@phdthesis{Costache2006, author = {Costache, Florenta}, title = {Dynamics of ultra-short laser pulse interaction with solids at the origin of nanoscale surface modification}, isbn = {978-3-8322-6465-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus-3674}, school = {BTU Cottbus - Senftenberg}, year = {2006}, abstract = {This thesis addresses fundamental physical processes which take place at the surface region of a target during and after the interaction with ultra-short laser pulses. The general goal is to bring together different phenomena and discuss the non-equilibrium nature of the interaction of femtosecond laser pulses (tp < 100 fs) with various materials, in particular dielectrics and semiconductors. Different experiments, using various techniques, are designed to explore the basic mechanisms of laser ionization, defect creation, electron-lattice energetic transfer, charged particles desorption, optical breakdown, phase transformations and surface morphological changes. Such processes are shown to depend strongly on the laser intensity. Thus, they are analyzed for intensities over four orders of magnitude (10^11-10^14 W/cm2), around the surface optical breakdown (damage) threshold intensity. First, experimental studies using time-of-flight mass spectrometry indicate that non-resonant intense ultra-short laser pulses can efficiently ionize a dielectric (semiconducting) material leading to emission of electrons as well as charged particles, i.e. atomic ions and large clusters, and neutral particles. Under these irradiation conditions, the ionization processes can be at best described by multiphoton ionization and ionization at defects sites. The structural defects provide the means for an increased positive ion desorption rate. A multiple pulse incubation effect in the ion yield can be well related with the reduction of the multi-pulse damage threshold with increasing intensity. Following the initial electron excitation and emission, positive ions are released from the surface in a substantial amount with high ion velocities indicative of a localized microscopic electrostatic expulsion. With increasing intensity, the amount of ions gets larger and larger and their velocity distribution exhibits a bimodal structure. Also, in these conditions, negative ions are detected. The ion desorption can arise from a combination of a localized electrostatic repulsion (macroscopic Coulomb explosion) and a thermal 'explosive' mechanism. The later becomes more important with increasing intensity. The very fast energy input and particle emission result in a transient perturbation and deformation of the target lattice. Using pump-probe experiments the temporal evolution of lattice dynamics can be analyzed upon single-pulse excitation for many different target materials. This deformation is indicated to be a material characteristic. It is associated with the generation of transient defects in dielectrics or fast phase transitions in semiconductors and metals. Therefore, it could well give estimates of lifetime of transient defect states or electron-phonon relaxation times.At last the surface morphology after ablation is analyzed, with emphasis on the laser-induced surface periodic patterns (ripples). The patterns observed appear to be very different from the 'classical' ripples formed after long pulse ablation. They can have periods much smaller than the incident wavelength and are rather insensitive to the variation of the laser wavelength and angle of incidence. We show that control factors are laser beam polarization and the irradiation dose. Additionally, the patterns exhibit features pointing toward a chaotic origin. Their possible formation mechanism is likely linked with the non-equilibrium nature of the interaction.}, subject = {Ultrakurzer Lichtimpuls; Nanostruktur; Oberfl{\"a}chenstruktur; Ultra-kurze Laser Pulse; Flugzeit-Massenspektrometrie; Teilchen-Emission; Ultraschnelle Gitterdynamik; Ripples; Femtosecond laser pulses; Time-of-Flight mass spectrometry; Particle emission kinetics; Ultrafast lattice dynamics; Ripples}, language = {en} }