@phdthesis{Mai2014, author = {Mai, Alexander}, title = {Aluminium based micro mirrors exposed to UV laser light - in situ performance and degradation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-31497}, school = {BTU Cottbus - Senftenberg}, year = {2014}, abstract = {The present thesis characterises aluminium based micro mirrors exposed to UV laser light. Such micro mirrors, used in highly integrated spatial light modulators, can for example be used as programmable masks in DUV micro lithography. Therefore they are sensitive to any performance loss arising from material degradation or changes in the mirror curvature. The key question addressed in this thesis is the investigation of the in situ curvature change, which means characterisation during a real laser irradiation. For this purpose a measuring station was designed, combining a phase-shift interferometer, an optical microscope and the laser irradiation of the sample at 248nm. The Phase-shift interferometry technique used is a very sensitive contactless optical measurement principle, which allows a resolution of the sample surface in the single-digit nanometer range. A multitude of irradiation tests were performed to describe the change of mirror curvature as a function of different irradiation parameters such as the pulse energy, the laser repetition rate or the ambient atmosphere. The most significant effect was detected by the variation of the applied pulse energy, which was in the range of 10⁻⁵J/cm²-10⁻²J/cm². A general conclusion was that a minimum energy of 10⁻⁵J/cm² at a repetition rate of 1kHz is required to detect any laser induced change of the mirror curvature. At higher energy levels two characteristic behaviours can be distinguished. Up to a level of 10⁻³J/cm² the mirrors show a permanent concave bowing in the range of λ/100. A further increase of the pulse energy causes an accumulating bowing in the opposite direction (convex) of λ/10 within some ten million laser pulses. However this convex bowing partially relaxes after the irradiation is stopped. Another aspect of the thesis was the determination of laser induced material degradation. For this purpose irradiated mirrors were investigated by means of different devices and analytical techniques such as atomic force microscopy (AFM), reflectometry and transmission electron microscopy (TEM). The AFM analysis showed a slight increase of surface roughness and a directional change of the grain size. As a result of the TEM analysis it turned out that arrangement and shape of the grains seems not to have changed. But after the irradiation the growth of a porous oxide layer up to 20nm on the upper mirror surface was noticed. Finally different hypotheses are proposed to explain the mechanisms behind the observed concave and convex bowing at particular pulse energies. In this connection it is assumed that the mirrors at pulse energies larger than 10⁻³J/cm² do not show a static bowing at all. It is rather assumed that the mirror bow oscillates with the laser repetition rate.}, subject = {SLM; Micro mirror array; MOEMS; Laser exposure; In situ; Kippspiegel; Aluminium; Ultraviolett-Bestrahlung; Laser; In situ; Mikrospiegel; Laserbestrahlung; MOEMS; SLM}, language = {en} }