@phdthesis{Mankovics2015, author = {Mankovics, Daniel}, title = {Luminescence investigation of bulk solar silicon and silicon thin films on glass substrate}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-35196}, school = {BTU Cottbus - Senftenberg}, year = {2015}, abstract = {The aim of this work is to study the optical properties of crystal defects in multicrystalline solar silicon and poly-/microcrystalline silicon thin films on glass substrate. First a setup for photoluminescence imaging on multicrystalline silicon solar wafers was developed. This system is suitable for detecting band-to-band luminescence as well as defect-related luminescence at room temperature on large-scale wafers at different stages of their processing. Spectroscopic photoluminescence investigations of multicrystalline silicon solar wafers indicated a new intense luminescence line at ≈ 0.91 eV at room temperature. The origin of this line is probably found in a specific grain boundary. Furthermore, luminescence in the region of 0.8 eV was investigated in detail, and it was found that probably oxygen is responsible for a peak at 0.77 eV at 80 K. Electroluminescence investigations at room temperature at both materials exhibit extended defect structures such as grain boundaries. Furthermore, it can be concluded that electroluminescence imaging in reverse bias mode indicate on serious breakdown points in solar cells, which can lead to destruction of solar cells and modules. By comparing defect-related and reverse bias electroluminescence images, a difference in the spatial distribution of defects emitting D1 radiation and defects emitting light under reverse bias beyond -12 V is detectable. In addition, there seems to be a correlation in the distribution of non-doping impurities and photoluminescence. Concerning this, vertical slabs of two silicon blocks were examined by means of Fourier-transform infrared spectroscopy and photoluminescence. A correlation of the distributions of interstitial oxygen and the band-to-band luminescence profiles could be found. Additionally, a correlation between D3/D4 luminescence profile and nitrogen distribution in the blocks was observed. Finally, the growth process, particularly the transition from amorphous to microcrystalline silicon by PECVD, was studied by combined photoluminescence and Raman investigations. Formation of silicon nano-grains was detected by means of photoluminescence and Raman spectroscopy.}, subject = {Silicon; Defects; Photoluminescence; Luminescence imaging; Silicon thin films; Silizium; Defekte; Photolumineszenz; Lumineszenz-Imaging; Silizium-D{\"u}nnfilme; Silicium; D{\"u}nnschichttechnik; Solarzelle; Fehleranalyse}, language = {en} }