A Process for Identifying Predictive Correlation Patterns in Service Management Systems

  • By using the remote functions of a modern IT service management system infrastructure, it is possible to analyze huge amounts of logfile data from complex technical equipment. This enables a service provider to predict failures of connected equipment before they happen. The problem most providers face in this context is finding a needle in a haystack - the obtained amount of data turns out to be too large to be analyzed manually. This report describes a process to find suitable predictive patterns in log files for the detection of upcoming critical situations. The identification process may serve as a hands-on guide. It describes how to connect statistical means, data mining algorithms and expert domain knowledge in the domain of service management. The process was developed in a research project which is currently being carried out within the Siemens Healthcare service organization. The project deals with two main aspects: First, the identification of predictive patterns in existing service data and second, the architecture of an autBy using the remote functions of a modern IT service management system infrastructure, it is possible to analyze huge amounts of logfile data from complex technical equipment. This enables a service provider to predict failures of connected equipment before they happen. The problem most providers face in this context is finding a needle in a haystack - the obtained amount of data turns out to be too large to be analyzed manually. This report describes a process to find suitable predictive patterns in log files for the detection of upcoming critical situations. The identification process may serve as a hands-on guide. It describes how to connect statistical means, data mining algorithms and expert domain knowledge in the domain of service management. The process was developed in a research project which is currently being carried out within the Siemens Healthcare service organization. The project deals with two main aspects: First, the identification of predictive patterns in existing service data and second, the architecture of an autonomous agent which is able to correlate such patterns. This paper summarizes the results of the first project challenge. The identification process was tested successfully in a proof of concept for several Siemens Healthcare products.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS
  • Export nach XML

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Fakultät / Lehrstuhl:Fakultät Wirtschaftsinformatik und Angewandte Informatik / Lehrstuhl für Praktische Informatik
Autor(en):Werner Zirkel, Guido Wirtz
Beteiligte Körperschaft:Siemens AG, Healthcare IT, Erlangen
Verlagsort:Bamberg
Verlag:opus
Erscheinungsjahr:2010
Seitenzahl / Größe (KB):I, 20 S. : graph. Darst.
Schriftenreihen/Serie (Bandnummer):Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik (84)
SWD-Schlagwort(e):Autonomer Agent ; Online-Publikation; Datenmanagement; Service management
Freie Schlagwort(e):Ereignis Korrelation; Pattern Identifizierung; Service Management
Event Correlation; Pattern Identification; Service Management
DDC-Sachgruppe:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
RVK - Regensburger Verbundklassifikation:ST 515
URN:urn:nbn:de:bvb:473-opus-2292
Dokumentart:Verschiedenartige Texte
Sprache(n):Englisch
Veröffentlichende Institution:Otto-Friedrich-Universität Bamberg
Datum der Freischaltung:25.02.2010

$Rev: 13581 $