Forschungsdatensätze der BAM
Filtern
Dokumenttyp
- Forschungsdatensatz (17)
Sprache
- Englisch (17)
Referierte Publikation
- nein (17)
Schlagworte
- Automation (3)
- BAM reference data (3)
- Bonding analysis (3)
- High-throughput computations (3)
- Titania nanoparticles (3)
- X-ray scattering (3)
- Nanoparticles (2)
- Phonons (2)
- Adsorption (1)
- Aktivkohle (1)
Organisationseinheit der BAM
- 6 Materialchemie (17) (entfernen)
SI Files for "Towards automation of the polyol process for the synthesis of silver nanoparticles"
(2022)
The graphml file: reaction_graph_AgNP.graphml is included. It contains topological information (Fig. 1 in the main text) about the reaction setup and metadata with reaction condtions. It used by the Python API used to control the Chemputer.
SAXS reports. The complete report sheets generated by McSAS are included. They contain extended information characterising the size distributions and the fitting parameters.
NP3_I: saxs_report_NP3_I.pdf
NP3_II: saxs_report_NP3_II.pdf
NP3_III: saxs_report_NP3_III.pdf
NP3_IV: saxs_report_NP3_IV.pdf
NP5_I: saxs_report_NP5_I.pdf
NP5_II: saxs_report_NP5_II.pdf
NP5_III: saxs_report_NP5_III.pdf
In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure.
This is a set of drawings accompanying the submitted paper entitled "Extending Synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes". The parts described herein will combine with commercial off-the-shelf components to build a high precision pair of rotation stages for accurate measurement of scattering angles with a sub-microradian precision.
This dataset accompanies the following publication, first published in Scientific Reports (www.nature.com/articles/s41598-021-84287-6):
B. Ruehle, J. Krumrey, V.-D. Hodoroaba, Scientific Reports, Workflow towards Automated Segmentation of Agglomerated, Non-Spherical Particles from Electron Microscopy Images using Artificial Neural Networks, DOI: 10.1038/s41598-021-84287-6
It contains electron microscopy micrographs of TiO2 particles, the corresponding segmentation masks, and their classifications into different categories depending on their visibility/occlusion. Please refer to the publication and its supporting information for more details on the acquisition and contents of the dataset, as well as the GitHub repository at https://github.com/BAMresearch/automatic-sem-image-segmentation
This is the repository of all experimental raw data used in the Scientific Reports publication "Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine" by Daniel Dittmann, Paul Eisentraut, Caroline Goedecke, Yosri Wiesner, Martin Jekel, Aki Sebastian Ruhl, and Ulrike Braun.
It includes
- overview_measurements.xlsx and overview_measurements.ods containing a list of all TGA experiments (TGA, TGA-FTIR, TED-GC-MS, and ramp-kinetics)
- TED-GC-MS.zip containing gas chromatography-mass spectrometry experimtent files for the Chemstation and OpenChrom
- TGA.zip containing thermogravimetric analyses raw data on evolved gas analyses experiments (TGA-FTIR and TED-GC-MS)
- TGA_kinetics.zip containing thermogravimetric analyses raw data on decomposition kinetic experiments (ramp-kinetics)
- TGA-FTIR.zip containing Fourier-transform infrared spectroscopy series files for OMNIC
- XRF.zip containing x-ray flourescence data on elemental composition
Dataset and Jupyter worksheet interpreting the (results from) small- and wide-angle scattering data from a series of boehmite/epoxy nanocomposites. Accompanies the publication "Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite", by Paulina Szymoniak, Brian R. Pauw, Xintong Qu, and Andreas Schönhals.
Datasets are in three-column ascii (processed and azimuthally averaged data) from a Xenocs NanoInXider SW instrument. Monte-Carlo analyses were performed using McSAS 1.3.1, other analyses are in the Python 3.7 worksheet. Graphics and result tables are output by the worksheet.
This dataset is a complete set of raw, processed and analyzed data, complete with Jupiter notebooks, associated with the manuscript mentioned in the title.
In the manuscript, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for Ultrafine Structure Exploration). Through this project, we aim to provide a comprehensive methodology for obtaining the highest quality X-ray scattering information (at small and wide angles) from measurements on materials science samples.
To simulate the movement of the macroscopic magnetic moment in ferromagnetic systems under the influence of elevated temperatures, the stochastic version of the Landau-Lifshitz (LL) or the Landau-Lifshitz-Gilbert equation with a spin density of one per unit cell has to be used.
To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be performed. OOMMF sample files MIF) are provided which can be used to determine the Curie temperature for the classical bulk magnets, iron, nickel and cobalt.
These files contain cell models for TOPAS/Geant4 and the inclusion of nano particles in particle scattering simulations. A simple spherical cell with nanoparticles can be generated in a fast manner. The user has the option to include the following organelles: nucleus, mitochondria, cell membrane. Additionally nanoparticles can be included in the cytosol and at the surface of the nucleus and/or the mitochondria.
The C++ classes in this repository extend the functionality of the TOPAS (http://www.topasmc.org/) Monte-Carlo program, which is itself a wrapper of the Geant4 MCS Toolkit (http://geant4.org). The sourcecode together with examples and scorers are provided.
"If you use this extension please cite the following literature:
Hahn, M.B., Zutta Villate, J.M. "Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles." Sci Rep 11, 6721 (2021).
https://doi.org/10.1038/s41598-021-85964-2 "