@phdthesis{FelixDuarte2016, author = {Felix Duarte, Roberto}, title = {Analysis and optimization of interfaces in "wide-gap" chalcopyrite-based thin film solar cell devices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-37402}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {The chemical and electronic structure of chalcopyrite absorbers with different bulk band gap energies, Egbulk, [i.e., low-gap Cu(In,Ga)Se2 (CIGSe, Egbulk ~ 1.2 eV) and wide-gap CuInS2 (CIS, Egbulk ~ 1.5 eV)] and of buffer/absorber heterointerfaces based on these materials are studied with soft and hard x-ray spectroscopy techniques. Mechanisms that benefit (limit) the performance of low(wide)-gap chalcopyrite-based solar cells are identified. This knowledge is used to develop surface tailoring treatments to optimize buffer/absorber heterointerfaces based on wide-gap chalcopyrites and improve the performance of their solar cells. Photoemission spectroscopy (PES) characterization of the two absorbers (i.e., CIGSe and CIS) reveal compositional-depth profiles. The changes detected in CIGSe include: a near surface Ga-depletion, a strongly Cu-poor surface and a strong presence of surface Na that (likely) occupies Cu vacancies. A similar Cu-deficiency is found in CIS. The depth-composition changes result in significant widening of the band gap at the surface, Egsurf, (i.e., CIGSe, Egsurf: 1.70 ± 0.2 eV and CIS, Egsurf: 1.88 ± 0.2 eV) as evident by ultraviolet photoelectron spectroscopy (UPS) and inverse photoemission spectroscopy (IPES) measurements. Differences in the interaction of the CIGSe and CIS surfaces with deposited buffer materials are identified. PES and modified Auger parameter studies reveal strong intermixing at the CdS/CIGSe and ZnS/CIGSe heterointerfaces. S L2,3 x-ray emission spectroscopy (XES) measurements of CIGSe substrates submitted to CdS chemical bath deposition (CBD-CdS) treatments show the formation of In2S3 and defect-rich/nanostructured CdS at the interface, compounds with higher band gap values than the measured Egsurf for CIGSe. S L2,3 XES spectra of CIGSe substrates submitted to CBD-ZnS treatments reveal the formation of (Zn,In)(S,Se)2 chemical analogs at the interface. PES and XES measurement series show that the CdS/CIS heterointerface is more abrupt, with no detected interface chemical species. Direct measurement of the band alignment of these heterointerfaces reveals: an ideal conduction band offset (CBO) configuration for CdS/CIGSe (i.e., CBO: +0.11 ± 0.25 eV), a spike CBO configuration for ZnS/CIGSe (i.e., CBO: +1.06 ± 0.4 eV), and a highly unfavorable cliff CBO configuration for CdS/CIS (i.e., CBO: -0.42 ± 0.25 eV). The performance of solar cell devices based on these heterointerfaces is correlated to their CBO configuration. Two surface tailoring approaches intended to correct the CBO configuration of the CdS/CIS heterointerface are presented. One method is based on rapid thermal processing (RTP) selenization treatments of CIS absorbers, aiming to exchange Se for S in treated samples. The idea behind this approach is to modify the surface of a wide-gap chalcopyrite so that it forms a more favorable heterointerface with CdS, such as heterointerfaces within low-gap chalcopyrite devices. X-ray fluorescence analysis and PES measurements of RTP-treated CIS samples show a greater treatment effect at the surface of the sample compared to the bulk (i.e., surface [Se]/[S+Se] range: 0.23 ± 0.05 to 0.83 ± 0.05, compared to bulk [Se]/[S+Se] range: 0.01 ± 0.03 to 0.24 ± 0.03). Tuning of the Cu:In:(S+Se) surface composition from a Cu-poor 1:3:5 to a 1:1:2 stoichiometry is observed in RTP-treated CIS samples with lower to higher surface Se contents, respectively. UPS measurements show a shift in valence band maximum toward the Fermi level in samples with higher surface Se content (i.e., -0.88 ± 0.1 to -0.51 ± 0.1 eV), as expected for a reduction in Egsurf due to exchange of Se for S. Ultraviolet-visible spectrophotometry reveals a reduction in the optical band gap of samples with greater Se incorporation (i.e., from 1.47 ± 0.05 to 1.08 ± 0.05 eV), allowing for a working window for optimization purposes. The second tailoring method involves surface functionalization of CIS absorbers with dipole-charge-inducing self-assembled monolayers (SAM) of benzoic acid derivatives and thiol molecules. The introduction of dipole charges between a heterointerface can tune the relative alignment of the electronic bands composing its electronic structure; thus, use of a suitable dipole-inducing SAM could correct the CBO misalignment in the CdS/CIS heterointerface. UPS measurements of the secondary electron cut-off region of CIS samples treated with a selected set of SAMs show a work function modulation of CIS (i.e., 4.4 ± 0.2 eV - 5.2 ± 0.2 eV). Small gains in solar cell parameters of solar cells based on SAM-modified heterointerfaces are measured. An overview of the performance of chalcopyrite(kesterite)-based solar cells in relation to the electronic properties of their corresponding buffer/absorber heterointerface suggests that optimization approaches extending beyond the buffer/absorber heterointerface may be needed for further performance gains in wide-gap chalcopyrite-based solar cell devices.}, subject = {Photovoltaics; Thin Film Solar Cells; Chalcopyrite absorbers; Solid-state Physics; Photovoltaik; R{\"o}ntgenspektroskopie; D{\"u}nnschichtsolarzelle; Chalkopyrit-Absorbermaterialien; Festk{\"o}rperphysik; X-ray spectroscopy; Kupferkies; D{\"u}nnschichtsolarzelle; Festk{\"o}rperphysik; Fotovoltaik}, language = {en} }