@techreport{SchmidtFuegenschuh2021, type = {Working Paper}, author = {Schmidt, Johannes and F{\"u}genschuh, Armin}, title = {Planning inspection flights with an inhomogeneous fleet of micro aerial vehicles}, doi = {10.26127/BTUOpen-5656}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-56569}, year = {2021}, abstract = {We consider the problem of planning an inspection flight to a given set of waypo- ints using an inhomogeneous fleet of multirotor, battery-driven micro aerial vehicles (MAVs). Therein, two subproblems must be solved. On the one side, the detailed trajectories of all MAVs must be planned, taking technical and environmental restrictions into account and on the other side, the MAVs must be assigned to the waypoints considering their installed equipment. The goal is to visit all waypoints in minimal time. The strong interaction of the two subproblems makes it necessary to tackle them simultaneously. Several aspects are taken into account to allow realistic solutions. A two-level time grid approach is applied to achieve smooth trajectories, while the flight dynamics of the MAVs are modeled in great detail. Safety distances must be maintained between them and they can recharge at charging stations located within the mission area. There can be polyhedral restricted air spaces that must be avoided. Furthermore, weather conditions are incorporated by polyhedral wind zones affecting the drones and each waypoint has a time window within it must be visited. We formulate this problem as a mixed-integer linear program and show whether the state-of-the-art numerical solver Gurobi is applicable to solve model instances.}, subject = {Mixed integer linear programming; Inspection path planning; Trajectory planning; Micro aerial vehicles; Gemischt-ganzzahlige Programmierung; Inspektionspfadplanung; Trajektorienplanung; Kleinstdrohnen; Ganzzahlige Optimierung; Tourenplanung; Drohne }, language = {en} }