Anmelden

Open Access

  • Startseite
  • Suchen
  • Browsen
  • Veröffentlichen
  • Hilfe
  • Organisationseinheit der BAM
  • 3 Gefahrgutumschließungen

3.0 Abteilungsleitung und andere

Filtern

Autor*in

  • Mair, Georg W. (59)
  • Duffner, Eric (21)
  • Widjaja, Martinus Putra (16)
  • John, Sebastian (13)
  • Szczepaniak, Mariusz (11)
  • Wang, Bin (8)
  • Mair, Georg (7)
  • Schoppa, André (7)
  • Becker, Ben (6)
  • Dittrich, Matthias (6)
+ weitere

Erscheinungsjahr

  • 2020 (2)
  • 2019 (48)
  • 2018 (44)
  • 2017 (23)
  • 2016 (34)
  • 2015 (4)

Dokumenttyp

  • Vortrag (98)
  • Beitrag zu einem Tagungsband (22)
  • Posterpräsentation (19)
  • Zeitschriftenartikel (12)
  • Monografie (2)
  • Tagungsband (Herausgeberschaft für den kompletten Band) (1)
  • Sonstiges (1)

Sprache

  • Englisch (97)
  • Deutsch (57)
  • Mehrsprachig (1)

Referierte Publikation

  • nein (146)
  • ja (9)

Schlagworte

  • Degradation (16)
  • Composite (14)
  • Fibre break (10)
  • Multiscale model (9)
  • Composite pressure vessels (7)
  • Reduced volume method (7)
  • Acceptance rate (6)
  • Integral range (6)
  • Composite pressure vessel (5)
  • Composite-Druckgefäße (5)
+ weitere

Organisationseinheit der BAM

  • 3 Gefahrgutumschließungen (155)
  • 3.0 Abteilungsleitung und andere (155)
  • 8 Zerstörungsfreie Prüfung (16)
  • 2 Chemische Sicherheitstechnik (8)
  • 8.6 Faseroptische Sensorik (8)
  • 8.1 Sensorik, mess- und prüftechnische Verfahren (7)
  • 2.4 Auswirkungsbetrachtungen bei Stoff- und Energiefreisetzungen (6)
  • 3.3 Sicherheit von Transportbehältern (6)
  • 2.1 Explosionsschutz Gase, Stäube (5)
  • 2.2 Reaktionsfähige Stoffe und Stoffsysteme (4)
+ weitere

155 Treffer

  • 1 bis 10
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sortieren nach

  • Jahr
  • Jahr
  • Titel
  • Titel
  • Autor*in
  • Autor*in
Hydrogen - Trust through safety (2020)
Holtappels, Kai
In the DECHEMA Virtual Talks, general aspects of the safety and acceptance of hydrogen technologies were presented. How can trust in new technologies be built when past accidents led to myths and fairy tales? The presentation does away with general prejudices and shows that handling hydrogen is neither more unsafe nor safer than handling other fuel gases. The basis for the safe handling of hydrogen is always a risk analysis.
An energy frame of reference to assess vehicle´s physical externalities (IMECE 2020-23745) (2020)
Romero-Navarrete, José-Antonio
As a result of the vehicle – infrastructure interaction, both systems deteriorate. The development of performance measures about such effects, is critical to find ways to mitigate these systems deterioration. We propose an energy approach to such an assessment: The transient energy stored in the pavement. The transient strain energy stored in the vehicle suspension.
Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors (2019)
Quercetti, Thomas
A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report.
Package testing of a dual purpose cask for SNF from german research reactors (2019)
Quercetti, Thomas
A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively.
Package testing of a dual purpose cask for SNF from german research reactors (2019)
Quercetti, Thomas
A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively.
Package testing of a dual purpose cask for SNF from German research reactors (2019)
Quercetti, Thomas ; Scheidemann, Robert ; Komann, Steffen ; Ballheimer, Viktor ; Wille, Frank
A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively.
Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors (2019)
Quercetti, Thomas ; Scheidemann, Robert ; Komann, Steffen ; Ballheimer, Viktor ; Wille, Frank
A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report.
Betriebsfestigkeit von Composite-Wasserstoffspeichern Erster Ansatz zur Simulation der Auswirkung der erstmaligen Prüfung (2019)
Mair, Georg W. ; Gesell, Stephan
Druckbehälter werden vor ihrer Inbetriebnahme obligatorisch einer hydraulischen Prüfung bis zum sog. Prüfdruck belastet. Damit sollen fehlerhaft gefertigte Individuen erkannt und ausgesondert werden. Mit dieser Prüfung werden aber auch diejenigen Einzelbehälter ausgesondert, die ohne einem nachvollziehbaren Fertigungsfehler, nur auf Basis der statistischen Streuung ggf. eine Festigkeit unterhalb des Prüfdrucks aufweisen. Da der Prüfdruck im Fall der Wasserstoffspeicher mindestens 20% über dem maximal zulässigem Betriebsdruck liegt, wäre damit ein Versagen im Betrieb ausgenommen, gäbe es die verschiedenen Alterungs- bzw. Ermüdungseffekt nicht. Um den Einfluss der erstmaligen Prüfung auf eine angenommene ausfallfreie Zeit bewerten zu können, wird hier die Alterung und die erstmalige Prüfung in Kombination analysiert. Hierzu wird auf Basis der Restfestigkeitsdaten aus einer umfangreichen Prüfkampagne ein Ansatz für die Beschreibung der Alterung ermittelt und auf andere Lastzustände übertragen. So kann für das Baumuster, das der o.g. Prüfkampagne zugrunde lag, mithilfe einer Monte-Carlo-Simulation gezeigt werden, dass mindestens 10.000 LW vor einem ersten Alterungsversagen mit 1 aus 1 Mio. In Abhängigkeit der Anzahl der Individuen, die bei der erstmaligen Prüfung versagen, und der Streuung der gesamten Population, kann diese Mindestfestigkeit auf realistisch 50.000 Lastwechsel steigen. Damit ist gezeigt, dass aufgrund der erstmaligen Prüfung eine Mindestfestigkeit erzeugt wird, die stark vom Alterungsverhalten abhängt. Im Ergebnis heißt dies, dass in den Vorschriften aktuell die Bedeutung des Mindestberstdrucks in der Baumusterprüfung überschätzt und die möglichst betriebsbegleitende Erfassung der Alterung unterschätzt sind.
NIP-II Verbundvorhaben DELFIN (2019)
Mair, Georg W. ; John, Sebastian ; Duffner, Eric
Das Poster gibt die Eckdaten des Projektes, Partner und Projektziele wieder. Der Inhalt der Arbeitspakete "Impact" und "Zuverlässigkeit/Alterung" werden mithilfe von Fotos erläutert.
EU-Projekt TAHYA (Horizon 2020) (2019)
Mair, Georg W. ; Kriegsmann, Andreas ; Szczepaniak, Mariusz
Es werden die Eckdaten und Projektziele wiedergegeben. Die zwei für die BAM-Beiträge zentralen Arbeitspakete und deren Lösungsansätze (hydraulische und Brand-Prüfungen) sowie Probabilistik werden bildlich veranschaulicht.
  • 1 bis 10

OPUS4 Logo

  • Kontakt
  • Impressum
  • Sitelinks