@phdthesis{Petrovic2013, author = {Petrovic, Vladimir}, title = {Design methodology for highly reliable digital ASIC designs applied to network-centric system middleware switch processor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-29620}, school = {BTU Cottbus - Senftenberg}, year = {2013}, abstract = {The sensitivity of application-specific integrated circuits (ASICs) to single event effects (SEE) can lead to failures of subsystems which are exposed to increased radiation levels in space and on the ground. The work described in this thesis presents a design methodology for a fully fault-tolerant ASIC that is immune to single event upset effects (SEU) in sequential logic, single event transient effects (SET) in combinatorial logic, and single event latchup effects (SEL). Redundant circuits combined with SEL power switches (SPS) are the basis for a design methodology which achieves this goal. Within the standard ASIC design flow enhancements were made in order to incorporate redundancy and SPS cells and, consequently, enable protection against SEU, SET, and SEL. In order to validate the resulting fault-tolerant circuits a fault-injection environment with carefully designed fault models was developed. The moments of fault occurrence and their durations are modeled according to the real effects in actual hardware. The proposed design methodology was applied to an innovative space craft area network (SCAN) central processor unit, known as middleware switch processor. The measurement results presented in this thesis prove the correct functionality of DMR and SPS circuits, as well as the high fault-tolerance of the implemented ASICs along with moderate overhead with respect to power consumption and occupied silicon area. Irradiation measurements demonstrated the correct design and successful implementation of the SPS cell.}, subject = {Kundenspezifische Schaltung; Schaltungsentwurf; Fehlertoleranz; Entwurfsmethodik; Single Event Effects; Latchup Schutz; ASIC Entwurf; Fault-tolerance; Design methodology; Single event effects; Latchup protection; ASIC design}, language = {en} }