@phdthesis{Schweiger2023, author = {Schweiger, Severin Franziskus Georg}, title = {Additive manufacturing on chip}, doi = {10.26127/BTUOpen-6455}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-64555}, school = {BTU Cottbus - Senftenberg}, year = {2023}, abstract = {Recent advances in additive manufacturing offer promising opportunities for the fabrication of structures on existing micro-(opto-acoustic )electro-mechanical systems, i.e., chips. This is of particular significance in research and development due to the adaptability and adaptation speed of additive manufacturing. These advantages provide the ability to individualize the fabrication of structures and to enable the rapid prototyping approach. The combination of additive manufacturing on chip already enables current research, especially in photonic and microfluidic fields. Despite this, additive manufacturing on chip has never been applied to acoustic sensors or micro-positioning chips. Such devices could benefit from the mentioned advantages, especially for the fabrication of beam shaping waveguides, packaging, grating and end effector structures. Additive manufacturing by two-photon polymerization lithography gathers interest in industry and research due to its capabilities for the fabrication of structures with minimum feature sizes beyond the diffraction limit. The objective of this work is the investigation of additive manufacturing on chip by two-photon polymerization lithography at the example of an acoustic sensor and a micro-positioning chip. One of the greatest challenges is posed by the optical, thermodynamic, adhesion and alignment effects, which are introduced to the fabrication process by these complex substrates. Optical and thermodynamic models were established, and simulations were performed, culminating in a compensation method to address these effects, which was verified by parameter studies. The substrate alignment was investigated via optical technique, resulting in the development, manufacturing and verification of a novel alignment upgrade to the fabrication system employed in this work. The influence of process materials posed another challenge, as they led to chip performance alterations and restrictions. Chips treated with these materials were characterized, e.g., using high frequency optical microphones. Owing to the high precision of the alignment upgrade and the compensation method developed in this work, additive manufacturing on chip using two-photon polymerization lithography on the investigated devices was reported for the first time and presented for expedient examples, e.g., waveguides, end effectors and gratings. The residue contamination was determined as the main origin of the exhibited performance issues. Development strategies were recommended for further research, to enable additive manufacturing on chip insensitive to residual materials. In this work, the requirements for additive manufacturing on chip were illustrated and the fundamental arrangement to enable the rapid prototyping approach as well as design individualization were demonstrated. The compensation methods developed in this work facilitate upcoming research on desirable chip types that form the basis for optical and microfluidic applications.}, subject = {Additive manufacturing; Microelectromechanical systems; Two-photon polymerization; Capacitive micromachined ultrasonic transducer; Nanoscopic electrostatic drive; Additive Fertigung; Zwei-Photonen Lithographie; Akustische Wellenleiter; Mikronadeln; Mikrofluidik; Additive Fertigung; Mikrofluidik; MEMS; Rapid Prototyping; Microfluidics; Microelectromechanical systems}, language = {en} } @phdthesis{Dinter2023, author = {Dinter, Franziska}, title = {Entwicklung mikropartikelbasierter Nachweisverfahren f{\"u}r hydrophile und amphiphile Biomarker}, doi = {10.26127/BTUOpen-6390}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-63909}, school = {BTU Cottbus - Senftenberg}, year = {2023}, abstract = {F{\"u}r die Personalisierte Medizin wird eine pr{\"a}zise und schnelle Analyse relevanter kardiovaskul{\"a}rer, Tumor- oder Autoimmunbiomarker in der heutigen Labordiagnostik immer wichtiger. Patienten sollen m{\"o}glichst individuell und auf ihre Bed{\"u}rfnisse abgestimmt behandelt werden. Mithilfe einfacher, tragbarer, zeit- und materialsparender Analysemethoden sollen in Zukunft die {\"A}rzte durch automatisierte, multiparametrische Testsysteme unterst{\"u}tzt werden. Um diese Probleme adressieren zu k{\"o}nnen, ist es notwendig, Systeme zu entwickeln, die einen simultanen Nachweis von Protein-, Nukleins{\"a}ure-, und Lipidbiomarkern erm{\"o}glichen. Die vorliegende Dissertation setzt sich mit der Entwicklung mikropartikelbasierter Nachweissysteme f{\"u}r hydrophile und amphiphile Biomarker auseinander. Hierbei wurde ein mikropartikelbasierter Mikrofluidikchip zur Analyse von vier Protein- und DNAbasierten kardiovaskul{\"a}ren Biomarkern entwickelt. Dieser zeigt gegen{\"u}ber der Verwendung einer Multiwellplatte eine Reduzierung der Zeit von 1 h auf 7 min, die Reduzierung von Patientenmaterial, aufgrund des Einsatzes geringer Volumina und eine erh{\"o}hte Sensitivit{\"a}t um einen Faktor von f{\"u}nf gegen{\"u}ber den Herstellerangaben der Biomarker. Die Analyse amphiphiler Biomarker wie Phospholipide oder Lipoproteine setzte die Verwendung hydrophober Mikropartikel voraus. Neuartige, fluoreszenzkodierte, hydrophobe Mikropartikel wurden hergestellt und anhand verschiedener Kriterien wie Verhalten in Puffersystemen, Hydrophobizit{\"a}t, L{\"o}sungsmittelstabilit{\"a}t und Fluoreszenz- und Gr{\"o}ßenverteilung charakterisiert. Mithilfe der typisierten hydrophoben Mikropartikel wurden amphiphile Biomarker, wie z. B. Anti-Phospholipid-Antik{\"o}rper gegen Cardiolipin, welche bei Autoimmunerkrankungen, Krebs und kardiovaskul{\"a}ren Erkrankungen eine Rolle spielen, an die Mikropartikeloberfl{\"a}che gekoppelt. Ein aussagekr{\"a}ftiger Nachweis der Anti- Phospholipid-Antik{\"o}rper konnte sowohl auf Membran- als auch Mikropartikelbasis entwickelt werden. Mit dem entwickelten Proof-of-Principle konnten erste Patientenseren analysiert und eine eindeutige Zuordnung der positiven und negativen Seren vorgenommen werden.}, subject = {Mikropartikel; Hydrophobie; Hydrophilie; Mikrofluidik; Nachweisverfahren; Microparticle; Hydrophobic; Hydrophilic; Microfluidic; Detection methods; Amphiphilie; Biomarker; Hydrophilie; Mikrofluidik; Mikropartikel; Nachweis; Microfluidics}, language = {de} }