2.0 Abteilungsleitung und andere
Filtern
Dokumenttyp
Schlagworte
- Gefahrstoffverordnung (21)
- Arbeitsschutz (20)
- Gefahrstoffe (18)
- Gefahrstoff (17)
- Schutzmaßnahmen (16)
- Ringversuch (14)
- Gefahrgut (12)
- Prüfmethode (12)
- Qualitätssicherung (11)
- Validierung (11)
Organisationseinheit der BAM
- 2 Chemische Sicherheitstechnik (82)
- 2.0 Abteilungsleitung und andere (82)
- 2.2 Sicherheit in der Prozesstechnik (6)
- 2.1 Sicherheit von Energieträgern (5)
- 3 Gefahrgutumschließungen; Energiespeicher (2)
- 3.1 Sicherheit von Gefahrgutverpackungen und Batterien (2)
- 1 Analytische Chemie; Referenzmaterialien (1)
- 1.4 Prozessanalytik (1)
- 2.3 Einstufung von Gefahrstoffen und -gütern (1)
- 3.0 Abteilungsleitung und andere (1)
Technische Regeln im Arbeitsschutz – wie TRBS für die Betriebssicherheitsverordnung und TRGS für die Gefahrstoffverordnung – sind nicht zwingendes Recht, sondern konkretisierende Empfehlungen mit Vermutungswirkung. In Gerichtsurteilen werden sie eher selten herangezogen. Wie diese – und Branchenregelungen von Verbänden – von der Rechtsprechung diskutiert werden, zeigt ein Urteil des Verwaltungsgerichts Münster.
Die Begriffe gefährlicher Stoff und Gefahrstoff werden häufig nicht unterschieden – in vielen Fällen resultieren aber durch den Kontext auch keine Missverständnisse. Tatsächlich bestehen aber Unterschiede – sowohl inhaltlich als auch bezüglich des Rechtsbereichs, der jeweils für sie gilt.
Stoffe sind gefährlich, wenn sie den Kriterien der CLP-Verordnung für physikalische Gefahren, Gesundheitsgefahren oder Umweltgefahren entsprechen. Sie werden dann im Sinne der CLP-Verordnung entsprechend eingestuft und es ergeben sich Pflichten bezüglich des Inverkehrbringens innerhalb der EU.
Gefahrstoffe sind in der Gefahrstoffverordnung definiert. Sie beinhalten die gefährlichen Stoffe und weitere nicht notwendigerweise als gefährlich eingestufte Stoffe. Das Ziel ist vor allem der Schutz von Beschäftigten bei Tätigkeiten mit Gefahrstoffen – es handelt sich also um eine Arbeitsschutzvorschrift.
Dieser Aufsatz stellt gefährliche Stoffe in ihrem Kontext vor, gibt einen Überblick über die Prinzipien und Rechtsfolgen sowie Hinweise auf weiterführende Informationen und stellt ihnen die Gefahrstoffe gegenüber.
Bei Geräten und Maschinen zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen muss in der europäischen Union eine Zündgefahrenbewertung durchgeführt werden. Dabei müssen unter anderem die Gefahren von nichtelektrischen Zündquellen betrachtet werden, zu denen auch die mechanischen Schlagvorgänge gehören.
Bei Schlagvorgängen kommt es infolge des Zusammenstoßes zweier Werkstücke zu einer Umwandlung der kinetischen Energie. Dabei erhöht sich die Temperatur der Werkstoffe an der Kontaktstelle und es kommt unter Umständen zu einem Abtrennvorgang kleiner Partikel erhöhter Temperatur. Sowohl die heißen Kontaktstellen als auch die abgetrennten Partikel können eine wirksame Zündquelle für ein explosionsfähiges Gasgemisch darstellen. Zur Festlegung von Grenzwerten wurden in der Norm DIN EN ISO 80079-36:2016 die Gasgemische anhand ihrer Explosionsgruppe klassifiziert und zu jeder Gruppe die maximale Energie des Schlagvorgangs festgelegt, unter derer die Entstehung einer wirksamen Zündquelle als unwahrscheinlich angenommen werden kann.
Mit zunehmender Produktion und Einsatz von Wasserstoff kommt immer mehr die Frage auf, inwieweit etablierte Freistrahlmodelle geeignet sind die Freisetzung von Wasserstoff aus Ausbläsern ausreichend genau zu berechnen, um darauf aufbauend Aussagen zum Explosionsschutz treffen zu können. Ein Vergleich mit experimentellen Untersuchungen zeigt, dass die Berechnungen von Modellen, die z.B. für Erdgas geeignete sind, für sehr leichte Gase größere Abweichungen ergeben können. Es sind daher Modifikationen für das Integralmodell von Schatzmann und das empirische Modell von Chen/Rodi entwickelt und mit experimentellen Untersuchungen verglichen worden. Bei einer verzögerten Zündung der Wasserstoff-Gaswolke sind bei experimentellen Untersuchungen relevante Explosionsüberdrücke gemessen worden, die bei einer Gefährdungsbeurteilung berücksichtigt werden sollten. Hierfür ist ein Berechnungsansatz in Verbindung mit dem Multi-Energy-Modell entwickelt worden.
Mit zunehmender Produktion und Einsatz von Wasserstoff kommt immer mehr die Frage auf, inwieweit etablierte Freistrahlmodelle geeignet sind die Freisetzung von Wasserstoff aus Ausbläsern ausreichend genau zu berechnen, um darauf aufbauend Aussagen zum Explosionsschutz treffen zu können. Ein Vergleich mit experimentellen Untersuchungen zeigt, dass die Berechnungen von Modellen, die z.B. für Erdgas geeignete sind, für sehr leichte Gase größere Abweichungen ergeben können. Es sind daher Modifikationen für das Integralmodell von Schatzmann und das empirische Modell von Chen/Rodi entwickelt und mit experimentellen Untersuchungen verglichen worden. Bei einer verzögerten Zündung der Wasserstoff-Gaswolke sind bei experimentellen Untersuchungen relevante Explosionsüberdrücke gemessen worden, die bei einer Gefährdungsbeurteilung berücksichtigt werden sollten. Hierfür ist ein Berechnungsansatz in Verbindung mit dem Multi-Energy-Modell entwickelt worden.
Bei einem Schulexperiment mit Brennspiritus kam es zu einer „Verpuffung“ und durch den entstandenen „Feuerball“ fing die Kleidung von zwei Schülern und des Lehrers Feuer. Der Aufsatz arbeitet das Strafbefehlsverfahren auf, diskutiert Verantwortlichkeit, Pflichtverletzung und Verschulden des Lehrers und geht auf die im Strafbefehlsverfahren nicht in Bezug genommenen konkreten Regelungen der DGUV zu Unterricht an Schulen mit gefährlichen Stoffen ein.
Der Vortrag stellt die wesentlichen Inhalte sowie die wichtigsten Änderungen der TRGS 510 "Lagerung von Gefahrstoffen in ortsbeweglichen Behältern" vor.
Die TRGS 510 zeichnet sich durch ein gestuftes Maßnahmenkonzept in Abhängigkeit von der Art und Menge der gelagerten Gefahrstoffe aus. Folgende Maßnahmenstufen werden durch die TRGS 510 beschrieben:
1. Kleinmengen -> Allgemeine Maßnahmen
2. Überschreitung der Kleinmengen -> Lagerung im Lager
3. Überschreitung bestimmter Mengen für spezielle Gefahrstoffe -> Spezielle Maßnahmen
4. Verschiedene Gefahrstoffe und Lagerung im Lager erforderlich -> ggf. Getrenntlagerung und Separatlagerung
Der Vortrag stellt die wesentlichen Inhalte sowie die wichtigsten Änderungen der TRGS 510 "Lagerung von Gefahrstoffen in ortsbeweglichen Behältern" vor.
Die TRGS 510 zeichnet sich durch ein gestuftes Maßnahmenkonzept in Abhängigkeit von der Art und Menge der gelagerten Gefahrstoffe aus. Folgende Maßnahmenstufen werden durch die TRGS 510 beschrieben:
1. Kleinmengen -> Allgemeine Maßnahmen
2. Überschreitung der Kleinmengen -> Lagerung im Lager
3. Überschreitung bestimmter Mengen für spezielle Gefahrstoffe -> Spezielle Maßnahmen
4. Verschiedene Gefahrstoffe und Lagerung im Lager erforderlich -> ggf. Getrenntlagerung und Separatlagerung
The efficient design of hypergolic-ionic-liquid (HIL) fuels with attractive features, (e.g., short ignition delay and high specific impulse) can be achieved by fine-tuning the molecular organization comprising both cations with appropriate alkyl chains and cyanoborohydride-based hydrogen-rich anions. Attractive features of the presented derivatives were attained by combining cations with various substituents (substituted 1H-1,2,4-triazol-4-ium, pyrrolidinium, ammonium and pyridinium cations) and the cyanoborohydride anion. All shown HILs display high thermal stabilities with thermal decomposition temperatures over 154 °C and possess higher densities (from 0.82 to 1.02 g cm−3) compared to the unsymmetrical dimethylhydrazine (UDMH, 0.793 g cm−3). The hypergolic ignition behavior of the propellant combination was evaluated by a drop test setup using white fuming nitric acid (WFNA) as an oxidizer and recorded using a high-speed camera. All compounds feature ignition delay times (ID) under 50 ms, while the 1-hexyl-1-methylpyrrolidin-1-ium cyanotrihydroborate congener (17) exhibited the shortest ID time (5 ms), which is comparable to the ID time of UDMH (4.8 ms with WFNA as an oxidizer). In addition, these HILs exhibit higher heats of formation (187.6 to 392.6 kJ mol−1), heats of combustion (34.39 to 47.15 kJ g−1) and specific impulse (176 to 205 s) compared to UDMH.