@phdthesis{Wang2008, author = {Wang, Li}, title = {Millimeter-wave Integrated Circuits in SiGe:C Technology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-5993}, school = {BTU Cottbus - Senftenberg}, year = {2008}, abstract = {During the last decades the research and implementation of integrated circuits in W-band (Frequencies from 75 GHz to 111 GHz) or frequencies beyond were mainly dominated by GaAs technologies due to their high-performance devices. However, the low-cost requirement of commercial consumer products limits the application of GaAs technologies. Recently, the advents of 200 GHz fT SiGe:C technologies pave the way for realizing the millimeter-wave circuits with their lower cost and excellent performance. This work is focused on the design and implementation of circuits in IHP's low-cost SiGe:C technology at W-band and frequencies beyond. Different types of high-speed frequency dividers as benchmarking circuits are designed and measured to show the speed and power performance of the SiGe technology in this work. Furthermore, this work includes the design and implementation of 77 GHz/79 GHz automotive radar front-end circuits. The results are compared with the state-of-the-art to demonstrate the performance of the circuit and technology. The aim is to show the design techniques and the possibility of adopting IHP's low-cost SiGe:C technology to realize high performance circuits for high-speed applications such as future automotive radar system.}, subject = {Integrierte Mikrowellenschaltung; Silicium; Germanium; MMiC; Integrierte Millimeterwellenschaltung; Millimeter-wave; IC; SiGe; HBT; W-band}, language = {en} }