@phdthesis{Hartmann2018, author = {Hartmann, Claudia}, title = {Surface and interface characterization of CH₃NH₃PbI₍₃₋ₓ₎Clₓ and CsSnBr₃ perovskite based thin-film solar cell structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-46358}, school = {BTU Cottbus - Senftenberg}, year = {2018}, abstract = {The chemical and electronic structure of hybrid organometallic (CH₃NH₃PbI₍₃₋ₓ₎Clₓ) and inorganic (CsSnBr₃) perovskite materials on compact TiO₂ (c-TiO₂) is studied using x-ray and electron based spectroscopic techniques. The morphology and local elemental composition of CH₃NH₃PbI₍₃₋ₓ₎Clₓ, used as absorbers in PV devices, defining the film quality and influencing the performance of respective solar cells is studied in detail by using photoemission electron microscopy (PEEM). An incomplete coverage, with holes reaching down to the c-TiO₂ was revealed; three different topological regions with different degrees of coverage and chemical composition were identified. Depending on the degree of coverage a variation in I oxidation and the formation of Pb⁰ in the vicinity of the c-TiO₂ is found. The valence band maxima (VBM) derived from experimental data for the perovskite and c-TiO₂, combined with information from literature on spiro-MeOTAD suggests an energy level alignment resulting in an excellent charge selectivity at the absorber/spiro-MeOTAD and absorber/c-TiO₂ interfaces respectively. Further, the derived energy level alignment indicates a large recombination barrier (~2 eV), preventing shunts due to direct contact between c-TiO₂ and spiro-MeOTAD in the pin-holes. In-situ ambient pressure hard x-ray photoelectron spectroscopy (AP-HAXPES) studies of 60 and 300 nm CH₃NH₃PbI₍₃₋ₓ₎Clₓ have been performed under varies conditions (i.e. vacuum/water and dark/UV light) to gain insight into the degradation mechanism responsible for the short lifetime of the absorber. The 60 nm perovskite forms Pb⁰ in water vapor (non-defined illumination) in presence of x-rays. The 300 nm perovskite sample shows a complex behavior under illumination/dark. In water vapor/dark the perovskite dissolves into its organic (MAI) and inorganic (PbI₂) components. Under illumination PbI₂ further decomposes to Pb⁰ induced by UV light and x-rays. For alternative inorganic CsSnBr₃ perovskites, the impact of SnF₂ on the chemical and electronic structure is studied to identify its role for the improved performance of the solar cell. HAXPES and lab-XPS measurements performed on CsSnBr₃ with and without SnF₂ indicate two Sn, Cs, and Br species in all samples, where the second Sn species is attributed to oxidized Sn (Sn⁴⁺). When adding SnF₂ to the precursor solution, the coverage is improved and less Sn⁴⁺ and Cs and Br secondary species can be observed, revealing an oxidation inhibiting effect of SnF₂. Additionally, SnF₂ impacts the electronic structure, enhancing the density of states close to the VBM.}, subject = {Perovskite; Photoelectron spectroscopy; Thin-film solar cell; Solid-state physics; Photovoltaics; Photovoltaik; Festk{\"o}rperphysik; D{\"u}nnschichtsolarzelle; Photoelektronenspektroskopie; Perowskite; Fotovoltaik; Halbleiter; D{\"u}nnschichtsolarzelle; Perowskit; Photoelektronenspektroskopie}, language = {en} }