@phdthesis{CorreadaSilva2013, author = {Corr{\^e}a da Silva, Rodrigo}, title = {Investigation of pulverized, pre-dried lignite combustion under oxy-fired conditions in a large-scale laboratory furnace}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-27489}, school = {BTU Cottbus - Senftenberg}, year = {2013}, abstract = {The oxy-fuel combustion process with subsequent CO2 storage has received attention as a promising technology for capturing CO2 from fossil fuel power plants. Recent progress in understanding pulverized coal combustion under oxy-fired conditions is attributable in part to studies performed at laboratory bench-scale. Previous investigations have underlined some significant differences between conventional air-fired and oxy-fired combustion with regard to temperature, heat flux distribution, and pollutant emissions. While most studies provide information on the impacts of O2 concentration in the feed gas, the impact of burner configuration and operating settings on oxy-coal combustion have been investigated by only a handful of studies. The present study addresses the impact of oxy-fired conditions on the chemistry and dynamics of pulverized coal flames generated by a staged feed-gas burner operating with pre-dried lignite. Investigations were carried out in a newly constructed test facility where the combustion takes place in a horizontal up-fired furnace with a rated capacity of 0.40 MWth. Since the focus of this work is on adapting oxy-fuel combustion techniques to existing furnaces, great emphasis is placed on maintaining flame temperatures and heat transfer similar to that of conventional air combustion. The strategy adopted to investigate the impacts of burner settings is divided into theoretical and experimental investigations. In the theoretical study, the combustion-related parameters are calculated based on thermodynamic balances and act as a background for the definition of some important operating settings. Non-reacting flow simulations which include the burner and part of the furnace are performed using a CFD commercial code aimed at a qualitative evaluation of feed gas distribution and swirl strength on the flow pattern formed in the near burner region. These predictions assist in the interpretation of the experimental data and in the calculation of the swirl number at the exit of the burner. During the experimental investigations, the characteristics of diffusion flames were first investigated in a parametric study to evaluate the impact of secondary swirl numbers at three levels and secondary/tertiary flow ratios on the overall combustion performance. The second part of the test program involved detailed in-flame measurements for selected flames. Measurements of local gas temperature, gas species concentrations, and radiative heat flux were performed with standard water-cooled probes with special focus on the near burner region. Theoretical and experimental studies are also carried out under air-fired conditions and used as a benchmark throughout this study. The overall O2 fraction upstream of the burner was kept at 31 vol\% and was defined with basis on a similar adiabatic flame temperature as air-firing. Flame stabilization was shown to be strongly dependent on the O2 fraction of the primary stream, feed gas distribution between the secondary and tertiary registers, and strength of the secondary swirl. Type-1 flames operating at a stoichiometric ratio of 1.17 were generated under air-fired and oxy-fired conditions and investigated in detail. Detailed flow pattern and flame structure studies show evidence of radial flame stratification consistent with gradual O2 admixing to the central fuel jet. Increasing the swirl number and the secondary/tertiary flow ratio enhances the mixing of coal particles and increases the temperatures close to burner. Much lower temperatures on the flame axis are observed under oxy-fired conditions. In the same region, higher CO concentrations were also observed, possibly as a result of CO2 dissociation and/or gasification reactions by water vapor and CO2 which contribute to lower temperatures. Very low CO concentration at the furnace exit and high particle burnout indicate that oxy-fired conditions are not an obstacle to achieving a high combustion efficiency for type-1 flames. Although SO2 concentrations were higher under oxy-fired conditions, the emission rates were very similar, indicating that SO2 emissions are exclusively dependent on the sulfur content of the coal. Experimental data obtained from the parametric study and in-flame measurements suggest great potential for NO abatement through flame aerodynamics for oxy-coal combustion. The experiments demonstrate that feed gas staging in a burner is an effective technique for improving the flame stratification in fuel-rich and fuel-lean zones. In particular, a combination of high swirl and high secondary/tertiary flow ratio results in significant NO reduction.}, subject = {Kohlenstaubbrenner; Oxyfuel-Verfahren; Oxyfuel; Verbrennung; Trockenbraunkohle; Brenner; Staubfeuerung; Oxy-fuel; Lignite; Coal; Burner; Combustion}, language = {en} }