1 search hit

SchemaGuided Inductive Functional Programming through Automatic Detection of Type Morphisms
(2010)

Martin Hofmann
 Inductive functional programming systems can be characterised by two diametric approaches: Either they apply exhaustive program enumeration which uses input/output examples (IO) as test cases, or they perform an analytical, datadriven structural generalisation of the IO examples. Enumerative approaches ignore the structural information provided with the IO examples, but use type information to guide and restrict the search. They use higherorder functions which capture recursion schemes during their enumeration, but apply them randomly in a uninformed manner. Analytical approaches on the other side heavily exploit this structural information, but have ignored the benefits of a strong type system so far and use only recursion schemes either fixed and built in, or selected by an expert user. In category theory universal constructs, such as natural transformations or type morphisms, describe recursion schemes which can be defined on any inductively defined data type. They can be characterised by specific universal properties. Those type morphisms and related concepts provide a categorical approach to functional programming, which is often called categorical programming. This work shows how categorical programming can be applied to Inductive Programming and how universal constructs, such as catamorphisms, paramorphisms, and type functors, can be used as recursive program schemes for inductive functional programming. The use of program schemes for Inductive Programming is not new. The special appeal and novelty of this work is that, contrary to previous approaches, the program schemes are neither fixed, nor selected by an expert user: The applicability of those recursion schemes can be automatically detected in the given IO examples of a target function by checking the universal properties of the corresponding type morphisms. Applying this to the analytical system Igor2, both the capabilities and the expressiveness can be extended without a decrease in efficiency. An extension of the analytical functional inductive programming system Igor2 is proposed and its algorithms described. An empirical evaluation demonstrates the improvements with respect to efficiency and effectiveness that can be achieved by the use of type morphisms for Igor2 due to a reduction in search space complexity.