {Gerlich, Stefan}, title = {Fully monolithically integrated X-band amplifiers with frequency selective feedback}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-39255}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {The thesis addresses the design of monolithically integrated radio frequency amplifiers for X-band applications. The focus is on low-voltage low-noise amplifiers and efficient power amplifiers with high output power level. The challenge here is to realize stable amplifiers with remarkable performance metrics at low supply voltages. The general approach for stabilization amplifiers in the above frequency range is the use of a cascode topology which, however, requests higher supply voltages then single transistor operation. By using a special passive frequency-selective feedback, the use of the cascode topology could be avoided, and the amplifiers are stabilized over the entire frequency spectrum. Simultaneously, this feedback is used to neutralize the intrinsic feedback of the transistor at operating frequencies. As a result, a frequency dependent performance degeneration of the transistor can be mitigated. This work describes the influence of the passive frequency-selective feedback. Its usage as well its limitation are explained using the examples of a realized low noise amplifier and different power amplifiers. Further, the design of radio frequency amplifiers at X-band frequencies that employs silicon-germanium heterojunction bipolar transistors is described. All amplifiers were either incorporated in a 0.25 µm SiGe:C BiCMOS technology or in a 0.35 µm SiGe:C bipolar technology. The main achievements of this work include: - A 8.7 GHz narrow-band low noise amplifier incorporated in a 0.35 µm SiGe bipolar technology. The noise figure is 2.2 dB and the gain 28 dB at a supply voltage of 3 V. The low noise amplifier was subsequently used for a design of a double-balanced I/Q mixer. - Two packaged high efficient power amplifiers operating at a center frequency of 12 GHz. They are incorporated in a 0.35 µm SiGe bipolar technology. One amplifier uses a transformer-based output matching network and achieves 30.9 \% of power-added efficiency and 23.9 dBm of maximum output power at a supply voltage of 1.8 V. The second amplifier utilizes an LC-balun for impedance matching at the output and a power-added-efficiency of 38 \% at 1.8 V is measured. The maximum output power was 23.4 dBm. - A power amplifier in a 0.35 µm SiGe bipolar technology that uses power combining techniques to achieve 30 dBm (1 W) and 30 \% of power-added efficiency at 10 GHz and 2 V supply voltage. - Two power amplifiers, incorporated in a 0.25 µm SiGe:C BiCMOS technology, demonstrating the capability of a non-advanced SiGe process to be used for radio frequency power applications. Power combining techniques, the use of the passive frequency-selective feedback and layout optimization enables the realization of power amplifiers which exhibit an output power of 30 dBm and a power-added efficiency of 35 \% at supply voltages lower as 2.6 V.}, subject = {Amplifier; PA; X-Band; SiGe; Rauscharm; Leistungsverst{\"a}rker; Verst{\"a}rker; Low-Noise; SiGe; X-band; Hochfrequenzverst{\"a}rker; Leistungsverst{\"a}rker}, language = {en} }